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Exercise 17 — Path integrals and the saddlepoint approximation

Path integrals are an alternative formulation of stochastic processes and can be used to express conditional
probabilities. For instance, from the Fokker-Planck equation we can derive the following formula for a one-
dimensional random variable subject to a deterministic drift A(z) and a diffusion term B(x)
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with the action Sz, q] = f:of dr [iq (8- — A(z)) — 3iqB(x)iq|. However, unlike the other representations we
have discussed so far (Master equations, Fokker-Planck equations and Langevin equations) path integrals are not
very practical to directly calculate these probabilities. Their strengths are rather their physical interpretation, the
derivation of exact relations, and the possibility to treat them with perturbation theory and the renormalization

group, e.g. to investigate phase transitions and critical behavior.
In this exercise, we will discuss one of the few approximation methods to analytically compute a path integral —
the saddlepoint approximation. Despite being an approximation, the result in the particular case we study below
will be exact. The system we consider is a single Brownian particle in a one-dimensional harmonic potential:

1

A(z) = pF(z) = —po.U(z) and U(z) = §Kx2 (2)

a) Start by showing that the general formula for the path integral, Eq. , reduces to the following, slightly
simpler path integral for a process with purely additive noise, i.e. for B(z) = B = const.
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with the so-called Onsager-Machlup functional
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What is D and how are the two measures D[z, q] and D[z] related? Give a physical interpretation of this path
integral (where does noise enter the expression?). Could we have arrived at the reduced path integral in a simpler
way, i.e. without starting from S[z,iq]?

b) The central idea of the saddlepoint approximation is to find the most likely path (often called the stationary
point or saddle pointEI) of the process and perform an expansion in small deviations from this path. The largest
contribution inside the path integral comes from the maximum of the integrand e 9l or, equivalently, from the
minimum of the Onsager-Machlup functional G[z].

Given the form of G[z], how would you intuitively calculate the most likely path starting from z¢? Can you use
your intuition to find the most likely path between zo and a given x; covered within to = 0 and 57

c) The problem of finding the most likely path is completely analogous to the principle of least action we know
from classical mechanics. There we derived the Fuler-Lagrange equations which have to be satisfied for the
solution that minimizes the classical action — or in our case the most likely trajectory, which minimizes G[z],
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IThis method is closely related to Laplace’s method or the stationary-phase method. The name derives from applying
the approximation to complex functions where each extremum in the real and imaginary part is automatically a saddle
point, which follows from the Cauchy-Riemann equations.



The Lagrangian density £ is defined through Glz] = [drL(z,%) and is read as a function of two independent
variables « and &. Show that the equation of motion that the most likely path is given by

x"(1) = o cosh(vy(T — to)) + x sinh(y(T — to)) , (6)

with the shorthand notations x := [z; — o cosh(yT")] /sinh(yT), v := uK, and T = t; — to. Also compute the
corresponding value of the functional G[z*].

d) The most likely path z*(7) can now be used as an expansion point. Since we are dealing with functionals, we
are interested in the variation dG[z], defined by

Gle” + bx] = Gla"] + 6G[a] . (7)

The function §z(7) is the small pertubation around the saddle point, given the initial and final condition. It thus
has to satisfy dz(to) = dz(ty) = 0. Show that the variation 6G has the same quadratic form as G itself, i.e. that

0G[z] = Glox] . (8)

Why is this relationship special? What property of the system does it correspond to on the level of (differential)
equations?

e) We can use the property of G to pull the saddlepoint contribution in front of the path integral, as it is not
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Finally, using this expression, compute the above path integral Z = [ D[é:r]e_g[‘h].

Hint: Which property of p(xy,ts|xo,t0) could we use to obtain an explicit expression for I?

Exercise 18 — Inertial effects for heterogeneous diffusion.
In the lecture you have learned that a stochastic differential equation like
dz = A(z,t)dt + C(x,t) oo AW, (10)

is only specified when its correct interpretation is known (to say this in van Kampen’s words, Eq. “is really a
meaningless string of symbols” without stating the value of a! See “Ito versus Stratonovich”, Journal of Statistical
Physics, Vol. 24, 175-187 (1981), for a fun read).

