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ABSTRACT

We present a divide–et–impera extension of the (Quantics) Tensor Cross
Interpolation algorithm [1] that adaptively partitions a high-dimensional tensor
into a collection of low-rank TT patches. Each patch is compressed with
an explicit bond-dimension cap χpatch, that triggers finer partitioning of the
configuration space wherever the input tensor has more interesting features
(higher local rank). The local cap χpatch not only reduces the memory footprint
of tensor-train representation of functions with sharply local features, but also
tames the O(χ4) cost of MPO-MPO contractions by decomposing the global
product into many rank-≤ χpatch sub-contractions; in this context, the choice
of MPO patching scheme is essential, as it can markedly enhances—or, if poorly
chosen, limits—the overall efficiency of patched contractions.

We derive closed-form bounds that relate χpatch and the patch count Npatch
to the memory and run-time advantage over a monolithic TCI or MPO contrac-
tion, and identify an “over-patching” regime that arises if the cap is chosen too
small. The theoretical estimates are validated by comprehensive benchmarks
and the advantage is tested on three notorious bottlenecks of many-body physics
related to the Hubbard model: (i) the approximaton of two-dimensional Mat-
subara Green’s function, (ii) the computation of the bare susceptibility χ0(q, iω)
(bubble diagram), and (iii) vertex contractions entering the Bethe-Salpeter equa-
tion for the single-impurity Anderson model. In all cases the patched strategy
yields significant memory savings together with speed-ups of nearly an order of
magnitude, enabling computations that remain out of practical reach for the
monolithic method.
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Chapter 1
Introduction

“Dispelling” the curse of dimensionality that “hexes” numerics’ computations,
has been a challenge of prime interest in different fields of science for many years.
Tensor network techniques – and in particular matrix product states (MPSs)
methodologies – are a well-established [2–8] and standard approach widely
employed by the quantum many-body (QMB) physics community to mitigate
such exponential increase of computational resources. Numerical simulations
of high-dimensional QMB wavefunctions represent, in fact, an exceptionally
challenging computational task if not properly addressed.

Mathematicians have dedicated, as well, significant effort to target the same
problem – arising from multidimensional tensor approximation of continuous
functions or complex numerical linear algebra computations [9, 10] – ultimately
converging towards a similar approach: tensor trains (TTs)1 [11].

The rising interest in tensor-network (TN) methods – particularly those
based on MPSs — has therefore led to the emergence of a standard “MPS
toolbox” [12–14] and a well-defined catalogue of canonical TN applications [15]
(variational ansatz of QMB wavefunctions – or DMRG – among the most popu-
lar in physics). For a long time, however, techniques for function approximation
and manipulation have been beyond the traditional TN portfolio.

Classical numerical techniques for representing and manipulating functions–
whether for integration, convolution, differentiation, or related tasks–have ad-
vanced considerably over the years [16], yet they remain hindered by significant
constraints. Grid-based or naive SVD–style tensor discretizations of multivari-
ate functions, for instance, confront the curse of dimensionality: the memory
and CPU time required to store and update a high-resolution representation
of a N -dimensional function grow exponentially with N . When it comes to
integration, standard stochastic approaches such as Monte Carlo and Quan-
tum Monte Carlo fare no better in the high-dimensional regime; their error
decreases only algebraically with sample size and they are plagued by additional
obstacles—most notably the “sign problem” [17]—that can render simulations
impractical for large, strongly correlated systems [18]. Together, these limita-
tions leave many modern, high-dimensional applications beyond the reach of
standard numerical methods.

The widespread and increasing interest in TN and MPSs methodologies

1From now on tensor train and matrix product state will be used interchangeably.
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2 Chapter 1. Introduction

among different fields has facilitated the development of a pivotal2 extension
to the “MPS toolbox” in order to integrate the missing function representation
capabilities: the Tensor Cross Interpolation (TCI) algorithm.

TCI attempts to address many of the above-mentioned limitations of stan-
dard function approximation algorithms, by revealing low-rank structures and
leveraging weakly entangled, scale-separated MPS-based function representa-
tions. This effort converts otherwise exponential memory and CPU require-
ments into polynomial ones. The traditional “TT-toolset” already allowed for a
similar scaling in resources with truncation-based procedures to reduce tensor’s
rank, however TCI progressively reveals the rank structure of the input tensor
by adaptively increasing the number of tensor evaluations (more on this in
Chap. 2) without any loss of information caused by truncation. For this reason
TCI can be viewed as an active–learning algorithm in the sense of Ref. [19]: it
probes the input tensor only at those configurations that most efficiently expose
its low-rank structure, thereby minimising the number of function evaluations
needed to reach a prescribed approximation accuracy.

Furthermore, the novel approach of Ref. [1, 18] to integrate quantics tensor
rebasing with tensor cross approximation procedures – i.e. Quantics Ten-
sor Cross Interpolation (QTCI) – opened up the possibility to features like
super-high resolution and sign problem-free integration for multi-dimensional
functions, while maintaining computational costs still bounded to a polynomial
increase. The class of multivariate continuous functions that admit a low-rank
tensor representation within a tolerance ε—the so-called ε-factorisable func-
tions [18]—appears to be very large, although a rigorous characterisation is still
lacking. Nevertheless, in practice this broadness translates into a wide domain
of applicability for QTCI.

Among the many applications of QTCI the following are definitely worth
mentioning (with their respective achievements): high-order real-time nonequi-
librium Schwinger-Keldysh perturbation expansions [18] (integral convergence
improved from 1/

√
Nfunc_eval to 1/N2

func_eval), multi-dimensional function min-
imization and quantized reinforcement learning [20] (outperfoming standard
gradient-free methods in number of function evaluations and execution time),
computation of Brillouin zone integrals for topological invariants evaluation [21]
(exponential to polynomial-order scaling of integration costs with respect to the
simulation parameters), compact tensorization of atomic orbitals bases with
high accuracy [22] (error on g.s. energy of H2 improved by 85% w.r.t. double
zeta calculation), (speed-up of) multi-assets Fourier transform-based European
option pricing [23].

A robust reference implementation of the core TCI algorithm is provided by
the package TensorCrossInterpolation.jl [24], and further utilities–
such as quantics tensor discretisation–are collected in the libraries catalogued at
tensor4all.org [25]. This software stack forms the computational backbone
of most of the works cited above.

Despite its versatility, the original TCI routine can suffer from ergodicity
problems: it may stall on very sparse tensors, tensors with discrete symmetries,
or tensorised functions featuring sharp local peaks. Global pivoting and related
heuristics [1] mitigate these issues but do not always succeed, particularly
when the tensor originates from ab initio calculations for which no a priori

2A rather playful wording choice given the context.

tensor4all.org


3

information is available. More in general, since all TCI algorithms involve
sampling, none of them is fully immune against missing some features of the
tensor of interest.

To address these issues we propose in this work a divide-et-impera exten-
sion of TCI. Inspired from similar distributed TT frameworks [26, 27], our
new algorithm adaptively partitions the target tensor into smaller subtensors
(“patches”), TCI-compressing each with a fixed bond-dimension cap, and thus
it concentrates resources on the most challenging regions of configuration space
while keeping the overall memory footprint under control. The same patch phi-
losophy also alleviates other tensor-network bottlenecks: we demonstrate how a
similar domain decomposition limits intermediate bond growth in MPO-MPO
contractions, substantially reducing their computational cost. All these patch-
based operations are implemented as a wrapper around the state-of-the-art
crossinterpolate2 kernel distributed with TensorCrossInterpolation.jl,
preserving the numerical robustness of the original implementation while ex-
tending it seamlessly to the new divide-and-conquer workflow.

The manuscript structured as follows: Chapter 2 reviews the standard
(Q)TCI algorithm, its canonical implementation, and representative ap-
plications. Chapter 3 introduces the patched variant of (Q)TCI—patched
(Q)TCI —and analyses theoretical costs and limitations. Chapter 4 extends
the patch strategy to MPO–MPO contractions, presenting both greedy and
adaptive distributed schemes with cost estimates. Chapter 5 presents numerical
benchmarks and showcases the new algorithms on selected problems centred
around the Hubbard model.





Chapter 2
Quantics Tensor Cross Interpolation

Cross approximation is a tensor compression technique well-established in the
literature [1, 18, 28–31]. This technique, pioneered by Oseledets [28] and
improved by Dolgov and Savostyanov [31], aims to find a parsimonious interpo-
lation for multi-index tensors with a limited amount of computational resources.
Tensor Cross Interpolation (TCI) permitted TT-representations of multivariate
functions at a cheaper cost than any SVD based counterpart. Such compressed
TT-representations have been used, among other applications, to compute very
complex, multi-dimensional integrations, converging better (with no “sign prob-
lem” [17]) than standard sampling routines, such as Monte Carlo [18, 31]. Ritter
and collaborators have improved the already powerful implementations of TCI,
targeting stability and discretization issues of the standard routine [1]. This
renewed TCI, however, is not free from suboptimalities, especially when trying
to target very complex, “quasi-singular” type of problems.

In this chapter, we summarize the basic technical details of the state-of-the-
art implementation of cross interpolation for tensors. Sec. 2.1 gives a generic
introduction to all the mathematical and technical details of the TCI routine,
in order to provide the reader the tools to understand and, through further
reading, reproduce the current state of the algorithm. Nonetheless, considering
the goal of this work, no particular importance is given to such details, and
more focus is instead directed towards the strengths of the TCI algorithm.
Section 2.2 then shows how a naively modified version of TCI can be tailored
to functions with sharply localised structure. Multiple examples are employed
for this purpose.

2.1 The algorithm

The algorithm is a rank-revealing algorithm for decomposing low-rank, high-
dimensional tensors into tensor trains/matrix product states (MPS). Hence, its
implementation requires two prerequisites: the tensor should be compressible,
and the algorithm used for compressing it should be rank-revealing. The
properties are defined as follows:

Definition 2.1 (Compressible tensor) A tensor T is compressible or low-
rank if it can be approximated by a Matrix Product State (MPS) with small
rank χ.

5



6 Chapter 2. Quantics Tensor Cross Interpolation

Definition 2.2 (Rank-revealing algorithm) An algorithm

A : Kd1×···×dL −→ Kd1×···×dL

T 7−→ T̃

is said to be rank-revealing, if it ouputs a low-rank approximation T̃ of
any compressible L-dimensional tensor T 1given as input.

TCI depends on these two properties to provide a competitive numerical
approximation technique. Given a tensor T with a hidden low-rank structure as
input, TCI always provides a compressed representation of it at a polynomial-
scaling cost in CPU time and memory. Even when the tensor T is high rank,
TCI is able to output a TT unfolding T̃ (at a slower convergence rate). Before
explaining how TCI works, let us first dive into the mathematical tools that
supply TCI of this rank-revealing and compression properties.

Matrix Cross Interpolation (CI)

The TCI algorithm bases its implementation on the following statements: a
M × N matrix of rank χ can be represented using only O(χ) of its entries
and a compressible (cf. Def. 2.1) M × N matrix can be approximated using
O(χ̃)≪MN of its entries.

Let A be a M ×N matrix, we introduce the following notations:

• I = {1, . . . , M} is the ordered set of all row indices of A;

• J = {1, . . . , N} is the ordered set of all column indices of A;

• I = {i1, . . . , iχ̃} ⊆ I and J = {j1, . . . , jχ̃} ⊆ J are, respectively, subsets
of rows and columns indices of A.

Therefore, in a -like fashion2we define

A[I,J ], A[I,J], P = A[I,J ] (2.1)

as the submatrices or slices containing the intersection elements of I or I rows
and J or J columns (in particular A = A[I,J]). In a matrix Cross Interpolation
(CI) context P = A[I,J ] is the so-called pivot matrix and its elements are the
pivots of the approximation.

1In Def. 2.2 we define a tensor T as an element of the vector space KI1×···×IL , this is
only true if we consider T an L-dimensional numerical array, as it is for numerics. More
generally T ∈ T p

q (V ) = {t | t : V ⊗q ⊗ (V ∗)⊗p −→ K} (where K = R ∨ C and V = H for
most applications).

2From this point onward, we shall consistently use this notation. Slicing notation of the
form A[rstart : rstart, :] (≡ Ar,c with (r, c) ∈ {rstart, rstart + 1, . . . , rend} × {1, 2, . . . N}) will
also be employed.
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The CI formula then reads [32]

A = A[I,J] ≈ A[I,J ]P −1A[I,J], (2.2)

.

,
II JJ

≈
IJ

I I JJ
i′i′i ′j′j j

=′j′iA 3

Eq. (2.2) gives a rank-χ̃ approximation of A, where χ̃ = dim (I) = dim (J ). CI
is “only” a quasioptimal decomposion of A and its accuracy strongly depends
on the choice of the pivots; however, contrarily to its optimal counterparts
(e.g. SVD), it doesn’t require knowing (and saving in memory) the full M ×N
matrix to be computed. Moreover, CI correctly represents the rows and column
employed to construct of the approximation on the r.h.s. of Eq. (2.2) while
also being exact if χ̃ = χ. Let’s consider the following example:

Example 2.1 (5× 5 Correlation matrix) For classical Harmonic Oscillator 1D
chain mode-like vectors:

v = (v1, v3, . . . , v5) w = (w1, w3, . . . , w5)

such that vwT = 0, the corresponding position-position correlation matrix can
be “cross interpolated” as

C = σ2vT v + σ̃2wT w =

=

σ2v1v1 + σ̃2w1w1 · · · σ2v1vj + σ̃2w1wj · · · σ2v1v5 + σ̃2w1w5

. . .
... σ2vivj + σ̃2wiwj

...
. . .

σ2v5v1 + σ̃2w5w1 · · · · · · · · · σ2v5v5 + σ̃2w5w5




5× 5

(2.3)

≈ C[I,J ]︸ ︷︷ ︸
5× 2

[
σ2v1v1 + σ̃2w1w1 σ2v1v5 + σ̃2w1w5

σ2v5v1 + σ̃2w5w1 σ2v5v5 + σ̃2w5w5

]−1

︸ ︷︷ ︸
2× 2

C[I,J]︸ ︷︷ ︸
5× 2

3We introduce here a tensor network diagrammatic representation of the matrix multipli-
cation. The internal connecting solid lines represent summation over the respective matrix
indices, according to the Einstein summation convention. The external lines represent fixed
indices.
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with σ and σ̃ the variances of the two modes and I = {1, 5} and J = {1, 5}.
From the definition of C we can recognize that rank(C) = 2. This property
is correctly highlighted by its CI decomposition (dim I = dimJ = 2), since,
in this particular case, the approximation is exact (cf. Prop. 2.1.3). The
total number of floating point numbers necessary to store the whole matrix in
memory is 5× 5 = 25, while for the CI decomposition 5× 2× 2 + 2× 2 = 24
are sufficient. It is easy to deduce that the reduction in memory costs becomes
more important for modes of generic dimension N (N ×N ≫ N × 2× 2 + 2× 2
when N ≫ 1).

From the example above we can evince the computational advantage of
CI, however – in order to make such approximation computationally feasable
– some sort of error control is necessary. In particular, the error of the CI
approximation is related to the Schur complement of the matrix [33].

Definition 2.3 (Schur Complement) Let us block partition a matrix A ∈
KM×N (K = R,C) as follows:

[
A11 A12 χ̃

A21 A22 M−χ̃

χ̃ N−χ̃

]
. (2.4)

The Schur complement [A/A11] of A is defined by

[A/A11] = A22 −A21(A11)−1A12. (2.5)

Proposition 2.1 The following properties hold for a rank-χ̃ Cross Interpola-
tion decomposition of a matrix A:

1. the error of CI is given by the Schur complement to the pivot matrix;

2. the approximation is exact for any i ∈ I or j ∈ J ;

3. the approximation is exact if A has rank χ̃.

Proof. 1.-2. - The Schur complement is invariant under rows and/or column
permutations, therefore let us rearrange A = A[I,J] such that

A =
[

A[I,J ] A[I,J/J ]
A[I/I,J ] A[I/I,J/J ]

]
.

Then, the r.h.s. of Eq. (2.2) can be rewritten as

Ã =
[

A[I,J ] A[I,J/J ]
A[I/I,J ] A[I/I,J ] (A[I,J ])−1

A[I,J/J ]

]

which gives (cf. Ref. [1])
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A− Ã =
[
0 0
0 [A/A[I,J ]]

]
(2.6)

3. - If rank(A) = χ̃ and P = A[I,J ] is non-singular, then

[
A[I,J ] A[I, j]
A[i,J ] A[i, j]

]
∀ (i, j) ∈ I/I × J/J (2.7)

is singular, which gives A[i, j] = A[i,J ] (A[I,J ])−1
A[I, j] ∀ (i, j) ∈ I/I ×

J/J (cf. App A-B in Ref. [18]).

Prop. 2.1.1 underlines the importance of the choice of the pivots and of the
pivot matrix, specifically with the purpose of minimizing the Schur complement
[A/A[I,J ]]. Such procedure is equivalent to maximising det A[I,J ] and is
known as the maximum volume principle [34]. Moreover, from this analysis,
we can also get an intuition about why the CI approximation error is at most
O(χ̃2) times the optimal one (e.g. χ̃-truncated SVD error) [35], while requiring
only subparts of the original matrix to be known.

Partial rank-revealing LU decomposition (prrLU)

Matrix Cross Interpolation presents itself as a very useful tool when it comes to
numerical compression of matrices. Generalization of CI to continuous domains
[18, 35] even allows for reduction of numerical complexity of two-dimensional
integration and derivation. Nonetheless, for practical, very complex, calcu-
lations, CI starts to fail. Numerical instability issues like rounding errors,
ill-conditioning or overflowing [33] naturally emerge when CI requires large
values of χ̃ to be accurate, therefore making the pivot matrix almost singular.

Partial rank-revealing LU (prrLU) [33, 36] matrix decomposition solves
many of the numerical fragilities of CI. The prrLU provides a more stable,
but equivalent approximation of our matrix to decompose. prrLU avoids any
inversion of the pivot matrix A[I,J ], whereas still requires a small subset of
matrix’s elements to be known.

We may summarize the main features of prrLU as follows:

• prrLU is rank revealing, i.e. it allows for the iterative determination of
the rank of the decomposed matrix;

• prrLU is partial (and therefore controllable), i.e. the decomposition is
stopped after constructing the first χ̃ rows of L and columns of U , for a
fixed χ̃;

• prrLU is updatable, i.e. given pivot lists I,J yielding an approximation Ã
of A, new rows and columns can easily be added to I,J for an improved
approximation.

The prrLU implementation relies on the following LU decomposition (easily
inferred from Eq. (2.5)):
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[
A11 A12
A21 A22

]
=

[
L11 0
L21 122

] [
A11 0
0 [A/A11]

] [
U11 U12
0 122

]
(2.8)

L11 = U11 = 111, L21 = A21A−1
11 , U12 = A−1

11 A12

Although matrices L21 and U12 in Eq. (2.8) contain the inverse of the matrix
block A11, the state-of-the-art implementation of prrLU limits A11 to a 1× 1
slice; hence, no actual matrix inversion is computed directly! The general prrLU
algorithmic routine proceeds as outlined below [1]:

Algorithm 2.1: Partial rank revealing LU
Input : A ∈ KM×N matrix, maximum rank χ̃ and tolerance ε.
Output : Rows permutation Πr, columns permutation Πc, L, U ,

Npivots

1 Πr ← (1, . . . , M), Πc ← (1, . . . , N), n← 0, εLU ← ε;
2 while n < min(χ̃, M, N) do
3 n← n + 1;
4 (r⋆, c⋆)← findBestPivot

(
A[n :N, n :M ]

)
// current positions;

5 swap rows n↔ r⋆ in A and Πr;
6 swap cols n↔ c⋆ in A and Πc;
7 εLU ← |An,n|;
8 if n > 0 and εLU < ε then // error test
9 break;

10 end if
11 end while
12 L← LowerTriangular

(
A[:, 1:n]

)
;

13 U ← strictlyUpperTriangular
(
A[1 :n, :]

)
;

14 return (Πr, Πc, L, U, n);

By iteratively applying Eq. (2.8) on the lower-right block of the internal
matrix

[
A11 0
0 [A/A11]

]
, while limiting A11 to a 1× 1 submatrix at each step,

Alg. 2.1 allows us to obtain an approximation of the form

A = LDU +
[
0 0
0 [A/A[I,J ]]

]
= Ã + err., (2.9)

equivalent to Eq. (2.2) (cf. Ref. [1]). In Eq. (2.9) D is a diagonal matrix
containing – after iterative permutations – χ̃ pivots of A. Some remarks about
Alg. 2.1 are in order

• findBestPivot, LowerTriangular and strictlyUpperTriangular are
merely renamed counterparts of the routines used in the prrLU
implementation of Ref. [1, 24]. The first routine proposes a suitable pivot
for the current iteration (often one among several equally valid options),
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while the latter two return, respectively, the lower-triangular portion and
the strict upper-triangular portion of the input matrix.

