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Abstract

The central theme underlying this thesis is the quest for a better understanding of
elliptic quantum algebras, a mathematical structure that rose to prominence in the
late 1980s, following the (independent) discovery of quantum groups by Drinfel’d and
Jimbo. We begin by familiarizing the reader with some indispensable background
from Lie algebra theory before introducing the notion of (quantum) deformed alge-
bra. The theoretical framework of Hopf algebras, which offers the necessary tools to
grapple with these objects, will subsequently be outlined, and later on be extended
to quasi-Hopf algebras. We will then see how these deformed quantum algebras can
be generalized a so-called elliptic algebra, denoted by Aq,p(ĝlN ). We will define a
quantum determinant, and prove that it lies in the center of the algebra. Using these
results, Aq,p(ŝlN ) will emerge as a quotient algebra from the general linear case. Some
remarks how this research connects to the study of exactly solvable (’integrable’)
quantum systems round off the study, thus relating a mathematical theory to the
physically observable.

Die zentrale Motivation dieser Masterarbeit ist das bessere Verständnis elliptischer
Quantenalgebren, einer mathematischen Theorie, die zuerst in den späten 1980er
Jahren entwickelt wurde. Sie sind ein Beispiel für sogenannte Quantengruppen, die
vor mehr als 30 Jahren von Drinfel’d und Jimbo unabhängig voneinander entdeckt
wurden. Nach einem detaillierten Überblick über zentrale Ergebnisse aus der The-
orie von Lie-Algebren wird das Konzept der (Quanten-)Deformation von Algebren
vorgestellt. Wir präsentieren ein theoretisches Rahmenmodell - Hopf-und Quasi-
Hopf-Algebren - welches uns das nötige Rüstzeug an die Hand gibt, um diese Objekte
adequat zu beschreiben. Anschließend wird erläutert, wie deformierte Algebren zu el-
liptischen Algebren verallgemeinert werden können. Für diese Algebra, die gewöhnlich
mit Aq,p(ĝlN ) bezeichnet wird, definieren wir die sogenannte Quantendeterminante.
Wir zeigen, dass ebenjene Determinante im Zentrum der Algebra liegt, und nutzen
dies, um Aq,p(ŝlN ) als Quotientenalgebra zu definieren. Schließlich erläutere ich,
welche Verbindung zwischen diesen Resultaten und der Theorie exakt lösbarer (’in-
tegrabler’) Modelle besteht, um so eine Brücke zwischen mathematischen Objekten
und physikalischen Observablen zu schlagen.
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Chapter 1

Introduction

It has by now become a cliché to attribute the extraordinary scientific advances during the

last 200 years to the cross-fertilization between physical models and mathematical theorems.

Time and again did we witness how techniques developed to deal with a conundrum arising

from theoretical physics proved to be much richer from the mathematical point of view

than anyone could reasonably have assumed when they were first introduced. Conversely,

physicists generously serve themselves from the vast selection of mathematical tools in

their day-to-day work, and it is by no means a rare occurrence to find them venturing into

terrains that were though of as having no potential for real-world applications.

The present work falls squarely into this category. Quantum algebras were introduced and

developed, sometimes by one and the same person, for both physical and mathematical

reasons, and in many cases did a leap forward in one domain inspire new ideas in the

other. So while the focus of my thesis is definitely an algebraic one, and whether or not the

topics covered herein will prove ’useful’ for understanding the empirical world around us is

occasionally still a matter of speculation, physicists should not dismiss it prematurely. But

let me provide you with a little more background first.

1.1 Quantum algebras for pragmatists

Maybe the most important reason why physicists became interested in quantum algebras

can be found in the discovery of the quantum inverse scattering method by the so-called

Leningrad School in the late 1970s [7, 8, 9, 27]. Details will have to be omitted here, but the

general idea is as follows: In many physical models, symmetries can aptly be described by

algebraic structures, the most famous examples certainly coming from Lie algebras. Among

those, there is a special class known as integrable (aka exactly solvable) models that allow

for the construction of an algebraic transfer matrix. This object can be split in such a way

as to end up with N commuting operators, where N equals the degrees of freedom of the

system, while ensuring that one of them contains the Hamiltonian of the model.
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Let us look at an example, the Heisenberg spin-1
2

chain [2]. In this model, we examine a

closed string of equidistantly distributed spins (one-dimensional) that are occupy either the

’up’ or ’down’ state, with only nearest-neighbor interactions assumed between them. The

most general Hamiltonian for this model with N sites is given by

H =
N∑
i=1

(
jxσ

x
i σ

x
i+1 + jyσ

y
i σ

y
i+1 + jzσ

z
i σ

z
i+1

)
, (1.1)

where {jx, jy, jz} are coupling constants that might, for example, be the result of an external

magnetic field, and {σxi , σ
y
i , σ

z
i } are the Pauli matrices acting in the i-th Hilbert space:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
For ease of notation, we will also introduce

σ+ :=
1

2
(σx + iσy) , σ− :=

1

2
(σx − iσy)

In the easiest case, jx = jy = jz (isotropic or XXX model), and we find that [H, σ±i ] =

0 = [H, σzi ]. Owing to the well-known fact that the Pauli matrices are representations of

the sl2 algebra, given by commutation relations

[J+, J−] = 2Jz

[Jz, J±] = ±J±, (1.2)

the Hamiltonian is sl2 symmetric. The key insight of the Leningrad school [8] was that

these relations could alternative be encoded in what is known as the RLL relation:

R12L1L2 = L2L1R12 (1.3)

where L is called a (in this case: 2 × 2) Lax matrix with generators (1.2) as entries, and

R is a numerical matrix chosen such as to reproduce sl2, and satisfying the ’star triangle’

equation

R12R13R23 = R23R13R12, (1.4)

where lower indices indicate the tensor space on which these objects act. From the Lax

matrix, one constructs the transfer matrix, and then goes on to show that the Hamiltonian

is integrable. Lastly, eigenstates and eigenenergies of the Hamiltonian are calculated an-

alytically, using a suitable reference state [9]. This method is alternatively known as the

quantum inverse scattering method or algebraic Bethe ansatz, paying homage to an earlier,

exact solution of the Heisenberg spin chain found by Bethe [3].

This, to be sure, does not yet have anything to do with quantum algebras, but things

change quickly as soon as we consider anisotropic spin chains. The symmetry algebra of

the XXZ model (jx = jy 6= jz), for example, is the quantum deformed Uq(sl2) algebra, and
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the generic model (1.1) is related to the (elliptic) Sklyanin algebra [12, 13]. We will briefly

encounter both cases later on, but for now, let us stress two possible ways to generalize this

method: Either take a model with known symmetries and try to code the commutation

relations into something of the form (1.3). This, for example, has been done for the reduced

BCS model stemming from the study of superconductivity [4], whose su(2)-symmetry was

the key in proving its integrability [32]. Alternatively, we may ask ourselves: Based on

(1.4), what are the restrictions on the form of R, and furthermore, what algebras do they

give rise to? Could these algebras be useful in modeling quantum interactions? It is the

latter path that we will follow here, even though there is of course no guarantee that these

structures will be useful for physical models.

There are many other areas where quantum algebras have been employed to better under-

stand empirical phenomena, such as nuclear physics [39], but we shall not go into details

at this point.

1.2 Quantum algebras for aesthetics

One may, of course, put aside the question of whether or not any physical relevance is to

be found in such quantum algebras, and ask instead if their is anything intrinsic to them

that would make their study a worthwhile occupation for the mathematician?

One possible way to answer this question is to point out their intricate connection to many

different areas of mathematics, most importantly non-commutative geometry and knot

theory [41]. Another answer invites us to consider the fundament on which those quantum

algebras rest: Brick by brick, through loosened constraints or recombination, we move from

the theory of Lie algebras (which, in itself, is already a beautiful framework with some

surprising results) with finitely many generators to affine algebras with no such limitations.

We go on to enlarge this algebra to a universal enveloping algebra, where generators appear

not only in the form of monomes, but also in higher powers. Once this has been achieved,

we begin to deform the Lie bracket (i.e. the defining relations of the algebra) by means of a

generic, additional parameter. Although it is not at all self-evident, it turns out that there

already exists a framework to describe these deformed, affine algebras, which goes by the

name of Hopf algebras.

Among Hopf algebras, there is a subclass - the quasi-triangular ones - that have an extra,

and rather particular, feature: They contain an invertible object, known as the universal

R-Matrix, satisfying an algebraic equivalent of eq. (1.4). Moreover, this R-Matrix can be

explicitly constructed, as we will show for the example of Uq(ĝ). So rather than searching

solutions for the ’star-triangle’ equation (or generalizations thereof) by hand, we can now

directly find numerical R-Matrices by simply choosing suitable representations for R.

But it does not have to stop here: It is now known that one can deform said R-Matrices

in such a way as to yield yet another type of algebra, known as quantum elliptic algebras.
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They contain a second deformation parameter, and in fact no longer remain within the

boundaries laid out by Hopf algebras. What is most interesting about them is that these

algebras originated from statistical mechanics [5, 6]. That there would be both a systematic

way to construct them from ’simpler’ quantum affine algebras and to include them in a

unified framework[35] was beyond anyone’s imagination. How non-intuitive this finding is

will become more apparent when the notion of quasi-Hopf algebras is introduced later on.

Regardless of precisely which motivation will ultimately compel the reader to continue

beyond this point, then, we should provide her with a roadmap to avoid missing the bigger

picture.

1.3 Structure of the thesis

The next chapter is dedicated the fix some notation and lay the groundwork for more

advanced aspects. We therefore begin by presenting some familiar concepts from the study

of Lie algebras, without attempting to give an exhaustive overview. These tools will be

indispensable for later generalizations, such as affine and universally enveloping algebras.

We will also encounter our first example of a quantum algebra, denoted Uq(ĝlN), in this

chapter, and show it belongs to the much larger class of Hopf algebras.

The central equation in the study of quantum algebras is a matrix equality called the

Yang-Baxter equation (YBE) with spectral parameter, which may be written down as

R12(z/w)R13(z)R23(w) = R23(w)R13(z)R12(z/w) (1.5)

with subscripts again indicating the tensor spaces in which these operators act. Perhaps

the most fundamental insight, which can legitimately be viewed as having led to the birth

of quantum groups, was the realization that any matrix solution R(z) to (1.5) allows for the

construction of an algebra that by virtue of the YBE is non-empty. This construction will

be explained in detail, not only for Uq(ĝlN), but also for a second type of algebra we wish

to consider in chapter 3. This other type, called the quantum elliptic algebra Aq,p(ĝlN),

will be examined thoroughly, and its connection to Uq(ĝlN) made explicit.

At the core of the thesis, however, is chapter 4, where the reader will first be confronted

with quantum determinants. It is here were original contributions to the state of research

can be found, when we will demonstrate that this determinant generates the center of the

algebra. The last chapter summarizes our findings and provides an outlook into possible

avenues for future research.
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Chapter 2

A toolbox for quantum algebras

2.1 Basic notions: Lie algebras and their affine exten-

sions, universal enveloping algebras

It is rather unusual that a theoretical physicist would stumble across deformed or, worse

yet, dynamical algebras in her day-to-day work. By contrast, the simpler concept of Lie

algebras, upon which these more general models are ultimately built, is arguably one of

the most important pillars of modern physics. To keep reader dropout at a minimum, we

will review some of their properties that are relevant in this context without trying to give

an extensive presentation of vast subject that is Lie algebra theory. Subsequently, we will

also introduce (affine) Kac-Moody and universal enveloping algebras; their features will be

outlined only to the extent that they contribute to understanding the following sections.

This section was inspired by [40] and [51].

2.1.1 Lie algebras, roots and basis

Definition 2.1.1 A Lie algebra g is a (finite-dimensional) vector space over a field F

together with a Lie bracket [·, ·] : g× g→ g that is bilinear, antisymmetric and satisfies the

Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ g

We will always assume F = C in the following and not explicitly use the qualifier ’complex’.

Since it is a vector space, we can choose a basis B = {ta} and simply define the Lie bracket

on these generators. Bilinearity then ensures that it is determined for all elements of g. The

defining relation involve structure constant fabc that may equally be used to characterize

the algebra:

[ta, tb] = fabc t
c

The following subsets of Lie algebras will be useful for subsequent sections.

Definition 2.1.2 (i) A (Lie) subalgebra h of g is a Lie algebra with h ⊆ g that is

closed under the application of the Lie bracket, i.e. [x, y] ∈ h for x, y ∈ h.
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(ii) h ⊆ g is called an ideal iff [h, g] ⊆ h.

(iii) The center of an algebra is the set {x} of all x ∈ g such that [x, y] = 0 ∀y ∈ g.

Equipped with these definition, we introduce three particular classes of Lie algebras:

Definition 2.1.3 (i) A Lie algebra that is commutative, i.e. satisfies [x, y] = 0 ∀x, y ∈
g, is called abelian.

(ii) If g is not abelian and contains only the two ideals {0} and g, it is said to be simple.

(iii) A Lie algebra is called semisimple if {0} is its only abelian ideal

Remark. For Lie algebras, property (iii) can be shown to be equivalent to the statement

that a Lie algebra is semisimple if it is the direct sum of simple Lie algebras; however this

does not hold, for example, for so-called superalgebras [40].

From now on, we will restrict our attention to (complex) semisimple Lie algebras. For

these, there is an easy way to define what is called a Cartan subalgebra, which we will need

for later constructions.

Definition 2.1.4 For a semisimple Lie algebra g, an element x ∈ g is called semisimple

if there exists a set of generators {ta} such that [x, ta] ∝ ta. A Cartan subalgebra h ⊂ g

is a maximal abelian subalgebra such that all y ∈ h are semisimple.

’Maximal’ simply means that there is no abelian subalgebra h′ ) h with the same properties.

To avoid confusion later on, we remark that a simple Lie algebra is also semisimple, but

not vice versa.

Cartan basis

The Cartan subalgebra is commonly characterized by a (maximal) set of linearly inde-

pendent generators Hi, i = 1, . . . , r satisfying [Hi, Hj] = 0. As it turns out, all Cartan

subalgebras are related by automorphisms, so that the number r of Cartan generators is in

fact a property of the Lie algebra, and will be called the rank.

What is important for us here is that Cartan was able to show that for every simple Lie

algebra, there exists a basis with r commuting generators Hi, and (dim g − r) generators

Eα that are eigenvectors of the Hi under the action of the Lie bracket:

[Hi, Hj] = 0

[Hi, Eα] = αiEα

[Eα, Eβ] = NαβEα+β

[Eα, E−α] =
r∑
i=1

αiHi ,

Here, for the sake of completeness, we also included the exchange relations among the Eα.

Nαβ will depend on the exact type of Lie algebra under investigation. Let α := (α1, . . . , αr)

6



be the vector in Rr formed from all eigenvalues to the Cartan generators Hi, then α is what

is known as the root associated to the generator Eα. More on this below.

Example. A Cartan-Weyl basis spanning the special linear Lie algebra sl2 is given by

three generators H,E and F and the commutation relations [H,E] = 2E, [H,F ] = −2F

and [E,F ] = H. The smallest non-trivial representation (more on this later) is given by

setting

E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
.

with the Lie bracket defined as the standard commutator of matrices, [X, Y ] = XY − Y X.

Root systems

Let us extend this already long list of definitions by yet a few more entries. Time and again,

we will use the concept of roots to cast light on more intriguing algebras. Here is how to

do it:

Definition 2.1.5 Consider an element λ ∈ h∗ in the dual space of the Cartan subalgebra

h ⊂ g, which is a linear functional on h. Define a subspace gλ ⊂ g by

gλ := {X ∈ g : [H,X] = λ(H)X for all H ∈ h}. (2.1)

If λ 6= 0 and gλ is nonzero, we call λ a root, with gλ being its corresponding root space.

The dimension of gλ is called the multiplicity of λ. Finally, the set of all λ is called a

root system and will be referred to through ∆, where dim(∆) = dim(h).

From definition 2.1.4, we can easily see that g0 = h. Furthermore, it follows from the

definition of the root space that g can be written as a direct sum:

g = h⊕
⊕
λ∈∆

gλ

None of this might seem spectacular. But as it turns out, root systems are not just an

interesting property of (semisimple) Lie algebras; they provide an elegant way to fully

classify them. How so?

The key insight is that we can equip the root system with an Euclidean structure, that is,

there exists a unique inner product (·|·) (symmetric and bilinear) on the roots [40]. This

inner product, in turn, is used to generate the Cartan matrix, which is the building block

for Dynkin diagrams - a graphical representation of the root system that allows to judge

if two Lie algebras are isomorphic. Given that we will only be interested in a very special

class of Lie algebras (mostly of the general linear and special linear variety), we will refrain

from explicitly constructing the geometric structure and simply state the major results.
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Proposition 2.1.6 Let {λ1, . . . , λr} be a basis of the root system ∆. Any λ ∈ ∆ can be

written as λ =
∑r aiλi, and we call this root

(i) positive if the first non-vanishing coefficient in the sum is positive; one writes λ > 0,

(ii) negative if the first non-vanishing coefficient is negative; we write λ < 0.

(iii) We can define a lexicographical ordering on ∆: For λ, γ ∈ ∆, λ > γ if λ − γ is

positive.

The subsystem of positive (negative) roots will be labeled ∆+ (∆−). Finally, there exists

a subset ∆0 ⊂ ∆+ called a simple root system, which consists of all positive roots that

cannot be written as a linear combination of other positive roots. The number of simple

roots corresponds to the rank of the algebra.

Once we have an ordering and established the notion of a simple root system, we should

take a closer look at its Euclidean structure. To this end, we first introduce the Killing form

κ : g × g → C, which is characterized by the following properties (the object c appearing

here is called a central extension, as it commutes with all generators):

� Symmetry: κ(x, y) = κ(y, x) for all x, y ∈ gc := gL ⊕ Cc

� Bilinearity: κ(x+ λy, z) = κ(x, z) + λκ(y, z) for x, y, z ∈ gc and λ ∈ C

� Invariance: κ(x, [y, z]) = κ([x, y], z)

For the case of a simple, finite Lie algebra, it is an established fact that

κ(x, y) = tr(adx ◦ ady)

where adx(·) = [x, ·] is the adjoint map.

The Killing form is important to define a proper inner product, given that it is unique up

to a multiplicative constant. We set (α|β) := κ(Hα, Hβ) for any two roots α and β and use

this definition to introduce

Definition 2.1.7 Given a simple root system ∆0 = {λ1, . . . , λr}, the Cartan matrix is

the r × r matrix A with entries

Aij = 2
(λi|λj)
(λj|λj)

.

It has the following properties:

(i) Aii = 2 and Aij = 0⇔ Aji = 0.

