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Preface

This habilitation project retrospectively started in fall 2004 when after finishing
my doctoral studies at Ohio University, I accepted an offer for a postdoctoral
position in the group of Prof. Jan von Delft at the Ludwig Maximilians Uni-
versity in Munich. The project was initially for two years with the option for
extension. The goal of the project was to bring together two widely successful
numerically elaborate methods to analyze strongly correlated quantum systems
through renormalization group means: the long-established numerical renor-
malization group by Kenneth Wilson (NRG, 1975) and its later spin-off, the
density matrix renormalization group by Steve White (DMRG, 1992). It had
just become apparent then that both methods can be combined in an elegant
transparent way on the same algebraic basis in terms of so-called matrix prod-
uct states. The project therefore required to develop the necessary numerical
tools, together with the subsequent question what one method can learn from
the other. For me, this was an excellent new field to explore, paired up with
my expertise and enthusiasm for numerical algorithms.

In the years since then the field of matrix product states has greatly flourished.
The advent of real-time evolution both within the DMRG as well as in the
NRG, the conceptual simplification and streamlining of dynamical quantities
in the NRG through complete basis sets, as well as the extreme diversification
of matrix product states towards tensor networks, all represented exciting new
developments in the field. With flexible extensive numerical codes readily devel-
oped by myself and several excellent student projects on the way, the question
whether to stay in Munich for some time longer was eventually decided in fa-
vor of habilitation. I am greatly indebted to the many students (Arne Alex,
Cheng Guo, Markus Hanl, Andreas Holzner, Theresa Hecht, Wolfgang Münder,
Hamed Saberi; Francesco Alaimo, Wael Chibani, Katharina Stadler) and my
office mates (Vitaly Golovach and Ireneusz Weymann) for bearing with me, Jan
von Delft for his continued support, and to all of them for the many discussions
we had, and for giving me the opportunity to be part of this vibrant place for
doing research.

Munich, May 2012 Andreas Weichselbaum



In dedication to my parents and my wife Sonali.
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Abstract

Tensor networks have emerged within the past two decades as a powerful framework to
simulate strongly correlated quantum-many-body systems. In particular, it was realized in
2004 that the two powerful and widely successful methods of the numerical renormalization
group (NRG) and the density matrix renormalization group (DMRG) shared the same
algebraic basis in terms of matrix product states (MPS) which thus served as the starting
point for this work. While the NRG is truly based on a renormalization group (RG)
ansatz, this is not exactly the case for the DMRG, which by now is considered rather a
variational ansatz. Even more so, bringing together these two methods in terms of their
shared common algebraic basis has proven a very fruitful and instructive approach. It
allowed for a better understanding of the NRG through the quantum information concepts
borrowed from DMRG. Strict RG related constraints could be loosened by sidestepping
to a variational ansatz. The advent of complete basis sets within the NRG, elegantly
formulated in MPS, led us to a clear conceptual simplification and streamlining of dynamical
quantities within the NRG. With quantum impurity models the standard realm of NRG,
this also has seen an increased interest in DMRG simulations with adapted coarse-graining
of macroscopic leads in energy space motivated by the NRG. In view of the extreme
recent diversification of one-dimensional MPS into more general tensor networks, finally, we
developed a powerful tensor library for arbitrary-rank tensors that can deal with any abelian
as well as generic non-abelian symmetries beyond SU(2). Powerful applications within the
realm of MPS to cutting edge research in physics are demonstrated, with the application to
real two-dimensional physical systems kept as an outlook.

vi



Chapter 1

Introduction

Quantum impurity models represent the systems of central interest to this habilitation
project. They consist of a small interacting quantum system (the impurity) with only a few
degrees of freedom in contact with an (effective) macroscopic non-interacting fermionic or
bosonic environment. As such they represent a wide class of problems. Both, the impurity
as well as the bath, are simple to solve on their own. In the presence of interaction, however,
this introduces quantum-many-body correlations, which requires the full treatment of the
exponentially large Hilbert space of quantum-many-body states. Besides actual impurities
in a host material, quantum impurity models include quantum dot setups, qubit systems
coupled to an environment, as well as effective impurity models, such as they emerge from
dynamic mean field theory (DMFT).25,41 Transport experiments through quantum dots
and quantum point contacts have become highly controlled tunable settings,27 which al-
lows for time-dependent manipulation of the quantum impurity and real out-of-equilibrium
transport experiments far away from linear response.46 The theoretical understanding of
these systems, however, can quickly become highly non-trivial at low temperatures when
strong correlations start to play an important role. A similar situation is faced in the
rapidly growing field of ultra-cold atoms with temperatures in the range of nano-Kelvins,
which also emerges as a highly controllable arena for quantum many-body physics.19,26,28,73

The understanding of strongly correlated quantum systems requires a well-controlled
systematic way to deal with exponentially large Hilbert spaces. Exact solutions are rare,
hence reliable numerical tools are extremely important. With Hilbert spaces quickly beyond
what exact diagonalization can handle, examples for quasi-exact numerical methods are
quantum Monte Carlo or renormalization group based methods such as the density matrix
renormalization group (DMRG)70 or the numerical renormalization group (NRG).72 Each
of these methods has its specific realm where it works particularly well. In this work,
the emphasis is on quantum impurity models for which the method of choice is typically
the NRG. The NRG is constructed to deal with a small interacting quantum system (the
impurity) that interacts with a non-interacting (effective) bath, allowing for dynamically
generated arbitrarily-small low-energy scales. Nevertheless, it becomes quickly expensive
numerically, if the complexity of the impurity is increased or if several bath channels are
added. Hence formulating NRG in a way that reveals its common algebraic and thus
numerical basis with the variational approach intrinsic to the DMRG, this can lead to
powerful mixed settings in which the tools and concepts from both methods are combined.
The latter defines the overall theme of this habilitation project.
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1. Introduction

NRG DMRG 

quantum chains 

(spin, Hubbard, …) and 

2-dimensional generalizations 

Matrix  
Product 
States 

quantum impurity models 

quantum information and quantum many-body correlation 

Figure 1.1: Common underlying algebraic structure of NRG and DMRG in terms of MPS.
While NRG is exclusively constructed for quantum impurity models, DMRG is usually as-
sociated with interacting real-space lattices such as spin or Hubbard chains, with intensely
studied generalizations to two- or higher-dimensional systems. Both methods live in the
algebraic space of MPS or their generalizations to tensor-network states. The latter rep-
resent a vehicle of central interest in the analysis of quantum information and quantum
many-body correlations.

1.1 Research highlights

At the start of this work in 2004, the numerical renormalization group (NRG) and density
matrix renormalization group (DMRG) were two separate disciplines. Nevertheless, it had
just been realized then that these two widely successful methods shared a common algebraic
basis in terms of so-called matrix product states. Therefore the goal of this work was to
bring both methods together and investigate their mutual benefits. The following lists the
major highlights that were part of this research. Publications that are reprinted in this
thesis together with a more extended introduction, are marked by their respective section
Pn (for paper Pn) in the appendix.

I Complete basis sets and correlation functions in the NRG

In 2005, Anders and Schiller introduced a very important technical innovation within
NRG: they showed2 that based on energy scale separation it is possible to construct
a complete many-body basis of approximate eigenstates of the full Hamiltonian, and
used this to study real-time evolution after a quantum quench. Nevertheless, it turned
out that the concept is significantly more generic. In particular, these complete basis
sets allow to calculate dynamical quantities such as correlation functions for arbitrary

2



1. Introduction

temperatures in a black-box like algorithm which is in stark contrast to prior patching
schemes. The MPS framework proved enormously useful in its understanding and setup.
The MPS diagrammatics described in Chap. 4 will be published in another independent
publication.

The first generic application to spectral functions was published in P1.
Sum-Rule Conserving Spectral Functions from the Numerical Renormalization Group
Andreas Weichselbaum, and Jan von Delft, Phys. Rev. Lett. 99, 076402 (2007)

I DMRG-enhanced NRG

While the NRG per se is not applicable to typical uniform lattice models that are
analyzed by the DMRG, the reverse, of course, holds: DMRG can be used to analyze
Hamiltonians in the Wilson chain setup.

Due to the NRG’s inherent constraint of logarithmic discretization for the sake of energy
scale separation, NRG has finite spectral resolution at finite frequencies. This is prob-
lematic if sharp features at finite frequency occur. Nevertheless, this can be strongly
improved upon by using a tailored discretization. However, this rules out the iterative
NRG prescription which thus must be replaced by DMRG specific quasi-variational
methods. This was demonstrated in detail for the Kondo model in the presence of a
strong magnetic field, B � TK , i.e. much larger than the Kondo temperature TK , in
the paper P2.Variational matrix-product-state approach to quantum impurity models,
A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I. Cirac, and Jan von Delft
Phys. Rev. B 80, 165117 (2009) [cond-mat/0504305v2, (2005)].

Having a common algebraic basis, one of our very first questions we were interested
in was: can one improve upon the one-way prescription of the NRG by (subsequent)
variational sweeping? This was analyzed in much detail by the Ph.D. student Hamed
Saberi in the publication Matrix-product-state comparison of the numerical renormaliza-
tion group and the variational formulation of the density-matrix renormalization group,
Hamed Saberi, Andreas Weichselbaum, and Jan von Delft Phys. Rev. B 78, 035124
(2008). The conclusion was that in the regime where NRG works efficiently, the NRG
is essentially equivalent to the variational setup of the DMRG.

Importantly, the common algebraic basis allows to carry over to the NRG much of
the standard analysis of MPS within the DMRG. These include entanglement entropy
measures, as well as concepts such as entanglement spectra or discarded weights. The
latter were introduced for the first time to the NRG arena in the paper P3.
Discarded weight and entanglement spectra in the numerical renormalization group
Andreas Weichselbaum Phys. Rev. B 84, 125130 (2011).

I NRG-enhanced DMRG

A simple obvious feedback from the NRG to the DMRG was the (logarithmic) dis-
cretization of the bath in energy for quantum impurity setups. Rather than using the
prevalent plain tight-binding chain as the model for non-interacting leads, which has

3



1. Introduction

the largest density of states at the band edges, tailored logarithmic discretization allows
to coarse-grain high energies that are less relevant for the dynamics. This can be used
both in in-8 and out-of-equilibrium in the low-energy sector.9

Strict logarithmic discretization allows to accurately describe strongly-correlated low-
energy physics and resolve phase boundaries. This can also be of interest for the DMRG
in certain contexts. In particular, this applies to the spin-boson model. Despite its
conceptual simplicity, the spin-boson model with a sub-ohmic spectral distribution of
the bath is highly non-trivial and still controversial at finite temperature. While bosonic
NRG exists, it naturally runs into problems if the bosonic state space per Wilson site is
occupied up to very high excitations. The variational MPS approach provides a strong
alternative then. A detailed analysis of the spin-boson model using variational MPS
was performed in an independent project with the Ph.D. student Cheng Guo. Critical
and Strong-Coupling Phases in One- and Two-Bath Spin-Boson Models, Cheng Guo,
Andreas Weichselbaum, Jan von Delft, and Matthias Vojta Phys. Rev. Lett. 108,
160401 (2012).

I FDM-NRG applications

The complete basis sets by Anders and Schiller (2005) turned out a fruitful ground for
many applications. Specifically, from a quantum impurity point of view, any thermo-
dynamical quantity that can be written down in Lehmann representation is amenable
to the FDM-NRG approach for arbitrary temperature.

A consistent generic approach to arbitrary temperatures is important when theoretical
computations are related to actual experiments. The power of this was demonstrated
in larger collaboration that targeted the until then still controversial question regarding
the microscopic model for the very original system where the Kondo effect was observed,
namely iron impurities in gold or silver.20

P4.Kondo Decoherence: Finding the Right Spin Model for Iron Impurities in Gold and
Silver ; T. A. Costi, L. Bergqvist, A. Weichselbaum, J. von Delft, T. Micklitz, A. Rosch,
P. Mavropoulos, P. H. Dederichs, F. Mallet, L. Saminadayar, and C. Bäuerle
Phys. Rev. Lett. 102, 056802 (2009).