The use of a certain interpretation is explicitly denoted by “oo” in Eq. (10]).

Eq. (10) can be rewritten as

dz = A(z, t)dt + aC(z, t)%

dt + C(x, t)dW; (11)

where C'(x,t)dW, is to be understood in the Ito sense.

a) For which special case is Eq. independent of the interpretation we use?

For all other cases the value of « is not a priori clear! It has to be obtained from the physics of the system at
study, e.g. with experiments or other means. One example where we don’t need a lab to reveal the value of o we
will see in the following.

Consider a particle that moves along a one-dimensional line subject to an external force F'(z) = —VU(x), and
friction with a space-dependent friction coefficient «(xz). We assume that the dynamics is described by the
Langevin equation

mi = F (z) — v (z) T+ v (x) /2D (2)A, (12)

where A is delta-correlated white noise (with zero mean) and (A(¢t)A(t')) = &§(t — t'). The noise amplitude
(diffusion coefficient) D(x) is related to the friction coefficient by the Stokes-Einstein relation D(z) = kgT'/v(x).
This second order stochastic differential equation can be rewritten as a set of two first order stochastic differential
equations:

dz = vdt, (13a)

2 Another way to think about this is that we make a variable transformation z = x* 4 dz. The only difference is that z
and dz are functions instead of real variables.



_F@ g, m]‘ga)vdwr kﬂ;/f) o
m X

o dW; . (13b)

b) Why is this a case in which all interpretations are equivalent? (i.e. why can we just drop o04?)

c) Assume that we can safely take the overdamped limit (i.e. m — 0). Write down a SDE for dz (which should
be independent of v) by setting m = 0. You should arrive at

dx = FkDEﬁ) dt + v/2D(x) o dWs. (14)
B

d) Why is the interpretation now important? Express Eq. in the spirit of Eq. .

Our goal is now to find a way to determine the value of this a by taking the limit of m — 0 in a proper manner.
You could argue that we could just work with Egs. and by choosing a small numerical value for m
when we do the numerical integration. This also works, but comes with its own problems as you never can be
really sure what value of m one can safely take. In case you are interested please have a look at “Computer
simulations of Brownian motion of complex systems.” Journal of Fluid Mechanics, Vol. 282, 373-403 (1995), for
more information about this problem.

Before we determine the value of « in Eq. , let’s first have a look at the stationary solution of the stochastic
dynamics.

e) Stationary state.

Show that the Fokker-Planck equation corresponding to the system of stochastic differential equations, Eq. (13a)—
(13b) is given by (for all interpretations):
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What would happen if the Stokes-Einstein relation D(z) = kT /~(xz) were not to hold? Find a stationary
solution, and show that it is consistent with a Boltzmann distribution. Hint: to find the solution, first assume
that the term in the square brackets on the rhs=0, then use this result to solve lhs=0.

f)  “Proper” approzimation for m — 0.

Now we come to the procedure to derive the limit for small m from the system of stochastic differential equations
Eq. 7. Be warned that the following calculation through which we will guide you is mathematically
not fully rigorous. It is partially also based on physical intuition and some handwaving assumptions. There is
a proper way to perform this calculation rigorously (in case you are interested in that procedure of an adiabatic
elimination please refer to “The Smoluchowski-Kramers Limit of Stochastic Differential Equations with Arbitrary
State-Dependent Friction” Communications in Mathematical Physics, Volume 336, 1259-1283 (2015)).

We first have to transform from the differential formulation doz = ... to the integral formulation z = z¢ + fot
and back again. Proceed step by step:

e Solve Eq. (13b) for vd¢ and insert your result into Eq. (13al).
e Rewrite dv as Cdl—’;dt and switch to the integral representation.

e For the only integral that contains m, you need to make a partial integration step that is a bit tricky. You
obtain a boundary term that goes to 0 with m — 0 and another term. Achieve that this term contains
the factor v? by making another substitution. Then make the approximation mv? = kpT, i.e. we replace
the kinetic energy by its average value (the physical picture is that the velocity v is a fast variable that
homogenizes in the m — 0 limit. This is an adiabatic elimination.).

e Go back to the differential formulation. You now should have an expression that does not contain m but
an additional drift term. Compare this to the result you obtained in part ¢). What is the correct value of
« for this problem?

