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V) Outlook & open problems



) Introduction

Geometry in general depends on, with what kind
of objects you test it.

Point particles in classical Einstein gravity
see smooth & continuous manifolds.

> Classical & quantum singularities !

Strings may see space-time in a different way.

Shortest possible scale in string theory: [,



Ways for describing stringy geometry:

* Quantum CY geometry, mirror symmetry (world sheet
instantons).

* Non-geometric backgrounds: Asymmetric orbifolds

Covariant lattices
Fermionic constructions

T-folds

Here new observation:



Ways for describing stringy geometry:

* Quantum CY geometry, mirror symmetry (world sheet
instantons).
* Non-geometric backgrounds: Asymmetric orbifolds

Covariant lattices
Fermionic constructions

T-folds

Here new observation:
Stringy (non)- geometry: deformed geometry:

e Non-commutative geometry: | X;, X;| ~ O(L;)

o Non-associative geometry: || X;, X;|, X| ~ O(Lj;)
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1) Non-geometric flux compactifications

Recall standard Riemannian geometry:

- Flat space: Triangle: o+ (G + v =

SR
/'O"l. IADTSXY

Manifold: need different coordinate charts, which are
patched together by coordinates transformations, i.e.

group of diffeomorphisms: Diff (M) : f: U — U’



Properties of Riemannian manifolds:

e distances between two points can be arbitrarily short.
® coordinates commute with each other:

X, X =0

This is the situation, if one is using point particles to
probe distance and the geometry of space.

Now we want to understand, how extended closed
strings may possibly see the (non)-geometry of space.
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We will encounter two different interesting situations:

- Non-geometric Q-fluxes: spaces that are locally still
Riemannian manifolds but not anymore globally.

Transition functions between two coordinate patches are
not only diffeomorphisms but also T-duality transformations:

Diff(M) — Diff(M) x SO(d,d)
Q-space will become non-commutative: |X;, X | # 0

- Non-geometric R-fluxes: spaces that are even
locally not anymore manifolds.

R-space will become non-associative:
HX’M Xj]a Xk] + perm. # 0

Physics is nevertheless smooth and well-defined!



Q-space T-fold:  Patching uses T-duality.

e.g. torus fibrations

Geometric background: £ = afa’ in UNU', a € GL(d, Z)

Non-geometric background:

b
5’:?§id in UNU’
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Standard effective action is in general not well-defined
for non-geometric backgrounds:

1
Ss~ [da®(R- f5H2 4 )

Well-defined (10D) effective action for non-geometric
backgrounds can be constructed.

D.Andriot, M. Larfors, D.L. P. Patalong, arXiv:1106.4015

D.Andriot, O. Hohm, M. Larfors, D.L. P. Patalong, arXiv:1202.3060, 1204.1979

Mathematical framework:

- Doubled field theory: T-duality (field redefinition).



T-duality: I': R +«—— = M +—— N

I': p+«— p, pL<—pPL, PR+ — —PR.

~

e Dual space coordinates: X (7,0) = X — Xg

~

T: X «— X, Xp+— X, Xp+— —Xp

T-duality is part of stringy diffeomorphism group.



T-duality: lI': R é&— —, M «— N

I': p+«— p, pL<—pPL, PR+ — —PR.

~

e Dual space coordinates: X (7,0) = X — Xg

~

T: X «— X, Xp+— X, Xp+— —Xp

T-duality is part of stringy diffeomorphism group.
Doubled field theory:

(O. Hohm, C. Hull, B. Zwiebach (2009/10))

- Manifestly O(D,D) invariant string action.