(ii) For i 6= j, Aij are negative integers (unless Aij = 0⇔ Aji = 0)
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(iii) Any Cartan matrix can be symmetrized, that is, there exists a set of relatively coprime

integers (satisfying diAij = djAji) that give rise to Asym
ij = diAij. The symmetrized

matrix thus obtained is positive-definite.

One can in fact show that the entries Aij can only assume values in {2, 0,−1,−2,−3} [61].

Example. For the special linear Lie algebra AN−1 = slN (which has dimension N2−1 and

rank N − 1), we can write down the root system as ∆ = {εi − εj}, where 1 ≤ i 6= j ≤ N

and (εi|εj) = δij. The positive roots are those for which j > i, and the simple root system

is usually written as α1 = ε1− ε2, . . . , αN−1 = εN−1− εN . Starting with the latter, it is easy

to determine the Cartan matrix:

A =



2 −1 0 . . . 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . . −1

0 . . . 0 −1 2


As promised earlier one, we will now take the Cartan matrix to construct the Dynkin di-

agrams, which is an intuitively appealing way to classify simple Lie algebras (and hence

semisimple Lie algebras, which are nothing but the direct sum of simple ones). The algo-

rithm goes as follows:

� For every simple root, draw a circle like this:

� Simple roots are connected by lines depending one the angle between them. More

precisely, define cos2 Θij : =
Aij ·Aji

4
=

(αi|αj)2
(αi|αi)(αj |αj) , and draw 0, 1, 2 or 3 lines between

the roots according to the following scheme:

cos2(Θij) 0 1/4 1/2 3/4
Θij 90◦ 60◦ 45◦ 30◦

Number of lines 0 1 2 3

� If there is more than one line between two simple roots, we draw an arrow pointing

from the longer to the shorter one, where the length of a root is obviously determined

by the scalar product (·|·).

Even though we will not need the full classification scheme to proceed, it is worth pointing

out that Lie algebras fall in five different categories: Special unitary (sl(N)), two types of

special orthogonal (so(2N) and so(2N + 1)), symplectic (sp(2N)) and a number of isolated

examples know as G2, F4, E6, E7 and E8.

Example. The Dynkin diagram for AN looks deceivingly simple:
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α1 α2 αN−1

A bit more involved is the Dynkin diagram for the special orthogonal Lie algebra DN ∼=
so(2N):

α1 α2 αN−2
αN−1

αN

This would be a remarkable discovery in its own right, but the usefulness of these diagrams

runs even deeper. Spoiler alert: Modifying them just a little bit (talk about extended Dynkin

diagrams) will be enough to capture the properties of affine Lie algebras, an ’infinite’ version

of ordinary Lie algebras that will be introduced below.

Representation theory: Some remarks

Up to now, all that was said applied to abstracts elements of an algebra. By contrast, in

physics, we are often interested in the linear action of a group on elements of a vector space.

Hence, representations of Lie algebras are of vital interest for any physicist. There is no

need to examine the nuances of representation theory1, but a few remarks are in place.

Definition 2.1.8 Let g be a Lie algebra and V a (finite) vector space. A Lie algebra

homomorphism π : g→ gl(V ) is called a (finite-dimensional) representation of g. If π is

injective, the representation is called faithful.

For anyone who came to know Lie algebras mainly as the underlying structure of certain

classes of matrices (traceless, symplectic etc), this might seem tantamount to breaking a

butterfly on a wheel: Are we trying to represent matrices through matrices? There are

several ways to answer this question; for our purposes, one is especially relevant: We will

usually define an algebra through abstract commutation relations without any reference

to matrices, and it is here where the grain of truth contained in the old (and probably

apocryphal) adage ’No calculation without representation’ becomes apparent.

Definition 2.1.9 Let g, V and π be as before. A subspace W ⊂ V is called invariant if

π(x)w ∈ W for all w ∈ W,x ∈ g. If a representation has no non-trivial subspaces (invariant

subspaces other than {0} and V ), it is called irreducible

Example. Given an element X of a Lie algebra g, one defines ad: g → gl(g) by setting

ad(X)Y = [X, Y ]. This is called the adjoint representation.

1The interested reader can find those, for example, in [60]
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Definition 2.1.10 For a (complex) representation π : g → gl(V ), the subspace Vλ given

by

Vλ := {v ∈ V |∀H ∈ h , π(H)v = λ(H)v} (2.2)

where h is the Cartan subalgebra of a semisimple Lie algebra g, and λ is a linear functional

on h, is called the weight space of V associated to the weight λ. If the weight space is

non-zero, an element v ∈ Vλ is called a weight vector. Because we are looking at the

Cartan subalgebra, v is a simultaneous eigenvector for the action of elements from h with

eigenvalues given by the elements of λ.

The attentive reader might have already noticed a striking similarity with the definition of

root spaces and roots (cf. eq. 2.1). In fact, if we look at the special case of the adjoint rep-

resentation, non-zero weights are the roots previously introduced. This connection allows

us to define what is known as a fundamental weight, which we need later to understand the

structure of elliptic algebras.

Definition 2.1.11 Let ∆0 be the set of simple roots on g, and define the coroot associated

to2 α ∈ ∆0 by

Hα :=
2

(α|α)
α.

The fundamental weights ω1, ω2, . . . are a basis of a subspace h0 ⊂ h dual to the set of

coroots obtained from the simple roots of g, i.e. they satisfy

2
(ωi|αj)
αj|αj)

= δij.

Here, αj ∈ ∆0, and (·|·) is the inner product we already encountered multiple times before.

For the rest of the thesis, we will often use curvilinear letters (such asR) to refer to abstract

algebraic objects, and regular font (or an expression involving the representation map, as

in π(R)) for their concrete representations. We hope this will help to avoid unnecessary

confusion.

Serre-Chevalley basis

With all this machinery, we should now revisit the notion of a basis again. As we saw

before, the Cartan-Weyl basis is intuitively appealing because of its explicitness, but it is

not the only type of basis used in actual calculations. Nor is it necessarily the most effective

one - as we shall see later on, when dealing with an infinite number of generators, there

are more elegant ways to go about one’s business. The leading contender bears the name

Serre-Chevalley basis, and takes the Cartan matrix as its point of origin.

2In fact, this definition is valid not just for simple, but for any kind of root.
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Definition 2.1.12 Let g be a simple Lie algebra and h = {h1, . . . , hr} its Cartan subalge-

bra. Denote the Cartan matrix by (Aij), and let ∆0 = {α1, . . . , αr} be a simple root system

with corresponding generators {ei}, {fi}. The Serre-Chevalley basis is defined by the

following relations between the 3r generators:

[hi, hj] = 0

[hi, ej] = Aijej

[hi, fj] = −Aijfj
[ei, fj] = δijhi

In addition, we have the Serre relations

(ad ei)
1−Aij ej = 0 (ad fi)

1−Aij fj = 0, (2.3)

where (ad ei)(ej) = [ei, ej]. They should be understood as a way to generate the additional

elements necessary to form a basis.

Remark. For the simple generators, the difference between Cartan-Weyl and Serre-

Chevalley is just a different normalization:

hi =
2

(αi|αi)
Hαi , [ei, fi] = hi

Note how we use caps with the root as a subscript for Cartan-Weyl, but lower case letters

and numerical indices for Serre-Chevalley.

Example. For sl2, we see no new structures (compared to Cartan-Weyl). Scaling it up by

one dimension to sl3, however, we get a first set of non-trivial Serre relations:

[e1, [e1, e2]] = [e2, [e2, e1]] = [f1, [f1, f2]] = [f2, [f2, f1]] = 0

There is visibly some redundancy in here, only two of them provide new information: In

particular, they tell us that [e1, e2] and [f1, f2] are nonzero, so that we get 3 × 2 + 2 = 8

generators in total (which is also the dimension of sl3, as it should be).

The advantage of the Serre-Chevalley presentation will become obvious in the next sec-

tion(s).

2.1.2 (Affine) Kac-Moody and universal enveloping algebras

Look back at the definition of the Cartan matrix in (2.1.7). Viewed in isolation, the

requirements for it seem to come out of the blue, and one might well wonder what happens

if these conditions are relaxed a bit. What, for example, happens if we drop the part about

the symmetrized matrix having to be positive-definite? It turns out that this gives us

access to a much larger class of algebras, called Kac-Moody algebras after their discoverers.

Kac-Moody algebras are labeled finite, affine and indefinite, depending on the form of the

Cartan matrix, and we will henceforth only consider the affine case.
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Definition 2.1.13 Let (Aij) be a complex (r + 1)× (r + 1) matrix of rank r subject to the

following conditions:

� All diagonal entries Aii = 2.

� The off-diagonal-entries are negative integers, with the exception of Aij = 0↔ Aji = 0

� The matrix is symmetrizable, and the symmetrized matrix is positive-semidefinite.

The algebra built from this matrix (cf. the Serre-Chevalley presentation) is called an affine

Kac-Moody algebra.

This might not look like a revolutionary leap, but in fact, the implications are profound.

Most importantly, algebras obtained through this procedure are no longer finite (they pos-

sess infinitely many generators), as we shall see below. What’s more, having studied finite

Lie algebras and their classification through Dynkin diagrams, we can carry over a lot of

the insights obtained in those simpler cases.

In practice, we will be interested in affine Kac-Moody algebras obtained from a Lie algebra

g, which we will denote by ĝ. Starting from the Cartan matrix of a simple Lie algebra,

the construction of extended Cartan matrix is by no means arbitrary, but instead follows a

clear trajectory.

Recall that every positive root α of a simple Lie algebra can be written as a linear combi-

nation of simple roots, i.e. α =
∑
aiαi for αi ∈ ∆0. The corresponding sum hα : =

∑
ai

is called the height of the root, and there exists a unique root −α0 =
∑
biαi such that

α0 has maximal height [40]. The extended Cartan matrix is built from the root system

∆̂0 = ∆0 ∪ {α0}. It satisfies the requirements listed in (2.1.13), and is thus an affine

Kac-Moody algebra.

Unsurprisingly, another concept also carries over to the affine case: Just as there is an

extended Cartan matrix, so do we have extended Dynkin diagrams. They work very much

in the same way, the only difference being that we can now have up to four lines connecting

two dots (i.e. when AijAji = 4).

Example. The Kac-Moody algebras ŝl2 and ŝl3 are encapsulated in the following matrices

(the last row and column correspond to the extension by the highest root):(
2 −2
−2 2

)
and

 2 −1 −1
−1 2 −1
−1 −1 2

 (2.4)

Instead of the hat notation, you will also find them referred to as A
(1)
1 and A

(1)
2 , respectively3.

They have the following Dynkin diagrams:

3This notation is to be preferred when it comes to classifying affine Lie algebras. The letter and
subscripts stem from the classification of simple Lie algebras, and the superscript indicates that there are
other matrices of the same rank satisfying the condition (2.1.13). Our construction leads to untwisted affine
algebras, while we will not touch upon the so-called twisted affine algebras.
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α0 α1

α1

α0

α2

Figure 2.1: The extended Dynkin diagrams of ŝl2 and ŝl3, respectively.

Let us now show how a Cartan matrix such (2.4) can lead to an infinite number of generators

by studying the Serre relations (2.3), turning the implicit Serre-Chevalley formulation into

the explicit Cartan-Weyl presentation. In order to be able to graphically display the result,

we will do so for the affine algebra ŝl2.

Example. The 2×3 generators associated to the two simple roots α0 and α1 will be called

ei ∼ Eαi , fi ∼ Fαi and hi, where i = 0, 1. From the Serre relations (2.3), we find that

(focusing only on the positive part here)

[e0, [e0, [e0, e1]]] = [e1, [e1, [e1, e0]]] = 0.

The two simple roots will henceforth be denoted by α0 = δ − α and α1 = α, where δ is

sometimes called the imaginary direction, stemming from the labeling of roots of the form

nδ as imaginary4. We remind the reader that whenever [Eα, Eβ] 6= 0, then α + β is a

root. Since the commutator associated to α0 and α1 satisfies [Eδ−α, Eα] 6= 0, we know that

α0 + α1 = δ ∼ Eδ is a root. We continue:

� E2δ−α := [Eδ−α, [Eδ−α, Eα]] 6= 0 ⇒ 2α0 + α1 = 2δ − α is a root

� Eδ+α := [Eα, [Eδ−α, Eα]] 6= 0 ⇒ δ + α is root

However, not all commutators are nonzero:

� [Eδ−α, E2δ−α] = [Eδ−α, [Eδ−α, [Eδ−α, Eα]]] = 0 ⇒ 3δ − 2α is not a root

� [Eα, Eδ+α] = [Eα, [Eα, [Eα, Eδ−α]]] = 0 ⇒ δ + 2α is not a root

By iterating this algorithm, one finds that the root system of ŝl2 has the form

∆ = {mδ ± α|m ∈ Z} ∪ {mδ|m ∈ Z \ {0}},

which can also be depicted graphically as seen in fig. 2.2.

4In fact, a root α is simply called imaginary if the scalar product (α|α) = 0, an real if said product is
strictly positive, i.e. non-degenerate.
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α

δ − α δ

2δ

3δ

2δ − α

3δ − α

δ + α

2δ + α

3δ + α

Figure 2.2: Construction of the (infinite) set of roots for ŝl2. The algebra is said to be of
finite growth, as for each level n ∼ nδ(±α), the number of generators varies as a power of
of |n|.

Digression: A formal look at affine Kac-Moody algebras

Constructing affine algebras from the Serre-Chevalley basis is a very practical approach for

the ’quantization’ procedures we will introduce shortly hereafter. Nevertheless, it will also

be helpful, indeed necessary, to formalize the concept a bit. Later on, when we roll out the

Drinfel’d twistors, the purpose of this detour will become clearer. The approach relies on

extensions of loop algebras, and provides an equivalent way to set up the algebra.

Definition 2.1.14 Let g be a (complex, semisimple) Lie algebra with generators ta, a =

1, . . . , dim g with the usual exchange relations

[ta, tb] = fabc t
c ,

where we choose a basis in which the structure constants fabc are totally antisymmetric (this

is always possible). Let z ∈ S1 be a complex variable on the unit circle, and consider the

ring of Laurent polynomials C[z, z−1] with elements
∑

Z ckz
k. The loop algebra gL of g is

the tensor product

gL = g⊗ C[z, z−1]

with natural basis T am := zm ⊗ T a,m ∈ Z and exchange relations

[T am, T
b
n] = fabc T

c
m+n.

Moreover, it satisfies the Jacobi identity

[T ak , [T
b
m, T

c
n]] + [T bm, [T

c
n, T

a
k ]] + [T cn, [T

a
k , T

b
m]] = 0.
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Turning g into a loop algebra, however, will not be enough. In fact, going back to our

affine Cartan matrix (def. 2.1.13), we can define what one calls dual Coxeter labels α∨i ,

which are the entries of a (right) eigenvector of the Cartan matrix with eigenvalue 0, i.e.

0 =
∑r

j=1A
ijα∨i . Let furthermore {hi} be a basis of the Cartan subalgebra of g and set

c :=
∑

j a
∨
j hj. Evidently, [c, hi] = 0 for all generators of the Cartan subalgebra, and we also

find

[c, ei] =
∑
j

a∨j [hj, ei] =
∑
j

a∨j Ajiei = 0 [c, fi] = −
∑
j

a∨j Ajifi = 0

Since every other generator is defined by iteration from the Serre-Chevalley triplet {ei, fi, hi},
we can conclude [c, ĝ] = 0, which means that c is in the center of the affine algebra ĝ. It is

therefore called the central element.

But such an element is not yet present in the loop algebra gL, so we will have to introduce it

by hand. Generally speaking, one can ask: Are there any non-trivial possibilities to deform

the Lie bracket such as to obtain

[T am, T
b
n] = fabc T cm+n + ω(T am, T

b
n) c

by introducing an additional generator c into the exchange relations? The answer is yes,

and if we want c to lie in the center of the algebra (which makes it a central extension), the

Jacobi identity imposes tight constraints on the bilinear form ω(·, ·). Up to a multiplicative

constant, the solution is unique, and has been shown [61] to be of the form

[T am, T
b
n] = fabc T

c
m+n +mδm+n,0 κ(ta, tb)c, (2.5)

with κ(·, ·) the Killing form, and obviously [c, T am] = 0 by definition.

However, this creates a problem: As a direct consequence of the commutation relation (2.5),

any element in the centrally extended loop algebra gc := g
⊕

Cc can be written as the Lie

bracket of two elements x, y ∈ gc; we have indeed [gc, gc] = gc. But then, the invariance

condition tells us that

κ([x, y], c) = κ(x, [y, c]︸︷︷︸
=0

) = 0.

In other words, there exists a non-trivial element - the central element c - whose Killing form

with all other elements in gc evaluates to zero: The Killing form is degenerate! Luckily,

there is a remedy to it, which consists in adding a second extension. This generator is

called the derivation5 d, which, as per requirement, commutes with c, and also satisfies

[d, T am] = mT am. If you recall the definition of T am, you will see that d, in a sense, measures

5For the interested reader, we note that d can be represented by z d
dz .
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the power of the complex variable z in the same way an ordinary derivative acts on a

monomial. The complete, affine Kac-Moody algebra is thus given by

ĝ = (g⊗ C[z, z−1])⊕ Cc⊕ Cd,

and, because the derivation never appears on the right-hand side of any Lie bracket, we

have [ĝ, ĝ] = gc. Consequentially, the Killing form becomes non-degenerate, and we say

that the derived algebra is smaller than ĝ itself.

We are just one concept short of moving away from the ’classical’ case and considering

quantum algebras. This concept is the universal enveloping algebra.

Definition 2.1.15 Let g be a Lie (or Kac-Moody) algebra of dimension N . Denote by

g⊗ := C
⊕

g
⊕

(g⊗ g)
⊕

. . . the tensor algebra over g, and consider an ideal I of g⊗ that

is generated by [x, y]−(x⊗y−y⊗x), where x, y ∈ g. The universal enveloping algebra

U(g) is defined as the quotient g⊗/I, and its basis is given by the Poincaré-Birkhoff-Witt

theorem as

bi11 . . . b
iN
N with i1, . . . , iN ≥ 0,

where {bj} is a basis of g.

Less formally speaking, the universal enveloping algebra is the largest algebra you get

when you try to embed g into an associative algebra A such that there is a one-to-one

correspondence between the abstract Lie bracket [·, ·] and the commutator in A. In the

next section, we will see that we can naturally define what is called a co-product on U(g),

and thus equip it with the structure of a Hopf algebra.

2.2 Quantum deformations

Having learned about these algebraic notion, we can go one step further and investigate

a first example of a deformed quantum algebra. But first, a word of warning: Although

these structures are canonically referred to as quantum groups6, this does not mean they

play the same role in quantum field theories as do classical groups in classical field theories.

It is only in a formal sense that the deformation of an algebra by a parameter q can be

understood as a ’quantization’ procedure, but we will not go into detail here [59].

