

Emergent string geometry from particle species

Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München

Work in collaboration with Gia Dvali and Cesar Gomez

Corfu, 15. September 2011

Freitag, 21. Juni 13

LMU

I) Introduction

What is gravity? \Leftrightarrow What is space-time?

How does a string see space ?

Non-geometrical string backgrounds !

Non-commutative & non-associative geometry !

D.L., arXiv:1010.1361;

R. Blumenhagen, A. Deser, D.L., E. Plauschinn, F. Rennecke, arXiv:1106.0316;

D.Andriot, M. Larfors, D.L., P. Patalong: arXiv:1106.4015;

D.Andriot, M. Larfors, D.L., P. Patalong: work in progress

See talks by Erik Plauschinn and Peter Patalong (on Saturday)

Corfu, 15. September 2011

Corfu, 15. September 2011

• M-theory: gravity (space-time) is a matrix model.

(Banks, Fischler, Shenker, Susskind)

• M-theory: gravity (space-time) is a matrix model.

(Banks, Fischler, Shenker, Susskind)

■ AdS/CFT correspondence ⇔ holography:

(Susskind; t'Hooft; Maldacena; Witten; Gubser, Klebanov, Polyakov)

How does geometry emerge? \Leftrightarrow How does gravity emerge ?

• M-theory: gravity (space-time) is a matrix model.

(Banks, Fischler, Shenker, Susskind)

■ AdS/CFT correspondence ⇔ holography:

(Susskind; t'Hooft; Maldacena; Witten; Gubser, Klebanov, Polyakov)

• Gravity as entropic force:

(Verlinde)

Gravity is stored information?

Corfu, 15. September 2011

• M-theory: gravity (space-time) is a matrix model.

(Banks, Fischler, Shenker, Susskind)

■ AdS/CFT correspondence ⇔ holography:

(Susskind; t'Hooft; Maldacena; Witten; Gubser, Klebanov, Polyakov)

 Gravity as entropic force: (Verlinde)
 Gravity is stored information?

• Geometry emerges in the form of particle species.

G. Dvali, C. Gomez, D.L., to appear (soon?)

How does geometry emerge? \Leftrightarrow How does gravity emerge ?

• M-theory: gravity (space-time) is a matrix model.

(Banks, Fischler, Shenker, Susskind)

■ AdS/CFT correspondence ⇔ holography:

(Susskind; t'Hooft; Maldacena; Witten; Gubser, Klebanov, Polyakov)

• Gravity as entropic force: (Verlinde)

Gravity is stored information?

Geometry emerges in the form of particle species.

G. Dvali, C. Gomez, D.L., to appear (soon?)

Corfu, 15. September 2011

Freitag, 21. Juni 13

Outline:

II) Black holes and species

III) Species and emergent geometry

- KK species and closed string geometry
- Heavy string species
- Light matter species and open string geometry

IV) Conclusions

II) Black holes and species (G. Dvali, arXiv:0706.2050) Consider a theory with N species of particles with mass M: Bounds from black hole decays: $N < N_{max} = \frac{M_{Planck}^2}{M^2}$

(A quantum black hole can emit at most N_{max} different particles)

This bound must be satisfied in every effective string vacuum that is consistently coupled to gravity!

II) Black holes and species (G. Dvali, arXiv:0706.2050) Consider a theory with N species of particles with mass M: Bounds from black hole decays: $N < N_{max} = \frac{M_{Planck}^2}{M^2}$

(A quantum black hole can emit at most N_{max} different particles)

- This bound must be satisfied in every effective string vacuum that is consistently coupled to gravity!
- Time dependent backgrounds: G. Dvali, D. Lüst, arXiv:0801.1287 If a scalar field in the effective potential gives mass to N particles in some inflationary theory : $M = M(\phi)$

 $M(\phi)^2 < \frac{M_{Planck}^2}{N}$ Bound forbids essentially large trans-planckian vevs:

In any theory with N particle species, which are coupled to gravity, the following bound on the shortest possible length scale has to hold:

$$L > L_* = \sqrt{N}L_P$$

 $M_* = 1/L_*$ can be seen as the fundamental scale of gravity being decreased by the presence on the N particle species.

At L_* gravity becomes strong and deviates from Newtonian gravity.

In any theory with N particle species, which are coupled to gravity, the following bound on the shortest possible length scale has to hold:

$$L > L_* = \sqrt{N}L_P$$

 $M_* = 1/L_*$ can be seen as the fundamental scale of gravity being decreased by the presence on the N particle species.

