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Exercise 6 — The Luria-Delbriick Experiment

The classical experiment of Luria and Delbriick deals with identifying the mechanism of bacterial resistances to
virusesﬂ Several colonies of E. coli bacteria are grown and exposed to a virus (a bacteriophage), which normally
kills the entire colony. However, there is a number of surviving cells in each colony, which indicates that some
cells are resistant to the virus. At the time, there were several different hypotheses explaining the observation
of resistant bacteria. Luria and Delbriick tried to falsify (or verify) the following two hypotheses, based on their
experimental results B

(i) Acquired mutation hypothesis: Bacteria can develop resistance against bacteriophage as soon as they get in
contact with the virus. Hence, they actively adapt to an upcoming threat.

(ii) Random mutation hypothesis: Bacteria randomly mutate and develop resistances against bacteriophages
during their lifetime. A contact to the virus is not needed for the process, as resistances emerge sponta-
neously.

In either hypothesis, the bacteria pass on the resistance to their offspring. This also means that the resistance
must arise at some point during the experiment and cannot be present from the beginning, otherwise all bacteria
would survive the virus.

Since it was (and still is) difficult to make experiments that directly observe the moment when resistance emer-
gences in individual cells, Luria and Delbriick had to relate both hypotheses to macroscopically observable quan-
tities. In this exercise, we want to re-trace their work and derive theoretical predictions of statistical quantities,
which we can then compare to experimental data. This will allow us to falsify one of the above hypotheses and
give a substantial prediction for the underlying mechanism of the development of bacterial resistance. The exper-
imental setup which we need to understand to formulate our theory is described in Fig. [I|in a slightly modified
way. The full setup is described in their paperﬂ
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Figure 1: Cartoon version of the Luria-Delbriick experiment. It involves three main steps that are repeated many times to
gather statistics: 1) Starting from a single cell (or at least a very small number), a colony is grown to about 102 cells. The
E. coli cells/colonies are depicted as orange dots/circles inside a petri dish. 2) The colony is exposed to the bacteriophage
which kills almost all the cells. 3) After a shorter time, one can observe that small new colonies form around the surviving
cells, which are resistant to the virus. The number of these macroscopically visible colonies is a good estimate for the
number of surviving cells M. Note that there are some details of the experiment that are ignored in this analysis. You are
welcome to discuss them with your tutors (e. g.the surviving cells are really counted by diluting smaller samples and plating
them onto separate dishes).

IFor the insights provided by this experiment, among others, Luria and Delbriick (together with Hershey) were awarded
the Nobel Prize in Medicine in 1969. To learn more on Max Delbriick, see https://www.mdc-berlin.de/news/news/who-
was-max-delbruck

2The two hypotheses are reminiscent of the Lamarckian and Darwinian theories of evolution, respectively. Although
Darwinian evolution was widely accepted by the 1940’s, it was not established whether it applies to microorganisms in the
same way as to other animals.

38. E. Luria and M. Delbriick, Genetics, 28(6), 1943, 491-511, doi: https://doi.org/10.1093/genetics/28.6.491.
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a) The acquired immunity hypothesis

First, we look at the hypothesis of acquired immunity. It assumes that a mutation to resistant cells can occur as
soon as the population is brought into contact with the bacteriophage, i.e., at step 2 of the cartoon in Fig.[I} In
this setting, each individual cell mutates independently with constant probability p.

e Derive the probability distribution of M, i.e.the probability of generating m € {0,..., N} mutants in a
total population of IV bacteria, after exposing it to the virus. How is this distribution called?
Hint: What is the exact distribution for the probability of m “successes” in N independent, identically

distributed events?

e Use N> 1,p <1, and N!/(N —m)! & N™ (a variant of Stirling’s formula) to approximate the exact
distribution by a distribution for rare events.

e Calculate the mean (M) and the variance (M?) — (M)? of this approximate distribution.

b) To assess whether the first hypothesis describes the outcome of the Luria-Delbriick experiment, we look at
the experimental data from their paperEl In Fig. |2 we plot the variance per sample against the mean per sample
for all data points (orange markers) and compare it to the prediction from the acquired mutation hypothesis (blue
line). What conclusions can you draw?
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Figure 2: Variance per sample vs.mean per sample for the Luria-Delbriick-Experiment (orange markers) and the predicted
relation between them from the acquired mutation hypothesis (blue line). “Per sample” refers to individual cell cultures
that were prepared in the same way (step 1 in Fig. [l). From each culture, a small sample was then exposed to the virus,
and the surviving cells were counted (steps 2/3 in Fig. . Thus, each datapoint corresponds to the mean-variance pair
computed from several such cultures. Note the logarithmic scale on the y-axis.

c) The random mutation hypothesis

We want to repeat the same analysis for the second hypothesis. Previously, we could ignore time in the description
of the experiment (only the number of cells that were exposed to the virus and the “immunization probability”
a mattered). Here, in the random mutation hypothesis, we assume the following: Cells divide with a constant
doubling rate A2 (alternatively, we could use the doubling time Ay = 1/75 or the natural rate A = A21n2 to
describe the process — here we will use A for convenience). Under this assumption, their total number can be
described by N(t) = No2*2t = Npe*t. The crucial difference to before is that during its lifetime, every cell can
randomly mutate with some small probability, which we call a, and gain resistance against the virus. The random
mutations would therefore happen in step 1 of the cartoon in Fig. [T} without the cells ever being exposed to the
virus.

