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Abstract

The physical understanding of quantum many-body systems is hindered by the fact that
the number of parameters describing the physical state grows exponentially with the num-
ber of degrees of freedom. Consequently, it is notoriously hard to solve strongly coupled
Quantum field theories as they have infinitely many degrees of freedom. A new varia-
tional class of states aimed at dealing with strongly coupled QFT was recently put forward
in [Physical Review X 9 (2), 021040]. This class is obtained as the continuum limit of
Tensor Network States, which have been extremely successful on the lattice, both theoret-
ically and numerically. However, the success of this continuum ansatz has so far not been
demonstrated. In this report, a subclass of continuous Tensor Network States, the gaussian
continuous Tensor Network states, are tested on a simple quasifree bosonic Hamiltonian,
in one and two spacial dimensions. The variational algorithm performs succesfully in both
cases. Particularly, in the two dimensional case the implementation is not trivial, due to
the appearance of infinities in the energy density.
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Introduction

It has always been a big challenge to describe many body quantum physics, especially
in cases where the interactions between the particles are strong or long ranged. The
main difficulty arises from the fact that the Hilbert space describing the many-body state,
is growing exponentially with the number of particles. However, it is of big interest to
manage to describe more sufficienlty many-body interacting systems. It could lead to a
better understanding of phenomena like high temperature superconductivity or QCD. Most
of the problems cannot be solved exactly, hence need to be dealt with approximately. There
are two common methods used in quantum mechanics (on the lattice) and QFT (in the
continuum): the perturbation theory and the variational method. The first is applicable
only when the interactions are weak, the second is more general, though one needs to guess
a good Ansatz. In this report we will focus on the latter.

Many breakthroughs in quantum many-body physics came from proposing a suitable
variational Ansatz that captures the relevant correlations for the systems under considera-
tion. In the continuum, however, only few general Ansätze that surpass mean-field theory
have been used. Finding a physically relevant parametrization for a quantum state in
continuous space, especially in two or more dimensions, is a major challenge and would
provide a useful tool for solving problems- analytically and computationally- in Quantum
Field Theory. Mostly we are interested in investigating the ground state of a system. It
turns out that ground states comprise only a small submanifold of the full Hilbert space,
and exhibit highly non-generic features. A set of states, called continuous Tensor Network
states, exhibits these features, thus is a variational ansatz suitable for low energy QFTs in
d space dimensions. In this report we will use a subset of these states.

We start with a short summary of what has been done so far in the discrete, which
worked as an inspiration for later developments in the continuum. A certain family of
states, the so called Tensor Network States (TNS) [1, 2] has been used as a candidate
for describing complex lattice quantum systems. These are an efficient parametrization of
physically relevant many-body wave functions on a lattice [3, 4]. The individual tensors
encode the key properties of the overall wavefunction, providing an efficient tool to un-
derstand the theoretical properties of ground states and are the basis of many powerful
numerical algorithms [5]. Moreover, they are probably one of the most successful method
to describe strongly correlated systems. Not only can one find the ground state and ob-
servables of a given Hamiltonian, but in many cases time evolution can be simulated [6, 7].
Overall, they are a natural language for topologically ordered systems [8, 9].
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The field started with a variational approximation of the ground state of the two di-
mensional Ising model [10], describing a state wavefunction by a matrix product. In the
1990s, the so called Matrix Product States(MPS) enjoyed remarkable success, with the
powerful numerical DMRG method [11, 12]. It is an iterative, variational method -uses
MPS an Ansatz- that reduces effective degrees of freedom to those most important for a
target state. The target state is the ground state. In the 2000s progress in generalizing
the MPS construction to other scenarios was made: For higher dimensional systems with
Projected Entangled Pair States (PEPS) as a natural generalization of MPS in 2 dimen-
sions [13], and for critical systems with multiscale entanglement renormalization ansatz
(MERA) [14, 15] and more. Meanwhile, physicists working in the field of quantum infor-
mation theory brought new insights. The understanding that entanglement has an inner
structure, which can be described by a Tensor Network, and that TNS obey the area law
[16]- a fundamental property of ground states of local, gapped Hamiltonians [17]- where
crucial points to establish the relevance of this family of states.

The first step to use the variational class based on Tensor Networks in Quantum field
Theories was done in 2010 [18, 19] for one spacial dimension. The states were called
continuous Matrix Product states (cMPS), as they are the continuous limit of the standard
Matrix Product states. Those cMPS can be used as variational states to find ground states
of quantum field theories, as well as to describe real-time dynamical features. They have
been successfully tested on the Lieb-Liniger model, even for strong interactions.

The cMPS have been a fruitful basis for generalizations into higher dimensions. The
analog of MERA states in the continuum has been found, called cMERA [20]. However,
what has been done in one dimension for MPS is not easily generalizable in the case of
the two dimensional PEPS, as problems with euclidean symmetry breaking and subtleties
about the bond dimension emerge [21]. A good candidate state to describe low energy
QFTs of local, gapped Hamiltonians in arbitrary dimensions, is the recently proposed
continuous Tensor Network state (cTNS) [22]. It is based on a path integral over auxiliary
fields [23]. However, no numerical applications on a physical system had been attempted
so far. In this report we investigate a subclass of this cTNS, the gaussian cTNS, and apply
a variational method to find the ground energy for certain simple models in one and two
spacial dimensions.

The outline of this thesis is the following: In Chapter 1 we give an overview on the
background knowledge on Tensor Network States. We focus especially on MPS in the
discrete case, to explain why they are considered as physically relevant and give an examples
of their successful use. Subsequently, we take the continuous limit and explain how the
cMPS arise naturally as a variational class for one dimensional QFTs. In the case of PEPS
the story is not as simple. We will have to define a new variational state, the continuous
TNS, using a path integral over an auxiliary field.

In Chapter 2 we explain the main idea of a variational algorithm and perform the
computations which will enable us to implement such an algorithm. We work on the
special subset of gaussian cTNS and perform all the needed computations to express in a
closed form the correlation functions and all their derivatives w.r.t. the parameters of the
Tensor Network.
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Chapter 3 is an application of the tools we developed in the previous Chapter, on a
simple gaussian model, first in one and then in two dimensions. We compare the numerical
results we get from our variational method with the analytic exact results.
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Chapter 1

Theoretical Background

1.1 Tensor Network States

There are very few problems in physics which can be solved exactly, hence they need to
be dealt with approximately, either with analytical or with numerical methods. There are
two common methods used in quantum mechanics and QFT: perturbation theory and the
variational method. Perturbation theory is useful for weakly interacting systems. The
system is then studied through a power series expansion in a small parameter, i.e. the
physical quantities are expressed in power series in λ. For strong interacting theories
this approximation breaks down, thus other methods have to be used. Another important
restriction is that the free theory, when sending λ to zero, needs to be integrable, so exactly
solvable analytically.

To use a variational method, the coupling strength can be arbitrary large and there
is no demand for integrability. The variational method can be more robust in situations
where it is hard to determine a good unperturbed Hamiltonian. It is a useful method
for finding the ground state of a given Hamiltonian. Many problems have been solved
variationally, as the Bardeen–Cooper–Schrieffer (BCS) theory of supercoductivity.

The basic idea of the variational method [24] is to guess a trial wavefunction for the
problem, which has adjustable parameters called variational parameters. These parameters
are varied until the energy of the trial wavefunction is minimized. The resulting trial
wavefunction and its corresponding energy are variational approximations to the exact
wavefunction and energy. In particular, the variational principle asserts that for any state
|ψ〉 in the Hilbert space H of a system with Hamiltonian Ĥ one finds an energy expectation
value that exceeds the ground state energy,

ε0 ≤
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

, (1.1)

with ε0 the ground state energy of Ĥ. If one has a variational ansatz states |ψ(z)〉, with
z being the variational parameter, we try to find the value of the parameter z such that
|ψ(z∗)〉 gives the lowest energy E0 ≥ ε0.
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The success of a variational method depends on the initial guess of the form of ground
state wavefunction. Thus, a good physical intuition is required for a successful application
of the variational method. Throughout the years many different variational wavefunctions
as coherent states and Gaussian states, have been tried out. The most outstanding is
the variational family of Tensor Network States(TNS), due to their numerical efficiency.
Moreover, they fulfil the area law and they describe easily the entanglement structure of a
system.

In order to understand this set of states we will start with their simplest form, defined
in one dimension. In that case the TNS are called Matrix Product States (MPS). They are
a natural choice for an efficient representation of 1d quantum low energy states of systems
with gapped local Hamiltonians. After defining such a state and explaining its properties
we will generalize to more spacial dimensions.

1.1.1 Matrix Product States (MPS)

In this section we will begin with the most generic one dimensional quantum many-body
state and will decompose its wavefunction in a Matrix Product. This state, called Matrix
Product state, will make us understand better the underlying physics and entanglement
features of the system. In combination with a method called truncated Singular Value
Decomposition, see Appendix.A. The MPS will provide us with a useful tool to perform
numerical simulations, with a decreased number of parameters. There are many specific
examples of non-trivial states that can be represented exactly by MPS, such as the GHZ
state, the AKLT state and the 1d cluster state [1].

We begin with a one dimensional lattice of N sites and periodic boundary conditions.
On every site there is a spin described by the state vector |jl〉 which lives in the m di-
mensional Hilbert space Hl. The most generic state of this lattice is written as a linear
combination of all possible configurations

|χ〉 =
∑

j1,j2,...jN

Cj1,j2...jN |j1〉 ⊗ |j2〉 ⊗ ...⊗ |jN〉, (1.2)

The state is completely specified by the rank-N tensor C, see Appendix A. We will decom-
pose the tensor in a matrix product by using iterative Schmidt decompositions [26].

The Schmidt decomposition Theorem states:
Let H1 and H2 be Hilbert spaces of dimensions n and m respectively. Assume n ≥ m. For
any vector w in the tensor product H1⊗H2, there exist orthonormal sets {u1, . . . , um} ⊂ H1

and {v1, . . . , vm} ⊂ H2 such that w =
∑m

i=1 λiui ⊗ vi, where the scalars λi are real,
non-negative and uniquely determined by w. The same can be written with Tensors,
w = Λ|u〉 ⊗ |v〉 where Λ is the diagonal matrix with elements {λ1, λ2, . . . , λm} and |u〉 =
[u1, u2, . . . , um]T ,|v〉 = [v1, v2, . . . , vm]T .

Applying the decomposition to the first site we get

|χ〉 = Λ(1)|v〉1 ⊗ |u〉[2,3,...N ] (1.3)



1.1 Tensor Network States 7

which in the |j〉 basis writes

|χ〉 =
m∑
j1

Λ(1)αj1|j1〉 ⊗ |u〉[2,3,...N ] (1.4)

We set A
(1)
j1

= Λ(1)aj1 , where A(1) is a 3 tensor describing the physics at site 1. Fixing one

index, here j1, A
(1)
j1

gets a simple m ×m matrix. Performing the same step for every site
and taking care of the periodic boundary conditions we arrive at

|χ〉 =
m∑

j1,j2,...jN

Tr[A
(1)
j1
A

(2)
j2
. . . A

(N)
jN

]|j1〉 ⊗ |j2〉 ⊗ ...⊗ |jN〉 (1.5)

The quantity Tr[A
(1)
j1
A

(2)
j2
...A

(N)
jN

] is a simple matrix product, which defines the state
uniquely. Up to now we have done no approximation. Whatever generic state (1.2) can
be written as (1.5). We factorize every matrix, performing a SVD, see eq. (A.3). One can
see that usually only a certain amount of parameters in the tensor have an actual physical
relevance, the ones which correspond to the larger singular values. Some of the components
of the tensors correspond to zero (or approximately zero) singular values, which here are
just the Schmidt weights, thus one can truncate the matrix to D × D dimensions, with
D ≤ m, using eq. (A.4). In the case where the truncated Schmidt weights are actually
zero the state is still exact after truncation. If we truncate components which correspond
to almost zero weights we are ending up with an approximation of the exact state. The
more we truncate the worse the approximation gets, but we gain in computational speed
as the parameters which describe the system are less. Note that MPS states are a complete
class of quantum states and by increasing D sufficiently one can capture exactly any pure
state of the system.