• The implementation of prrLU is based upon the search of a good pivot
(findBestPivot). Following the maxvol principle, a good pivot is defined
as one that attempts to maximise the volume of the submatrix A[I,J ]
(≡ A11 after permutations). Hence, the iterative application of Eq. (2.8)
reduces the optimal pivot to the largest element of the submatrix A[n :
N, n : M ] at iteration n. Such iterative approach, however, does not
necessarily extract the pivot matrix A[I,J ] with larger determinants.
This is due to the facto that maximum volume submatrices of larger sizes
are not guarantedeed to contain the maximum volume submatrices for
smaller sizes. Nonetheless, the algorithm attempts to reach the ideal
configuration for A[I,J ], often with great success.

• Different strategies can be implemented for pivot searching; a naive ap-
proach consists in a full search scheme scanning the entire submatrix
A[n : N, n : M ]. Rook search [37] and block rook search [1] are cleverer
and cheaper approaches, with comparable robutstness and convergence
features, but reduced computational cost O(max (M, N)).

• The matrix elements explored during rook search are sufficient to perform
prrLU of A. Therefore, prrLU yields compressibility traits similar to
those of CI (see Example 2.1). For this reason, prrLU can also be applied
to 2-dimensional continuous functions discretized on a grid, whose full
structure is uknown a priori.

• The absolute error of the prrLU approximation is reduced to the modulus
of the last inserted pivot, as one can understand from Alg. 2.1. The reason
behind this is that we intend to minimize ∥A − Ã∥∞=∥ [A/A[I,J ]]∥∞
which is bounded by ∥A[n :N, n :M ]∥∞ at iteration step n.

Tensor Cross Interpolation

Tensor Cross Interpolation is a generalization of matrix Cross Interpolation –
and therefore prrLU (see Eq. (2.9)) – to L-dimensional tensors T . Similarly
to prrLU, TCI progressively uncovers the low rank structure of a given tensor,
ultimately rendering a compressed approximation of the input. The main
difficulty in the implementation of TCI revolves around bookkeeping of tensor
indices – the pivots – necessary for a correct approximation. Hence, let us
introduce some useful notation:

• Tσ ∈ Kd1×d2×···×dL is the TCI input tensor, with indices σ ∈ I1 × I2 ×
· · · × IL := Ind (T ) (|Ii| = di

4); T̃σ ∈ Kd1×d2×···×dL is the resulting
interpolated tensor:

Tσ =
. . .1σ 2σ

=
Lσ

≈ T̃σ ; (2.10)

4For most application di = d ∀i, with fixed d.
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• Iℓ = I1 × I2 × · · · × Iℓ and Jℓ = Iℓ × I2 × · · · × IL
5 denotes, respectively,

the set of all row multi-indices and column multi-indices up to and from
site ℓ (e.g. iℓ ∈ Iℓ, jℓ ∈ Jℓ implies iℓ = (σ1, . . . , σℓ), jℓ = (σℓ, . . . , σL));

• Iℓ ⊆ Iℓ and Jℓ ⊆ Jℓ are, respectively, lists of pivot rows and pivot columns
and contain only a subset of the total row and column multi-indices, the
pivots;

• the following objects represent slices of the original tensor:

[Pℓ]ij = Ti⊕j =
F

i j
I J

, [Tℓ]iσj ≡ Ti⊕(σ)⊕j =
F

σi j
JSI

,

[Πℓ]iσσ′j ≡ Ti⊕(σ,σ′)⊕j =
σi j

F

′σ
SSI J

, (2.11)

where ⊕ is the index concatenation operation, i.e. i ⊕ j ≡ (σ1, . . . , σL),
for fixed i ∈ Iℓ and j ∈ Jℓ+1.

The main purpose of TCI is perform the decomposition of a given tensor us-
ing only few elements of (few calls to) the tensor Tσ. Fig. 2.1 below summarizes
the main steps of the TCI routine.

The algorithm depicted in Fig. 2.1 represents what is usually referred to
as the 2-site TCI algorithm [1]. The naming 2-site refers to the fact that
the approximation T̃ is only built through two-dimensional slices of T . This
variant alone enables the recursive extension of the pivot lists and with it
the improvement of the approximation, contrarily to the 0-site and 1-site
that by focusing, respectively, on prrLU optimization of the T and P slices
(Eq. (2.11)) simply restore full nesting properties (see below) and remove ill-
conditioned pivots. The 2-site implementation relies on two main ingredients:
the partial rank-revealing LU and the interpolation properties of TCI. Whilst
we extensively described the former in the previous section, a few comments are
necessary about the latter. Let us first take a step back and briefly introduce
the concept of nesting conditions.

The list of pivot rows (columns) is said be left- (right-) nested if the following
condition holds [11, 31]:

I0 < I1 < . . . < Iℓ, (Jℓ > Jℓ+1 > . . . > JL+1, ) (2.12)

where Iℓ−1 < Iℓ, if Iℓ ⊆ Iℓ−1 × Iℓ (Jℓ > Jℓ+1, if Jℓ ⊆ Jℓ × Jℓ+1). The pivot
lists are fully left- (right-) nested if ℓ = L − 1(= 2). Full nesting is achieved
when the pivots lists are fully left- and right-nested.

The benefit of nesting condition is the already mentioned interpolation
characteristics of TCI (we refer the reader to Ref. [1, 18] for proofs and a more
detailed explanation). In fact, when pivots are right-nested up to ℓ − 1 and
left-nested from ℓ + 2 on, then we can define the local error εΠ[

εΠ
]

iℓ−1σℓσℓ+1jℓ+2
≡

[
Πℓ − Π̃ℓ

]
iℓ−1σℓσℓ+1jℓ+2

=
[
T − T̃

]
iℓ−1σℓσℓ+1jℓ+2

, (2.13)
5IL = J1 corresponds to the full set of tensor indices, i.e. σ ∈ IL = J1 ∀σ
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Figure 2.1: Main steps of the TCI algorithm. a) A set of indices such that
Tσ̂ ̸= 0 is chosen randomly from the configuration space Ind (T ). Pivot lists
are constructed from the initial multi-indices set. b) A first sweep is performed
for an initial Matrix Product State representation of our tensor T . At sites ℓ
and ℓ + 1, Πℓ tensor slices of the form in Eq. (2.11) are constructed from the
initial pivot lists Iℓ−1 and Jℓ+2. prrLU is then perfomed on the “matricized”
version of Πℓ, namely

[
Πℓ

]
(iℓ−1,σℓ)(σℓ+1,jℓ+2), and newly found pivots I ′

ℓ and
J ′

ℓ+1 are added to the initial lists Iℓ and Jℓ+1. This first sweep might resemble
the naive approach introduced in Ref. [18], as well as SVD-based MPS tensor
unfoldings (cf. Ref. [6]), however it is not different from subsequent iterations
of the algorithm. We illustrated it as above to highlight the initial tensor-to-TT
transformation. c) Sweeping back and forth through index pairs – σℓ, σℓ+1 – the
2-dimensional slices Πℓ are reconstructed from the current local pivot lists and
prrLU-compressed again. The purpose is to improve the choice of the initial
pivots and the approximation T̃ . This last step is performed until convergence.
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where

+1�σ�σ
1−�i +2�j

I

=
�Π prrLU

≈

J I

≈
+1�σ�σ

1−�i +2�j

I

�
′T �

1′−P +1�
′T

�
′i+1�

′j
= Π̃ℓ. (2.14)

In Eq. (2.13) and Eq. (2.14) (and also Fig. 2.1), Πℓ is reconstructed from the
current set of local pivots Iℓ−1 and Jℓ+2; Π̃ℓ is its approximation through
prrLU. Eq. (2.13) allows us to define a error concept consistent along the TT
chain (∀ℓ), granting the TCI algorithm of a form error control. In fact, step (c)
in Fig. 2.1 is performed until the error

∣∣Πℓ − Π̃ℓ

∣∣
iℓ−1σℓσℓ+1jℓ+2

is below a fixed
tolerance ε. Minimizing the local error means, according to Alg. 2.1 and the
maxvol principle [31], searching for the largest elements of the tensor

∣∣Πℓ− Π̃ℓ

∣∣,
adding new pivots that yield the largest improvement to the local accuracy
according to the ∥ · ∥∞ norm. The TCI routine is stopped when the condition∣∣Πℓ − Π̃ℓ

∣∣ < τΠ is met ∀ℓ ∈ {1, . . . ,L}, for the minimal set of pivots possible
and a fixed local tolerance τΠ. The last equality in Eq. (2.13) in not trivial (cf.
Ref. [1]) and allows to relate the local error

∣∣Πℓ − Π̃ℓ

∣∣ to the accuracy of the
global approximation T̃ .

The TCI representation is defined by the selected lists Iℓ and Jℓ ∀ℓ, so an
accurate interpolation amounts to optimizing this selection. The TCI routine,
as mentioned at the beginning of this work, belongs to the class of “active
machine learning” algorithms [19], as it tries to uncover the low-rank structure
of a given tensor T by actively requesting configurations that will better improve
its MPS unfolding. Similar to other machine learning (ML) methods, different
strategies exist to improve the modelling of our “data set” (e.g. for ML: data
augmentation, weighting, prompt engineering etc.). In our case, alongside the
local pivot searching strategies – rook search, block rook search and full search –
other techniques exist to improve the global approximation of our tensor. The 2-
site TCI can be run in reset mode or accumulative mode. The former recomputes
the full lists Iℓ and Jℓ+1 at each prrLU step of the TCI routine, while the latter
only adds new pivots to the alredy-existing local lists Iℓ and Jℓ+1. This
allows us to discard sub-optimal pivots that were inserted in the pivots lists
during the initial exploration of the configuration space, necessary to avoid the
pivot matrices P becoming singular. Global pivot proposals, similar to multi-
start approaches in ML [38], allows the user to incorporate prior information
about the tensor T through a clever choice of the initial configurations σ̂ (see
Fig. 2.1.a), such that all the relevant regions of configuration space are explored.

The above techniques all try to target TCI ergodicity issues that arise in
different implementations. Although most common TCI applications don’t
require any further expedient on top of the ones we just mentioned, as we
will understand in the rest of this work, there exist many other, especially if
modelling very extreme-conditioned physical systems, that call for additional
improvements. In particular, sparse or symmetric tensors and narrow peaked
multivariate functions are the main weaknesses for TCI.

Tensor Cross Interpolation, as the L-dimensional extension of CI, conserves
its compression properties. The number of elements of T necessary for its TT
decomposition is limited to the σ configurations obtained out of concatenation
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action variant calls to Tσ algebra cost

iterate

rook piv. 2-site O(χ2dnrookL) O(χ3dnrookL)
full piv. 2-site O(χ2d2L) O(χ3d2L)
full piv. 1-site O(χ2dL) O(χ3dL)
full piv. 0-site 0 O(χ3L)

achieve full nesting O(χ2dL) O(χ3dL)
add np global pivots O

(
(2χ + np)npL

)
O

(
(χ + np)3L

)
compress tensor train

SVD
0 O(χ3dL)prrLU

CI

Table 2.1: Computational cost of the main TCI routines. Full nesting routines
are useful to restore interpolation properties for our Tensor Train approximation.
Rook pivoting and full pivoting are different possible choices for the pivot search
in prrLU/CI subroutines. nrook corresponds to the maximum number of rook
search moves necessary to find an optimal local pivot (nrook < 5 for most
applications). The table is taken directly from Ref. [1].

of the pivots in the pivot lists – Iℓ,Jℓ+1 ∀ℓ. Hence, the approximation is
systematically controlled by χ, where χ = maxℓ χℓ is the rank of the tensor
T with χℓ = dim Iℓ = dimJℓ+1 rank of the local pivot matrix Pℓ. As a
consequence, the resources necessary to perform TCI scale strongly with χ.

The number of function calls necessary for the MPS unfolding T̃ of T is
O(χ2d2L) compared to the dL (= |Ind (T ) |) of its SVD counterpart, where d is
the configuration space dimension. Such an exponential advantage is obtained
by fully specifying only O(χ2L) number of pivots from the original tensor.
The algebra cost (∼ computational time) of the algorithm scales as O(χ3d2L).
Table 2.1 summarises the scaling of the core TCI routines implemented in the
TensorCrossInterpolation.jl library [24]. As illustrated in Example 2.2,
these scalings underscore the pronounced memory efficiency inherent to TCI.

Example 2.2 (L-dimensional function) Let us consider the following L-
dimensional function, inspired by [1]

f(x) = 2L

1 + 2
∑L

ℓ=1 xℓ

. (2.15)

Such a continuous function can be numerically represented by a tensor Fσ

through grid discretization over a preferred domain. For this exercise, we take
a 61 point Gauss-Kronrod type of grid, over the [0, 1]L hypercube. What this
means in practice is that Fσ ∈ Rd1×···×dL 6 and dim Ii = d = 61. The TCI
approximation of Fσ, namely F̃σ, is obtained through a limited number of calls
to the original function f(x), as depicted in Fig. 2.2 below.

Fig. 2.2 documents the reduced memory footprint required from the TCI
representation of functions up to 20 dimensions. Exponential scaling of memory

6From this point onward, F will refer to the tensor discretization of a continuous function,
while T will be the notation for a generic L-dimensional tensor.
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requirements, necessary to store the total 61L number of tensor elements of
Fσ, is replaced by a O

(
χ2)

scaling. Moreover, as one can understand from the
bottom right plot in Fig. 2.2, out of the total 612 (L = 2) Gauss-Kronod grid
points, only 49 are actually required for a nearly optimal approximation of f ,
therefore limiting the bond dimension χ of our tensor train to χ = 7 and with
that the number of total stored parameters.

Figure 2.2: TCI approximation of f(x) in Eq. (2.15) after discretization on
a L-dimensional 61 point Gauss-Kronod grid. On the left: number of total
floating point elements stored in the compressed tensor F̃σ as a function of L
(blue line). The “worst-case-scenario” scaling dL and the theoretical scaling
O(χ2d2L) are also represented (green and red dashed line, respectively). Top
right: heatmap of the L = 2 approximation F̃σ over the 61× 61 Gauss-Kronod
grid, subset of [0, 1] × [0, 1], with absolute tolerance ϵ = 10−8. Bottom right:
heatmap of the L = 2 original function f(x) over the domain [0, 1]× [0, 1]. The
red dots represent the location of the pivot values for the TCI approximation
above.

TCI is not only useful for function approximation. A very obvious applica-
tion of TCI is the computation of integrals in high-dimensional spaces. Detailed
examples of this particular usage of TCI are provided in Ref. [1, 18, 31]. TCI-
based integration outperform Monte-Carlo and quasi-Monte-Carlo methods in
many occasions and the reasons behind it are diverse.

Consider, for example, the following integral

I ≡
∫

dx f(x1, . . . , xL), (2.16)
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which can be approximated as a Riemann sum,

I ≈
∑

σ

Fσ, Fσ = f(x(σ)) (2.17)

where x(σ) is our discretization grid (cf. Example 2.2). If we decide to perform
TCI unfolding of our numerical tensor Fσ before the integration, Eq. (2.17)
then reads7

∑
σ

Fσ ≈
L∏

ℓ=1

dℓ∑
σℓ=1

T σℓ

ℓ P −1
ℓ (2.18)

replacing one L-dimensional integral by χ2L exponentially easier 1-dimensional
integrals. Moreover, if the rank of the MPS unfolding of the integrand remains
roughly constant as the number of dimensions increases, then the advange
provided by TCI increases exponentially. Given the numerical simplicity of
the algebra operations in Eq. (2.18), the bottleneck of integration operations is
limited to finding the right TCI approximation of the integrand, bounding the
parameter scaling to a polynomial cost of O(χ2dL).

The above achievement of TCI relies on the following property of continuous
functions:

Definition 2.4 A function f is almost separable [1] or ε-factorizable [18]
if its tensor representation F is low-rank.

For this class of functions the numerical advantage of TCI integration over
more standard approaches – like Monte Carlo sampling – is remarkable (cf.
1/N4

eval vs. 1/
√

Neval convergence for Neval function evaluations in Fig. 2 of
Ref. [1]). In addition, TCI does not suffer from the “sign problem” [17] of Monte
Carlo methods, i.e. slow convergence of the integral error with the number of
samples when ingrating over strongly oscillating functions. On the other hand,
TCI performs well even when integrating functions oscillating simultaneously
on very different scales. The limiting factor of TCI (rank of the ε-factorization)
is entirely orthogonal to that of sampling methods.

If the user intends to employ TCI purely to perform integrations, the defi-
nition of an environment-aware error (from Eq. (2.13) and Eq. (2.18)) might
turn out to be very useful. It is defined as

[
εenv

Π
]

iℓ−1σℓσℓ+1jℓ+2
≡ |LℓRℓ|

[
εΠ

]
iℓ−1σℓσℓ+1jℓ+2

Lℓ =
ℓ−1∏
ℓ̄=1

dℓ̄∑
σℓ̄=1

T
σℓ̄

ℓ̄
P −1

ℓ̄
Rℓ =

L∏
ℓ̄=ℓ+2

dℓ̄∑
σℓ̄=1

P −1
ℓ̄−1T

σℓ̄

ℓ̄
. (2.19)

The environment error function εenv
Π , by readjusting Substituting the usual

definition of local error εΠ ot be the error of the inegrand, allows the TCI routine
7P and T slices are here considered as (σℓ-dependent) matrices. Summation over common

indices is therefore implied. PL = [1].
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to be more integral-focused, outperforming the standard implementation when
it comes to integral error convergence. By selecting pivots not only based on the
absolute value of the integrand but also taking into account a specific point’s
volume contribution to the integral, εenv

Π allows for more precise computations
of complex integrals particularly for multi-scaled functions [18].

The Quantics Representation: QTCI
TCI is a powerful tool that can be used “out-of-the-box” for most applications.
The standard implementation however lacks the capabilities of reaching very
high resolutions for the approximatino of function of lower dimensions. Let us
consider Fig. 2.2 in Example 2.2: one might have noticed that the plot depicting
the TCI approximation of Eq. (2.15) shows some subtle visual imperfections.
These imperfections arise naturally when discretization errors become dominant
in our TCI representation. A naive solution to this issue would be to increase
the number of total grid points d×d used to discretize our 2D function. Despite
solving our discretization troubles, such an easy fix will make the number of
grid points d the main contributor to TCI scaling, reducing the compression
capabilities of the TT unfolding (e.g. for our specific example with L = 2
and, let’s say, d = 1000 grid points we would obtain a 2-sited MPS with site
dimension 1000).

Given a function f(x) which we intend to resolve at very high resolution –
or more ambitiously at superhigh resolution – the quantics tensor representation
could turn out to be very advantageous. Quantics representation has been a
standard approach – not limited to TT approximations – to target resolution
issues, well-established in the literature [21, 27, 39–42]. Applications revolving
around this type of representation are quite diverse in the many-body physics
community, ranging from computations of correlation functions for quantum
many body systems [27] to diagrammatic non-equilibrium many-body Green’s
function-based calculations [41] and compression of imaginary-time propagators
in the Frobenious norm [42].

Discretization errors are often a consequence of poor scaling of our numerical
approximation tool or of a suboptimal grid choice. While the former is definitely
not an issue in the context of TCI [1], the latter can definitely be better
addressed.