Absorption and emission spectra, which combine initial and final Hamiltonian, have
been studied early on within the NRG.30,45,53 Nevertheless, it had been significant patch
work still. By realizing that the standard Fermi-Golden rule expression corresponds to
a Lehmann representation, however, absorption or emission spectra are ideally suited
for the FDM-NRG framework. This resulted in an excellent collaboration with Hakan
E. Türeci and the experimental group of Atac Imamoglu, with the two publications,

Many-Body Dynamics of Exciton Creation in a Quantum Dot by Optical Absorption: A
Quantum Quench towards Kondo Correlations, Hakan E. Türeci, M. Hanl, M. Claassen,
A. Weichselbaum, T. Hecht, B. Braunecker, A. Govorov, L. Glazman, A. Imamoglu,
and J. von Delft, Phys. Rev. Lett. 106, 107402 (2011).
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1. Introduction

P5.Quantum quench of Kondo correlations in optical absorption
Christian Latta, Florian Haupt, Markus Hanl, Andreas Weichselbaum, Martin Claassen,
Wolf Wuester, Parisa Fallahi, Stefan Faelt, Leonid Glazman, Jan von Delft, Hakan E.
Türeci, and Atac Imamoglu, Nature 474, 627 (2011).

Absorption spectra are intrinsically related to the phenomenon of Anderson orthogonal-
ity (AO). It turns out that the MPS framework is ideally suited for a fully self-contained,
accurate, and transparent study of AO.

P6.Anderson orthogonality and the numerical renormalization group, Andreas Weich-
selbaum, Wolfgang Münder, and Jan von Delft, Phys. Rev. B 84, 075137 (2011).

Anderson Orthogonality in the Dynamics After a Local Quantum Quench, W. Münder,
A. Weichselbaum, M. Goldstein, Y. Gefen, and J. von Delft, cond-mat/1108.5539v2
(accepted by PRB).

I Non-abelian symmetries in tensor-networks (QSpaces)

This habilitation project required to develop a proper flexible and suitable numerical
framework to matrix product states. Initially implemented in terms of a general tensor
library for abelian symmetries only, dubbed QSpaces, this has been recently extended
to include non-abelian symmetries in a completely generic fashion. By construction of a
tensor library for arbitrary rank tensors then, QSpaces can equally well deal with NRG
as well with DMRG settings. Moreover, the framework should also be straightforwardly
applicable to more recent tensor network setups such as MERA64 or PEPS43, as long as
all (effective) state spaces can be represented in terms of well-defined symmetry labels.
The code includes about 70,000 lines of objected oriented C++ code, which makes use
of the highly optimized Lapack and BLAS routines for linear algebra wherever possible.
The code is mostly deployed from within MatLab, including model setup, pre- and
postprocessing of data and wrapper routines through mex-files (about 20,000 lines of
MatLab code). All of this code was fully developed by myself for this project.

The general conceptual framework for treating non-abelian symmetries has been written
up in much detail with an extended pedagogical appendix in the paper
P7.General framework for non-abelian symmetries in tensor networks
A. Weichselbaum, cond-mat/1202.5664v1 (submitted to Annals of Physics).

This includes a successful demonstration of the QSpace tensor library for non-abelian
symmetries on the symmetric three-channel model introduced in P4.. While initially
analyzed using abelian symmetries only, this turned out insufficient for general model
parameters. Nevertheless, the model has strong non-abelian symmetries which thus
served as major motivation for the general implementation of the non-abelian symme-
tries. For comparison, various non-abelian symmetry settings are analyzed for exactly
the same model Hamiltonian. These range from the more traditional symmetry setting
based on plain SU(2) symmetries, SU(2)spin ⊗ SU(2)⊗3

charge, to the explicit treatment of
the SU(3) channel symmetry in SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel, to the actual full
symmetry of the model, SU(2)spin⊗ Sp(6). By going from state space representation to

5



1. Introduction

multiplet spaces, a tremendous reduction in the reduced coefficient spaces is achieved,
which renders these calculations feasible to start with. A follow-up paper to P4.and P7.
analyzing the experimentally measured magnetic field dependence of conductivity is in
preparation (Markus Hanl et al.).

1.2 Overview

The remainder of this cumulative habilitation thesis splits up in three parts.

(i) A brief introduction to matrix product states and their related algebra specific to
NRG and DMRG (Chap. 2), followed by a short introduction of the essentials of
NRG (Chap. 3). A detailed discussion of general non-abelian symmetries in tensor

networks has been compiled into the independent paper P7.. Hence the discussion of
(non-)abelian symmetries is kept at a minimum here.

(ii) A more extended introduction and discussion of the actual tensor networks that
emerge when using complete basis sets (Chap. 4, MPS diagrammatics for the nu-
merical renormalization group): matrix product states can be understood simply as a
specific language to describe the NRG. While this does not change the basic underly-
ing principles of the NRG per se, the MPS framework, nevertheless, proves extremely
useful for the discussion and implementation of complete basis sets.

(iii) Reprints of selected papers that have been published in peer reviewed journals as part
of this habilitation, together with a short introduction and accompanying remarks for
each.

While this thesis is mainly concerned about matrix product states and their application,
its title tensor networks and the numerical renormalization group has been chosen more
general nevertheless for two reasons: (1) the application of complete basis in part (ii) does
generate more complex networks [see Chap. 4], and (2) by construction, the QSpace library

in P7.which introduces non-abelian symmetries to tensors of arbitrary rank, clearly also
can deal with higher-rank tensors, assuming that all involved (effective) state spaces allow
a well-defined categorization in terms of symmetry sectors. Within the NRG, tensors up
to rank equal to 4 were used frequently.

6



Chapter 2

Matrix Product States

In the following a brief basic introduction to matrix product states (MPS) is given, while
also introducing the corresponding notation and conventions. The discussion is based
within the framework of the density matrix renormalization group (DMRG)70 where his-
torically the term MPS was coined50,55,56 [see Schollwöck (2011) for an extensive review
on this topic]. Much of the language is further borrowed from the quantum information
community which also put much effort into the analysis of MPS and their entanglement
properties.58,63,74 In particular, I am indebted to Frank Verstraete who kindly introduced
me to MPS by providing me with an initial basic MPS code many years back. The typical
essential MPS steps as well as the corresponding semantics I learned from there, which
therefore is also reflected in what follows. While MPS concepts have been significantly
extended to a large variety of tensor networks in recent years,22,43,64 this chapter will only
deal with the essential concepts already also present within MPS. The connection to other
numerical quantum-many-body methods such as the Numerical Renormalization Group
(NRG)72 is straightforward51,62,65,66, and will be discussed in much more detail later. In
this introduction, however, the DMRG context will be emphasized for simplicity. While
MPS is based on an underlying one-dimensional structure, more complex MPS network
structures quickly emerge in practice (cf. Chap. 4 on MPS diagrammatics).

Consider a one-dimensional physical chain of length N with local and nearest-neighbor
interaction only. The dimension of the local state space σn on site n is denoted by d and
considered the same for all sites, for simplicity. Typically, d is small, e.g. d = 2 for a spinless
fermionic degree of freedom. The total Hilbert space then of dimension dN is spanned by

H
Figure 2.1: “Hilbert space is huge” – schematic de-
piction of a possibly strongly correlated quantum
many-body state (dot), e.g. a matrix product state,
within the full Hilbert space H.

7



2. Matrix Product States

the Fock space (product states)

|ψ〉 =
d∑

σ1,...,σN

cσ1...σN |σ1〉 ⊗ . . .⊗ |σN〉︸ ︷︷ ︸
≡|σ1,...,σN 〉≡|σ〉

≡
∑

σ

c(N)
σ |σ〉. (2.1)

The order in the product state σ ≡ {σ1, . . . , σN} is important when dealing with fermionic
systems. The quantum many-body state |ψ〉 represents a tiny point of the entire Hilbert
space, as schematically depicted in Fig. 2.1. This state may carry any amount of bipartite
or multipartite entanglement which typically scales with system size. Specific states such as
ground states, however, obey an area law.7,22,74 It states that the entropy of a contiguous
q-dimensional subsystem of volume Lq scales only like the surface Lq−1 separating the
chosen region from the rest of the system. For one-dimensional systems, the surface that
separates a contiguous block of length L of the rest of the system are two points, i.e. the
left and right boundary of the block. This is a surface that is independent of the block
size L, hence the entropy saturates with increasing L. Strictly speaking, this is the case
for gapped systems only, while for critical systems, i.e. non-gapped systems, the entropy
acquires logarithmic corrections of the type S ∝ lnL. Therefore the entropy grows much
slower than an extensive quantity which would scale with the system size. The entropy S
then can be related to an effective state space dimension Deff ∝ eS required in a numerical
description of such a state. This suggests that the numerical resources required in the
description of a one-dimensional state obeying an area law, worst case, scales with the
length of the system, elnL ∼ L, which thus is polynomial and not exponential with system
size.

This underpins the efficiency of matrix product states (MPS)50 in the simulation of
strongly correlated quantum many-body physics. An MPS is in a sense a convenient and
compact way of writing a general a priori unknown quantum state in a one dimensional
system, with the coefficients of Eq. (2.1) condensed into a set of matrices,

|ψ〉MPS
Q ≡

∑

σ1,...,σN

tr
(
Q

N∏

n=1

A[σn]
)
|σ1, . . . , σN〉. (2.2)

In particular, every one of the d local states σn has a matrix A[σn] associated with it, result-
ing in a total of d ·N so-called A-tensors. The maximum matrix dimension in constrained
by some upper cutoff dimension D, typically ranging from a few tens to a several thousands.

The matrix Q in Eq. (2.2) describes the boundary conditions50 of the two ends of the
chain. In the case of periodic boundary conditions, one may simply take a D-dimensional
identity matrix. For an open chain, on the other hand, as considered throughout this work,
Q can be considered Q ≡ |a〉〈b| with two arbitrary vectors a and b in the D-dimensional
matrix space, which thus disconnects the chain at the boundary. In general, for open
boundary conditions, the vectors a and b may be merged with the A-tensors of the first and
the last site. Therefore the matrices A[σ1] (A[σN ]) become column (row) vectors, respectively.
With open boundary conditions the Hilbert space of the first few sites at each end can be

8



2. Matrix Product States

Figure 2.2: Panel (a) Schematic

n-1 n n+1

j¾n¡1i

An-1 An An+1

D

ta)

b)

…

…

…

…

j¾
n+1

ij¾ni
c)

… …

depiction of a quantum chain of
a Hamiltonian with nearest neigh-
bor interaction strength t. Panel
(b) shows the numerical simula-
tion of the same in terms of ma-
trix product state. In a diagram
as shown in panel (b), in general,
blocks refer to coefficient spaces,
and lines to indices, which them-
selves correspond to well-defined
state spaces. Open lines are open
indices, while connecting lines are
indices summed over. Thus the

horizontal lines refer to the effective D-dimensional state space, with their summation
summarized in the product in Eq. (2.3). The vertical lines connect to the local state spaces
|σn〉, and thus represent the summation over |σn〉 in Eq. (2.3). For simplicity, the local
state space labels |σn〉 are considered implicit and will be dropped in most cases, except
for the ones required for the discussion. Furthermore, also the size of the coefficient blocks
will be shrunk to zero in later discussions where convenient. In this sense, the resulting
diagram in panel (c) is equivalent to the diagram in panel (b).

included exactly, leading to dim
(
A[σ1]

)
= 1 × d, dim

(
A[σ2]

)
= d × d2, and so on until the

dimension D is reached [here dim(·) stands for the dimension of the specified algebraic
object]. The situation is completely analogous for the right boundary starting at site N ,
except that the order is reversed, with the effect that row- and column-dimensions are
flipped. The trace over the product of A-tensors then results in a plain number, i.e. the
coefficient for a given state, and hence the trace in Eq. (2.2) becomes irrelevant, leading to

|ψ〉MPS ≡
∑

σ1,...,σN

( N∏

n=1

A[σn]
)
|σ1, . . . , σN〉. (2.3)

This description of quantum-many body states emerges completely naturally from the
iterative prescription of numerical methods such as the DMRG or the NRG.