We now assume thatA is aD×D×m tensor of rank 3. D is the so called bond dimension
of the tensor Network, the bigger D the bigger the tensors and the more parameters we
have describing our system. As we are contracting all the indices of dimension D these
indices are not variables of the system. Therefore they are called virtual indices. Thus
3-rank tensors A have one physical index, of dimension m and two (for d = 1) virtual
indices of dimension D.

One can easily impose translational invariance. In that case the state is determined by
a single tensor A

|χ〉 =
∑

i1,i2...iN

Tr[Ai1Ai2 ...AiN ]|j1〉 ⊗ |j2〉 ⊗ ...⊗ |jN〉. (1.6)

An important property of a matrix product state is that it is described by very few
numbers. While a general state vector of a system composed of N spin-m systems is defined
by O(mN) real parameters, an MPS of bond dimension D can be represented by O(mND2)
real parameters. For constant D, this is linear in N, as opposed to exponential in N, so
this ansatz gives rise to a drastic reduction of the number of variational parameters.
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D1

D2

D3

D1<D2<D3

H

Figure 1.1: The family of MPS is complete. For finite bond dimension D cMPS are
elements of a subspace MD ∈ H. The larger D the larger this subspace. For D →∞ the
family covers the whole space H.

A A AA A A

i1 i2 i3 i4 i5 i6

Figure 1.2: Graphical representation of an MPS, for a lattice of N = 6 spins. Virtual
indices are in black and the physical indices in red. For better understanding of the
graphical notation read Appendix A.

Correlation Functions and observables

Expectation values of local operators can be calculated exactly for an MPS. We are par-
ticularly interested in the expectation value of the two point operator 〈ψ|O0Or|ψ〉, where
the subscript denotes the position the operator acts on.

One can show that the expectation value decreases exponentially in distance, 〈ψ|O0Or|ψ〉 ∝
e−r/ξ [5], where ξ is some finite number, such that for r →∞ we get zero correlations. ξ is
called correlation length as it gives a quantitative value for how extended the correlations
are in the system. For infinite ξ, i.e. in the critical regime, the correlation function does
not anymore decay exponentially. Throughout the report, the decay of correlations will be
often our concern, as we need our approximated two point functions to decay exponentially
in distance, as long as we are far away from the critical point.
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i j

Figure 1.3: Graphical representation of the expectation value of two operators, separated
by r = j − i sites. Taking expectation values corresponds to contracting the physical
indices.

1.1.2 Area Law

In this subsection the area law will be explained, as it is an important criterion for the
physical relevance of a state. There are many reasons to believe that states of a quantum
system with an energy gap ∆E and a local Hamiltonian obey an area law [17, 16]. This non-
generic property makes the physical quantum states to comprise only a small submanifold
Hp ⊂ H, as for a generic state in H the entanglement entropy would grow with volume.

H
Hp

Figure 1.4: Observable states comprise only a tiny submanifold Hp ⊂ H, whose states
exhibit nongeneric properties.

Let us suppose we split a system in two parts B and its complement Bc, see Fig. 1.5.
The entanglement entropy S is defined in respect to some bipartition as

S = −tr[ρB log2 ρB] (1.7)
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where ρB = trBC [|ψ〉〈ψ|] is the reduced density matrix, |ψ〉 ∈ H. The entanglement entropy
measures the amount of entanglement between the two subsystems. It is zero if the state
ρB is pure. If the to systems are entangled the reduced density matrix ρB corresponds
to a mixed state. Now the area law states that the entanglement entropy grows at most
proportionally with the boundary ∂B between the two partitions, so Smax ∝ |∂B|.

Bc

B

Figure 1.5: Bipartite system

Matrix Product states are a family of states which satisfy the area law. In one dimension
the boundary of the subsystem consists of two sites independent of the particle number
N , see Fig.1.6. One can show that the entanglement entropy of an MPS is bounded by
Smax = O(log2(D)), where D is the bond dimension of the tensors. That means that

A A AA A A A A AA A A

Figure 1.6: Bipartition of an MPS

the bound is independent of the system size. The behaviour of the entanglement scaling
is therefore the same for MPS as for ground states of gapped models. Moreover, the
bond dimension turns out to be a quantitative measure of the entanglement present in
the quantum state. For example for D = 1 we have a separable product state, so all the
particles are independent, whereas D > 1 provides non trivial entanglement properties.

A question which may arise is how well an MPS approximates a naturally occurring
state. It was shown by Hastings [27] the error in approximating the ground state by a
matrix product state of bond dimension D scales as D−1/ξ, where ξ is the correlation
length. For a finite ξ the approximation gets better when we increase D. Moreover, the
approximation works well when ξ is small, so for short range correlations, which arise
from finite, local Hamiltonians. As one reaches the critical point, i.e. the gap is closing
and the correlation length is exploding, the MPS is not anymore describing the system as
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efficiently. Thus, for ∆E → 0 we need higher bond dimensions to compensate. We will see
an illustration of this later.

1.1.3 Projected Entangled Pairs State (PEPS)

The MPS class has provided a fruitful basis for generalizations. It has inspired several
powerful extensions to higher dimensions and different geometries. The idea is the same
as for d = 1, only that now we have a lattice of N ×N sites. The state

|χ〉 =
∑

i1,i2...iN2

ci1...iN2 |i1i2...iN2〉. (1.8)

is fully characterized by the tensor ci1...iN2 . This tensor can be replaced by a network
of interconnected tensors with fewer coefficients, in analogy with the 1 dimensional case.
Though, in 2 dimensions there are many different ways to connect the Tensors. In order to
avoid lengthy formulas and confusing index-contractions, Tensor Network notation is used,
see Appendix A. Some examples of different tensor networks in 2 dimensions are given in
the literature [2].

Figure 1.7: PEPS on a square lattice

The tensor decomposition we choose defines the variational class of the state. De-
pending on the lattice geometry we describe different physics. We want our system to be
translational invariant and to fulfil the area law, as we want to parametrize a ground state.
Thus, we choose the simplest structure which fulfils these requirements, the square lattice,
see Fig. 1.7. Now the tensors are 5-rank, with 4 virtual D dimensional indices (blue) and
one physical one (red). The states are called Projected Entangled Pair States (PEPS) [13].

The way the virtual indices are contracted provides a structure of the many body
entanglement of the quantum state. For example contracting only nearest neighbor sites
describes a system with only short range interactions, hence we have maximally entangled
pairs. To describe physics with large correlation lengths one would need to connect sites
which are far apart.
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There are many specific examples of non-trivial problems that have been solved exactly
by PEPS, such as the Toric Code model, the 2d Resonating Valence Bond State, the 2d
AKLT state and the 2d cluster state [1].

Thus, Tensor Network states are mathematical representations of quantum many-body
states fully characterized by a Tensor Network. The individual tensors encode the key
properties of the overall wavefunction and the Tensor Network geometry is based on the
entanglement structure of the system. The symmetries of the physical system impose
symmetries on the tensors.

So far, everything in this report has been restricted to the lattice setting. To study
continuous quantum system with these tools one would discretize the space and make use
of a variational method on the lattice. The goal of the next two sections is to explain
how to avoid the discretization and how to apply these variational methods directly in the
continuum.

1.2 Continuous Matrix Product States (cMPS)

An important challenge is the generalization of Tensor Networks from lattice to contin-
uous systems, which would allow the direct study of quantum field theories. The ansatz
formulated in the continuum would not require an underlying lattice approximation. This
is useful because the continuum provides a whole range of exact and approximate analytic
techniques, as Gaussian functional integrals. In the continuum the states are called con-
tinuous Matrix Product states (cMPS), and in analogy with the standard MPS they are
expected to be both an computationally efficient and complete set of states.

We consider a one dimensional system of bosons with periodic boundary conditions, as-
sociated with field operators ψ(x) ∈ H with canonical commutation relations, [ψ(x), ψ†(y)] =
δ(x − y) and 0 ≤ x, y ≤ L continuous space coordinates. |Ω〉 is the vacuum state of the
physical Hilbert space H, with ψ(x)|Ω〉 = 0 for ∀x ∈ [0, L]. The complete family of cMPS
is defined as [18]:

|χ〉 = Traux[Pe
∫ L
0 dx[Q(x)⊗1+R(x)⊗ψ†(x)]]|Ω〉 (1.9)

with Q(x), R(x) position dependent complex D×D matrices, that act on a D dimensional
auxiliary space Haux ∈ CD, Traux the trace over the auxiliary system. We will see that D
corresponds to the bond dimension we have seen in the discrete case. In a translational
invariant system Q and R do not depend on the position. Pexp is the path ordered
exponential, which will be explained in the next paragraph. The Langrangian L(x) =
[Q(x)⊗ 1 +R(x)⊗ ψ†(x)], has to be invariant under the symmetries of the system.

We try to gain some intuition into what these states describe, by discretizing the space
and stressing the meaning of the sites at which a particle is created. First, we split the space
[0, L] into N equal length ε paths. The path-ordered exponential appearing in eq.(1.9) is
then simply

Pe
∫ L
0 dxL(x) = lim

ε→0

[
eεL(uN )eεL(uN−1)...eεL(u1)

]
,

where uj is the position of site j = 1, 2 . . . N . Next, we expand eεS(x) and get
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1 N
Figure 1.8: Partition in N sites. Example case for n=2, such that |χ〉 =

Traux[limε→0Pe
∫ xN
x11

Q(x)dx
eεR(x11)⊗ψ(x11)Pe

∫ x11
x6

Q(x)dx
eεR(x6)⊗ψ(x6)Pe

∫ x6
0 Q(x)dx|Ω〉

|χ〉 =
∞∑
n=0

∫
0<x1<x2<...<xn<L

dx1dx2...dxnφnψ
†(x1)ψ†(x2)...ψ†(xn)|Ω〉 (1.10)

where n is the particle number and xi the positions of the particles with i = 1, 2 . . . n ,
which of course coincide with some of the uj. The wavefunction is given by

φn = Traux[uQ(0, x1)R(x1)uQ(x1, x2)R(x2)...R(xn)u(xn, L)] (1.11)

where uQ(x, y) = P exp[
∫ y
x
Q(x)dx]. Equation (1.10) shows that an MPS can be interpreted

as a superposition over the different particle number sectors in the Fock space. uQ can be
interpreted as a propagator, while R can be understood as a scattering matrix that creates
a physical particle.

To make that more explicit for the reader we compute the wave function representation
in an example case, for two particles n = 2 distributed on a lattice of N sites, see Fig.1.8.
In this specific case where the positions of the particles is fixed the state gets

|χ(x1 = u6, x2 = u11)〉n=2 = Traux[lim
ε→0
Pe

∫ xN
x11

Q(x)dx
eεR(x11)⊗ψ(x11)

Pe
∫ x11
x6

Q(x)dx
eεR(x6)⊗ψ(x6)Pe

∫ x6
0 Q(x)dx|Ω〉,

but of course in order to get the most generic state with two particles one has to integrate
over the positions |χ〉n=2 =

∫
dx1dx2|χ(x1, x2)〉n=2.

1.2.1 Correlation functions and expectation values

We are interested in computing some expectation values of normal ordered observables
〈χ(Q,R)| : O[{ψ†}, {ψ}] : |χ(Q,R)〉, particularly the correlation function and the energy.
As the states themselves depend on the matrices Q and R, so will the observables. As we
are in a Field Theory the easiest way usually is proceeding by using a generating functional

Z[{J}, {J}] = Tr

[
eLTP exp{

∫ L/2

−L/2
dxJ(x)[R⊗ 1D] + J(x)[1D ⊗R]}

]
(1.12)

where T = Q⊗1D+1D⊗Q+R⊗R is coming from the fact that the state is not normalized.
Now we compute the two point function,

〈χ(Q,R)|ψ†(x)ψ(y)|χ(Q,R)〉 =
δ

δJ(y)

δ

δJ(x)
Z[{J}, {J}]|j.J=0 (1.13)
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which simply, for x < y, takes the form

〈χ(Q,R)|ψ†(x)ψ(y)|χ(Q,R)〉 = Tr
[
e(x+L/2)T(R⊗ 1D)Pe(y−x)T(1D ⊗R)Pe(L/2−y)T

]
One can check that the real part of the eigenvalues of T, is finite and non positive. Thus, for
growing distance |x−y| the exponential e(y−x)T is decreasing exponentially. The realization
that the correlation function is decreasing exponentially with distance is essential, for the
MPS to describe efficiently a system of a gapped Hamiltonian. On the other hand, it is
impossible to describe a system at the critical point.

