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Abstract

We prove a two-term asymptotics for the canonical zero-temperature Bogolubov en-
ergy functional. The functional describes a homogeneous, dilute gas of repulsively
interacting Bosons in 3 spatial dimensions in the thermodynamic limit. As a main
result, we show the formula 4πaρ2 + 512

√
π

15 C · (ρa)5/2 + o(ρa)5/2 for the ground state
energy density as ρa → 0. Here, ρ is the density of the gas and a is the scattering
length of the two-body interaction potential V . The explicit constant C > 1 is de-
pending on the potential. The result is in agreement with the upper bound given by
[1] and the method is inspired by [3]. The second order term carries a constant which
is strictly larger than the one in the Lee-Huang-Yang formula.
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1 INTRODUCTION AND MAIN RESULT

1 Introduction and Main Result

The physical phenomenon of Bose-Einstein condensation has been intensively studied in
the past and present century. First discovered by A. Einstein in 1925 [6], it soon became
a great challenge for both physicists and mathematicians. In particular, proving existence
of Bose-Einstein condensation for real, interacting gases turned out to be beyond reach
for the existing methods until the present day. Nevertheless, the are efforts to treat the
problem systematically. In this thesis, we give the proof of an asymptotic formula for the
ground state energy of an interacting Bose gas in the low-density limit.

1.1 The interacting Bose gas on a finite box

A gas of N identical and pairwise interacting bosons in 3 spatial dimensions is, in suitable
units, described by the Hamiltonian

HN,L := −
N∑
i=1

∆i +
∑

16i<j6N

V (xi − xj). (1.1)

It consists of the kinetic energy and the two-particle interaction term given by V : R3 → R.
The physical space is the open cubic box ΛL := (−L/2, L/2)3 of side length L > 0. This
means that HN,L is acting in the bosonic N -particle Hilbert space HN,L = L2

sym(ΛNL ) of
square-integrable functions Ψ, which are symmetric with respect to permutation of their
coordinates. For a complete setup, one has to specify boundary conditions, which can be
either Dirichlet, Neumann, or periodic. The Hamiltonian HN,L can be properly realized
as a self-adjoint operator with dense domain D(HN,L) ⊆ HN,L by Friedrichs’ method. We
refer to [4, p.2] for more details. As usual, the ground state energy EN,L of HN,L is the
infimum of the spectrum:

EN,L := inf{〈Ψ, HN,LΨ〉HN,L : Ψ ∈ D(HN,L), ‖Ψ‖HN,L = 1}. (1.2)

If Ψ0 ∈ HN,L exists such that

EN,L = 〈Ψ0, HN,LΨ0〉HN,L ,

we call Ψ0 a ground state of HN,L. Generally, if it exists, one would like to gain structural
information on the ground state Ψ0. This also contains the question whether Ψ0 is a Bose-
Einstein condensate state. This, in turn, requires a suitable definition of Bose-Einstein
condensation in advance. It turns out that the obvious definition for the ideal gas may not
easily be generalized for interacting systems, see Subsection 1.2.

In most cases, the “microscopic” information – how Ψ0 and EN,L depend on N and L – is
far from known. Typically, N is very large and so the system is too complicated. However,
making use of that, we can consider the mean particle density ρ := N

L3 > 0 instead. Then,
one intends to extract partial information for (1.2) by considering the macroscopic, or
thermodynamic, limit (N,L) = (ρL3, L) → ∞. This means that we take N,L → ∞
simultaneously, keeping the density ρ fixed. This motivates the definition of the ground
state energy density as a function of ρ by

e0(ρ) := lim
L→∞

EρL3,L

ρL3
. (1.3)
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1 INTRODUCTION AND MAIN RESULT

1.2 Historical development

For the ideal gas, the Hamiltonian is HN,L from (1.1) with V ≡ 0. In this case, Bose-
Einstein condensation was introduced and proved by Einstein in [6]. His observation was
that the ground state of HN,L is given by the N -fold product of the one-particle ground
state, the zero-momentum mode. His observation was called Bose-Einstein condensation,
whence the ground state of HN,L became a Bose-Einstein condensate state. This is a state
which is forbidden for fermions due to Pauli’s exclusion principle. Ever since, people tried
to generalize the definition of Bose-Einstein condensation and to prove analogous results
for real, interacting gases. Nowadays, it is agreed to define Bose-Einstein condensation in
terms of eigenvalues of one-particle density matrices1, see [12, pp.4]. As opposed to the ideal
gas, this definition includes the weakening that only a large fraction of the particles will
condense. In general, given the interaction potential V , people are interested in studying
questions of the type:

(Q1) Under which circumstances does Bose-Einstein condensation exist?

(Q2) Assuming Bose-Einstein condensation, what can we say about the ground state en-
ergy density (1.3) in the thermodynamic limit?

It turned out that addressing either of questions (Q1) or (Q2) for an interacting gas is
severely more complicated than for the ideal gas. In fact, no systematic treatment of
the Hamiltonian (1.1) was available whatsoever until 1947. In that year, the pioneering
work [7] was published by N.N. Bogolubov. His paper introduced a procedure which
intends to simplify HN,L from (1.1) in such a way that, afterwards, the ground state energy
density (1.3) became computable. Nowadays, that procedure is called the Bogolubov
approximation. Still, results on (Q1) remain unknown except for the very special case of
hard sphere bosons [12, p.5]. Concerning (Q2), the method Bogolubov introduced was used
in 1957 to derive an expansion of the ground state energy density (1.3) for a low-density,
or dilute, gas [8]. Today, the formula is well known as the Lee-Huang-Yang formula after
the authors T.D. Lee, K. Huang and C.N. Yang. It states that (1.3) is given by

e0(ρ) = 4πaρ

[
1 +

128

15
√
π

(ρa3)
1/2 + o(ρa3)

1/2

]
as ρa3 → 0. (1.4)

Here, a is the scattering length of the two-body interaction potential V and has the inter-
pretation of an effective interaction range. We give a careful definition of a in Section 2.
The term “dilute” refers to the assumption that the mean distance ρ−1/3 of the particles is
much bigger than a, i.e., ρ1/3a� 1, or, equivalently, ρa3 � 1. This asymptotic expansion
is really a series in the dimensionless2 variable 0 6 ρ1/3a � 1 and not only in the density
ρ of the gas. See [12, p.167] for a detailed explanation.

Until the present day, mathematicians have tried to turn the methods of [7] and [8] into
a mathematical proof of the formula (1.4). In fact, there is no rigorous understanding of
the Lee-Huang-Yang formula to second order. The first-order term 4πρa is given by the
ground state energy of the two-body problem, multiplied by the number of pairs in the gas.
It was investigated for the first time by F.J. Dyson [9], who presented a rigorous upper
and lower bound in 1957. He considered hard-core potentials and only the upper bound
was matching (1.4). However, for more than 40 years, this was the best bound available.
Dyson’s method was generalized and improved by E. Lieb and J. Yngvason [10] for general
potentials in 1998. Since then, the first-order term is known to match 4πaρ in (1.4).

1For an introduction to the concept of one-particle, the interested reader is referred to [5, Chapter 8].
2See also [4, p.3].
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1.3 Recent results

The experimental realization [11] of Bose-Einstein condensation in 1995 renewed the mathe-
matical interest in proving rigorous results on the ground state energy of the Bose gas. In
particular, understanding the second order term in (1.4) became of great interest, since
this term is agreed to come from a quantum mechanical correlation effect [12, p.167]. We
mention the work of L. Erdős, B. Schlein and H.-T. Yau [1] in 2008, who consider an
interaction of the form λV , where λ > 0 is a tunable parameter and chosen to be small.
In their paper, a trial state is constructed to prove that

e0(ρ) 6 4πaρ

[
1 +

128

15
√
π

(ρa3)
1/2Sλ

]
+O(ρ2|ln ρ|) as ρ→ 0. (1.5)

Here, Sλ is a specific constant satisfying 1 6 Sλ 6 1 + Cλ for some C > 0, and a is the
scattering length of λV . One sees that in the limit λ → 0, the second order constant
matches (1.4). Written in this form, the statement is unsatisfactory though, since, in fact,
a depends on λ and goes to 0 with λ → 0 in that limit as well. After all, the potential
also scales down to 0. In Section 4, when more notation is available, we present a more
detailed version of this statement, where this ambiguity does not occur. In 2009, a more
complicated trial state was constructed by H.T. Yau and J. Yin [13]. It has an energy
matching the second order term in (1.4). One crucial difference between these two trial
states is that the one by Erdős et al. is so-called quasi-free as opposed to the one by Yau
and Yin. The quasi-free states form a class of “simple” states. For a long time, it was
believed that these states model the ground state energy density to second order. The
paper [1] was the first hint that this might not be correct in general. In contrast, Yau and
Yin proved that it is nevertheless possible to lower the energy to (1.4) if one increases the
complexity of the chosen trial state. By giving a lower bound similar to (1.5), we prove that
(1.4) is not reachable within the set of quasi-free states. The mathematical formulation of
this statement is our main result, Theorem 1.3 below.

Let us briefly describe the origin of the functional, which we take into consideration for
the proof of our main result. In a new two-component paper from 2015, J.P. Solovej,
R. Reuvers, and M. Napiórkowski analyze the so-called Bogolubov free energy functional
for temperatures T > 0. In the first paper [2], they provide existence results for minimizers.
The second paper [3] contains

1. an existence result for a phase transition (Bose-Einstein condensation) and

2. a proof of an asymptotic energy expansion for the infimum of this functional for
“moderate temperatures” and “low temperatures”.

These items are addressing the questions (Q1) and (Q2), respectively. As temperature is
involved, the results look relatively complicated. In the present thesis, we simplify the
asymptotic energy expansion [3, Theorem 10 (2)] in the special case T = 0, similar to
(1.4), by using methods from [3]. Hence, we define our setup in a similar spirit to [3]. Af-
ter having proved our main result, Theorem 1.3, we shall compare it to (1.5) in Section 4.
In that spirit, this thesis is studying the question (Q2) from Subsection 1.2.
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1.4 The functional

The canonical zero temperature Bogolubov energy functional is given by [3, p.3]

Fcan(γ, α, ρ0) := (2π)−3

ˆ
R3

p2γ(p) dp+
1

2
V̂ (0)ρ2

+ (2π)−3ρ0

ˆ
R3

V̂ (p)
(
γ(p) + α(p)

)
dp

+ (2π)−6 · 1

2

¨
R3×R3

V̂ (p− q)
(
γ(p)γ(q) + α(p)α(q)

)
dpdq,

(1.6)

where V̂ is the Fourier transform defined in (1.10) and ρ is given by (1.7) below. The
functional Fcan is defined on the domain

D := {(γ, α, ρ0) : γ ∈ L1((1 + p2)dp), γ > 0, α2 6 γ(γ + 1), ρ0 > 0}.