A pictorial representation of an MPS together with the background topology of the
underlying one-dimensional physical Hamiltonian is depicted in Fig. 2.2. In particular,
Fig. 2.2(c) represents an essential building block for more complex tensor networks discussed
later. Panel (a) depicts the physical quantum chain to be studied. The links between the
sites indicate nearest-neighbor interactions, e.g. described by a hopping amplitude t. Panel
(b) shows the numerical description of this quantum chain in terms of an MPS, with the
sets of A-tensors {A[σn]} for a specific site referred to as An, in short. Note that there is a

9



2. Matrix Product States

clear one-to-one correspondence of the physical system in panel (a) with the A-tensors of
the underlying MPS structure in panel (b). This directly derives from the iterative growth
of entire blocks of the chain one site at a time in the numerical simulation. In that the MPS
follows the directed structure of the Hamiltonian, this also keeps correlations as localized
as possible within the MPS.

The set of A-tensors for each site n in Fig. 2.2(b) is described by the rank-3 tensor

An with the three indices i, j, σn, i.e. (A[σn])ij ≡ A
[σn]
ij . Pictorially these are represented

by legs attached to each coefficient block A. The horizontal connected legs are summed
over (contracted) by standard matrix multiplication to the tensors to the left and to the
right, while the third leg downwards links to the local state space σn. In principle, the
vertical lines are also summed over through Eq. (2.3). From a numerical point of view,
however, they appear open since the label |σn〉 itself has no numerical meaning other than
representing a finite dimensional “open” state space. Only through the actual evaluation
of matrix elements or scalar products with other states will state spaces become “closed”,
i.e. connected to other actual coefficient spaces.

2.1 MPS and tensor network diagrammatics

Given an MPS description, tensors of different rank are connected to each other by con-
tracting mutual state spaces, i.e. summation over common indices. The explicit notation
can become quickly cumbersome with an excessive number of indices when spelled out in
detail. In this sense a graphical representation is usually preferred when describing op-
erational procedures. Typical examples were already encountered in the previous basic
introduction to MPS, cf. Fig. 2.2. The simple basic rules are as follows.56,63

• Coefficient spaces are represented by blocks of any shape, possibly reduced to nodes
of lines for better readability [e.g. see Fig. 2.2(b+c)].

• Indices represent actual state spaces, which are indicated by lines connected to co-
efficient spaces. The number of lines connected to a coefficient space describes its
rank. Closed lines which connect two coefficient spaces, are considered contracted,
i.e. summed over. Open lines, finally, describe the overall rank and dimensionality
of the entire object depicted in the diagram.

A further major advantage of these diagrams is that they exactly describe the numerical
operations that need to be performed in practice. Given a diagram with a multitude of
contractions, these are always performed sequentially, resulting in intermediate temporary
objects of altering ranks. A specific elementary contraction then is performed in between
two objects that refer to a common set of state spaces. Typically, both objects are reshaped
into temporary matrices which then allows to use public highly-optimized linear algebra
libraries to perform the tensor-contraction in terms of a standard matrix multiplication.

10



2. Matrix Product States

(a) 

An > 
(b) (c) 

Figure 2.3: Basic MPS iteration step in terms of A-tensor. All panels show essentially
the same, yet emphasize different aspects. Panel (a) generic A-tensor which links fully
orthonormal state spaces. Panel (b) shows the special case where the state space to the
left and and at the bottom (input spaces) are combined, resulting in the output space to
the right. This provides a directed structure: the arrow within the coefficient block points
towards the output space. Panel (c) shows exactly the same as panel (b) yet with simplified
notation, in that the A-tensor is shrunk to a node, and input and output spaces indicated
by arrows. Mixed notations may be used throughout the discussions that follow. In all
panels, the outer dashed box indicates an effective state space with only one open index,
i.e. the effective state space |sn〉 of all sites up to and including site n.

2.2 Orthonormalization and effective state space

An MPS derives from the generic iterative procedure that, given an effective description
of part of the system say up to site n− 1 in terms of the (many-body) basis |sn−1〉, a new
site with local state space |σn〉 is added. This results in a typically truncated effective new
state space |sn〉,

|sn〉 =
∑

sn−1,σn

A[σn]
sn−1,sn

|σn〉 ⊗ |sn−1〉. (2.4)

The coefficients A
[σn]
sn−1,sn link to the underlying full product space |sn−1〉 ⊗ |σn〉. The corre-

sponding rank-3 tensor will be referred to as A-tensor, with its elementary MPS diagram
depicted in Fig. 2.3.

By construction, the input states |sn−1〉 and |σn〉, as well as the output states |sn〉 form

orthonormal basis sets. Therefore A
[σn]
sn−1,sn is part of a unitary transformation, with the

property

〈sn|s′n〉 =
∑

sn−1,σn

A[σn]∗
sn−1,sn

A[σn]
sn−1,sn

!
= δss′ . (2.5)

Its MPS diagram is shown in Fig. 2.4(a). With sn drawn to the left and sn+1 drawn to
the right, this is referred to as left-to-right (LR) orthonormalization. This directedness is
also indicated by the arrow within the A-tensor (cf. Fig. 2.3(b)), or more generally by the
arrows on input and output spaces in Fig. 2.3(c).

Conversely, the tensor An may have been interpreted as an iterative step coming from
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(a) (b) 

> 

> * 

< 

< * 

Figure 2.4: Orthonormalization property of A-tensors. Panel (a) shows a left-to-right
(LR) orthonormalized A-tensor. The mathematical property is shown at the top, while
the equivalent MPS diagram is shown at the bottom. The symbol ’>’ inside the box indi-
cates the direction of orthonormalization, cf. Fig. 2.3(b). The asterisk indicates complex
conjugation as in Eq. (2.5), which is irrelevant for time-reversal symmetric problems. The
resulting bare bracket for the identity tensor to the lower right of panel (a) shows, that the
entire contraction of An and A∗n to the left can be eliminated (short circuited) by directly
connecting from s to s′ (for an explicit example, see also Fig. 2.8 below). Panel (b) shows
the reversed situation of a right-to-left (RL) orthonormalized A-tensor.

the right end of the system, starting from the last site N . With

|s̃n〉 =
∑

s̃n+1,σn

A
[σn]
s̃n,s̃n+1

|σn〉 ⊗ |s̃n+1〉. (2.6)

the state space |s̃n+1〉 then provides an effective representation of the system n′ > n to the
right of site n. Thus adding site n with its state space σn to the effective previous basis
s̃n+1, the resulting basis s̃n is described by a different A-tensor which is right-to-left (RL)
orthonormalized, instead, as depicted in Fig. 2.4(b).

2.2.1 State space orthonormalization

Orthonormal basis sets are desirable quite generally in numerical calculations and specifi-
cally with MPS, as they make algorithms efficient and stable in the presence of state-space
truncation. For this, consider the generic MPS setup in Fig. 2.5(a), where the state |ψ〉
is defined on a linear chain with open boundary conditions. Here the A-tensors for sites
n′ < n (n′ > n) are considered LR (RL)-orthonormalized, respectively. The tensor An for
the so-called current site n plays a special role, in that it links the effective state spaces
|sn−1〉 and |s̃n+1〉 for sites n′ < n and n′ > n, respectively, with the full local state space
|σn〉 for site n,

|ψ〉 =
∑

sn−1,σn
s̃n+1

A
[σn]
sn−1,s̃n︸ ︷︷ ︸

≡Ψ(σn,sn−1),s̃n+1

|σn, sn−1〉 ⊗ |s̃n+1〉. (2.7)
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Figure 2.5: Panel (a) Local orthonormalization step of a given MPS at current site n.
This shifts the focus on to the next current site n + 1 using singular value decomposition
(SVD). Having open boundary conditions, the left (right) end of the MPS is terminated
by the left (right) vacuum state, respectively, as indicated in the upper MPS diagram. For
simplicity, this will be indicated by a terminating bullet for the rest of the paper as shown
in the lower MPS diagrams. Panel (b) indicates the equivalence of the orthonormalization
step to inserting X−1X at the link between An and An+1. Panel (c) shows current site n
now with fully orthonormalized state spaces, i.e. including an RL-orthonormalization for
sites n′ > n. The coefficient space An links the state spaces together into the actual wave
function |ψ〉. Representing the current site, it is shaded in color in order to distinguish
it from the orthonormalized A-tensors which are kept in white and whose direction of
orthonormalization is indicated (cf. Fig. 2.3).

The tilde for the states |s̃n+1〉 for the sites n′ > n serves to differentiate from the effective
description |sn−1〉 for the sites n′ < n. In this sense, the state space |sn〉 refers to the sites
n′ ∈ {1, . . . , n}, whereas |s̃n〉 refers to the sites n′ ∈ {n, . . . , N}. By combining the effective
state space |sn−1〉 with the local state space |σn〉, their product-space index range can also
be fused into a single hyperindex, leading to the coefficient matrix Ψ(σn,sn−1),s̃n+1 , as defined
in Eq. (2.7).

The A-tensor, as defined in Eq. (2.7) for the current site, does not fulfill the generic
orthonormalization as in Fig. 2.4, yet it does encode the global normalization condition of
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the wave function,

〈ψ|ψ〉 =
∑

σn

tr (A[σn]†A[σn]) ≡ tr (Ψ†Ψ)
!

= 1. (2.8)

Assuming orthonormal state spaces for all legs of the tensor An, the elementary or-
thonormalization can be performed now in either direction of the MPS. In the following,
the focus will be on LR-orthonormalization, while RL-orthonormalization works in com-
plete analogy, by consistently reversing the role of left and right, i.e. essentially working
on L↔ R reflected version of the MPS.

Even if all A-tensors in Fig. 2.5(a) had been initialized randomly, thus compromising
the interpretation of orthonormal effective state spaces for the horizontal lines, the state |ψ〉
can nevertheless be iteratively LR-orthonormalized by internal reorganization of the MPS
without physically changing the state.63 The starting point for this is the very left end of
the system. As indicated in Fig. 2.5(a), the effective state space from the previous iteration
for the very first A-tensor is the left vacuum state |〉L. By definition, this single state is
a proper orthonormal state space. This therefore sets the starting point for the iterative
prescription for LR-orthonormalization starting with n = 1. Given a proper orthonormal
effective basis of the system up to and including site n − 1, the orthonormal local state
space of site n can be added. The coefficient space An at this point can be arbitrary. It
has three legs, A

[σn]
sn−1,s̃n

. The two state spaces to be combined, |sn−1〉 and |σn〉 are already
orthonormal, by construction. The third index s̃n does not necessarily have to describe
a orthonormal state space |s̃n〉 yet, which is useful for initialization. In general, the (not
necessarily normalized) state |ψ〉 can be written as in Eq. (2.7).

Tracing out all sites n′ > n, it is straightforward to obtain a reduced density matrix
for the system up to and including site n, ρ̂red

n ≡ trσn+1,...,σN

(
|ψ〉〈ψ|

)
. By diagonalizing

this density matrix, the dominant states within the combined space |σn, sn−1〉 can be ob-
tained. Nevertheless, a more compact superior approach is provided through the Schmidt
decomposition, generally also referred to as singular value decomposition (SVD).55 With
the indices (σn, sn−1) fused to obtain a plain rank-2 coefficient matrix Ψ, cf. Eq. (2.7),
SVD decomposition leads to

Ψ = USV †︸︷︷︸
≡X

. (2.9)

The matrices U and V are column-orthonormal, whereas S is a diagonal matrix with real
and positive diagonal elements, i.e. the so-called singular values λα. If Ψ is an m × n
matrix, then with k ≡ min(m,n) the matrices U , S, and V are of dimension m× k, k× k,
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and n× k, respectively. Substituting Eq. (2.9) into Eq. (2.7) leads to

|ψ〉 =
∑

{σnsn−1},s̃n+1

[USV †](σnsn−1),s̃n+1|σn, sn−1〉 ⊗ |s̃n+1〉

=
k∑

α=1

∑

s̃n+1

∑

σnsn−1

u(σnsn−1),α︸ ︷︷ ︸
≡U [σn]

sn−1,α

|σn, sn−1〉

︸ ︷︷ ︸
≡|s(α)n 〉

⊗ λ(n)
α v∗s̃n+1,α︸ ︷︷ ︸
≡Xα,s̃n+1

|s̃n+1〉, (2.10)

which is depicted along the MPS diagrams in then center of Fig. 2.5(a). The reshaped
Usn−1,α =: Anew

n takes the position of the original An. By construction, the LR-orthogonal

tensor Anew
n generates the new orthonormal effective basis set |s(α)

n 〉 which now also includes
site n. The remaining information of the original state |ψ〉 is split off into the further newly
generated matrix Xα,s̃n+1 which connects Anew

n with the original |s̃n+1〉 space to the right. By

contracting Xα,s̃n+1 onto An+1, thus generating Ãn+1, the current site has been shifted from
site n to site n+ 1 with all A-tensors up to and now including site n LR-orthonormalized.
All transformations in Eq. (2.10) have been exact, hence overall the state |ψ〉 remains the
same.