The density operator at point x is given by

〈χ(Q,R)|ψ†(x)ψ(x)|χ(Q,R)〉 = Tr[eLT(R⊗R)] (1.14)

To compute the energy one needs to take the expectation value of the Hamiltonian

E = 〈Ĥ〉 = 〈T̂ 〉+ 〈V̂ 〉 (1.15)

where 〈T̂ 〉 = 〈χ(Q,R)|
(
d
dx
ψ†(x)

) (
d
dx
ψ(x)

)
|χ(Q,R)〉 is the kinetic energy and 〈V̂ 〉 the

interaction energy. The last term can contain the density operator of eq.(1.14), or higher
order interactions, expressed in terms of higher order moments. For example, a four point

interaction term could be V̂ =
∫ L/2
−L/2 v(x−y)ψ†(x)ψ†(y)ψ(y)ψ(x) and one needs to compute

begineqnarray

〈χ(Q,R)|V̂ |χ(Q,R)〉 = 〈χ(Q,R)|ψ†(x)ψ†(y)ψ(y)ψ(x)|χ(Q,R)〉. (1.16)

That way, one finds the variational value of the energy E = E(Q,R). Note that no further
approximation has been done.

1.2.2 Link with discrete MPS

Now we will show how these continuous MPS can be understood as a limit of a family
of discrete MPS. Again we consider a tranlational invariant system of bosons of length
L with periodic boundary conditions. We approximate the continuum [−L/2, L/2] by a
lattice with spacing ε and N = L/ε sites. We reconstruct the continuum by taking ε→ 0.
On every site we can create and annihilate particles with the creation and annihilation
operators a†i and ai, which fulfill the commutation relation [ai, a

†
j] = δij. We can relate

them to the field operators ψ(x) by

an =

∫ (n+1)ε

nε

ψ(x)dx (1.17)

and its hermitian conjugate. The field operators need to satisfy the commutation relation
[ψ(x), ψ†(y)] = δ(x− y). If we define a rescaled annihilation operator ψ̂i as

ψ̂i =
√
εai (1.18)
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which fulfils

[ψ̂i, ψ̂
†
j ] =

δij
ε

(1.19)

in the limit ε → 0 we regain ψi → ψ(x). Now we can define a family of translational
invariant MPS on a discretized lattice as

|χε〉 =
∑
i1...iN

Tr[Ai1 ...AiN ](ψ̂†1)i1 ...(ψ̂†N)iN |Ω〉. (1.20)

This is the same state as defined in eq.(1.6), for |jl〉 = (ψ†l )
jl ||Ω〉. We will take ε→ 0 and

n → ∞ such that the particle density ρ stays constant. Under this condition it is highly
unlikely for two particles to be at the same point. Thus we will make the assumption that
i = 0 or 1. We choose the matrices A = A(Q,R) to depend on the matrices R and Q, in
such a way that as ε→ 0 the limit of the state is well defined and we get the cMPS of eq.
(1.10):

A0 = 1 + εQ (1.21)

A1 = εR (1.22)

An = εn
Rn

n!
, (1.23)

We are in the special case where we restrict to a finite particle density, most of the sites
are empty in the limit and A0 is the dominant matrix.

The correspondence of cMPS with MPS is important, because they most likely inherit
all the properties of an MPS, like the fact that the entanglement entropy is bounded from
above by 2log2(D), see sec.1.1.2.

1.2.3 Application on the Lieb-Liniger Model

The cMPS have been successfully used as a variational ansatz for strongly correlated con-
tinuous theories, for example to find the ground state energy of the Lieb-Liniger model
[28], which describes non relativistic bosons in an one dimensional space interacting via a
contact potential

H =

∫ ∞
−∞

[
dψ†

dx

dψ

dx
+ cψ†(x)ψ†(x)ψ(x)ψ(x)

]
. (1.24)

The goal was to approximate the ground state energy density by variational methods using
MPS and compare it with the exact analytical solution and Monte Carlo algorithms [18].
For the first we need to use the expressions 〈ψψ〉 computed in section 1.2.1. As the system
is solvable analytically, using the Bethe Ansatz, a comparison is possible. The energy
density is finite and can be expressed as ρ3e(c/ρ), where ρ is the density and e(c/ρ) the
energy density at ρ = 1. For c = 2 the Bethe ansatz gives e = 1.0504 and the Monte
Carlo Method e = 1.0518. With the cMPS variational method one obtains a different
energy density for different bond dimensions. One expects the method to approximate the
actual lowest energy state better for bigger bond dimensions, thus the actual lowest energy
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density to be approximated better. In fact, eMPS = 1.1241, 1.0618, 1.0531, 1.0515, 1.0512
and 1.0508 for D = 2, 4, ..12 bond dimensions, see Fig.1.9. So with little numerical effort
one can obtain results comparable to those of Monte Carlo methods.

Figure 1.9: The relative error ∆E = (e− eBethe)/eBethe) (where eBethe is the energy given
by the Bethe Ansatz solution) as a function of D for c = 0.2, 2, 20 and 200 (x,*,+, and o,
respectively) [18].

An important fact is that the cMPS methods do not rely on the fact that the model
is integrable. So one could apply the same method to models which are not solvable
analytically. Another important result was that even for big c, for example c = 200, so for
strongly interacting bosons, the results were still good. In this region perturbative methods
are not applicable, so the importance of this variational method becomes clear The relative
error was bigger for bigger c, but by increasing the bond dimension sufficiently one can
approximate the lowest energy state sufficiently.

Thus, in the one dimensional case the cMPS variational ansatz is efficient to find the
lowest energy state of a system. In this report we will try to check if the same holds for
higher dimensions, using instead of cMPS another variational class, the continuous Tensor
Network States, which will be described in the next section.

1.3 Continuous Tensor Networks States (cTNS)

The generalization of continuous Matrix Product States to d ≥ 2 spatial dimensions is
called continuous Tensor Networks States (cTNS). As before the continuous TNS allow
the direct study of quantum field theories, without the prior need of discretizing space.
Following the same ideas as in the previous section, one would simply take the continuum
limit of a TNS, by letting the lattice spacing go to zero, while appropriately rescaling
the tenors. In the case of d = 1, we showed that this is working, see sec. 1.2.2. For
d ≥ 2 though, the situation is less trivial and a naive extension can lead to a breaking of
Euclidean symmetries. A way to treat the problem is exploiting the similarity between a
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tensor contraction over the indices lying on the links of a tensor network and a functional
integral over a field living on the continuum limit of this construction, as explained in
Appendix B.

We begin with the definition of a cTNS for bosonic quantum fields in the functional
integral formulation, as it is defined in [22]:

|V, a〉 =

∫
Dφ exp

(
−
∫

Ω

ddx
1

2

D∑
k=1

[∇φk(x)]2 + V [φ(x)]− a[φ(x)]ψ†(x)

)
|0〉 (1.25)

The state describes bosons in d spacial dimensions and periodic boundary conditions. The
physical Fock vacuum state is noted as |0〉. We have two sorts of field operators, the
physical bosonic ones, which fulfil the commutation relation [ψ(x), ψ†(y)] = δd(x− y) and
the auxiliary fields, which are D dimensional vectors, φ = {φk}Dk=1, being integrated over
in the path integral. D is the continuous equivalent of bond dimensions, and is called
bond-field dimension. Here, we choose a and V such that they do not depend explicitly on
the position, since we restrict ourselves to translational invariant systems.

auxiliary field

physical field

auxiliary degrees of fredom

physical degrees of fredom

Figure 1.10: Functional integral representation – In the discrete (left) a tensor network
state is obtained from a contraction of auxiliary indices connecting the elementary tensors
with each other and with a boundary tensor. In the continuum (right), the contraction is
replaced by a functional integral and the auxiliary indices by fields φ. [22]

To gain some physical understanding of these states it is convenient to express them as
a generalization of bosonic field coherent states

|V, a〉 =

∫
dµ(φ)AV (φ)|a(φ)〉 (1.26)

where

|a(φ)〉 = exp

(∫
Ω

ddxa[φ(x)]ψ†(x)

)
|0〉 (1.27)
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is the unnormalized field coherent state, which specifies the occupation number of the
particles in FOck space,

AV (φ) = exp

(
−
∫

Ω

ddxV [φ(x)]

)
(1.28)

a complex amplitude and

dµ(φ) = Dφ exp

[
−1

2

∫
Ω

D∑
k=1

[∇φ(x)]2

]
(1.29)

the massless free probability measure of the auxiliary field. For a constant auxiliary field
φ(x) = φ the cTNS simplifies to a simple bosonic coherent state. That is the case when A
is nonzero only for one mode. The measure dµ(φ) suppresses the large momentum modes
and the amplitude term is bigger in the regions the potential is smaller. In case the field
is massless, we get A = 1.

1.3.1 Correlation functions and expectation values

Just as in Section 1.2.1 we are interested in computing observables, as the correlation
functions and the energy of a given Hamiltonian. In order to compute them, we first
introduce the generating functionals

Zj′,j =
〈V, a| exp(

∫
ddxj′(x) · ψ†(x) exp(

∫
ddyj(y) · ψ(y))|V, a〉

〈V, a|V, a〉
(1.30)

which we use to compute the two point functions

〈ψ†(x)ψ(y)〉 =
δ

δj′(x)

δ

δj(y)
Zj′,j|j′,j=0, (1.31)

〈ψ(x)ψ(y)〉 =
δ

δj(x)

δ

δj(y)
Zj′,j|j′,j=0 (1.32)

and

〈ψ†(x)ψ†(y)〉 =
δ

δj′(x)

δ

δj′(y)
Zj′,j|j′,j=0. (1.33)

but one can take higher order functional derivatives to obtain higher order momenta, like
four point functions.

We expect the two point function 〈ψ†(x)ψ(y)〉 to decay exponentially in distance and
〈ψ†(x)ψ(x)〉 to be positive and finite as it expresses the density of the particles at position
x, but we will come back to that when we actually perform the computations in the two
next Chapters of this report.

For a given Hamiltonian Ĥ we can compute the energy as a function of V and a.
To do so we express it as E = 〈Ĥ〉 = 〈T̂ 〉 + 〈V̂ 〉, where the interaction operator can
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include terms of the form 〈ψ†(x)ψ(x)〉, 〈ψ†(x)ψ†(x)〉, 〈ψ(x)ψ(x)〉 (two point functions)
and 〈ψ†(x)ψ†(y)ψ(y)ψ(x)〉 (four point function) or higher. Of course 〈V̂ 〉 ∈ R, as it is a
physical observable. The kinetic term is 〈T̂ 〉 = 〈

(
d
dx
ψ†(x)

) (
d
dx
ψ(x)

)
〉 ∈ R. For models

which are known to have finite energy densities it is important that the expression we get
for E(V, a) is finite too. Note that all the expectation values so far have been expressed in
real space.

To compute the generating functional one uses the Baker-Campell- Hausdorf formula.
We obtain

Zj′,j =
1

N

∫
dµ(φ′)dµ(φ)× e

∫
Ω V
∗[φ′(x)]+V [φ(x)]−a∗[φ(x)]·a[φ(x)]−j·a[φ(x)]−j′·a[φ′(x)] (1.34)

where N = 〈V, a|V, a〉 and dµ(φ) is given in (1.29). This integral is solvable analytically
only if it is gaussian. That restricts the form of the functions V and a for our applications.
We will have to choose them such that the last integral is at most quadratic in φ. Already
in this case we will see that the computations are quite tideous.