~

- Coordinates: use O(D,D) vector XM = (X;, X*)



- Background: H™" = (gij _ b'%{gklblj bikg ™
_gZ bk:j gZJ



i — bz klb _ bz kj
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i — bz klb _ bz kj
- Background: HY" = (93 kT lg ik
—Jg bkj g

- O(D,D) invariant DFT action:
1 1
SprT = /da}df e 24 ( 3 HMNE)’MHKL ONHrr — §HMN5’NHKL Or Har i
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i — bz klb _ bz kj
- Background:  HMN = (Ji 7 Tekd PG Bikd )
—Jg bkg g

- O(D,D) invariant DFT action:
1 1
SprT = /da:di: e 24 ( 3 HMNE)’MHKL ONHrr — iHMNaNHKL Or Har i
— 200 dONHMN 4+ AHMN 9, dOnd ) .

- O(D,D) transformation (field redefinition): bi-vector

E=g+b — El=E=¢g143
- Introduce the following objects (non-geometric fluxes):

Connection: Q" = 0,, ™"

Field strength (tensor):

~

~

19 Nli 27k T Ot 19
RYF =3DlgiM - D' = 9' — 399,




- Bianchi-identities:

40U RIFI 44 gPlig, RIFY 4 6 Q19 RMIP = ¢



- Bianchi-identities:
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- Bianchi-identities:

40" RIFN 4 4 P19, RIF) 46 Q1Y RFIP = ¢

- Rewrite DFT action

~

Soer(3, 3,3) — / dadi /3] e~ [R(3.9) + R(G~.9)

— QP RFR 1+ 4((00) + (00)°) + .|

- Final action (,,supergravity limit“): 0 = ()

, p A 1 %] 1 ~TS iJ
62d£ﬁnal(ga 67 d)(ilf) — R(g) -+ 4(a¢)2 _ ER ijijk — Zgzkg]lg Q?"kl Qs J + ...

This action is indeed well-defined for non-geometric fluxes!




V) Non-commutative/non-associative geometries
from non-geometric string backgrounds

Now we want to derive the stringy quantum
geometry of non-geometric backgrounds .

= Deformed (NC/NA) string geometry with

Q- reps. R-flux as deformation parameters.

i) Elliptic monodromy: symmetric <> asymmetric orbifold

D. Lust, JEHP 1012 (2011) 063, arXiv:1010.1361;arXiv:1205.0100
C. Condeescu, I. Florakis, D. Lust, JHEP 1204 (2012) 121, arXiv:1202.6366.

ii) Parabolic monodromy: T-duality as canonical transformation

A.Andriot, M. Larfors, D. Lust, P.Patalong, to appear; l. Bakas, D. Lust, work in progress

iii) CFT amplitude computation

R. Blumenhagen, A. Deser, D.Lust, E. Plauschinn, F. Rennecke, |. Phys A44 (201 1), 385401, arXiv:1106.0316



i) Elliptic = finite order monodromy

w - background, geometric space

Symmetric (freely acting orbifold): commutative
! T-duality

Q-background, non-geometric space

Asymmetric (freely acting orbifold): non-commutative



Reacll: three-dimensional flux backgrounds:

Fibrations: 2-dim. torus that varies over a circle:
2 3 1
Twl,xQ — M° — Sa?3

The fibration is specified by its monodromy properties.
Two T-dual cases:

(i) Geometric spaces (manifolds): geometric w - flux

complex structure is non-constant:

v —a° +2r =  7(2°+271) = —1/7(2°)
(i) Non-geometric spaces (I-folds): non-geometric Q-flux

size + B-field is non-constant:

> — 2 +2r =  pla® +27) = —1/p(z°)
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Reacll: three-dimensional flux backgrounds:

Fibrations: 2-dim. torus that varies over a circle:
2 3 1
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The fibration is specified by its monodromy properties.
Two T-dual cases:

(i) Geometric spaces (manifolds): geometric w - flux

complex structure is non-constant:
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D.L., JEHP 1012 (2011) 063, arXiv:1010.136|

SPeCiﬁC example: Z 4 -monod romy C. Condeescu, I. Florakis, D. L., arXiv: 1202.6366

winding

X2 (1,0 +21) = X°(7,0) + 21 N3 & number
w: T2 +2m) = —1/7(2°)
Q: p(x°+2m) =—1/p(z”)
Xp(r,o+2r1) = eXp(r,0), 0= —-2rNsH