Fcan describes a homogeneous, interacting Bose gas at temperature zero in 3 spatial di-
mensions in the thermodynamic limit. We make more precise what we mean by the term
“homogeneous” in Remark 1.1. The pair (γ, α) models the one-particle density matrix of
a quantum state. Here, γ is the momentum distribution of the gas and α is describing
the long range correlations between the particles, which are assumed to be present in the
ground state. The density ρ0 > 0 of the condensate fraction is reflecting the macroscopic
occupation of the one-particle ground state. Thus, the total density ρ > 0 is given by

ρ := ρ0 + ργ := ρ0 + (2π)−3

ˆ
R3

γ(p) dp. (1.7)

Remark 1.1 (Connection to (1.1)). Let us briefly discuss the connection of the functional
Fcan in (1.6) with the Hamiltonian (1.1). A heuristic derivation of the functional can
be found in Appendix A of [2]. To summarize, one starts with the N -body Hamiltonian
HN,L in (1.1) with periodic boundary conditions. One evaluates the second quantized
version ofHN,L at a quantum state of finite particle expectation, whose one-particle density
matrix (γ̃, α̃) is related to (γ, α). Since this remark cannot be turned into a mathematical
statement (see below), we refrain from being more precise. Here, γ̃ is a positive semi-
definite trace-class operator on the one-particle Hilbert space L2(Λ) and α̃ satisfies3

γ̃ > α̃J(1 + γ̃)−1Jα̃∗. (1.8)

Furthermore, one makes use of the assumption that (γ̃, α̃) is translation invariant in the
sense that the Fourier representations of the kernels of γ̃ and α̃ are diagonal on 2π

L (Z3×Z3),
respectively. This is what we mean by the term “homogeneous” in the definition (1.6)
above. With the additional assumption that α is real-valued, (1.8) becomes α2 6 γ(γ+1).
Finally, one assumes that the quantum state is quasi-free which results in α2 = γ(γ + 1),
see [5, Theorem 10.4]. Denoting the expected number of particles in the condensate by N0,
one can define the condensate density ρ0 := N0

L3 . Taking the informal limit L→∞, keeping
the condensate density ρ0 constant then yields (1.6). However, it is this limiting process
which, to the best of the author’s knowledge, makes a rigorous connection between HN,L

and (1.6) unknown4. For clarity, we collect all assumptions on the states (γ, α) which we
used on the way:

3See, for example, [14, Lemma 1.1]. The map J is the Hilbert space identification L2(Λ) → L2(Λ)∗ –
in our case the complex conjugation.

4We refer to the remark “up to technical details involving the thermodynamic limit” on [3, p.4].
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1 INTRODUCTION AND MAIN RESULT

(1) α is real valued,

(2) (γ̃, α̃) is quasi-free,

(3) (γ̃, α̃) is translation invariant.

We conclude the remark by noting that, due to the limit L→∞ instead of N = ρL3 →∞,
the Lee-Huang-Yang formula (1.4) becomes

e0(ρ)ρ = 4πaρ2 +
512
√
π

15
(ρa)

5/2 + o(ρa)
5/2 as ρa→ 0. (1.9)

1.5 Assumptions on the potential

In our model, the particles interact through a repulsive and real-valued two-body potential
V : R3 → R. In the following, we shall fix the assumptions which we put on V .

Assumption 1.2. Let V : R3 → R be a measurable potential and assume that the follow-
ing statements hold:

(1) V ∈ L1(R3) and the Fourier transform satisfies V̂ ∈ L1(R3) ∩ L2(R3).

(2) V is radially symmetric, meaning that V (Rx) = V (x) for every R ∈ SO(3), x ∈ R3.
Here, SO(3) is the set of special orthogonal matrices R ∈ R3×3 with RRt = 1 and
detR = 1.

(3) V and V̂ are nonnegative on R3 and V̂ (0) > 0. Furthermore, V has compact support,
i.e., there is R0 > 0 such that V ≡ 0 on BR0(0)c ⊆ R3. Here, BR(0) is the ball in R3

of radius R > 0, centered about the origin.

(4) V̂ ∈ C1(R3), i.e., V̂ is continuously differentiable on R3.

We use the convention that the Fourier transform V̂ of V is denoted by

V̂ (p) :=

ˆ
R3

e−ipxV (x) dx. (1.10)

Let us collect some properties that follow from Assumption 1.2. From (2) we have that
V (−x) = V (x) for all x ∈ R3 by choosing a special orthogonal matrix that rotates around
an axis perpendicular to x. Moreover, for R ∈ SO(3) and p ∈ R3, we get

V̂ (Rp) =

ˆ
R3

e−ipR−1xV (x) dx =

ˆ
R3

e−ipxV (Rx) = V̂ (p).

By similar arguments as for V , we get V̂ (p) = V̂ (−p) = V̂ (p), so that V̂ is real valued and
symmetric. Therefore, the assumption that V̂ > 0 makes sense. Furthermore, V̂ (0) > 0
implies that V 6≡ 0. We expect that the last assumption (4) can be relaxed to Lipschitz
continuity at 0 but for simplicity, we work with (4).

1.6 Main result

The canonical minimization problem for Fcan reads [3, p.3]

F (ρ) := inf
(γ,α,ρ0)∈D
ρ0+ργ=ρ

Fcan(γ, α, ρ0) = inf{f(ρ, ρ0) : 0 6 ρ0 6 ρ}, (1.11)

9
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where

f(ρ, ρ0) = inf{Fcan(γ, α, ρ0) : (γ, α, ρ0) ∈ D, ρ0 = ρ− ργ}.

In that sense, the condition ργ = ρ− ρ0, given in (1.7), can be understood as a constraint
to which the minimization problem (1.11) for Fcan is subject. We have to take it into
account throughout the thesis. Our main result reads as follows.

Theorem 1.3. Let V be a potential satisfying Assumption 1.2. Let a > 0 denote its
scattering length as defined in Definition 2.1 and define the quantity

ν :=
V̂ (0)

8πa
. (1.12)

Assume that

1 < ν <
3

2
. (1.13)

Then, for ρ > 0, the canonical minimization problem F (ρ) in (1.11) admits the following
asymptotic expansion as ρa→ 0:

F (ρ) = 4πaρ2 + (8π)
5/2 · I(2ν − 1) · (ρa)

5/2 + o(ρa)
5/2, (1.14)

where, for σ ∈ [1,∞),

I(σ) := (2π)−3 · 1

2

ˆ
R3

{√
p4 + 2σp2 + σ2 − 1− p2 − σ +

1

2p2

}
dp. (1.15)

It is a known fact that V̂ (0) > 8πa, see [12, eq.(C.10)]. Hence, it is clear from the definition
(1.12) that ν > 1. The assumption that additionally ν > 1 holds is essential for our proof,
whereas ν < 3/2 is only assumed for technical reasons and can be relaxed. However, we
are interested in 1 < ν � 3/2 anyway. We are going to prove that I in (1.15) is strictly
monotonically increasing on [1,∞) and, furthermore, that I(1) = 2

√
2

15π2 . Hence,

(8π)
5/2I(1) = 82π2 · 2

√
2π · 2

√
2

15π2
=

512
√
π

15
.

This is precisely the constant in front of the second order term in the Lee-Huang-Yang
formula, i.e., in the limit ν → 1, we recover (1.9). For a homogeneous gas, this proves
that, within the quasi-free translation invariant states, the infimum as it is stated in (1.9)
cannot be reached.

1.7 Plan for the thesis

In Section 2, we consider the two-body problem given by the potential V . We define the
scattering length a and the scattering solution u of the potential V̂ properly. The scattering
solution satisfies the differential equation

−∆u+
1

2
V u = 0

in R3 with u(x) → 1 as |x| → ∞. Here, we borrow the existence and uniqueness result
[4, Theorem 1.2.2], which includes a complete proof. From this, we derive several integral
equations involving u and V and conclude a representation of the scattering equation in

10
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momentum space. This preparation will be useful for Section 3, where we prove Theo-
rem 1.3. For this purpose, we define a simplified functional which does not depend on α
anymore. The simplified functional serves as a lower bound to Fcan and its ground state
γmin can be computed explicitly. Afterwards, we need to approximate the ground state
energy of the simplified functional to the appropriate precision for (1.14). We make use
of an a priori estimate which states that ρ − ρ0 = O(ρ)3/2, i.e., ρ0 is “almost all of” ρ.
This gives the lower bound. For the upper bound, the state γmin – together with some
suitably chosen αmin – is the candidate for a trial state which we insert into Fcan. We need
to compute the energy and estimate the error terms. The concluding Section 4 consists
of a comparison of our low-density expansion with the energy of the trial state in [1]. It
turns out that the energy is (1.14) to second order. In view of the paper [13], we point out
possible extensions of Theorem 1.3.

11





2 THE SCATTERING LENGTH

2 The Scattering Length

2.1 Definition and elementary properties

In this section, we define the scattering length a of the potential V . In the first step, we
present the existence result [4, Theorem 1.2.2] for the scattering solution u in Theorem 2.2.
Afterwards, we use the result to prove that 1−u may be Fourier transformed in the sense of
S ′(R3). On the way, we collect several integral equations involving u and the potential V .
Here, we make partial use of [3, p.11]. The conclusion is a Plancherel-type equality for V
and 1 − u. The preparation of this section will be useful for the main section, Section 3,
where we prove Theorem 1.3.

Definition 2.1. Let V : R3 → R be a nonnegative, radially symmetric and measurable
potential. The scattering length a of V is defined by

a :=
1

8π
· inf
u

(ˆ
R3

|∇u|2 +
1

2

ˆ
R3

V |u|2
)
, (2.1)

where the infimum is taken over all nonnegative, radially symmetric functions u ∈ H1
loc(R3)

with5 u(x) → 1 as |x| → ∞. If the infimum is attained for such a function u, we call u a
scattering solution of V .

From the condition V > 0 it follows immediately that a > 0.

Theorem 2.2 [4, Theorem 1.2.2]. Let V ∈ L1(R3) be a nonnegative, radially symmet-
ric and compactly supported potential. Then, the infimum (2.1) is attained for a unique
function u ∈ H1

loc(R3) such that

(a) u satisfies the scattering equation

−∆u+
1

2
V u = 0 (2.2)

in the sense of distributions S ′(R3).

(b) Moreover, u is continuous, radially symmetric, and radially increasing.

(c) With a > 0 as in Definition 2.1, we have

u(x) > 1− a

|x|
, (2.3)

with equality for |x| > R0, where R0 > 0 is such that V ≡ 0 on BR0(0).

(d) In particular, 0 6 u < 1 holds.

(e) If additionally V 6≡ 0, then we have that a > 0.

Since V satisfies Assumption 1.2, Theorem 2.2 applies and provides a scattering solution u.
Define the function

g(x) := V (x)u(x) = V (x)(1− w(x))

5Radially symmetric functions u ∈ H1
loc(R3) are continuous away from the origin, see [4, p.9]. Therefore,

this convergence is to be understood pointwise.
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2 THE SCATTERING LENGTH

and, for x ∈ R3, consider

Γ(g)(x) :=
1

4π

ˆ
R3

g(y)

|x− y|
dy.

For x ∈ BR0(0)c, i.e., x /∈ supp(g) ⊆ supp(V ), we have

|Γ(g)(x)| 6 1

4π

ˆ
R3

|g(y)|
|x− y|

dy 6
1

4π

‖g‖L1(R3)

dist(x, supp(g))

|x|→∞−−−−→ 0, (2.4)

so that Γ(g) is a bounded function on R3. A mollification argument for g shows that

−
ˆ
R3

Γ(g) ·∆ϕ =

ˆ
R3

g · ϕ

for every test function ϕ ∈ S(R3). On the other hand, define w := 1 − u and note that
0 6 w 6 1 by Theorem 2.2 (d). Furthermore, w(x) → 0 as |x| → ∞. Note that by
Assumption 1.2 (1), V is continuous and thus, g is continuous since, by Theorem 2.2 (b),
u is. By Theorem 2.2 (a), we infer that w − Γ(g)

2 is a bounded harmonic function on R3.
Hence, it is constant by Liouville’s theorem. Since Γ(g) goes to zero at infinity by (2.4),
we conclude that this constant is zero and hence w(x) = 1

2Γ(g)(x) for each x ∈ R3. For
|x| > R0 we also have that w(x) = a

|x| by Theorem 2.2 and thus, for such x, we get

w(x) =
a

|x|
=

1

8π

ˆ
R3

g(y)

|x− y|
dy.