1.3.2 Restriction to Gaussian cTNS (GCTNS)

In our applications we will consider only a subclass of the cTNS, with which we can compute
the closed formulas of expectation values: the Gaussian continuous Tensor Network States
(GCTNS), see Fig.1.11. A TNS is Gaussian if it is at most second order in φ. In this case
the most general form the functions V [φ(x)] and a[φ(x)] can have are respectively

V [φ(x)] = V (0) + V
(1)
k φk + V

(2)
kl φkφl, (1.35)

a[φ(x)] = a(0) + a
(1)
k φk, (1.36)

where Einstein summation is implied. We will simplify even more taking

a(0) = V (1) = 0 (1.37)

and for simplicity we will write a(1) = a, and V (2) = V so the generic form of the GCTNS
in the functional integral representation is

|V, a〉 =

∫
Dφexp

{∫
ddx(−1

2
)φ(x)(−∇2 + V )φ(x) + a(x)φ(x)ψ†(x)

}
|0〉. (1.38)

where V is a D×D dimensional matrix and a is a D dimensional vector. When integrating
out the φ field it becomes obvious why this state is Gaussian

|V, a〉 ∝ exp

{∫
ddxddy

1

2
ψ†(x)aT (−∇2 + V )−1(x− y)aψ†(y)

}
|0〉. (1.39)

One can check that if one takes higher order terms in a or V the generating functional
(1.34) will include φ3 or even higher order terms in the exponential. But it is impossible
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to solve a non gaussian integral. Thus, if we take non gaussian cTNS we cannot compute
the closed form of the expectation values, which are essential for our method.

We will use this parametrization to approximate the ground state of a given Hamil-
tonian. But let us first discuss wheather a Gaussian state is a good approximation. We
know that for Hamiltonians which are at most quadratic in the creation and annihilation
operators, the ground state is a Gaussian State. But for more generic Hamiltonians the
ground state does not have to be Gaussian. However, in some cases a Gaussian state is
still some good approximation of the actual ground state [33].

H

cTNS
gTNS MM

Figure 1.11: For a finite D the manifold of cTNS McTNS is a subspace of the full Hilbert
space H, and the space of GCTNS MGCTNS is a subspace of McTNS.



Chapter 2

Algorithm and Analytic
Computations

In this chapter we will work exclusively with Gaussian continuous Tensor Network States.
The goal is to compute the analytic closed forms of expectation values and their derivatives,
which we need in order to implement the variational algorithm explained below.

2.1 Algorithm

So let us first understand what the algorithm is computing. It optimizes the variational
parameters of our state such that we arrive at the lowest energy state, within our parametric
class.

Essential for applying the variational method [24] is to guess a trial wavefunction for the
problem, which has adjustable parameters called variational parameters. These parameters
are varied until the energy of the trial wavefunction is minimized. The resulting trial
wavefunction and its corresponding energy are variational approximations to the exact
wavefunction and energy. In particular, the variational principle asserts that for any state
|ψ〉 in the Hilbert space H of a system with Hamiltonian Ĥ one finds an energy expectation
value that exceeds the ground state energy,

ε0 ≤
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

, (2.1)

with ε0 the ground state energy of Ĥ. If one has a variational ansatz states |ψ(z)〉, with
z being the variational parameter, we try to find the value of the parameter z such that
|ψ(z∗)〉 gives the lowest energy E0 ≥ ε0.

Now we need to choose an efficient method in order to get the correct parameter values.
One could compute them analytically in a simple problem, by simply looking for the minima
of the energy function w.r.t. the parameters. But in most cases it is too hard, especially for
big D. Numerically the easiest way to solve the problem is with some variational algorithm.
There are many efficient algorithms known to solve these sort of problems, but the main
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idea can be captured with a simple gradient descent method. The gradient descent method
is a first order iterative optimization algorithm to find the minimum of a function. In every
iteration the algorithm optimizes the value of the parameters following the descent of the
function to optimize.

In our case this function is the energy, E = 〈V, a|H|V, a〉. The variational parameters
are the coefficients of the matrix V and the vector a. Let us suppose that x is a 4D vector
with components all the parameters of out state |V, a〉. The equation which states how the
parameter xb is changing in one step is given by

xbn+1 = xbn − r
dE

dxb

where r i the iteration step and we compute

dE

dxb
=

d

dxb
〈V, a|h|V, a〉 − E d

dxb
〈V, a|V, a〉

Note that the second term comes from the fact that our state |V, a〉 is unnormalized,
〈V, a|V, a〉 6= 1. We get

xbn+1 = xbn −
(

d

dxb
〈V, a|h|V, a〉 − E d

dxb
〈V, a|V, a〉

)
. (2.2)

In order to implement the algorithm one needs to know the closed formula for E, dE
dxb

and
d
dxb
〈V, a|V, a〉, as a function of the parameters xb.
As already seen in Section 1.3.1 we can express the energy function as a sum over

different expectation values. The terms which might be included in the energy function
can be very complicated, so we will restrict ourselves to compute only the ones we will
need later on for our toy models, see Chapter 3, which will be 〈ψ†(x)ψ(x)〉, 〈ψ(x)ψ(x)〉 and
〈ψ†(x)ψ†(x)〉 for the interaction part and ∂2

x〈ψ†(x)ψ(x)〉 for the kinetic term. Subsequently,
we will compute their derivatives with respect to the variational parameters. Having them
we know the analytic form of dE

dxb
. In the end of this section we compute d

dxb
〈V, a|V, a〉. All

of these expressions are used to implement the variational code.

2.2 Correlation functions for GCTNS

In this section we compute the analytic closed forms of the two point functions, by using
the generating functionals. Will will need to compute them as integrals over the momenta,

〈ψ†(x)ψ(x)〉 =
∫

ddp
(2π)d
〈ψ†pψp〉eip(x−y). At this point the dimensions d of the problem become

relevant and one needs to check that the quantities are finite.
The generating functional from the GCTNS (1.30) is

Zj′,j =
1

N
exp{

∫
ddxddy

1

2
Λ(j, j′)T (x) ·K(x, y) · Λ(j, j′)(y)}, (2.3)
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where

Λ(j, j′) =

(
V − aj
V − a∗j′

)
(2.4)

and

K(x− y)

[
−∇2 + V −a⊗ a∗
−a∗ ⊗ a −∇2 + V

]
= 12D×2Dδ(x− y) (2.5)

Using the fact that the auxiliary system is translation invariant we write K(x, y) =
K(x− y), which can be written in Fourrier space

K(x− y) =
1

(2π)d

∫
ddpK(p)eip(x−y)

with

K(p) =
1

(2π)d

[
p2 + V −a⊗ a∗
−a∗ ⊗ a p2 + V

]−1

=
1

(2π)d
M−1(p) (2.6)

Using (1.31), (1.32) and (1.33) we get the expressions for the two point functions as func-
tions of V and a:

〈ψ†(x)ψ(y)〉 =
1

2

∫
ddp

(2π)d
aTK(p)a∗eip(x−y) + a∗TK(p)aeip(x−y), (2.7)

〈ψ(x)ψ(y)〉 =

∫
ddp

(2π)d
aTK(p)aeip(x−y) (2.8)

and

〈ψ†(x)ψ†(y)〉 =

∫
ddp

(2π)d
a∗TK(p)a∗eip(x−y). (2.9)

with
aT =

(
a1 a2 ... aD 0 0 0 ... 0

)
, (2.10)

aT∗ =
(
0 0 0 ... 0 a∗1 a∗2 ... a∗D

)
. (2.11)

Note that a is a 2D dimensional vector now, it is not the same as a.
At this point it is important to check if the correlation function C(x−y) = 〈ψ†(x)ψ(y)〉

is decaying exponentially. As seen in the discrete case and for cMPS, this is an important
property of states which describe non critical, local hamiltonians. The matrix K(p) con-
tains elements which are polynomials in p. The terms aTK(p)a∗eip(x−y) are of the form

A
(p2+B)n

, with n = 1, 2 . . . 2D. Their fourier transform is proportional to e−
√
B|x−y|. Thus,

the correlation function decays exponentially with distance.
One can also derive the correlation functions directly in momentum space. Then, the

general form of the generating functional is

Zj′,j =
〈V, a| exp(

∫
ddp

(2π)d
j′(p) · ψ†(p) exp(

∫
ddp

(2π)d
j(−p) · ψ(p))|V, a〉

〈V, a|V, a〉
(2.12)
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which for GCTNS in a translation invariant system gets

Zj′,j =
1

N
exp{

∫
ddp

(2π)d
1

2
Λ(j, j′)T (p) ·K(p) · Λ(j, j′)(−p)}. (2.13)

The correlation functions in momentum space are given by

〈ψ†pψp′〉 =
∂2Z

∂j′(p)∂j(−p′)
=

1

2

(
aTK(p)a∗ + a∗TK(p)a

)
δ(p− p′) (2.14)

〈ψpψp′〉 =
∂2Z

∂j(−p)∂j(−p′)
= (aTK(p)a)δ(p+ p′) (2.15)

〈ψ†pψ
†
p′〉 =

∂2Z

∂j′(p)∂j′(p′)
= (a∗TK(p)a∗)δ(p+ p′) (2.16)

As for the four-point function, using Wicks Theorem we can write it as combinations of
the two point functions

〈ψ†p−qψ
†
k+qψkψp〉

= 〈ψ†p−qψ
†
k+q〉〈ψkψp〉+ 〈ψ†p−qψk〉〈ψ

†
k+qψp〉+ 〈ψ†p−qψp〉〈ψ

†
k+qψk〉

= 〈ψ†−k−qψ
†
k+q〉〈ψkψ−k〉+ 〈ψ†kψk〉〈ψ

†
k+qψk+q〉+ 〈ψ†pψp〉〈ψ

†
kψk〉 (2.17)

2.2.1 Closed form of the correlation functions

In order to implement the algorithm we need to compute the closed form of the correlation
functions in real space 〈ψ(†)(x)ψ(†)(x)〉 of eq.(2.7)-(2.9), which means we need to perform
the integration. We know the analytic form of K(p) from eq. (2.6) and now we need
perform the integral over the momenta. First we diagonalize matrix K(p) by diagonalizing
M(p) = p2 · 1 + U−1ΛU so we get

K(p) =
1

(2π)d
U−1(p2 · 1 + Λ)−1U, (2.18)

where Λ is a 2D × 2D diagonal matrix with eigenvalues λ1, λ2, ..., λ2D and U is a unitary
2D × 2D matrix. M(p) needs to be positive definite matrix, for the state to be physical,
thus Re[λi] > 0. The correlation function, at equal points, from (2.8) writes

〈ψ(x)ψ(x)〉 =

∫
ddp

(2π)d
(aT · U)(p2 · 1 + Λ)−1(U−1 · a) =

1

(2π)d

2D∑
i

(aT · U)i(U
−1 · a)iI1(λi)

(2.19)
where

I1(λi) =

∫
ddp

(2π)d
1

p2 + λi
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is an integral computed in the Appendix C. Similarly, the other correlation functions write

〈ψ†(x)ψ(x)〉 =

[
2D∑
i

(a∗T · U)i(U
−1 · a)i + (aT · U)i(U

−1 · a∗)i

]
I1(λi) (2.20)

and

〈ψ†(x)ψ†(x)〉 =
2D∑
i

(a∗T · U)i(U
−1 · a∗)iI1(λi). (2.21)

For the kinetic term in the Hamiltonian we need the derivative of the correlation function

lim
x→y

∂x∂y〈ψ†(x)ψ(y)〉 =

[
2D∑
i

(a∗T · U)i(U
−1 · a)i + (aT · U)i(U

−1 · a∗)i

]
I1kin(λi) (2.22)

where

I1kin(λi) =

∫
d2p

(2π)2

p2

p2 + λi

is computed in Appendix C.

2.3 Computation of derivatives

2.3.1 Derivatives of correlation functions

To implement the algorithm (2.2) we need the derivative of the energy d
dxb
〈V, a|H|V, a〉,

where x is a vector of all the real parameters which describe our state, and b = 1, . . . 4D.
That means we need to compute the derivatives of the correlation functions and of the
kinetic term.