Assuming that the X arising from SVD in Eq. (2.10) has an inverse, then the effect
of LR-decomposition is equivalent to inserting X−1X = 1 in between An and An+1 as
indicated in the box Fig. 2.5(b). Definitely this leaves the state |ψ〉 intact. Nevertheless,
by associating X−1 with An and X with An+1, the current gets shifted from site n to
n+ 1.63 This underlines the internal degree of freedom that comes with MPS, in that every
contracted index can be decorated with X−1X = 1 with an arbitrary invertible matrix,
while contracting X−1 and X with the different ends of the bond, respectively.

The LR-orthonormalization step can be repeated iteratively starting from site n = 1 all
the way to last site n = N . For given MPS with open boundary also the very right end is
terminated by a vacuum state, say |〉R, which again represents a well-defined state space
of dimension 1. Therefore the X-matrix generated at the very last iteration N is a 1 × 1
matrix, i.e. a simple number, which reflects the norm of the state. For a normalized state,
it is exactly equal to 1. For a non-normalized state, the last X can simply be discarded to
obtain a fully normalized state |ψ〉.

Similar to the LR-orthonormalization prescription, the RL-orthonormalize starts from
site N and proceeds in complete analogy to the LR-orthonormalization, yet with reversed
role of L and R. This way, with site n the current site, all sites n′ < n (n′ > n) can be
written in LR- (RL-) orthonormalized form, respectively, through an iterative prescription
as sketched above. Consequently, site n has access to fully orthonormal state spaces for each
part of the system, including the local state space σn, as depicted in Fig. 2.5(c). The full
LR/RL-orthonormalization over the full chain, however, may only be used, for example,
during setup of a DMRG calculation. When already fully orthonormal basis sets exist
w.r.t. site n, the current site can be shifted to sites n± 1 simply using a single basic LR-
or RL-orthonormalization step. As such, this is fully compliant with an iterative scheme.
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2.3 Block Entropy

Given an MPS in the local picture of current site n, cf. Fig. 2.5(c), the wave function is
given by Eq. (2.7),

|ψ〉 =
∑

σn,sn−1,s̃n+1

A
[σn]
sn−1,s̃n+1

|σn〉|sn−1〉|s̃n+1〉, (2.11)

where |sn−1〉, |s̃n+1〉, and |σn〉 describe an orthonormal basis for the left (n′ < n), right (n′ >
n), and the local state space at site n, respectively. Partially tracing out the right side of the
system (s̃n+1), this leads to a reduced density matrix whose spectrum is equivalent to the

square of the SVD spectrum55 as in Eq. (2.9). Thus with ρ
(n)
α ≡ [λ

(n)
α ]2 the eigenspectrum

of ρ̂red
1,...,n ≡ trσn+1...,σN

(
|ψ〉〈ψ|

)
= trs̃n+1

(
|ψ〉〈ψ|

)
, the block entropy of the block of sites

n′ ∈ {1, . . . n} is given by the von-Neumann entropy

Sn ≡ −
∑

α

ρ(n)
α ln ρ(n)

α ≥ 0. (2.12)

For systems with open boundary conditions, the block entropy represents physical informa-
tion on the MPS state under consideration, in that it does not depend on internal degrees
of freedom of the MPS.

Using Schmid decomposition, the wave function in Eq. (2.11) can be rewritten as

|ψ〉 =
∑

α

λ(n)
α |s(α)

n 〉|s̃(α)
n+1〉. (2.13)

Here |s(α)
n 〉 is an orthonormal state space within the fused space |σn, sn−1〉, whereas |s̃(α)

n+1〉
forms some orthonormal superposition of the states |s̃n+1〉. Given Eq. (2.13), the SVD

spectrum λ
(n)
α forms the basis of the DMRG’s truncation criteria: discarding the smallest

eigenvalues of the reduced density matrix, [λ
(n)
α ]2 ≤ ε � 1, together with their associated

state space, this allows to determine the best possible approximation for the wave function
in a controlled fashion.70 From an MPS point of view, finally, the number Dn of states to
be kept at iteration n is qualitatively proportional to an effective dimension

D∗n ≡ eSn , (2.14)

with the von-Neumann entropy Sn as in Eq. (2.12), and the proportionality constant
Dn/D

∗
n, typically of the order 10 . . . 100, roughly independent of the truncation threshold

ε, yet dependant on the specific model Hamiltonian analyzed and the accuracy required.

2.4 Role of symmetries

The MPS framework allows to incorporate preserved symmetries in a transparent and
efficient way. In general, symmetries imply that many matrix elements or coefficients
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are exactly zero due to selection rules. As a consequence, tensors become sparse. The
essential role of abelian symmetries then is, that the non-zero coefficients can be condensed
into dense blocks. Therefore while abelian symmetries must deal with the actual full
state space dimension still, the efficiency derives from reducing the original problem to a
sequential treatment of typically significantly smaller blocks, thus exploiting the sparsity
of the problem. The numerically negligible overhead lies in an efficient book keeping of the
non-zero blocks.

In the presence of non-abelian symmetries, one further realizes that many of the non-
zero matrix elements are actually dependent on each other (e.g. consider the Wigner-
Echart theorem for irreducible operators). In general, this translates into splitting off
the corresponding Clebsch Gordan coefficient spaces in terms of a tensor product.59 As a
result, tensors can be strongly compactified. Rather than talking about the original full
state spaces, the language changes to the significantly reduced multiplet spaces.

A basic introduction to abelian and non-abelian symmetries alike together with a de-
tailed description of a transparent framework for their treatment in general tensor networks
in terms of so-called QSpaces is given in Weichselbaum (2012). Essentially, QSpaces can be
seen as powerful arbitrary-rank tensor-library that can also deal with compact non-abelian
symmetries. It is based on the explicit evaluation of Clebsch-Gordan coefficient spaces
from the actual generators of their Lie algebra. As such, it provides a flexible framework in
particular w.r.t. to the implementation of symmetries, where not all quantities of interest
are easily available analytically.

2.4.1 State symmetrization

Consider an arbitrary MPS |ψ〉 that originally has full A-tensors, i.e. makes no reference
to any symmetry spaces whatsoever. However, assuming that |ψ〉 is close to a symmetry
eigenstate, this state can be cast into an exact symmetry eigenstate. In practice, this
procedure can be useful for testing purposes. The corresponding state symmetrization
requires to reorganize all indices into state spaces with proper symmetry labels. The
actual procedure is straightforward for abelian symmetries. For non-abelian symmetries,
however, the procedure requires to partially recombine multiplet spaces with their Clebsch
Gordan coefficient spaces into an explicit tensor product. Hence the latter is not as easy
to implement while possible in principle.

The actual procedure then is as follows. Firstly, the symmetrization of a given state
requires a proper mapping of the local state spaces |σn〉 for site n into proper symmetry
eigenstates. By contracting this mapping onto every local state space, the local state
space can therefore be written in proper symmetry labels. The remaining strategy then
is completely analogous to the LR-orthonormalization already discussed with Fig. 2.5. As
such, it is an iterative prescription. The starting point may again be taken as the very
left end of the MPS, i.e. site n = 1. The local state space has already been cast into a
symmetry basis. The effective basis to its left is the left-vacuums state, which transforms
like a scalar for all symmetries. Hence its symmetry labels are trivially also known, i.e.
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Figure 2.6: Schematic depiction of orthonormalization and possibly truncation of wave
function |ψ〉 =

∑
(l,σ),r ψ(l,σ),r|lσ〉|r〉 in the one-site local DMRG picture of left block (l),

right block (r), and local state space (σ). Here left (l) and local (σ) state space are assumed
to be orthonormal and already written in proper combined symmetry labels qi. The state
space for the right (r) part of the system, however, in principle at this point can be an
arbitrary coefficient space. It may already exist in terms of block labels q′i (with non-zero
blocks shaded in gray). his is not required, however, since only full rows are considered
anyway. The latter is indicated by the slicing along the lines that separate blocks with
different symmetry labels qi. Therefore in the absence of symmetry labels, for example,
the entire state space r may be described by one single block with (irrelevant) block label
q′1 = 0.

are all equal to zero. Therefore making the iterative assumption that w.r.t. to the current
site n the effective basis for the left block of sites n′ < n is properly written in terms of
their symmetry labels, together with the local Hilbert space of site n, the tensor An can be
sliced into well-defined symmetry spaces, as schematically indicated in Fig. 2.6. There left
(n′ < n) and local (σ) state space are already combined into proper combined symmetry
spaces qi. Since the symmetry labels for the right block are not yet known, the entire state
space r can be described by one single block with irrelevant block label q′1 = 0. Subsequent
SVD within the combined symmetry sectors qi allows to extract an orthonormal Schmidt
basis for all sites up-to and now including site n, i.e. An → UnXn, as indicated in Fig. 2.5.
Here Un already refers to proper symmetry sectors, such that also the new index connecting
Un and Xn refers to proper symmetry spaces. By contracting Xn onto An+1, and setting
n→ n+ 1, the iterative prescription can be repeated for site n+ 1.

Once the end of the chain is reached at site n = N , the left index of XN connecting to AN
will list all symmetry spaces that are contained in the original state |ψ〉. Having assumed
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that |ψ〉 is close to a symmetry eigenstate, one symmetry sector in XN will dominate in
amplitude. This allows to project the state |ψ〉 onto the dominant symmetry, by skipping
the contributions to XN from all other symmetries, i.e. setting them to zero while also
readjusting the global normalization of the state. Overall, now the state |ψ〉 itself has a
well-defined exact symmetry, while also all of its internal state spaces had been reorganized
in terms of proper symmetry labels.

2.5 Simple MPS examples

Simple examples for matrix product states with the smallest non-trivial dimension D = 2
are47 the AKLT state1,56, GHZ state, cluster states, or W-states. These are prototypical
states in the analysis of entanglement in the field of quantum information. The simple
MPS examples of GHZ and W-state will be motivated in the following. There the local
state space refers to qubits, hence this state space is described by σ ∈ {0, 1}.

2.5.1 GHZ state

The GHZ state for N qubits is given by the state

|GHZ〉 =
1√
2

(|00 . . . 0〉N + |11 . . . 1〉N). (2.15)

With the convention, |0〉 ≡ (1, 0) and |1〉 ≡ (0, 1), its MPS representation consists of the
uniform, i.e. site-independent A-tensors,

A[0]
n =

(
1 0
0 0

)
, A[1]

n =

(
0 0
0 1

)
(n = 2, . . . , N − 1),

except for the boundary. For the first qubit (site) one has the A-tensor

A
[0]
1 = 1

21/4

(
1 0

)
, A

[1]
1 = 1

21/4

(
0 1

)
,

and for the last qubit its transpose, A
[σ]
N = (A

[σ]
1 )†. For a finite contribution for given MPS,

clearly all of the A-tensors must either be A[0] or A[1], hence this generates the state in
Eq. (2.15), indeed.