Given a function of N variables f(x) we discretize each variable through a
dyadic grid with M = 2R points per variable,

xn(mn) = (xn,max − xn,min)mn

2R + xn,min (2.20)

where each index mn ∈ {0, . . . , M − 1} is written in binary form with R bits
as

mn(σn) = mn(σn1, . . . , σnR) =
R∑

r=1
σnr 2 R−r, σnr ∈ {0, 1}, (2.21)

so that the N -variate function f is represented by the binary tensor Fσ :=
f
(
x1(σ1), . . . , xN (σN )

)
on such a grid [27, 40].
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A well-defined tensor Fσ requires us to unambiguously specify the order of
the tensor indices so that an MPS representation can be constructed These aer
multiple possible orderings

• natural ordering: Fσ ≡ F(σ11,...,σ1R,σ21,...,σ2R,......,σN 1,...,σN R) combining
dimensions;

• interleaved ordering: Fσ ≡ F(σ11,...,σN 1,σ12,...,σN 2,......,σ1R,...,σN R) combin-
ing scales;

• fused ordering: Fσ̃ ≡ F(σ̃1,...,σ̃R) fusing scales, where σ̃r =
∑N

n=1 2n−1σnr.

Once the index ordering is established, cross interpolation of the tensor Fσ

yields a TT approximation of our initial function f .
Combining TCI with the quantics representation allows us to represent a

given function f through an MPS and resolve it up to a scale of order 1/2R;
we will name this routine Quantics Tensor Cross Interpolation or QTCI.

QTCI constructs the local tensors T σℓ

ℓ and P −1
ℓ with a cost of O(Ldχ2) =

O(χ2d log M), similar to TCI, i.e. linear in the number of bitsR and logarithmic
in the grid size (recovering Khoromskij’s O(d log n) scaling [40]), where L = NR
or L = R depending on the index ordering choice. On the other hand, because
the mesh width is ∆ = 2−R, analytic f satisfy a spectral error bound

∥f − f̃R∥∞ ≤ C e−cR = C ∆c/ ln 2, (2.22)

so that the discretization error decays exponentially with R while storage and
CPU time grow only linearly with it [40, 43].

Interleaving (fusing) the bits as σℓ(n,r) – where ℓ = n + (r − 1)N (ℓ =
r) – arranges (fuses) all sites that resolve the same length-scale 2−r next to
(with) one another. Whenever cross-scale correlations are weak this ordering
yields a tensor-train (TT) of small, R-independent rank χ [27, 40]. QTCI
has no problem uncovering such an underlying structure, discarding the weak
entanglement betweeen different scales. Let us discuss this further in the
following example.

Example 2.3 (2D scale separated function) Consider the following 2D function

f(x, y) = exp(−0.4(x2 + y2)) + 1 + sin(xy) exp(−x2)
+ cos(3xy) exp(−y2) + cos(x + y)
+ 2−4 cos(2−4(0.2x− 0.4y)) + 2−8 cos(2−4(−0.2x + 0.7y))

(2.23)

The f might present a very high level of scale separation, where each individual
function scale, of order O(1), O(1/24) and O(1/28) respectively, sees the rest of
the function either as a summing constant or as some irrelevant small-magnitude
noise. We may expect that performing a QTCI compression of this function,
with interleaved ordering, would render a low-ranked TT, given this separation.
The level of entanglement between different bit bipartitions can give us an
intuition of the amount of scale disconnection present in the function.
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An entanglement measure can be achieved through the Von Neumann –
or entanglement entropy S. Given a generic tensor representation of the
form Fσ1...σL , the Von Neumann entropy at site ℓ can be evaluated through
singular value decomposition (SVD) of the matrix

ρℓ = ρ(σ1...σℓ),(σ′
1...σ′

ℓ
) =

∑
σℓ+1...σL

F(σ1...σℓ),(σℓ+1...σL)F
†
(σℓ+1...σL),(σ′

1...σ′
ℓ
). (2.24)

The singular values of ρℓ, namely sℓ, can then be used, after normalisation, to
calculate the local Von Neumann entropy

Sℓ = −
χℓ∑

α=1
s2

ℓ log s2
ℓ (2.25)

as entanglement measure between the bipartions (σ1 . . . σℓ) and (σℓ+1 . . . σL)
of the system.

Since bits ℓ = 2(r− 1) and ℓ = 2(r− 1) + 1 (interleaved representation with
N = 2) resolve scale 2−r of our function, entanglement measure around these
sites can give us an intuition of the amount of information that needs to be
propagated from scale 2−r to the other scales for a correct TT representation of
f . Fig. 2.3 depicts this entanglement measure for the QTCI compression with
R = 10 of f(x, y) in Eq. (2.23) and of rand(x, y), that generates random noise.
rand(x, y) is the perfect example of non-compressible function: no hidden
low-rank structure and absolutely no scale separation. In the case of f we
can observe very low entanglement for all the different bit bipartions, proving
once agan its scale separation. On the contrary, the random noise function is
strongly entangled along its whole MPS chain and the entire discretized tensor
is necessary to represent it as an MPS, such that no compression is achieved
by (Q)TCI. Accordingly, the bond dimensions are much larger for rand() than
for f(x, y)

When computing numerically with multivariate functions, one must usu-
ally balance two opposing aims: faithfully capturing the function’s detail and
minimising the memory required for it. Employing the quantics representation
together with TCI compression, however, allows us to realise high resolutions
(∆→ 0) at limited computational cost, making QTCI the method of choice
whenever scale-separation permits a small TT rank.

TensorCrossInterpolation.jl library
In the previous sections we introduced technical details and different appli-
cations of the TCI and QTCI algorithms. As briefly mentioned, all of the
examples we presented rely on a implementation of the algorithm, namely
TensorCrossInterpolation.jl [24, 25]. We will not dive into this details of
the library however, as reference for the rest of the work, we will mention its
main functionality: the crossinterpolate2 function.
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Figure 2.3: Left: entanglement entropy per site Sℓ vs site ℓ for the function of
Eq. (2.23) and a 2D random noise function. The vertical dashed lines indicate
the bonds where the bits (σ1r′ , σ2r′), for r′ ∈ [1, 4, 8], are next to the bipartition
cut. Right: bond dimension per site χℓ for the same two functions.

crossinterpolate2, described in the Listing 2.1 below, performs TCI of
a given numerical function f; in our context, f is either represented by the
discretized version of a multi-variate continuous function – f(x(σ)) – or by any
tensor-like numerical function – Fσ. Given the definition of our tensor Fσ as
a function type, we can understand that its elements don’t need to be known
and stored beforehand. The output of the computation is an object containing
the site tensors of the TT-unfolding, together with the lists of pivots necessary
to realize the cross approximation.

1 function crossinterpolate2(
2 ::Type{ValueType}, # Return type of f, usually Float64 or ComplexF64
3 f, # Tensorized function of interest: f(x(σ)) or Fσ

4 localdims::Union{Vector{Int},NTuple{N,Int}}, # Local dimensions (d1, . . . , dL)
5 initialpivots::Vector{MultiIndex}; # List of initial pivots {σ̂}.
6 # Default: {(1, . . . , 1)}
7 tolerance::Float64, # Global error tolerance τ for TCI. Default: 10−8

8 pivottolerance::Float64, # Local error tolerance τΠ for prrLU. Default: τ
9 maxbonddim::Int, # Maximum bond dimension χmax. Default: no limit

10 maxiter::Int, # Maximum number of half-sweeps. Default: 20
11 pivotsearch::Symbol, # Full or rook pivot search? Default: :full
12 normalizeerror::Bool, # Normalize ε by maxσ∈samples Fσ? Default: true
13 ncheckhistory::Int # Convergence criterion:
14 # εniter < ε for how many iterations? Default: 3
15 ) where {ValueType,N}

Listing 2.1: Main TCI routine of the TensorCrossInterpolation.jl library
crossinterpolate2. The details of each input variable are described in the
relative inline comments.
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2.2 QTCI approximation of functions with narrow peaks

Sparse or symmetry-constrained tensors, and–more relevant here–multivariate
functions that contain a few sharp local peaks, expose two latent weaknesses of
standard TCI. First, the informative regions of the configuration space occupy
only a tiny fraction of the full domain; random or purely local pivot searches can
miss them, revealing TCI’s ergodicity problem. Second, fitting the entire (mostly
trivial) domain with a single tensor train forces one global bond dimension,
even though different parts of the domain in fact require widely different ranks.
The result is often an over-ranked representation of the function, which mostly
traslates to an unnecessary increase in memory costs.

To illustrate these limitations—and to motivate the distributed strategy
developed in the following chapters—we introduce a minimal variant of TCI
tailored to sharply localised functions.

A “naive” solution
Ergodicity problems render TCI – and QTCI as well – a deficient tool when
we attempt to approximate functions with very local and sharp features. This
can be solved by global pivot insertion, where additional sampling points σ̂ are
inputted by an external source. Proposing clever initial configurations σ̂ (see
Fig. 2.1) to the TCI routine – similar to prompt engineering in deep learning
algorithms – can help TCI uncover all the relevant features of the function of
interest. The main weakness of this approach is that the target function we
intend to TCI compress might not be known a priori, so no information can be
used to improve its approximation. Let us consider the following function

f(r) = A1 e
− (r−r1)2

2σ2
1 sin(k1r)︸ ︷︷ ︸

f1(r)

+ A2 e
− (r−r2)2

2σ2
2 sin(k2r)︸ ︷︷ ︸

f2(r)

, (2.26)

where

r = (x, y), r1/2 = ±(0.5, 0.5),

A1 = 103, A2 = 106, σ1 = 10−1, σ2 = 10−3, k1 = 104, k2 = 103.

f(r) is composed by two, almost indipendent terms, with very different
absolute scales. f1(r) has wider support but it smaller in absolute value and
more slowly oscillating, whereas f2(r) is quickly oscillating but more localised
and of larger absolute value. After quantics discretization, the tensor f(r(σ)) =
Fσ can be TCI compressed to F̃σ.

The absolute quality of the local approximation can be measured through

εlog(r(σ)) = log10

∣∣∣Fσ − F̃σ

∣∣∣ , r(σ) ∈ [0, 1]2 (2.27)

where a smaller value indicates better precision. We show this error measure in
the top central plot in Fig. 2.5, for a QTCI of f with R = 20, desired absolute
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Figure 2.4: (a) Heatmap of the function f(r) within the domain [0, 1]2.
Zoomings into the enviroment of (b) r1 and (c) r2, which are the peak positions
of f1 and f2, respectively. Eq. (2.26).

tolerance τ = 10−7 and fused quantics index ordering. The image suggests
that – as expected from Fig. 2.4 – most of the function domain is easy to
represent, while the computational effort is focused around the centers of our
local features r1 and r2. Dividing the domain into computationally simple and
complex subdomains – or patches – could benefit the overall cost and, to some
degree, accuracy of the QTCI representation. Other arguments support this
strategy, as follows.

Given two tensors Aσ and Bσ on the same configuration space σ, we define
the element-wise sum tensor Sσ = Aσ +Bσ as the direct sum – or partial direct
sum – of the two tensors. The same operation can be performed for Tensor
Trains, by direct summing each site tensor (cf. Sec. 3.1 and Ref. [44]). In our
particular example, if we decide to approximate each summand f1(r) and f2(r)
in Eq. (2.26) with TTs – F̃1 and F̃2 – then

f(r(σ)) = Fσ ≈ F̃1σ + F̃2σ = F̃+
σ (2.28)

with negligible error, due to the independency of the two terms. Fig. 2.5,
supports this argument. The first pair of plots (a.1) and (b.1) portray the error
function of the QTCI approximation focused on the support region of f1(r)
and f2(r). The second pair (a.2) and (b.2), on the other hand, measures the
error for the QTCI approximations – F̃2σ and F̃1σ – limited 8to the support
of f1(r) and f2(r).

We can observe a slight improvement in the local approximation error in
the last row of plots compared to the first one. Whenever QTCI is constricted
to each local feature of f it is able to resolve the target with better precision.

8When limiting the QTCI approximation, in order to produce results with similar reso-
lution to the standard application, we reduce the number of bits to R1 = 17 and R2 = 16,
while keeping the other parameters unchanged.
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Figure 2.5: Logarithmic error ε(r(σ)) for the QTCI representation F̃σ of f(r)
in Eq. (2.26) (top) with different zoomings (a-b.1 ). Error measure of QTCI of
f limited to the surrounding of r1 and r2 is also shown (a-b.2 ). We refer to
the main manuscript for further details.

Nevertheless, the main advantage of this naive solution is not this small accuracy
improvement per se.

The computational effort of this “divide and conquer” variant of QTCI –
apart from being very well suited for parallelization – frees the algorithm from
the constraint of representing a single object, made of different independent
components, using a single tensor train. The improvement in numerical re-
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sources requirement is non-negligible. The bond dimension development along
the chains of the MPS unfoldings F̃σ, F̃2σ and F̃1σ is a witness of that, as
shown in Fig. 2.6.
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Figure 2.6: Bond dimension per-site of the TT unfolding of f(r) (blue line) and
of the TT unfoldings of f1(r) and f2(r) in Eq. (2.26), limited to their respective
support. The respective Tensor Trains F̃σ, F̃1σ and F̃2σ are obtained through
QTCI.

The rank χ+ of the direct sum of MPSs – F̃+
σ – in Eq. (2.28), depends only

linearly on the bond dimension of its addends, i.e.

χ+ = χ1 + χ2, (2.29)

where χ1, χ2 are the ranks of F̃1σ and F̃2σ, respectively.
Since f1 and f2 are resolved at markedly different scales, combining them

still yields a pronounced drop in the overall bond dimension, despite the extra
ranks introduced during the summation that produces the final tensor; as
evidence of this, the total number of floating point parameters necessary for
the two different implementations is

Npar(F̃σ) ≃ 1.4× 106 > Npar(F̃2σ + F̃1σ) ≃ 5.6× 105. (2.30)





Chapter 3
Patched QTCI

We’ve come now to the original part of this manuscript. In Chap. 2 we intro-
duced the state-of-the art implementation of the (Quantics) Tensor Cross Inter-
polation algorithm. We have briefly illustrated the capabilities of this numerical
method through several simple examples, which have also been demonstrated
in a more thorough manner in other studies [1, 18, 21–23, 28, 31]. Nevertheless,
the final section of the previous chapter highlighted a shortcoming of the stan-
dard implementation, particularly the approximation of multivariate functions
with sharp local features.

Here we present a more structured solution to these shortcomings than the
one proposed in Sec. 2.2 above, based on a “divide and conquer” variant of the
standard QTCI. Similar d.&c. approaches have already been investigated in
other tensor-focused works, including the use of an SVD-based Quantics Tensor
Train (QTT) method for approximating many-body correlation functions [27,
41], and tensor compression techniques employing standard and High-Order
Singular Value Decomposition (HOSVD) within adaptive or greedy frameworks
[26, 45, 46]. Our novel implementation of this method – “standing on the
shoulder of these giants” – exploits the advantages of TCI and performs TCI
tensor compression and function approximation in a patched way.

This new version of the TCI algorithm, which we will refer to as patched
(Quantics) Tensor Cross Interpolation – or patched (Q)TCI – distributes the
workload of the cross approximation by adaptively splitting the configuration
domain and uses the rank of the temporary TT cross approximation as trigger
parameter for the splitting. We will show that this patching technique helps
reduce the computational demand of TCI when attempting to represent narrow
peaked, multi-dimensional functions, both in memory requirements and CPU
times.

The upcoming chapter will be structured as follows: Sec. 3.1 covers all
the technical and mathematical details about the patched QTCI routine and
Sec. 3.2 discusses the estimated scaling of computational resources for the
algorithm, while also adressing some its weaknesses.

3.1 The algorithm

Patched Quantics Tensor Cross Interpolation (pQTCI) is an adaptive par-
titioning method [47] based on rank-revealing cross approximation for high-

27
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dimensional tensors. Cross interpolation represents only a subroutine for our
algorithm, hence, we will assume that the reader is familiar with all TCI’s
functionalities (cf. Chap. 2 and Ref. [1] otherwise). Since it is built upon the
TCI framework, pQTCI also falls within the class of rank-revealing algorithms
introduced in Def. 2.2.

Given a tensor T with hidden low-rank structure and desirably – but not
necessarily – very localized features in configurational space (i.e. only for a
small subset of σ, Tσ is non-trivial) as input, pQTCI returns a collection of TT
unfoldings as output, that, when resummed, approximate the tensor T on its
whole domain. Let us dive into the prerequisites needed for the construction
of pQTCI.

Element-wise addition of TTs
An key component of the pQTCI algorithm is the TT summation operation.
Consider the following definition

Definition 3.1 (Direct sum) The direct sum of N -dimensional tensors Xσ ∈
Kd1×d2×···dN and Yσ′ ∈ Kd′

1×d′
2×···d′

N is defined by

Zσ′′ = Xσ ⊕ Yσ′ ∈ R(d1+d′
1)×(d2+d′

2)×···(dN +d′
N ) (3.1)

with entries

Zσ′′
1 ,...,σ′′

N
=


Xσ′′

1 ,...,σ′′
N

if 1 ≤ σ′′
n ≤ dn ∀n

Yσ′′
1 −d1,...,σ′′

N
−dN

if dn + 1 ≤ σ′′
n ≤ dn + d′

n ∀n
0 otherwise.

(3.2)

A special case of the direct sum of two tensors is the so-called partial direct
sum ⊞ [44]. A partial direct sum of two tensors Xσ ∈ Kd1×d2×···dn×dn+1×···dN

and Yσ′ ∈ Kd′
1×d′

2×···d′
n×dn+1×···dN , that have the same dimensions for their last

N − n indices σn+1, · · · , σN , is defined as

Zσ′′ = Xσ ⊞ Yσ′ ∈ K(d1+d′
1)×(d2+d′

2)×···(dn+d′
n)×dn+1×···dN (3.3)

where Zσ′′ , by means of the slicing operation introduced in Eq. (2.11), has
subtensors

Z(i′′
n⊕jn+1) = X(in⊕jn+1) ⊕ Y(i′

n⊕jn+1) ∀jn+1 ∈ Jn+1 fixed. (3.4)

The partial direct sum of Xσ and Yσ is a direct sum performed pairwise
between all the subtensors of the two addends, obtained from fixing the indices
not included in the sum operation to the same value in both X and Y .

Given now two L-dimensional tensor trains, Ãσ and B̃σ
1,

1We use ˜ to refer to a generic MPS or TT unfolding (cf. Chap. 2).
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Ãσ = A1A2 · · ·AL = , (3.5)

B̃σ = B1B2 · · ·BL = (3.6)

with identical phyisical dimensions, dA
ℓ = dB

ℓ ∀ℓ, but possibly different virtual
dimensions χA

ℓ , χB
ℓ . Their element-wise sum C̃σ = Ãσ + B̃σ is still a tensor

trained shaped as

C̃σ =
[
A1 ⊞ B1

][
A2 ⊞ B2

]
· · ·

[
AL ⊞ BL

]
= , (3.7)

where the partial sum between A’s and B’s sitetensors is performed by fixing
the sites indices σℓ, and results in

Cσ1
1 =

[
Aσ1

1 Bσ1
1

]
, Cσℓ

ℓ =
[
Aσℓ

ℓ 0
0 Bσℓ

ℓ

]
, CσL

L =
[

AσL
L

BσL
L

]
. (3.8)

The new internal bonds cℓ are dependent on the original bonds, in fact
aℓ = cℓ, for cℓ ∈ {1, χA

ℓ }, and bℓ = cℓ − χA
ℓ , for cℓ ∈ {χA

ℓ + 1, χA
ℓ + χB

ℓ }. Hence,
the bond dimensions2 of the sum are also additive w.r.t to the bond dimensions
of its addends

χC
ℓ = χA

ℓ + χB
ℓ . (3.9)

Tensor subdomain projection
The second requirement needed to construct patched QTCI is, what we will
refer to as, the subdomain projection operation.

Consider a L-dimensional tensor Ψσ; Ψσ can be interpreted as the collection
of coefficients of a generic quantum state |Ψ⟩, when represented on a specific
basis of the Hilbert space it belongs to, as

|Ψ⟩ = Ψσ |σ⟩ = |σ1⟩ |σ2⟩ . . . |σL⟩Ψσ1,σ2,...,σL (3.10)

= 3.