We start with the derivatives ∂
∂xb
〈ψ(†)(x)ψ(†)(y)〉. The derivation is similar for all of

them, so we just will show the derivation steps for one. We take the derivative of eq. (2.8)

∂

∂xb
〈ψ(x)ψ(y)〉 =

∫
ddp

(2π)d
aT · ∂K(p)

∂xb
· aeip(x−y) (2.23)

where K(p) = 1
(2π)d

M−1(p), from eq. (2.6). Using M−1M −MM−1 = 0, we get that

∂M−1

∂xb
= −M−1∂M

∂xb
M−1 (2.24)

For different variational parameters we get different analytical formulas. The different
forms of the derivative dM−1

dxb
are computed below:

∂M

∂Re(Vii)
= ei · eTi + ei+d · eTi+d
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and
∂M

∂Im(Vii)
= ei · eTi − ei+d · eTi+d

where ei the 2D unit vector with only nonzero element the ith component. Also,

∂M

∂Re(aj)
= −[ej · a∗T + a∗ · eTj + ej+d · aT + a · eTj+d]

∂M

∂Im(aj)
= −i[ej · a∗T + a∗ · eTj − ej+d · aT − a · eTj+d]

We want to perform the integral over the momenta, so again, we diagonalize M(p) =
p2 · 1 + U−1ΛU by using the unitary matrix U such that

−aTM−1∂M

∂xb
M−1a = −(aTU)U−1M−1UU−1∂M

∂xb
UU−1M−1U(U−1a) (2.25)

Combining everything we arrive at the closed formulas. In particular, for the parameters
Re[Vii], Im[Vii] we get

∂

∂Re[Vij]
〈ψ(x)ψ(y)〉 =

2d∑
lk

(aTU)lC
+
lk(U

−1a)kI2(λl, λk),

∂

∂Im[Vij]
〈ψ(x)ψ(y)〉 = i

2d∑
lk

(aTU)lC
−
lk(U

−1a)kI2(λl, λk).

and for the slightly more complicated two point function 〈ψ†(x)ψ(x)〉, we proceed similarly
and get

∂

∂Re[Vij]
〈ψ†(x)ψ(y)〉 = −

2d∑
lk

1

2
[(aTU)lC

+
lk(U

−1a∗)k + (a∗TU)lC
+
lk(U

−1a)k]I2(λl, λk)

∂

∂Im[Vij]
〈ψ†(x)ψ(y)〉 = −i

2d∑
lk

1

2
[(aTU)lC

−
lk(U

−1a∗) + (a∗TU)lC
−
lk(U

−1a)k]I2(λl, λk)

where
C±lk = −(U−1

li Uik ± U
−1
l,i+dUi+d,k)

The integral

I2(λk, λl) =

∫
ddp

(2π)d
1

p2 + λk

1

p2 + λl
eip(x−y)

is computed in Appendix C.
In analogy, for the parameters Re[aj], Im[aj] we compute

∂

∂Re[aj]
〈ψ(x)ψ(y)〉 =

2d∑
i

GijI1(λi) +
2d∑
ik

FR
ijkI2(λi, λk)



2.3 Computation of derivatives 27

and
∂

∂Im[aj]
〈ψ(x)ψ(y)〉 = i

∑
i

GijI1(λi) +
∑
ik

F I
ijkI2(λi, λk)

with

Gij = [Uji(U
−1a)i + (aTU)iUij].

We use

FR
ijk = −(aTU)i(U

−1 ∂M

∂Re(aj)
U)ik(U

−1a)k,

F I
ijk = −(aTU)i(U

−1 ∂M

∂Im(aj)
U)ik(U

−1a)k

Also, in the case of 〈ψ†(x)ψ(x)〉 we obtain the following the derivatives in closed form

∂

∂Re[aj]
〈ψ†(x)ψ(y)〉 =

2d∑
i

G+
ijI1(λi) +

∑
i,k

F+
ijkI2(λi, λk) (2.26)

and

∂

∂Im[aj]
〈ψ†(x)ψ(y)〉 = i

∑
i

G−(ψ†ψ, i, j)I1(λi) + i
∑
i,k

F−(ψ†ψ, i, j, k)I2(λi, λk),

where

G+
ij = Uji(U

−1a∗)i + (aTU)iU
−1
i,j+d + (a∗TU)iU

−1
ij + Uj+d,i(U

−1a)i,

G−ij = Uji(U
−1a∗)i − (aTU)iUij+d − Uj+di(U−1a)i + (a∗TU)iUij

and

F+
ijk = −[(aTU)i(U

−1a∗)k + (a∗TU)i(U
−1a)k](U

−1 ∂M

∂Re(aj)
U)ik,

F−ijk = −[(aTU)i(U
−1a∗)k + (a∗TU)i(U

−1a)k](U
−1 ∂M

∂Im(aj)
U)ik

For the kinetic terms, for example limx→y
d

dRe[Vij ]
∂x∂y〈ψ†(x)ψ(y)〉 we just need to replace

the integrals of each form by their kinetic integrals, i.e. replace I2 by I2kin, see Appendix
C.

Now we have all the ingredients to compute the derivative of the energy.

2.3.2 Derivatives of the norm

In this subsection the derivative of the norm we use in eq.(2.2) is computed

∂

∂xb
〈V, a|V, a〉 =

∂〈V, a|
∂xb

|V, a〉+ 〈V, a|∂|V, a〉
∂xb

(2.27)
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so we need the vectors ∂|V,a〉
dxb

, which span the 4D dimensional tangent space T of the
manifold MGCTNS.

Starting from eq. (1.38) we integrate out the auxiliary field φ(x) and obtain

|V, a〉 ∝ exp

{∫
ddxddy

1

2
ψ†(x)aT (−∇2 + V )−1(x− y)aψ†(y)

}
|0〉. (2.28)

and in momentum space

|V, a〉 ∝ exp

{∫
ddp

(2π)d
1

2
ψ†pa

T
(
p2 + V

)−1
aψ†−p

}
|0〉. (2.29)

The state is not normalized. We set A(p) = p2 + V . Now the derivatives are of the form

∂|V, a〉
∂xb

=

∫
ddp

(2π)d
∂

∂xb
(aTA(p)−1a)ψ†pψ

†
−p|V, a〉 (2.30)

We will use the equality

aT
∂A−1

∂xb
a = −aTA−1 ∂A

∂xb
A−1a. (2.31)

In particular, we have

aT
∂A−1

∂Re[Vii]
a = −(aTA−1ei · eTi A−1a), (2.32)

aT
∂A−1

∂Im[Vii]
a = −i(aTA−1ei · eTi A−1a), (2.33)

∂aTA−1a

∂Re[aj]
= eTj A

−1a + aTA−1ej (2.34)

and
∂aTA−1a

∂Im[aj]
= i(eTj A

−1a + aTA−1ej), (2.35)

where ej is a unit vector with zeros at every component except for the j-th.
Again we need to compute the closed forms. Now we need to diagonalize the matrix A

with the transformation W , such that for example

∂

∂Re[Vii]
(aTA−1a) = −(aTW )(W

′−1A−1W )(W−1 ∂A

∂Re[Vii]
W )(W−1A−1W )(W−1a)

= −
∫

ddp

(2π)d
(aTW )k

1

p2 + κk
(W−1 ∂A

∂Re[Vii]
W )kl

1

p2 + κl
(W−1a)l.

Thus, using (2.19), we get

∂

∂Re[Vii]
〈V, a|V, a〉 =

∫
ddp

(2π)d
∂

∂Re[Vii]
(aTA−1a)〈ψ†pψ

†
−p〉+ conj .

= −
d∑
kl

(aTW )l(W
−1
li Wik)(W

−1a)k

2d∑
n

(a∗TU)n(U−1a∗)nI3(κk, κl, λn) + conj . (2.36)
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and

∂

∂Re[Vii]
〈V, a|V, a〉 =

∫
ddp

(2π)d
∂

∂Im[Vii]
(aTA−1a)〈ψ†pψ

†
−p〉+ conj .

= −i
d∑
kl

(aTW )l(W
−1
li Wik)(W

−1a)k

2d∑
n

(a∗TU)n(U−1a∗)nI3(κk, κl, λn) + conj . (2.37)

with the integral

I3(κk, κl, λn) =

∫
ddp

(2π)d
1

p2 + κk

1

p2 + κl

1

p2 + λn

being computed in Appendix C.
When derivating with respect to the parameters Re[aj] and Im[aj], we get

∂

∂Re[aj]
〈V, a|V, a〉 =

∫
ddp

(2π)d
∂

∂Re[aj]
(aTA−1a)〈ψ†pψ

†
−p〉+ conj .

= −
∑
k

∫
ddp

(2π)d
[Wjk(W

−1a)k + (aTW )kW
−1
kj ]

2d∑
n

(a∗TU)n(U−1a∗)nI2(κk, λn) + conj .(2.38)

and

∂

∂Im[aj]
〈V, a|V, a〉

∫
ddp

(2π)d
∂

∂Im[aj]
(aTA−1a)〈ψ†pψ

†
−p〉+ conj .

= −i
∑
k

∫
ddp

(2π)d
[Wjk(W

−1a)k + (aTW )kW
−1
kj ]

2d∑
n

(a∗TU)n(U−1a∗)nI2(κk, λn) + conj .(2.39)

with

I2(κi, λn) =

∫
ddp

(2π)d
1

p2 + κi

1

p2 + λn

computed in Appendix C.
At this point we have computed all the analytic expressions which allow us to implement

a numerical computation with the gradient descent algorithm. The only thing we miss is
the Hamiltonian of a model which will allow us to write down the energy as a function of
the parameters V and a. This last step will be done in the next Chapter.
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Chapter 3

Applications and results

In this chapter we use the analytical tools we developed in the previous chapter to check
the efficiency of the variational method. The goal is to find the lowest energy state within
the class of GCTNS, for a given Hamiltonian. As this is a first application of GCTNS, we
need to use a model which is integrable, such that we have a benchmark.

3.1 A simple model: Exact solution

The hamiltonian density of our model is

ĥ(x) =
d

dx
ψ†(x)

d

dx
ψ(x) + µψ†(x)ψ(x) + λ

[
ψ†(x)ψ†(x) + ψ(x)ψ(x)

]
(3.1)

and in Fourier space

hp =
(
p2 + µ

)
ψ†pψp + λ

(
ψ†pψ

†
−p + ψpψ−p

)
, (3.2)

where ψ and ψ† are the field annihilation and creation operators which fulfil the commu-
tation relations, and ψ|0〉 = 0. |0〉 is the Fock vacuum. [ψp, ψ

†
p′ ] = δpp′ . µ > 0 is the

chemical potential, such that the energy increases when increasing the particle number.
The last two terms create and annihilate pairs of bosons with opposite momenta, such that
the whole system obeys momentum conservation. λ can be in general positive or negative.
For small negative λ this hamiltonian can be an effective superconductivity hamiltonian.

We will work with this problem in one and two space dimensions d, in sections 3.4 and
3.5 respectively. The Hamiltonian of the model is connected to its density by

Ĥ =

∫ ∞
−∞

ddp

(2π)d
hp (3.3)

3.2 Understanding the motivation for the model

One main reason for taking the Hamiltonian of (3.1) is that we can compute the analytic
exact form of the ground state and the correlation functions. This will be useful to check
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the efficiency of our method.
To understand the physical motivation for this Hamiltonian better, we will compare it

with two different models and see under which conditions they coincide.
First we look at the Lieb-Liniger model [28]. The Hamiltonian density is

ĥ′ =
d

dx
ψ†(x)

d

dx
ψ(x)−mψ†ψ(x) + g

[
ψ†(x)ψ†(x)ψ(x)ψ(x)

]
(3.4)

which describes a one dimensional gas of massive bosons, with a pointlike interaction.
When we take the mean field approximation, the four point interaction ψ†(x)ψ†(x)ψ(x)ψ(x)
breaks down to all the possible combinations of two point interactions: 〈ψ†(x)ψ†(x)〉ψ(x)ψ(x),
ψ†(x)ψ†(x)〈ψ(x)ψ(x)〉 and 〈ψ†(x)ψ(x)〉ψ†(x)ψ(x). Thus, the mean field Hamiltonian of
eq.(3.4) can be mapped exactly to the Hamiltonian of our model (3.1), for a certain
µ = µ(m, g, 〈ψ†(x)ψ(x)〉) and λ = λ(m, g, 〈ψ(†)(x)ψ(†)(x)〉). In this case µ and λ are
not independent. However, we start from the hamiltonian density of eq. (3.1) without
assuming any dependence between the two constants.