2.5.2 W-state

The W-state for N qubits is given by

|W〉 = 1√
N

(
|100 . . . 0〉N + |010 . . . 0〉N + . . .+ |000 . . . 1〉N

)
. (2.16)

In contrast to the GHZ-state, it is not possible to specify a uniform set of A-tensors which
are identical for all sites except for the boundaries.47 Nevertheless, the site-dependent A-
tensors for the MPS of the W-state with D = 2 can be easily determined.
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For any site n within the chain, the W-state can be split into left, local and right part,
respectively. All that is needed for either part is its respective contributions to the W-state,

|W〉 = 1√
N

[√
nL|W〉Ln |0〉n|0〉Rn + |0〉Ln |1〉n|0〉Rn +

√
nR|0〉Ln |1〉n|W〉Rn

]
, (2.17)

with N ≡ nL + 1 + nR. Here |W〉Ln [|W〉Rn ] refers to the W-state for the qubits to the left

(n′ < n) [to the right (n′ < n)] of qubit n, respectively, whereas the states |0〉[LR]
n represents

the all-zero state for left or right. All states referenced in Eq. (2.17) clearly are already
orthonormal, hence a two-dimensional effective state space for both, left and right of site
n has been identified, confirming the dimension of the MPS, D = 2. Within the effective
state spaces for left and right, the A-tensors in the local picture of a specific site n can be
readily determined.

For a left-orthonormal state space throughout, the A-tensors can be determined from
the iterative character of the W-state,

|W〉Ln =
√

nL
nL+1
|W〉Ln−1|0〉n +

√
1

nL+1
|0〉Ln−1|1〉n. (2.18)

which translates to the LR-orthonormalized A-tensors,

A[0]
n =

(
1 0

0
√

nL
nL+1

)

A[1]
n =

(
0
√

1
nL+1

0 0

)
. (2.19)

The corresponding order of the effective basis for the left block including qubit n is given
by |ln〉 ∈ {|0〉, |W〉}Ln in exactly this order. For the first iteration, there is no |W〉L state,
hence only the first rows of Eq. (2.19) apply. Together with nL = 0, its A-tensors are

A
[0]
1 =

(
1 0

)

A
[1]
1 =

(
0 1

)
.

For the last site, on the other hand, only the |W〉LN needs to be selected, hence only the
last columns in Eq. (2.19) apply. With nL = N − 1, its A-tensors are

A
[0]
N =

(
0√
N−1
N

)

A
[1]
N =

( √
1
N

0

)
.
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Figure 2.7: MPS diagram for simple scalar product between states |A〉 and |B〉 encoded as
MPS (panel a), leading to the plain Fock space contraction in panel (b) (vertical lines). The
left- (right-) most horizontal refer to singleton spaces, hence may also be simply contracted
for convenience, as indicated by the vertical dashed lines. By convention, connected lines are
contracted, i.e. summed over, hence the leading sum in panel (b) is implicit, as emphasized
by putting it in brackets. Explicit usage of the transfer matrices Pk in evaluating the scalar
product would scale like O(N ·dD4) in cost, but this is not yet optimal.55 Panel (c) indicates
the actual way of calculating a scalar product of MPS states by sequential contraction of
(i) B and (ii) A. The cost for each scales like O(dD3).

2.6 MPS Algebra

An MPS describes a potentially strongly-correlated quantum many-body-state in an expo-
nentially large Hilbert space, as introduced in Eq. (2.3). While, in principle, the coefficient∏

nA
[σn] can be calculated for arbitrary but fixed (σ1, . . . , σN), this would quickly become

exponentially prohibitive for the entire Hilbert space. In practice, however, this is never
required. An MPS is stored by its constituting A-tensors, while physical quantities such
as expectation values can be calculated efficiently by iterative means. This is based on a
generalized matrix-product structure of the underlying (quasi-) one-dimensional physical
Hamiltonian.
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2.6.1 Simple example: Scalar Product

Consider the very basic example of the scalar product of two states encoded as MPS,

〈ψA|ψB〉 =
∑

σ1,...,σN

∑

σ′1,...,σ
′
N

( N∏

n=1

A
[σn]∗
k

)( N∏

n=1

B
[σ′n]
k

)
〈σ1, . . . , σN |σ′1, . . . , σ′N〉

=
N∏

n=1

(∑

σn

A[σn]∗
n ⊗B[σn]

n

)

︸ ︷︷ ︸
≡Pn

, (2.20)

with its MPS diagram shown in Fig. 2.7. Due to 〈σn|σn′〉 = δnn′δσσ′ , the two MPS in panel
(a) directly link vertically, generating the MPS diagram in panel (b), which exactly reflects
the last line in Eq. (2.20). Given an open boundary, the left- (right-) most horizontal line
connects to the one-dimensional vacuum state. Therefore this singleton index space may
also be simply contracted, as indicated by the vertical dashed line. This way, there are no
open lines left in the diagram, which allows full contraction to a number, i.e. the overlap
of the two input states.

Consequently, the scalar product of two MPS has been reduced to roughly N multipli-
cations of the D2 ×D2 dimensional transfer matrices Pn. While the multiplication of two
Pn would scale like O(D6), for open boundary conditions and iterative prescription, how-
ever, this is essentially reduced to a matrix-vector multiplication in the space of transfer
matrices, with overall cost O(ND4). The latter can still be further improved upon by not
combining A∗n and Bn into a single object Pn, but rather dealing with the original block
structure while calculating the scalar product.56 This is indicated in Fig. 2.7(c). Starting
from the left, A∗1 and B1 can be contracted, generating a matrix X1. This again sets the
stage for an iterative construction. Let Xn−1 represent the scalar product contracted up to
site n−1. At the maximum, it is an D×D matrix (or, equivalently, a D2 dimensional vec-
tor in the space of the transfer matrices Pn). Then including site n requires (i) to contract
Bn with cost O(dD3), followed by the contraction of A∗n again with cost O(dD3). Hence
by working sequentially through the A and B blocks, the cost for calculating the scalar
product of two MPS is O(dND3).55

2.6.2 Operator expectation values

The scalar-product above already showed all the essential ingredients that are also required
for the calculation of expectation values. The scalar product calculates the matrix element
〈A|1|B〉 with respect to the identity operator,

1 ≡ 11 ⊗ 12 ⊗ . . .⊗ 1N .

It may be replaced by an arbitrary other tensor product of operators that act locally
simultaneously,

Ĉ ≡ ĉ1 ⊗ ĉ2 ⊗ . . .⊗ ĉN . (2.21)
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Figure 2.8: MPS diagram for
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ĉn
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* 

obtaining the matrix elements
of an operator ĉn acting locally
at the last site n of an effec-
tive state space |sn〉. The it-
erations n′ < n drop out due
to the LR-orthonormalization of
the A-tensors and hence can be
short-circuited, as explained with
Fig. 2.4(a) This leads to the sim-
ple actual contraction of the A-
tensor of site n with the local op-
erator ĉn as indicated to the right.

The only extra cost is to also contract the respective operator ĉn for a given iteration n.
This can be done, for example, as a prior step to Fig. 2.7(c-i): ĉn may be contracted onto
the local state space for Bn first, resulting in B̃n, which then is contracted with Xn−1.

Globally, assuming A = B, the expectation value then can be simply computed as
〈Ĉ〉A ≡ 〈A|Ĉ|A〉/〈A|A〉. Here no specific internal specific orthonormalization of the A-
tensors is required. If the operator Ĉ is short range or local to some site n, however,
then the global contraction to obtain the expectation value can be short-circuited by using
LR/RL-orthonormalized state spaces. This is explained next.

2.6.3 Operator representation in effective state space

Matrix elements of local operators can be efficiently obtained given an effective orthonormal
MPS basis set |s〉n of the part of the system they act upon. Consider, for example, an
operator Ĉ = ĉn that acts locally on site n only, as shown in Fig. 2.8. The effective state
space |s〉n is assumed to be written as MPS with LR-orthonormal A-tensors. The state
space left of site n′ = 1 describe the empty state, indicated by the bullet. Being a singleton
space, it can be simply contracted, for convenience, as indicated by the vertical dashed line.
Using Fig. 2.4 then, the contraction of the A

(∗)
1 tensors can be eliminated, i.e. shortcut.

This implies that now the left legs of the A
(∗)
2 tensors are directly connected, such that

again Fig. 2.4 applies. The argument can be repeated up to site n− 1, which is equivalent
to saying, that by construction, of course, also |sn−1〉 describes an orthonormal state space.
The resulting object on the r.h.s. of Fig. 2.4 only involves the last A-tensor from site n
together with the operator matrix elements of ĉn expressed in the local basis |σn〉. This
simplification is a direct benefit of using orthonormalized state spaces throughout.

Finally, given a one-dimensional physical system with short-range interaction, the ma-
trix elements of the Hamiltonian can be constructed efficiently in an iterative fashion, as
demonstrated in Fig. 2.9. Since the effective state space |s〉n is given in terms of an MPS up
to iteration n, also only the terms of the Hamiltonian are included that are fully contained

23



2. Matrix Product States

>1 >2 >n 

>1 >2 >n 

Hn 

* * * 

>1 >2 >n 

>1 >2 >n 

* * * 

>1 >2 >n 

>1 >2 >n 

* * * 

local terms: 

nearest-neighbor 

terms: 

h1 +  …  + 

>n 

>n 

* 

Hn-1 
+ 

>n 

>n 

* 

hn 
+ 

>n 

>n 

ci1 ci2

* > 

> 

* 

X

i

cin-1 cin

(b) 

(c) 

(a) 

n-1 

n-1 

+  …  

Figure 2.9: MPS diagrams on obtaining the matrix elements of a one-dimensional Hamilto-
nian with short range interactions only. Panel (a) shows the overall object to be calculated,
indicating that Hn acts on all sites involved. Panel (b) depicts the individual local (

∑
i ĥi)

and nearest-neighbor terms (
∑

n,i ĉ
i
n+1ĉ

i
n) constituting the Hamiltonian. Panel (c) shows

an efficient iterative scheme, that uses the matrix elements of Hn−1 of all terms up to and
including site n− 1 obtained from previous iterations.

within the block of sites n′ = 1, . . . , n, which is denoted by Hn. By construction, Ĥn can be
built iteratively, having Ĥn = Ĥn−1 + ĥn−1,n where ĥn−1,n ≡ ĥn+

∑
i ĉ
i
n−1⊗ ĉin describes the

new terms to be added to the Hamiltonian when enlarging the block by one site (local term
to site n and nearest-neighbor interaction between sites n − 1 and n, respectively).1 As
indicated in Fig. 2.9(c), the iterative scheme uses Hn−1 obtained from previous iterations.
Thus to obtain Hn, Hn−1 is propagated to site n (first term), while the new local term hn
(center term), as well as the nearest-neighbor terms explicitly involving site n interacting
with site n−1 (right term) need to be added. By convention, hats are reserved for operators
acting in the full Hilbert space, while no hats are used for explicit matrix representations
of operators.

1While operators such as the Hamiltonian may also be represented as matrix product operators.40

Within the NRG, however, this was neither required nor useful, since Hn must only represent those terms
of the Hamiltonian that are fully contained within the sites n′ ≤ n.
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2. Matrix Product States

2.7 Connection to DMRG

The density matrix renormalization group (DMRG)70 is understood as a variational pre-
scription within the space of MPS. Thus given a (quasi-) one-dimensional Hamiltonian Ĥ,
DMRG may start from a random and subsequently orthonormalized MPS. It then proceeds
with iteratively updating An with the goal to reduce the energy,

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 → MIN ⇒ ∂

∂A∗n

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 = 0. (2.22)

The latter expression results in an eigenvalue problem within a local Hilbert space of
typically huge dimension nevertheless. Being interested in low-energy physics such as the
ground state, well-established methods for sparse systems such as Davidson algorithm can
be employed. Note that even though DMRG focuses on the ground state from a global
perspective, on a local perspective it always has to deal with many states that provide an
effective description for parts of the system with the focus on low energy physics.