At L_* gravity becomes strong and deviates from Newtonian gravity.

This bound gives also a possible explanation of the hierarchy problem \rightarrow low (TeV) scale gravity:

 $N = 10^{32} \implies M_* = 10^{-16} M_P \simeq 1 \ TeV$

III) Species and emergent geometry

III) Species and emergent geometry (i) Gravitational (closed string) species: Assume that there are N_{KK} new massive poles in the graviton propagator.

Masses: $M_n = n/R$, $(n = 1, \dots, \frac{R}{L_*}) \Rightarrow N_{KK} = R/L_*$

Therefore gravity becomes strong at scale

$$L_*^{3/2} = \sqrt{R} \ L_P$$

III) Species and emergent geometry(i) Gravitational (closed string) species:

Assume that there are N_{KK} new massive poles in the graviton propagator.

Masses: $M_n = n/R$, $(n = 1, \dots, \frac{R}{L_*}) \Rightarrow N_{KK} = R/L_*$

Therefore gravity becomes strong at scale

$$L_*^{3/2} = \sqrt{R} \ L_P$$

Emergent geometry: the new states are KK gravitons.

Their number corresponds to the volume of the emergent higher-dimensional space:

$$N_{KK} = V_{D-4} = \#$$
 of KK states

 L_* is scale of higher dimensional gravity: AADD scenario!

(ii) Heavy string excitations as species:

(G. Dvali, D. L., arXiv:0912.3167; G. Dvali, C. Gomez, arXiv:1004.3744)

 $M_n = \sqrt{n} M_s$

Most string excitations are unstable and do not contribute fully to the black hole bound!

 N_s is the effective number of string states that contribute to the black hole bound:

$$N_s = \frac{1}{g_s^2} \,, \quad L_s = \frac{1}{g_s} \, L_P$$

• The combined relation from KK and string species is in agreement with the known relation

$$M_P^2 = \frac{1}{g_s^2} V_{D-4} M_s^{D-2}$$

• The combined relation from KK and string species is in agreement with the known relation

$$M_P^2 = \frac{1}{g_s^2} V_{D-4} M_s^{D-2}$$

 The string species signal the emergence of the II-dimensional M-theory geometry via the relation

$$R_{11} = g_s^{2/3}$$

• The combined relation from KK and string species is in agreement with the known relation

$$M_P^2 = \frac{1}{g_s^2} V_{D-4} M_s^{D-2}$$

 The string species signal the emergence of the II-dimensional M-theory geometry via the relation

$$R_{11} = g_s^{2/3}$$

• Super weakly coupled strings with $N_s = \frac{1}{g_s^2} = 10^{32}$ with a TeV string scale and with NS 5-branes were recently considered by

I. Antoniadis, A. Arvanitaki, S. Dimopoulos, A. Giveon, arXiv: 1102.4043.

(iii) Light matter fields as species:

Now consider N_0 light (massless) matter fields.

They put the following lower bound on the scale of gravity:

$$L_* \ge L_0 = \sqrt{N_0} L_P$$

(Therefore, the scale of gravity is already lowered in the SM.)

(iii) Light matter fields as species:

Now consider N_0 light (massless) matter fields.

They put the following lower bound on the scale of gravity:

 $L_* \ge L_0 = \sqrt{N_0} L_P$

(Therefore, the scale of gravity is already lowered in the SM.)

Size of an Einstein black hole: $r_g(m) = mL_P^2$

Parameter that describes strength of gravity at distance L_* :

$$g^2 = r_g(L_*^{-1})/L_*$$

(g^2 tells how different the size of the smallest black hole is compared to its Compton wave length.)

Freitag, 21. Juni 13

Assume that gravity becomes strong at scale $L_* > L_P$,

i.e.
$$g^2 = 1$$
 at L_* .

The strong gravity is evidence for an extra (compact) dimension of radius R_{\perp} .

Assume that gravity becomes strong at scale $L_* > L_P$,

i.e.
$$g^2 = 1$$
 at L_* .

The strong gravity is evidence for an extra (compact) dimension of radius R_{\perp} .

In addition we associate to each species a label j with a C_{N_0} permutation symmetry (related to a conserved charges).

E.g. N_0 U(I) gauge fields A_j $j = 1, \ldots, N_0$.