In the same way, its MPS unraveling
2The bond dimension at site ℓ (1 ≤ ℓ < L) is defined as the number of columns of the ℓth

site tensor, when σℓ is fixed to a specific value.
3By abuse of notation we identify the tensor Ψσ with the quantum state |Ψ⟩.
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|Ψ⟩ = Ψ̃σ |σ⟩ = |σ1⟩ [Mσ1
1 ]1m1 |σ2⟩ [Mσ2

2 ]m1m2 · · · |σL⟩ [MσL
L ]mL−11 (3.11)

= .

If we restrict the configuration space to a subset space where |σℓ⟩ is fixed to
a specific basis vector |pℓ⟩, the corresponding subtensor representation of such
a subspace state |Ψpℓ⟩ would be

|Ψpℓ⟩ = |σ1⟩ · · · |σℓ−1⟩ |pℓ⟩ |σℓ+1⟩ · · · |σL⟩Ψσ1,...,σℓ−1,pℓ,,σℓ+1,...,σL

= |σ1⟩ · · · |σℓ−1⟩ |pℓ⟩ |σℓ+1⟩ , · · · |σL⟩Ψpℓ
σ1,...,σℓ−1,σℓ+1,...,σL

(3.12)

= = .

This procedure resembles a quantum projection, i.e. |Ψpℓ⟩ = |pℓ⟩ ⟨pℓ|Ψ⟩.
For now, the object is only used as a placeholder to relate our subtensor of
interest Ψpℓ

σ1,...,σℓ−1,σℓ+1,...,σL
to the original configuration space of the full tensor

Ψσ, but has otherwise no other meaning. Indeed, within the |pℓ⟩-subspace, |Ψpℓ⟩
is completely defined by the L− 1 indices (σ1, . . . , σℓ−1, σℓ+1, . . . , σL). The
items act as slicing or projection operators that limit us to the subsector of Ψσ

where the ℓth index is fixed to pℓ. It is trivial to deduce that

|Ψ⟩ =
dℓ∑

pℓ=1
|Ψpℓ⟩ , (3.13)

and, thus,

=
dℓ∑

pℓ=1
. (3.14)

Inside a specific |p⟩-subspace we can perform a TT approximation of the
subtensor Ψp as follows

Ψ̃pℓ = (3.15)

wherein we generalized to be local state dependent in the following manner

=
{

[1]mℓ−1,mℓ
if σℓ = pℓ

[0]mℓ−1,mℓ
otherwise,

(3.16)
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with bonds mℓ−1 and mℓ of same dimension and where 0m,n denotes the element
(m, n) of the zero matrix of dimension χℓ−1 × χℓ. From Eq. (3.14) we can
recognize that

Ψσ ≃
dℓ∑

pℓ=1
Ψ̃pℓ =

dℓ∑
pℓ=1

(3.17)

where the first approximation reflects the error associated with an arbitrary
MPS approximation and the sum is performed according to the element-wise
TT addition described by Eq. (3.7) in the section above. Without loss of
generality, the same line of reasoning can be applied to smaller subspaces

Ψσ ≃ Ψ̃+
σ =

dℓ1∑
pℓ1 =1

· · ·
dℓN∑

pℓN
=1

Ψ̃pℓ1 ,...,pℓN (3.18)

taking (ℓ1, . . . , ℓN ) ∈ {1, . . . ,L}N(≤L) (ℓi ̸= ℓj for every i ̸= j) without any
specific order constraint. Whenever the sum Eq. (3.18) retains a low rank, after
recompression, Ψ̃+

σ represents good approximation of the original tensor Ψσ.

The Patching scheme
Having laid out all the necessary ingredients, we now return to detailing our
patched (Q)TCI algorithm. Consider a generic tensor Tσ and its TCI approxi-
mation T̃σ. As noted in Sec. 2.2, when the tensor T exhibits sharply localised
structures, its compression T̃ can be made more memory-efficient by adopting
a divide-et-impera approach. Nevertheless, although the naive domain-splitting
approach outlined in Sec. 2.2 proved functional, it provided no means of nu-
merical control and presumed that both the location and spatial extent of the
tensor’s relevant features were known a priori. Such ideal conditions are rarely
encountered in real-world applications, particularly when the tensor T stems
from complex computations that estimate unknown variables. However, the
preceding example shows that memory usage for a (local) TT approximation is
effectively characterised by its bond dimensions χℓ—specifically, by the maxi-
mum bond dimension χ. Recognizing this allows us to devise a more intelligent,
adaptive, and general solution to the compression of tensors presenting sharp
localized features.

The standard TCI implementation provided by TCI.jl [24], as illustrated
in Listing 2.1, offers a mechanism to control the bond dimension of the
approximation. Specifically, setting the input variable maxbonddim within
crossinterpolate2 constrains the size of the pivot lists, thereby restricting
the bond dimensions χℓ of the resulting MPS. Although this strategy effectively
reduces the memory footprint of the TCI approximation, it also hampers
the convergence of the algorithm. Consequently, to ensure convergence, the
approximation domain must be suitably reduced.

We partition the approximation domain through subdomain projection op-
eration as detailed in the previous section. Once the original tensor has been
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decomposed into subtensors, hereafter called patches 4, we run TCI on each
patch separately. Working on these reduced domains improves the likelihood
of convergence since each patch explores a much smaller configuration space,
even when the bond dimension is capped at the prescribed threshold χpatch, a
bound that will then not be reached. This whole procedure can be repeated
iteratively and adaptively, as shown in Fig. 3.1. We shall refer to this routine as
the patching scheme, or simply patched TCI. The algorithm proceeds as follows:

(1) Start the standard TCI routine on the full tensor Tσ either from

• a random configuration σ̂ or
• a tailored set of global pivots, if prior information about local features

of T is available.

The rank reveal of the tensor train T̃ is constrained by the prescribed
limit χpatch. If T̃σ converges, the algorithm terminates.

(2) If convergence is not reached, slice Tσ along its first index5 to produce
subtensors

T p1 ∀p1 ∈ {1, . . . , d1} (cf. Eq. (3.12)).

(3) Use the pivot lists Iℓ and Jℓ from the preceding (failed) TT to form new
global pivots: σ̂ = iℓ ⊕ jℓ+1, with iℓ ∈ Iℓ, jℓ+1 ∈ Jℓ+1. A pivot σ̂ is
assigned to subtensor T p1 whenever its first component satisfies σ̂1 = p1.

(4) Compress each subtensor T p1 with TCI (bond dimension is still capped
at χpatch) over the reduced cofiguration domain (σ2, . . . , σL). Store all
the converged patches T̃ p1 ; discard those that fail to converge.

(5) For every unconverged subtensor T p1 , slice further along the next index to
obtain T p1,p2 ∀p2 ∈ 1, . . . , d2. Build the next set of global pivots subject
to σ̂1 = p1 and σ̂2 = p2.

(6) Repeat (4)-(5), recursively increasing the slicing depth, until no patches
remain to be converged.

Remarks are in order. The output result of the algorithm seems to be a
collection of tensor trains of the form

(3.19)

where both the prefix indices (p1, . . . , pℓ̄) ∈ Iℓ̄ and the length of the prefix – the
paching level – ℓ̄ ∈ {1, . . . ,L} can take very different values. Nevertheless, two
conditions are respected from our implementation:

4Henceforth, the term patch will denote both the subtensor T p1,...,pℓ and its TT-unfolded
form T̃ p1,...,pℓ .

5A different choice for the starting index is possible, see below. For pedagogical purposes
we start from σ1.
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Figure 3.1: Flowchart of the patched TCI algorithm. (a) Convergence criterion
for the subtensors T̃ p1,...,pℓ̄ – or patches – defined by the parameters χpatch and
τ , and the two sets of subtensors that have already converged – results – and
those yet to converge – tasks. (b) Flowchart of the patching scheme. The TCI
approximation is adaptively decomposed into smaller computations through
slicing (cf. Eq. (3.12)). Each subtensor is TCI compressed within the smaller
domain. The converged patches are added to results, the yet-to-converge ones
to tasks. The algorithm terminates – – when tasks is empty. We refer the
reader to the main manuscript for additional details.
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• any subtensor that is further subdivided has its non-convergent TT ap-
proximation discarded, all pairs of index prefixes satisfy

(p1, . . . , pℓ̄1
) ⊈ (p1, . . . , pℓ̄2

) ∀ ℓ̄1 ̸= ℓ̄2 (3.20)

Consequently, the patched-TCI procedure produces TT approximations
T̃ p1,...,pℓ̄ that are strictly non-overlapping (disjointed) in configuration
space;

• the collection of TTs of the form in Eq. (3.19), in order to constitute a
good approximation for the full tensor Tσ, satisfies the condition

Tσ ≈
∑

T̃ (·)∈results

T̃ (·). (3.21)

and we can therefore resum them to a single tensor train T̃ +
σ , similar to

what we did in Eq. (3.18). T̃ +
σ is a good TT representation of T . However

due to the adaptivity of pQTCI, differently from Eq. (3.18), here we might
be presented with a series of patches T̃ p1,...,pℓ̄ with prefixes (p1, . . . , pℓ̄) of
different lengths ℓ̄; nonetheless, this intricacy does not affect the TT sum
operation.

In Fig. 3.1 we displayed a version of the patched TCI where the tensor is
sliced sequentially starting from the first index σ1 of the tensor T . As pointed
out already, this constraint is not required to obtain a meaningful outcome
from the algorithm. The prefix of each subtensor T p1,...,pℓ̄ – that indicates to
which slice of T it corresponds to – can be taken randomly, in an exclusive
manner, from the set of tensor indices {σ1, . . . , σL} (considered labels in this
context).

Let us consider now the specific case when we intend to TT approximate a
multi-variate function, call it f(x). Sec. 2.1 taught us that, when we intend to
properly resolve all the relevant features of f , it is a clever choice to numerically
represent it as a tensor utilizing the quantics discretization (with R bits per
spatial dimention xi): in fact, the discretization error of the approximation
decreases exponentially by increasing R only linearly.

Assume now that f is characterized by narrow peaks sparsely distributed
across its domain. Its tensor representation Fσ = f(x(σ)) inherits the same
structure. When we apply the patched TCI procedure to Fσ, the scale sepa-
ration introduced by the quantics format (where σℓ(n,r) → 2−r length scale)
implies that each patch F̃p1,...,pℓ̄ simply captures f(x(σ)) restricted to a distinct
sub-region of the original domain. Fig. 3.2 illustrates this idea for a bivariate
function. The tensor F is indexed by scale: for example, with an interleaved
2-D ordering, the first two indices σ1 and σ2 encode the resolution 2−1 in the
x- and y-directions. Fixing these two indices—i.e., taking the corresponding
slice—yields a smaller subtensor that represents f on one quarter of the domain
(see the second panel on the right in Fig. 3.2). This motivates our previous
terminology: we call each such subtensor slice a patch.

Patched QTCI refines the domain more aggressively in regions where the
target function f exhibits higher complexity. Areas that contain sharp, localised
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Figure 3.2: Subdivision of a two-dimensional domain caused by the QTCI patch-
ing scheme. For clarity, we label each patch F̃p1,...,pℓ̄ by its prefix

[
p1, . . . , pℓ̄

]
.

We consider both fused and interleaved index ordering for the TTs F̃p1,...,pℓ̄ .
Coloured dots show the region represented by each patch, and only selected
patches are displayed up to a patching level ℓ̄ = 4. Faded grid lines suggest
how the remaining parts of the domain could be further split whenever the
adaptive-convergence criterion of the patched QTCI algorithm calls for it.

peaks incur a larger memory footprint, driving up the tensor-train rank χ. Panel
(a) of Fig. 3.3 illustrates this effect for a generic, single-peaked bivariate function.
As noted earlier, patched TCI returns a collection of TT representations that
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are mutually disjoint in configuration space; in the context of pQTCI this means
that the resulting set of patches forms a non-overlapping cover of the entire
domain of f . Panel (b) shows how this cover is built: the algorithm traverses
the patch tree and, for each slice F̃p1,...,pℓ̄ , checks the stopping criteria:

∥F (·) − F̃ (·)∥∞ < τ and χ < χpatch. (3.22)

adaptively refining only those slices that violate either boundary. The total
number of red colored leaves in Fig. 3.3 is the number of patches, Npatch, for a
specific approximation.

Figure 3.3: Patched QTCI applied to the TT approximation of a bivariate
function. a) The domain is adaptively split, yielding finer cells where the
function is more intricate. b) Hierarchical tree that records the patch refinement:
each tensor slice is attached to its parent, and the red leaves mark the final
subtensors produced and kept by pQTCI.

3.2 Computational Costs and Scaling

In many practical settings, applying standard Tensor Cross Interpolation (TCI)
directly to large, feature-sparse tensors is wasteful: a lot of the computational
effort is spent on regions that do not influence the final accuracy. Moreover,
since all TCI algorithms involve sampling, none of them is fully immune against
missing some features of the tensor of interest, as already discussed above.
Patched QTCI addresses these issues by adaptively dividing the tensor into
small, targeted patches and capping the bond dimension in each local solve.
The goal is to concentrate resources only where the data truly demands high
resolution, while discovering the interesting regions during the process, thereby
reducing both memory traffic and run-time.

At first sight, the patched (Q)TCI algorithm shown in Fig. 3.1 appears to
burden the original TCI routine with considerable overhead: in the worst-case,
crossinterpolate2 is invoked on the order of O

(
dℓ̄

)
times, where ℓ̄ is the

deepest patching level reached (assuming a uniform subdivision and ignoring
adaptivity).
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In practice, however, patched QTCI can run faster than the plain TCI
workflow. Every call to crossinterpolate2 is restricted by the bond-dimension
cap χpatch, so each χpatch-capped local TCI is far cheaper than a non-capped
TCI on the entire tensor T . Only when we reach patch spatial dimension
containing features we are able to approximate within a bond dimension of
χpatch then the TCI procedure runs to its full extent, reaching convergence.

The preceding discussion makes it clear that both the total number of
resulting patches, Npatch, and relative computational resources expenditure,
are governed largely by the bond-dimension cap assigned to each patch, χpatch.

Runtime & Memory vs. χpatch

To estimate actual resource usage of pQTCI, we begin with a theoretical analysis
(empirical fits are in Appendix A). Consider a generic T̃ of the form given in
Eq. (3.11) whose maximum bond dimension is χ. When T̃ is constructed by
successive SVD unfoldings of the full tensor T , truncating each SVD at the rank
χ [2, 6, 7], the bond dimension along the chain typically evolves as illustrated
in Fig. 3.4.

Figure 3.4: Generic χ truncated MPS bond dimension evolution.

A convenient way to gauge the memory footprint of a tensor-train approx-
imation is to tally the total number of floating-point entries it contains. For
each of the two TT splittings labelled 1⃝ and 2⃝ in Fig. 3.4 – assuming all
physical dimensions satisfy dℓ = d – the parameter count is therefore

N 1⃝
par = 2

ℓ∗∑
ℓ=1

d2ℓ

N 2⃝
par =

L−ℓ∗−1∑
ℓ=ℓ∗+1

χ2d

(3.23)

where ℓ∗ is fixed by the relation d2ℓ∗ = χ. Hence, the total number of parameters
for a generic TT of this form is bounded by

Npar ≲ 2d2 1− χ2

1− d2 + χ2d(L − 2 logd χ− 2). (3.24)
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Assume the worst-case scenario in which patched QTCI subdivides the entire
domain into a lattice of patches. After sequential slicing (σ1 → σ2 → · · · ), the
procedure halts at patching level ℓ̄, yielding a total number of patches Npatch
all with rank χpatch and with bond dimension development as in Fig. 3.4. The
memory footprint of this final object would be

Npar = Npatch Npar×patch

Npar×patch ≲ 2d2 1− χ2
patch

1− d2 + χ2
patchd(L − ℓ̄− 2 logd χpatch − 2).

(3.25)

As in standard TCI (see Tab. 2.1), the memory footprint of patched QTCI
grows with the square of the maximum bond dimension — here evaluated per
patch — scaling as

O
(
Npatchχ2

patchd2L
)
. (3.26)

A comparable reasoning yields an estimate for the runtime of the patched
QTCI routine. If a single, full-domain TCI run takes O

(
χ3d2L

)
CPU time,

then the cumulative runtime of patched QTCI becomes

tpatch ≲ χ3
patchd2

ℓ̄∑
ℓ=0

dℓ(L − ℓ) ≲ Npatchχ3
patchd3L, (3.27)

where we assumed L ≫ ℓ̄ in the last inequality. This yields a runtime scaling
for pQTCI of

O
(
Npatchχ3

patchd3L
)
. (3.28)

Beyond the raw cost estimates, the analysis yields some useful thresholds:
the patched scheme remains more memory- or time-efficient than standard
TCI only if the total number of patches, Npatch, stays below the corresponding
bounds:

memory cost CPU runtime

Npatch <
χ2

χ2
patch

χ3

dχ3
patch

(3.29)

The table above provides us with rough boundaries on Npatch for an optimal
pQTCI approximation. In this particular context, χ is the rank of an analogous
(Q)TCI compression with the same input tensor of p(Q)TCI

Number of patches vs. χpatch

To explore the dependence of Npatch by the fixed parameter χpatch, let us
examine a concrete example, in particular let us revisit the function of Eq. (2.26)
with the following parameter changes (purely for visualization purposes)
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r1 = (0.2, 0.2), r2 = (0.8, 0.8),

A2 = 2 A1 = 104, σ1 = 2 σ2 = 10−1, k1 = 2 k2 = 103.
(3.30)

We restate the formula here

f(r) = A1 e
− (r−r1)2

2σ2
1 sin(k1r) + A2 e

− (r−r2)2

2σ2
2 sin(k2r).

We discretize f on the square domain [0, 1]2 into the tensor Fσ = f(r(σ)),
using interleaved or fused quantics representation. Applying the patched QTCI
compression to F , while varying the bond-dimension cap χpatch, let us track how
the domain is adaptively partitioned and how the overall patch count Npatch
changes with χpatch. Lowering the bond-dimension cap χpatch in the patched
QTCI algorithm forces each patch to converge on a progressively smaller portion
of the configuration space. This behaviour is illustrated in Fig. 3.5.

In Fig. 3.5 each coordinate is discretised with R = 17 bits–enough to resolve
every feature of f(r) f to a tolerance of τ = 10−7. The total patch count Npatch
depends sensitively on the chosen bond-dimension cap χpatch. We can then
understand that there exists a dependence of Npatch by χpatch. From the
memory estimate in Eq. (3.25), and assuming the overall parameter budget of
the final approximation to stay roughly constant, we anticipate the following
scaling law

Npatch ∝ 1/χ2
patch. (3.31)

In other words, halving the allowable bond dimension per patch would quadru-
ple the number of patches required to achieve the same accuracy. Fig. 3.6
corroborates this scaling: it plots the patch count against the actual maximum
bond dimension, χ∗

patch
6, attained by the most demanding patch in the pQTCI

compression of Fσ.

“Over-patching”
The bond-dimension cap χpatch is pivotal to the efficiency of patched QTCI: it
must be selected so that the resulting approximation is truly more economical
than a direct (Q)TCI compression. The bounds in Eq. (3.29) supply an initial
guideline, but they rely on knowing—or at least estimating—the maximum TT
rank χ that a standard TCI run would produce. Such information is often
unavailable, and even when χ can be inferred (for instance, from a previous
but costly TCI attempt), the optimal value of χpatch remains strongly problem-
specific. Fig. 3.7 illustrates this point with a toy example.

The target is a piecewise function consisting of an oscillatory segment fol-
lowed by an exponential tail. The colour map reveals that some ways of
partitioning the domain are clearly superior to others. In the bottom row of
canvas, where the domain is subdivided too aggressively, the number of re-
sulting patches becomes so large that the overall cost exceeds that of a single,

6The value of the bond dimension bound χpatch fixed by the user doesn’t always cor-
respond to the maximum bond dimension at which TCI converges within each patch. The
largest of these maximum bond dimensions among all the patches is here referred to as χ∗

patch.
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Figure 3.5: Evolution of the adaptive partitioning of the bivariate function f(r)
domain (cf. Eq. (2.26) and Eq. (3.30)), due to pQTCI. Both interleaved and
fused ordering for the tensor Fσ = f(r(σ)) are illustrated. Smaller maximum
bond dimensions per patch χpatch render finer partitionings of the domain.