As before, we want to arrive at an approximate formula for the variance of M (the number of mutants in a colony)
in terms of its mean.

e Set up the master equation for the probability P(m,t) of finding a total of m € {0,..., N(¢)} mutant cells
at time ¢. Describe the various contributions.

4The original experimental data (number of surviving cells M) is given in Tables 2 and 3 of the original paper by Luria
and Delbriick: https://doi.org/10.1093/genetics/28.6.491.
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Hint: We neglect the probability of a random mutation to “undo” the newly gained resistance. Such events
were practically never observed in the experiment.

e Show that for small mutation rates (a < 1), large colony numbers (N () > 1), and a small fraction of
mutants (m/N(t) < 1), the master equation can be simplified to

O P(m,t) = A(m — 1)P(m — 1,t) — AmP(m,t) + aN(t)P(m — 1,t) — aN(¢t)P(m,1t) . (1)

Why/when does it make sense to assume m < N(t), even though m could be any value in {0,..., N(¢)}?

d) Calculate the average number of mutants at a given time (m)(¢) by deriving and solving a differential equation
for (m)(t) from the master equation, Eq. . As initial condition, we assume that there are no mutants present
at the start of the experiment, i.e., P(m,0) = dm 0.

e) Derive another differential equation for the second moment (M?)(t). You don’t need to solve the equation
— the result is stated in the following subproblem. What is a reasonable initial condition for a solution of this
differential equation?

f) The solution for the previously derived differential equation is
N, At
(M2 (t) = % (26“ M2+ ae)‘t)\Not2) . 2)

Using this and your solution for (M)(¢) from part d), find an expression for the variance as a function of (M) ().
What is the difference compared to the acquired immunity hypothesis? How do you interpret the result with
respect to the experimental results shown in Fig. 2

Hint: It is helpful to visualize the two different hypotheses in a tree-like structure, showing one initial cell and
all its offspring. Where do the mutations occur in both cases and why does one have much higher variance?

Exercise 7 — Linear Birth-Death Process

In this exercise we will consider a simple model for population dynamics which only include birth and death
processes modelled as randomly occurring events:

A, A2 A+ A (3)

Here 1 and X are phenomenological parameters which define the probability per unit of time (rate) for an individual
to die or to reproduce. In other words, within a short time interval (¢,t+4dt) each individual A dies with probability
pdt and reproduces with probability Adt. We assume the events involving distinct individuals to be independent.
To make it more concrete, imagine that A represents some species of bacteria. Depending on the environmental
conditions our phenomenological parameters p and A can take different values: if the nutrients become scarce
the reproduction rate A may go down, if the bacteria get exposed to antibiotics the death rate yu may go up, etc.
Such changes can qualitatively affect the dynamics of the population. Given the rates p and A, and the initial
population size ng, we would like to be able to predict the fate and the dynamics of the population, but, as we
shall see, this can’t be done due to the stochasticity of the dynamics. What we will do instead is try to learn as
much as possible about the probabilities and statistics of possible outcomes of this birth-death process.

a) Mean field approach

To make first predictions for the dynamics, using minimal effort, let us start with a mean field description. Let
N(t) denote the number of individuals at time ¢. Try to write a simple deterministic equation that would best
describe the average dynamics of N(t). If at time t there are on average (N (¢)) individuals, how do you think
the number of individuals typically changes at that time? (No need to be rigorous here, you will do it properly
later.) What behaviour do you expect for different values of p and A\?

b) Master equation

Now we will try a more rigorous approach. Let p,(t) = Prob{N(¢) = n} be the probability of finding n individuals
at time ¢. Derive a master equation for p,(t) and give an interpretation for all the terms in your final result,
which should read

Fpn(t) = A(n = 1)pa—1(t) + p(n + 1)pn+1(t) = (1 + A)npa(t). (4)

c) Calculating moments



Using the master equation find an equation for the time evolution of the average number of individuals (N (¢)).
How does this equation compare to the one you found in part b)? Solve the found equation for (N(t)) and
comment on the extinction probability for A < u, A = p and A > u. Hint: The extinction probability is related to
the average number of individuals at long time, i.e. (N(t = c0))