Then there exist two types of black holes:

• Large black holes:

they decay democratically into all species.

Then there exist two types of black holes:

- Large black holes: they decay democratically into all species.
- Small black holes: Unitarity \Rightarrow they do not decay democratically, but they can rather decay only into a specific species A_j . (G. Dvali)
- \Rightarrow Small Black holes are also labeled by the species label j.

(This fact is also important for the search after mini-black holes at LHC.)

The species label exhibits locality properties.

Picture is such as if light species are separated in true extra dimensions!

Consider a microscopic black hole of mass $\sim M_*$, produced in a particle-antiparticle annihilation of i-th flavor of species at energies $\sim M_*$.

By unitarity decay rate of such a black hole back to i-th species is $\Gamma \sim M_*$

And the decay rate into all other flavors $j \neq i$ must be suppressed by 1/N.

So the species label (i,j) behaves like a coordinate!

$$r_g = R_\perp / N_0 , \quad M = r_g^2 / L_{N_0}^2$$

It is therefore localized in the transversal space and can only decay into the species j.

$$r_g = R_\perp / N_0 , \quad M = r_g^2 / L_{N_0}^2$$

It is therefore localized in the transversal space and can only decay into the species j.

The sizes of the larger black holes grow monotonically, $r_g = j R_\perp/N_0 \,, \ \ j = 1, \ldots, N_0$

they cover more and more transversal space and can decay into more and more species.

$$r_g = R_\perp / N_0 , \quad M = r_g^2 / L_{N_0}^2$$

It is therefore localized in the transversal space and can only decay into the species j.

The sizes of the larger black holes grow monotonically, $r_g = j R_\perp/N_0 \,, \ \ j = 1, \ldots, N_0$

they cover more and more transversal space and can decay into more and more species.

• The black hole decay is teaching us that the j-th. light species and the associated small black hole are located at the j-th. site in the transversal space.

$$r_g = R_\perp / N_0 , \quad M = r_g^2 / L_{N_0}^2$$

It is therefore localized in the transversal space and can only decay into the species j.

The sizes of the larger black holes grow monotonically, $r_g=jR_\perp/N_0\,,~j=1,\ldots,N_0$

they cover more and more transversal space and can decay into more and more species.

- The black hole decay is teaching us that the j-th. light species and the associated small black hole are located at the j-th. site in the transversal space.
- The species index j acts as geometric coordinate in the transversal space.

Small black holes:

Large black hole:

This situation is identical to N_0 D3-branes located at equal distance in the transversal space.

The N_0 U(I) gauge fields are open strings located at the D3-branes.

This situation is identical to N_0 D3-branes located at equal distance in the transversal space.

The N_0 U(I) gauge fields are open strings located at the D3-branes.

Important test for the picture to be correct:

Are there also heavy open strings that stretch between different cites, i.e. different D3branes?

Yes, in the b.h. /species picture these bi-fundamental open strings correspond to heavy flux tubes that stretch between different small black holes.

 $M_{ij} = (i-j)M_*^2 R_\perp / N_0$

Flux tubes:

Assuming only unitarity, black hole decay into particle species leads to the following conclusions:

• Strong gravity at a scale $L_* < L_P$ signals the emergence of extra dimensions.

- Strong gravity at a scale $L_* < L_P$ signals the emergence of extra dimensions.
- Supplementing this set up with N_0 massless photons plus a cyclic permutation symmetry fixes this geometry to be a circle with N_0 localization sites (branes) with massless open strings.

- Strong gravity at a scale $L_* < L_P$ signals the emergence of extra dimensions.
- Supplementing this set up with N_0 massless photons plus a cyclic permutation symmetry fixes this geometry to be a circle with N_0 localization sites (branes) with massless open strings.
- The existence of black holes in this space combined with the conservation of electric flux leads to the existence of bi-fundamental heavy species that represent flux tubes (open strings) stretched between the branes.

- Strong gravity at a scale $L_* < L_P$ signals the emergence of extra dimensions.
- Supplementing this set up with N_0 massless photons plus a cyclic permutation symmetry fixes this geometry to be a circle with N_0 localization sites (branes) with massless open strings.
- The existence of black holes in this space combined with the conservation of electric flux leads to the existence of bi-fundamental heavy species that represent flux tubes (open strings) stretched between the branes.
- ⇒ (Mirage) gauge coupling unification at high scales for
 low scale gravity scenarios