What we wish to construct now is a quantum universal enveloping affine Kac-Moody alge-

bra, which we will denote by Uq(ĝ). Because that is an awfully long name, we will just call

it quantum affine algebra from now on.

6The term ’quantum group’ is bound to create confusion. Not only is the ’group’ part of it misleading,
but even the literature has not settled for a generally accepted and non-ambiguous meaning. What is
usually meant by quantum groups are quasi-triangular Hopf algebras (as introduced below), and we will
stick to this convention.
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Definition 2.2.1 Let C[q] be the ring of rational functions in the indeterminate q. The

quantum affine algebra Uq(ŝlN) is defined as the unital algebra over C[q] with generators

k±i , ei and fi, where 0 ≤ i ≤ r (corresponding to the number of simple roots), subject to the

exchange relations[
k±i , k

±
j

]
= 0

k±i ej = q±A
sym
ij ejk

±
i

k+
i k
−
i = k−i k

+
i = 1

k±i fj = q∓A
sym
ij fjk

±
i

[ei, fj] = δij
k+
i − k−i
q − q−1

.

For i 6= j, we have two more relations (called q-Serre relations), namely

(adqei)
1−Aij(ej) = 0 (adqfi)

1−Aij(fj) = 0. (2.6)

Again, the Cartan matrix and its symmetrized cousin, (Aij) and (Asym
ij ), appear, and we

introduced the q-adjoint (adqei)(ej) = eiej − qA
sym
ij ejei. These relations can be understood as

the q-deformed equivalent of the Serre relations7 (2.3).

To touch base with earlier results, we should remark here that by writing k±i → q±hi

and taking the ’classical’ limit q → 1, we recover the algebra ĝ in the Serre-Chevalley

presentation (2.1.12). But we should be cautious here; even though we use the same

expressions for the generators of Uq(ĝ) and ĝ, they are manifestly not the same.

2.2.1 Hopf structure for Uq(ĝ)

The algebraic structure of the just-defined object is hardly in plain sight. As it turns out,

the proper way to classify it is through so-called Hopf algebras. What is hidden behind this

name?

Definition 2.2.2 Given a unital associative algebra A over C, we equip A with a co-algebra

structure to generate a Hopf (bi-)algebra. More precisely, we have

� two algebra homomorphisms ∆: A→ A⊗A and ε : A→ C, called the co-product and

co-unit, respectively,

� two co-algebra homomorphisms8 m : A ⊗ A → A and ι : C → A, called the product

and unit,

� as well as an anti-homomorphism S : A→ A called the antipode,

7The reader might rightfully wonder why we cannot simply reabsorb the deformation back into the
definition of the generators and recover the non-deformed case. Showing that the deformation is not trivial,
and classifying non-equivalent deformations, requires arguments from the theory of Chevalley cohomologies,
which we do not wish to present here. See [59] and the appendix of [45] for a detailed presentation.

8Let A and B be two algebras as stipulated in the definition, then Φ: A→ B is a co-algebra homomor-
phism iff ∆B ◦ Φ = (Φ⊗ Φ) ◦∆A and εB ◦ Φ = εA.
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which satisfy the following set of equations:

(id⊗∆)(∆(x)) = (∆⊗ id)(∆(x)) ∀x ∈ A

(id⊗ ε) ◦∆ = (ε⊗ id) ◦∆ = id

m ◦ (S ⊗ id) ◦∆ = m ◦ (id⊗ S) ◦∆ = ι ◦ ε

The first of these equations is sometimes referred to as co-associativity.

There exists a subclass of Hopf algebras that is dubbed co-commutative: If σ is a map that

flips the contributors to a tensor product as in σ(x ⊗ y) = y ⊗ x for any pair x, y ∈ A,

co-commutativity means that the opposite co-product ∆op : = σ ◦ ∆ = ∆. Even more

important is yet another subclass:

Definition 2.2.3 A Hopf algebra is called quasi-triangular if there exists an invertible

element R ∈ A⊗ A that satisfies

∆op(x) = R∆(x)R−1 ∀x ∈ A

(∆⊗ id)(R) = R13R23

(id⊗∆)(R) = R13R12 (2.7)

where R12 = R⊗ I and so on. We will refer to this object as the universal R-Matrix. It is

not hard to show that it satisfies the famous Yang-Baxter equation (YBE) in A⊗ A⊗ A:

R12R13R23 = R23R13R12 (2.8)

Furthermore, the R-Matrix satisfies

(ε⊗ id)(R) = (id⊗ ε)(R) = 1

(S ⊗ id)(R) = (id⊗ S−1)(R) = R−1.

It will not come as a surprise now that our quantum affine algebra Uq(ĝ) is indeed a quasi-

triangular Hopf algebra (QTHA); which was not necessarily obvious when the algebra was

first introduced in [25]. In the interest of full disclosure, here is the Hopf structure for Uq(ĝ),

conveniently defined on the generators of the algebra:

∆(k±i ) = k±i ⊗ k±i
S(k±i ) = k∓i

ε(k±i ) = ε(ei) = ε(fi) = 0

∆(ei) = ei ⊗ 1 + k+
i ⊗ ei

S(ei) = −k−i ei
ε(1) = 1

∆(fi) = fi ⊗ k−i + 1⊗ fi
S(fi) = fik

+
i

To convince yourself of that this set-up is consistent with the defining features of a Hopf

algebra (c.f. (2.2.2)) is a matter of straightforward verification, and it is indeed always

possible to equip a universal enveloping algebra with a Hopf structure. A trickier question

to ask is this: How do we know Uq(ĝ) is also quasi-triangular? How do we find the universal

R-Matrix? The next section will therefore explain how the construction works explicitly,

and also offer guidance for finding a concrete realization of R.
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2.2.2 Construction of the R-Matrix for Uq(ĝ)

By now, it should have become clear why the Serre-Chevalley basis was introduced for affine

algebras - the presentation is a lot more economical, since we only need the exchange rela-

tions between the finitely many generators associated to the simple roots plus the (q−)Serre

relations (2.6). But if that is the case, you may ask, why bother introducing a second type

of basis? The short answer to this question is that they are needed to construct the uni-

versal R-Matrix, the object that guarantees quasi-triangularity. Let us see how this can be

done.

First, we will have to define a normal ordering among the positive roots: For α, β ∈ ∆+,

we will write α ≺ α + β ≺ β iff α + β ∈ ∆+ and there are no other positive roots α′, β′

whose sum gives9 α+β. Once the ordering is fixed, we can construct all other Cartan-Weyl

generators by induction from the generators that belong to the simple roots α0, . . . , αr, as

pioneered by [26]. Let Fα := E−α, then we have

Eα+β = [Eα, Eβ]q := EαEβ − q(α|β)EβEα (2.9)

Fα+β = [Fβ, Fα]1/q := FβFα − q−(α|β)FαFβ (2.10)

where α ≺ α+β ≺ β, (·|·) is the standard scalar product and [·, ·]q is called the q-deformed

commutator.

Next, we determine some commutation relations that flow into the definition of the R-

Matrix. In particular, for a real root γ =
∑r

i=0 niαi ∈ ∆+,

[Eγ, Fγ] = ηγ
k+
γ − k−γ
q − q−1

, (2.11)

where we defined k±γ =
∏r

i=0 k
±ni
i , and ηγ is a proportionality factor to be determined. We

would like to extend this to generators belonging to imaginary roots nδ, but this does not

work with the generators obtained from (2.9). Instead, one has to introduce a new set of

generators Ĕ
(i)
nδ , which, contrary to the ’real’ generators, can have a multiplicity i greater

than 1. If Enδ are the generators calculated from the iteration (2.9), then the Ĕ
(i)
nδ are

derived from those using Schur polynomials (dropping the multiplicity index here):

Ĕnδ =
∑

p1+2p2+···+npn=n

(q−1 − q)
∑
pi−1(

∑n
i=1 pi − 1)!

p1! . . . pn!
Ep1
δ . . . Epn

nδ

The new generators satisfy

[Ĕ
(i)
nδ , F̆

(j)
mδ ] = aij(n)

(k+
δ )n − (k−δ )n

q − q−1
δm+n,0,

9The attentive reader will note that this ordering is not unique, one could just as well inverse the order
and write β ≺ α+ β ≺ α. Discriminating in favor of one of them will not lead to a loss of generality.
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where

aij(n) =
qnA

sym
ij − q−nA

sym
ij

n(q − q−1)
.

All the remaining exchange relations can be found in [26], but we will not need them to

proceed.

We are now in a position to explicitly write down the form of the universal R-Matrix. Let

us define the inverse matrices (cij(n)) = (aij(n))−1 and (dij) = (Asym
ij )−1, and introduce the

q-exponential

expq(x) =
∑
n≥0

xn

(n)q!
, where (n)q! := (1)q(2)q . . . (n)q and (a)q =

(
1− qa

1− q

)
.

Then the R-Matrix of Uq(ĝ) can be expressed as

R[Uq(ĝ)] =

 −→∏
γ∈∆+

R̂γ

K, (2.12)

where the (infinite) product is carried out with respect to the chosen normal ordering. Apart

from a multiplicative constant, it is the unique solution that satisfies the requirements of

an R-Matrix as laid down in (2.7) [26]. The factors appearing in (2.12) have the following

form:

K = q
∑
i,j dijhαi⊗hαj (2.13)

R̂γ = expq−(γ|γ)
(
(q − q−1)η−1

γ Eγ ⊗ Fγ
)

(2.14)

or, in case of imaginary roots,

R̂nδ = exp

(
(q − q−1)

∑
i,j

cij(n)Ĕ
(i)
nδ ⊗ F̆

(j)
nδ

)
.

The relationship between Hαi and ki is given by k±i = q±Hαi .

The R-Matrix of Uq(ŝl2)

Formula (2.12) is a remarkable finding, but it does not come very handy. In fact, in its

current form, it is not particularly useful for the journey ahead of us, especially not for the

FRT formalism to be introduced below. But we have learned above that we can make such

objects more calculation-friendly by choosing a suitable representation for the generators.

For the special linear Kac-Moody algebra, the R-Matrix is known in full generality [18],

but we will confine our demonstration to the case ĝ = ŝl2.

There are two different two-dimensional (evaluation) representations πz that are commonly

used, the homogeneous and the principal gradation. Focusing on the latter, πz acts on the
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generators as (eij are the elementary matrices)

πz(e1) = πz(Eα) = ze12

πz(e0) = πz(Eδ−α) = ze21

πz(h1) = πz(Hα) = e11 − e22

πz(f1) = πz(Fα) = z−1e21

πz(f0) = πz(Fδ−α) = z−1e12

πz(h0) = πz(Hδ−α) = e22 − e11

(2.15)

The fundamental representation of the R-Matrix is calculated as R(z1/z2) = (πz1 ⊗ πz2)R,

and we will often not write down explicitly that we are working in a certain representation.

For the generators associated to non-simple roots, we obtain the following expressions, using

(2.9):

πz(Enδ+α) = (−1)n
z2n+1

qn
e12

πz(E(n+1)δ−α) = (−1)n
z2n+1

qn
e21

πz(E(n+1)δ) = (−1)n
z2n+2

qn
(e11 − q−2e22)

πz(Fnδ+α) = (−1)n
z−(2n+1)

qn
e12

πz(F(n+1)δ−α) = (−1)n
z−(2n+1)

qn
e21

πz(E(n+1)δ) = (−1)n
z−(2n+2)

qn
(e11 − q−2e22)

The multiplicity of the imaginary roots is one, so we dropped the subscript here. This is not

quite the end of the story, as we noticed before; we will still have to modify the ’imaginary’

generators by means of the Schur polynomials. After the dust has settled, one finds

πz(Ĕnδ) = (−1)n+1 z
2n

n
[n]q(e11 − q−2ne22) πz(F̆nδ) = (−1)n+1 z

−2n

n
[n]q(e11 − q−2ne22)

with

[n]q :=
qn − q−n

q − q−1
.

The matrix K in (2.13) is easy to calculate and evaluates to

K = diag
(
q1/2, q−1/2, q−1/2, q1/2

)
.

A bit more involved are the calculations for R̂nδ±α, for which we need to know the factor

ηγ from the commutation relations (2.11), and the scalar product of two opposite roots. It

turns out that ηnδ±α = z2n±1

qn
, and (nδ±α| −nδ∓α) = 2. We got lucky: The matrix inside

the q-exponential is nilpotent, so that an otherwise infinite series breaks of after just two

terms. For example,

(πz1 ⊗ πz2)(R̂nδ+α) = expq−2

(
(q − q−1)

(
z1

z2

)2n+1

e12 ⊗ e21

)
= I + (q − q−1)z2n+1e23,

which is now a 4× 4 matrix where we set z = z1/z2. We furthermore find

(πz1 ⊗ πz2)(R̂nδ−α) = I + (q − q−1)z2n−1e32

(πz1 ⊗ πz2)(R̂nδ−α) = exp
(
diag(an,−q2nan,−q−2nan, an)

)
,
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where

an ≡ an(z) =

(
z2n

n

)
1− q−2n

1 + q−2n

To carry out the product (2.12), we need to fix the normal ordering. Starting with the

simple roots α and δ − α, we set α ≺ δ ≺ δ − α, and all other roots are placed into this

scheme in an iterative manner, such as to get

α ≺ δ + α ≺ · · · ≺ ∞δ + α ≺ δ ≺ 2δ ≺ · · · ≺ ∞δ ≺ ∞δ − α ≺ · · · ≺ 2δ − α ≺ δ − α.

The rest, then, is just a straightforward multiplication of (infinitely many) matrices that

adds very little to our understanding. So we will confine ourselves to simply quoting the

final result, which reads

R[Uq(ŝl2)] = ρ2(z2)


1 0 0 0
0 β(z) γ(z) 0
0 γ(z) β(z) 0
0 0 0 1

 , (2.16)

where the entries are given as

β(z) =
q(1− z2)

1− q2z2
γ(z) =

z(1− q2)

1− q2z2
(2.17)

and the normalization factor ρ2(z2) is expressed through the general formula

ρN(z2) = q
1
N
−1 (q2z2; q2N)∞(q2N−2z2; q2N)∞

(z2; q2N)∞(q2Nz2; q2N)∞
. (2.18)

The infinite products (z, a)∞ are defined in appendix A.

This result has been generalized by M. Jimbo first in the fundamental representation with

homogeneous grading [18]. For the principal gradation and generic N , the resulting matrix

reads

R(p)(z) = ρN(z2)
[∑

i

eii ⊗ eii +
q(1− z2)

1− q2z2
eii ⊗ ejj

+
z(1− q2)

1− q2z2

(∑
i<j

z(2j−2i−N)/N +
∑
i>j

z(2j−2i+N)/N

)
eij ⊗ eji

]
. (2.19)

In the next chapter, we will see how to manipulate this to obtain the elliptic quantum

algebra, but let us first understand the algebraic properties this matrix gives rise to.

2.2.3 FRT formalism

One of the pathbreaking discoveries in the study of quantum groups was made by what is

known as the Leningrad school. Faddeev, Reshetikhin and Takhtajan (FRT) had already
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done pioneering work on quantum integrable models when they noticed that the full po-

tential of their work had not been realized yet [21]. The R-Matrix, an example of which

we presented in (2.19), was the starting point for many exact solution of quantum models,

but only many years later did they see that it could also be used to define an algebra.

The point of departure is called the Yang-Baxter equation, which we have already encoun-

tered in connection with the Hopf algebras (cf. def. 2.2.2). Starting from the YBE at the

universal level, cf. eq. (2.8), we apply the evaluation map to R as in π(z1) ⊗ π(z2)R12 =

R12( z1
z2

). For the universal YBE, the evaluation map is π(z1)⊗ π(z2)⊗ π(z3), and, discov-

ering that only the ratios of the spectral parameters matter, we set z1/z3 =: z, z2/z3 =: w

and finally arrive at

R12(z/w)R13(z)R23(w) = R23(w)R13(z)R12(z/w). (2.20)

The key insight of FRT was that every matrix R(z) that is a solution of (2.20) can be used

as the building block of an algebra. Since it was proven long ago [18] that the R-Matrix

(2.19) indeed satisfies the YBE, we are ready to try out this second way. To this end, we

introduce generators L±ij(z) =
∑

k≥0 L
±
ij(∓k)z±k that are conveniently encapsulated in an

N ×N matrix:

L±(z) =

L±11(z) . . . L±1N(z)
...

. . .
...

L±N1(z) . . . L±NN(z)

 (2.21)

By making these generators subject to the constraints (often referred to as RLL)

R12(
z

w
)L±1 (z)L±2 (w) = L±2 (w)L±1 (z)R12(

z

w
) (2.22)

R12(qc
z

w
)L+

1 (z)L−2 (w) = L+
2 (w)L−1 (z)R12(q−c

z

w
), (2.23)

it can be shown [23] that one thus recovers10 Uq(ĝlN). Note that the central charge c appears

here.

You may wonder: Is that all there is to it? No caveats? But to ask this question is

to underestimate the power of the YBE: For one thing, since it depends on a spectral

parameter, there is no general way to find all the solutions to the YBE, as it requires solving

functional equations. And while it is certainly possible to find isolated solutions, extending

the classification scheme pioneered by Skylanin and Kulish [11] based on the universal R-

Matrix proved to be an insurmountable obstacle. But more importantly, without the YBE,

there is no guarantee that the relations (2.22) refer to an actual algebra, rather than just

being formal definitions. However, by requiring R(z) to satisfy (2.20), we know that at

least one representation of L±(z) exists, and thus the algebra is non-empty, and we are

ensured that it is well-defined.

10The FRT formalism defines algebras based on ĝlN , rather than ŝlN , so we need to divide out certain
parts. In analogy to the classical case, this will be the job of the quantum determinant, which we will
discuss in great detail later on.
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Finally, the Hopf structure is given by [23] see article

∆L±ij(z) =
N∑
k=1

L±kj(zq
∓(1⊗c/2))⊗ L±ik(zq

∓(c/2⊗1)) (2.24)

for the co-product, and the respective expressions for antipode an co-unit are S(L±(z)) =

(L±(z))−1 and ε(L±(z)) = 1.

Before moving on, let us again stress how the two approaches - the FRT formalism and

what we may call the Serre-Chevalley method - differ. Recall that in the case of the latter,

we start with the exchange relations among finitely many generators ei, fi and ki associated

to roots of the underlying Lie algebra ((2.2.1)). We furthermore specify the Serre-Chevalley

relations for ei and fi through which all the other (infinitely many) generators are produced.

Finally, we define the Hopf structure of the algebra, and explicitly construct the universal

R-Matrix based on the Serre-Chevalley generators.