Hence, for |x| > R0, we obtain

8πa =

ˆ
R3

|x|
|x− y|

· g(y) dy
|x|→∞−−−−→

ˆ
R3

g(y) dy

by the dominated convergence theorem. The dominant is given by |x|
dist(x,supp g)g(y) 6 g(y).

By the definition of the Fourier transform, we arrive at the first representation of the
scattering length as

8πa = ĝ(0) = V̂ u(0). (2.5)

In comparison, we define the first order Born approximation a0 of the potential V as

8πa0 := V̂ (0),

see also [4, p.5]. It is known that a0 > a (see equation (C.10) in [12]). Motivated by this,
we consider the parameter ν = a0

a > 1 as in (1.12) in our main theorem. According to
(1.13), we assume that even strict inequality holds, i.e., ν > 1. It is not clear to the author
whether this holds in general but it is claimed in [1, eq.(8)] and [3, p.4]. The arguments
there seem not to be sufficient for that conclusion. However, an important insight is given
by the proof of [4, Theorem 1.2.2]. In point 5, the author proves that a > 0 unless V ≡ 0,
our assertion (e) of Theorem 2.2. The proof uses the scattering equation and the fact that
u is subharmonic due to V > 0. Therefore, it is convincing to apply the same strategy
to prove that a0 − a > 0. That, in turn, would imply that ν > 1. Presumably, one
needs to apply elliptic regularity methods in advance so that we are not going to pursue
this idea further here. As mentioned in the introduction, the additional assumption that
ν < 3/2 holds is only for technical reasons and not necessary. One can easily generalize the
corresponding proofs for ν > 3/2.

14



2 THE SCATTERING LENGTH

2.2 A Fourier representation of the scattering solution

Recall that w is a bounded continuous function and V u ∈ L1(R3). Hence, w and V u
belong to the space S ′(R3) of tempered distributions and by the scattering equation, we
have

0 =

ˆ
R3

w ·∆ϕ+
1

2

ˆ
R3

V u · ϕ

for every ϕ ∈ S(R3), the Schwartz space on R3. Hence, denoting the Fourier transform by
F : S ′ → S ′, we have

1

2

ˆ
R3

V̂ u · ϕ =
1

2

ˆ
R3

V u · ϕ̂ = −
ˆ
R3

w ·∆ϕ̂ =

ˆ
R3

w · p̂2ϕ = F(w)(p2ϕ)

so that, by replacing p2ϕ ∈ S(R3) with ϕ ∈ S(R3), we get

ˆ
R3

w(x) · ϕ̂(x) dx = F(w)(ϕ) =

ˆ
R3

V̂ u(p)

2p2
· ϕ(p) dp (2.6)

for all ϕ ∈ S(R3). We want to extend (2.6) to V̂ u. To do this, we choose a sequence
(ϕn)n ⊆ S(R3) of radially symmetric functions ϕn ∈ S(R3) so that ϕn → V̂ u in L1(R3) as
n→∞. Note that, since w ∈ L∞(R3), and since V u is radially symmetric, the convergence
of the left-hand side of (2.6) is automatically

ˆ
R3

w(x)ϕ̂n(x) dx
n→∞−−−→ (2π)3

ˆ
R3

w(x)V u(x) dx.

On the other hand,

ˆ
R3

V̂ u(p)

p2
·
[
ϕn(p)− V̂ u(p)

]
dp = 4π

ˆ ∞
0

V̂ u(r) ·
[
ϕn(r)− V̂ u(r)

]
dr

and, since V̂ u is bounded and continuous as well, we get the convergence of the right-hand
side of (2.6). To summarize, we obtain

ˆ
R3

w(x) · V u(x) dx = (2π)−3

ˆ
R3

V̂ u(p)2

2p2
dp <∞. (2.7)

Motivated by (2.6), we define, in slight abuse of notation,

ŵ(p) :=
V̂ u(p)

2p2
. (2.8)

In Section 3, we need ŵ to be more regular. Therefore, we prove some regularity estimates
in the next subsection.

2.3 Regularity estimates for the scattering solution

We mainly imitate [3, p.11] and start by noting that V u > 0 since u > 0, see Theo-
rem 2.2 (d). From this, we get

|V̂ (p)| 6 V̂ (0) = 8πa0 = 8πa · ν, |V̂ u(p)| 6 V̂ u(0) = 8πa. (2.9)

15



2 THE SCATTERING LENGTH

From (2.7), we get

ˆ
R3

V (x)u(x)2 dx = 8πa−
ˆ
R3

V̂ u(p)2

2p2
dp <∞.

By a similar approximation argument to (2.7), we obtain that

(2π)−3

ˆ
R3

|V̂ u(p)|2 dp =

ˆ
R3

|V u(x)|2 dx 6 ‖V ‖∞
ˆ
R3

V (x)u(x)2 dx <∞.

With this, we may estimate further∥∥∥∥ V̂ up2

∥∥∥∥
L1(R3)

6
ˆ
|p|61

|V̂ u(p)|
p2

dp+

ˆ
|p|>1

|V̂ u(p)|
p2

dp

6 4πV̂ u(0) +

(ˆ
|p|>1
|V̂ u(p)|2 dp

)1/2(ˆ
|p|>1

1

p4
dp

)1/2

<∞.

Note that, by definition (2.8), this means

ŵ ∈ L1(R3). (2.10)

Now, let ϕ ∈ S(R3) and note that

̂̂
V ∗ ϕ = (2π)3 · V · ϕ̂

as L1-functions. Going back to (2.6), we can insert V̂ ∗ ϕ ∈ S(R3). We get

ˆ
R3

w(x)V (x)ϕ̂(x) dx = (2π)−3

ˆ
R3

V̂ u(p)

2p2
· (V̂ ∗ ϕ)(p) dp. (2.11)

Choose a sequence (ϕn)n ∈ S(R3) with ‖ϕ̂n − 1‖∞ → 0 as n → ∞. Since V w ∈ L1(R3),
we conclude that the left-hand side of (2.11) converges to V̂ w(0). Using (2.10) and the
continuity of the Fourier transform, we finally infer that (2.11) converges to the Plancherel-
type equality

ˆ
R3

V (x)w(x) dx = (2π)−3

ˆ
R3

V̂ u(p)

2p2
· V̂ (p) dp = (2π)−3

ˆ
R3

ŵ(p) · V̂ (p) dp. (2.12)

We conclude this section by noting that

V̂ w = ŵ ∗ V̂ ∈ L1(R3), (2.13)

since both function belong to L1(R3), see (2.10).
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3 MINIMIZATION OF THE FUNCTIONAL

3 Minimization of the Functional

In this section, we prove the main result, Theorem 1.3. The first thing to do is to prove
that the functional Fcan is well-defined on its domain. This is the starting point. By mak-
ing use of the scattering equation (2.8), we define a simplified functional F sim afterwards.
The simplified functional will serve as a lower bound for Fcan and can be minimized ex-
plicitly. We have to spend some time on proving that, indeed, the minimizer is an allowed
trial function. We do this simultaneously with proving the approximations of the occuring
integrals to the required precision. When we have this, we can start to consider lower
and upper bounds to prove the claimed asymptotics (1.14) for the canonical minimization
problem (1.11). Of course, the minimizer of F sim serves as a test function for the upper
bound for Fcan. There are error terms which have to be estimated.

Recall from (1.6) that the full functional is given by

Fcan(γ, α, ρ0) = (2π)−3

ˆ
R3

p2γ(p) dp+
1

2
V̂ (0)ρ2

+ (2π)−3ρ0

ˆ
R3

V̂ (p)(γ(p) + α(p)) dp+Q(γ, γ) +Q(α, α),

(3.1)

where the symmetric quadratic form Q is defined as

Q(ϕ,ψ) := (2π)−6 · 1

2

¨
R3×R3

V̂ (p− q)ϕ(p)ψ(q) dpdq. (3.2)

The functional Fcan is defined on the domain

D = {(γ, α, ρ0) : γ ∈ L1((1 + p2)dp), γ > 0, α2 6 γ(γ + 1), ρ0 > 0} (3.3)

and, according to (1.7), the densities ρ, ρ0 > 0 satisfy the contraint

ρ = ρ0 + ργ = ρ0 + (2π)−3

ˆ
R3

γ(p) dp. (3.4)

3.1 Well-definedness of the functional

We use Assumption 1.2 on the potential V to prove that Fcan is well-defined on D. We
proceed as in [2, p.11]. Fix (γ, α, ρ0) ∈ D and decompose α according to α = α> + α<,
where α> := α · 1{γ>1} and α< := α · 1{γ<1}. Then,

|α<| 6
√
γ2 + γ · 1{γ<1} 6

√
γ + γ · 1{γ<1} 6

√
2 · √γ · 1{γ<1}. (3.5)

|α>| 6
√
γ2 + γ · 1{γ>1} 6

√
γ2 + γ2 =

√
2 · γ. (3.6)

We use this decomposition to estimate all the terms in (3.1). We start with the linear term
for α and estimateˆ

R3

V̂ (p)α(p) dp 6
√

2

ˆ
{γ<1}

V̂ (p)
√
γ(p) dp+

√
2

ˆ
{γ>1}

V̂ (p)γ(p) dp

6
√

2 · ‖V̂ ‖L1(R3) +
√

2 · V̂ (0)‖γ‖L1(R3). (3.7)

The linear term for γ is bounded by
ˆ
R3

V̂ (p)γ(p) dp 6 V̂ (0)‖γ‖L1(R3), (3.8)
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3 MINIMIZATION OF THE FUNCTIONAL

and, in a similar fashion, we estimate
¨

R3×R3

V̂ (p− q)γ(p)γ(q) dpdq 6 V̂ (0)‖γ‖2L1(R3). (3.9)

The estimate for Q(α, α) in (3.1) is slightly more involved. Let us start by noting that

α(p)α(q) = α>(p)α>(q) + α>(p)α<(q) + α<(p)α>(q) + α<(p)α<(q)

6 2γ(p)γ(q) + 2γ(p) + 2γ(q) + 2
√
γ(p)γ(q)

6 2γ(p)γ(q) + 2γ(p) + 2γ(q) +
√

2(γ(p) + γ(q)).

With this, we can estimate
¨

R3×R3

V̂ (p− q)α(p)α(q) dpdq 6

6 2

¨
R3×R3

V̂ (p− q)
[
γ(p)γ(q) + 2γ(p) +

1√
2

(γ(p) + γ(q))

]
dpdq

6 2V̂ (0)‖γ‖2L1(R3) + 2(2 +
√

2) · ‖V̂ ‖L1(R3) · ‖γ‖L1(R3). (3.10)

This proves that all the terms in (3.1) are well-defined on D. Let Q(ϕ) := Q(ϕ,ϕ). We
continue by remarking that if ϕ ∈ L1(R3), then

Q(ϕ) = (2π)3

ˆ
R3

(V̂ ∗ ϕ)(p)ϕ(p) dp =

ˆ
R3

V (x)|qϕ(x)|2 dx > 0, (3.11)

where qϕ := ϕ̂(−·). Hence, Q(γ) > 0. To arrive at the same statement for α, we borrow
Young’s inequality [15, Theorem 4.2].

Theorem 3.1 (Young’s inequality). Let p, q, r > 1 and 1/p+ 1/q+ 1/r = 2. Let f ∈ Lp(R3),
g ∈ Lq(R3) and h ∈ Lr(R3). Then∣∣∣∣ˆ

R3

(f ∗ g)(x)h(x) dx

∣∣∣∣ 6 CY(p, q, r) · ‖f‖Lp(R3)‖g‖Lq(R3)‖h‖Lr(R3).