More generally, DMRG can be seen as a powerful extension to exact diagonalization
(ED). If the system is small enough, DMRG will give the exact ground state, while for larger
systems, it produces the best possible ground state given the numerical resources in a con-
trolled fashion. Consequently, many other concepts know from ED can also be transferred
to the DMRG, existing examples being quantum trajectory approach18 to stochastically
sample non-equilibrium process, or Chebyshev expansion32 for the calculation of spectral
properties or even real-time evolution. Note, however, that within MPS even the addition
of two states typically already represents an approximation, albeit a well-controlled one.
With the resulting algorithms also dealing with states far away from their ground state
yet still maintaining some variational character that is not necessarily w.r.t. to energy,
the acronym DMRG is frequently also replaced in favor of variational matrix product state
(VMPS).63

2.8 Connection to NRG

The numerical renormalization group (NRG,72 to be introduced and discussed in more de-
tail in Chap. 3) produces an MPS in a single sweep.51,62,65,66,68 The NRG’s crucial underlying
assumption derived from logarithmic discretization is energy scale separation (ESS). At a
given iteration n then, the environment (n′ > n) can be safely ignored. The Hamiltonian
Ĥn is exactly diagonalized in the basis |s〉n−1 ⊗ |σn〉. Being interested in the low-energy
physics, the high-energy states can be discarded (based on ESS). Hence similar to the
DMRG, Wilson’s NRG also strongly focuses on the low energy physics. As the iteration
in n proceeds, ever smaller excitations from the overall ground state are explored. Given
that the ground state is part of a continuum, it needs to be interpreted in a renormal-
ization group sense: once the stable low-energy fixed point is reached, the NRG iteration
cycle can be stopped. In this sense, the Wilson chain acquires a finite length, the ground
state of which is referred to (overall) ground state of the Wilson chain. Note also that

25
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the semi-infinite Wilson chain does have a well-defined ground state energy that converges
exponentially with n→∞.

The cost function of the NRG can thus be written as the ground state of the semi-infinite
Wilson chain,

lim
N→∞

〈sN |Ĥ|sN〉 → MIN. (2.23)

Despite that from a global perspective this represents a single state, namely the ground
state for the semi-infinite system, at any intermediate finite iteration n always many states
are available. Note that this situation is not that much unlike DMRG at all. Nevertheless,
through the extra ingredient of energy scale separation there is much more to the NRG
still. Most importantly, the NRG does represent a true renormalization group analysis
in contrast to the DMRG. Therefore by construction, NRG provides a powerful setup for
fixed point analysis at all energy scales.12,36,72 As a consequence, this finally also allows an
efficient systematic treatment of dynamical quantities at arbitrary finite temperature.12,68

2.9 MPS and sequential generation of correlated qubit

states

This section was born out of the project Saberi et al. (2009) dealing with the numerical
optimization of sequential generation of correlated qubit states using an auxiliary physical
state space.37 While this direction will be less important for the rest of this thesis, it
nevertheless provides an interesting alternative point of view on the effective state spaces
generated within an MPS: akin to the well-known AKLT construction,1,56 it gives the
effective state spaces a clear physical interpretation. Arguments along these lines can be
generalized to two-dimensional networks (PEPS),6,63 and thus be used to argue in favor of
symmetries in these tensor networks. Here in the one-dimensional setting, the basic idea is
that an initially decoupled auxiliary state space acts sequentially with a linear sequence of
local state space, such that at the end of the protocol the auxiliary state is again guaranteed
to decouple, yet served to prepare a set of qubits in an arbitrary yet fixed MPS of dimension
D.37 In particular, this section provides an explicit construction of the unitaries required
to generate given MPS. This construction is always possible, yet is not unique, as will be
seen below.

Consider the setup shown in Fig. 2.10(a). The system starts out in an initial product
state (MPS with D0 = 1), indicated by the bullets lined up at the top of the panel. The
auxiliary physical system with state space dimension D is initialized in state |a0〉, shown
at the very left. Without restricting the case, the dimension of the local state space is
assumed to be d = 2 with σ ∈ {0, 1}, as for qubits or spin-half systems. The initial states
are chosen as |σI

i〉 := |0〉 ≡ (1, 0), and also |a0〉 := (1, 0, . . . , 0)D a D-dimensional vector.
This setting is general in that one is always free to choose a different state by inserting a
V †V = 1 with arbitrary unitary V in between any of the initial states and its connecting
Un. Applying V then onto the input state, allows to generate an arbitrary input state,
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Figure 2.10: Sequential generation of
MPS through interaction with auxil-
iary state space (e.g. to creating en-
tangled qubit systems via sequential
quantum factory 37). Panel (a) The ini-
tial state of the system is a product
state |ψ〉I ≡ ⊗N

n=1 |σI
n〉 [points at the

top, indicating initial state in terms
of an MPS of dimension D0 = 1].
The auxiliary system starts in the left
state |a0〉. It interacts sequentially
with each site n sequentially from n =
1, . . . , N as described by unitaries Un.
After the last site the protocol is such
that the auxiliary system again decou-
ples, leaving the actual system in the
desired MPS state. Panel (b) shows

the interaction of the auxiliary system with site n through a tailored Hamiltonian Hn.
Panel (c) explicit construction of the unitaries Un from the target MPS described the An
tensors assuming the dimension d of a site to be d = 2, for simplicity.

while the unitary V † can be contracted onto Un, simply yielding an altered unitary Ũn.
The sequential operation of the auxiliary state space is described by unitary matrices Un.
These are imagined to be the result of letting the auxiliary system interact with site n
through some specific Hamiltonian Ĥn over some time t, leading to Un = e−iĤnt as depicted
in Fig. 2.10(b). Depending on the specific structure of the MPS, the Hamiltonian may be
constrained to a certain set of operations available to the experiment.52

Now the aim is to use the physical auxiliary system of dimension D to prepare the
actual system in some desired MPS given in terms of the site-specific An-tensors of the MPS
dimension equal to the dimension D of the auxiliary state space. The explicit construction
of the unitaries Un from the An is not entirely unique, as will be seen, thus leaves some
room in constraining the Hamiltonian to physically accessible ones.

The construction of the unitaries Un from the An proceeds as follows. Without changing
the physical state, the target MPS can be brought into a RL(!)-orthonormal form. The

An for arbitrary n can thus be rewritten as a D
(n)
1 × D

(n)
2 matrix Asn−1,{sn,σn}, which

has orthonormal rows by definition of RL-orthonormalization. Therefore it also must hold
D

(n)
1 ≤ D

(n)
2 to guarantee linearly independent orthonormal vectors. The space of a unitary

Un, on the other hand, is given by dD × dD, i.e. it can be represented as a d× d array of
D×D blocks, as indicated in Fig. 2.10(c). In particular, it holds dD ≥ {D(n)

1 , D
(n)
2 } for all

n. Therefore considering a dD × dD unitary space U , the d A[σn]-matrices can be inserted
in the first row of D ×D blocks. If the dimension of A-tensors is given by their maximal
dimension D ×D, as is the case in the center of the MPS, then these matrices completely
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fill the first row of D × D blocks in U [Fig. 2.10(c)]. If the A[σn] matrices have smaller
dimensions, they leave some space as shown in Fig. 2.10(d). These rows of U are padded
with plain zeros which preserves orthonormality of the rows (indicated by the white space
to the right of the A[σ]), while the remaining space to the bottom needs to be completed
into a full unitary U (this is always possible, even though not unique).

The unitaries Un thus constructed from the An do generate the underlying MPS. In order
to see this, remember that the local state space was assumed to be initialized in the states
|σi〉 = (1, 0). Its action onto the unitary as rank-4 object as shown in Fig. 2.10(b), effectively
projects out all except for the first row of blocks in the block-matrix representation of
Fig. 2.10(c) or (d). Hence it selects the first row of blocks, i.e. the one containing the
A-tensors. Furthermore, the auxiliary system was assumed to be in the initial state |a0〉 :=
(1, 0, . . . , 0)D. The auxiliary system acts within the D × D blocks in Fig. 2.10(c) or (d).
With the A[σ1] of the first site being row vectors, |a0〉 thus exactly selects the first row in U1

containing the A[σ1], thus discards the (arbitrarily) completed space for U1. Having padded
the rows of An in Fig. 2.10(d) with zeros, the same argument also applies for the next site.
That is, the auxiliary space emerging from U1 again also selects the rows in U2 that contain
A[σ2]. Repeating the argument all the way the last site N , the MPS has, in fact, been fully
encoded in the unitaries Un. �

All completed spaces in Fig. 2.10(c) or (d), indicated by the orange (dark) shaded areas,
are fully projected out, thus they are never referenced. The physical state generated this
way can be written as usual MPS, by contracting the input states |σI

0〉n onto the Un tensors,
thus generating a standard rank-3 tensor, as indicated by the gray boxes in Fig. 2.10(a).
By encoding the underlying target MPS, the Schmidt rank after the last iteration n = N
is 1, indicating that, by construction, the auxiliary system is again fully decoupled, indeed,
as desired.
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Chapter 3

Numerical renormalization group and
quantum impurity systems

The numerical renormalization group deals with quantum impurity models by construc-
tion.72 In the following, therefore a brief introduction is given to the underlying concepts
together with the definition of the single impurity Anderson model for later reference.

The generic quantum impurity system (QIS) consists of a small quantum system (the
quantum impurity) that is coupled to a non-interacting macroscopic reservoir, e.g. a Fermi
sea, at the location ~r = 0 of the impurity. Let the impurity be described by the general
Hamiltonian Ĥimp and the reservoir by the Hamiltonian

Ĥbath =
∑

kµ

εkµĉ
†
kµĉkµ. (3.1)

Here k may be seen as momentum in s-wave approximation or simply as energy label, while
µ describes different flavors of particles, such as spin or channel. Therefore ĉ†kµ creates a

particle with momentum or energy k and flavor µ at energy εkµ. More generally, ĉ†kµ
describes the single-particle eigenstates of the non-interacting bath Hamiltonian. Typically,
the bath for different flavors look identical from the point of view of the impurity, hence
εkµ ≡ εk can be taken independent of µ. The state of the bath at the location of the

impurity is given by f̂0µ ≡ 1√
N

∑
k ĉkµ, with proper normalization N , e.g. determined

via canonical anticommutator relations {f̂0µ, f̂
†
0µ} = 1. With this, the combined quantum

impurity system is described by the generic Hamiltonian

ĤQIS = Ĥimp + Ĥcpl({f̂0µ})︸ ︷︷ ︸
≡H0

+ Ĥbath, (3.2)

where the coupling term Ĥcpl({f̂0µ}) can act arbitrarily within the impurity system, while

it interacts with bath µ only through f̂
(†)
0µ , i.e. its degree of freedom at the location of the

impurity. The Hilbert space of the typically interacting local Hamiltonian Ĥ0 in Eq. (3.1)
is considered small enough so it can be easily solved exactly numerically. Thus while Ĥ0

and Ĥbath are easy to solve individually, their combination can give rise to highly nontrivial
strongly correlated quantum-many-body effects such as Kondo physics.

The description of an interacting many-body Hamiltonian requires the treatment of
the full exponentially large Hilbert space. This is typically dealt with using some kind of
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Figure 3.1: Logarithmic discretization of a conduction band of half-bandwidth W resulting
in the new coarse-grained states ĉmµ with m an integer.

renormalization group ansatz. In the case of quantum impurity model, this is the numerical
renormalization group (NRG).12,36,72 The NRG is a two-step process. (i) The continuum
of states in the bath is coarse grained relative to the Fermi energy using the discretization
parameter Λ > 1, such that with W the half-bandwidth of a Fermi sea, this defines a set of
intervals ±W [Λ−(m−z+1)/2,Λ−(m−z)/2], each of which will be described by a single fermionic
degree of freedom, as depicted schematically in Fig. 3.1. Here m is a positive integer, with
the additional constant z ∈ [0, 1[ introducing an arbitrary shift.44,76 The great advantage of
using this kind of discretization is that it allows to zoom in to arbitrarily small energy scales
close to the Fermi energy. By construction, this allows to resolve dynamically generated
possibly exponentially small energy scales such as the Kondo temperature. (ii) With f̂0µ

being a linear superposition of states in the original diagonal bath states ĉkµ, for each flavor

µ the bath can be unitarily rotated into a new orthonormal basis with f̂0µ representing the

seed state. In particular, given f̂0µ, the non-interacting bath can always be tridiagonalized,
which thus allows to map the coarse grained bath exactly onto a semi-infinite chain with the
first site described by f̂0µ. This one-dimensional linear setup is called the Wilson chain,72

ĤQIS ' lim
n→∞

Ĥn (3.3a)

with

Ĥn ≡ Ĥimp + Ĥcpl({f̂0µ})︸ ︷︷ ︸
(=H0)

+
∑

µ

n−1∑

n′=0

tn′
(
f̂ †n′µf̂n′+1,µ + H.c.