By contrast, the FRT formalism turns things upside down. We start with a particular

representation of the R-Matrix and use it to define exchange relations between an infinite

ensemble of generators, denoted as L±ij(∓k). As we have seen above, any solution to the

YBE can be used to formally set up an algebra, and one might be tempted to think that

this is the preferred way to do it - after all, it is a lot more straightforward and allows

to define a much larger class of algebras (even though not all of them are necessarily of

physical interest). However, the non-trivial part, even given a concrete solution to the YBE,

is to figure out how the Hopf structure looks like for these new generators. And in fact,

the next chapter shows that trying to do so may result in contradictions that just cannot

be rectified.
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Chapter 3

Plot twist: Making matters elliptic

If chapter 2 created the feeling that the affine quantum algebra Uq(ĝlN) is rather well

understood, your intuition has done its job. The same is not necessarily true for a second

example from this class, the elliptic algebra Aq,p(ĝlN), which is the subject of this chapter.

Ideally, we would proceed by extending the already familiar FRT formalism using a different

R-Matrix. So why do we not just figure out what this matrix should be, and then equip

the generators with a Hopf structure in a straightforward way?

We shall in fact try to do exactly this. The relevant R-Matrix might seem to come a bit out

of nowhere, as it stems from an altogether different context (Baxter’s eight-vertex model

from statistical mechanics [5]). Setting up the FRT formalism for it, we will understand

that the concepts we introduced so far are not sufficient to do justice to the true nature of

Aq,p(ĝlN), which, most importantly, is no longer a simple Hopf algebra. As we shall see, we

arrive at the Aq,p(ĝlN) algebra by twisting the universal R-Matrix inherited from Uq(ĝlN).

Only after we understand this construction can we begin attempting to represent R, and

we will do this for the special case Aq,p(ĝl2), to date the only example for which the explicit

calculation succeeded. With our toolkit thus refined, we will explain why the R-Matrix

introduced ad hoc in section 3.1 is almost certainly the right candidate to work with.

3.1 FRT formalism for Aq,p(ĝlN)

As we saw in the preceding chapter, the starting point for the FRT formalism is the Yang-

Baxter equation with spectral parameter (2.20): Any matrix that satisfies it provides the

structure algebra, complete with (at least) one representation.What other types of algebras

does the YBE offers?

To this date, the known solutions to the YBE with spectral parameter are either of the

rational, trigonometric (such as Uq(ĝlN)) or elliptic variety. The latter class is the one

that will keep us busy for the rest of the thesis. The classification initiated by Kulish and

Sklyanin [11] in 1982 has, in fact, not seen the discovery of any new types of solutions since

their pioneering work.
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Oddly enough, the source of inspiration for the study of quantum elliptic algebra comes from

a complete unrelated domain, that of statistical mechanics. Back in the early 1970s, Baxter

[6, 57] managed to solve what is known as the eight-vertex model : A square lattice model

in which each state is represented by a configuration of arrows at a vertex, and periodic

boundary conditions are imposed1. In the absence of external fields, his demonstration

involves a symmetric matrix which is a solution to the Yang-Baxter equation. As we will

shortly see, this matrix is similar2 to the R-Matrix of Aq,p(ĝl2) derived much later by

Jimbo et al. in a purely algebraic context [35]. The model was later generalized to a ZN -

symmetric matrix that still satisfies the YBE [10], and important properties of this matrix

were established in [17, 19].

Let there be no doubt: There is no proof yet that the R-Matrices we will now present

correspond to a representation of Aq,p(ĝlN) as defined in section 3.3 for N > 2. This should

not produce too much irritation, though: the fact that for N = 2, the results from the

quasi-Hopf formulation coincide with R[Aq,p(ĝl2)] obtained directly from the eight-vertex

model, plus the fact that solutions to the YBE constitute an extremely restricted class,

renders it rather unlikely that these R-Matrices will have an altogether different form. And

finally, given that these matrices satisfy YBE, the FRT formalism introduced in the previous

chapter allows us to define an algebra regardless, using RLL relations. Whether this is in

fact a quasi-triangular quasi-Hopf algebra (QTQHA, see below) remains an open question,

as this can only be said with certainty about Jimbo’s construction [35] to be discussed later

on.

In Belavin-Baxter parametrization, the matrix we inherit from statistical mechanics has

the form

Z(z, p, q) = z2/N−2 1

κN(z2)

ϑ

[
1
2
1
2

]
(ζ, τ)

ϑ

[
1
2
1
2

]
(ξ + ζ, τ)

∑
(α1,α2)∈ZN×ZN

W(α1,α2)(ξ, ζ, τ)I(α1,α2) ⊗ I−1
(α1,α2)

(3.1)

with normalization factor

1

κN(z2)
=

(q2Nz−2; p, q2N)∞(q2z2; p, q2N)∞(pz−2; p, q2N)∞(pq2N−2z2; p, q2N)∞
(q2Nz2; p, q2N)∞(q2z−2; p, q2N)∞(pz2; p, q2N)∞(pq2N−2z−2; p, q2N)∞

, (3.2)

and the relations between the variables z, q, p and ξ, ζ, τ are merely a matter of exponenti-

ation:

z = eiπξ, q = eiπζ , p = e2iπτ

1There are eight allowed configurations, hence the name.
2Two R-Matrices R and R′ are said to be similar if there is a non-degenerate operator O, acting on the

representation space V , such that R′ = (O ⊗O)R(O ⊗O)−1.
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The functions ϑ

[
γ1

γ2

]
with (γ1, γ2) ∈ 1

N
Z × 1

N
Z are known as Jacobi Theta functions with

rational characteristics, and they are defined in appendix A. We introduce the N × N

matrix g defined by

gij = ωiδij , 1 ≤ i, j ≤ N with ω = e2iπ/N (3.3)

and the N ×N matrix h such that

hij = δi+1,j , 1 ≤ i, j ≤ N. (3.4)

Here, as in many other cases, the addition of indices should be understood modulo N .

With these definitions, I(α1,α2) can be conveniently expressed as I(α1,α2) = gα2hα1 , while the

functions W(α1,α2) are given by

W(α1,α2)(ξ, ζ, τ) =

ϑ

[
1
2

+ α1/N
1
2

+ α2/N

]
(ξ + ζ/N, τ)

Nϑ

[
1
2

+ α1/N
1
2

+ α2/N

]
(ζ/N, τ)

We will not be using the matrix (3.1), but one that is similar to it. In more precise language,

set

R(z, p, q) = (g
1
2 ⊗ g

1
2 )Z(z, p, q)(g−

1
2 ⊗ g−

1
2 ). (3.5)

For later purposes, we will also define yet another matrix

R̃12(z) = τN(q
1
2 z−1)R12(z) (3.6)

with a conversion factor

τN(z) = z
2
N
−2 Θq2N (qz2)

Θq2N (qz−2)

that satisfies (τN(qNz) = τN(z)) and (τN(z)τN(z−1)).

Now, the presentation in the Belavin-Baxter basis (3.1) is not always the handiest way to

go about it. We may instead rewrite it by explicitly spelling out the exact form of the

matrix entries [36]. To do so, we will take R(z) =
∑
Rb,d
a,c(z) (ea,b ⊗ ec,d) and specify

Rb,d
a,c(z) = η(z)Sba,c(z)ω(a+c−b−d)/2δa+c,b+d ∀ a, b, c = 1, . . . , N (3.7)

with indices understood modulo N , where

Sba,c(z) = z
2(b−a)
N q

2(c−b)
N p

(b−a)(c−b)
N

ΘpN (pN+c−aq2z2)

ΘpN (pN+c−bz2)ΘpN (pN+b−aq2)
(3.8)

which is manifestly ZN -symmetric, and defined for any index c ∈ Z, since Sba,c+N(z) =

Sba,c(z) (and likewise for a and b). Recall that ω = e2πi/N , so that the factor ω(a+c−b−d)/2

necessarily evaluates to ±1. Finally, the normalization factor is given by

η(z) =
z

2
N

κN(z2)

(pN , pN)3
∞

(p, p)3
∞

Θp(q
2)Θp(pz

2)

Θp(q2z2)
. (3.9)
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Since the mid-1980s, it is known that the matrices (3.5) and (3.7) satisfy a number of

remarkable properties [17, 19] the proof of which we will spare the reader at this point.

Here is a comprehensive list, where starred bullet points are equally valid for R̃(z) (and

vice versa):

� Yang-Baxter-equation?:

R12(z)R13(w)R23(w/z) = R23(w/z)R13(w)R12(z) , (3.10)

� Unitarity:

R12(z)R21(z−1) = 1 , (3.11)

� Regularity (P12 is the permutation matrix):

R12(1) = P12 , (3.12)

� Crossing-symmetry:

R12(z)t2 R21(z−1q−N)t2 = 1 , (3.13)

� Antisymmetry

R12(−z) = ω (g−1 ⊗ I)R12(z) (g ⊗ I) , (3.14)

� Quasi-periodicity

R̃12(−zp
1
2 ) = (g

1
2hg

1
2 ⊗ I)−1 R̃21(z−1)−1 (g

1
2hg

1
2 ⊗ I) , (3.15)

� Invariance?:

(h⊗ h)R12(z) = R12(z) (h⊗ h) , (3.16)

� Quasi-unitarity? (really just a consequence of (3.11) and (3.13))(
R12(x)t2

)−1

=
(
R12(qNx)−1

)t2
. (3.17)

The unitarity property for R̃12 now reads

R̃12(z) R̃21(z−1) = τN(q
1
2 z) τN(q

1
2 z−1) ≡ U(z), (3.18)

where the function U(z) is defined as

U(z) = q
2
N
−2 Θq2N (q2z2) Θq2N (q2z−2)

Θq2N (z2)Θq2N (z−2)
. (3.19)

Again, let us emphasize that R̃12(z) is the matrix that defines Aq,p(ĝlN), while R12(z) was

introduced purely for convenience.
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Finally, we also need to write down the RLL relations. Similarly to what we did for Uq(ĝlN),

we consider a free, associative algebra generated by operators Lij[n], compactly represented

by the formal series

Lij(z) =
∑
n∈Z

Lij[n]zn i, j ∈ ZN , n ∈ Z (3.20)

and encapsulated into the so-called Lax matrix:

L(z) =
N∑

i,j=1

Lij(z)eij,

The RLL relations now read

R̃12(
z

w
)L1(z)L2(w) = L2(w)L1(z)R̃?

12(
z

w
). (3.21)

The indices refer to the spaces in which the Lax operators and the matrix R(z) operate, with

L1(z) = L(z)⊗ I and L2(z) = I⊗L(z), just like before. The second R-matrix appearing in

(3.21) is related to the original R-matrix through R̃?
12(z, q, p) = R̃12(z, q, p? = pq−2c), where

c is the central charge [25].

That this cannot be a Hopf algebra is not immediately obvious; in fact, we did not elaborate

on the co-algebra structure at all so far. But ultimately, the problem stems from the fact

that the R-Matrices appearing on the L.H.S. and R.H.S. of (3.21) have different elliptic

nomes p and p?. Together with the fact that (3.20) involves both positive and negative

powers of z (unlikely the power series found in (2.21)), this prevents us from applying the

usual co-product formula ∆(L) = L
.
⊗ L. We have no choice but to revisit our algebraic

toolbox and rummage for an even more general framework.

3.2 Quasi-Hopf algebras and Drinfel’d twists

Historically, the study of elliptic quantum algebras began with the discovery of the first

elliptic solutions to the YBE by Baxter [6] in the early 1970s, a result generalized by Belavin

a decade later [10]. Algebraic structures related to those solutions took again roughly a

decade to see the light of day [25, 24], and a few years later Frønsdal suggested that quasi-

Hopf algebras would be the right framework to deal with these exotic structures ([33, 34].

The same year, Jimbo et al ([35]) succeeded in making explicit the twist that would take one

from the quantum affine algebra Uq(ĝl2) to an elliptic algebra. The following two sections

were inspired by [35].

30



3.2.1 Beyond Hopf

(Quasi-triangular) Hopf algebras were introduced in def. 2.2.2; and we discussed them in

some detail there. While especially the quasi-triangularity is an extremely powerful feature,

it is not enough to capture the essence of Aq,p(ĝlN). The extended notion that does the job

for us goes by the name of quasi-Hopf algebra, which we will henceforth define.

Definition 3.2.1 Let A be a unital, associative algebra over C with a co-algebra structure

familiar from Hopf algebras: two algebra homomorphisms ∆: A → A ⊗ A and ε : A → C
(co-product and co-unit), two co-algebra homomorphisms m : A ⊗ A → A and ι : C → A

(product and unit) and an anti-homomorphism S : A → A. In addition, we also need two

elements α, β ∈ A and an invertible quantity Φ ∈ A ⊗ A ⊗ A. We call A a quasi-Hopf

algebra if the following constraints are satisfied:

(id⊗∆)(∆(x)) = Φ(∆⊗ id)(∆(x))Φ−1 ∀x ∈ A

(id⊗ ε) ◦∆ = (ε⊗ id) ◦∆ = id

(id⊗ id⊗∆)(Φ) · (∆⊗ id⊗ id)(Φ) = (1⊗ Φ) · (id⊗∆⊗ id)(Φ) · (Φ⊗ 1)

(id⊗ ε⊗ id)(Φ) = 1

Additionally, by setting ∆(x) =
∑

i x
(1)
i ⊗ x

(2)
i for any x ∈ A, and fixing the notation

Φ =
∑
i

φ
(1)
i ⊗ φ

(2)
i ⊗ φ

(3)
i , Φ−1 =

∑
i

ψ
(1)
i ⊗ ψ

(2)
i ⊗ ψ

(3)
i ,

we also need to impose four more constraints on the antipode, valid for all x ∈ A:∑
i

S(x
(1)
i )αx

(2)
i = ε(x)α∑

i

x
(1)
i β S(x

(2)
i ) = ε(x)β

∑
i

S(ψ
(1)
i )αψ

(2)
i β S(ψ

(3)
i ) = 1∑

i

φ
(1)
i β S(φ

(2)
i )αφ

(3)
i = 1

Unfortunately, these modifications also mean that we will have to adapt our definition

of quasi-triangularity, which we will do before losing a few words on what this definition

actually means.

Definition 3.2.2 We call a unital, associative algebra A over C a quasi-triangular

quasi-Hopf algebra (QTQHA) if it is quasi-Hopf, and there exists an invertible element

R (the universal R-Matrix) that obeys

∆op(x) = R∆(x)R−1 ∀x ∈ A (3.22)

(∆⊗ id)(R) = Φ(312)R13 (Φ(132))−1R23 Φ(123) (3.23)

(id⊗∆)(R) = (Φ(231))−1R13 Φ(213)R12 (Φ(123))−1, (3.24)

where we use the shorthand Φ(klm) =
∑

i φ
(k)
i ⊗ φ

(l)
i ⊗ φ

(m)
i for the sake of brevity.
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Two things should be noted here: First and most obviously, in the limit Φ = 1, α = β = 1,

we obviously recover the defining features of a Hopf algebra, as introduced in (2.2.2), and

also the conditions for quasi-triangularity resume their familiar form (2.7). Moreover, as

we will show in an instance, R now satisfies a generalized Yang-Baxter equation, which

explicitly reads

R12 Φ(312)R13(Φ(132))−1R23 Φ(123) = Φ(321)R23 (Φ(231))−1R13 Φ(213)R12. (3.25)

Proof. Set R := xi ⊗ yi ∈ A⊗ A with summation over i understood. We calculate

R12(∆⊗ id)(xi ⊗ yi) = R∆(xi)⊗ yi =
(3.22)

∆op(xi)R⊗ yi = (∆op ⊗ id)(xi ⊗ yi)R12

By reinserting R = xi ⊗ yi on the L.H.S., and using (3.23), we get

R12(∆⊗ id)R = R12 Φ(312)R13(Φ(132))−1R23 Φ(123),

while doing the same for the R.H.S. (note that ∆op flips spaces 1↔ 2) gives us

((∆op ⊗ id)R)R12 = Φ(321)R23 (Φ(231))−1R13 Φ(213)R12.

The proof can be repeated in the exact same manner for the ’standard’ YBE of quasi-

triangular Hopf algebras (2.8).

That is an impressive arsenal, and it is not necessary to carry the entire collection around

with us all the time. Rather than focusing on the most general case, we will be interested

in quasi-Hopf algebras that are obtained by suitably ’twisting’ an ordinary Hopf algebra.

Let us see how this is done.

3.2.2 Generating quasi-Hopf algebras

Definition 3.2.3 Using the notation from def.s (3.2.1) and (3.2.2), let F ∈ A ⊗ A be an

invertible element that satisfies (id ⊗ ε)F = 1 = (ε ⊗ id)F . The object F is called a

Drinfel’d twist (sometimes also twistor).

One of the fundamental insights in this field of research is that a Drinfel’d twist allows us

to generate a new quasi-triangular quasi-Hopf algebra (QTQHA) from an already existing

one. The algorithm for this was first introduced and proven to work by V. Drinfel’d [1]:

Theorem 3.2.4 Let A := (A,Φ,∆, ε, S, α, β,R) be a QTQHA as defined in (3.2.2). Writ-

ing

F12 =
∑
i

v
(1)
i ⊗ v

(2)
i , F−1

12 =
∑
i

w
(1)
i ⊗ w

(2)
i ,
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and setting

∆̃(x) = F12 ∆(x)F−1
12 ∀x ∈ A (3.26)

R̃ = F12R12F−1
12 (3.27)

Φ̃ = (F23(id⊗∆)(F) (Φ(F12(∆⊗ id)(F))−1 (3.28)

α̃ =
∑
i

S(w
(1)
i )αw

(2)
i and β̃ =

∑
i

v
(1)
i β S(v

(2)
i ), (3.29)

we obtain a second QTQHA Ã := (A, Φ̃, ∆̃, ε, S, α̃, β̃, R̃).

As promised earlier on, we are mostly interested in a special case, namely where we start

from a Hopf algebra (which has α = β = Φ = 1), and require that the twistor F be

dependent on a parameter λ that lies in some abelian subalgebra h (not necessarily the

Cartan subalgebra) of A. In fact, we will limit ourselves even more. Fix some notation

first: By {hi} ({hi}), we will denote the (dual) basis of h, λ =
∑

i λih
i, and λ + h(k) is

shorthand for
∑

i(λi + h
(k)
i )hi, where h acts on the kth space. Then:

Definition 3.2.5 The subclass of Drinfel’d twists F that satisfies the shifted cocycle

condition

F12(λ)(∆⊗ id)(F(λ)) = F23(λ+ h(1))(id⊗∆)(F(λ)) (3.30)

bears the name Gervais-Neveu-Felder (GNF) twist.