(Complex coordinates: X r = X p +iX] R)
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SPeCiﬁC example: Z 4 -monod romy C. Condeescu, I. Florakis, D. L., arXiv: 1202.6366

winding

X2 (1,0 +21) = X°(7,0) + 21 N3 & number
w: T2 +2m) = —1/7(2°)
Q: p(x°+2m) =—1/p(z”)
Xp(r,o+27) = e“Xp(r,0), 0= —-2nN3H

(Complex coordinates: X r = X p +iX] R)

Corresponding closed string mode expansion =

0

Oé/ 1 .
N el —i(n—v)(74+0) 7
Xrp(T+0) =14/ 5 nEEZn ~Qn—y€ : V== N3 H

(shifted oscillators!)

Then one obtains:

B 1
Xp(r,0), Xp(1,0)] =0 , @:&/Zn_VZ—Q/WCOt(WN;gH)
nez



Right moving torus coordinates:

w: T(2®+2m) = -1/7(2") = Xp(r,0+271) = e’ Xp(r,0)

Q : ,0(5133 + 277) — _1/10(333) :XR(Tv 0+ 27T) — G_MXR(’T, O-)
w-flux [Xl, Xz] =0
Q-flux: [Xl, Xz] ~ Z'Lg’ F®) P’

dual momentum (winding) in third direction




Right moving torus coordinates:

w: T(2®+2m) = -1/7(2") = Xp(r,0+271) = e’ Xp(r,0)

Q : p(x:g + 27T) — _1/10(333) :XR(Tv 0+ 27T) — G_MXR(T, O-)
w-flux [Xl, Xz] =0
Q-flux: [Xl, XQ] ~ iLg’ F®) P’

dual momentum (winding) in third direction
Corresponding uncertainty relation:

-3\ 2
(AXYHAX?)? > L (FY)? (5°)
The spatial uncertainty in the X, X5 -
directions grows with the dual momentum in

the third direction: non-local strings with
winding in third direction.




These non-geometric Q-backgrounds with rotated
closed string boundary conditions can be realized as
freely acting asymmetric orbifolds.

C. Condeescu, |l. Florakis, D. L., arXiv:1202.6366

* The model is an exactly solvable CFT

e Partition function:

1 _ nR? m+1n|? 7 (= —
7 = L R Z e 2 M ZL[Z](T)ZR(T)F(5,5)[g](77T)

m,ne




T-duality in r°-direction = R-flux tau boundary

~3 3
p — P

=  For the case of non-geometric R-fluxes one gets:
1 2 -

XY X2 ~ i L3 FO) p?

Use [p°, X°] = —i

—  [[X!, X7, X3 + perm. ~ F®) 3

Non-associative algebra!
This nicely agrees with the non-associative closed

string structure found by Blumenhagen, Plauschinn in
the SU(2) WZW model: arXiv:1010.1263

Twisted Poisson structure (same as for point particle in the
field of a magnetic monopole, being related to co-cycles)




ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux
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ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux

- g i4v/* (Shelton, Raylor,Wecht, 2005;
backgrounds, which are related by T-duality: ©hren faen e s

Chain of 3 T-dualities N Eill geomet MNON-8EC non-
flux Q-flu. geom. R-flux

F® . H& we Q < R
/ Txl TQ[32 T CZ—;C3 (not isometry)
noy-comm. T-fold with Q-flux:

Flat 3-torus with :
constant H-flux [Xiv Xj- 7& 0

" Twisted (curved) Non-associative
st Riemannian 3-torus »opace” with R-flux

commutative 1 X5, X], Xi| #0




Procedure for the quantization of these backgrounds:

|. step: Standard canonical quantization of H
and W - backgrounds
XK (1,0), X" (T,0")] =0
Pu(1,0),P,(1,0")] =0
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Procedure for the quantization of these backgrounds:

|. step: Standard canonical quantization of H
and W - backgrounds
XK (1,0), X" (T,0")] =0
[P,u (T, 0)7 Py (7_7 0/)] =0
XH(1,0),P,(T,0")] =1 0¥ 6(c — ')