3.2. Computational Costs and Scaling 41
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Figure 3.6: Number of total patches vs largest patch maximum bond dimension
χ∗

patch for the approximation of f(r) as in Eq. (2.26). The numerical data is
compared with the estimated scaling 1/χ2 (cf. Eq. (3.31)).

full-domain approximation. Over-patching is particularly problematic for func-
tions whose features are not sharply localised: if we split either the exponential
tail or the oscillatory region in half, it is impossible to identify a “simpler”
versus “harder” sub–interval, and the extra patches provide no computational
benefit.

Figure 3.7: Domain partitioning of a one–dimensional piecewise function and
the corresponding bond dimensions of the MPS that represents each segment7.
Colours link each section of the function (left panels) to the bond dimen-
sions of its TT unfolding (right panels). From top to bottom: a single, global
approximation; an optimally subdivided approximation; and an inefficiently
over-subdivided case.
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This phenomenon—hereafter termed over-patching—is common when
patched QTCI is applied to functions lacking sharply localised structure, or
when the prescribed cap χpatch is set too small for the task at hand. In
either circumstance, once a patch reaches the bond-dimension limit, pQTCI
tries to refine the domain further, irrespective of whether the function varies
significantly within that patch. The outcome is a proliferation of sub-patches
whose spatial extent is smaller, yet whose tensor-train representations inherit
essentially the same bond dimensions as their parent patch, thereby defeating
the purpose of the subdivision.

Fig. 3.8 shows how patched QTCI can fail when confronted with a function
whose features are uniformly spread across the whole domain. The target here
is

f(x, y) = 1 + e−0.4 (x2+y2) + e−x2
sin(xy) + e−y2

cos(3xy) (3.32)
+ cos(x + y) + 0.05 cos

[
102 (2x− 4y)

]
+ 5×10−4 cos

[
103 (−2x + 7y)

]
+ 10−5 cos

(
2× 108x

)
,

whose oscillatory and exponentially modulated components permeate the entire
domain at different length scales. Because no subregion is markedly simpler than
another, patched QTCI keeps slicing almost at random, generating numerous
small patches whose local tensor-train ranks are identical to those of their
parent regions. Consequently, the aggregate number of TT parameters (solid
curve in panel (b)) surpasses that of a single, full-domain TCI approximation
(dotted curve). In effect, the algorithm redundantly stores the same information
in multiple MPS blocks, negating any potential savings and exemplifying the
drawback of over-patching.

To curb over-patching, several practical safeguards could be introduced in
future versions of the algorithm

• Minimum patch size: impose a lower bound |Ω|min on the spatial
size of any patch Ωp. If a candidate split would produce sub-domains
smaller than this threshold, the recursion is halted and the current patch
is accepted as is. This solution is particularly useful when the length
scales of interest for a target function are known beforehand.

• Post-processing merge: after the recursive phase, inspect neighbouring
patches whose TT cores share the same effective ranks. If the error of the
combined residual of two siblings stays below τmerge, replace them by a
single, merged patch and recompress with TCI.

These mechanisms ensure that domain refinement is driven by actual ap-
proximation error rather than the arbitrary attainment of the bond-dimension
limit, thereby preventing an explosion in the number of patches and preserving
the intended resource savings of patched QTCI.

7I owe a debt of gratitude to my supervisor Marc for this figure.
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Figure 3.8: Performance of patched QTCI on the two–dimensional oscillatory
function of Eq. (3.32). (a) Example of the domain subdivision produced with
R = 15, χpatch = 10, and τ = 10−4. The partition is highly redundant and fails
to align with the true feature layout of the function. (b) Total number of TT
parameters returned by pQTCI (solid curves) at three target tolerances, plotted
against the bond-dimension cap χpatch. For comparison, the parameter count
of a full-domain TCI compression is shown as a dotted line. Once χpatch ≳ 80,
every run collapses to a single patch and matches the TCI cost; for smaller
caps, over-patching inflates the parameter count sharply.





Chapter 4
Patched MPO-MPO Contractions

MPO-MPO contractions are widely recognized as a critical computational bot-
tleneck in tensor-network algorithms, appearing frequently in applications like
real-time evolution [48], finite-temperature simulations [49], two-particle field
theory calculations [50] and standard ground-state DMRG computations [5].
Even when employing optimal contraction strategies, the computational com-
plexity typically scales unfavorably with increasing bond dimensions rapidly
becoming the dominant cost for large-scale calculations [5, 48, 50].

(Q)TCI makes it possible to encode intricate functions in a highly compact
tensor-train form, greatly facilitating the numerical evaluation of otherwise
challenging integrals [1, 18, 50]. Besides the favourable complexity of the
TCI algorithm itself, in general tensor representations are especially beneficial
for convolution–type integrals, e.g. h(x, y) =

∫ 1
0 dt f(x, t) g(t, y), because

they allow such integral to be carried out by simply contracting the MPOs
representing the two integrands. More importantly, the contraction yields a
ready-made, reusable tensor-train representation of the result h.

While (Q)TCI substantially mitigates the cost of setting up convolu-
tion–type integrals, the subsequent MPO–MPO contraction still scales steeply
with the bond dimensions of the two factors–typically O(χ4) [51]– depending
on the algorithm employed. This rank dependence motivates distributing the
contraction across smaller sub-problems whose bond dimensions are capped, in
the spirit of patched (Q)TCI. We refer to such strategies collectively as patched
MPO–MPO contractions.

The remainder of this chapter is organised as follows: Sec. 4.1 reviews
conventional MPO–MPO contraction schemes and establishes the notation
used later; Sec. 4.2 introduces the patched approach, analysing its advantages
and resource scaling for several representative tensor products; finally, Sec. 4.3
presents a new adaptive contraction algorithm that, analogously to pQTCI,
dynamically partitions the tensors and caps the local bond dimension, thereby
balancing the contraction workload across patches.

4.1 MPO-MPO Contractions: standard algorithms

A variety of well–established algorithms can contract two MPOs with high
efficiency. Before reviewing these methods, we introduce the notation and

45
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conventions commonly adopted in the tensor-network literature, beginning
with the central object of interest: the Matrix Product Operator (MPO).

Matrix Product Operators
Consider the tensor-train representation

M̃σσ′ = , with Mℓ = . (4.1)

In the quantum-many-body community such a tensor train with two physical
legs per site is known as a Matrix Product Operator (MPO) [5, 6, 52, 53]. In
numerical mathematics the same object appears under the name Tensor-Train
Operator (TTO) [11]. Each four-legged core Mℓ carries two virtual indices
and two physical indices, and the largest virtual dimension, χ = maxℓ mℓ, is
called the rank of the MPO, mirroring the definition for matrix-product states
(MPSs). MPOs are routinely built to encode operators—Hamiltonians, density
matrices, transfer matrices, projectors—that act on an MPS [15, 52]. They un-
derpin modern DMRG algorithms, time-evolution schemes, finite-temperature
purification, and many other tensor-network techniques.

The emergence of cross–approximation techniques has extended the rele-
vance of MPOs to high–dimensional quadrature and convolution problems. A
key property is that any matrix-product state (MPS) can be recast as an MPO
simply by fusing pairs (or groups) of physical indices. For an MPS comprising
2L sites, the transformation is schematically

(4.2)

where consecutive physical indices (σ2ℓ−1, σ2ℓ) are merged into a single in-
put–output pair

(
σ2ℓ−1, σ2ℓ

)
≡ (σ′

ℓ, σℓ). This simple regrouping turns the
state into an operator, enabling the same compressed representation to serve
both as a multidimensional function and as an MPO contraction kernel. For
a generic MPS, one simply fuses multiple neighbouring indices—for example
σℓ, σℓ+1, σℓ+2 → ((σℓ, σℓ+1), σℓ+2) := (σℓ, σ′

ℓ)—to obtain the desired operator
form.

Given two matrix-product operators (MPOs)

Ãσσ′ = , B̃σ′σ′′ = (4.3)
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our goal is to form their product
∑

σ′ Ãσσ′B̃σ′σ′′ :

:= C̃σσ′′ . (4.4)

If Ã and B̃ both have rank χ we want the final result C̃ also to have rank
≃ χ. Several contraction strategies exist. Below we outline the familiar zip-up
algorithm for completeness of this manuscript; alternative schemes available in
modern tensor-network toolkits include the fitting routine of Stoudenmire and
White [51] and the density-matrix algorithm described in the tensornetwork.org
documentation [7].

The zip-up algorithm
Consider two MPOs of identical bond dimensions χ (cf. Eq. (4.3)) and phyiscal
dimensions d.

Figure 4.1: The zip-up MPO-MPO contraction algorithm. Each step is labelled
with its computational cost. At each iteration the indices coloured green indi-
cate the next contraction to be performed. Refer to the main manuscript for
additional details.

Fig. 4.1 sketches the zip-up algorithm, an efficient left-to-right MPO con-
traction procedure:

(1) Begin at the leftmost site. Contract the shared physical index σ′
1 of the

two site tensors to form a four-legged object. Treat
(
σ1, σ′′

1
)

as the row
index and

(
a1, b1

)
as the column index of a matrix, then apply an SVD.

The resulting left isometry becomes the first core of the product MPO,
while the residual (the diagonal and right singular tensors) is contracted
into a single “left-over” tensor. Truncate the SVD either by setting a
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maximum rank or by discarding singular values below a local tolerance
τloc.

(2) Move one site to the right. Contract the left-over tensor with two new
site tensors out of the factor MPOs, fuse the indices

(
σℓ, cℓ−1, σ′′

ℓ

)
and(

aℓ, bℓ

)
into the new row/column pair and repeat the SVD and truncation

as in step (1).

After each SVD step the row index of the singular value matrix will constitute
the new bond dimension cℓ for the product MPO. The zip-up procedures scales
as

O(χ4d4L) (4.5)

with the parameters of our input MPOs.
A well–known drawback of the zip-up scheme is that the global approxima-

tion error of the resulting MPO is not rigorously bounded by the local SVD
tolerances εloc [51]. In practice, however, tightening εloc usually reduces the
overall error. Several best-practice remedies are commonly employed:

• Right–canonical preconditioning. Transform both the two input MPOs
to right-canonical form [6]. This stabilises the local factorizations and
mitigates ill-conditioning.

• Error-based truncation. Instead of imposing a hard rank cap χ, truncate
each SVD by discarding singular values whose squared weight falls below
a prescribed cutoff, thereby adapting the rank to the local spectrum.

• Hybrid refinement. Perform an initial left-to-right zip-up sweep with
a fixed rank χ to obtain a rough product MPO, then feed this guess
into the fitting algorithm of Ref. [51], which iteratively refines the bond
dimensions while monitoring the global error.

These strategies balance accuracy and efficiency, providing tighter control
over the final approximation error without incurring prohibitive cost. Adopting
an error-based type of truncation, while monitoring the local bond dimensions
of the resulting MPO, will allow us to use the zip-up routine for our patched
version of MPO contraction algorithms.

4.2 Patched MPO-MPO Contractions

MPO–MPO contractions rank among the most demanding kernels in ten-
sor–network computations: their arithmetic cost scales roughly as the χ4 power
of the bond dimension χ of the two input operators. Such a steep dependence
quickly turns the contraction step into a major bottleneck. Because the bond
dimension is the dominant cost driver, a distributed strategy that caps the
local bond dimension—mirroring the philosophy of patched QTCI—promises
substantial savings.

In what follows we introduce this strategy, which we call patched MPO–MPO
contraction, and show how it can already accelerate several representative tensor
contractions encountered in practical applications. We start by defining patched
MPOs and by illustrating how to contract them.
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Patched contraction logic
The output produced by pQTCI contains objects with the schematic form

. (4.6)

Suppose we promote this patched MPS to an MPO so that it can enter
some contraction procedure. The local MPS-to-MPO mapping depends on the
site index ℓ, hence on the way the MPS cores are grouped; from Eq. (4.2) one
obtains

=
{

[1]mℓ−1,mℓ+1 if σℓ = pℓ ∧ σℓ+1 = pℓ+1

[0]mℓ−1,mℓ+1 otherwise,

=
{

[Mσℓ−1 ]mℓ−2,mℓ
if σℓ = pℓ

[0]mℓ−2,mℓ
otherwise,

(4.7)

=
{

[Mσℓ+2 ]mℓ,mℓ+2 if σℓ+1 = pℓ+1

[0]mℓ,mℓ+2 otherwise.

Whenever we are contracting two patched MPOs, which may be folded from
MPSs of the type in Eq. (4.6), the product is non–the vanishing only if for
those sites on which both internal indices are projected, say σ′A

ℓ = p′A
ℓ and

σ′B
ℓ = p′B

ℓ , they are projected to the same value, i.e. if p′A
ℓ = p′B

ℓ . Consider the
following patched MPOs

B̃
p′′

3 ,p′′
4

σ′σ′′ = .

Ã
p2,p′

2,p3,p′
4

σσ′ =

(4.8)

They always yield a result of the form

C̃
p2,p3,p′′

3 ,p′′
4

σσ′′ = . (4.9)

when contracting over the shared indices σ′. By contrast, two MPOs shaped
as
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B̃
p′

2,p′
3,p′′

3
σ′σ′′ =

Ã
p2,p′

2,p′
3

σσ′ =

(4.10)

produce a non–zero contraction only when the projected internal indices match,
i.e. p′A

2 = p′B
2 and p′A

3 = p′B
3 . In other words, to obtain a non–vanishing

outcome, any internal index that is projected must be projected onto the same
value in both factors; the external indices (σ, σ′′ in Eq. (4.8)) place no such
restriction. All the tensors in Eq. (4.8), Eq. (4.9) and Eq. (4.10) will be hereafter
referred to as patched MPOs or patch MPOs.

Assume that two tensors Aσ and Bσ have been decomposed through
p(Q)TCI into collections of patches,

Aσ ≈
∑

Ã(i)∈resultsA

Ã(i), Bσ ≈
∑

B̃(j)∈resultsB

B̃(j). (4.11)

After promoting each patch to MPO form (cf. Eq. (4.7)), the full contraction
Cσ,σ′′ =

∑
σ′ Aσ,σ′Bσ′σ′′ can be assembled patch-wise: contract every patch

Ã(i) with each compatible patch B̃(j) (i.e. those whose projected internal indices
match). This yields a family of subtensors {C̃(k)} which, upon MPO-to-MPS
unfolding (cf. Eq. (4.12)), collectively approximate the target tensor Cσ (un-
folding of Cσ,σ′′). In other words, each TT of resultsA will be contracted with
every TT in resultsB and depending on the compatibility of the projection
result in a TT C̃(k) part of the patched representation of Cσ. The subsequent
section will help us clarify this concept with a graphical representation of the
patched contraction for quantics tensor trains.

2D representation of patched contractions
The product MPO in Eq. (4.9) can be unfolded back into a patched MPS by
inverting the mapping of Eq. (4.2). To do so, one may perform an SVD or
a CI/prrLU on each MPO site tensor or simply read off the local cores from
Eq. (4.7), in the case of a patched MPO. The resulting MPS reads

C̃
p2,p3,p′′

3 ,p′′
4

σ =

(4.12)

C̃p3,p5,p6,p8
σ = ,

where the second equality is obtained after relabelling site indices and bond
dimensions. The auxiliary cores ∆pℓ encode the subtensor corresponding to the
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external (non–contracted) indices of Ã and B̃, i.e. external (non-contracted)
projected indices in Ã and B̃ will be projected indices in C̃.

The tensor-trains in Eq. (4.12) closely mirror the TT form of an individual
patch produced by the pQTCI algorithm. If each TT physical index has dimen-
sion dℓ = 2 we can assume to be working with a two–dimensional, interleaved
quantics representation of some function, where each such MPS corresponds to
a distinct sub-region of a 2D domain, uniquely labelled by its prefix indices. A
full set of these patches can tile the entire domain of the function.

This insight suggests a convenient two-dimensional diagrammatic view of
patched contractions. Let us introduce three quantics variables on the unit
interval, each resolved with R binary digits,

x 7→ x(σ) =
R∑

r=1
σr2−r y 7→ y(σ′′) =

R∑
r=1

σ′′
r 2−r

s 7→ s(σ′) =
R∑

r=1
σ′

r2−r σr, σ′
r, σ′′

r ∈ {0, 1}

(4.13)

With this notation, the patch ensembles introduced in Eq. (4.11)—and the
tensor that results from their pairwise contractions—can be depicted with a
two-dimensional schematic (Fig. 4.2).

Fig. 4.2 illustrates the idea for two well-constructed collections of patched
MPOs, A and B. Each MPO patch is first unfolded into an MPS and mapped
to its assigned region of the two–dimensional domain, exactly as described in
the preceding chapter for pQTCI. Panels (a) and (b) show the resulting patch
ensembles for A and B, respectively. Every A-patch is then paired with every
compatible B-patch and contracted over their shared indices σ′ (s variable),
covering all index combinations permitted by the internal projections1. The
collection of contraction results tiles the square [0, 1]2, furnishing a patched
representation of the product tensor C.

As highlighted by the first row of Fig. 4.2, this patchwise contraction behaves
as a “matrix multiplication” of patches:

• the patching depth along the columns (x-direction) of the final object is
inherited from the row patching of the left factor A;

• the patching depth along the rows (y-direction) is inherited from the
column patching of the right factor B.

Although the schematic in Fig. 4.2 employs a simple, regular subdivision to
convey the basic logic of patched contractions, real applications involve far
more intricate patch patterns and additional constraints on the internal in-
dices, making the general contraction problem correspondingly richer and more
challenging.

The diagrammatic picture introduced in Fig. 4.2 is not restricted to MPOs
that come from a two–dimensional, interleaved quantics TT unfolding. It
extends naturally to higher physical dimensions. Suppose that we have a set of

1In the particular example of Fig. 4.2 no constraints due to internal indices’ projections
are imposed. Hence, every A-patch is contracted with every B-patch.
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Figure 4.2: 2D representation of patched MPO-MPO contraction.



4.2. Patched MPO-MPO Contractions 53

R indices each of dimension d, then we can assign to it real variable x discretised
in base d such as

x 7→ x(σ) =
R∑

r=1
σr d−r, σr ∈ {1, . . . , d}. (4.14)

The corresponding axis will then be partitioned into d intervals at each digit
(rather than two), and the same two–dimensional patch contraction picture can
be drawn. In fact, the internal indices σ′ and the external indices σ, σ′′ may
even carry different local dimensions d, d′ and d′′. Provided that the internal
local dimensions are equal for the two factors, i.e. dim(σ′A

ℓ ) = dim(σ′B
ℓ ) ∀ℓ, the

two–dimensional representation retains its generality.
This grid view is especially convenient when modelling convolution–type

integrals—i.e., “matrix multiplications” of two-dimensional functions—such as

h(x, y) =
∫ 1

0
ds f(x, s) g(s, y). (4.15)

Here each patch pair encodes the actual contribution of a specific (x×s)⊗(s×y)
block to the result h(x, y), and the patched contraction tiles the [0, 1]2 domain
exactly.

The foregoing analysis suggests that coupling pQTCI with a patch-wise
contraction scheme can dramatically curb the computational expense of many
tensor-network tasks—particularly when the underlying functions are highly
localised. Before presenting concrete benchmarks for this combined approach,
we first examine the expected cost reductions and performance benefits of
patch-level contractions across several representative classes of MPO–MPO
products.

Patched element-wise multiplication
Let Ãσ and B̃σ be two MPSs. We seek their Hadamard (element-wise) product
[44]

Cσ = Aσ *⃝Bσ (4.16)

meaning that every entry of C is obtained by multiplying the corresponding
entries of A and B; Cσ = AσBσ for all index tuples σ. To carry out the element-
wise product with TTs we first need to embed each tensor train unfolding of
the factors in a diagonal MPO:

B̃σ = := B̃D
σσ′

Ãσ = := ÃD
σ′σ′′

(4.17)
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where each local tensor is defined by

=
{

[Bσℓ

ℓ ]bℓ−1,bℓ
if σ′

ℓ = σ′′
ℓ

[0]bℓ−1,bℓ
otherwise.