From (3.5) and (3.6), we infer that α> ∈ L1(R3) and α< ∈ L2(R3). Let (ϕn)n ⊆ S(R3) be
such that ‖α< − ϕn‖2 → 0 as n→∞ and write

α = α> + ϕn + (α< − ϕn). (3.12)

Then, a straightforward computation shows that

Q(α) = Q(α> + ϕn) +Q(α< − ϕn) + 2 ·Q(α>, α< − ϕn) + 2 ·Q(ϕn, α< − ϕn).

We have that Q(α> + ϕn) > 0 for all n ∈ N since α> + ϕn ∈ L1(R3). Due to Assump-
tion 1.2 (1), we have that V̂ ∈ L2(R3) and thus, applying Theorem 3.1 three times, we
obtain

Q(α) > −CY,1‖V̂ ‖L1‖α< − ϕn‖2L2 − 2CY,2 · ‖V̂ ‖L2‖α>‖L1‖α< − ϕn‖L2

− 2CY,3 · ‖V̂ ‖L1‖ϕn‖L2‖α< − ϕn‖L2 .

The right hand side converges to 0 as n→∞ and thus

Q(α) > 0. (3.13)
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3 MINIMIZATION OF THE FUNCTIONAL

3.2 Simplified functional and errors

Now, we define the simplified functional F sim and prove that, provided the error terms are
small, F sim may be equivalently minimized in place of Fcan. Set

Dsim := {(γ, ρ0) : γ ∈ L1((1 + p2)dp), γ > 0, ρ0 > 0}. (3.14)

Note that if (γ, α, ρ0) ∈ D as in (3.3) then (γ, ρ0) ∈ Dsim. For (γ, ρ0) ∈ Dsim define

F sim(γ, ρ0) := 4πaρ2 + 4π(a0 − a)(ρ2 − ρ2
0) + (2π)−3

ˆ
R3

[p2 + ρ0V̂ (p)]γ(p) dp

− (2π)−3ρ0

ˆ
R3

|V̂ u(p)|
√
γ(p)(γ(p) + 1) dp

+ (2π)−3 ρ
2
0

2

ˆ
R3

V̂ u(p)2

2p2
dp.

(3.15)

By (2.13), we have that V̂ u ∈ L1(R3) and thus the finiteness of the second line follows
from (3.7) together with the same split γ > 1 and γ 6 1 as in (3.5) and (3.6). The third
line is finite because of (2.7).

Note that F sim is considerably simpler than Fcan since it does not depend on α anymore
and it is linear in γ aside from the term with the square root. Moreover, the desired
first order term 4πaρ2 in (1.14) appears directly in front. Of course, this is a little bit
artificial since it is also contained in the second term. However, by assumption6, most of
the particles are in the condensate state which, in turn, means that ρ0 is “almost all of ρ”.
That statement is quantified as ρ− ρ0 = O(ρ)3/2 in Lemma 3.15 below. As a consequence,
ρ2 − ρ2

0 is small compared to ρ2. When we compare Fcan and F sim, error terms are going
to arise. Let us summarize them in the following lines:

E1(γ, α, ρ0) := (2π)−3 · 1

2

¨
R3×R3

V̂ (p− q)γ(p)γ(q) dpdq, (3.16)

E2(γ, α, ρ0) := (2π)−3 · 1

2

¨
R3×R3

V̂ (p− q)(α(p) + ρ0ŵ(p))(α(q) + ρ0ŵ(q)) dpdq, (3.17)

E3(γ, α, ρ0) := (2π)−3ρ0

ˆ
R3

V̂ u(p)α(p) + |V̂ u(p)|
√
γ(p)(γ(p) + 1) dp, (3.18)

where ŵ is as in (2.8). The first lemma states that minimizing the full functional and the
simplified functional are equivalent provided the error terms are small.

Lemma 3.2. Let (γ, α, ρ0) ∈ D and let F sim(γ, ρ0) be defined as in (3.15). Let the error
terms E1, E2 and E3 be given as in (3.16), (3.17) and (3.18), respectively. Then

0 6 Fcan(γ, α, ρ0)−F sim(γ, ρ0) = (E1 + E2 + E3)(γ, α, ρ0)

Proof. Recall that the scattering equation (2.8) reads ŵ = V̂ u
2p2

and that ŵ ∈ L1(R3) due
to (2.10). We compare7 the function α with −ρ0ŵ. This leads to

Q(α) = Q(α+ ρ0ŵ)− 2ρ0Q(α, ŵ)− ρ2
0Q(ŵ). (3.19)

6Compare question (Q2) in Subsection 1.2.
7For a heuristic reasoning, see Remark 3.3.
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3 MINIMIZATION OF THE FUNCTIONAL

Note that, since ŵ ∈ L1(R3), we have Q(ŵ) > 0 because of (3.11) and Q(ŵ) <∞ by (3.9).
Moreover,

Q(α, ŵ) = (2π)−3 · 1

2

ˆ
R3

V̂ w(p)α(p) dp. (3.20)

By (2.13), we have V̂ w ∈ L1(R3) and thus Q(α, ŵ) is finite by (3.7). Finally, note that
α + ρ0ŵ can be decomposed into L1(R3) + L2(R3) and thus, Q(α + ρ0ŵ) is finite and
nonnegative by the same reasoning as in (3.10) and (3.13), respectively. Plugging this in,
we obtain

Fcan(γ, α, ρ0)−F sim(γ, ρ0) = (2π)−3

ˆ
R3

p2γ +
1

2
V̂ (0)ρ2 +Q(α+ ρ0ŵ)

− 2ρ0Q(α, ŵ)− ρ2
0Q(ŵ) +Q(γ) + (2π)−3ρ0

ˆ
R3

V̂ (p)(γ(p) + α(p)) dp

−
[
4πaρ2 + (2π)−3

ˆ
R3

[p2 + ρ0V̂ (p)]γ(p) dp+ (2π)−3 ρ
2
0

2

ˆ
R3

V̂ u(p)2

2p2
dp

− (2π)−3ρ0

ˆ
R3

|V̂ u(p)|
√
γ(p)(γ(p) + 1) dp+ 4π(a0 − a)(ρ2 − ρ2

0)

]
(3.21)

We observe that 0 6 Q(α + ρ0ŵ) = E2(γ, α, ρ0) and that 0 6 Q(γ) = E1(γ, α, ρ0) by
(3.11). Consider the remaining terms involving α, together with of the first term in the
last row of (3.21):

(2π)−3ρ0

ˆ
R3

V̂ (p)α(p) dp− 2ρ0Q(α, ŵ) + (2π)−3ρ0

ˆ
R3

|V̂ u(p)|
√
γ(p)(γ(p) + 1) dp

Using (3.20) and V̂ u = V̂ − V̂ w, we get that this is equal to

(2π)−3ρ0

ˆ
R3

V̂ u(p)α(p) + |V̂ u(p)|
√
γ(p)(γ(p) + 1) dp = E3(γ, α, ρ0)

Note that E3(γ, α, ρ0) > 0 by the definition (3.3) of D. Hence, we arrive at

Fcan(γ, α, ρ0)−F sim(γ, ρ0) = (E1 + E2 + E3)(γ, α, ρ0) +
1

2
V̂ (0)ρ2 − ρ2

0Q(ŵ)− 4πaρ2

− (2π)−3 ρ
2
0

2

ˆ
R3

V̂ u(p)2

2p2
dp− 4π(a0 − a)(ρ2 − ρ2

0)

Collecting the terms involving ρ in (3.21), and using 4πa = 1
2 V̂ u(0), we get

1

2
V̂ (0)ρ2 − 4πaρ2 − 4π(a0 − a)ρ2 = 0

Using (2.12), we infer
ˆ
R3

V̂ u(p)2

2p2
dp =

ˆ
R3

V̂ u(p)ŵ(p) dp =

ˆ
R3

V̂ (p)ŵ(p) dp−
ˆ
R3

V̂ w(p)ŵ(p) dp

= (2π)3V̂ w(0)− 2 ·Q(ŵ)

Thus, we arrive at

Fcan(γ, α, ρ0)−F sim(γ, ρ0) = (E1 + E2 + E3)(γ, α, ρ0)

Since all the error terms are nonnegative, the lemma follows.
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Remark 3.3. We want to explain the choice of ρ0ŵ, which we compare to α in (3.19).
Recall from (2.8) that ŵ is the scattering solution in momentum space. Physically, we
expect that most of the particles are in the condensate, and that exchange of momentum
with the excited particles happens only at a very limited level. Due to the diluteness
of the gas, exchange of momentum is mostly given by two-particle scattering and this is
what the scattering solution models. The factor of ρ0 is then reflecting the combinatorical
degeneracy for exchanging momentum with the condensate.

3.3 Minimization of the simplified functional

In this subsection, we minimize the simplified functional (3.15) over γ. We first need to
extract the integral terms of F sim. To do this, let (γ, ρ0) ∈ D′ as in (3.14) and define

F s(γ, ρ0) := (2π)−3

ˆ
R3

{
[p2 + ρ0V̂ (p)]γ(p)− ρ0|V̂ u(p)|

√
γ(p)(γ(p) + 1)

+
ρ2

0

2

V̂ u(p)2

2p2

}
dp.

(3.22)

Then, using (3.15),

F sim(γ, ρ0) = 4πaρ2 + 4π(a0 − a)(ρ2 − ρ2
0) + F s(γ, ρ0). (3.23)

We start with the minimization of F s. In Lemma 3.4 below, we enforce the constraint
ρ = ρ0 + ργ by using a Lagrange multiplier δ > 0. Note that δ = 0 corresponds to
unconstrained minimization, i.e., minimization over all γ ∈ L1((1 + p2)dp) disregarding
the constraint (3.4), i.e., ργ = ρ − ρ0. We eventually show that this gives a minimizing
energy which is too high compared to having δ > 0. We justify a posteriori in Subsection 3.6
that δ can be chosen nonnegative. For notational convenience, we define

Aδ(p, ρ0) := p2 + δ + ρ0V̂ (p), B(p, ρ0) := ρ0|V̂ u(p)|,

and

Gδ(p, ρ0) :=
√
Aδ(p, ρ0)2 −B(p, ρ0)2

=

√
(p2 + δ)2 + 2ρ0(p2 + δ)V̂ (p) + ρ2

0[V̂ (p)2 − V̂ u(p)2]
(3.24)

Lemma 3.4. Let Assumption 1.2 for V be satisfied. There is a ρ̃0 > 0 such that, for every
0 6 ρ0 6 ρ̃0, the minimizer of

inf
γ∈L1((1+p2)dp)

(
F s(γ, ρ0) + δργ

)
(3.25)

is given by

γδmin(p) :=
1

2

(
p2 + δ + ρ0V̂ (p)

Gδ(p, ρ0)
− 1

)
,

with Gδ(p, ρ0) as in (3.24). The minimum is

Iδ(ρ0) := F s(γδmin, ρ0) + δργδmin

= (2π)−3 · 1

2

ˆ
R3

{
Gδ(p, ρ0)− p2 − δ − ρ0V̂ (p) + ρ2

0

V̂ u(p)2

2p2

}
dp (3.26)

21



3 MINIMIZATION OF THE FUNCTIONAL

Proof. We start by remarking that Gδ(p, ρ0) in (3.24) is real provided ρ0 > 0 is small
enough. However, we postpone the argument until the proof of Theorem 3.6 below. Fix
p ∈ R3 and set x := γ(p), so that x > 0, see (3.14). Without loss, assume that x > 0.
Then, the integrand in F s(γ, ρ0) is given by

f(x) := A(p, ρ0)x−B(p, ρ0)
√
x(x+ 1) +

ρ2
0

2

V̂ u(p)2

p2
.