Note that the restriction on GNF twists of Hopf algebras also simplifies the co-associator

Φ̃ significantly, which can now be expressed as Φ(123) = F23(λ)F23(λ+ h(1))−1. In the same

vein, we can also simplify the generalized YBE (3.25) by inserting the definition for Φ under

a GNF twist, and using (3.28) multiple times to find what is called the dynamical YBE :

R̃12(λ+ h(3))R̃13(λ)R̃23(λ+ h(1)) = R̃23(λ)R̃13(λ+ h(2))R̃12(λ) (3.31)

Later on, we will develop a better understanding of the difference between the YBEs (2.8)

and (3.31). The most important take-away for now is the shift in λ as we go from L.H.S. to

R.H.S., which generally leads to a change in parameters (such as the deformation parameter

q). This shift carries over to the RLL relations that define the algebra, so that upon reversing

the order of two generators, said parameter(s) will no longer remain static, hence the name

’dynamical’.

3.3 Drinfel’d twists applied: The R-Matrix of Aq,p(ĝlN)

Equipped with these notions, let us now turn to the question of actually constructing the

all-important R-Matrix. There are in fact two different types of elliptic solutions to the

YBE, connected with so-called vertex and face type algebras, the second of which we will

33



not consider in here3. For the vertex type, here is the storyline: We construct a twistor

as a certain infinite product of the universal R-Matrix. We will see that it can be viewed

as the unique solution to a difference equation, and that said twistor satisfies the shifted

cocycle condition (3.30), hence is a GNF twistor. When applying this twistor to a Hopf

algebra (such as Uq(ĝlN)), we should therefore find that it satisfies the dynamical YBE

(3.31) - which is indeed the case. Finally, to make the connection with the previous section,

we will explain how, starting with the aforementioned difference equation and a suitable

representation morphism, we can find a concrete realization of the R-Matrix. This, as we

already saw for Uq(ĝlN), can then be used to alternatively define the algebra via the FRT

formalism.

3.3.1 Algebraic twistors for Aq,p(ĝlN)

The construction of the twistor for the vertex type algebra is achieved by constructing an

automorphism that acts on the Chevalley generators in a very precise fashion. Let h be the

Cartan subalgebra of ŝlN , and denote its basis by {h0, . . . , hN−1, d}, where the element d -

the derivation introduced in section 2.1.2 - is chosen such that

[d, ei] = δi,0ei, [d, fi] = −δi,0fi.

This is usually called the homogeneous grading. The inner product defined on the generators

naturally gives rise to a dual basis {Λ0, . . . ,ΛN−1, c}, which is comprised of the fundamental

weights Λi first encountered in section 2.1.1, and c is the central charge.

For any Chevalley generator xi := {ei, fi, hi}, let τ be the automorphism that reflects the

symmetry of the extended Dynkin diagram of ŝlN : τ(xi) = xi+1mod N . It is manifestly of

order N , i.e. τN = id. It acts on the fundamental weights as

τ(Λi) = Λi+1modN −
n− 1− 2i

2n
c

and leaves invariant the sum ρ :=
∑N−1

i=0 Λi. Due to the isomorphic nature of h and its dual

counterpart h? (a consequence of them being finite dimensional), we can also determine the

commutator of ρ and the Chevalley generators, which reads

[ρ, ei] = ei, [ρ, fi] = −fi.

and gives the principal grading.

Based on τ , let us introduce another automorphism for a complex r ∈ C by

ϕr = τ ◦ Ad(q
2(r+c)
N

ρ)

3It is worth remarking that so-called face type twistors can be found for any Uq(ĝ), while the vertex

type solution requires us to set g = ĝlN . See [35].
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where Ad(X)Y := XYX−1. Furthermore, set

T =
1

N
(ρ⊗ c+ c⊗ ρ− N2 − 1

12
c⊗ c)

and define the vertex type twistor as

F(r) =
x∏
k≥1

Fk(r) =
x∏
k≥1

(ϕk ⊗ id)(R̂−1) (3.32)

with R = qTR[Uq(ŝlN)]. The infinite product
x∏

should be understood in the sense that it

is carried out right to left, as in F(r) = . . .F3(r)F2(r)F1(r). It is important not to confuse

r with the spectral parameter as it appears in (2.19); the latter only appears after choosing

a representation for the universal objects from the algebra.

In a landmark article, Jimbo et al. [35] were able to show that the twistor (3.32) satisfies

a shifted cocycle condition, which in this case reads

F12(r)(∆⊗ id)(F(r)) = F23(r + c(1))(id⊗∆)(F(r)),

(c(1) = c⊗ I⊗ I) and also fulfills

(id⊗ ε)F(r) = 1 = (ε⊗ id)F(r).

We will not repeat the proof here, which is quite technical, and simply state the final result.

Definition 3.3.1 The vertex type algebra Aq,p(ĝlN) (with p = q2r) is comprised of the

set {Uq(ŝlN),∆r, ε, S, αr, βr,Φ(r),R(r)}, where the action of S and ε is given by def. 2.2.1.

By fixing
∑

i di ⊗ ei = F(r)−1,
∑

i fi ⊗ gi = F(r), the bi-algebra structure has the form

∆r(x) = F12(r)∆(x)F12(r)−1 ∀x ∈ A (3.33)

R(r) = F21(r)RF12(r)−1 (3.34)

Φ(r) = (F23(r)F23(r + c(1))−1 (3.35)

αr =
∑
i

S(di)ei and βr =
∑
i

fi S(gi) (3.36)

with the twistor F(r) given by (3.32). R and ∆ are the universal R-Matrix and co-product

of Uq(ŝlN), respectively.

Obviously, R(r) will satisfy a dynamical YBE, which takes the form

R̃12(r + c(3))R̃13(r)R̃23(r + c(1)) = R̃23(r)R̃13(r + c(2))R̃12(r). (3.37)

Note how the parameter shift spares all the generators of the Cartan subalgebra but the

central charge; compare this to eq. (3.21).
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3.3.2 Determining the R-Matrix of Aq,p(ĝl2)

While the results obtained by Jimbo et al. are aesthetically very satisfactory, the universal

R-Matrix (3.34) comes with the defect of being built upon infinite products. For practical

purposes, one would therefore be interested in finding a concrete matrix representation. In

the generic case, no such construction has yet been successfully finalized. The exception

to the rule, scarcely surprising, is the Drinfel’d-twisted version of Uq(ŝl2), whose explicit

realization we will sketch here.

The first thing to remark is that the twistor (3.32) can alternatively be described as the

(unique) solution to the difference equation

F(p1/Nq2c(1)/Nz, r) = (τ ⊗ id)−1(F(z, r)) · R̃((p1/Nq2c(1)/Nz) (3.38)

with initial condition F(0, r) = 1. In here, we have chosen

R̃(z) = (Ad(zρ)⊗ id)(qTR)

F(z, r) = (Ad(zρ)⊗ id)F(r). (3.39)

Sketch of the proof. Set t = p1/N , s = q2c(1)/N , where c(1) refers to the tensor component,

and look at (we suppress the dependence on r)

F(t2s2z) = (τ ⊗ id)−1F(tsz) · R̃(tsz) = (τ ⊗ id)−2F(z) · (τ ⊗ id)−1R̃(tsz) · R̃(t2s2z).

We can repeat this procedure for F(tkskz) with k ∈ N, and since |t| < 1, we will find

1 = F(0) = lim
k→∞
F(tkskz) = F(z)

∞∏
k=1

(τ k ⊗ id)R̃(tkskz)

Inverting this relation and reinserting (3.39), we recover the expression (3.32).

Given (3.38), there are now two ways to determine the R-Matrix: one is to directly calculate

the image of the twistor (3.32), as it has been done in [35], the second option consists in

using the difference equation to solve directly for the entries of the Drinfel’d twistor. We

will pursue the latter way here.

We need a representation first; the best candidate is the principal gradation evaluation

introduced in (2.15), in which the central charge vanishes. Applying this to the L.H.S. of

(3.38), we find that from the form of (2.16) and Z2-symmetry (inherited from the Belavin-

Baxter Matrix (3.7)) that

(πz ⊗ πz)F(p1/2, r) =


aF (p1/2z) 0 0 dF (p1/2z)

0 bF (p1/2z) cF (p1/2z) 0
0 cF (p1/2z) bF (p1/2z) 0

dF (p1/2z) 0 0 aF (p1/2z)

 . (3.40)
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The R.H.S. is a bit more tricky; we need to determine what to do with π ◦ τ . This is best

done on the generators ei, fi and hi, and we find that

π ◦ τ = Ad(σx) ◦ π with σx =

(
0 1
1 0

)
.

Performing the calculations explicitly, one finds

R.H.S. =


bF (z) 0 0 cF (z)

0 aF (z) dF (z) 0
0 dF (z) aF (z) 0

cF (z) 0 0 bF (z)

 ·R(pz2),

where the R-Matrix calculated in (2.16) appears. Multiplying it out and comparing the

coefficients, we find the following two relations

aF (p1/2z)± dF (p1/2z) = ρ(pz2)(bF (z)± cF (z))

bF (p1/2z)± cF (p1/2z) = ρ(pz2)

(
q(1± p1/2q−1z)

1± p1/2qz

)
(aF (z)± dF (z)) ,

with the prefactor that we calculated earlier on,

ρ(z2) = q−1/2 (q2z2; q4)∞(q2z2; q4)∞
(z2; q4)∞(q4z2; q4)∞

. (3.41)

It is not too hard to see that we can reformulate the problem by iteration in order to obtain

a relation that only depends on the quantity aF (z)±dF (z) (or bF (z)±cF (z)). In fact, using

the initial condition F (0) = 1, we find

1 = lim
n→∞

(aF (pnz)± dF (pnz)) =
∞∏
m=1

ρ̃(pmz2)

(
q(1± p1/2+mq−1z)

1± p1/2+mqz

)
(aF (z)± dF (z))

=
(pq2z2; p, q4)2

∞
(pz2; q4, p)∞(pq4z2; q4, p)∞

· (∓p1/2q−1z; p)∞
(∓p1/2qz; p)∞

(aF (z)± dF (z)) (3.42)

with ρ̃(z2) = q−1/2ρ(z2). We find a similar pattern for bF (z) ± cF (z), which fully spelled

out reads

1 =
(pq2z2; p, q4)2

∞
(pz2; q4, p)∞(pq4z2; q4, p)∞

· (∓pq−1z; p)∞
(∓pqz; p)∞

(bF (z)± cF (z)).

Two more steps need to be performed before we obtain the R-Matrix of Aq,p(ĝl2). First we

will do the twisting, that is, we calculate

R̃ [Aq,p(ĝl2)](z) = F21(z−1)R [Uq(ĝl2)](z)F12(z)−1.

More explicitly, this reads

R̃ [Aq,p(ĝl2)](z) = q−1/2Υ(z2)


a+(z) 0 0 d+(z)

0 b+(z) c+(z) 0
0 c+(z) b+(z) 0

d+(z) 0 0 a+(z)

 (3.43)
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with coefficients

a+(z)± d+(z) =
(∓p1/2qz−1; p)∞(∓p1/2q−1z; p)∞
(∓p1/2q−1z−1; p)∞(∓p1/2qz; p)∞

b+(z)± c+(z) = q

(
1± q−1z

1± qz

)
(∓pqz−1; p)∞(∓pq−1z; p)∞
(∓pq−1z−1; p)∞(∓pqz; p)∞

(3.44)

and normalization factor

Υ(z2) =
(q2z2; p, q4)2

∞(pz−2; p, q4)∞(pq4z−2; p, q4)∞
(pq2z−2; q4, p)2

∞(z2; q4, p)∞(q4z2; p, q4)∞
.

These results were first derived by Frønsdal [33, 34].

Presented in this way, our elliptic R-Matrix (3.43) is still quite cumbersome to handle; it

would be very advantageous to devise a method for the disentanglement of the matrix entries

(3.44). The good news is that such a method exists, as explained in detail in appendix B.

In abridged form, what happens is that we rewrite the identities (3.44) using Jacobi Theta

functions - possibly the most famous type of elliptic functions out there, and the reason

why Aq,p(ĝlN) is called an elliptic quantum algebra -, and then take advantage of a very

powerful theorem that allows us to transform sums of (functions of) Theta functions into

a product of Theta functions (cf. appendix4 A). Carrying out the calculations explicitly

here would take up to much space; the interested reader is invited to consult the example

in appendix B. We will simply quote the final result, which reads:

R̃(z) =
1

κ2(z2)

(p2; p2)∞
(p; p)2

∞

Θq4(q
2z2)

Θq4(z2)


ã(z) 0 0 d̃(z)

0 b̃(z) c̃(z) 0

0 c̃(z) b̃(z) 0

d̃(z) 0 0 ã(z)

 (3.45)

with entries

ã(z) =
Θp2(pz

2)Θp2(pq
2)

Θp2(pq2z2)

b̃(z) = q
Θp2(z

2)Θp2(pq
2)

Θp2(q2z2)

c̃(z) = z
Θp2(pz

2)Θp2(q
2)

Θp2(q2z2)

d̃(z) = − p
1
2

qz2

Θp2(z
2)Θp2(q

2)

Θp2(pq2z)

(3.46)

and normalization factor

1

κ(z2)
=

(q4z−2; p, q4)∞(q2z2; p, q4)∞(pz−2; p, q4)∞(pq2z2; p, q4)∞
(q4z2; p, q4)∞(q2z−2; p, q4)∞(pz2; p, q4)∞(pq2z−2; p, q4)∞

., (3.47)

This corresponds to the N = 2 case of expression (3.7). It should be noted that the type-

setting choice, using R̃(z) rather than R(z), is deliberate and corresponds to the rescaling

(3.6). However, the matrix defining Aq,p(ĝl2) via the RLL relations is really the expression

(3.45) that was derived from Uq(ĝl2) using Drinfel’d twistors.

4To recap, the Jacobi Theta function for a parameter p is defined as Θp(x) := (x, p)∞(px−1, p)∞(p, p)∞,
where (x, p)∞ :=

∏∞
l=0(1− xpl).
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3.3.3 Evaluation representation for N > 2

At this point, it is worthwhile to pause for a moment to understand why this is so hard to

scale up. Indeed, a significant part of this thesis was concerned with finding a method to

repeat that calculations for the twistor of Aq,p(ĝl3), which we will use here as an illustrative

example. Again, we represent the universal R-Matrix using the principal gradation to find

(πz ⊗ πz)F(p1/3, r) =

=



aF (zp) 0 0 0 0 dF (zp) 0 eF (zp) 0
0 bF (zp) 0 fF (zp) 0 0 0 0 gF (zp)
0 0 cF (zp) 0 hF (zp) 0 jF (zp) 0 0
0 jF (zp) 0 cF (zp) 0 0 0 0 hF (zp)
0 0 eF (zp) 0 aF (zp) 0 dF (zp) 0 0

gF (zp) 0 0 0 0 bF (zp) 0 fF (zp) 0
0 0 fF (zp) 0 gF (zp) 0 bF (zp) 0 0

hF (zp) 0 0 0 0 jF (zp) 0 cF (zp) 0
0 dF (zp) 0 eF (zp) 0 0 0 0 aF (zp)


where we set zp = p1/3z to keep things legible. The form of this matrix is motivated by the

general structure of the Belavin-Baxter matrix (3.7) and the requirement of ZN -symmetry.

Then, we again used the difference equation (3.38) to find a relation between the entries. It

is possible to eliminate all but three functions, yielding, for example, the following system:

cF (p4/3z) =
[
A(pz)B(p2/3z)B(p1/3z) + p4/3zB(pz)A(p1/3z)

]
jF (p1/3z)

+
[
A(pz)B(p2/3z)A(p1/3z) + p2z2B(pz)B(p1/3z)

]
fF (z) + A(pz)A(p2/3z)cF (p1/3z)

jF (p4/3z) =
[
B(pz)B(p2/3z)B(p1/3z) + A(pz)A(p1/3z)

]
jF (p1/3z)

+
[
B(pz)B(p2/3z)A(p1/3z) + p2/3zA(pz)B(p1/3z)

]
fF (z) +B(pz)A(p2/3z)cF (p1/3z)

fF (pz) = pzA(p2/3z)B(p1/3z)jF (p1/3z) + A(p2/3z)A(p1/3z)fF (z) + pzB(p2/3z)cF (p1/3z)

The function A(z) and B(z) are defined as

A(z) =
q(1− pz3)

1− pq2z3
and B(z) =

p1/3z(1− q2)

1− pq2z3
.

Unfortunately, it gets very messy right here. At the very best, what we found was a

difference equation of 3rd degree for fF (z) that has the form fF (t3z) ∼ fF (t2z) + fF (tz) +

fF (z), with coefficients that would stretch along multiple lines - and this is still only 1 out

of the 9 equations we would need! Unlike the case of Aq,p(ĝl2), we did not find a way to

solve the above system as we did in (3.42)–(3.43) by discovering some linear combination

of those functions so that it would be proportional to a shifted version of itself. The project

was eventually abandoned.

We will conclude this chapter by emphasizing once more that Aq,p(ĝlN) is a dynamical

algebra, where the parameter p changes upon inverting the order of two generators Lij, Lkl.
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This follows from (3.37) upon applying a (partial) representation (πz1 ⊗ πz2 ⊗ I). Since

under the evaluation representation, the central charge equals zero, only c(3) gives an extra

contribution, which is captured by p? appearing on the R.H.S. of (3.21). By also applying

a representation to the third space, c(3) will vanish likewise, leading to the result that the

YBE (3.11) sees no parameter shift.

There is one more drawback caused by the FRT formalism, used in conjunction with the

Belavin-Baxter matrix (3.1): It gives us only Aq,p(ĝlN), whereas we would actually prefer to

deal with Aq,p(ŝlN). We have encountered the same story before, when setting up Uq(ĝlN)

with the help of the FRT formalism, and the remedy will be the same in both cases: We

need to divide out the parts we do not want. The method is quite similar to the definition

of the special linear group SL(N,R) as a subgroup of GL(N,R); it consists of all matrices

in GL(N,R) with determinant equal to 1. Similarly, a so-called quantum determinant can

be constructed for Aq,p(ĝlN), and be factored out after showing that it constitutes in the

center of the algebra. While the precise procedure has long been known for Uq(ĝlN), this

is not true for the elliptic algebra. This construction constitutes the heart and soul of this

thesis, and will be the topic of the following chapter.
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Chapter 4

The quantum determinant

An important step towards a successful classification of quantum elliptic algebras is to be

trace them back to some underlying, (simple) Lie algebra. In our case, this quest may be

rephrased in the following way: Are there any non-trivial subalgebras of Aq,p(ĝlN) that

preserve its elliptic structure? A good starting point to look for such subalgebras is to

check if there are ideals other than {0} and the algebra itself. More precisely, we will

discover a non-trivial center of Aq,p(ĝlN), generated by an object known as the quantum

determinant. How to construct it, and prove that not only does it commute with every

object in Aq,p(ĝlN), but also spans the entire center of the algebra, will be described in

detail in this section. In analogy to, for example, the special and general Lie group, this

determinant will be used to distinguish Aq,p(ĝlN) and Aq,p(ŝlN).