The second model we will compare with is a relativistic model. We start with the
massive relativistic boson (Klein-Gordon) Hamiltonian

ĤKG =
1

2

∫
dx

[
π̂2 +

(
d

dx
φ̂

)2

+m2φ2

]
(3.5)

The field operators φ̂ and π can be written in terms of the Fock space operators we were
using throughout the report as

φ̂ =
1√
2Λ

(ψ + ψ†) (3.6)

π̂ =

√
Λ√
2

(ψ − ψ†). (3.7)

Now if we try to approximate the ground state with the GCTNS variational algorithm we
will see that the expectation values of the kinetic term is diverging, so for big momenta
the contribution of 〈p2φ2

p〉 is infinite, even in one dimension. The reason is that the term

contains 〈p2ψpψ−p〉 and 〈p2ψ†pψ
†
−p〉 terms, which when integrated are giving infinities. That

means that the algorithm will overcompensate for the high momenta region, without caring
about what would optimize the correlation functions in the low momenta regions. The
problem with that is that the region of interest is the lower momenta region, as the GCTNS
describes systems with small entanglement entropy and decaying correlations. Thus, the
fact that the algorithm will care only about the high momenta regions is overshadowing the
actual physics. We want the contribution of the high momenta to be supressed. Therefore
one can add a counterterm [29] of the form

1

Λ2

(
dπ̂

dx

)2

(3.8)
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which removes the divergencies and serves as a momentum cutoff. The resulting Hamilto-
nian is of the form

Ĥ ′KG =

∫ ∞
−∞

dx

[
d

dx
ψ†

d

dx
ψ + vΛψ

†ψ + uΛ(ψψ + ψ†ψ†)

]
(3.9)

with vΛ = m2+Λ2

2
and uΛ = m2−Λ2

4
.

The resulting relativistic, regularized hamiltonian is of the same form as the hamiltonian
of our model (3.1). So one can define a map between our parameters and the cutoff
dependent parameters of the Klein Gordon theory

µ =
Λ2 +m2

2
(3.10)

λ =
Λ2 −m2

4
. (3.11)

Now let us look into some special cases. If we take the mass very small m → 0 we get
µ = 2λ, so that would correspond to closing the gap in our model. Thus, there is an exact
mapping between a low energy theory close to the critical point and a massless relativistic
theory. Another extreme case is taking the cutoff Λ to infinity. In that case µ

λ
→ 1

2
, for

some finite mass. Thus, again this corresponds to the critical regime in our theory.

3.3 Exact Solution

In this section we will analyze the behaviour of our toy model (3.2) analytically. In the
next sections we compare our GCTNS results with the exact ones obtained here.

To proceed, we diagonalize the Hamiltonian to find the eigenenergies of the excitation
modes and the ground state energy. First we use the following Bogoliubov transformation

ψp = upbp + vpb
†
−p (3.12)

ψ†p = upbp + vpb
†
−p (3.13)

The canonical commutation relations give

|u2| − |v2| = 1

without loss of generality we can set up = coshφ and vp = sinhφ. We find that the
Hamiltonian is diagonal under the condition

upvp =
λ

(p2 + µ)
(up + vp) (3.14)

and using

sinh(2a) = 2 cosh(a) sinh(a)

cosh(2a) = cosh2(a) + sinh2(a)
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we obtain the useful relations

cosh2(a) + sinh2(a) =
(p2 + µ)√

(p2 + µ)2 − 4λ2

,

sinhφ · coshφ = − λ√
(p2 + µ)2 − 4λ2

,

coshφ =

√√√√ p2 + µ

2
√

(p2 + µ)2 − 4λ2

+
1

2

sinhφ = −
√√√√ p2 + µ

2
√

(p2 + µ)2 − 4λ2

− 1

2

In the new basis the Hamiltonian density writes

hp = ε(p)b†pbp + ε0(p) (3.15)

where the ground state energy density is given by

ε0(p) =
(
p2 + µ

)
v2
p + 2λupvp =

1

2

[
ε(p)−

(
p2 + µ

)]
(3.16)

and the dispersion relation by

ε(p) =

√
(p2 + µ)2 − 4λ2, (3.17)

which is depicted in Fig.3.1. ∆E = ε(0) =
√
µ2 − 4λ2 corresponds to the gap between the

ground state and the first excited state. Our theory is well defined only for 4λ2 < µ2. One
can see that in the limit where 4λ2 → µ2 the excitation gap is closing. Then our system
is close to the critical point and exhibits a critical behaviour. By design, with a GCTNS,
we can approximate a ground state of a gapped Hamiltonian, so we will choose our model
parameters such that we are far from that point. However, we will see that even close to
the critical point we can capture some features of the states.

The correlation function, in the basis which diagonalizes the Hamiltonian, takes the
form 〈

ψ†pψp
〉

= (up + vp)b
†
pbp + vp + upvp(bpb−p + b†pb

†
−p)

=
(p2 + µ)

ε(p)
b†pbp +

λ

ε(p)
(bpb−p + b†pb

†
−p) +

(
p2 + µ

2ε(p)
− 1

2

)
(3.18)

Thus, in the ground state of the new basis, the correlation function is〈
ψ†pψp

〉
=

(
p2 + µ

2ε(p)
− 1

2

)
(3.19)
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Figure 3.1: Dispersion relation of eq. (3.17) for µ = 1 and λ = 0.25 (orange),λ = 0.40
(green) and at the critical point λcrit = 0.50 (blue). We can see that at the critical point
the gap closes.

which for big p goes as
〈
ψ†pψp

〉
∝ 1

p4 . Thus, the density in real space is not UV diverging
in d ≤ 3.

In theories where the Hamiltonian includes terms with up to two creation/annihilation
operators the two point function is sufficient to describe the state. As seen in section 2.2
the correlation functions in momentum space 〈ψ†pψp〉D are given as polynomials of the form

A
(p2+B)n

with n = 1, 2 . . . 2D. We want to expand the exact correlation function in powers
of p, such that we can compare with our GCTNS results and compare up to which point
our approximate function could in pronciple coincide with the exact one.

The correlation function from eq.(3.19) can be written as

〈ψ†pψp〉 =
1

2

 1√
1− 4λ2

(p2+µ)2

− 1


We set x = 4λ2

(p2+µ)2 and use the expansion

(1− x)a =
∞∑
n

(
a

n

)
xn (3.20)

Thus, we obtain

〈ψ†pψp〉 =
1

2

(
1

2

4λ2

(p2 + µ)2
+

3

8

(
4λ2

(p2 + µ)2

)2

+
5

16

(
4λ2

(p2 + µ)2

)3

+
35

128

(
4λ2

(p2 + µ)2

)4

+O
(

4λ2

(p2 + µ)2

)5
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Figure 3.2: The correlation function in momentum space
〈
ψ†pψp

〉
for µ = 1 and λ = 0.25.

to

(3.22)

The series converges for 4λ2

(p2+µ)2 ≤ 1, thus in the non-critical regime. The series is not
converging anymore when the energy gap closes, so at the critical point.

Far from the critical point, for 4λ2 � (p2 + µ)2, the leading term of the correlation
function is

〈ψ†pψp〉 =
λ2

(p2 + µ)2
.

The bigger λ gets, the smaller the energy gap, the more terms in the expansion become
relevant. Only these terms will contribute to the numerical result, so only they will be
approximated.

3.4 GCTNS in 1d

Now that we understand the model and its exact analytic solution we will use the GCTNS
method to solve the problem variationally. As the Hamiltonian is quadratic in the creation
and annihilation operators, the correlation function describes the system as well as the
energy does. Thus, we could approximate either of those quantities by our variational state.
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In this report we did everything by optimizing w.r.t the energy, as for later generalizations
to different hamiltonians it is more helpful.

The first step in order to apply the variational method is to express the energy density
as the expectation value of our given Hamiltonian density

E = 〈V, a|h(x)|V, a〉 = 〈∂ψ
†(x)

∂x

∂ψ(x)

∂x
〉+ µ〈ψ†(x)ψ(x)〉+ λ

(
〈ψ†(x)ψ†(x)〉+ 〈ψ(x)ψ(x)〉

)
(3.23)

where we can compute the summands with the tools we developed in 2.2. We can start
from some general Gaussian state

|V, a〉 =

∫
Dφ exp

{∫
ddx(−1

2
)φ(x)(−∇2 + V )φ(x) + aφ(x)ψ†(x)

}
|0〉,

with some initial energy Einit > E0. One can show that we can always transform the
φ(x) vector by a unitary transformation, such that V is diagonal. Starting with some
generic diagonal, complex V matrix and some complex a vector one can iteratively change
this parameters in the variational method algorithm, given by eq.(2.2) and evolve towards
states with lower energy. The ingredients to compute the descent are given in sections
2.3.1 and 2.3.2.

Now we perform a brief check of how well our GCTNS method works. We choose µ = 1
and λ = 0.25. In this regime we are far from the critical point. In Fig. 3.3 the evolution of
the energy density and in Fig. 3.4 and the evolution of the parameters is shown. It is done
for the simple case where D = 2 and we get E0 = −0.03205936. To benchmark our result
we compute the lowest energy value exactly. Having the energy density in momentum
space (3.16) one can compute the energy density in real space for a translational invariant
system

ε0 =
1

L

+∞∑
−∞

ε0(p) =
1

π

∫ +∞

0

ε0(p)dp. (3.24)

The integral is convergent and for µ = 1 and λ = 0.25 we get ε0 = −0.03205936. Already
for such a low bond dimension we see that the results of the GCTNS are very good, we
have a relative error of |ε0−E0|

ε0
= 1.4 · 10−9. For higher bond dimension one expects the

results to improve. However, here the precision is already very good in D = 2.

Now we apply the same method to the case where µ = 1 and λ = 0.49 so we are close
to the critical point, which means that the energy gap from eq.(3.17) is about to close, i.e.
∆E → 0. The algorithm is still stable. We expect the approximation to be worse, than
far away from the critical point, see sections 1.1.2 and 3.4.1. The analytical value of the
ground state energy density now is ε0 = −0.1406884304, whereas the value we get with the
GCTNS method for D=2 is E0 = −0.1406846799. Now the relative error is clearly bigger,
namely |ε0−E0|

ε0
= 5.3 · 10−4. It is necessary to go to higher bond dimensions in order to

achieve higher precision. In Fig. 3.5 one can see that as we increase the bond dimension
the actual lowest energy value is approximated better.
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Figure 3.3: Energy descent in d=1 for bond dimension D=2(blue) and the exact ground
energy density value ε0 = −0.03205936 (red). The lowest energy density value we get is

E0 = −0.032059364. We have a relative error of |ε0−E0|
ε0

= 1.4 · 10−9.
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Figure 3.4: The evolution of the parameters V11(blue) and V22(green) on the left, and of the
parameters a1(blue) and a2(green) on the right. Here d = 1, D = 2, µ = 1 and λ = 0.25.
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Figure 3.5: Dependence of the relative error of the ground state energy |ε0−E0|
ε0

on the bond
dimension D, in the case where λ = 0.25 (blue) and λ = 0.49 (red). The approximation is
much better for the non critical case.
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(a) For λ = 0.25 and µ = 1
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(b) For λ = 0.49 and µ = 1.

Figure 3.6: The correlation function in momentum space is plotted for D = 1 (blue), D = 2
(green), D = 3 (black) and the exact value (red). The lines which are not visible overlap
with the exact function.
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Figure 3.7: Here the relative distance

√∫
dp|〈ψ†pψp〉D=2−〈ψ†pψp〉|2∫

dp|〈ψ†pψp〉|2
between the exact and the

variational correlation function 〈ψ†pψp〉D=2 is plotted, as a function of the bond dimension.
Far from the critical point with µ = 1 and λ = 0.25 (blue) and close to it with µ = 1 and
λ = 0.49 (red). The approximation is much better far away from the critical point.
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3.4.1 Comparison of correlation functions

In our model a two point correlation function is also sufficient to describe a state. Even
though we approximate with respect to the energy, we will see that the correlation func-
tion also gets approximated simultaneously. The reason is that these two methods, for
a quadratic Hamiltonian, are equivalent. In this subsection we will see how the GCTNS
correlation function is approximating the exact one and gain some intuition.

