Übung zur Vorlesung
Mathematische Statistische Physik
Sommersemester 2008
Prof. E. Frey und Prof. F. Merkl

Problem 30

Let A be a positive definite and symmetric $\mathbb{R}^{N} \times \mathbb{R}^{N}$ matrix. Show that

$$
\int \prod_{i=1}^{N} d x_{i} \exp \left(-\sum_{i=1}^{N} j_{i} x_{i}-\frac{1}{2} \sum_{i, j=1}^{N} x_{i} A_{i j} x_{j}\right)=a \cdot \exp \left(\frac{1}{2} j^{T} A^{-1} j\right)
$$

for some a that does not depend on the j. Hence show that the partition sum of the IsingHamiltonian $H\left(\left\{\sigma_{i}\right\}\right)=-J \sum_{<i, j>} \sigma_{i} \sigma_{j}$ (where $<i, j>$ denotes the sum over nearest neighbours) can be rewritten in the form

$$
Z=\widetilde{a} \int \prod d m_{i} \exp \left(-\widetilde{H}\left(\left\{m_{i}\right\}\right)\right)
$$

with \widetilde{a} independent of the σ_{i}. Develop \widetilde{H} in a power series up to the order $O\left(m^{4}\right)$.

Problem 31

The fieldtheoretic description of critical phenomena leads to functionals of the form

$$
F[\phi(y)]=\int d y f(\phi(y))
$$

where $F[\phi(y)]$ is a function depending on the field $\phi(x)$. Therefore the concepts differentiation and integration need to be extended. We define the functional derivative of the functional $F[\phi(x)]$ as the limit of the derivative on a discrete lattice:

$$
\frac{\delta F}{\delta \phi(y)}=\lim _{a \rightarrow 0} \frac{1}{a} \frac{\partial F}{\partial \phi_{i}}
$$

where ϕ_{i} is the field at a discrete point i on the lattice with lattice constant a. Likewise the functional derivative can be defined continuously as usually done by physicists:

$$
\frac{\delta F}{\delta \phi(y)}=\lim _{\epsilon \rightarrow 0} \frac{F[\phi(x)+\epsilon \delta(x-y)]-F[\phi(x)]}{\epsilon}
$$

(a) Derive the Euler-Lagrange equation by finding the extremum of the action $\delta S=0$, where the action is defined by: $S=\int d t L\left(q(t), \partial_{t} q(t)\right)$.
(b) Calculate the functional derivative for the following functional $F[\phi(x)]$

$$
F=\int d y f(y) \phi^{p}(y), \quad F=\int d y V(\phi(y)), \quad F=\int d y\left(\frac{d \phi}{d y}\right)^{2}, \quad F=\phi(y)
$$

Problem 32

The generating functional $\Gamma[\vec{m}]$ of vertex functions is obtained by Legendre-transforming the generating functional $W[\vec{h}]=\ln Z[\vec{h}]$ of cumulants:

$$
\Gamma[\vec{m}]=-W[\vec{h}]+\int d^{d} x \sum_{i=1}^{n} m_{i}(x) h_{i}(x),
$$

where

$$
m_{i}(x)=\left\langle\phi_{i}(x)\right\rangle_{\vec{h}}=\frac{\delta W[\vec{h}]}{\delta h_{i}(x)} .
$$

and where the order parameter $\vec{\phi}$ and the field \vec{h} have n components. The N-point vertex functions are defined as

$$
\Gamma_{i_{1}, \ldots, i_{N}}^{(N)}\left(x_{1}, \ldots, x_{N}\right)=\left.\frac{\delta^{N} \Gamma[\vec{m}]}{\delta m_{i_{1}}\left(x_{1}\right) \cdots \delta m_{i_{N}}\left(x_{N}\right)}\right|_{\vec{h} \equiv 0} .
$$

(a) Show that

$$
\frac{\delta \Gamma}{\delta m_{i}(x)}=h_{i}(x) .
$$

(b) Deduce the following relation between 2-point vertex functions and 2-point cumulants

$$
\int d^{d} x \sum_{k} G_{c i k}^{(2)}\left(x_{1}, x\right) \Gamma_{k j}^{(2)}\left(x, x_{2}\right)=\delta_{i j} \delta\left(x_{1}-x_{2}\right) .
$$

(Recall that the 2-point cumulant is $G_{c i k}^{(2)}\left(x_{1}, x_{2}\right)=\left.\frac{\delta W[\vec{h}]}{\delta h_{i}\left(x_{1}\right) \delta h_{k}\left(x_{2}\right)}\right|_{\vec{h} \equiv 0}$. .) What is the corresponding relation in momentum space?
(c) Find analogous expressions for $\Gamma^{(N)}$ and $G_{c}^{(N)}$ in the cases $N=3$ and $N=4$.
(d) From (b) and (c), deduce that the vertex functions are given by the one-particle irreducible diagrams.