=
{

[Aσ′
ℓ

ℓ ]aℓ−1,aℓ
if σℓ = σ′

ℓ

[0]aℓ−1,aℓ
otherwise

(4.18)

The site indices of the original TTs have been relabelled to make the subsequent
contraction explicit:

. (4.19)

From this contraction we read off the resulting tensor-train

C̃σ = with . (4.20)

Hence C̃ represents the Hadamard product Cσ = AσBσ in TT form. The
MPO-MPO contraction in Eq. (4.19) can be performed using the standard
MPS-toolkit [12, 13], however if we apply the patching scheme upon the factor
tensors A and B, the patched contraction routine can be employed.

Eq. (4.18) shows that a diagonalised MPO can sensibly be patched only
along identical input and output indices, because each site tensor is non–zero
solely when σ′′

ℓ = σ′
ℓ (or, equivalently, when σ′

ℓ = σℓ). Hence, it is unnecessary
to unfold the diagonal MPOs of Eq. (4.17) and Eq. (4.19) into yet another
MPS representation. Instead, we may work directly with the original MPS
forms Ãσ and B̃σ and apply the patching routine to them. Only those patches
whose domains overlap will yield a non–vanishing contraction, making the
two–dimensional patch diagram introduced earlier particularly transparent in
this setting. We now illustrate the idea with a concrete example.

Consider two tensor trains Ãσ and B̃σ that represent two-dimensional func-
tions on the unit square, both obtained via the pQTCI routine. As before we
map the interleaved index string σ = (σ1, σ2, . . . σ2R) to the auxiliary variables

x 7→
R∑

r=1
σ2r−12−r, y 7→

R∑
r=1

σ2r2−r, σ2r, σ2r−1 ∈ {0, 1} (4.21)

so that each patch corresponds to a tile in the [0, 1]2 domain. Because we
perform an element-wise (Hadamard) product, the two operands share the
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Figure 4.3: Patched element-wise contraction. (a) Two–dimensional do-
main tiled by patches visualised via the auxiliary variables x(σ1, σ3, . . . ) and
y(σ2, σ4, . . . ). (b) Representative patches in tensor form: each patch is shown
first in the TT format as produced by pQTCI and then in its diagonalised MPO
version obtained with Eq. (4.18). (c) Patchwise multiplication for the patches
marked by coloured dots; only those whose tiles overlap in the domain yield
non-zero results.

same (x, y) grid; only patches whose tiles overlap contribute to the result, as
sketched in Fig. 4.3.

Assume that both A and B are decomposed into the same number of
patches, Npatch, and that every patch has a capped bond dimension χpatch.
The patched routine executes approximately Npatch MPO–MPO contractions.
Employing the zip-up algorithm (or an equivalent O(χ4d4L) scheme) for each
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local contraction, the total arithmetic cost of element-wise MPS multiplication
scales as

O(Npatchχ4
patchd4L). (4.22)

To outperform a single, non-patched contraction of the full-rank MPOs (χ
being their common bond dimension), the number of patches must obey

Npatch <
χ4

χ 4
patch

. (4.23)

Within this window patch-wise element-wise multiplication delivers a net
computational saving by trading rank for patch count.

Patched matrix multiplication
Let L̃σ and R̃σ be two generic matrix-product states (MPS). The first carries
index sets σR, σS , the second σS , σC . Using the mapping of Eq. (4.2), each
MPS can be reshaped into an MPO:

R̃σ = := R̃σSσC

(4.24)

L̃σ = := L̃σRσS

Here each composite index (e.g. σR
ℓ ) can represent a single index or a block

of neighbouring physical indices of a parent MPS and every correspondent MPS
core is obtained by contracting the corresponding block of neighbouring MPS
site tensors.

With this interpretation, the standard MPO-MPO contraction between L̃
and R̃

M̃σRσC =
∑
σS

L̃σRσS R̃σSσC = (4.25)

acts exactly like a matrix multiplication between two tensor-train–style objects,
producing an MPO indexed by σR and σC . The labeling becomes then much
clearer: σR, σC and σS represent the row, column and shared indices of our
“matrices” L and R.

Assume that LσRσS and RσS ,σC are pQTCI approximations of two multi-
variate functions,
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L(x(σR), s(σS)) = LσR,σS , R(s(σS), y(σC)) = RσS ,σR (4.26)

respectively, their contraction realises the convolution

M(x, y) =
∫

dsL(x, s)R(s, y). (4.27)

Figure 4.4: Patched matrix multiplication. (a) Worst-case scenario. Each patch
in the first factor is contracted with each patch in the second factor. (b) Best-
case scenario. Each patch in the first factor is contacted with a single patch in
the second factor. (c) Average case scenario. Each patch in the first factor is
contracted with a limited set of patches in the second factor.

Fig. 4.4 visualises three patching patterns for this “MPO–matrix multipli-
cation,” assuming each factor is decomposed into Npatch patches of equal bond
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dimension χpatch. There the first column corresponds to the L patched tensor,
the second column to the R and the last column of panels to the patched
contraction result M . The possible scenarios are the following:

(a) Worst case (first row): only the external indices are patched, so every
L-patch contracts with every R-patch. The N2

patch contractions cost

O
(
N2

patch χ 4
patch d4 L

)
, (4.28)

improving on a full-rank contraction iff

Npatch <
χ2

χ2
patch

. (4.29)

(b) Best case (centre row): the shared index σS is patched so that each
L-patch matches exactly one R-patch. The Npatch contraction cost scale
as

O
(
Npatch χ 4

patch d4 L
)
, (4.30)

yielding a gain whenever

Npatch <
χ4

χ4
patch

. (4.31)

(c) Average case (bottom row): both external and shared indices are
patched. After ℓ̄ subdivision steps on a uniform d-ary grid the num-
ber of admissible patch pairs is dℓ̄ dℓ̄(D−1)/D = N

(2D−1)/D
patch , where dℓ̄ =

Npatch for a uniform grid and D = N for the interleaved ordering
(i.e. the dimensionality of the functions L(x1, . . . , xN /2, s1, . . . , sN /2)
and R(s1, . . . , sN /2, y1, . . . , yN /2)) and D = 2 for fused. The overall cost
becomes

O
(
N

2D−1
D

patch χ 4
patch L

)
, (4.32)

advantageous as long as

Npatch <

(
χ

χpatch

) 4D
2D−1

. (4.33)

Patch-wise matrix multiplication trades global bond dimension for patch
count. When any of the bounds in Eq. (4.31), Eq. (4.29) and Eq. (4.33)
are respected, patched MPO–MPO contractions has the possibility2 to out-
perform their monolithic counterparts, making them a compelling tool for
high-dimensional convolutions.

2The typical result out of a pQTCI run is a combination of the patterns shown in Fig. 4.4,
due to the adaptivity of the algorithm. Hence, Eq. (4.31), Eq. (4.29) and Eq. (4.33) only give
us an intuition of the optimal bounds for Npatch.
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4.3 Adaptive Patched MPO-MPO Contraction

Building on the principles of pQTCI, we now propose an adaptive contraction
scheme that further curbs the memory and runtime requirements of patched
MPO–MPO products. The primary bottleneck in any contraction routine is the
peak ram footprint, which grows steeply with the bond dimension of the tensors
being multiplied. By dynamically refining the factor MPOs whenever their
local bond dimension exceeds a prescribed cap, we can keep the intermediate
contraction costs in check. The resulting procedure, which we term the adaptive
patched MPO–MPO contraction (or adaptive Matrix Multiplication), combines
patched contractions with a bond–dimension–driven refinement loop, similar
to pQTCI.

MPO slicing

The key technical ingredient is an MPO analogue of the MPS slicing operation
(cf. Eq. (3.12)). Because every MPO can be unfolded into an MPS (see Eq. (4.9)
and Eq. (4.12)), we may

(i) unfold the operator to an MPS,

(ii) project the state onto a subtensor specified by a prefix, e.g. (p1, p2, . . . , pℓ̄),
and

(iii) fold the sliced MPS back into an MPO via Eq. (4.7).

Fig. 4.5 illustrates this “MPO slicing” workflow.

Figure 4.5: Slicing of an MPO

The slicing procedure illustrated in Fig. 4.5 lets our algorithm reuse the TT-
projection routines of pQTCI for MPOs. In addition, retaining each patch as an
MPS instead simplifies site-tensor manipulation and index bookkeeping; each
patched MPS is converted into an MPO only immediately before a contraction
step.



60 Chapter 4. Patched MPO-MPO Contractions

The algorithm
Given two MPOs Ãσσ′ and B̃σ′σ′′ (cf. Eq. (4.3)), the adaptive patched con-
traction attempts to compute the “matrix multiplication”:

C̃σ′σ′′ =
∑
σ′

Ãσσ′B̃σ′σ′′ (4.34)

as follows

(1) Fix a bond–dimension cap χpatch and a target accuracy τ . Attempt a sin-
gle MPO–MPO contraction. If the product C̃σσ′′ converges to tolerance
with rank χ < χpatch, terminate.

(2) Otherwise, slice both MPOs along their first external physical indices,
producing

Ã p1
σ,σ′ , B̃

p′′
1

σ′,σ′′ , p′′
1 ∈ {1, . . . , d′′

1}, p1 ∈ {1, . . . , d1}, (4.35)

via the MPO–slicing routine of Fig. 4.5.

(3) Contract every compatible pair
(
Ã p1 , B̃ p′′

1
)
, enforcing the bond cap χpatch

on each local product.

(4) For each partial product C̃ p1,p′′
1 that still fails to converge (tasks), slice

it further along the σ and σ′′ axes while storing any converged patch
(results).

(5) Repeat steps (3)–(4), recursively increasing the slicing depth, until no
unconverged patched MPOs remain.

A few remarks are in order. At first sight the adaptive routine might seem
more expensive than a single MPO–MPO contraction. In practice this overhead
is negligible: for a fixed tolerance τ each local contraction is aborted as soon
as its bond dimension hits the cap χpatch (e.g. by truncating the SVD step at
the desired cutoff in the zip–up sweep, Fig. 4.1). Although up to O

(
dℓ̄(d′′)ℓ̄

)
patched MPO pairs may be processed—ℓ̄ being the deepest slicing level of the
MPS unfolded factors Ã and B̃—each individual multiply is cheap thanks to
the tight rank bound χpatch.

The second remark concerns the choice of patching indices. Our implemen-
tation slices only the external index sets σ and σ′′; consequently the total
number of multiplications is N = N2

patch, matching the worst–case scaling in
Eq. (4.28). This choice is, however, deliberate:

(a) the arithmetic cost remainsO
(
N χ4

patch d4 L
)
, so memory is still controlled

by χpatch, which is fixed and therefore independent of the particular slicing
choice;

(b) the refinement is in this way feature–adaptive: whenever a patch C̃p1,p′′
1 ,...

fails to converge (its local rank exceeds χpatch) the algorithm subdivides
exactly that output configuration space (σ, σ′′) region, yielding a finer
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Figure 4.6: Adaptive patched MPO–MPO contraction. (a) Convergence test
for a patch C̃ p1,p′′

1 ,...,pℓ̄,p′′
ℓ̄ , governed by the bond–dimension cap χpatch and the

accuracy tolerance τ . εcontr represents the error of the contraction result. (b)
Flowchart of the algorithm. The global MPO product is recursively broken
into smaller sub-problems via MPO slicing (Fig. 4.5). Each subtensor pair is
contracted under the bond cap χpatch; converged patches are moved to results,
while the remaining ones are placed back into tasks. The routine halts – –
once tasks is empty. See the text for a step-by-step description.

discretisation where the product tensor C̃σσ′′ is most intricate. Slicing
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the internal indices σ′ instead of the external ones would also reduce the
contraction cost by capping the bond dimension at χpatch, but at the
expense of this adaptive focus.

The adaptive patched MPO–MPO contraction shown in Fig. 4.6 bounds the
local bond dimension to limit memory usage while simultaneously producing a
patch decomposition that concentrates effort where the result is most complex,
thus delivering the same kind of problem–tailored efficiency achieved by pQTCI.



Chapter 5
Numerical results

Chap. 3 and Chap. 4 introduced our patched QTCI and patched MPO–MPO
contraction algorithms in detail. By extending the state-of-the-art implementa-
tion of the QTCI algorithm, we have implemented a divide-and-conquer version
of TCI that targets scenarios in which the standard routine may struggle.

In this chapter we first present representative benchmarks (Sec. 5.1 and
Sec. 5.2) that highlight the performance of the new routines. We then apply
them to two physics problems that have previously posed computational bot-
tlenecks: the computation of the bare susceptibility for the 2D Hubbard model
with momentum dependence (Sec. 5.3) and vertex contractions during the so-
lution of the Bethe-Salpeter for the single-impurity Anderson model (Sec. 5.4).
Both cases were recently addressed with QTCI or patched quantics SVD–based
tensor trains approaches [27, 50]. Our patched QTCI method complements and
extends those efforts, demonstrating improved efficiency on the same benchmark
tasks.

Our calculations are constructed on the already mature packages
TensorCrossInterpolation.jl [24] and QuanticsTCI.jl [25], which we have
extended with the additional features required for the present patched applica-
tions.

5.1 Approximation of 2D Green’s functions

We begin with the toy Green’s function

G(k) = 1
ω + µ− εk + iδ

, (5.1)

where the non-interacting dispersion is taken as εk = −2 cos kx−2 cos ky and we
set the chemical potential to µ = 0. Eq. (5.1) is patterned after the Matsubara
Green’s function of the two-dimensional Hubbard model at finite temperature
[54],

G(k, iν) = 1
iν + µ− εk − Σ(k, iν) , (5.2)

63
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with two deliberate simplifications: ω plays the role of the (real) self-energy Σ,
while δ mimics the Matsubara frequency ν = (2n + ξ)π/β (ξ = 0, 1 for bosons
and fermions) and thus encodes the temperature. Accordingly we treat ω as a
fixed input—one may think of it as the self-energy obtained from the previous
Dyson iteration—whereas δ is varied to emulate different temperatures.

The figure below shows a density plot of Re G(k) for the representative
choice ω = 10−1:

Figure 5.1: Heatmap of the real part of the Green’s function in Eq. (5.1),
Re (G(k)) for different values of δ and fixed ω = 10−1.

Fig. 5.1 shows that the parameter δ controls how sharply the Green’s func-
tion is localised: as δ → 0 the poles narrow and G(k) becomes increasingly
singular. This makes the function an ideal testbed for patched QTCI.

We discretise G(k) by quantics rebasing,

G(k) −→ Gσ = G
(
k(σ)

)
, (5.3)

with bit string σ = (σ1, . . . , σR) in the fused ordering, or σ = (σkx1, . . . , σkyR)
in the interleaved ordering. Throughout we use R = 15 bits per k-component.

After setting a patch bond–dimension cap χpatch and a global tolerance
τ = 10−7, we monitor convergence of pQTCI via the pointwise error

εlog(k) = log10

∣∣Re G̃(k)− Re G(k)
∣∣

∥Re G̃∥∞
, (5.4)

where ∥Re G̃∥∞ is the maximum of |Re G̃| over all sampling points k(σ) used
in every patch Re G̃p1,...,pℓ̄ produced by the patched QTCI routine.

Fig. 5.2 compares the patched QTCI approximation with the exact real part
of the Green’s function for three values of the broadening parameter δ. The
top row shows Re G(k) reconstructed from the patched tensor trains, while
the bottom row plots the local error ε(k) defined in Eq. (5.4) over the entire
Brillouin zone [−π, π]2. To evaluate the approximate tensor Re G̃σ on a uniform
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Figure 5.2: Patched QTCI approximation of Re G(k). (a) Heatmaps of the
patched tensor train evaluated on [−π, π]2 for bond–dimension caps χpatch =
48, 118, 277 (corresponding to δ = 10−1, 10−2, 10−3, respectively). (b) Log–error
ε(k) [Eq. (5.4)] for the same patched approximations. (c) Comparison of the
bond-dimension profiles for the pQTCI and standard QTCI representations
of Re G(k). Every patch in the pQTCI result adheres to the prescribed cap
χpatch.
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k-grid we first invert the mapping σ 7→ k(σ) and then, after resumming the
whole patches set Re

(
G̃p1,...,pℓ̄

)
to a single TT approximation Re

(
G̃+

σ

)
, we

evaluate the correspondent σ(k) tensor value for each k point of the domain.
Fig. 5.2 also displays the bond–dimension distributions for both the patched and
the single-TT approximations of Re G(k) at the three caps χpatch = 48, 118, 277
(corresponding to δ = 10−1, 10−2, 10−3). The patches shows a marked rank
reduction compared to the QTCI TT. Moreover we can distiguish two patch
groupings: large, low-rank patches span the “trivial” regions of the Brillouin
zone, while smaller patches—carrying the higher bond dimensions—track the
non-trivial, sharply structured areas. The bond dimensions in show this patch
separation.

Despite the fact that ε(k) does not drop everywhere below the target toler-
ance τ = 10−7, its spatial average error is of that order. For the same parameters
the conventional (Q)TCI routine attains comparable accuracy, as illustrated
in Fig. 5.3 for δ = 10−1. A one–dimensional cut at ky = π/2 (Fig. 5.4) con-

−π 0 π

kx

−π

0

π

k
y

−10 −5

Figure 5.3: Local error ε(k) for a standard QTCI approximation of Re G(k) at
δ = 10−1.

firms that the patched approximation faithfully reproduces the sharp features
of Re G(k) for all three δ values.

We now benchmark patched QTCI (pQTCI) against the standard QTCI
routine for the Green’s function introduced above. For each broadening δ ∈
{10−1, 10−2, 10−3} we measure

• the run time on an Intel® Xeon® W-2245 CPU @ 3.90 GHz, and

• the memory footprint, here defined as the total number of floating-point
parameters in all patches Re G̃p1,...,pℓ̄ .

The tensor Re Gσ is discretised with R = 15 bits per momentum component
and approximated to a tolerance τ = 10−7. We scan the bond–dimension cap
χpatch and compare fused and interleaved bit orderings.

Figures 5.5– 5.6 reveal three main trends:

1. For δ = 10−2 and 10−3 the patched routine beats standard QTCI in
memory requirements. CPU rutime is smaller only with fused intex
ordering. The advantage grows as the poles sharpen (smaller δ).
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Figure 5.4: One–dimensional slice, Re G(kx, ky = π/2), comparing the patched
approximation (solid red) with the exact function (dotted blue) for δ = 10−1

(a), δ = 10−2 (b), and δ = 10−3 (c). Zoomings centered on the peaks are shown.

2. Each curve exhibits an optimal χbest
patch: setting the cap too low triggers

the “overpatching” effect discussed in Sec. 3.2, inflating the patch count
without reducing ranks further.

3. Surprisingly, the fused ordering runtimes performs better than the inter-
leaved one, although,in most cases, both respect the theoretical patch
bounds of Eq. (3.29) for the total number of patches Npatch. (cf. Sec. A.1
of Appendix A for more details).

For the broadest line, δ = 10−1, pQTCI offers no gain—the function is
already smooth enough that a single TT suffices, and the extra slicing merely
adds overhead.

A global view of the “return on investment” is given in Fig. 5.7, which plots
the ratio of plain QTCI result to the best patched result (in parameters and
run time) as a function of δ. The larger is the ratio, the greater the benefit of
using pQTCI.

In summary, adaptively partitioning the domain allows one to focus bond
dimension where it is truly needed, yielding significant savings for sharply
localised Green’s functions, while incurring in overhead (“overpatching”) when
the function is already smooth.
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Figure 5.5: Fused ordering. Total parameter count (left) and CPU run time
(right) versus bond-cap χpatch for δ = 10−1, 10−2, 10−3. Dotted lines show the
corresponding standard-QTCI values.
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Figure 5.6: Interleaved ordering. Same data as Fig. 5.5, but with interleaved
bit strings.
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Figure 5.7: Parameter and run-time ratios between the best patched approxi-
mation (at χbest

patch) and a single-TT QTCI approximation, as a function of the
broadening δ.