Lets suppose we run the program for D = 1, the simplest case. We can compute the
exact form of the correlation functions

〈ψ†pψp〉D=1 =
|a|4

|p2 + V |2 − |a|4
(3.25)

where V and a are now simply numbers. The analytic correlation function is given by
(3.21). If we take µ and λ such that we are not at the critical point, we know that the
correlation function is very well approximated by the first terms of the expansion,

〈ψ†pψp〉 =
λ2

(p2 + µ)2
+ 3

(
λ2

(p2 + µ)2

)2

+O

(
λ2

(p2 + µ)2

2
)
. (3.26)

The program optimizes V and a, such that the energy is minimal. This is equivallent to
pushing the algorithm to minimize the numerical difference between (3.25) and (3.26).

For example, after running the program for λ = 0.1 and µ = 1 we arrive at |a|2 =
0.0998 ' λ and |V | = 0.98 ' µ, thus

|a|4

|p2 + V |2 − |a|4
' λ2

(p2 + µ)2

As λ gets larger the second term of the expansion starts getting more important. Now
the program still tries to fix the parameters such that it compensates for the additional
contribution. The approximation is worse, as the 〈ψ†pψp〉D=1 function lacks terms with a
p−4 dependence. If we would go to higher bond dimensions, D = 2 we would have this
dependence, so we could again find the exact solution, where (3.26) coincides with the
〈ψ†pψp〉D=2. In Fig.3.6b it becomes clear that for µ = 1 and λ = 0.25 choosing D = 2 is
already sufficient. The closer we get to the critical point the more terms of the correlation
expansion become relevant and the higher we have to go in D.

The smaller the bond dimension the less parameters the program needs to optimize,
but we loose in precision. The fact that the variational method is that efficient already
in so low bond dimensions makes it a very promising tool, as it has one main advantage,
compared to the analytic solution: It could be used in principle also for non integrable
models.

3.5 GCTNS in 2 dimensions

When implementing exactly the same gradient descent method to GCTNS in 2 spacial
dimensions one encounters one main problem. The energy descent never converges, in
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contrast to what we had seen in the 1 dimensional case in Fig. 3.3. The energy keeps on
decreasing and with it the values of the parameters keep on alternating. To understand
this behaviour we look at the exact analytic results. The energy density in real space

ε0 =
1

4π2

∫ +∞

−∞

1

2

(√
(p2 + µ)2 − 4λ2 − (p2 + µ)

)
d2p

is diverging to −∞. Looking at the expansion of the integrand

ε0(p) = − λ2

(p2 + µ)
− λ4

(p2 + µ)3
+O

((
4λ2

(p2 + µ)2

)5
)
.

we see that integrating over p in d = 2 the first term is diverging logarithmically. Note
that in one dimension this was not the case.

Thus, the program is trying to approximate a state of infinite negative energy. This
does not mean necessarily that there is no ground state, but it definately means that we
cannot compare our GCTNS results with the analytic ones and that the programm will
never stop running.

We could change the algorithm and optimize the parameters with respect to the corre-
lation function. In the case of a quadratic Hamiltonian, the two point function contains all
the relevant physical information of the state. Thus, approximating the two point function
is the same as approximating the lowest energy. For more generic Hamiltonian with higher
order terms, the two point function is not enough to describe the state, we also need higher
order moments. Thus, in the more generic case one is forced to proceed by minimizing
the energy. In order to have a more generic tool, we will still optimize with respect to the
energy density. Therefore we need to find a way to circumvent the problem differently.

To proceed we need to gain some more insight in the form of divergencies of the GCTNS
energy E0.

3.5.1 Divergent terms of the GCTNS

When we compute the energy for the GCTNS

E = 〈V, a|h(x)|V, a〉 = 〈∂ψ
†(x)

∂x

∂ψ(x)

∂x
〉+ µ〈ψ†(x)ψ(x)〉+ λ

(
〈ψ†(x)ψ†(x)〉+ 〈ψ(x)ψ(x)〉

)
(3.27)

we realize that some of the terms diverge in 2 dimensions, other than in 1 dimension. For
example the closed formula for the last term is computed in 2.2

〈ψ†(x)ψ†(x)〉 =
2D∑
i

(a∗T · U)i(U
−1 · a∗)i

∫ Λ

0

ddp

(2π)d
1

p2 + λi
(3.28)

=
1

4π

2D∑
i

(a∗T · U)i(U
−1 · a∗)i[log(Λ2 + λi)−

1

4π
log(λi)] (3.29)
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where we introduced a cutoff, as the integral
∫∞

0
ddp

(2π)d
1

p2+λi
is diverging. Similarly, the

terms 〈ψ†(x)ψ†(x)〉 and ∂2〈ψ†(x)ψ(x)〉 also contain divergent parts. We now investigate
this divergent terms and quantify their divergence.

∂2〈ψ†(x)ψ(x)〉 = log Λ2[a2
1 + a2

2 + ...+ a2
D][a∗21 + a∗22 + ...+ a∗2D ] + finite

= log Λ2

D∑
i=1

(
(Re[ai])

2 − (Im[ai])
2
)2

+ (2Re[ai]Im[ai])
2 + finite (3.30)

and

〈ψ†(x)ψ†(x)〉+ 〈ψ(x)ψ(x)〉 = 2 log Λ2

D∑
i=1

(Re[ai])
2 − (Im[ai])

2 + finite . (3.31)

Thus, the divergent part of the energy is

f∞(a) = log Λ2

D∑
i=1

(
(Re[ai])

2 − (Im[ai])
2
)2

+ (2Re[ai]Im[ai])
2

+2λ
[
(Re[ai])

2 − (Im[ai])
2
]

(3.32)

We want to find the condition under which the divergent part is maximal, as it would
correspond to the lowest energy. Imposing f(a)

∂Re[a1]
= 0 and f(a)

∂Im[a1]
= 0 we arrive at the

conditions
D∑
i=1

ReaiImai = 0 (3.33)

and
D∑
i=1

(Re[ai])
2 − (Im[ai])

2 = −λ (3.34)

So two of the parameters are dependent. These constraints keep the state in
a manifold A where the energy is diverging maximally.

To get a better insight of what exactly is happening in this submanifold of states we
investigate in the case of bond dimension D = 1. The constraints take the simple form

Rea · Ima = 0 (3.35)

(Re[a])2 − (Im[a])2 = −λ (3.36)

so
a2 = −λ, (3.37)

with a ∈ R or a ∈ I .
The exact form of the correlation function in that case is

〈ψ†pψp〉D=1 =
|a|4

|p2 + V |2 − |a|4
→ λ2

|p2 + V |2 − λ2
(3.38)
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We see that it is very close to the form of the exact correlation function λ2

(p2+m)2 . Thus,
being in that manifold allows us to still approximate the state well enough, for V ' µ.
Now only one parameter is free.

On the other hand one can look at the form of the energy

E0(p) = ∂2〈ψ†pψp〉+ µ〈ψ†pψp〉+ λ
(
〈ψ†pψ

†
−p〉+ 〈ψpψ−p〉

)
= − λ2

|p2 + V |2 − λ2
(p2 + µ) +

λ2(2µ− V + V ∗)

|p2 + V |2 − λ2
(3.39)

As we realized in the case of the correlation function the program will optimize around
V ' µ such that

E0(p) ' − λ2

(p2 + µ)
(3.40)

which corresponds to the first term of the energy expansion, eq. (3.16).
In higher D again the constraints will fix the state at a point were the energy will

diverge logarithmically. At this point, it is important to notice, that the variational class
of GCTNS seems to be so good, that it can even capture the divergence of the actual
ground state.

3.5.2 Variational Method on non-divergent terms

It is obvious that to find the lowest energy one has to first maximize the term with the
biggest (negative) contribution. That is why we chose parameters which maximize the
diverging part of the tensor network energy. Being in this submanifold of states we ensure



46 3. Applications and results

that the diverging term is maximal. We found the elements of the submanifold analytically,
though one could also use numerical techniques. After being in the correct manifold we
apply the same techniques as we did in 1 dimension, namely we optimize the parameters
with a variational method.

The energy can be splitted in the finite and the infinite part

E = ER + E∞ (3.41)

So when computing ER with the GCTNS method, we keep only the finite parts of the

relations 〈∂ψ
†(x)
∂x

∂ψ(x)
∂x
〉, 〈ψ†(x)ψ(x)〉, 〈ψ†(x)ψ†(x)〉 and 〈ψ(x)ψ(x)〉. Again we optimize the

paramteres such that we get the mimimal ER
0 .

We can actually compare this with the finite part of the exact energy. We define εR(p)
nondiverging/renormalized part of the energy as

εR0 (p) = ε0(p) +
λ2

(p2 + µ)
(3.42)

which we can integrate and get an exact value. For example for µ = 1 and λ = 0.25 we
get

εR0 =

∫
d2p

(2π)2
εR0 = −0.00016630736 (3.43)

The program tries to approximate this εR0 energy. It optimizes the parameters in the
submanifold such that ER is minimal. We get ER

0 = −0.00016565273 with a relative error

of
ER

0 −εR0
εR0

= 0.0039. It can be improved if we take higher bond dimensions, in analogy with

the 1 dimensional case.
When looking at the resulting correlation function, Fig.3.9 and comparing it to the exact

correlation function from eq. (3.19), one can see that our tensor network approximation
is very good already for D = 2. The differernce between the exact and approximate two

point function is

√∫
d2p|〈ψ†pψp〉D=2−〈ψ†pψp〉|2∫

d2p|〈ψ†pψp〉|2
= 1.286128 · 10−6.
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Figure 3.9: In this graph the correlation function in momentum space is plotted. The
function we get with the final parameters with GCTNS (green) and the theoretical function
(red) overlap, such that they are almost indistinguishable.
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Discussion

In this report we tested the variational class of GCTNS on a simple, quasifree model, in one
and two dimensions. The results were very satisfying as the approximated ground state was
accurate and close to the exact ground state. We were able to see the exponential decay of
the correlation functions and approximate these sufficienlty well. Moreover, the GCTNS
expectation values inherit exactly the same infinities as the QFT. Thus, they are a good
variational Ansatz for ground states of gaussian Hamiltonians in one and two dimensions.

The variational class we used has some main advantages compared to other Ansätze in
QFTs. First, it goes beyond the classical solution, in contrast to a simple coherent state.
One main property is that the number of parameters is independent of the system size.
This makes it a very promising Ansatz for numerical simulations. Moreover, it is defined
in arbitrary dimensions, in contrast to the one dimensional cMPS Ansatz. Its efficiency
though has not yet been tested in d > 2.

To obtain the GCTNS we kept only a very simple form of V [ψ(x)] and a[ψ(x)], see eq.
(1.35). One simple generalization is to take a(0) 6= 0, which would lead to gaussian states
with 〈ψ0〉 6= 0, thus breaking the U(1) symmetry of the ground state.

Although we have shown the efficiency of this class of states in a simple model, one could
try out different Hamliltonians, which may be non-integrable, such as the Hamiltonian of
eq. (3.4), with quartic interactions. In that case the exact ground state is not Gaussian
anymore, but still we could find the lowest energy Gaussian approximation. By taking
different functions of V [ψ(x)] and a[ψ(x)], with higher order terms, one could create a
cTNS which goes beyond Gaussian states. However, computing expectation values in that
case is impossible, because of the form of the generating functional (1.30). Therefore one
has to keep the GCTNS Ansatz, but could add some perturbation.

The QTNS could also provide a natural continuum version of tensor network toy models
of the AdS/CFT correspondence, where scalar field theories on a fixed AdS background are
related to conformal field theories on the boundary. One could realize such conditions with
GCTNS with the physical field ψ living on the boundary of a two dimensional auxiliary
space, populated by the fields φ.