The expectation value of N(¢) can give us some crude information about the dynamics of the studied population,
but it may not be enough to calculate the extinction probability. In the rest of this exercise we will get a more
detailed insight into the statistics of this population dynamics, by calculating the probability distribution py(t).

d) A straightforward way to find p, () would be simply to solve the master equation you derived, which is in fact
a system of ordinary linear differential equations. Such equations are in principle straightforward to solve, but
not if there are infinitely many of them, as in our case. We will solve this problem by encoding all the functions
pn(t) in a single function constructed as:

G(z,t) = > palt)z". (5)
n=0

The function G(z,t) is termed “probability generating function”. Use the master equation to find a partial
differential equation for G(z,t). Your result should have the form

oG oG
e+ S =0, (6)

where f(z) is a function that you need to find. Assuming that you know G(z,t), how could you calculate py,(¢)?

e) We managed to translate the problem of solving an infinite set of ordinary differential equations to the problem
of solving a single partial differential equation of two variables z and ¢. This one we will solve using the method of
characteristics. The idea is to find so called characteristic curves (z(¢),¢) in the (z,t) plane on which the function
G is constant, that is the level sets of G. Note that choosing a curve z(t) defined by dz(t)/dt = f(z(t)), we can
rewrite Eq. @ as

L - COVET) ™
which is precisely the condition for (z(t),t) being a level set of G. Then, to find the value of G(z,t) for any point
(z,t) we simply find the characteristic curve passing through that point and look for the intersection of that curve
with the axis t = 0. On this axis the values of the generating function G(z,0) are simply defined by the initial
condition N(0) = ng. Therefore, we ultimately reduced the whole problem to solving a single ordinary differential
equation dz(t)/dt = f(z(t)). This is a very special example of a much more general and powerful method of
characteristics. Hint: On the way you may need to integrate some rational function. You may find the following
decomposition useful:

(M—/\Zl)(l—Z) :/\iu (M—/\AzfliZ)

f) Now is the time to reap the fruits of your labour!

e Calculate po(t) and the probability that the population ultimately becomes extinct. You should find:
(A—p)t\ "o
_ (K pe
po(t) = (m) : (8)
e Sketch po(t) for A < p and for A > p.

e What is the form of po(¢) when we exclude reproduction? Can you give a simple interpretation of the terms
in that expression?

g) How to calculate the probability distribution for the extinction time? Sketch the approximate shape of this
distribution. (You don’t have to give an explicit formula.) Could you in principle do the same thing to calculate
the probability distribution of the time when the population reaches the size of 100 individuals for the first time?

Exercise 8 — Linear Birth-Death Process — Numerics

After having calculated some analytical results for the linear Birth-Death Process, we now want to compare them
with a numerical simulation. You can use the jupyter notebook template on the webpage that guides you through
the exercise (but you may also write it completely on your own, if you prefer).

a) Single trajectory



To begin with, we want to observe the behaviour of single realizations. For that, use the Gillespie algorithm to
simulate the Birth-Death process. Note that you now have two possible events that can happen (whose rates
depend on the current state of the system).

e Plot some trajectories until extinction for different values of the initial population size ng, the birth rate A
and the death rate u (for now choose > ). What do you observe?

e Now choose A > . Start with a A that is only slightly larger than p (e.g. A = 1.01 , p = 1.0). What do
you observe? (If not done so, limit the time you simulate). Now increase A a bit (e.g. to A = 1.05) and
try different ng. What happens with the population size? What starts to happen to the time duration
your simulation needs to finish? What could cause this drastic change in the performance of the Gillespie
algorithm?

b) Ensemble of trajectories

Extend your program such that you are able to create an ensemble of trajectories (using the Gillespie algorithm).

e Simulate such an ensemble of different runs and from that calculate the mean of N, the number of non-
degraded individuals, as a function of time. Note that the steps in different runs happen at different points
in time. This complicates taking the mean at a certain point in time. In the provided notebook you find
some tips how you may do that.

e Compare your numerical results for (N(t)) with the analytic calculations (plot both into one figure). If
necessary, explore different values for the ensemble size until you get reasonable agreement between analytics
and numerics. Choose > A. (You could for instance use N(0) =50, A=1.0, p=1.1.)

e Using your numerical results, obtain the extinction probability po(t) as a function of time and compare it to
the analytic formula obtained in the previous exercise (plot both into one figure). Do this for a case where
© > X and a case where A > p. (You could for instance use N(0) = 50, A = 1.0 , p = 1.1 and N(0) = 10,
A=101,pu=1.)

e Using your numerical results, obtain the probability distribution for the extinction time. Do this for different
parameters and compare it to what you sketched in the previous exercise.

Your solutions should be handed in by uploading them to Moodle by Wednes-
day, 14** May 2025, 10:00 am.