We get that

f ′(x) = A(p, ρ0)− 1

2
B(p, ρ0)

1 + 2x√
x(x+ 1)

= 0

if and only if

4A2 · (x2 + x) = B2(1 + 4x+ 4x2). (3.27)

That is, taking into account the constraint x > 0:

xmin = −1

2
+

√
1

4
+

B2

4(A2 −B2)
= −1

2
+

1

2

A√
A2 −B2

. (3.28)

Considering the second derivative,

f ′′(x) = −ρ0|V̂ u(p)|
2

2 ·
√
x(x+ 1)− (1 + 2x) · 1+2x

2
√
x(x+1)

x(x+ 1)
=

|V̂ u(p)|
4
√
x(x+ 1)

3 > 0,

we get that this is indeed a minimum (except when V̂ u(p) = 0 but then, the obvious
minimizer γ(p) = 0 coincides with our choice). Thus, the minimizing γδmin is given by

γδmin(p) =
1

2

(
p2 + δ + ρ0V̂ (p)

Gδ(p, ρ0)
− 1

)
.

Furthermore, from (3.27) and (3.28), we get that√
γδmin(γδmin + 1) =

B

2Aδ
(1 + 2γδmin) =

B

2Aδ

Aδ√
A2
δ −B2

=
B

2
√
A2
δ −B2

. (3.29)

Hence, the minimal energy is given by

F s(γδmin, ρ0) = (2π)−3 · 1

2

ˆ
R3

{
Aδ(p, ρ0)2

Gδ(p, ρ0)
−Aδ(p, ρ0)− B(p, ρ0)2

Gδ(p, ρ0)
+ ρ2

0

V̂ u(p)2

2p2

}
dp

= (2π)−3 · 1

2

ˆ
R3

{
Gδ(p, ρ0)− p2 − δ − ρ0V̂ (p) + ρ2

0

V̂ u(p)2

2p2

}
dp.

We prove that γδmin is an allowed variational function for (3.25) in Theorems 3.6 and 3.9
below.

It will turn out to be necessary to consider the other component of the state (γδmin, α
δ
min)

as well. Since the minimization problem in (3.25) gives no restriction on the choice of
αδmin, we may implement right away that we are looking for a quasi-free state (compare
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to the discussion below (1.8)). We also need αδmin in the proof of the upper bound later.
Therefore, let us define

αδmin(p) := − sgn(V̂ u(p)) ·
√
γδmin(p)(γδmin(p) + 1). (3.30)

Note that, by definition of the sign, sgn(V̂ u(p))|V̂ u(p)| = V̂ u(p) and recall from (3.29)
that, therefore,

αδmin(p) = − ρ0V̂ u(p)

2

√
(p2 + δ)2 + 2ρ0(p2 + δ)V̂ (p) + ρ2

0[V̂ (p)2 − V̂ u(p)2]
.

In view of the error term E3, we need to estimate the integral of αmin + ρ0ŵ. For that
purpose, define

J δ(ρ0) := (2π)−3

ˆ
R3

|αδmin(p) + ρ0ŵ(p)|dp.

Before we prove that γmin is a valid testfunction for the variational problem (3.25), we
rewrite the occuring integrals in a more convenient way.

Corollary 3.5. Let ρ0 > 0 and φ := (ρ0V̂ u(0))1/2 > 0 be small enough. Let δ > 0 and set
d := δ/φ2. Then, we have

ργδmin
= (2π)−3φ

3

2

ˆ
R3

{
p2 + d+ V̂ (φp)

8πa√
(p2 + d)2 + 2(p2 + d) V̂ (φp)

8πa + V̂ (φp)2

(8πa)2
− V̂ u(φp)2

(8πa)2

− 1

}
dp, (3.31)

and

J δ(ρ0) = (2π)−3φ
3

2

ˆ
R3

∣∣∣∣ V̂ u(φp)

8πa

1

p2
−

V̂ u(φp)
8πa√

(p2 + d)2 + 2(p2 + d) V̂ (φp)
8πa + V̂ (φp)2

(8πa)2
− V̂ u(φp)2

(8πa)2

∣∣∣∣dp,
(3.32)

and finally

Iδ(ρ0) = (2π)−3φ
5

2

ˆ
R3

{√
(p2 + d)2 + 2(p2 + d)

V̂ (φp)

8πa
+
V̂ (φp)2

(8πa)2
− V̂ u(φp)2

(8πa)2

− p2 − d− V̂ (φp)

8πa
+

1

2p2

V̂ u(φp)2

(8πa)2

}
dp.

(3.33)

Note that φ is reflecting the dilute limit in (1.9) and (1.14).

3.4 Approximation to integrals

We prove that γδmin is an allowed testfunction for the variational problem (3.25). The
following integrals will play a prominent role during this analysis. They are defined for
σ ∈ [1,∞):

I1(σ) := (2π)−3 · 1

2

ˆ
R3

{√
p4 + 2σp2 + σ2 − 1− p2 − σ +

1

2p2

}
dp, (3.34)

I2(σ) := (2π)−3 · 1

2

ˆ
R3

{
p2 + σ√

p4 + 2σp2 + σ2 − 1
− 1

}
dp, (3.35)

I3(σ) := (2π)−3 · 1

2

ˆ
R3

{
1

p2
− 1√

p4 + 2σp2 + σ2 − 1

}
dp. (3.36)
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Note that I1 = I as in (1.15) but from now on we carry the enumeration for notational
convenience and clarity.

Theorem 3.6. Let ρ0, δ > 0 and define φ := (ρ0V̂ u(0))1/2. Assume that V satisfies
Assumption 1.2 and that 1 < ν < 3/2. Then, there is a φ0 > 0 and h ∈ L1(R3) such that
we have |γδmin| 6 |h| for all 0 6 φ 6 φ0 and all d > 0, where δ = dφ2. In particular, ργδmin

is continuous in φ ∈ [0, φ0] and

ργδmin
= φ3I2(ν + d) + o(φ3) as φ→ 0.

The error is uniform in d. Moreover, I2 is continuous.

Theorem 3.7. Let ρ0, δ > 0 and define φ := (ρ0V̂ u(0))1/2. Assume that V satisfies
Assumption 1.2 and that 1 < ν < 3/2. Let φ0 be as in Theorem 3.6 and d = δ/φ2. Then,
there is hd ∈ L1(R3) such that |αδmin + ρ0ŵ| 6 |hd| for all 0 6 φ 6 φ0. In particular, J is
continuous in φ ∈ [0, φ0] and

J δ = φ3I3(ν + d) + o(φ3) as φ→ 0.

If d ∈ [0, d0] for some d0 > 0, then the error is uniform in d. Moreover, I3 is continuous.

Remark 3.8. Recall that, a priori, α + ρ0ŵ could only be decomposed according to
L1(R3)+L2(R3), compare (3.19). Applying Theorem 3.7, we realize that, for the minimizer
αδmin, the situation is better, namely αδmin + ρ0ŵ ∈ L1(R3). The “bad part”, where γ is
small (see (3.5)), is not present in αδmin.

Theorem 3.9. Let ρ0, δ > 0 and define φ := (ρ0V̂ u(0))1/2. Assume that V satisfies
Assumption 1.2 and that 1 < ν < 3/2. Let φ0 be as in Theorem 3.6 and d = δ/φ2. Then
there is hd ∈ L1(R3) such that |p2γδmin| 6 |hd| for all 0 6 φ 6 φ0. In particular, F s(γδmin, ·)
is continuous in φ ∈ [0, φ0] and

Iδ = φ5I1(ν + d) + o(φ5) as φ→ 0.

If d ∈ [0, d0] for some d0 > 0, then the error is uniform in d. Moreover, I1 is continuous.

The method of proof of Theorems 3.6, 3.7, and 3.9 is inspired by the proofs of Lemmas 24
and 27 in [3].

Proof of Theorem 3.6. Recall that |V̂ u(p)| 6 V̂ u(0) = 8πa and |V̂ (p)| 6 V̂ (0) = 8πa0,
see (2.9). Also, ν = a0

a > 1 by the assumption (1.13). We split the integral in (3.31) into
two regions, namely p2 6 3 and p2 > 3 and start with p2 6 3. First, let us prove that the
term under the square root is nonnegative, compare (3.24). Denote x := p2 + d and note
that the term under the square root is equal to(
x+

V̂ (φp)

8πa

)2

−
(
V̂ u(φp)

8πa

)2

=

(
x+

V̂ (φp)

8πa
+
V̂ u(p)

8πa

)(
x+

V̂ (φp)

8πa
− V̂ u(p)

8πa

)
. (3.37)

Recall that, by Assumption 1.2 (4), V̂ is differentiable at p = 0. Hence

C1 := sup
06|p|6

√
3

|V̂ (p)− V̂ (0)|
|p|

<∞. (3.38)
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Choose φ0 := 8πa · ν−1√
3·C1

> 0. Then, for every 0 6 φ 6 φ0 and each p ∈ R3 with

0 6 |p| 6
√

3, we can estimate

x+
V̂ (φp)

8πa
± V̂ u(φp)

8πa
> x+

V̂ (0)

8πa
− V̂ u(0)

8πa
−
∣∣∣∣ V̂ (φp)− V̂ (0)

8πa

∣∣∣∣
> x+ ν − 1− C1

8πa
|p| · φ

> x+ ν − 1−
√

3 · C1

8πa
· 8πa · ν − 1√

3 · C1

= p2 + d. (3.39)

Note that the integrand of (3.31) is nonnegative. Hence, for these p, a dominating function
is obtained by choosing ν/p2. This function is independent of d and integrable at p = 0 in
3 dimensions . We turn to the region |p| >

√
3. To prove integrability here, we consider

the integrand

f(t, s) :=
x+ t√

(x+ t)2 − s2
− 1

on the rectangle (t, s) ∈ [−ν, ν]× [−1, 1]. Here t := V̂ (p)
8πa , s := V̂ u(p)

8πa . Note that we assume
that x = p2 + d > 3 so that

(x+ t)2 − s2 = x2 + 2tx+ t2 − s2 > 9− 6 · ν − 1 > 0. (3.40)

Thus, the square root is always well-defined, since ν 6 3/2 by the assumption (1.13). Also,
f(t, s) > f(t, 0) = 0 and f(t, s) 6 f(t, 1). Define g(t) := f(t, 1) = x+t√

(x+t)2−1
− 1 and

maximize over t ∈ [−ν, ν]. We have

g′(t) =

√
(x+ t)2 − 1− (x+ t) (x+t)√

(x+t)2−1

(x+ t)2 − 1
= − 1√

(x+ t)2 − 1
< 0.

Hence, since g > 0, the maximal modulus is located at the left boundary t = −ν. In the
following, let us consider g(±ν) simultaneously, keeping in mind that we also want to prove
well-definedness of I2(σ) in (3.35) for every σ > 1. Hence, we need to deal with

0 < g(±ν) =
x± ν√

x2 ± 2νx+ ν2 − 1
− 1 6

x± ν√
x2 ± 2νx

− 1

since ν2 − 1 > 0. A simple argument shows that the derivative with respect to d of the
right hand side is strictly negative since ν 6= 0. Hence, it is further maximized by choosing
d = 0. Now, the functions h± : [

√
3/ν,∞) −→ R, given by

h±(u) :=
u4 ± u2

√
u4 ± 2u2

− u2,

are well-defined since for h−, we have ν < 3/2, hence u4 − 2u2 > u2( 3
ν − 2) and h+ is well-

defined without any restriction. If we show that h− is integrable, then, by the substitution
p =
√
ν · q ∈ R3, we get

ˆ
|p|>
√

3

p2 − ν√
p4 − 2νp2

− 1 dp = ν
3
2

ˆ
|q|>
√

3/ν

νq2 − ν√
ν2q4 − 2ν2q2

− 1 dq

= 4πν
3/2

ˆ ∞
√

3/ν

u4 − u2

√
u4 − 2u2

− u2 du = 4πν
3/2

ˆ ∞
√

3/ν
h(u) du.