In summary, you have now derived an overdamped stochastic differential equation together with its interpretation
from a Langevin equation that does not suffer from an intpretation problem. In essence, you have shown that the
interpretation results from a proper analysis of the inertial term that intuitively leads to a “memory effect”.

You can convince yourself that this is indeed the case in the next part of the part of the exercise:

g) Numerical comparison of equations



To check your results, we now compare the results to a direct numerical integration of the full system Eq. (13a)—
Eq. (13b) for different masses to a numerical integration of Eq. with different values of a. We do this in an
illustrative way, namely simply by looking at a single realization of the stochastic process and the trajectory we
get in the different cases. Integrate trajectories for:

e the full system Eq. (13a)—(13b)), one trajectory for each value of m € {1,10,100},

e the system of equation Eq. with simply m set to zero (i.e. just assume o = 0 in Eq. ),

e and the approximation you derived in the previous paragraph, corresponding to Eq. with the additional

noise-induced drift term (a = 1) (correct approximation for m — 0).

For all examples, take the same realization of the Wiener process (with a small enough time increment) and
the same initial conditions and then compare the trajectories you get in a similar manner as in Figure 1. Take
v =0.02z, F(z) =0, and z € [0,00[. Hand in a plot similar to this one.

100

---m = 100
m = 10
m =1
50 It6 (a = 0)

Anti-Ito (a =1)

0 200 400 600 800 1000
t

Figure 1: Realization of different SDEs for the same realization of the Wiener process



Exercise 19 — Stochastic stock market

Disclaimer: This is not financial advice. Use the models studied here at your own risk ;)
The theory of stochastic processes can be applied far beyond small particles immersed in a fluid. A prime
example is the evolution of stock prices — it can be understood as stochastic processes with a deterministic term
(e.g. derived from the general situation at the market), but also a random term (e.g. through events which are
impossible to predict and thus appear inherently random to us). Here we want to study an explicit model of how
the return of investments we make in stocks will evolve in timeE|
For simplicity we will assume that we want to buy some stock whose price at time ¢ we call S(¢). Our model for
the time evolution of the stock price is formulated as a stochastic differential equation,

dsS;

— = pdt +odW,, (16)
St

with constants p and o, and a Wiener increment dW.

a) Motivate and interpret Eq. (16). What could be reasons for assuming a constant increase in the relative
return and a normally distributed noise? Does it make sense to model stock prices as Markov processes? If not,
which possible sources of correlation (or memory) do we ignore?

b) Show that, by introducing the log-price I(t) = In(S(¢)), one can derive a Fokker-Planck equation for the
probability distribution of the log-price P(l,t), which reads
7] 7] &% 9?

o 5 P,t). (17)

What are the new prefactors » and & in terms of the original parameters? Also give the Langevin equation for
the time evolution of {(t) corresponding to this equation.

Hint: Apply 1to’s lemma to the function F(S(t)) = In(S(t)) to derive an equivalent stochastic differential equation
for l(t).

c) Derive the Fokker-Planck equation for the stock price S(t) itself, using Eq. . Interpret the drift and
diffusion term for S(t).

d) Calculate the expected stock price (S)(t) at a certain time ¢, assuming that the price was so at some initial
time to = 0. Does the result surprise you?

Hint: There are multiple ways of approaching this problem. In case you want to compute the probability densities
at some point, it is easier to first formulate the expectation value in terms of I(t).

Your solutions should be handed in by uploading them to Moodle by Wednes-
day, 11** June 2025, 10:00 am.

3This example is not purely academic. It is the basis of many models of the stock market which are still in use today,
e.g. the Black-Scholes equation. However, in many situations it turned out to be a rather inaccurate description of actual
price fluctuations.