The following results were first published in [56].

We shall soon see that the quantum determinant is constructed from the Lax operators as

introduced in (3.20), where SN is the set of permutations of N objects:

q-det L(z) =
∑
σ∈SN

sgn(σ)L1σ(1)(z)L2σ(2)(
z

q
) . . . LNσ(N)(zq

1−N), (4.1)

From the above expression, it should be evident why this object bears the name of a

determinant. In fact, this is not the only possible presentation. To pick one example, in

the case Aq,p(ĝl2), there are four (equivalent) ways to express the quantum determinant:

q-detL(z) =L11(q−1z)L22(z)− L21(q−1z)L12(z)

=L22(q−1z)L11(z)− L12(q−1z)L21(z)

=L11(z)L22(q−1z)− L12(z)L21(q−1z)

=L22(z)L11(q−1z)− L21(z)L12(q−1z) (4.2)

And in fact, for the special case of Aq,p(ĝl2), it has in fact been known for a long time that

(4.2) generates the center [25] of the algebra. However, no such proof has yet been devised

for higher dimensions, which is why we set out to close that gap.
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The general idea of this proof is somewhat involved, and makes it easy to loose track. So

let us briefly present the structure here: After introducing the quantum determinant, we

set out to show that it can be recast as a partial trace. To this end, we will have to prove

the veracity of an exchange relation in the Aq,p(ĝlN) algebra for the Lax generators Lij(z).

This in turn allows us to manipulate the original expression for the determinant; or at least

it does so after invoking the properties of the antisymmetrizer A(N). Having established the

trace expression for the quantum determinant, we will demonstrate that the commutator of

it with the Lax matrix L(z) vanishes. For this last step, however, we also need to show that

the determinant takes a peculiar form in the fundamental representation, which constitutes

the penultimate step. At the very end, what is left to show is that the center is not bigger

than what the quantum determinant generates. This will be achieved by exploiting the

properties of an algebra homomorphism between Aq,p(ĝlN) and Uq(ĝlN).

4.1 The quantum determinant is central in Aq,p(ĝlN)

Without further ado, let us state what is the fundamental result of this section:

Theorem 4.1.1 Let A
(N)
1...N be the antisymmetrizer of N spaces CN . One has the following

identity

L1(z) . . . LN(zq1−N)A
(N)
1...N = q-detL(z)A

(N)
1...N (4.3)

where q-det L(z), called the quantum determinant, is a scalar function that lies in the center

of the Aq,p(ĝlN) algebra. It can be rewritten as

q-detL(z) = tr1...N

(
L1(z) . . . LN(zq1−N)A

(N)
1...N

)
(4.4)

=
∑
σ∈SN

sgn(σ)L1σ(1)(z)L2σ(2)(
z

q
) . . . LNσ(N)(zq

1−N) . (4.5)

Moreover, for generic values of the parameters p, q and of the central charge c, the quantum

determinant lies in the center of the Aq,p(ĝlN) algebra.

As already pointed out, to the best of our knowledge, the case N > 2 was not studied yet.

We shall see that the proof of centrality for the case N > 2 is different from the N = 2 case

[25]. The latter mimics the usual proofs done for Yangians1 of quantum affine algebras.

Before we begin to prove theorem 4.1.1, let us remark that the relation (4.3) uses the

(undeformed) antisymmetrizer, contrarily to the expression found for the homogeneous

gradation that is based on a q-antisymmetrizer [30]. We will discuss this in detail below.

1Similar to Uq(ĝlN ), Yangians are a class of infinite-dimensional Hopf algebras based on the so-called
rational solutions to the Yang-Baxter equation. The notion was introduced by Drinfel’d in [16]. See also
[30].
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4.1.1 Exchange relations for Lax generators

The first milestone on our way to a successful demonstration of theorem 4.1.1 is the following

equality:

Lemma 4.1.2 In the Aq,p(ĝlN) algebra, it holds true that

Lij(z)Lkl(
z

q
)− Lil(z)Lkj(

z

q
) = Lkl(z)Lij(

z

q
)− Lkj(z)Lil(

z

q
) ∀i, j, k, l = 1, . . . , N. (4.6)

In particular, we have

Lij(z)Lil(
z

q
) = Lil(z)Lij(

z

q
) ∀i, j, l = 1, . . . , N. (4.7)

Proof: Here and in the following, we will use the R-Matrix (3.7) rather than R̃(z), as this

saves us from some confusion notation, and the results naturally carry over to the case of

R̃(z). We consider the RLL relations (3.21) for w = z/q and project them onto an arbitrary

element ei,j ⊗ ek,l. This leads to the following equation, valid ∀i, j, k, l = 1, . . . , N :

N∑
n,m=1

Rn,m
i,k (q)Ln,j(z)Lm,l(

z

q
) =

N∑
n,m=1

R∗j,lm,n(q)Lk,n(
z

q
)Li,m(z), (4.8)

(Recall that R∗j,lm,n(q) is a matrix element with p → p?.) We will refer to this equation as

Xj,l
i,k(z).

Before continuing, note an additional symmetry of the matrix entries Rb,d
a,c(z) when evaluated

at z = q:

Rj,l
i,k(q) = Rl,j

i,k(q) . (4.9)

Moving on, we look at the difference Xj,l
i,k(z) − X l,j

i,k(z). Focusing first on the R.H.S., we

observe that
N∑

n,m=1

(
R∗j,lm,n(q)−R∗l,jm,n(q)

)
Lk,n(

z

q
)Li,m(z) = 0

as a consequence of (4.9). In other words, Xj,l
i,k(z)−X l,j

i,k(z) does not depend on p?. Finally,

the L.H.S. gives us

N∑
n,m=1

Rn,m
i,k (q)

(
Ln,j(z)Lm,l(

z

q
)− Ln,l(z)Lm,j(

z

q
)

)
= 0. (4.10)

Note that the indices j and l do not play any role in these relations, so if we can solve (4.10)

for one pair j, l, we can do it for any. We thus consider the equations for fixed indices j

and l, and omit them to ease the notation.

Let us define a new quantity for the expression in brackets,

Mi,k(z) ≡M j,l
i,k(z) = Li,j(z)Lk,l(

z

q
)− Li,l(z)Lk,j(

z

q
).
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The system (4.10) has N2 equations (labeled by the pair (i, k)) and N2 unknown Mi,k(z).

However, due to the property Rn,m
i,k (q) 6= 0 only when i + k = m + n (mod N), we can

decompose it into N subsystems of N equations each, with N unknowns Mi,k and i + k

fixed:
N∑

n,m=1
n+m=i+k

Rn,m
i+α,k−α(q)Mn,m(z) = 0 ∀α = 0, . . . N − 1 (4.11)

where all indices should be understood modulo N .

We thus fix the sum i+ k, and focus on a subsystem. By virtue of (4.9), we find that some

of the coefficients appearing in any given equation of (4.11) coincide, and that, in fact,

the system contains fewer than N unknowns Mi,k(z). To see that, we define yet another

quantity

Ti,k(z) = Mi,k(z) +Mk,i(z),

which obviously satisfies Ti,k(z) = Tk,i(z) and Ti,i(z) = 2Mi,i(z). Remark that relation (4.6)

rewrites Ti,k(z) = 0. Then, we may rewrite (4.11) as

� When N is odd, we have x = N+1
2

variables. The system reads

Rn1,n1

i+α,k−α(q)Mn1,n1(z) +
x∑
s=2

Rns,ms
i+α,k−α(q)Tns,ms(z) = 0, (4.12)

where s = 1, ..., x labels the solutions to ns+ms = i+k moduloN , s = 1 corresponding

to the solution with n = m.

� When N is even and i+ k is even, we have x = N+2
2

variables. They obey

Rn1,n1

i+α,k−α(q)Mn1,n1(z) +Rn2,n2

i+α,k−α(q)Mn2,n2(z) +
x∑
s=3

Rns,ms
i+α,k−α(q)Tns,ms(z) = 0, (4.13)

where again s = 1, ..., x labels the solutions to ns +ms = i+k modulo N and s = 1, 2

correspond to the two solutions n = m (with obviously |n1 − n2| = N
2

).

� When N is even and i+ k is odd, we have x = N
2

variables. In that case,

x∑
s=1

Rns,ms
i+α,k−α(q)Tns,ms(z) = 0, (4.14)

with still s = 1, ..., x and ns +ms = i+ k modulo N .

In all cases, the index α runs from 1 to N . Obviously, Ti,k(z) = 0 is a solution to this

system. Since we have a homogeneous system of linear equations, to prove that Ti,k(z) = 0

is the only solution, it is sufficient to show that the determinant of a sub-system of size x
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(the number of variables) is non-vanishing. For convenience, we pick in equations (4.12),

(4.13) or (4.14) the first x equations. Then, the determinant of this subsystem reads

det(R′) =
∑
σ∈Sx

(
sgn(σ)

x∏
α=1

R
nσ(α),mσ(α)
i+α,k−α (q)

)
. (4.15)

Instead of trying to simplify this expression directly, we examine it in the limiting case

p→ 0. Indeed, looking at the matrix entries in (4.46), one gets easily

Rn,m
i+α,k−α(q)

∣∣∣
p=0

= 0 unless n = i+ α,m = k − α or n = k − α,m = i+ α.

Entries of the form Rc,a
a,c(q) or Ra,c

a,c(q), by contrast, evaluate to a finite (non-zero), well-

defined function of q, with in addition Rc,a
a,c(q) = Ra,c

a,c(q), see (4.9). This shows that for

fixed i, k, α, there is at least one and at most two values of n (n = i+α or k−α) such that

Rn,m
i+α,k−α(q)

∣∣∣
p=0
6= 0. Running over the different values of α, one gets

det(R′)
∣∣∣
p=0

=
x∏

α=1

Ri+α,k−α
i+α,k−α(q) 6= 0. (4.16)

To go from (4.16) to the claim (4.6), we note that the matrix elements Rb,d
a,c are continuous

in p, so that there is an open set around p = 0 for which det(R′) 6= 0. By virtue of Cramer’s

rule, we infer T j,li,k(z) = 0 for all allowed values of i, j, k and l. The relation (4.7) is just a

consequence of (4.6) for k = i.

4.1.2 Properties of the antisymmetrizer

The real power of (4.7) is revealed when we use this insight in conjunction with the anti-

symmetrizer appearing in theorem 4.1.1. Since a good deal of the proof takes advantage of

the properties of the antisymmetrizer, we will review those first.

To this and, we want to spell out the antisymmetrizer explicitly. We first define the per-

mutation operator P =
∑N

i,j=1 eij ⊗ eji, satisfying P2 = I, which acts on a tensor product

of vectors as P(v1 ⊗ v2) = v2 ⊗ v1, with v1, v2 ∈ CN . Let us further define Psi = Pi,i+1,

acting in the ith and (i+ 1)st copies of CN . Since any permutation σ ∈ SN can be written

as a succession of transpositions si, we will write Pσ = Psi1Psin . . . for σ = si1 ◦ · · · ◦ sin .

Then the antisymmetrizer reads

A(N) =
1

N !

∑
σ∈SN

sgn(σ)Pσ (4.17)

The antisymmetrizer is a rank 1 projector. The eigenvector corresponding to the eigenvalue

1 reads:

w =
∑
σ∈SN

sgn(σ)eσ(1) ⊗ · · · ⊗ eσ(N).
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A(N) projects any given vector v on w. If we express v as

v =
∑

1≤i1,...,iN≤N

vi1,...,iN ei1 ⊗ · · · ⊗ eiN ,

it will be antisymmetrized by A(N) in the following way:

ANv =
1

N !

∑
ir 6=is∀r,s=1,...,N

vi1,...,iN
∑
σ∈SN

sgn(σ)eσ(i1) ⊗ · · · ⊗ eσ(iN )

=
1

N !

∑
σ,µ∈SN

vµ(1),...,µ(N)sgn(σ)eσ◦µ(1) ⊗ · · · ⊗ eσ◦µ(N)

=
1

N !

∑
σ′,µ∈SN

sgn(σ′ ◦ µ−1)vµ(1),...,µ(N)eσ′(1) ⊗ · · · ⊗ eσ′(N)

=
∑
µ∈SN

sgn(µ)vµ(1),...,µ(N)

∑
σ′∈SN

sgn(σ′)eσ′(1) ⊗ · · · ⊗ eσ′(N).

The last equality shows that the following condition holds:

A(N)v = 〈w, v〉w ∀v ∈ (CN)⊗N , (4.18)

where 〈w, v〉 =
∑

1≤i1,...,iN≤N vi1,...,iNwi1,...,iN =
∑

σ∈SN sgn(σ)vσ(1)...σ(N). This will be used

momentarily.

4.1.3 Explicit expression for the quantum determinant

Due to the equality (4.18), to get an expression for the quantum determinant, it is enough

to compute

L1(z) . . . LN(zq1−N)w =
N∑

i1,...,ıN=1

∑
σ∈SN

sgn(σ)Li1,σ(1)(z) . . . LiN ,σ(N)(q
1−Nz)(ei1 ⊗ · · · ⊗ eiN )

(4.19)

We first prove that all the indices i1, . . . , iN in (4.19) must be different. In other words,

we prove that terms with identical indices vanish. This is achieved by recursion on the

’distance’ between two identical indices.

We first consider the terms with ik = ik+1. Without loss of generality, we can check what

happens for k = N − 1: The reasoning naturally translates to all other possible pairs of

adjacent indices. Focusing on the coefficient of ei1 ⊗ · · · ⊗ eiN−2
⊗ eiN ⊗ eiN only, we write

(all indices arbitrary, but fixed):∑
σ∈SN

sgn(σ)Li1,σ(1)(z) . . . LiN ,σ(N−1)(q
2−Nz)LiN ,σ(N)(q

1−Nz)

=
∑
σ′∈SN

sgn(σ′ ◦ sN,N−1)Li1,σ′(1)(z) . . . LiN ,σ′(N)(q
2−Nz)LiN ,σ′(N−1)(q

1−Nz)

=
1

2

∑
σ′∈SN

sgn(σ′)Li1,σ′(1)(z) . . . LiN−2,σ′(N−2)(q
3−Nz)

×
(
LiN ,σ′(N−1)(q

2−Nz)LiN ,σ′(N)(q
1−Nz)− LiN ,σ′(N)(q

2−Nz)LiN ,σ′(N−1)(q
1−Nz)

)
= 0 (4.20)

46



where the last equality is done by virtue of (4.7).

Suppose now that the terms where ik = ik+n with 1 ≤ n ≤ m have zero contribution and

consider the term where ik = ik+m+1:∑
σ∈SN

sgn(σ)Li1,σ(1)(z) . . . Lik,σ(k)(q
1−kz) . . . Lik,σ(k+m+1)(q

−m−kz) . . . LiN ,σ(N)(q
1−Nz)

=
1

2

∑
σ′∈SN

sgn(σ′)Li1,σ′(1)(z) . . . Lik−1,σ′(k−1)(q
2−kz)

×
(
Lik,σ(k)(q

1−kz)Lik+1,σ(k+1)(q
−kz)− Lik,σ(k+1)(q

1−kz)Lik+1,σ(k)(q
−kz)

)
× Lik+2,σ′(k+2)(q

3−kz) . . . Lik,σ(k+m+1)(q
−m−kz) . . . LiN ,σ(N)(q

1−Nz) (4.21)

= −1

2

∑
σ′∈SN

sgn(σ′)Li1,σ′(1)(z) . . . Lik−1,σ′(k−1)(q
2−kz)

×
(
Lik+1,σ′(k)(q

1−kz)Lik,σ′(k+1)(q
−kz)− Lik+1,σ′(k+1)(q

1−kz)Lik,σ′(k)(q
−kz)

)
× Lik+2,σ′(k+2)(q

3−kz) . . . Lik,σ′(k+m+1)(q
−m−kz) . . . LiN ,σ′(N)(q

1−Nz) (4.22)

=
∑
σ∈SN

sgn(σ)Li′1,σ(1)(z) . . . Li′k,σ(k)(q
1−kz) . . . Li′k,σ(k+m)(q

−m−kz) . . . Li′N ,σ(N)(q
1−Nz).

Here is a brief explanation of what happened: To get (4.21), we have used the same trick as

in the calculation of (4.20). Then, to go from (4.21) to (4.22), we have used the exchange

relation (4.6). In the last equality, we have introduced new indices i′` = i` for 1 ≤ ` ≤ k−1,

i′k = ik+1 and i′` = i`−1 for k < ` ≤ N . This last expression vanishes due to the recursion

hypothesis.

Since all indices ir are different, we can replace the sum on i1, . . . , iN by a sum over permuta-

tions µ ∈ SN . We pick one such permutation and examine the coefficient of eµ(1)⊗· · ·⊗eµ(N):

χµ :=
∑
σ∈SN

sgn(σ)Lµ(1),σ(1) . . . Lµ(N),σ(N)

=
1

2

∑
σ∈SN

sgn(σ)Lµ(1),σ(1) . . . Lµ(k−1),σ(k−1)

{
Lµ(k),σ(k)Lµ(k+1),σ(k+1) − Lµ(k),σ(k+1)Lµ(k+1),σ(k)

}
×Lµ(k+2),σ(k+2) . . . Lµ(N),σ(N)

But we can also look at a different permutation µ′ = µ ◦ sk. In this case, we find that

χ(µ◦sk) =
1

2

∑
σ∈SN

sgn(σ)Lµ(1),σ(1) . . . Lµ(k−1),σ(k−1)

×
{
Lµ(k+1),σ(k)Lµ(k),σ(k+1) − Lµ(k+1),σ(k+1)Lµ(k),σ(k)

}
Lµ(k+2),σ(k+2) . . . Lµ(N),σ(N)

Once more, condition (4.6) shows that χ(µ◦sk) = −χµ. This allows us to conclude that in

fact, for any σ, µ ∈ SN , we have χµ = sgn(σ)χ(µ◦σ). In particular, χµ = sgn(µ)χid, and we

47



finally arrive at the result

L1(z) . . . LN(zq1−N)w =
1

N !

∑
µ∈SN

χµ eµ(1) ⊗ · · · ⊗ eµ(N)

=
1

N !

∑
µ∈SN

sgn(µ)χid eµ(1) ⊗ · · · ⊗ eµ(N) = χid w

From this, we directly infer that the quantum determinant is χid, which proves the equality

(4.1).

Remark that in this way we have proved that

L1(z) . . . LN(zq1−N)A
(N)
1...N = M(z)A

(N)
1...N , (4.23)

where M(z) is scalar in the spaces 1,...,N and given by (4.1). It remains to prove that M(z)

is central in Aq,p(ĝlN).