5.2 Benchmarking of Patched MPO-MPO Contractions

Consider the two model functions

f(x) =
4∑

j=1
e−(x−xj)2/w2

j , g(x) =
4∑

j=1
e−|x−x′

j |/wj , (5.5)

with xj = (cos ϕj , sin ϕj), ϕj = (j− 1
2 ) π

2 , wj = 2−(j+1), and x′
j = xj +(2wj , wj).

Fig. 5.8 shows heatmaps of f and g.

Figure 5.8: Heatmap of f(x) and g(x) defined in Eq. (5.5).

We convert each function to a tensor via quantics rebasing (fused or inter-
leaved),

f(x) 7→ Fσ, g(x) 7→ Gσ. (5.6)
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Applied to Fσ and Gσ, the patched QTCI routine yields collections of ten-
sor–train patches {Fp1,...,pℓ̄

σ } and {Gp1,...,pℓ̄
σ }. We use these patch represen-

tations, after MPS-to-MPO folding (cf. Eq. (4.2)), as input for our patched
MPO-MPO contraction routines.

Matrix multiplication
Let the tensors Fσ and Gσ be stored in the interleaved quantics format

σ = (σx,1, σy,1, σx,2, σy,2, . . . , σx,R, σy,R), R = 17.

When pQTCI is applied, the slicing (projection) order determines the re-
sulting patch tiling:

• Row patching: px,1→ px,2→ · · · → px,R (top–left panel of Fig. 5.9);

• Column patching: py,1→ py,2→ · · · → py,R (centre–left panel);

• Interleaved patching: px,1→ py,1→ px,2→ · · · → px,R (bottom–left
panel).

Because pQTCI is adaptive, the actual patch pattern follows the feature
structure of the functions; from left to right, each column in Fig. 5.9 correspond
to the factors in Eq. (5.5) and their patched MPO contraction, respectively.

Each tensor-train patch can be folded into an MPO (Eq. (4.2)) and fed to the
patched MPO–MPO contraction routines. For instance, the two–dimensional
convolution

h(x, y) =
∫

dsf(x, s)s(x, s) (5.7)

maps to the patched “matrix multiplication”

Hσσ′′ =
∑
σ′

Fσσ′Gσ′σ′′ , (5.8)

where only mutually compatible patch pairs need be multiplied. Although
the labels “row” and “column” may seem inverted when viewed against the
two-dimensional tilings in Fig. 5.9, they are perfectly natural in the matrix
interpretation of each tensor—where the x-bit string forms the row index and
the y-bit string the row index.

Fig. 5.9 compares the patch layouts that pQTCI produces for f and g under
combinations of the three slicing orders introduced above. Column (1) shows
the set {F̃p1,...,pℓ̄} that enters as the left factor of the convolution; column (2)
shows the right–factor patches {G̃p1,...,pℓ̄}; column (3) displays the patches
{H̃p1,...,pℓ̄} produced by the patched MPO–MPO contraction. Colours encode
individual patches, allowing one to see at a glance how the domain is split and
how the resulting product inherits the finer of the two tilings. From the two-
dimensional tilings one sees that the product tensor adopts the row patching of
the left factor along the x-direction, while its y-direction patching follows the
column pattern of the right factor.
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Figure 5.9: Patch tilings for the two factors F (panels a− c.1) and G (a− c.2),
together with the corresponding patched product H (a− c.3). Rows illustrate
three representative patching contraction strategies as in Fig. 4.4: (a) rows
patching against column patching, i.e. worst-case in terms of contraction count;
(b) column patching against row patching — the best-case; (c) interleaved
patching (alternating x and y) — the average scenario. Each patch is rendered
in a distinct colour for more clarity.
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We now compare the patched–contraction schemes of Fig. 5.9 with a single,
non-patched MPO–MPO contraction. Fig. 5.10 reports the wall-clock time
versus the product of the patch bond caps χpatch,F and χpatch,G–fixed in the
preliminary pQTCI runs– for the three patch layouts, measured on an Intel®
Xeon® W-2245 CPU @ 3.90 GHz.

Figure 5.10: Run-time scaling of the patched MPO–MPO contraction for the
(a) worst, (b) best, and (c) mixed (average) patch arrangements as in Fig. 5.9.
Dotted lines mark the reference time of a monolithic contraction with the same
tolerance.

Key observations:

• Worst-case layout—column patches on both factors—exhibits the slow-
est scaling, consistent with the N 2

patch contraction count predicted in
Eq. (4.28).

• For very small χpatch all three patch configurations rise again, signalling
over-patching: the initial pQTCI step subdivides F and G so aggressively
that the overhead of launching thousands of tiny contractions outweighs
the benefit of lower ranks.
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• Around an intermediate, problem-dependent χopt
patch the patched approach

becomes advantageous. In the best-case arrangement [panel (b)] the speed-
up reaches an order of magnitude relative to the single-core baseline.

The speed-up is consistent with the limits on Npatch derived in Eqs (4.29)-
(4.33); a detailed analysis is provided in Sec.A.2 of Appendix A.

Element-wise multiplication
Let Fσ and Gσ be represented in either the interleaved or fused quantics format.
After pQTCI compression and MPO diagonalisation (Eq. (4.18)), the two MPOs
can be fed to the patched element-wise contraction routine, which produces(

FG
)

σ
= FσGσ (5.9)

i.e. the tensorised counterpart of the pointwise product

(fg)(x, y) = f(x, y)g(x, y). (5.10)

Knowing the analytic forms of f and g, we monitor the patchwise error with
the metric of Eq. (5.4) (where k → x). Fig. 5.11 shows the local error across
the domain for a set tolerance τ = 10−7—applied both in pQTCI and as the
square root of the singular value cutoff threshold in each zip-up contraction.

Figure 5.11: Pointwise error ε(x) of the patched element-wise product for
τ = 10−7, χpatch,F = χpatch,G = 68 with interleaved ordering.

Because a diagonal MPO is non-zero only on matching input/output indices,
two patches contribute to the product only if they cover the same (x, y) tile.
Fig. 5.12 illustrates this: panels (a) and (b) show the patch layouts of the
patched tensors F and G; panel (c) displays the resulting patches of the product,
which appear only where the patched in (a) and (b) overlap (cf. Fig. 4.3). The
result is a patched tensor

(
FG

)
that inherits – in each region of the domain –

the smallest subdivision possible between the two factors.
Element-wise multiplication enjoys the most relaxed patch-count bound

(Eq. (4.23); see also Sec. A.2 in Appendix A), and the timing data in Fig. 5.13
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Figure 5.12: Patch tilings of (a) F , (b) G and (c) their patched element-wise
product

(
FG

)
. Only overlapping tiles produce a non-zero result.

confirm the advantage. With fused ordering the patched routine achieves up to
a five-fold speed-up over a monolithic contraction; interleaved ordering is still
faster than the baseline in for some choices of χpatch,F and χpatch,G , though by
a smaller margin.

Figure 5.13: Runtimes for patched element-wise multiplication versus the prod-
uct of the bond caps χpatch,F × χpatch,G . Solid lines: patched contraction with
fused or interleaved index ordering; dotted lines: reference time for a single,
non-patched contraction at the same tolerance.

Adaptive matrix multiplication

As a proof of concept for the adaptive patched MPO–MPO contraction – or
adaptive matrix multiplication – algorithm we revisit the tensors Fσ and Gσ,
now stored in the fused quantics ordering. Suppose we are interested only in a
compact representation of their matrix product Hσσ′′ (cf. Eq. (5.8)) and we
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expect the result to develop sharp, localised structures. The adaptive workflow
proceeds as follows:1

(i) Convert F and G to MPS form F̃ and G̃ using (Q)TCI.

(ii) Run the adaptive patched contraction, which recursively slices the two
MPOs whenever an intermediate bond exceeds the cap χpatch. The pro-
cedure stops when every partial product satisfies the target tolerance τ
(see Fig. 4.6).

(iii) Unfold each resulting patch H̃p1,...,pℓ̄ back into an MPS for downstream
calculations.

Fig. 5.14 demonstrates the outcome. Panel (a) shows how the adaptive algo-
rithm concentrates patches exactly where H is most structured, while panel (b)
compares memory requirements with those of a “naive” single MPO–MPO con-
traction. The feature–aware tiling reduces the parameter count—analogous to
the savings pQTCI achieves over standard QTCI for function approximation.

Figure 5.14: Adaptive patched contraction. (a) Patch layout of the product
tensor Hσ = h(x(σ)) obtained by the adaptive contraction algorithm; patches
cluster around the high-feature regions. (b) Total number of floating-point
parameters versus bond–dimension cap χpatch. Solid line: adaptive contraction;
dotted line: monolithic MPO–MPO multiplication at the same accuracy.

5.3 Bare Susceptibility Calculation

We consider now the momentum dependence in the case of the single-orbital
two-dimensional Hubbard model on the square lattice at half filling. The
Hamiltonian of the Hubbard model reads

1The code used here incorporates several bug fixes that became available only during the
final stage of writing, thus the limited numerical results.
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H =
∑

⟨ij⟩,σ

ĉ†
iσ ĉσ + U

∑
i

n̂i↑n̂i↓ − µ
∑
i,σ

n̂iσ (5.11)

where ĉ†
iσ is the creation operator of an electron with spin σ at site i and

n̂iσ = ĉ†
iσ ĉiσ. U is the onsite repulsion and µ is the chemical potential (µ = U/2

at half filling). The nearest-neighbour hopping is set to one. In the FLEX
approximation [55], for a paramagnetic state the self-energy is approximated
as

Σ(k, iν) = 1
βNk

∑
q,iω

V (q, iω)G(k − q, iν − iω) (5.12)

where Nk is the size of the two-dimensional momentum grid, q is a bosonic
momentum, ν and ω are Matsubara frequencies, fermionic and bosonic, respec-
tively, and β is the inverse of the temperature. The effective interaction is
defined as

V (q, iω) = U2
(

3
2χs(q, iω) + 1

2χc(q, iω)− χ0(q, iω)
)

(5.13)

where we introduced the bare χ0(q, iω), spin χs(q, iω) and charge χc(q, iω)
susceptibilities. In particular the bare susceptibility reads:

χ0(q, iω) = − 1
Nkβ

∑
k,iν

G(k + q, iν + iω)G(k, iν) (5.14)

where the Green’s function in the Matsubara axis is given by

G(k, iν) = 1
iν + µ− εk − Σ(k, iν) , (5.15)

with εk = −2 cos(kx) − 2 cos(ky) and µ = 0. Hence the bare susceptibility
χ0(q, iω) is a crucial ingredient in the self-consistent FLEX scheme, where
one repeatedly updates the self-energy Σ(k, iν). Therefore, the convolution in
Eq. (5.14) quickly becomes the dominant cost, in particular at low temperatures
(β → ∞). This is because the fermionic Matsubara grid νn = (2n + 1)π/β
grows denser while, at the same time, the Green’s function G(k, iν) develops
increasingly sharp, localized peaks (cf. Sec. 5.1); direct numerical evaluation is
both memory- and time-intensive. These characteristics suggest that a domain-
adaptive strategy–specifically, the pQTCI-based patched contraction routines
introduced above–can alleviate the cost of the convolution by concentrating
bond dimension only where the integrand is genuinely singular.

A direct tensor-train treatment of the convolution in Eq. (5.14) would
require handling a six-legged tensor G(k + q, iν + iω) = Gσkx σky σqx σqx σiν σiω ,
a challenging task even for QTCI. The remedy is to migrate the calculation
to “real” space–time, where the convolution becomes an element-wise product
of two functions, after Fourier transform (FT) (cf. Ref. [56]). We define the
forward and inverse transforms of the Green’s function as
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G(k, iν) = β√
Nk

∫ β

0
dτ

∑
r

e+kr+iντ G(r, τ) (5.16)

G(r, τ) = 1√
Nkβ

∑
k,iν

e−kr−iντ G(k, iν) (5.17)

where the sum
∑

ν runs over the Matsubara frequency grid νn = (2n + 1)π/β
with n = −Nν/2,−Nν/2 + 1, . . . , Nν/2− 1.

With these conventions the bare susceptibility reads

χ0(q, iω) = FT [χ(r, τ)] = FT [G(r, τ)G(−r,−τ)] (5.18)

where G(−r,−τ) is obtained from Eq. (5.17) by reversing the signs in the
exponent. Thus, the convolution is replaced by a pointwise product in (r, τ)
space – well suited for the patched element-wise contraction routines introduced
earlier.

The complete workflow for evaluating the bare susceptibility χ0(q, iω) is
depicted in the flowchart of Fig. 5.15.

Figure 5.15: Pipeline for computing the bare susceptibility χ0(q, iω).

We proceed through the following stages:

(1) A QTCI compression of the Green’s function in Eq. (5.15) is performed
with the momentum/frequency index order k(σk) = k(σ1, . . . , σ2R),
iν(σiν) = iν(σ2R+1, . . . , σ3R), yielding the TT G̃σkσiν .

(2) The inverse quantics Fourier transform (QFT−1) is applied separately
to the k and iν registers, producing the real–space tensors G̃σrστ and
G̃σ−rσ−τ

, with reordered indices r(σr) = r(σR+1, . . . , σ3R) and τ(στ ) =
τ(σ1, . . . , σR) (index reversal is an intrinsic feature of the QFT; see Ap-
pendix B).

(3) Two copies, G̃(r, τ) and G̃(−r,−τ), are each patched with pQTCI, by
fixing a bond-dimension cap χpatch and a compression tolerance τ .

(4) The two patch collections are multiplied patch-wise using the patched
element-wise contraction routine rendering the product G̃(r, τ)G̃(−r,−τ)

(5) After summing the patches of the element-wise product into a single TT,
a direct QFT maps the result back to (q, iω) space, yielding the sought
susceptibility χ0(q, iω).
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In step (1) we deliberately place the k bits before the iν bits to minimise the
intermediate bond dimension of G̃σkσiν . Because the quantics Fourier transform
reverses the bit order within each register (see Appendix B), the subsequent real-
space representation naturally acquires the ordering r(σr) = r(σR+1, . . . , σ3R)
and τ(στ ) = τ(σ1, . . . , σR), after index rearragnement. The rearrangement
is performed by inverting the site tensors in real space in order to obtain a
sequential index ordering, while conserving the links between the transformed
site tensors. Hence, the frequency indices move from the back to the front of
the TT in real space.

Figure Fig. 5.16 tracks the steps of the FLEX “bubble” χ0 calculation:

(a) |G(k, iπ/β)| on the Brillouin zone [−π, π]2 together with the bond dimen-
sion profile of its QTCI representation.

(b) Resulting bare susceptibility χ0(q, ω =0) and the bond dimensions of its
single-TT compression after the final QFT−1.

(c) Patch layout produced by pQTCI for the real-space Green’s function
G(r, τ = β). Colours indicate distinct patches; corresponding color coding
is used for the bond dimensionsof each TT patch, contrasted with those
of a global non-patched TT approximation of the real space Green’s
function.

The data in Fig. 5.16 were obtained with R = 13 bits for each spatial and
frequency variable, an inverse temperature β = 100 , and a uniform accuracy
target τ = 10−7 (applied to the QTCI and pQTCI compressions and–as τ2–to
the local truncation threshold in every MPO-MPO contraction).

Let us now benchmark the results of the computation. We first verify that
the bit-depth chosen for the final calculation, R = 13, yields a sufficiently
converged susceptibility. Panel (a) of Fig. 5.17 plots the configuration-space
error

ε(R) = 1√
Nerr

√ ∑
σq,σiω

∣∣χ(R,τ)
0,σq,σiω

− χ
(13,10−9)
0,σq,σiω

∣∣2 (5.19)

as a function of R, for Nerr points extracted randomly from the configuration
space. While the curve indicates that χ0 has not reached the desired precision,
the residual error suffices for the present comparative study.

Panel (b) compares the total parameter count of the patched QTCI repre-
sentation of G(r, τ) (the same holds for G(−r,−τ)) with that of a single-TT
QTCI approximation. The patched version saves memory, showing that its
patch number respects the theoretical limit (Eq. (3.29)) and, by extension, the
element-wise-product bound (Eq. (4.23)). Hence, we expect an advantage for
the patched point-wise contraction.

Panel (c) reports the wall-clock time on an Intel® Xeon® E5-2680 v4 @ 2.40
GHz for the patched element-wise contraction versus the “naïve” single-shot
contraction, scanned over tolerances τ and inverse temperatures β. The patched
routine accelerates the calculation by up to an order of magnitude. For the
coldest cases β = 100, 1000 the monolithic contraction could not be completed
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Figure 5.16: Heat-map overview of the bare-susceptibility workflow with R =
13, β = 100 and tolerance τ = 10−7. (a) Absolute value of the Green’s
function G(k, iν) at the first positive fermionic Matsubara frequency, including
QTCI bond dimensions (b) Bare susceptibility χ0(q, ω = 0) with the bond
dimensions of its single-TT approximation. (c) Adaptive patching pattern for
G(r, τ = β) with bond dimensions profile of each patch and analogous non-
patched approximation.
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owing to excessive memory demands, whereas the patched algorithm ran com-
fortably, illustrating the practical benefit of trading one large χ4 operation for
many lower-rank contractions.

Figure 5.17: Performance of the bubble calculation. (a) Convergence of χ0
with bit depth R. (b) Total number of floating-point parameters in the patched
(solid) versus single-TT (dotted lines) representations of G(r, τ) at τ = 10−9

and R = 13. (c) CPU time for the patched element-wise product compared
with the monolithic contraction as a function of tolerance τ and at different
inverse temperatures β.

Fig. 5.18 tracks the CPU time required for the patched element-wise product
as the inverse temperature β is varied at several accuracy targets τ . Within
numerical scatter the data follow an approximately linear growth, tCPU ∝ β as
indicated by the dotted line.

In this prototype calculation we applied pQTCI and patched contractions
only to the element-wise multiplication step, which is the dominant bottleneck.
A fully patched treatment of the momentum-space Green’s function G(k, iν)
would in principle yield an additional speed-up, but was not necessary to demon-
strate the merits of the method: even this partial application suppresses the
χ4 scaling, delivers order-of-magnitude run-time gains, and keeps the mem-
ory footprint below that of the traditional approach. These results underline
the practicality of the patched QTCI toolkit for low-temperature many-body
calculations.
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Figure 5.18: Run-time versus inverse temperature β for the patched element-
wise contraction (solid curves) at three tolerances τ . Times are measured on
an Intel® Xeon® E5-2680 v4 @ 2.40 GHz. The patched algorithm exhibits an
almost linear β dependence as highlighted by the fit (dotted curve).

5.4 Bethe-Salpeter equations with pQTCI

The Hubbard atom is a reduction of the Hubbard lattice to a single, isolated
site whose Hamiltonian is

H = Un̂↑n̂↓ − µ(n̂↑ − n̂↓) (5.20)

where the hopping is naturally set to zero and µ and U are set to the same
values as in Eq. (5.11) (half-filling). Despite its simplicity, this atomic limit
reproduces many key features of the Hubbard model in the strong-coupling
regime [57].

In the single–impurity Anderson model (SIAM) one embeds this single
interacting site in a bath of non-interacting electrons. The SIAM Hamiltonian
reads [58]

H =
∑
kσ

εkĉ†
kσ ĉkσ +

∑
kσ

(
Vkĉ†

kσd̂σ + V ∗
k d̂†

σ ĉkσ

)
+ Un̂d↑n̂d↓ + εd(n̂↑ + n̂↓)

(5.21)

where d̂
(†)
σ annihilates (creates) an electron with spin σ in the impurity level εd =

−U/2, n̂d,σ = d̂†
σd̂σ, and Vk hybridises the impurity with the conduction states

ĉ†
kσ, ĉ†

kσ. The SIAM provides a microscopic description of Kondo physics in
heavy-fermion compounds and Kondo insulators, and underlies many dynamical
mean-field-theory (DMFT) calculations [58–60].

