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Exercise 20 – Onsager relations and time-irreversibility

Consider a system which fluctuates around it’s equilibrium position. The perturbation from the equilibrium
is described by ϕ = (ϕ1, ϕ2, · · · , ϕn). Assuming that the perturbations are small we can approximate their
probability distribution with

p(ϕ) = N exp

[
−1

2
ϕ⊺Rϕ

]
, (1)

where R−1 = ⟨ϕϕ⊺⟩ (R having entries rij) is the covariance matrix, as shown in the lecture.

a) Motivate briefly from what thermodynamic principle this probability distribution p originates? Why is it
gaussian?

We would like to find an equation which describes the dynamics of the perturbations. We take as a candidate a
linear Langevin equation in Itō interpretation of the following form:

∂tϕ(t) = −Γϕ(t) + ξ(t), (2)

where ξ(t) is a Gaussian white noise with

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ⊺(t′)⟩ = Nδ(t− t′). (3)

The covariance matrix alone is not enough to determine the equation for the dynamics (note that it tells us nothing
about the time scales on which the dynamics happen). However, we do not have a full freedom of choice for Γ
and N either. N has entries Nij . There are theoretical constraints that relate Γ, N and R, and narrow down
the set of possible models. These constraints become even stronger, if one assumes that the system approaches
thermal equilibrium. In this exercise you will rederive in a different way some of the constraints you already saw
in the lecture. Throughout the exercise assume that all the components of ϕ have time-reversal parity +1.

b) Show that the formal solution of the Langevin equation can be written as

ϕ(t) = e−Γtϕ(0) +

∫ t

0

dt′e−Γ(t−t′)ξ(t′). (4)

You can do it by pretending that ξ(t′) is an ordinary function of time and solving the Langevin equation, as
you would solve any other non-homogeneous linear ODE. Can you see a simple interpretation of the result, that
would allow you to basically write down the solution without performing any calculations?

c) Show that the covariance matrix ⟨ϕ(t)ϕ⊺(t)⟩ (equal time correlation function) can be expressed as

⟨ϕ(t)ϕ⊺(t)⟩ = e−ΓtR−1e−Γ⊺t +

∫ t

0

dt′e−Γ(t−t′)Ne−Γ⊺(t−t′). (5)

d) Assuming that the system is at a stationary state, and so ⟨ϕ(t)ϕ⊺(t)⟩ = R−1 = const., show that the matrix
describing the amplitudes and correlations of the noise is set by the Onsager coefficients:

N = L+L⊺, with Onsager coefficients L = ΓR−1. (6)

Note that so far we did not assume anything about time reversibility of the dynamics.
Hint: Derivative of a constant is 0.

e) Transform the considered Langevin equation into a Fokker-Planck form and show that the steady-state prob-
ability current is given by

j(ϕ) = Ωϕ p(ϕ), with Ω =
1

2
(L⊺ −L)R . (7)



In the expression above Ωϕ := v(ϕ) can be interpreted as the mean phase space velocity at point ϕ. Given this
result, what does time-reversibility imply for the Onsager coefficients?

f) Verify that the Gaussian distribution

p(ϕ) = exp

[
−1

2
ϕ⊺Rϕ

]
(8)

is indeed the stationary probability distribution. You can do it by showing that the probability current is
divergenceless.

g) In the equilibrium case, what is the covariance matrix R−1 in terms of Γ and N?
Imagine now that ϕ describes the displacement from the equilibrium position of a one-dimensional, thermally
driven, overdamped harmonic oscillator at temperature T . The Langevin equation in Itō interpretation reads

γ
d

dt
ϕ(t) = −k ϕ(t) +

√
2γ kBT ξ(t) .

k is the spring constant and γ the viscosity. Recall the definition of R−1 and identify Γ and N to interpret the
equilibrium relation R−1 = Γ−1N/2.

Exercise 21 – Onsager relations for model A and B

In this problem we will recapitulate calculations from the lecture and fill some gaps. In the following we aim at
quantifying the relation between the noise amplitude Nij characterizing the noise in the Langevin equation for
the order parameter field ϕi and the Onsager coefficients Lij for both model A and model B dynamics. To this
end consider the free energy functional in Gaussian approximation (in Fourier space)

Fharm.[ϕ(q, t)] =
1

2

∑
q

rij(q)ϕi(q)ϕj(−q) (9)

a) Show that the covariance matrix in Fourier space (equilibrium correlation function) Cij(q,q
′) := ⟨ϕi(q)ϕj(q

′)⟩
is given by

Cij(q,q
′) = Cij(q)δq,−q′ = β−1 (r−1)ij(q) . (10)

Where β = 1/(kBT )

b) In the lecture we discussed model A and derived the phenomenological equation

∂tϕi(q, t) = −Lij
δF [ϕ]

δϕj(−q, t)
+ ζi(q, t) , (11)

describing the dynamics of a non-conserved field (in Fourier space) subject to white noise. The main idea behind
this was to impose gradient dynamics, i. e. that the fields deterministically tend to relax back to their equilibrium
values, following the gradient in F [ϕ] for the steepest-descent path towards the free-energy minimum. The noise
terms for each field add random fluctuations to this relaxation process and, even if we have reached the minimum
after some time, may drive us away from it again.

Apply the same reasoning for a system where the fields must obey a conservation law, for instance when ϕ describes
chemical concentrations or some other kind of density and argue that the corresponding phenomenological equation
reads

∂tϕi(q, t) = −Lijq
2 δF [ϕ]

δϕj(−q, t)
+ ζi(q, t) . (12)

What is the origin of the q2 term?

c) Consider the Langevin equation for the order parameter field ϕ

∂tϕi(q, t) = −Lijq
a δF [ϕ]

δϕj(−q, t)
+ ζi(q, t) (13)

in the Gaussian approximation. Here a = 0, 2 corresponds to model A and B, respectively, and

⟨ζi(q, t)⟩ = 0, (14)

⟨ζi(q, t)ζj(q′, t′)⟩ = Nij(q)δq,−q′δ(t− t′) . (15)



Derive the equation of motion for ϕ̄i(q, t) ≡ ⟨ϕi(q)⟩(t). The average is taken with respect to the conditional
probability density of the Fokker-Planck equation corresponding to the above Langevin equation. Use this result
to derive an equation of motion for Cij(q, t). Explain the major idea behind the calculation. Your result should
read

∂tCij(q, t) = −Γik(q)Ckj(q, t) with Γik(q) = qaLijrjk(q) . (16)

Fourier transform Eq. (16) and follow the calculations in the lecture notes to find a solution for Cij(q, ω).

Hint: Define the right half-sided Fourier transform as

C+
ij(q,q

′, ω) =

∫ ∞

0

dt exp (iωt)Cij(q,q
′, t) , (17)

and proceed analogously for the left half-sided Fourier transform.

d) Solve the Langevin equation, Eq. (13), using the noise correlations and derive an expression for Cij(q, ω).

e) Use your results from part c) and d) to show that

Nij = β−1(Lij + Lji)q
a . (18)

Your solutions should be handed in by uploading them to Moodle by Wednes-
day, 18th June 2025, 10:00 am.