4.1.4 Evaluation representation of quantum determinant

There is more to be learned about the form of M(z) as introduced in (4.23) before proceeding

to the computation of the commutator in the next subsection. In particular, we will have

to show that for a particular representation - the fundamental map, which represents the

Lax generators Lij(z) by blocks of the R-Matrix (3.7) - it is proportional to the identity,

and the factor of proportionality ceases to depend on the parameter p.

Lemma 4.1.3 The R-Matrix (3.7) for the Aq,p(ĝlN) algebra obeys the following relation

R̃10 (z) . . . R̃N0

(
zq1−N)A(N)

1...N = A
(N)
1...N . (4.24)

Proof: We apply the evaluation maps πj: Lj(z) → R̃j0(z), j = 1, ..., N to the equality

(4.23):

R̃10 (z) . . . R̃N0

(
zq1−N)A(N)

1...N = π
(
q-det L(z)

)
A

(N)
1...N = M0(z)A

(N)
1...N , (4.25)

where π = π1 ⊗ π2 ⊗ ... ⊗ πN , and M0(z) is a matrix M(z) (yet to be determined) acting

on the space 0 only. From the explicit form of the fundamental map,

Lij(z) 7−→ η(z)
N∑
k=1

Sji,k(z)el,i+k−j, (4.26)

with matrix elements Sba,c(z) and normalization factor η(z) as defined in (3.7), we can

express M(z) as

M(z) =
N−1∏
j=0

η

(
z

qj

) ∑
σ∈SN

sgn(σ)
N∑
k=1

S
σ(1)
1,k (z) . . . S

σ(N)

N,k+
∑N−1
i=1 (i−σ(i))

(
z

qN−1

)
ekk ≡

N∑
k=1

mk(z) ekk,

(4.27)
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which is indeed a diagonal matrix. Remark that this uses the matrix R(z), rather than

R̃(z), a problem we will rectify soon.

Simplifying this expression might look like a hopeless task, but it is not impossible. In

fact, the product that appears in (4.27) will render a number of terms more compact. In

particular, we note the following identities:

N−1∏
k=0

κN(
z2

q2k
) = (−1)N+1 q

N2−N

z2N−2

Θp(q
2−2Nz2)

Θp(z2)

N∏
k=1

τN(q
2k−1

2 z−1) = (−1)N+1 (4.28)

N−1∏
j=0

η

(
z

qj

)
= −(pN , pN)3N

∞
(p, p)3N

∞

ΘN
p (q2)

qN−1

Θp(z
2)

Θp(q2z2)

Similarly, powers of z, q and p that appear through the matrix elements Sba,c(z) can be

simplified. When the dust has settled, the preliminary result one obtains is

mk(z) = (−1)N
(pN , pN)3N

∞
(p, p)3N

∞

q2k−2N ·ΘN
p (q2)Θp(z

2)

Θp(q2z2)

×
( ∑
σ∈SN

sgn(σ)
N∏
l=1

ΘpN (pN+k+xlq4−2lz2)

ΘpN (pN+l−σ(l)q2)ΘpN (pN+k+xl+1+1q2−2lz2)

)
, (4.29)

where we defined xl :=
∑l−1

i=1(i − σ(i)) − l. Another, somewhat more symmetric way to

present this result is

mk(z) = (−1)N
(pN , pN)3N

∞
(p, p)3N

∞

q2k−2N ·ΘN
p (q2)Θp(z

2)ΘpN (pN+k−1q2z2)

Θp(q2z2)ΘpN (pkq2−2Nz2)

×
( ∑
σ∈SN

sgn(σ)
N∏

l=1,m=2

ΘpN (pN+k+xmq2−2mz2)

ΘpN (pN+l−σ(l)q2)ΘpN (pN+k+xm+1q2−2mz2)

)
. (4.30)

From (4.28), we see that the difference between using the matrices R(z) and R̃(z) is merely

a swap of signs; not enough to cause a headache at some later stage.

This presentation is still very involved, but we can use some general properties of the R-

Matrix to derive further restrictions. Here, we will rely only on the invariance property

(3.16), [h⊗ h,R(z)] = 0 . It is easy to show that

h0h1 · · ·hN π
(
q-detL(z)

)
A

(N)
1...N = h0h1 · · ·hN R̃10 (z) . . . R̃N0

(
zq1−N) A(N)

1...N

= R̃10 (z) . . . R̃N0

(
zq1−N)h0h1 · · ·hN A(N)

1...N = π
(
q-detL(z)

)
h0h1 · · ·hN A(N)

1...N

= π
(
q-detL(z)

)
A

(N)
1...N h0h1 · · ·hN . (4.31)

Due to the expression (4.25), this implies [h , M(z)] = 0. From hij = δi,j+1 and the fact

that M(z) is diagonal, we conclude mk(z) = mk+1(z), that is to say, M(z) = m(z) I.
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But this is not all: In fact, using the properties of Jacobi Theta functions as stated in (A.5),

it is a simple exercise to show that m(z; qpN/2, p) = m(z; q, p), where the dependence on

the parameters p and q is now made explicit. Then, because |p| < 1 by definition, we infer

m(z; q, p) = m(z; qp`N/2, p) = lim
`→∞

m(z; qp`N/2, p) = lim
q′→0

m(z; q′, p), ∀ p, q.

But this is really just a formal way of saying that neither does m(z; q, p) depend on q!

And as chance would have it, this is much more powerful than independence of z. Fixing

q = 1, we see from expression (4.29) that only the term linked to the identity permutation

contributes, since it alone can cancel out the N -fold root stemming from limq→1 ΘN
p (q2).

Finally, a quick calculation shows that m(z, 1, p) = 1 for generic values of z, p and N .

Let us remark that we also showed m(z) = 1 for N = 2 or N = 3 explicitly during our work

on this topic. Especially the latter is quite remarkable in light of the form of the matrix,

whereas the result N = 2 could always be due to some lucky twist of fate (recall that the

R-Matrix becomes symmetric in this case). Additionally, for generic q and N , we checked

that the limp→0m(z; q, p) = 1, corresponding to a presentation of Uq(ĝlN) which we will

discuss in more detail below. This reassures us of the validity of the above calculation. We

will now see how this result is used to complete the proof.

4.1.5 Computing the commutator

With all the machinery developed so far, we now wish to show that

[q-detL(z), Lij(w)] = 0 ∀i, j = 1, . . . N, z, w ∈ C. (4.32)

This will be achieved by commuting L0(w) through the expression (4.4) for the quantum

determinant:

q-detL(z)L0(w) = tr1...N

[
L1(z) . . . LN(zq1−N)A

(N)
1...N

]
L0(w)

= tr1...N

[
L1(z) . . . LN(zq1−N)L0(w)A

(N)
1...N

]
= tr1...N

[
L1(z) . . . LN−1(zq2−N)R̃−1

N0

( z
w
q1−N

)
L0(w)LN(zq1−N)R̃?

N0

( z
w
q1−N

)
A

(N)
1...N

]
= tr1...N

[
R̃−1
N0

( z
w
q1−N

)
L1(z) . . . LN−1(zq2−N)L0(w)LN(zq1−N)R̃?

N0

( z
w
q1−N

)
A

(N)
1...N

]
= tr1...N

[
R̃−1
N0

( z
w
q1−N

)
. . . R̃−1

10

( z
w

)
L0(w)L1(z) . . . LN(zq1−N)

× R̃?
10

( z
w

)
. . . R̃?

N0

( z
w
q1−N

)
A

(N)
1...N

]
= tr1...N

[
R̂−1
N0

( z
w
q1−N

)
. . . R̃−1

10

( z
w

)
L0(w) q− detL(z)A

(N)
1...N

]
,

where we used the RLL relations (3.21) and the fact that generators acting in different

subspaces commute. The last equalities are due to lemma 4.1.3 and definition 4.3.
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Next, applying the fact that the quantum determinant is a scalar in the spaces 0, 1, 2...,

N , we get

q-det L(z)L0(w) = tr1...N

[
R̃−1
N0

( z
w
q1−N

)
. . . R̃−1

10

( z
w

)
A

(N)
1...NL0(w)

]
q-detL(z)

= L0(w)tr1...N

[
A

(N)
1...N

]
q-detL(z)

= L0(w) q-detL(z),

where we used that L0(w) and the antisymmetrizer commute as they live in different spaces,

applied the inverse of (4.24), and finally traced over the antisymmetrizer. As a consequence,

we can infer that (4.32) indeed holds, and thus that the quantum determinant lies in the

center of the algebra Aq,p(ĝlN) as desired.

4.2 Centrality of the quantum determinant and con-

nection with Uq(ĝlN)

The attentive reader will have noticed that was has been said so far was only half of the

story. Specifically, while we showed that the quantum determinant lies in the center of

Aq,p(ĝlN), we have yet to prove that it in fact constitutes the center, i.e. that there are no

elements in Aq,p(ĝlN) that are central, but cannot be written in the form (4.1).

As pointed out in chapter 2, the algebra Uq(ĝlN) is rather well understood. Back then,

we had mostly worked in what is called the principal gradation, simply by stating ad hoc

how the generators are represented in this particular case. But it is not the only possibility

there is, and we need to invest some time here to understand how it connects to two other

presentations.

Before doing so, let us recall how Uq(ĝlN) is set up in the FRT formalism: The generators

L±ij[∓n], where n ∈ Z≥0, 1 ≤ i, j ≤ N and L+
ij[0] = L−ji[0] = 0 for i > j, are coded in formal

generating functions L±ij(z), themselves encapsulated into matrices L±(z):

L±(z) =
N∑

i,j=1

L±ij(z) eij and L±ij(z) =
∞∑
n=0

L±ij[∓n] z±n . (4.33)

The following exchange relations hold:

R12(
z±
w±

)L±1 (z)L±2 (w) = L±2 (w)L±1 (z)R12(
z±
w±

) , (4.34)

R12(
z±
w∓

)L+
1 (z)L−2 (w) = L−2 (w)L+

1 (z)R12(
z∓
w±

) , (4.35)

where z± = zq±c/2, w± = wq±c/2, and c is the central charge. In what follows below, we

will investigate possible forms of the R-Matrix in more detail.
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4.2.1 Homogeneous gradation

Let ei, fi (0 ≤ i ≤ N − 1) and hi (0 ≤ i ≤ N) denote the generators of Uq(ĝlN) in the

Serre–Chevalley basis and let R be the universal R-Matrix of Uq(ĝlN) (see e.g. [26]). The

R-Matrix (4.38) is obtained from R by calculating its image R(z/w) = (πz ⊗ πw)R in the

N -dimensional evaluation representation πz such that (1 ≤ i ≤ N)

πz(ei) = ei,i+1 , πz(fi) = ei+1,i , πz(hi) = eii , (4.36)

πz(e0) = zeN1 , πz(f0) = z−1e1N , πz(h0) = eNN − e11 . (4.37)

It takes the form

R(h)(z) = ρN(z)

[∑
i

eii ⊗ eii +
q(1− z)

1− q2z

∑
i 6=j

eii ⊗ ejj +
(1− q2)

1− q2z

(∑
i<j

+z
∑
i>j

)
eij ⊗ eji

]
.

(4.38)

The normalization factor ρN(z) can be expressed as

ρN(z) = q
1
N
−1 (q2z; q2N)∞(q2N−2z; q2N)∞

(z; q2N)∞(q2Nz; q2N)∞
. (4.39)

This defines the so-called homogeneous gradation.

The quantum affine algebra Uq(ĝlN) is endowed with the following co-product structure

(compare this to (2.24)):

∆
(
L±ij(z)

)
=

N∑
k=1

L±kj(zq
∓c(2)/2)⊗ L±ik(zq

±c(1)/2) ,

where c(1) = c⊗ 1 and c(2) = 1⊗ c.
The quantum determinant is given in the homogeneous gradation by

qdetL(z) =
∑
σ∈SN

sgn(σ) q`(σ)L+
1,σ(1)(z) . . . L+

N,σ(N)(zq
2−2N) , (4.40)

where `(σ) denotes the length of the permutation σ and sgn(σ) = (−1)`(σ).

Finally, thanks to the RLL relations, the action of the finite Cartan generators on the Lax

matrices is given by (1 ≤ i, j, k ≤ N)

qhi L±jk(w) = L±jk(w) qhi+δik−δij . (4.41)

4.2.2 Principal gradation

Recall from section 3.3.1 that this gradation is defined on the Chevalley generators as

[ρ, ei] = ei, [ρ, fi] = −fi, (i = 0, . . . , N)
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where ρ :=
∑N−1

i=0 Λi, and Λi are the fundamental weights. The R-Matrix in said principal

gradation reads

R(p)(z) = ρN(z2)
[∑

i

eii ⊗ eii +
q(1− z2)

1− q2z2
eii ⊗ ejj

+
z(1− q2)

1− q2z2

(∑
i<j

z(2j−2i−N)/N +
∑
i>j

z(2j−2i+N)/N

)
eij ⊗ eji

]
. (4.42)

The two matrices (4.38) and (4.42) are related by a gauge transformation

R(z/w) = V (z)⊗ V (w)R(z2/w2) (V (z)⊗ V (w))−1

with V (z) =
N∑
i=1

z(N+1−2i)/N eii.

It follows that the Lax matrices L±(z) and L±(z) that define the quantum affine algebra in

the homogeneous and principal gradations respectively are related by

L+(z) = V (zqc/2)L+(z2)V (zq−c/2)−1 , (4.43)

L−(z) = V (z)L−(z2)V (z)−1 . (4.44)

Note that these relations ensure that equation (4.41) also holds for the Lax matrices L±(z)

in the principal gradation.

The quantum determinant is then given in the principal gradation by

qdet L(z) =
∑
σ∈SN

sgn(σ) q`(σ)+ 2
N

∑N
i=1 i(σ(i)−i) L+

1,σ(1)(z) . . . L+
N,σ(N)(zq

1−N) . (4.45)

4.2.3 Non-elliptic presentation

The limit p → 0 of the Aq,p(ĝlN) algebra allows us to reveal still another presentation of

the quantum affine algebra Uq(ĝlN). Since this presentation is related to the non-elliptic

limit of Aq,p(ĝlN), we will call it the non-elliptic presentation. The R-Matrix obtained in

this limit reads:

R′(z) = ρN(z2)

[∑
i

eii ⊗ eii +
q(1− z2)

1− q2z2

(∑
i<j

q(2j−2i−N)/N +
∑
i>j

q(2j−2i+N)/N

)
eii ⊗ ejj

+
z(1− q2)

1− q2z2

(∑
i<j

z(2j−2i−N)/N +
∑
i>j

z(2j−2i+N)/N

)
eij ⊗ eji

]
. (4.46)

When N > 2, this matrix differs from the previous one (cf. (4.42)), essentially by some

powers of q in the diagonal terms. Obviously, it is still ZN -symmetric. It can be obtained

from (4.42) by a (constant, non-factorized) diagonal twist:

R′(z) = F21R
(p)(z)F−1

12
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where

F12 =
N∑
i=1

eii ⊗ eii +
∑

1≤i 6=j≤N

qαij eii ⊗ ejj

with, for i < j, αij = 1
2

+ (i − j)/N and αji = −αij. We eliminate one degree of freedom

still left here by setting αii = 0 for all i. Remark that for N = 2, it reduces to α12 = 0, so

that the twist in this case is I⊗ I.
The algebra is still defined by eqs. (4.33)–(4.34) where the Lax matrices L±(z) are now

replaced by L′±(z).

At the universal level, the twisted R-Matrix is given by

RF = F21RF−1
12

with

F12 = q
∑
ij αijhi⊗hj , (4.47)

and R being the universal object of Uq(ĝlN). Here hi (i = 1, . . . , N) are the Cartan gener-

ators of the finite quantum algebra Uq(glN) satisfying the following commutation relations

(j = 1, . . . , N − 1):

[hi, ej] = (δij − δi,j+1)ej , [hi, fj] = −(δij − δi,j+1)fj , [ej, fj] =
qhj−hj+1 − qhj+1−hj

q − q−1
.

The universal twist (4.47) satisfies the co-cycle condition F12(∆ ⊗ id)F = F23(id ⊗ ∆)F ,

ensuring that the universal R-Matrix RF satisfies the Yang–Baxter equation as long as the

R-Matrix R does.

The relation between the corresponding Lax matrices L± and L′± can be expressed as

L′±(z) = (πz ⊗ id)F21 L
±(z) (πz ⊗ id)F−1

12 . (4.48)

In the evaluation representation πz, one gets

(πz ⊗ id)F12 = (πz ⊗ id)F−1
21 =

N∑
i=1

q
∑N
j=1 αijhj eii . (4.49)

The twist being diagonal and depending only on the finite Cartan generators, we find that

equation (4.41) also holds for the Lax matrices L′±(z).

The co-product of the twisted algebra is given by ∆F = F12 ∆F−1
12 . A direct calculation

shows that

∆F
(
L′±ij (z)

)
=

N∑
k=1

L′±kj(zq
∓c(2)/2)⊗ L′±ik (zq±c

(1)/2)

from which it follows that the twisted algebra inherits the same co-product structure as the

original algebra.

Applying the twist to the expression (4.45), and using the correspondence (4.48), we get
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an expression for the quantum determinant in this new presentation. It is again expressed

as a sum over permutations:

qdet L(z) =
∑
σ∈SN

sgn(σ) qnσ L′+1,σ(1)(z) . . . L′+N,σ(N)(zq
1−N) ,

where nσ = `(σ) + 2
N

∑N
i=1 i(σ(i) − i) +

∑
1≤i<j≤N(ασ(i),σ(j) − αij). A detailed analysis of

nσ, using the explicit expression of the coefficients αij, shows that it vanishes identically.

Then, the quantum determinant is given in the non-elliptic limit by

qdet L′(z) =
∑
σ∈SN

sgn(σ) L′+1,σ(1)(z) . . . L′+N,σ(N)(zq
1−N) . (4.50)

Let us remark that the relation (4.50) is based on the (undeformed) antisymmetrizer, con-

trarily to the expressions found for the homogeneous and principal gradations that are

based on q-deformed versions of it. When N = 2, R(p)(z) and R′(z) coincide, and only the

homogeneous gradation provides a deformed antisymmetrizer.

At this point, you may rightfully ask: Why all this fuss? At the end of the day, one

would like to find a way to connect (a) the well-known result from Uq(ĝlN) in homogeneous

gradation (cf. (4.38)) through the non-elliptic p→ 0 limit (4.46) with the quantum elliptic

algebra Aq,p(ĝlN). The good news is that this can be achieved, as the next (and final)

subsection shows.

4.2.4 Center of the algebra

It is known that in Uq(ĝlN) and for generic values of q and c, the quantum determinant, as

defined in (4.40), generates the center of this quantum algebra [30]. Since, as an algebra

and for generic values of p, q and c, Aq,p(ĝlN) is isomorphic to Uq(ĝlN) (e.g. one can

match generators one-to-one), (4.40) also describes the full center of the algebra Aq,p(ĝlN).