Moreover, many interesting questions are so far open. How do V and a encode topo-
logical order? Do cTNS generically obey the area law like their discrete counterparts? To
what extent does the bond field dimension D quantify entanglement for classes of cTNS?
Tackling these questions is an important goal for future work, to fully extend the success
of tensor networks from the lattice to the continuum.
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Appendices





Appendix A

Appendix: Tensor Network Notation

This is a small overview over the Tensor Network notation and the main Tensor operations.
For further understanding, one can read the following literature [5, 1]. Tensors are the
generalization of vectors and matrices. A d- dimensional vector can be considered as an
element of Cd, and an n × m dimensional matrix an element of Cn×m. Correspondingly
an rank-r tensor of dimensions d1 × d2 × ... × dr is an element of Cd1×d2×...×dr . In tensor
network notation a single tensor will be represented by a geometric shape with legs sticking
out of it, each corresponding to one index, like in these examples of a vector, a matrix and
a 3-rank tensor respectively:

k

l
m n

TTklmn=vj= j Amn= A nmv

The first operation we will consider is the tensor product, a generalization of the outer
product of vectors. The tensor product of A ∈ Cd1×d2×...×dr and B ∈ Cd1×d2×...×dn is

[A⊗B]i1,i2...ir,j1,j2,...js = Ai1,i2...ir ·Bj1,j2,...js ∈ (Cd1×...×dr ⊗ Cd1×...×dn) (A.1)

and is represented as

A Bx=A B

Given a tensor A, for which the xth and yth indices have identical dimensions (dx = dy),
the partial trace over these two dimensions is simply a joint summation over that index

[Trx,yA]i1,i2...ix−1,ix+1,..,iy−1,iy+1...ir =
dx∑
a

Ai1,i2...ix−1,a,ix+1,..,iy−1,a,iy+1...ir , (A.2)
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and is represented as

=Σ
i

i

i
A A Tr(AB)= A B

An essential tensor operation for tensor networks is the tensor contraction, correspond-
ing to a tensor product followed by a trace between indices of the two tensors,

BAk

l

m n

o

p

i
Σ
i
AlkmiBinop =

A.1 Singular Value Decomposition (SVD)

A key mathematical ingredient in numerical algorithms when dealing with Tensor Networks
is the Singular Value Decomposition (SVD), a factorization of a real or complex matrix.
Suppose A is an m×n matrix whose entries come from the field K, which is either the field
of real numbers or the field of complex numbers. Then the singular value decomposition
of A exists, and is a factorization of the form:

A = UΣV † (A.3)

where U is a m×m unitary matrix, V is a n×n unitary matrix, Σ a m×n diagonal matrix,
which entries are called singular values. A common convention is to list the singular values
in descending order. In this case, the diagonal matrix Σ is uniquely determined by A.

An operation which is often used when working with tensor networks is a truncated
SVD. In this case only the D column vectors of U and D row vectors of V † corresponding
to the D largest singular values Σ are calculated. The rest of the matrix is discarded, such
that

Ã = UDΣDV
†
D (A.4)

This can be much quicker and more economical than computing the exact SVD. The matrix
UD is thus m × D, ΣD is D × D diagonal, and V †D is D × n. Of course the truncated

A UD
ΣD VD

Figure A.1: Reconstruction of the matrix from a small number of singular values, truncated
SVD
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SVD is no longer an exact decomposition of the original matrix A, but the approximate
matrix Ã is in a very useful sense the closest approximation to A that can be achieved by
a matrix of rank D.

A.2 Tensor Networks

A Tensor Network is a diagram which tells us how to combine several tensors into a single
composite tensor. The rank of this overall tensor is given by the number of unmatched
tensor legs. Tensor networks can be contracted by beginning with a single tensor and

A A AA A A

(a) A zero rank tensor, just a number.

A A AA A A

i1 i2 i3 i4 i5 i6

(b) 6 rank tensor

Figure A.2: Examples of 1 dimensional Tensor networks. From the diagram one can read
how to contract the matrices(a) or tensors(b).

repeatedly contracting it against tensors one at a time. For example the composite tensor
of Fig.A.3b can be computed iteratively by contracting more and more tensors together,
as seen in Fig. A.4. It is important to note that the form/rank of the tensors in d ≥ 2
changes, while in d = 1 it stays the same. By applying this grouping iteratively we can
compute the final overall tensor.

While in the simple 1 dimensional case this is trivial, in 2 dimensions it is not. First,
there are different lattice structures, as triangular lattices, tree-like and MERA structures
[14]. Furthermore, one can notice that there are computationally cheaper ways to compute
the final tensor. Many different methods of contracting the tensors have been developed
over the years, as boundary MPS [30], corner transfer matrices [31] and Tensor coarse
graining [32]. In the latter we group neighboring tensors into new, higher rank tensors, see
Fig.A.5.
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(a) Triangular Lattice. (b) Square Lattice

Figure A.3: Examples of Tensor Networks in d = 2.

...

Figure A.4: Naive contraction of tensors to obtain overall tensor. After every contraction
the rank of the tensor gets bigger
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Figure A.5: Grouping tensors into new, higher rank tensors. Here the initial tensors were
4 rank, the resulting ones are 8 rank.
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Appendix B

Appendix: Path integral formulation

We can reformulate the cMPS state so that expectation values for the auxiliary system
are expressed as path integrals [23]. The motivation is to expand the cMPS to higher
dimensions, respecting the symmetries of the physical state in terms of symmetries of
an action for the auxiliary system. We will explain only the similarity between a tensor
contraction and a path integral over an auxiliary field in the simple case of a cMPS.

We start by writing a basis for the auxiliary Hilbert spaceHaux as |j〉aux with j = 1..., D.
We enlarge the space via second quantization, and introduce bosonic annihilation and
creation operators bj and b†j with [bj, b

†
i ] = δij. The Hilbert space of the enlarged auxiliary

system is that of the Fock space F(Haux), which is infinite dimensional. The connection
between the two spaces is made by identifying Haux with the single particle sector via
|j〉aux = b†j|Ω >aux. Now we make the following substitution

Q(x)→ Qi,j(x)b†jbi, (B.1)

R(x)→ Ri,j(x)b†jbi (B.2)

and obtain the action

S(x) =
∑
i,j

Qi,j(x)b†jbi ⊗ 1 +Ri,j(x)b†jbi ⊗ ψ†(x) (B.3)

We divide the space [0, L] in small intervals with uniform spacing ε and insert resolutions
of the identity

1 =
1

πD

∫ D∏
k

dφkdφ
∗
k|φk〉〈φk| (B.4)

where φk = exp[φkb
†
k − φ∗kbk]|Ω >aux is a field coherent bosonic state. Taking the limit

where ε→ 0 and assuming that only smooth variations of the auxiliary field φ contribute,
we obtain a path integral

|χ〉 =

∫
DφDφ∗ exp{

∫ L

0

(
1

2
φ†(x)

dφ

dx
(x) +

dφ∗

dx
(x)φ(x)

+φ†(x)Q(x)φ(x) + (φ†(x)R(x)φ(x))ψ†(x)dx}|Ω〉
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to

(B.6)

where φ = {φk}Dk=1 is a vector field. The formulation of the cMPS as a path integral is
guiding expression for the generalization to higher dimensional scenarios, which will be
described in section 1.3.
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Appendix: Integrals

The integrals computed here we need in order to implement the variational code, as we
will need to arrive at closed formulas. We only need integrals over momenta in one and
two spacial dimensions, as we restrict only to these cases in our example models.

C.1 One dimension

We compute the same integrals in 1 dimension

I1(λi) =

∫
dp

2π

1

p2 + λi
eip(x−y) =

1

2
√
λi

I1kin(λi) =

∫
dp

2π

p2

p2 + λi
eip(x−y)

= −
√
λi
2

(C.1)

I2(λi, λj) = lim
x→y

∫
ddp

(2π)d
1

p2 + λi

1

p2 + λj
eip(x−y) (C.2)

for x→ y we get

I2(λi 6= λj) = − 1

2(
√
λi +

√
λj)(
√
λi
√
λj)

(C.3)

I2(λi = λj) =
1

4
√
λi

3 (C.4)

I2kin(λi, λj) = lim
x→y

∫
d2p

(2π)d
p2

p2 + λi

1

p2 + λj
eip(x−y) (C.5)
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for x→ y we get

I2kin(λi 6= λj) =
1

2(
√
λi +

√
λj)

(C.6)

I2kin(λi = λj) =
1

4
√
λi

(C.7)

for Λ� λi

I2kin(λi 6= λj) =
1

2π
ln Λ− 1

4π

λi ln (λi)− λj ln (λj)

λi − λj
(C.8)

I2kin(λi = λj) =
1

4π
[2 log(Λ)− 1− log(λi)] (C.9)

C.2 Two dimensions

We will compute integrals of the form In =
∫

d2p
(2π)2Cn(p)eip(x−y). We are interested in

the case where x → y, because we use only equal point correlation functions. In our
computations we insert a cutoff Λ whenever the integral is divergent, to quantify the
divergence. In order to obtain the initial integral one has to take Λ→∞.

I1(λi) =

∫
d2p

(2π)2

1

p2 + λi
eip(x−y)

=

∫ Λ2

0

d(p2)

4π

1

p2 + λi

=
1

4π
log(Λ2 + λi)−

1

4π
log(λi) (C.10)

I1kin(λi) =

∫
d2p

(2π)2

p2

p2 + λi
eip(x−y)

=

∫ Λ2

0

dp2

4π

p2

p2 + λi

=
1

4π
[Λ2 − λiln(Λ2 + λi) + λiln(λi)] (C.11)

I2(λi, λj) = lim
x→y

∫
ddp

(2π)d
1

p2 + λi

1

p2 + λj
eip(x−y) (C.12)
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for x→ y we get

I2(λi 6= λj) =

∫ ∞
0

dp

2π

p

(p2 + λi)(p2 + λj)

=
1

4π

∫ ∞
0

dp2

(p2 + λi)(p2 + λj)

=
1

4π

∫ ∞
λi

du
1

u · (u− λi + λj)
, u = p2 + λi

=
1

4π(λi − λj)

∫ ∞
λi

du[
1

u
− 1

u− λi + λj
]

=
ln(λi/λj)

4π(λi − λj)
(C.13)

I2(λi = λj) =
1

4π

∫ ∞
λi

d(p2 + λi)

(p2 + λi)2

=
1

4πλi
(C.14)

I2kin(λi, λj) = lim
x→y

∫
d2p

(2π)d
p2

p2 + λi

1

p2 + λj
eip(x−y) (C.15)

for x→ y we get

I2kin(λi 6= λj) =

∫
d2p

(2π)2

p2

p2 + λi

1

p2 + λj

=

∫ Λ2

0

dp2

4π

p2

p2 + λi

1

p2 + λj

=
1

4π

λi ln (λi + Λ2)− λj ln (λj + Λ2)

λi − λj
− 1

4π

λi ln (λi)− λj ln (λj)

λi − λj
(C.16)

I2kin(λi = λj) =
1

4π

[
λi

λi + Λ2
+ log(Λ2 + λi)− 1− log(λi)

]
(C.17)

for Λ� λi

I2kin(λi 6= λj) =
1

2π
ln Λ− 1

4π

λi ln (λi)− λj ln (λj)

λi − λj
(C.18)

I2kin(λi = λj) =
1

4π
[2 log(Λ)− 1− log(λi)] (C.19)

I3(V, a, κi, κj, λn) =

∫ Λ

0

d2p

(2π)2

1

p2 + κi

1

p2 + κj

1

p2 + λn
(C.20)
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For κi 6= κj and Λ� λn

I3(V, a, κi, κj, λn) = − 1

4π

(κj − λn) lnκi + (λn − κi) lnκj + (κi − κj) lnλn
(κj − λn)(κi − λn)(κi − κj)

, (C.21)

and for κi = κj and Λ� λn

I3(V, a, κi = κj, λn) = − 1

4π

κi lnλn − κi lnκi + κi − λn
κi(κi − λn)2

(C.22)

and for λn = κi = κj and Λ� λn

I3(V, a, κi = κj = λn) = − 1

8πκ2
i

(C.23)
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