(3.41)
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Hence, when h+ is shown to be integrable, well-definedness and continuity of I2 is proved.
Thus, we are concerned with proving that h± are integrable. To see this, note that a
primitive is given by H± : [

√
3/ν,∞) −→ R,

H±(u) :=
u4 ± u2 − 2

3
√
u2 ± 2

− u3

3
,

because for each u ∈ [
√

3/ν,∞), we have:

H ′±(u) =
3(4u3 ± 2u)

√
u2 ± 2− 3(u4 ± u2 − 2) · 2u

2
√
u2±2

9(u2 ± 2)
− u2

=
1

3
√
u2 ± 2

3

[
(4u3 ± 2u)(u2 ± 2)− (u4 ± u2 − 2)u

]
− u2

=
1

√
u2 ± 2

3 (u5 ± 3u2 − 2u)− u2 =
u

√
u2 ± 2

3 (u2 ± 2)(u2 − 1)− u2 = h±(u).

We are left with proving that H±(u)
u→∞−−−→ 0. Write

H±(u) =
u4 ± u2 − 2− u3

√
u2 ± 2

3
√
u2 ± 2

and apply l’Hôpital’s rule multiple times. In the limit u→∞, we may consider equivalently

H̃±(u) =
4u3 ± 2u− 3u2

√
u2 ± 2− u3 · u√

u2±2
3u√
u2±2

=
1

3

[
(4u2 ± 2)

√
u2 ± 2− 4u3 + 6u

]
= ∓2

3
(u−

√
u2 ± 2) +

4

3
(u2
√
u2 ± 2− u3 ∓ u) =: ∓2

3
· H̃1(u) +

4

3
· H̃2(u),

where we dropped the (±)-dependence in the definition of H̃1 and H̃2. We shall prove in
the following that H̃1(u) and H̃2(u) vanish at infinity independently. We start with H̃1

and notice that, for large u > 0,

H̃1(u) = u−
√
u2 ± 2 = u(1−

√
1± 2/u2) =

1−
√

1± 2/u2

1/u
.

By l’Hôpital’s rule, we get the equivalent expression

∓ 1

2
√

1±2/u2
· 4
u3

−1/u2
=

±2√
u2 − 2

u→∞−−−→ 0.

Hence, the claim holds for H̃1. To continue with H̃2, we use the same strategy to get

H̃2(u) = u3

(√
1± 2

u2
− 1∓ 1

u2

)
=

√
1± 2/u2 − 1∓ 1/u2

1/u3
.

In the limit u→∞, by l’Hôpital’s rule, this is equivalent to

∓4/u3

2
√

1±2/u2
· ±2/u3

−3/u4
= ±2

3

(
u√

1± 2/u2
− u
)

=: ±2

3
· H̃3(u).
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Applying this trick a last time to H̃3(u), we get the equivalent expression

±2

u3
√

1±2/u2
3

−1/u2
= ∓2 · 1√

u2 ± 2

u→∞−−−→ 0

in the limit u → ∞. The rest is an application of Lebesgue’s Dominated Convergence
Theorem. Use (3.37) to get that the pointwise limit as φ→ 0 in the integrand of (3.31) is
I2(ν + d) from (3.35).

Proof of Theorem 3.7. We proceed analogously to the proof of Theorem 3.6 and split the
integration region in (3.32) into p2 6 3 and p2 > 3. Recall that with the choice of φ0 > 0
in the proof of Theorem 3.6, the square root is well-defined for all 0 6 φ 6 φ0, see (3.39).
Note again that 1

p2
is integrable at p = 0 in 3 dimensions. Hence, for p2 6 3, we obtain

a dominating function for the integrand by maximizing each term separately. For p2 > 3
the square root is well-defined by (3.40). Consider the integrand∣∣∣∣ sp2

− s√
(x+ t)2 − s2

∣∣∣∣ 6 ∣∣∣∣ 1

p2
− 1√

(x+ t)2 − s2

∣∣∣∣ =: |f(t, s)|

in the rectangle (t, s) ∈ [−ν, ν]× [−1, 1] with, again, x = p2 +d, t = V̂ (φp)
8πa , and s = V̂ u(φp)

8πa .
We have

∂f

∂t
(t, s) =

x+ t√
(x+ t)2 − s2

∂f

∂s
(t, s) = − s√

(x+ t)2 − s2
.

Since ν < 3, we have that x + t 6= 0 for all t ∈ [−ν, ν] and hence, f has no critical point
in the rectangle. Thus, the maximal modulus is attained at the boundary and, due to the
symmetry of f in s, we need to consider the functions

g1(t) :=
1

p2
− 1√

(x+ t)2 − 1
g±(s) :=

1

p2
− 1√

(x± ν)2 − s2
.

As in the previous proof, one shows that both functions attain their maximal modulus at
the boundary and hence, we are left with the two candidates

1

p2
− 1√

(x± ν)2 − 1

as maximizers. Now, with η := d± ν, define h± : [
√

3/ν,∞) −→ R by

h±(u) := 1− u2√
u4 + 2ηu2 + η2 − 1

,

reflecting the choice of polar coordinates similarly to (3.41). For each 0 < ε < 1, we show
that u1+εh±(u)→ 0 as u→∞. In preparation, define

r±(u) :=

√
1 +

2η

u2
+
η2 − 1

u4
(3.42)

for u > 0 large enough. By applying l’Hôpital’s rule, we get u1+εh±(u) = u1+ε[1−r±(u)−1],
so that it suffices to consider

2

r±(u)3

− η
u3
− η2−1

u5

− 1+ε
u2+ε

=
1

1 + ε

2

r±(u)3

(
η

u1−ε +
η2 − 1

u3−ε

)
u→∞−−−→ 0

27



3 MINIMIZATION OF THE FUNCTIONAL

The rest is an application of dominated convergence. Use (3.37) to get that the pointwise
limit as φ → 0 in the integrand of (3.32) is I3(ν + d) from (3.36). If d ∈ [0, d0] for some
d0 > 0, we may maximize the dominating function further by replacing d with d0. In this
way, we get uniform convergence in d as φ→ 0.

Proof of Theorem 3.9. We intend to prove that p2γδmin is integrable. From Theorem 3.6,
we know that γδmin ∈ L1(R3). By the same reasoning as below (3.15), we get that

ˆ
R3

|V̂ u(p)|
√
γδmin(p)(γδmin(p) + 1) dp <∞.

Using (2.7), we infer that all terms in F s in (3.22) are finite except the term with p2γδmin.
Hence, recalling (3.26), it is enough to prove that Iδ = F s(γδmin, ·) has the required prop-
erties of the theorem. We use the by now familiar split into p2 6 3 and p2 > 3. Again, the
square root is well-defined in both regimes because of (3.39) and (3.40). The integrand is
given by

f(t, s) =
√

(x+ t)2 − s2 − x− t+
s2

2p2
, (t, s) ∈ [−ν, ν]× [−1, 1],

where x = p2 + d, t = V̂ (φp)
8πa , and s = V̂ u(φp)

8πa . Note that, for p2 6 3, a dominating function
is obtained by maximizing the absolute value of each term in t and s separately. We turn
to the region p2 > 3 and calculate

∂f

∂t
(t, s) =

x+ t√
(x+ t)2 − s2

− 1,
∂f

∂s
(t, s) =

−s√
(x+ t)2 − s2

+
s

p2
.

We see that ∂f
∂t vanishes if and only if s = 0. Here, ∂f

∂s (t, 0) = 0 and also f(t, 0) = 0.
Hence, the maximum of |f(t, s)| is located at the boundary and it suffices to consider the
functions

g1(t) :=
√

(x+ t)2 − 1− x− t+
1

2x
, t ∈ [−ν, ν],

g±(s) :=
√

(x± ν)2 − s2 − x∓ ν +
s2

2x
, s ∈ [−1, 1].

An elementary analysis using the assumption that ν < 3/2 shows that all these functions
attain their maximal modulus at the boundary. Hence, we are left with the two candidates√

(x± ν)2 − 1− x∓ ν +
1

2x

as maximizers. Now, define h± : [
√

3/ν,∞) −→ R by

h±(u) := u2
√

(u2 + η)2 − 1− u4 − ηu2 +
1

2

reflecting the choice of polar coordinates and using η = d ± ν. Again, we show that, for
any 0 < ε < 1, we have u1+εh±(u)→ 0 as u→∞, proving that h± is integrable. The rest
is an application of dominated convergence. Recall r±(u) from (3.42), which tends to 1 as
u→∞. As before, we are going to use l’Hôpital’s rule 3 times. The object of interest is

u1+εh±(u) = u5+ε
[
r±(u)− 1− η

u2
+

1

2u4

]
=
r±(u)− 1− η

u2
+ 1

2u4

1
u5+ε

.
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Written in this way, we see that l’Hôpital’s rule is applicable and that we can equivalently
consider

− 4η

u3
− 4(η2−1)

u5

2r±(u) + 2η
u3
− 2

u5

− 5+ε
u6+ε

=
u3+ε

5 + ε

[
2η + 2(η2−1)

u2

r±(u)
− 2η +

2

u2

]
in the limit u→∞. We see that we may apply it once more to get (omitting 1

5+ε):

− 4(η2−1)
u3r±(u)

+ 4 (η+(η2−1)/u2)2

u3r±(u)3
− 4

u3

− 3+ε
u4+ε

=
u1+ε

3 + ε

[
4(η2 − 1)

r±(u)
− 4

r±(u)3

(
η +

η2 − 1

u2

)2
+ 4

]
.

Note that the term in the square brackets tends to 0 as u→∞. Again, omitting 1
3+ε and

applying l’Hôpital’s rule a third time, we may consider:

−2(η2−1)
r±(u)3

(
− 4η
u3
− 4(η2−1)

u5

)
+ 16

u3r±(u)3

(
±η + η2−1

u2

)
(η2 − 1)− 24

u3r±(u)5

(
η + η2−1

u2

)3

− 1+ε
u2+ε

=
1

1 + ε

[
2(η2 − 1)

r±(u)3

(
− 4η

u1−ε −
4(η2 − 1)

u3−ε

)
− 16

r±(u)3

(
η +

η2 − 1

u2

)
η2 − 1

u1−ε

− 24

u1−εr±(u)5

(
η +

η2 − 1

u2

)3]
and the last expression goes to 0 as u→∞. Use (3.37) to get that the pointwise limit as
φ → 0 in the integrand of (3.33) is I1(ν + d) from (3.34). If d ∈ [0, d0] for some d0 > 0,
we may maximize the dominating function further by replacing d with d0. In this way, we
get uniform convergence in d as φ→ 0.

Corollary 3.10. We have I2(1) =
√

2
12π2 .

Proof. In the proof of Theorem 3.6, the primitive of the integrand in (3.35),

H(u) =
u4 + u2 − 2

3
√
u2 + 2

− u,

is shown to vanish at infinity. Hence, I2(1) = − 1
2(2π)3

· 4π ·H(0).

Corollary 3.11. We have I1(1) = 2
√

2
15π2 .