)
, (3.3b)

where the upper limit in the last sum was chosen such, that
(
Ĥn

)
n=0

, indeed, corresponds

to the local Hamiltonian Ĥ0, cf. Eq. (3.2). Within the setting of the Wilson chain, the
impurity (first site in the chain) couples to the first site of the bath f0µ (second site in
the chain) only, while the remainder of the chain consists of a plain tight-binding chain
between bath sites with hopping amplitudes tn. For larger n, it quickly holds

ωn ≡ lim
n�1

tn = Λz−1(Λ−1)
log Λ

WΛ−
n
2 , (3.3c)

where ωn describes the (smallest) energy scale of a Wilson chain including all sites up to and
including site n+ 1 for arbitrary Λ and z-shift. For simplicity, a flat hybridization function
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is assumed throughout, i.e. Γ(E) = Γϑ(W − |E|), with the discretization following the
prescription of Žitko and Pruschke (2009).

Given the exponentially decaying hopping amplitudes tn in Eq. (3.3c), this justifies the
powerful assumption of energy scale separation along the Wilson chain for large enough Λ,
typically Λ & 1.7. In particular, this justifies the iterative diagonalization of the Hamilto-
nian in Eq. (3.3b)

Ĥn+1 = Ĥn +
∑

µ

tn
(
f̂ †nµf̂n+1,µ + H.c.

)
, (3.4)

which also goes along with an extremely systematic analysis of the full QIS.72 By starting
with the local Hamiltonian H0 and adding one Wilson site after another, for large enough
Λ energy scales separate72 in the sense that energy levels remain in closer vicinity of the
initial energy level when another site is added due the nearest-neighbor hopping structure.
The energy scale separation thus leads to the usual NRG truncation criteria prescription of
discarding states with highest energies, while keeping the low-lying states at every iteration.
Even though NRG would be exact in the limit Λ→ 1, this limit cannot be taken in practice,
however, since truncation by a fixed energy would lead to infinitely large state spaces that
must be kept from one iteration to the next. Since this cannot be done, energy scale
separation would be violated.

Energy scale separation (ESS) is an essential ingredient to the NRG. It can be directly
linked to the NRG’s only approximation, namely the coarse graining in terms of Λ. As
a consequence, ESS directly leads to the following three rigid drawbacks of NRG.12 (1)
With a Λ & 1.7 required for energy scale separation, dynamical quantities such as corre-
lation function also have finite resolution at finite frequency. That is, the discrete data
from an NRG calculation needs to be broadened substantially to obtain smooth curves12

[see also supplementary material to Weichselbaum and von Delft (2007)]. Averaging over
uniformly distributed z-shifts44,76 greatly improves resolution, yet clearly cannot provide
the equivalent of the continuous limit Λ → 1 while using Λ & 1.7. (2) Being interested in
thermodynamic quantities at finite temperature T , in general, this implies that the ther-
mal density matrix has its dominant contributions from energy shells corresponding to T .68

These shells, however, only have the finite energy resolution corresponding to these shells.
Consequently, sharp features in dynamical quantities for |ω| � T , if existent, typically
cannot be resolved. Nevertheless, FDM-NRG68 (see later discussion), gives reliable resolu-
tion for ω ≥ αT with α . 1. (3) Due to the separation of energy scales, all terms in the
Wilson chain setup of the Hamiltonian that contribute to the same energy scale at a given
NRG iteration must be included at the same time. This implies that multichannel models
becomes exponentially expensive in the number of channels.

These limitations of the NRG can be relaxed, if the rigid requirement of energy scale
separation is loosened. While this no longer justifies the one-way iterative diagonalization
of the Wilson chain, the ground state properties of the Wilson chain can nevertheless
be analyzed from a variational point of view.21,49,51,62,65,66 Through the common algebraic
structure of matrix product states, this naturally leads to a DMRG based analysis of the
Wilson chain.
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3. Numerical renormalization group and quantum impurity systems

3.1 Single impurity Anderson model

A prototypical quantum impurity model applicable to the NRG is the single impurity
Anderson model (SIAM).3,4,23,24 It consists of a single interacting fermionic level (d-level),
i.e. the impurity,

Ĥimp =
∑

σ

εdσn̂dσ + Un̂d↑n̂d↓. (3.5a)

with level-position εdσ and onsite interaction U . This impurity is coupled through the
hybridization

Ĥcpl =
∑

kσ

(
Vkσd̂

†
σ ĉkσ + H.c.

)
=
∑

σ

(
d̂†σ ·

∑

k

Vkσ ĉkσ

︸ ︷︷ ︸
≡f̃0σ

+ H.c.
)

(3.5b)

to a spinful non-interacting fermi sea,

Ĥbath =
∑

kσ

εkσn̂kσ, (3.5c)

thus referred to as a one-channel system. Here d̂†σ (ĉ†kσ) creates an electron with spin σ at the

d-level (in the bath with energy k), respectively. Moreover, n̂dσ ≡ d̂†σd̂σ, and n̂kσ ≡ ĉ†kσ ĉkσ.
The model has three physical parameter regimes that can be tuned through temperature:
(i) the free orbital regime (FO) at large energies allows all states at the impurity from
empty to doubly occupied. (ii) the local moment regime (LM) at intermediate energies
with a single electron at the impurity and the the empty and double occupied state only
accessible through virtual transitions. (iii) the low-energy strong coupling (SC) fixed-point
where the the local moment is fully screened into a quantum-many-body singlet with the
electrons in the bath. Through Schrieffer-Wolff transformation57 the FO regime can be
projected out, leading to an effective J ˆSimp · Ŝbath spin interaction with positive J between
the spin of the impurity and the spin of all electrons in the bath, resulting in the so-called
Kondo Hamiltonian.33

Given Eqs. (3.5b) and (3.5c), form the point of view of the impurity, the effects of the
bath are fully captured by the bath Greens function ∆(σ)(ω) ≡ 〈f̃0σ‖f̃ †0σ〉,

∆(σ)(ω) =
∑

k

|Vkσ|2
ω+ − εkσ

, (3.6)

with ω+ ≡ ω + i0+ and 0+ a positive infinitesimal, and having used the non-normalized
fermionic state f̃0σ in Eq. (3.5b). Due to analytical, i.e. retarded, structure of ∆(σ)(ω), it
is sufficient to consider its imaginary part only, since the real part can simply be obtained
through Kramers-Kronig relations. The imaginary part then defines the hybridization
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3. Numerical renormalization group and quantum impurity systems

function Γ(σ)(ω),

Γ(σ)(ω) ≡ −Im∆(σ)(ω) =
∑

k

π|Vkσ|2δ(ω − εkσ)

≡ πρ(σ)(ε)V
2

(σ)(ε), (3.7)

where the last expression represents the continuum limit, with ρ(ε) the density of states of
the bath. The hybridization function therefore corresponds to a strictly positive spectral
density.

Since the coupling in Eq. (3.5b) preserves spin, the hybridization function ∆σ(ω) can be
defined for each spin individually. Moreover, using a spin symmetric setup, ∆(ω) becomes
independent of spin, indicated by the brackets around σ in Eqs. (3.6) and (3.7). Since
typically the bandwidth is much larger as compared to the relevant physical scales of the
model Hamiltonian, only the properties of the bath near the the fermi energy εf are relevant.
Using a particle-hole symmetric setup for the bath, then the typical choice taken is the box
distribution Γ(σ)(ω) = ϑ(|ω| − 1)Γ(σ) with constant Γ(σ), chemical potential εf = 0, and
bandwidth 1. Consequently, all physical parameters are considered in units of bandwidth.

The state f̃0σ of the bath finally can be written as a properly normalized state f̂0σ,

f̂0σ ≡
f̃0σ√∫
dω
π

Γ(σ)(ω)
,

derived from the fermionic anticommutator relation {f̂0σ, f̂
†
0σ} = 1, where the inverse factor

of π originates in the definition of Γ(ω) in Eq. (3.7). Using the simple box distribution

above with total bandwidth of 2., it follows, f̃0σ =
√

2Γ(σ)

π
f̂0σ.

3.2 NRG and area laws

By construction, the NRG generates a matrix product state.51,62,65,66 Moreover, it can be ar-
gued [cf. Sec. 2.8] that the NRG prescription based on energy scales is quasi-variational. By
now the success of variational MPS, i.e. DMRG, to ground state calculations of quasi-one-
dimensional systems is understood to be firmly rooted in the area law for the entanglement
entropy SA.58,63,74 The latter is defined as the entanglement of some contiguous region A
with the rest of the system. In this sense, MPS is ideally suited to capture ground state
properties efficiently for quasi-one-dimensional systems.

In comparison, the NRG references all energy scales through its iterative diagonalization
scheme, but nevertheless zooms in towards the low energy scales (“ground state properties”)
of the full semi-infinite Wilson chain. Therefore given a Wilson chain of sufficient length N ,
without restricting the case, one may simply consider the fully mixed density matrix built
from the ground state space |0〉N . This then allows to analyze the entanglement entropy
Sn of the states |s〉n, i.e. the block of sites n′ < n, with respect to its environment |e〉n.
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Figure 3.2: NRG and area law – analysis for the symmetric single impurity Anderson
model for the parameters as shown in panels (b) and (c) [cf. Eq. (3.5); all energies in
units of bandwidth]. Panel (a) shows the standard NRG energy flow diagram for even
iterations where the different colors indicate different symmetry sectors. Panel (b) shows
the entanglement entropy Sn of the Wilson chain up to and including site n with the rest of
the chain w.r.t. the overall ground state. Due to intrinisic even-odd alternations, even and
odd iterations n are plotted separately. Panel (c) shows the actual number of multiplets
kept from one iteration to the next, using a dynamical truncation criteria w.r.t. a given
threshold energy EK. The calculation used SU(2)spin ⊗ SU(2)charge symmetry, hence the
actual number of kept states is by about an order of magnitude higher (e.g. as indicated
with the maximum number of states kept, NK in panel (c): the value in brackets gives the
corresponding number of states).
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3. Numerical renormalization group and quantum impurity systems

The interesting consequence in terms of area law is that one expects the (close to)
lowest entanglement entropy Sn for the stable low-energy fixed point, while one expects
Sn to increase for higher energies, i.e. with decreasing Wilson shell index n. This is
nicely confirmed, for example, in a test calculation for the single impurity Anderson model
(SIAM), as shown in Fig. 3.2.

Figure. 3.2(a) shows the standard NRG energy flow diagram for even iterations, which
clearly outlines the physical regimes of free orbital (FO, n . 25), local moment (LM,
25 . n . 60), and strong coupling (SC, n & 60) regime. In particular, in order to have
a sufficiently wide FO regime, a very small onsite interaction U was chosen. Panel (b)
shows the entanglement entropy. Up to the very beginning or the very end of the chain
(the latter is not shown), this shows a smooth monotonously decaying behavior vs. energy
scale. In particular, consistent with the area law for lowest-energy states, the entanglement
is smallest once the stable low-energy fixed point is reached. Having chosen a dynamical
(quasi-variational)66 truncation scheme w.r.t. to energy, the qualitative behavior of the
entanglement entropy is also reflected in the number of states that one has to keep for
some fixed overall accuracy, as shown in Fig. 3.2(c). Clearly, up to the very few first shells
prior to truncation, the largest number of states must be kept at early iterations. While
this is a hand-waving argument, this nevertheless confirms the empirical fact, that the first
few Wilson shells with truncation are usually the most important, i.e. most expensive ones.
Therefore for good overall accuracy all the way down to the low energy sector, one must
allow for a sufficiently large number of states to be kept at early iterations.
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Chapter 4

MPS diagrammatics for the
numerical renormalization group

The complete basis sets within the NRG represent an excellent setting to describe in detail
all relevant steps when computing thermodynamic quantities. Using FDM-NRG instead
of the more traditional patching schemes, all these calculations become transparent well-
defined procedures, in the sense that all steps are completely fixed without any requirement
for further algorithmic fine-tuning. The underlying MPS algebra nevertheless leads to
contractions of larger tensor networks, which quickly can become complex mathematical
expression if spelled out explicitly. Alternatively, it has proven much more convenient to
represent the relevant tensor networks graphically,56 which in the following is dubbed MPS
diagrammatics. This chapter then describes in detail a range of tensor networks that need
to be dealt with when calculating thermodynamical quantities within the NRG. For this,
however, a brief introduction to complete basis sets is given, together with their relevant
general properties.