The same is true for the other two expressions (4.45) and (4.50), which are but different

presentations of the same quantum determinant.

Moreover, we have shown that expression (4.1) also lies in the center of Aq,p(ĝlN), and that

its limit for p → 0 coincides with the quantum determinant of Uq(ĝlN) in the non-elliptic

presentation (4.50). In other words, the limit p → 0 defines a surjective mapping from a

set of elements (defined by the expression (4.1)) in the center of Aq,p(ĝlN) to a generating

set (defined by (4.50)) of the same center.

Thus, it implies that (4.1) also defines a generating set of the center of Aq,p(ĝlN) for generic

values of p, q and c. Or, to put it more bluntly, the quantum determinant (4.1) generates

the center of the vertex-type quantum elliptic algebra.

Having found the center of Aq,p(ĝlN) to be identical with the quantum determinant, we can

factor it out by setting it to the value q
c
2 (remember that c is the central charge), such as

to obtain

Aq,p(ŝlN) = Aq,p(ĝlN)/ 〈q-detL(z)− q
c
2 〉 . (4.51)
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This defines Aq,p(ŝlN), and concludes the task we set for ourselves at the beginning of this

chapter. The same reasoning applies for Uq(ŝlN), with the important difference that in this

case, the result has been known for a long time.
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Chapter 5

Summary and outlook

We have come a long way and touched on many different aspects of abstract algebras,

starting with the well-known Lie algebra structures and working ourselves all the way up

to the realm of quantum elliptic objects. As long parts of the journey have been rather

technical indeed, it might be worth looking again at the bigger picture to appreciate what

was achieved.

We began by familiarizing the reader with affine structures and the concepts of q-deformed

algebras, in particular with the illustrative example Uq(ĝlN). We elucidated its fundamental

nature by introducing the notion of Hopf algebras, and explained how one can alternatively

just define the algebra through exchange relations obtained from matrix solutions to the

Yang-Baxter equation (FRT formalism). The subsequent chapter described how Uq(ĝlN)

can be used to generate a categorically different algebra, named Aq,p(ĝlN), that is itself

related to elliptic solutions of the Yang-Baxter equation. Its properties are best captured

by the concept of quasi-Hopf algebras, and we explained how this notion connects to Hopf

algebras via Drinfel’d twistors. The final chapter then attempted to answer the question

if anything definite can be said about the centers of these algebras as defined through the

FRT formalism. We discovered that we can construct an object from the generators, the

quantum determinant, and show that it generates the center of Aq,p(ĝlN).

Topics for future research based on these results do not easily suggest themselves, as the

findings are, to a large degree at least, self-contained. That being said, there are at least

two important and yet unresolved issues we came across. Number one: Can the Drinfel’d

twist (3.32) be explicitly calculated in representation for N > 2, and shown to lead to the

same R-Matrix as the Belavin-Baxter solution (3.1) of the dynamical Yang-Baxter equation

(3.10)? Recall that while the construction of a quantum elliptic quasi-Hopf algebra has been

carried out at the universal level [35], it remains to be shown that this R-Matrix can be

evaluated to obtain Belavin’s solution in cases other than N = 2. Number two: Contrary

to the case of Uq(ĝlN), for example (see [22]), a free field realization - an indispensable tool

for the study of correlation functions [15] - of Aq,p(ĝlN) is still missing.
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Lest the reader concludes this field is mostly a playground for pure mathematicians, let me

point to you to some examples of how the study of quantum algebras integrates into the

body of (theoretical) physics, and is indeed an object of recent research. For one thing, while

it may seem as if most fields where quantum groups play a role - for example, the study of

integrable models [53] - stand little chances to be experimentally relevant, the opposite is

the case. Around the turn of the millennium, following significant advancements in laser-

cooling techniques, former ’toy’ models suddenly entered the laboratory [38, 44, 42, 43, 46,

47, 48, 52]. Exact solutions for these models can thus be tested, and many of them have

been verified with high precision [54].

More specifically, quantum elliptic algebras provide the basic symmetry structure for many

models in quantum or statistical mechanics. Examples include the Heisenberg XYZ chain

alluded to in the introduction [28] and RSOS (’restricted solid-on-solid’) models [14, 37].

To give one concrete example, there exists a scaling limit of Aq,p(ŝl2) known as the Sklyanin

algebra [12, 13] in which the R-Matrix takes the form

R(z) = I⊗ I +
3∑

α=1

Wα(z)σα ⊗ σα,

where σα are the Pauli matrices, and Wα(z) are elliptic functions which we will not specify

here. This algebra encodes the symmetries of the XY Z spin-1
2

model [20].

There is a problem, however. While for all these models, just as in the simpler cases of

the XXX and XXZ spin chains, integrability has been established as a consequence of their

R-Matrices satisfying the Yang-Baxter equation (i.e. we know that there are just as many

commuting charges as there are degrees of freedom), the much bigger challenge is to use this

knowledge for actual calculations. The standard algebraic Bethe ansatz used to determine

eigenstates and eigenvalues of the Hamiltonian, as briefly outlined in the beginning, ceases

to work for those models. In very broad terms, the structure of the R-Matrix prevents us

from constructing a suitable reference state - called the pseudo-vacuum - that is necessary

to generate the energy spectrum. Hopefully, we will see some progress on this front in the

future.

One could go on and on here, point out the connection between Aq,p(ĝlN) and structures

known as deformed Virasoro algebra and Deformed WN algebras [55], and then explain how

these, in turn, link to Macdonald polynomials [29, 31], extensions of AGT duality [49] or

N = 2 superconformal gauge theories in five dimensions [50]. But we are confident that we

provided the reader with enough reasons - both intrinsic and functional - that merit the

study of these objects, and hope that this thesis will provide a starting point for further

investigations.
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Appendix A

Jacobi Theta functions

Jacobi Theta functions naturally arise in the context of elliptic quantum algebras when

performing a Drinfel’d twist on the underlying quantum affine structures. Indeed, it is

because of their appearance that we speak about elliptic algebras in the first place. Since

many of the calculations performed in this thesis really heavily on the properties of those

Theta functions, we will briefly review their main characteristics here.

Let H = {z ∈ C | Imz > 0} be the upper half-plane and Λτ = {λ1 τ+λ2 |λ1, λ2 ∈ Z , τ ∈ H}
the lattice with basis (1, τ) in the complex plane. Furthermore, denote by ZN ≡ Z/NZ the

congruence ring modulo N with basis {0, 1, . . . , N−1}, and set ω = e2iπ/N . Finally, for any

pairs γ = (γ1, γ2) and λ = (λ1, λ2) of numbers, we define a pairing 〈γ, λ〉 ≡ γ1λ2 − γ2λ1,

which is manifestly skew-symmetric, i.e. 〈γ, λ〉 = −〈λ, γ〉.
There are several definitions of Jacobi Theta functions. For our analysis, we rely on the

following expression, defined for rational characteristics γ = (γ1, γ2) ∈ 1
N
Z× 1

N
Z by:

ϑ

[
γ1

γ2

]
(ξ, τ) =

∑
m∈Z

exp
(
iπ(m+ γ1)2τ + 2iπ(m+ γ1)(ξ + γ2)

)
. (A.1)

On can show that the functions ϑ

[
γ1

γ2

]
(ξ, τ) satisfy the following shift properties:

ϑ

[
γ1 + λ1

γ2 + λ2

]
(ξ, τ) = exp(2iπγ1λ2) ϑ

[
γ1

γ2

]
(ξ, τ) , (A.2)

ϑ

[
γ1

γ2

]
(ξ + λ1τ + λ2, τ) = exp(−iπλ2

1τ − 2iπλ1ξ) exp(2iπ〈γ, λ〉)ϑ
[
γ1

γ2

]
(ξ, τ) , (A.3)

where γ = (γ1, γ2) ∈ 1
N
Z× 1

N
Z and λ = (λ1, λ2) ∈ Z× Z.

If we give up the assumption that λ = (λ1, λ2) are integers and allow them to take on

arbitrary values, we can still find one other shift property:

ϑ

[
γ1

γ2

]
(ξ + λ1τ + λ2, τ) = exp(−iπλ2

1τ − 2iπλ1(ξ + γ2 + λ2))ϑ

[
γ1 + λ1

γ2 + λ2

]
(ξ, τ) .

This is not yet the Jacobi Theta function that we will be working with. Instead, whenever

the main text makes a reference to Theta functions, we have in mind the product

Θp(z) = (z; p)∞ (pz−1; p)∞ (p; p)∞ (A.4)
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where the infinite multiple products are defined by

(z; p1, . . . , pm)∞ =
∏
ni≥0

(1− zpn1
1 . . . pnmm ).

The relation between this Jacobi Theta function and the one with rational characteristics

(γ1, γ2) ∈ 1
N
Z × 1

N
Z as defined in (A.1) is not apparent. Still, it is possible to show that

they are indeed related, more precisely through the following equation:

ϑ

[
γ1

γ2

]
(ξ, τ) = (−1)2γ1γ2 p

1
2
γ21 z2γ1 Θp(−e2iπγ2pγ1+ 1

2 z2) ,

where p = e2iπτ and z = eiπξ.

The Jacobi Θa2(z) function enjoys a set of properties that is of central importance to our

calculations, easily verified starting with expression (A.4):

Θa2(a
2z) = Θa2(z

−1) = −Θa2(z)

z
and Θa2(az) = Θa2(az

−1). (A.5)

From the definition (A.4) and these equalities, it is not hard to show that the following

identities also hold:

Θp(x)Θp(−x) = Θp2(x
2)

(p, p)2
∞

(p2, p2)∞

ΘpN (x)ΘpN (px) . . .ΘpN (pN−1x) = Θp(x)
(pN , pN)N∞

(p, p)∞

ΘpN (p)ΘpN (p2) . . .ΘpN (pN−1) = (p, p)2
∞(pN , pN)N−3

∞ (A.6)

Despite these properties, Theta functions are notoriously hard to handle; a tribute to their

elliptic nature. What saves the day in most cases cases is the following

Theorem A.1 Let f : H→ C be a function holomorph in C∗ satisfying f(pz) ∝ f(z)/zm.

Such a function is said to be p-quasiperiodic. Then there exist m roots a1, . . . am such that

f(ai) = 0 ∀i, and if ai 6= pn for all i = 1, . . . ,m, n ∈ Z∗, then f(z) can be re-expressed in

product form:

f(z) = g(z)
m∏
i=1

Θp

(
z

ai

)
, (A.7)

where g(z) is a nome in z [58].

An important consequence of this is the

Corollary A.2 Let f be as before, in particular, let f(pz) ∝ z−mf(z). If one succeeds in

finding m+ 1 roots ai with f(a1) = · · · = f(am+1) = 0, ai 6= pn for all i = 1, . . . ,m, n ∈ Z∗,
we can directly conclude that f(z) = 0.
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Appendix B

Example: Explicit application of
Theta function theorem

The theorem about meromorphic functions from the previous appendix is an extremely

powerful tool to tame otherwise uncontrollable sums of products of Theta functions. Many

of the results we arrived at, in particular the disentangled expression for the R-Matrix after

applying a Drinfel’d twist to it (cf. (3.43) and (3.45)), were due to this theorem. It is

thus worthwhile to lay down how exactly this works for a concrete example. Here, we have

chosen to prove that in the principal gradation of the Aq,p(ĝl2) algebra, π(q-detL(z)) = 1.

Since the quantum determinant is diagonal in evaluation representation, we can begin by

spelling out the first matrix entry (4.29) explicitly:

m1(z2) =
(p2, p2)6

∞
(p, p)6

∞

Θ2
p(q

2)Θp(z
2)Θp2(p

2q2z2)

q2Θp(q2z2)Θp2(pq−2z2)

( Θp2(pz
2)

Θp2(p2z2)Θ2
p2(p

2q2)
−

Θp2(z
2)

Θp2(pq2)Θp2(p3q2)Θp2(pz2)

)
We multiply the term in brackets with the smallest common denominator. This leads to

the following expression:

m1(z2) =
(p2, p2)2

∞
(p, p)4

∞

(
q2Θ2

p2(pz
2)Θ2

p2(pq
2)− pz−2Θp2(z

2)Θp2(q
2)

q2Θp2(pq2z2)Θp2(pq−2z2)

)
It turns out that we can apply theorem (A.1) to the nominator, which we will call f(z2) for

convenience: One finds that f(p2z2) = p−2z−4f(z2), and the two roots z2
1 , z

2
2 are determined

to be p−1q±2. This means that

f(z2) = g(z2)Θp2(pq
2z2)Θp2(pq

−2z2)

with g(z2) being a power of z2. To specify its exact form, p2-periodicity comes to the rescue.

On the one hand, we have

f(p2z2) =
f(z2)

p2z4
=
g(z2)Θp2(pq

2z2)Θp2(pq
−2z2)

p2z4
.

On the other hand, we can just as well write

f(p2z2) = g(p2z)Θp2(p
3q2z2)Θp2(p

3q−2z2) =
g(p2z)Θp2(pq

2z2)Θp2(pq
−2z2)

p2z4
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Comparison yields g(p2z2) = g(z2), i.e. g(z2) = const. Finally, to find the constant of

proportionality, we compare the original expression for f(z2) with the one we found using

the theorem at a specific point, say z = 1. This leads to

f(z2) = q2Θ2
p2(p)Θp2(pq

2z2)Θp2(pq
−2z2)

and finally, using (A.6), we find m1(z2) = 1. Since all diagonal entries are identical (as

shown in (4.31)), we infer π(q-detL(z) = 1.

62



References

[1] V.G.Drinfeld. Quasi-hopf algebras. Algebra y Analiz, 1(6):114–148. transl. Leningrad

Math. J, 1(6) ,1990.

[2] W. Heisenberg. Zur Theorie des Ferromagnetismus. Zeitschrift für Physik, 9:619–636,

1928.

[3] H. Bethe. Zur Theorie der Metalle I: Eigenwerte und Eigenfunktionen der linearen

Atomkette. Zeitschrift für Physik A, 71:205–226, 1931.

[4] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys.

Rev., 108:1175–1204, Dec 1957.

[5] R. J. Baxter. Eight-vertex model in lattice statistics. Phys. Rev. Lett., 26:832–833,

Apr 1971.

[6] R. J. Baxter. Partition function of the eight-vertex lattice model. Annals of Physics,

70(1):193–228, 1972.

[7] E.K. Sklyanin and L. D. Faddeev. Quantum-mechanical approach to completely in-

tegrable field theory models: Selected works of ludwig faddeev. Sov. Phys. Dokl.,

23:902–904, 1978.

[8] L.A. Takhtajan and L.D. Faddeev. The Quantum method of the inverse problem and

the Heisenberg XYZ model. Russ. Math. Surveys, 34:11, 1979.

[9] L.D. Faddeev, E.K. Sklyanin, and L.A. Takhtajan. The Quantum Inverse Problem

Method. Theor. Math. Phys., 40:688, 1980.

[10] A.A. Belavin. Dynamical symmetry of integrable quantum systems. Nucl. Phys. B,

180(2):189–200, 1981.

[11] P. P. Kulish and E. K. Sklyanin. Solutions of the Yang-Baxter equation. Journal of

Soviet Mathematics, 19(5):1596–1620, 1982.

[12] E. K. Sklyanin. Some algebraic structures connected with the Yang-Baxter equation .

Funktsional. Anal. i Prilozhen., 16(4):263–270, 1982.

63



[13] E. K. Sklyanin. Some algebraic structures connected with the Yang-Baxter equation.

Representations of quantum algebras. Funktsional. Anal. i Prilozhen., 17(4):34–38,

1983.

[14] G. E. Andrews, R. J. Baxter, and P. J. Forrester. Eight-vertex SOS model and gener-

alized Rogers-Ramanujan-type identities. J. Stat. Phys., 35(3):193–266, 1984.

[15] V.l.S. Dotsenko and V.A. Fateev. Conformal algebra and multipoint correlation func-

tions in 2D statistical models. Nucl. Phys. B, 240(3):312 – 348, 1984.

[16] V. G. Drinfeld. Hopf algebras and the quantum Yang-Baxter equation. Sov. Math.

Dokl., 32:254–258, 1985. [Dokl. Akad. Nauk Ser. Fiz.283,1060(1985)].

[17] C. A. Tracy. Embedded elliptic curves and the yang-baxter equations. Physica D,

16(2):203 – 220, 1985.

[18] M. Jimbo. Quantum R matrix for the generalized Toda system. Comm. Math. Phys.,

102(4):537–547, 1986.

[19] M. P. Richey and C. A. Tracy. ZN Baxter model: Symmetries and the Belavin

parametrization. J. Stat. Phys., 42(3):311–348, Feb 1986.

[20] E. K. Sklyanin. Boundary conditions for integrable quantum systems. J. Phys. A:

Math. Gen., 21(10):2375, 1988.

[21] L.D. Faddeev, N. Y. Reshetikhin, and L.A. Takhtajan. Algebra analiz. Engl. transl.:

Leningrad Math. J, 1:193, 1990.

[22] H. Awata, S. Odake, and J. Shiraishi. Free Boson Realization of Uq(ŝlN). Jun 1993,
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Uq(ĝl(n)). Comm. Math. Phys., 156(2):277–300, 1993.

[24] G. Felder. Elliptic quantum groups, 1994, arXiv:hep-th/9412207.

[25] O. Foda, K. Iohara, M. Jimbo, R. Kedem, T.i Miwa, and H. Yan. An elliptic quantum
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[37] H. Konno. An Elliptic Algebra Uq(ŝl2) and the Fusion RSOS Model. Commun Math

Phys, 195(2):373–403, 1998.

[38] M. Olshanii. Atomic scattering in the presence of an external confinement and a gas

of impenetrable bosons. Phys. Rev. Lett., 81(5):938, 1998.

[39] D. Bonatsos and C. Daskaloyannis. Quantum groups and their applications in nuclear

physics. 1999, arXiv:nucl-th/9909003.

[40] L. Frappat, A. Sciarrino, and P. Sorba. Dictionary on Lie Algebras and Superalgebrass,

2000, arXiv:hep-th/9607161.

[41] S. Majid. Quantum groups and noncommutative geometry. J.Math.Phys., 41:3892–

3942, 2000, arXiv:hep-th/0006167.

[42] A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-

Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle. Re-

alization of Bose-Einstein Condensates in Lower Dimensions. Phys. Rev. Lett., 87

(13):130402, 2001.

65



[43] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, and T. Esslinger. Exploring phase
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Selbstständigkeitserklärung

Ich, Daniel Wolfgang Issing, versichere, dass ich diese Arbeit selbstständig verfasst und
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