Proof. In this special case σ = 1, a primitive for the integrand in (3.34) is given by
H : [0,∞) −→ R,

H(u) :=
u

2
− u3

3
− u5

5
+
√
u2 + 2

(
u4

5
+

2u2

15
− 8

15

)
,

since

H ′(u) =
1

2
− u2 − u4 +

u√
u2 + 2

(
u4

5
+

2u2

15
− 8

15

)
+
√
u2 + 2

(
4u3

5
+

4u

15

)
=

1

2
− u2 − u4 +

1√
u2 + 2

· u3(u2 + 2) =
1

2
− u2 − u4 + u2

√
u4 + 2u2.

The proof of Theorem 3.9 shows that H(u)→ 0 as u→∞. Hence,
ˆ ∞

0

{
u2
√
u4 + 2u2 − u4 − u2 +

1

2

}
du = −H(0) =

8

15
·
√

2.
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Corollary 3.12. The integral I1 is continuously differentiable on [1,∞) and I ′1(σ) = I2(σ)
holds for each σ ∈ [1,∞). Moreover, I2(σ) > 0 for all σ ∈ [1,∞). In particular, I1 is
strictly monotonically increasing.

Proof. Let σ ∈ [1,∞) and h 6= 0 small enough (if σ = 1, we require h > 0). Consider the
difference quotient

I1(σ + h)− I1(σ)

h
=

=
1

2(2π)3

ˆ
R3

1

h

{√
p4 + 2(σ + h)p2 − (σ + h)2 − 1−

√
p4 + 2σp2 + σ2 − 1 + h

}
dp.

By the mean value theorem, the integrand is equal to the integrand in I2(η) for some
η ∈ [σ − h, σ + h] (or, [1, 1 + h] in case σ = 1). Hence, dominated convergence applies
and we get that I ′1(σ) = I2(σ) for every σ ∈ [1,∞). That I2(σ) > 0 is obtained by
pointwise estimating the integrand. If it was zero, the integrand would need to be zero,
a contradiction.

3.5 Estimates for the minimizer

In the following, we want to prepare the proof of our main theorem, Theorem 1.3. The
preceding section was devoted to find lower bounds on the functional Fcan. Now, we
are concerned with the upper bound for which we need to take a suitable trial state
(γ, α, ρ0) ∈ D and compute Fcan(γ, α, ρ0). We present our choice of trial state right away.
For γ, we take the minimizing γδmin from Lemma 3.4. Then, Theorems 3.6 and 3.9 tell us
that this is an allowed trial state, i.e., γδmin > 0 and γδmin ∈ L1((1 + p2)dp) provided ρ0 > 0
is small enough. This choice is reasonable, since γδmin minimizes F s. Therefore, it should
serve as a good upper bound as well. For α, we take αδmin as defined in (3.30). Let us try
to motivate this choice a little bit. The Bogolubov Hamiltonian associated to HN,L from
(1.1), which is quadratic, has a quasi-free ground state8. As mentioned in the introduction,
quasi-free states satisfy α2 = γ(γ + 1), which is a strong motivation for the choice of α.
Moreover, we have discussed below (1.7) that α has the interpretation to describe long
range interaction between the particles which is believed to exist in a condensed gas. This
is why we choose αδmin to have the maximal possible modulus allowed in D. The factor in
front is designed to drive the error term E3 in (3.18) to 0.

Lemma 3.13. Assume that V satisfies Assumption 1.2, that 1 < ν < 3/2, and that δ > 0.
As ρa→ 0, we have that

(E1 + E2 + E3)(γδmin, α
δ
min, ρ0) = o(ρa)

5/2,

where E1, E2, and E3 are from (3.16), (3.17), and (3.18), respectively.

Proof. Notice that our choice of trial function implies that E3(γδmin, α
δ
min, ρ0) = 0 since the

integrand is identically 0, see (3.18). Concerning E1 from (3.16), we have, using (3.9) and
Theorem 3.6, that

E1(γδmin, α
δ
min, ρ0) 6 V̂ (0)ρ2

γδmin
6 V̂ (0)(8πaρ0)3 + o(aρ0)3 6 o(ρa)

5/2.

Using Theorem 3.7, the same trick works for E2 in (3.17):

E2(γδmin, α
δ
min, ρ0) 6

1

2
V̂ (0)J (ρ0)2 6 Cρ3

0 + o(aρ0)3 6 o(ρa)
5/2.

8The reader is referred to Chapters 11 and 13.1 of [5] for a detailed discussion of quadratic Hamiltonians
in general and the Bogolubov Hamiltonian in particular.
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Note that the error is not yet uniform in δ > 0 because we do not yet know that δ lives
in a bounded domain. We need another technical lemma which will help us to prove that
the error is uniform in δ. It is a version of Lemma 33 in [3].

Lemma 3.14 [3, Lemma 33]. Let ρ0 > 0, δ > 0 and d = δ/φ2. For d� 1, we have

I(ρ0)− dφ2ργδmin
> C(a) min{d1/2(ρ0a)

5/2, (ρ0a)2}

Furthermore, ργδmin
→ 0 as d→∞.

Proof. Consider Iδ(ρ0) from (3.33) and write A(p) := V̂ (φp)
8πa as well as B(p) = V̂ u(φp)

8πa . For
d� 1, by using l’Hôpital’s rule, expand according to

(p2 + d)

√
1 +

2A

p2 + d
+
A2 −B2

(p2 + d)2
= p2 + d+A− B2

2(p2 + d)
+ o(p2 + d)−1.

We infer that the asymptotic behavior of Iδ(ρ0) is

(2π)−3φ5 1

4

ˆ
R3

B(p)2

p2
− B(p)2

2(p2 + d)
dp = (2π)−3dφ5 1

4

ˆ
R3

B(p)2

p2(p2 + d)
dp. (3.43)

In the same spirit, we can expand the integrand in ργδmin
from (3.31) to get

p2 + d+A√
(p2 + d)2 + 2(p2 + d)A+B

− 1 =
B2

2(p2 + d)2
+ o(p2 + d)−2,

so that the asymptotic behavior of −dφ2ργδmin
is

−(2π)−3dφ5 1

4

ˆ
R3

B2

(p2 + d)2
dp. (3.44)

Hence, the sum of the two contributions (3.43) and (3.44) is

(2π)−3d2φ5 1

4

ˆ
R3

B(p)2

p2(p2 + d)2
dp = (2π)−3d

1/2φ5 1

4

ˆ
R3

V̂ u(d1/2φp)2(8πa)−2

p2(p2 + 1)2
dp. (3.45)

Recall that, since V̂ u is differentiable, C1 < ∞ in (3.38). Hence, in the region where
|p| 6 min{4πa

C1
,
√

3} =: C0(a), we have V̂ u(p) > 4πa. If d1/2φ 6 1 then the right hand side
of (3.45) is bounded from below by

(2π)−3d
1/2φ5 1

4

ˆ
|p|6C0

V̂ u(d1/2φp)2(8πa)−2

p2(p2 + 1)2
dp > C(a)d

1/2φ5.

If d1/2φ > 1, the left hand side of (3.45) is bounded from below as

(2π)−3φ4 1

4

ˆ
R3

V̂ u(p)(8πa)−2

p2( p2

φ2d
+ 1)2

dp > (2π)−3φ4 1

4

ˆ
|p|6C0

1

p2(p2 + 1)2
dp = C(a)φ4.

Note that the constant C(a) is independent of d1/2φ in both cases. To prove the remaining
assertion that ργδmin

→ 0 as d→∞, use (3.44) divided by −dφ2. Note that A2(p) 6 ν and,
for large p, apply dominated convergence as d → ∞ with the dominant 1/p4. For small p,
the integrand is bounded due to the radial symmetry of V̂ u. Thus, a dominating function
is obtained by choosing d = 0 as well.
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3.6 Proof of Theorem 1.3

The proof we give follows essentially the strategy of the proof of Theorems 10 and 11 in [3].
There, these theorems are proved simultaneously so that we give a somewhat distilled ver-
sion.

Let us first explain our task. Let ρ > 0. Once we have found a minimizing pair (γδmin, α
δ
min),

the number ργδmin
is determined uniquely. For the minimization problem (1.11), this implies

that ρ0(δ) = ρ−ργδmin
. Of course, all these expressions depend on δ and the remaining task

to find a δ > 0 such that ρ0(δ) is sufficiently close to the minimizing ρ0 in (1.11). This is
a one-dimensional minimization problem. We shall elaborate on this problem further, so
that we may carry it out explicitly in the end.

To start, let us assume that δ > 0 and ρ0 > 0 are such that

ρ = ρ0 + ργδmin
. (3.46)

By using Lemma 3.2 we know that any minimizing triple (γ, α, ρ0) ∈ D, which fulfills (3.4),
has to satisfy

Fcan(γ, α, ρ0) > F sim(γδmin, ρ0)

= 4πaρ2 + 4π(a0 − a)(ρ2 − ρ2
0) + F s(γδmin, ρ0) (3.47)

as well as

Fcan(γ, α, ρ0) 6 F sim(γδmin, ρ0) + (E1 + E2 + E3)(γδmin, α
δ
min, ρ0)

= 4πaρ2 + 4π(a0 − a)(ρ2 − ρ2
0) + F s(γδmin, ρ0)

= 4πaρ2 + 4π(a0 − a)(ρ2 − ρ2
0) +O(ρa)

5/2, (3.48)

where the error in (3.48) is not yet uniform in d > 0. Now, ργδmin
is decreasing in d by

Lemma 3.14: ργδmin
→ 0 as d → ∞. Hence, (3.46) has a solution ρ0(d) for every ρ0 and ρ

with ρ− ργδ=0
min

6 ρ0 6 ρ, satisfying

ρ− ρ0(d) = ργδmin
= (8πaρ0(d))

3/2I2(ν + d) + o(ρa)
3/2 (3.49)

by Theorem 3.6. Let us define

Gδρ(ρ0) := 4π(a0 − a)(ρ2 − ρ2
0) + Iδ(ρ0).

Lemma 3.15 (A priori estimate). Let δ = 0. There is a constant C > 0 such that any
unconstrained minimizer (γ, α, ρ0) ∈ D has to satisfy

ρ− ρ0(d = 0) 6 Cρ
3/2. (3.50)

Proof. Denote ρ0 = ρ0(d = 0). By Theorem 3.9, there is a constant C0 > 0 such that
|I0(ρ0)| 6 C0ρ

5/2
0 for all sufficiently small ρ0 > 0. Define C := C0

2π(a0−a) and assume, for
contradiction, that ρ− ρ0 > Cρ3/2. Then, since 0 6 ρ0 6 ρ, we have

Gρ(ρ0) > 4π(a0 − a)(ρ− ρ0)ρ− C0ρ
5/2
0 > 4π(a0 − a)Cρ

5/2 − C0ρ
5/2 = (2C0 − C0)ρ

5/2

= C0ρ
5/2 > I(ρ) = Gρ(ρ).

This implies that it is energetically favorable to minimize Gρ(ρ0) by choosing ρ0 = ρ.
Hence, ργ = 0, contradicting the assumption ργ > Cρ3/2.
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We need to show that it suffices to consider the infimum over d > 0. This amounts to
excluding 0 6 ρ0 6 ρ0(d = 0) since we already know that ρ0(d) is increasing in d. To do
this, we repeat the lower bound (3.47)

Fcan(γ, α, ρ0) > 4πaρ2 + 4π(a0 − a)(ρ2 − ρ2
0) +O(ρa)

5/2

and see that it has a negative derivative for all ρ0 > 0 so that the minimum is attained at
the boundary ρ = ρ0 up to a lower order error. There it matches the unconstrained lower
bound (3.47), a contradiction to Lemma 3.15.