We shall not revisit the physics of the SIAM itself; instead, we focus on
the computational bottleneck identified in Ref. [50] and show how it can be
alleviated by our patched contraction scheme.

In the parquet formalism [61] the single–impurity problem is reformulated
in terms of coupled two-particle vertex equations. In the particle–hole (ph)
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channel the Bethe–Salpeter equations (BSEs) for the density (d) and magnetic
(m) components read

F νν′ω
d = Γνν′ω

d − 1
β2

∑
ν1ν2

Γνν1ω
d χν1ν2ω

0,ph F ν2ν′ω
d (5.22)

F νν′ω
m = Γνν′ω

m − 1
β2

∑
ν1ν2

Γνν1ω
m χν1ν2ω

0,ph F ν2ν′ω
m . (5.23)

The right–hand side of each equation is a three-indexed three-tensor contraction
that must be evaluated many times during the iterative Parquet loop, and thus
dominates the overall cost. Rohshap, Ritter et al. [50] solved Eqs.(5.22)–(5.23)
with great success using QTCI-based tensor trains. Here we revisit the same con-
traction but replace the monolithic MPO–MPO multiplication by the patched
strategy developed in Chap. 4, expecting further savings from the control of
local bond dimensions.

Fig. 5.19 sketches the workflow for converting a three–frequency vertex
Vν ν′ ω (ν, ν′ fermionic, ω bosonic) into the MPO format required by the MPO-
MPO contraction algorithms.

(a) Each Matsubara variable is discretised on a binary grid of R bits. Apply-
ing QTCI yields a tensor–train2 Ṽν,ν′,ω.

(b) The TT is reshaped into an MPO by (i) regrouping fermionic indices
according to Eq. (4.2), and (ii) “diagonalising” bosonic tensor cores as in
Eq. (4.17). This produces an efficient MPO representation whose structure
matches the mixed matrix-multiplication and Hadamard operations in
the Bethe-Salpeter equations.

(c) For a patched treatment the same sequence is applied per patch: the global
QTCI compression is replaced by pQTCI, and the subsequent reshaping
steps are local to each patch.

The initial stage of the patched BSE scheme is visualised in Fig. 5.20. Using
the interleaved slicing order (see Fig. 5.9), each two-particle vertex is compressed
with pQTCI so that the resulting patch grid adapts to the structure of the data.
For clarity we display two-dimensional cuts at the bosonic frequency ω = 0; the
axes correspond to the fermionic frequencies on a 2R × 2R mesh with R = 7.
The color scale shows |Fd|, |Γd| and |χ0,ph|, respectively, each reconstructed
from their patched approximation up to a tolerance τ = 10−7. One sees that
smaller, tiles concentrate in the regions where the vertices exhibit pronounced
structure, whereas featureless areas are covered by larger patches.

Fig. 5.21 compares the wall-clock time required to evaluate the contraction
on the right-hand side of the BSEs with and without patching. Calculations
were performed on an Intel® Xeon® E5-2680 v4 @ 2.40 GHz; the horizontal axis
shows the number of bits R used per fermionic frequency (i.e. R = log2 Nν with
Nν total frequencies). Four target tolerances τ are reported. Over the entire

2For brevity we drop the subscript σ on all quantics bit strings; the frequency is now
written simply as ν = (ν1, . . . , νR) which unambiguously denotes the R-bit representation of
the Matsubara index.
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Figure 5.19: Transformation of a three-frequency vertex Vν ν′ ω into an MPO:
QTCI compression on a R-bit mesh per frequency; TT → MPO mapping via
Eqs. (4.2) and (4.17); resulting contraction-ready MPO Ṽ(νω)(ν′ω′). For patched
calculations the first step is replaced by pQTCI and the second step is performed
on each patch.

range the patched algorithm outperforms the conventional single-MPO contrac-
tion by up to an order of magnitude. For the stringent tolerance τ = 10−10 the
monolithic approach was no longer feasible beyond R = 7 owing to excessive
memory requirements, whereas the patched routine remained tractable.

By decomposing the three-index vertex product into many low-rank patch
contractions, the patched MPO strategy removes the χ4 bottleneck that plagues
the standard approach. The resulting speed-up highlights the potential of
patched tensor-network techniques for self-consistent parquet calculations at
high frequency resolution.
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Figure 5.20: pQTCI compression of the Bethe-Salpeter vertices at ω = 0.
Panels show |Fd| (a), |Γd| (b) and |χ0,ph| (c) on the respective (ν2, ν′), (ν1, ν)
and (ν2, ν1) grids for R = 7 and tolerance τ = 10−7. Patch boundaries reveal
how the adaptive slicing refines only those regions where the vertex is more
interesting, also for three dimensional objects.
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Figure 5.21: CPU time for the BSE vertex contraction versus the frequency
resolution R (bits per Matsubara axis). Solid curves: patched MPO–MPO
contraction; dashed curves: conventional (non-patched) contraction. Colours
denote the compression tolerance τ .



Chapter 6
Summary and outlook

The work presented in this thesis expands the scope of tensor-train cross-
approximation by introducing a patch-based, divide-et-impera strategy. Start-
ing from the modern implementation of QTCI developed by Ritter et al., namely
TensorCrossInterpolation.jl [24] and its quantics extensions [25], we have
integrated a new layer of logic that adaptively partitions the input tensor into
smaller subtensors, each compressed with a user-defined bond-dimension cap
χpatch. This patched variant, pQTCI, retains the logarithmic complexity of
the original algorithm [1] while addressing two long-standing bottlenecks: the
explosive bond growth that plagues functions with narrow peaks, and the χ 4

scaling that renders large matrix-product-operator contractions prohibitive.
The numerical evidence collected throughout the manuscript makes the

advantages of the patched approach clear. Whenever the tensor of interest
develops strong “localisation”, the rank of a single tensor-train representation
becomes dictated by the most singular region. pQTCI circumvents this “one-
size-fits-all” limitation by assigning high rank only to those patches that actually
need it. In the two-dimensional Green’s function benchmarks in Sec. 5.1, for
instance, as soon as the broadening parameter δ falls below about 10−2, the
number of floating-point parameters and the wall-clock time required by the
patched approximation decrease by an order of magnitude compared with the
standard QTCI. A similar gain appears in the bare susceptibility χ0(q, iω)
calculation in Sec. 5.3, where the computational cost remains well below the
one of the monolithic strategy.

Moreover, the patch paradigm shows its full strength in tensor contractions.
By expressing each factor in a product as a collection of low-rank patches, the
contraction can be decomposed into many smaller and simpler tasks. For the
element-wise product of two real-space Green’s functions the patched routine
delivers a speed-up of nearly ten on a single workstation; furthermore, it com-
pletes cases that a single contraction cannot even fit within the RAM memory
availability.

A central practical question remains: how should one choose the cap χpatch?
Our analysis has derived two sets of bounds, Eqs. (3.29) and (4.23),(4.29)–
(4.33), that delimit the patch count required for the patched approximation
and patched MPO-MPO contraction, respectively, to beat its monolithic coun-
terpart. These bounds are reassuring a posteriori: whenever the observed
patch number respects them, the patched scheme is indeed advantageous. They
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bounds do not, however, determine χpatch a priori. The numerical examples
in Chap. 5 suggest that the optimal cap is correlated with the “sharpness” (cf.
Fig. 5.2) of the function of interest, yet the relation is intricate and problem
specific. For instance, if the cap chosen is too small, the algorithm enters the
“over-patching” regime, where an explosion of tiny patches negates the expected
savings. Caps that are too large, on the other hand, converge to the same
resources requirement of a single QTCI approximation (cf. Figs 5.5 and 5.5).

Establishing a predictive rule for the cap is therefore an important topic
for future research. Such a rule is likely to involve a refinement of the concept
of ε–factorisable functions: just as QTCI succeeds whenever the entire tensor
admits a low-rank representation, pQTCI succeeds whenever the configuration
space can be divided into a modest number of regions, each of which is well
approximated at rank χpatch. One may speak of ε–patch– factorisable functions
and attempt to characterise their feature distributions analytically.

Looking at concrete applications, a natural next step starting from Sec. 5.3
is to transfer the patched-QTCI strategy from imaginary to real frequencies.
Computing the retarded bare susceptibility χR

0 (q, ω) is famously delicate. The
local error control and adaptive rank allocation built into pQTCI are well suited
to tame these difficulties and should enable high-resolution calculations directly
on the real-frequency axis. A second avenue (cf. Sec. 5.4) is to apply the patch
concept to vertex physics—specifically, to solve the Bethe-Salpeter equation
with full momentum dependence. Because the kernel of a momentum-resolved
BSE often contains sharply peaked structures that vary from one region of
the Brillouin zone to another, distributing the calculation into rank-capped
patches could reduce the overall contraction cost in much the same way it
does for Green’s-function products. Both extensions would further broaden the
range of many-body problems that can be tackled efficiently within the QTCI
framework.

Finally, the patching strategy is inherently parallel. At the time of writing, a
parallel version of the state-of-the-art crossinterpolate2 routine has already
been released, and its capabilities dovetail naturally with the patched tech-
niques introduced here. Because both pQTCI and the patched MPO-MPO algo-
rithms break the workload into many independent, rank-capped subtasks, they
lend themselves to distributed execution (a first parallel implementation of the
patched contraction scheme is already in place in the tensor4all.org libraries
collection [25]). Harnessing the new internal parallelism of crossinterpolate2
together with this external domain decomposition promises substantial addi-
tional speed-ups once the tuning between the two parallelisation schemes is
optimised.

https://tensor4all.org


Appendix A
Bounds on Npatch

A.1 2D Green Function Approximation

Figures 5.5 and 5.6 in Chapter 5 showed that a patched QTCI (pQTCI) run is
advantageous only within a certain window of the patch bond–dimension cap
χpatch. To quantify that window we compare the measured patch count Np

with the theoretical bounds (cf. Eq. (3.29))

Npatch <

χ2/χ2
patch, (memory),

χ3/(d χ3
patch), (CPU runtime),

(A.1)

where χ is the rank of the corresponding single–TT (standard QTCI) approxi-
mation at the same discretisation parameters (R, τ).

For the pQTCI approximated function Re G(k) [Eq. (5.1)] we plot Npatch−(
χ2/χ2

patch
)

and Npatch −
[
χ3/(d χ3

patch)
]

for selected (δ) values and index un-
foldings. Negative values mean that the bound is not correctly satified.

Several trends emerge:

• For sharp spectral lines (δ = 10−3, fused ordering, Fig. A.1) the bounds
are comfortably met in the optimum χpatch range, explaining the clear
savings seen in Fig. 5.5.

• When the Green’s function is broad (δ = 10−1, interleaved ordering,
Fig. A.2) the algorithm slices the domain more than necessary; the patch
count exceeds the theoretical limits and the patched run is no longer
profitable.

• Although Fig. 5.5 shows time savings only at specific χpatch, the run–time
bound in Eq. (A.1) is always satisfied. The apparent discrepancy could
be due to the current pQTCI implementation, whose task–scheduling
overhead masks the benefit except when the single–TT contraction be-
comes truly expensive. Moreover, the bounds are only an rough estimates.
Many more variables play a role in the actual runtime of the implemented
pQTCI algorithm
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Figure A.1: Fused ordering, δ = 10−3. Difference between the actual patch
count Npatch and the memory (a) and run–time (b) bounds of Eq. (A.1). Neg-
ative values indicate that the bound is not respected.

In summary, the bounds of Eq. (A.1) provide a somewhat reliable indicator
of when pQTCI will outperform a monolithic QTCI run: the algorithm is
advantageous around the parameter regions where both the memory and time
inequalities are fulfilled.

A.2 Patched MPO-MPO contractions

Matrix muliplication
The limits derived in Eq. (4.29), Eq. (4.31), and Eq. (4.33) assume that the two
MPO factors share the same patching depth ℓ̄. If the left MPO F̃σ,σ′ and the
right MPO G̃σ′,σ′′ are patched to different levels, the bounds depend onf both
of their patch numbers. With χF and χG denoting the bond dimensions of the
corresponding non-patched tensors, and χpatch,F , χpatch,G the caps imposed on
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Figure A.2: Interleaved ordering, δ = 10−1. Same analysis as Fig. A.1.
Here pQTCI tends to violate the bounds more often because Re G(k) is already
smooth and the algorithm over–patches the domain.

each factor, the generalised conditions read

(a) Worst case

Npatch,F Npatch,G <
χ2

F χ2
G

χ2
patch,F χ2

patch,G
(A.2)

(b) Best case

Nmax
patch <

χ2
F χ2

G
χ2

patch,F χ2
patch,G

(A.3)

where Nmax
patch = max{Npatch,F , Npatch,G}.



92 Appendix A. Bounds on Npatch

(c) Average case Let ℓ̄min be the smaller and ℓ̄max the larger patching
level for the two factors. The number of admissible patch pairs is
dℓ̄mindℓ̄min(D−1)/Ddℓ̄max−ℓ̄min (cf. Eq. (4.33)), leading to

N
D−1

D

patch,F Npatch,G <
χ2

F χ2
G

χ2
patch,F χ2

patch,G
. (A.4)

This bounds can be tested for the results we showed in Fig. 5.10. For each data
point of the worst-case, best-case and average-case scenario we subtract the
r.h.s. and the l.h.s. of the inequalities in Eq. (A.2), Eq. (A.3) and Eq. (A.4),
respectively, and plot the resulting “bound difference” in Fig. A.3. We observe
an approximate correspondence between the “overpatched” runs in Fig. 5.10
and negative “bound difference”. In particular, no data point in the worst-
case-scenario satisfies the bound, while most of the best-case-scenario runs
do.

Irrespective of the simulation parameters (τ ,R), the total number of floating-
point entries in the result tensor, as measure of the contraction complexity,
obeys

(a) Worst case

O
(
Npatch,F Npatch,Gχ2

patch,F χ2
patch,G

)
. (A.5)

(b) Best case

O
(
Npatch,maxNpatch,Gχ2

patch,F χ2
patch,G

)
. (A.6)

(c) Average case

O
(
N

D
D−1

patch,F Npatch,Gχ2
patch,F χ2

patch,G
)
. (A.7)

Fig. A.4 confirms these scaling laws: the measured parameter counts collapse
onto the predicted combinations of Npatch and χpatch for the two factors F and
G.

Element-wise multiplication
For an element–wise product of two tensors Fσ and Gσ the patch–count limit
of Eq. (4.23) generalises to

Nmax
patch <

χ2
F χ2

G
χ2

patch,F χ2
patch,G

(A.8)

where Nmax
patch = max{Npatch,F , Npatch,G}. Fig. A.5 plots the difference between

the left– and right–hand sides for all data points of Fig. 5.13. Negative bars
mark those instances where the patched run exceeds the bound.
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Figure A.3: Deviation of the measured number of patch products from the
theoretical limits of Eqs. (A.2), (A.3), and (A.4). Negative values indicate that
the bound is not satisfied. We illustrate the worst (a), best (b) and average (c)
case patche MPO-MPO contraction bounds.
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Figure A.4: Total number of parameters in set of patches representing H versus
the scaling variables from Eqs. (A.5)– (A.7). Solid lines illustrate data; dotted
lines are the expected theoretical trends.
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Figure A.5: Deviation from the bound in Eq. (A.8) for element-wise multipli-
cation of Fσ and Gσ. Separate series are shown for fused and interleaved index
orderings. Negative values indicate a violation of the bound.

As measure of contraction complexity, the total number of floating-point
parameters in the patched product should scale as

O
(
Npatch,max Npatch,min χ2

patch,F χ2
patch,G

)
, (A.9)

with Npatch,min = min{Npatch,F , Npatch,G}. Fig. A.6 compares the measured
parameter counts with this prediction; the dotted lines trace the theoretical
trend and closely follow the numerical data.
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Figure A.6: Total parameter count of the patched tensor FG versus the scaling
variable from Eq. (A.9). Solid lines: data (fused and interleaved orderings);
dotted lines: expected scaling.



Appendix B
Quantics Fourier Transform

The quantics representation of tensors [39, 40] makes a Fourier transform almost
trivial at the tensor-network level. For a scalar function G(r) represented as a
Quantics TT, the Fourier transfor

Ĝ(k) =
∫

dr G(r)eik·r (B.1)

results in a very simple MPO-MPO contraction that resembles the operation
performed in some quantum computing routines [62] (e.g. Quantum Phase
Estimation).

Let us start from the definition of Discrete Fourier Transform (DFT). Con-
sider the variable Gm = G(x(m)), discretisation of the one-dimensional function
G(x) on a grid with m = 0, . . . , M − 1. The discrete Fourier transform (DFT)
of Gm reads

Ĝk =
M−1∑
m=0

TkmGm, Tkm = 1√
M

e−i2πk·m/M (B.2)

Represent m and k in binary with R = log2 M bits,

m(σ) =
R∑

r=1
σr2R−r, k(σ′) =

R∑
r′=1

σr′2R−r′
(B.3)

so that M = 2R. Then

Tσ′σ = Tk(σ′)x(σ) = 1
2R/2 exp

[
−i2π

∑
rr′

2R−r′−rσ′
r′σr

]
(B.4)

Re-ordering the bits in “scale–reversed” [1, 27] fashion—fusing σ′
R−r+1,

which encodes the scale 2 r−1 in k, with σr, which encodes the scale 2R−r in
x—one can cast T as the remarkably low-rank MPO

97
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T̃σ′σ = (B.5)

whose maximum bond dimension is just χ′ = 11 for machine-precision
accuracy [63],

∣∣∣Tσ′σ − T̃σ′σ

∣∣∣ / ∣∣∣T̃σ′σ

∣∣∣ ∼ ϵmach..
Given a TT of rank χ, its quantics Fourier transform costs only

O
(
χ2 χ′2R

)
= O

(
χ2 χ′2 log M

)
, (B.6)

which is exponentially faster than the conventional FFT scaling O
(
M log M

)
[1].

For a generic d-variate function G(r) the quantics Fourier transform is
implemented by applying one 1D QFT per physical dimension. Graphically the
operation can be written as

(B.7)

where, in the first step, we act only on the x-bits with the MPO

T̃ x
σ′σ = (B.8)

whose non-transforming site tensor factorises as

=
{

[1]i,j if σ′
yr = σyr

[0]i,j otherwise.
(B.9)

The construction repeats for the y- (and z-, . . . ) registers until the full
d-dimensional QFT is obtained.



99

Rearrangement of quantics meshes
In the susceptibility calculation of Sec. 5.3 we are interested in having the
inverse temporal Fourier transform at a shifted Matsubara grid whose cen-
tre corresponds to the smallest frequency, namely νn = π 2n+ξ

β with n =
−2R−1, . . . , 2R−1 − 1. Starting from

G(iνn′) = β

∫ β

0
dτeiνn′ τ G(τ) = β

2R/2

2R−1∑
m=0

eiνn′ m

2R Gm

= β

2R/2

2R−1∑
m=0

eiπ
(2n′+ξ)

β mGm

(B.10)

and redefining the index n = n′ − 2R−1 ∈ [−2R−1, 2R−1 − 1] we obtain

G(iνn) = G(iνn′−2R−1) = β

2R/2

2R−1∑
m=0

ei2π n′m

2R eiπm ξ−2R

2R Gm

= β

2R−1∑
m=0

T
(+)
n′meiπm ξ−2R

2R Gm

(B.11)

with the “positive” DFT kernel T
(+)
n′m = (2R−1)−1/2e+i2πn′m/2R as defined

in Eq. (B.2). Equation (B.11) shows that the centred Matsubara transform is
realised by a standard inverse QFT followed by a diagonal phase-rotation layer
P [27]:

βQFT−1P, P = U1(2R−1θ) ·U1(2R−2θ) · · ·U1(θ) (B.12)

where

θ = π
ξ − 2R

2R , U1(α) =
(

1 0
0 eiα

)
. (B.13)

The layer P is an MPO of rank 1, so the extra cost is negligible compared
with the inverse QFT itself. An analogous modification is applied to the spatial
QFT when, for instance, we would like to center the symmetric Brillouin zone
[−π, π]2 on the quantics spatial grid.

These conventions are all employed for the susceptibility calculations re-
ported in Sec. 5.3.
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