* Obeying the following closed string boundary
(SO(2,2)-monodromy) conditions:

Yi(r,o+21) = Y'(r,0)+ 27Ny HY?(1,0),
Y3(r,o+21) = Y?(r,0),

Yi(r,o+2r) = Yi(1,0),

Y3(r,04+21) = Y?(r,0)+ HN3Y(r,0);
Y3(r,0 +21) = Y3(r,0)+21N;



2.step: T-duality as canonical (Buscher) transformation:

(E.Alvarez, L. Alvarez-Gaume,Y. Lozano, |994;
l. Bakas, K. Sfetsos, 1995)

0, X' =0,Y' — HY?09,Y? 0, Y =0, X'+ HX30,.X?
H <— W . T-d along:=1 0, X' =0.Y' — HY?0,Y? — 0, Y' =0, X'+ HX30,X?
0, X%3 =09,Y?3 | (all orders) | 0,Y%3 =9, X?23
8UX2’3 — 8ay2,3 aay2,3 — aUXQ,B
0,Y? =0,72%2+ HZ%0, 7" 0,.7%> =0,Y? - HY30,Y"!
W < Q . T-d. along ¢ =2 0,Y2 =0,7° 4+ HZ30, 7" = 0,7° =0,.Y? - HY?0,Y!

0, Y13 =0,2%3 | (up to O(H?)) | 0,213 =09, Y13
8ayl,3 — 8021’3 80Z1’3 — 8ayl,3




2.step: T-duality as canonical (Buscher) transformation:

(E.Alvarez, L. Alvarez-Gaume,Y. Lozano, |1994;
l. Bakas, K. Sfetsos, 1995)

0.X'=0,Y' — HY30,Y? 0.Y' =0, X'+ HX30,.X?
I i — W . T-d. along ¢t =1 0,X' =0, Y — HY39,.Y? — 0, Y =0, X'+ HX30,X?
0, X%3 =09,Y?3 | (all orders) | 0,Y%3 =9, X?23
80X2’3 — aay2,3 80Y2’3 — 8JX2’3
0.Y?=0,7>+ HZ30,. 71 0,72 =0,Y? - HY3),Y"!
W < Q . T-d. along ¢ =2 0,Y2 =0,7° 4+ HZ30, 7" = 0,7° =0,.Y? - HY?0,Y!
0, Y13 =9, 713 (up to O(Hz)) 0,723 =9, Y13
80Y1’3 — 8021’3 8UZ1’3 — 8ayl,3

~dual SO(2,2)-monodromy conditions:

Z'(r,o+2m) = Z'(r,0)-2rN,HZ*(1,0), Mix coordinates with
Z%(r.o+2m) = Z%(r.0)+2rN;HZ'(1,0),  dual coordinates.
7Y ro+2m) = Z'(r1,0),

Z2(r,o+2m) = Z3(1,0); I
Z3(1,0+27) = Z°(r,0)+ 27N

Non-geometric background.



3.step: Derive (non-canonical) quantization for Q-
background:

(consistent with the non-geometrical
monodromy conditions)

17'('2

2 3

-duality does not preserve the
canonical commutation relations!

7Y (1,0),2°%(1,0)] = HN?
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® Mixed closed string bound conditions (in analogy to
mixed D-N boundary conditions for D-branes) lead to
closed string non-commutativity. This is a stringy, non-
local effect - Wilson loop operator.

® String scattering amplitudes in
non-geometric backgrounds.

(R. Blumenhagen, A. Deser, D.L. Plauschinn, F. Rennecke, arXiv: | 106.03 1 6)
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