We continue by showing that it suffices to consider d ∈ [0, d0], for some d0 > 0. To see
this, use Lemma 3.14 as d� 1 to get

F sim(γδmin, ρ0) > 4πaρ2 + Iδ(ρ0)− d(8πρ0a)
3/2ργδmin

> 4πaρ2 + C(a) min{(ρ0a)
5/2d

1/2, a−1(ρ0a)2}
> (4πa+ C(a))ρ2 + C(a)ρργδmin

+O(ρ3).

This is of higher order than the unconstrained upper bound (3.48). Hence, it suffices to
consider d ∈ [0, d0], for some d0 > 0, whence all errors are uniform in d due to Theorems
3.6, 3.7 and 3.9. Recall from (3.26) with δ = dφ2 and φ = (8πaρ0(d))1/2 that

F s(γδmin, ρ0(d)) = (8πaρ0(d))
5/2
[
I1(ν + d)− dI2(ν + d)

]
+ o(ρa)

5/2,

and that

ρ2 − ρ0(d)2 = ρ2 − (ρ2 − ργδmin
)2 = 2ρργδmin

+ o(ρa)
5/2

according to (3.49). Plugging in (3.46), we end up with

F (ρ) = inf
06d6d0

[
4πaρ2 + 8π(a0 − a)ρ · ργδmin

+ F s(γδmin, ρ0(d))
]

+ o(ρa)
5/2

= inf
06d6d0

[
4πaρ2 + (8πa)

5/2(ν − 1)ρρ0(d)
3/2I2(ν + d)

+ (8πaρ0(d))
5/2
(
I1(ν + d)− dI2(ν + d)

)]
+ o(ρa)

5/2 (3.51)

for the canonical minimization problem (1.11). Now, we would like to substitute ρ for ρ0(d)
in the formula above. To do this, we perform a Taylor expansion for (3.51) in ρ0. Recall
that, by (3.49), we have ρ − ρ0(d) = O(ρ)3/2. Consider the first term of (3.51) involving
ρ0(d). Its Taylor expansion reads

(8πa)
5/2(ν − 1)ρ

5/2I2(ν + d) +
3

2
(ρ0(d)− ρ)(8πa)

5/2(ν − 1)ρ
3/2I2(ν + d).

Observe that the last term is O(ρa)3 and can be absorbed in the energy expansion. In the
same way, we substitute ρ0(d) in the second term and obtain

F (ρ) = inf
06d6d0

[
4πaρ2 + (8π)

5/2
(
I1(ν + d) + (ν − 1− d)I2(ν + d)

)
(ρa)

5/2
]

+ o(ρa)
5/2

We are left with performing a one-dimensional minimization problem. By considering the
pointwise minimization in the integrand we get the minimum d = ν−1, whence F (ρ) takes
the form (1.14).
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4 Conclusion and Outline

We have proved a two-term asymptotics for the homogeneous Bose gas in the thermo-
dynamic limit. The proof used the canonical Bogolubov zero-temperature energy func-
tional Fcan. The minimization regime was the set of quasi-free states which, in particular,
satisfy α2 = γ(γ + 1). We started by analyzing the simplified functional F sim which could
be minimized explicitly. However, this minimization had to be constrained to the condition
ρ0 + ργ = ρ reflecting the macroscopic occupation of the ground state of the majority of
the particles. An a priori estimate showed that ρ − ρ0 = O(ρ)3/2, which means that ρ0

is “almost all of” ρ. Using this, we could prove the lower bound. At the same time, the
minimizer of F sim served as an idea for a suitable trial state with sufficiently low energy.
This, in turn, proved the upper bound.

In the following, we want to compare our result to the paper [1] by Erdős, Schlein and
Yau. There, the authors consider the Bose gas HN,L on the finite box ΛL, compare (1.1),
and construct a trial state. Afterwards, they compute its energy. The result for the energy
per particle of the trial state is

E

N
= 4πaρ+ 4πaρ

[√
32

π
Φ(h)(a3ρ)

1/2

]
+ o(ρ2| ln ρ|), (4.1)

see [1, eq.(12)]. As mentioned in the introduction, our result carries an additional power
of ρ compared to (4.1), see (1.9) and (1.14). The function Φ is given by [1, eq.(11)] and
reads

Φ(h) =

ˆ ∞
0

y
1/2

(√
(y + 2h)(y + 2 + 2h)− (y + 1 + 2h) +

1

2y

)
dy.

The parameter h, defined in [1, eq.(9)] is in close relation to ν, namely

h :=
V̂ (0)

8πa
− 1 = ν − 1 > 0.

Now, a straightforward calculation shows that

I1(2ν − 1) =
1

2(2π)2
Φ(h)

so that the second order constant of our result (1.14) reads

(8π)
5/2I1(2ν − 1) = 4π ·

√
32

π
· Φ(h)

in precise agreement with (4.1). This proves that already [1] have had the best possible
upper bound among quasi-free states. Corollary 3.12 says that I1 is strictly monotonically
increasing, so that, with ν > 1, our second order constant (8π)5/2I1(2ν−1) is strictly bigger
than (8π)5/2I1(1) = 512

√
π

15 in the Lee-Huang-Yang formula (1.9). Here, the value for I1(1)
is given by Corollary 3.11.

Let us now understand the representation of the main theorem in [1] which we mentioned
in the introduction. Applying Corollary 3.12 to I1, we obtain

I1(2ν − 1) = I1(1) + 2 · I2(1)(ν − 1) +O(ν − 1)2 (4.2)
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for small ν > 1. Again, recall the values I1(1) = 2
√

2
15π2 and I2(1) =

√
2

12π2 by Corollaries 3.10
and 3.11. Inserting them and (4.2) into the main result (1.14), and omitting all the error
terms, we get

F (ρ) ≈ 4πaρ2 +

[
512
√
π

15
+

512
√
π

12
· (ν − 1)

]
(ρa)

5/2

= 4πaρ2 +
512
√
π

15

[
1 +

15

12
· (ν − 1)

]
(ρa)

5/2. (4.3)

This expression has a form similar to (1.5). In [1], the authors replace the potential V by
λV , with a tuning parameter λ > 0. They prove that we have the expansion ν− 1 = O(λ)
as λ → 0, so that ν − 1 6 Cλ for a constant C > 0 and λ > 0 small enough. Hence, Sλ
from (1.5) is equal to 1 + 15

12 · Cλ by the term in square brackets in (4.3).

Let us comment briefly on possible extensions to the method of this thesis. In 2009, Yau
and Yin published a paper [13] in which they construct another trial state for HN,L. Their
trial state has energy precisely given by (1.4) and it has a new feature implemented. The
authors call it a “soft-pair” interaction. It remains open to prove a similar lower bound
for states with such soft-pair interactions. However, it is evident that the ground state of
the general Bose gas has an additional feature compared to quasi-freedom that lowers the
energy of second order to match (1.4). The trial state by Yau and Yin hints to the fact
that this additional feature might be their soft-pair interaction: the possibility of exchange
of momentum with the condensate in such a way that the total momentum is nonzero but
“small”. It is unknown, however, what the general definition of such states should be and
what their properties are. For example, one could ask if there is an analogous property to
Wick’s Theorem [5, Theorem 10.2].

A first access and a somewhat different approach to treat this problem could be the ansatz
to include a term into Fcan of the form

µ

ˆ
R3×R3

V̂ (p− q)γ(p)α(q) dpdq

modeling the soft-pair interaction. Here, µ ∈ R is a tuning parameter. Then, the natural
question is what the relationship between the N -body Hamiltonian and the new functional
is. Nevertheless, one is inclined to try to minimize in the “same” spirit as in this thesis.
We expect though that even the calculation of the minimizer of the new F s is severly more
complicated than the one given here. After all, the critical equation becomes a polynomial
of degree 4 and not 2, as it is here – let alone the proofs on the way to a rigorous theorem.
That conclusion is inspired by [13], where it takes more than 50 pages to construct a state
and “calculate” its energy.

By now, the history of the interacting Bose gas is almost a century long. Yet, nobody
understands to compute either the ground state energy or the ground state in general –
let alone more involved properties. In this thesis, we worked out the ground state energy
in the low-density limit for a gas with additional assumptions on the minimizing class.
However, we still lack a proof of the second-order lower bound for (1.9). Concerning the
existence of Bose-Einstein condensation, even less is known. Therefore, we are certain that
the Bose gas will continue to challenge mathematicians and physicists in the future.

36



REFERENCES

References

[1] László Erdős, Benjamin Schlein, and Horng-Tzer Yau. Ground-state energy of a low-
density bose gas: A second-order upper bound. Phys. Rev. A, 78:053627, 2008.

[2] Marcin Napiórkowski, Robin Reuvers, and Jan Philip Solovej. The Bogoliubov free
energy functional I. Existence of minimizers and phase diagram. ArXiv e-prints, 2015.

[3] Marcin Napiórkowski, Robin Reuvers, and Jan Philip Solovej. The Bogoliubov free
energy functional II. The dilute limit. ArXiv e-prints, 2015.

[4] Anders Aaen. The Ground State Energy of a Dilute Bose Gas in Dimension n > 3.
ArXiv e-prints, 2014.

[5] Jan Philip Solovej. Many body quantum mechanics. Lecture Notes, 2009.

[6] Albert Einstein. Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung.
Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, p. 3–14,
1925.

[7] Nikolai Nikolajewitsch Bogoljubow. On the theory of superfluidity. Journal of Physics
(USSR), (11):p. 23, 1947.

[8] Tsung-Dao Lee, Kerson Huang, and Chen Ning Yang. Eigenvalues and eigenfunctions
of a bose system of hard spheres and its low-temperature properties. Phys. Rev.,
106:1135–1145, 1957.

[9] Freeman John Dyson. Ground-state energy of a hard-sphere gas. Phys. Rev., 106:20–
26, 1957.

[10] Elliott Hershel Lieb and Jakob Yngvason. A guide to entropy and the second law of
thermodynamics. Notices Amer. Math. Soc., 45(5):571–581, 1998.

[11] Mark H. Anderson, Jason Remington Ensher, Michael Robin Matthews, Carl Edwin
Wieman, and Eric Allin Cornell. Observation of Bose-Einstein condensation in a dilute
atomic vapor. Science, 269(5221):198–201, 1995.

[12] Elliot Hershel Lieb, Robert Seiringer, Jan Philip Solovej, and Jakob Yngvason. The
Mathematics of the Bose Gas and its Condensation. Birkhäuser, 2005.

[13] Horng-Tzer Yau and Jun Yin. The second order upper bound for the ground energy
of a Bose gas. J. Stat. Phys., 136(3):453–503, 2009.

[14] Phan Thành Nam. Bogoliubov theory and bosonic atoms. ArXiv e-prints, 2011.

[15] Elliot Hershel Lieb and Michael Loss. Analysis, volume 14 of Graduate studies in
mathematics. American Mathematical Society, second edition, 2001.

37





Declaration of authorship

I declare that the work presented here is, to the best of my
knowledge and belief, original and the result of my own
investigations, except as acknowledged. It has not been
submitted, neither in whole nor partly, for a degree at this
or any other university.

Formulations and ideas taken from other sources are cited
accordingly.

Munich, September 4, 2017

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marcel Oliver Schaub


	Introduction and Main Result
	The interacting Bose gas on a finite box
	Historical development
	Recent results
	The functional
	Assumptions on the potential
	Main result
	Plan for the thesis

	The Scattering Length
	Definition and elementary properties
	A Fourier representation of the scattering solution
	Regularity estimates for the scattering solution

	Minimization of the Functional
	Well-definedness of the functional
	Simplified functional and errors
	Minimization of the simplified functional
	Approximation to integrals
	Estimates for the minimizer
	Proof of Theorem 1.3

	Conclusion and Outline
	References