Within the NRG, a complete full-many body basis can be constructed from the state
space of the iteratively computed NRG eigenstates Ĥn|s〉n = En

s |s〉n.2 With the NRG
stopped at some final length N of the Wilson chain, the NRG eigenstates w.r.t. to site
n < N can be complemented by the complete state space of the rest of the chain, |e〉n,
living on sites n+ 1, . . . , N . The latter space will be referred to as the environment, which
due to energy scale separation will only weakly effect the states |s〉n. Therefore given the
combined states,

|se〉n ≡ |s〉n ⊗ |e〉n, (4.1)

spanning the full Wilson chain, within the validity of energy scale separation,2

ĤN |se〉n ' En
s |se〉n, (4.2a)

the NRG eigenstates at iteration n are, to a good approximation, also eigenstates of the
full Wilson chain. This holds for a reasonably large discretization parameter Λ & 1.7.51

The iteratively discarded state space allows to build a complete many-body eigenbasis
of the full Hamiltonian,2

1(d0dN ) =
∑

se,n

|se〉DD
n n〈se|, (4.2b)

36



4. MPS diagrammatics for the numerical renormalization group

N
R

G
 e

n
e

rg
y
 s

p
e

c
tr

u
m

n n+1 n+2

Wilson shell index

c
o
m

p
le

te
 b

a
s
is

 s
e
t

sn en

210 Nn

N

imp

0d

(impurity)

Figure 4.1: Iterative construction of complete basis set within the NRG by collecting the
discarded state spaces |s〉Dn from all iterations n ≤ N (black space a the left of the gray
blocks), which is complimented by the environment |e〉n for the rest of the system starting
from site n+1 up to the overall chain length N considered (gray blocks). In a hand-waving
picture, by adding a site to the chain, this site introduces a new lowest energy scale to the
system, with the effect that existing levels become split within a narrow energy window
(indicated by the spread of levels from one iteration to the next). The impurity, and also
the first few sites can be considered exactly with a manageable total number of states in
its Hilbert space still. Yet as the state space grows exponentially, truncation quickly sets
in. The discarded state spaces then when collected form a complete basis. At the last
iteration, where NRG is stopped, all states are considered discarded, for completeness.

where d0d
N refers to the full Hilbert space dimension of the Hamiltonian HN . Here d

refers the state space dimension of a single Wilson site, while d0 refers to the state space
dimension of H0, which also includes the impurity. It is further assumed, that the local
Hamiltonian H0 is never truncated, i.e. truncation sets in for some n = n0 > 0. Finally,
at the last iteration n = N , all states are considered discarded for consistency.

The completeness of the state space in Eq. (4.2b) can be easily motivated by realizing
that at every NRG truncation step, by construction, the discarded space (eigenstates at
iteration n with largest energies) is orthogonal to the kept space (eigenstates with lowest
eigenenergies). The subsequent refinement of the kept space at later iterations will not
change the fact, that the discarded states at iteration n remain orthogonal to the state
space generated at later iterations. This iterative reduction of Hilbert space while building
up a complimentary complete orthogonal state space is schematically depicted in Fig. 4.1.
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4. MPS diagrammatics for the numerical renormalization group

4.1 Identities

Given the complete basis in Eq. (4.2), the following identities hold,2

∑

se

|se〉KK
n n〈se|

︸ ︷︷ ︸
≡P̂K

n

=
∑

n′>n

∑

se

|se〉D D
n′n′〈se|

︸ ︷︷ ︸
≡P̂D

n′

. (4.3)

Here the state space projectors P̂X
n are defined to project into the kept (X = K) or discarded

(X = D) space of Wilson shell n. This then allows to rewrite Eq. (4.3) more compactly as

P̂K
n =

D∑

n′>n

P̂D
n′ . (4.4)

With this, two independent sums over Wilson shells can be reduced into a single sum over
shells,

∑

n1,n2

P̂D
n1
P̂D
n2

=
∑

(n1=n2)≡n

P̂D
n P̂

D
n +

∑

n1>(n2≡n)

P̂D
n1
P̂D
n +

∑

(n1≡n)<n2

P̂D
n P̂

D
n2

=
∑

n

(
P̂D
n P̂

D
n + P̂K

n P̂
D
n + P̂D

n P̂
K
n

)

≡
XX′ 6=KK∑

n︸ ︷︷ ︸
≡
∑
n

′

P̂X
n P̂

X′
n . (4.5)

For simplified notation, the prime in the last single sum over Wilson shells (
∑′) indicates

that also the kept-sectors are included in the sum, yet excluding the all-kept sector XX′ 6=
KK, since this sector is still refined in later iterations.2,68

While Eq. (4.5) holds for the entire Wilson chain, exactly the same line of arguments
can be repeated starting from some arbitrary but fixed reference shell n,

∑

n1,n2>n

P̂D
n1
P̂D
n2

=

XX′ 6=KK∑

n′>n︸ ︷︷ ︸
≡

∑
n′>n

′

P̂X
n′ P̂

X′
n′ .

Together with Eq. (4.4), this becomes

P̂K
n P̂

K
n =

∑

n1,n2>n

P̂D
n1
P̂D
n2

=
∑

n′>n

′
P̂X
n′ P̂

X′
n′ . (4.6)
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4.1.1 Generalization to multiple sums over shells

Consider the evaluation of some physical correlator that requires m insertions of the identity
in Eq. (4.2b) in order to obtain a simple Lehmann representation. Examples are thermal
expectation values of observables or (higher-order) Greens functions. In all cases, the
resulting independent sum over arbitrarily many identities as in Eq. (4.2b) can always be
rewritten into a single sum over Wilson shells.

Claim: Given m full sums as in Eq. (4.2b), this can be rewritten in terms of a single
sum over a Wilson shell n, such that Eq. (4.5) generalizes to

∑

n1,...,nm

P̂D1
n1
. . . P̂Dm

nm =

X1···Xm 6=K1...Km∑

n︸ ︷︷ ︸
≡
∑
n

′

P̂X1
n . . . P̂Xm

n (4.7)

Proof: Note that via Eq. (4.4), the l.h.s. of Eq. (4.7) can be rewritten as

P̂K1
n0−1 . . . P̂

Km
n0−1 =

∑

n1,...,nm

P̂D
n1
. . . P̂D

nm

where n0 > 0 is the first iteration where truncation occurred. This way, P̂K
n0−1 refers to the

full Hilbert space still. Proving Eq. (4.7) hence is again equivalent to proving for general n
that

P̂K1
n . . . P̂Km

n =
∑

n1,...,nm>n

P̂D
n1
. . . P̂D

nm =
∑

n′>n

′
P̂X1

n′ . . . P̂
Xm
n′ , (4.8)

where the sum in the middle term indicates an independent sum of all ni > n with i =
1, . . . ,m. The case of two sums (m = 2) was already shown in Eq. (4.6). Hence one may
proceed via induction. Assume, Eq. (4.8) holds for m− 1. Then for the case m one has,

P̂K1
n . . . P̂Km−1

n · P̂Km
n =

=

(∑

n′>n

′
P̂X1

n′ . . . P̂
Xm−1

n′

)(
D∑

nm>n

P̂Dm
nm

)

=

( ∑

n′=nm>n

′
+

∑

n<n′<nm

′
+

∑

n′>nm>n

′
)
P̂X1

n′ . . . P̂
Xm−1

n′ · P̂Dm
nm

=
∑

n̄>n

′
P̂X1
n̄ . . . P̂

Xm−1
n̄

(
P̂Dm
n̄ + P̂Km

n̄

)
+ P̂K1

n̄ . . . P̂
Km−1
n̄ · P̂Dm

n̄

≡
∑

n̄>n

′
P̂X1
n̄ . . . P̂Xm

n̄ ,

where the last term in the fourth line followed from the inductive hypothesis. �
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More intuitively, the m independent sums over {n1, . . . nm} in Eq. (4.8) can be rear-
ranged such, that for a specific iteration n̄, either one of the indices ni may carry n̄ as
minimal value, while all other sums range from ni′ ≥ n̄. This way, by construction, the
index ni stays within the discarded state space, while all other sums ni′ are unconstrained
up to ni′ ≥ ni = n̄, thus represent either discarded at iteration n̄ or discarded at any
later iteration which corresponds to the kept space at iteration n̄. From this, Eq. (4.8)
immediately follows.

4.2 Full density matrix

Given the complete NRG energy eigenbasis |se〉Dn , the full density matrix (FDM)68 at
arbitrary temperature T ≡ 1/β is given by

ρ̂FDM(T ) =
∑

sen

e−βE
n
s

Z
|se〉DD

nn 〈se|, (4.9)

with Z(β) ≡∑ne,s∈D e
−βEns . By construction of a thermal density matrix, all energies En

s

from all shells n appear on an equal footing relative to a single global energy reference.
Hence any prior iterative rescaling or shifting of the energies En

s , which is a common
procedure within the NRG, must be undone. From a numerical point of view, typically the
ground state energy at the last iteration n = N for a given NRG run is taken as energy
reference. This enforces that all Boltzmann weights are smaller or equal 1.

Note that the energies En
s are considered independent of the environmental index e. As

a consequence, this leads to exponentially large degeneracies in energy for the states |se〉n.
The latter must be properly taken care of within FDM, as it contains information from all
shells. By already tracing out the environment for each shell (this will be further justified
below), this leads to

ρ̂FDM(T ) =
∑

n

dN−nZn
Z

︸ ︷︷ ︸
≡wn

∑

s

e−βE
n
s

Zn
|s〉DD

nn 〈s|
︸ ︷︷ ︸

≡ρFDM
n (T )

, (4.10)

with d the state-space dimension of a single Wilson site, and introducing the normalization
Zn(β) ≡∑s∈Dn

e−βE
n
s of the density matrices ρFDM

n (T ) built from the discarded space of a
specific shell n only. Therefore, Z =

∑
n Zn and tr(ρFDM

n (T )) = 1.
The qualitative behavior of the weights wn can be understood straightforwardly. With

the typical energy scale of shell n given by

ωn = aΛ−n/2, (4.11)

with a some constant of order 1. [cf. Eq. (3.3c)], this allows to estimate the weights as
follows,

ln(wn) ' ln
(
dN−ne−βωn/Z

)
= (N − n) ln(d)− βωn + const,
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the maximum of which as a function of shell n is determined by

d
dn

ln(wn) ' − ln(d) + aβ ln(Λ)
2

Λ−n/2
!

= 0,

with the solution

aΛ−n
∗/2 ' 2 ln(d)

β ln(Λ)
∼ T . (4.12)

The middle term is 1/β times some constant of order 1., from which the last proportionality
follows. This shows that the distribution wn is strongly peaked around the energy scale of
given temperature T . With T ≡ aΛ−nT /2 and therefore nT ' n∗, the distribution therefore
decays super-exponentially fast towards larger energies n� nT (dominated by e−βωn with
exponentially increasing ωn with decreasing n), while it decays in a plain exponential fashion
towards smaller energy scales n� nT (dominated by d−n, since with βωn � 1, e−βωn → 1).
An actual example in terms of the single impurity Anderson model (SIAM) is shown in
Fig. 4.2 which clearly supports all of the above qualitative analysis. It follows for typical
discretization parameter Λ and local dimension d, that nT is slightly smaller than n∗, i.e.
to the left of the maximum in wn typically at the onset of the distribution wn on a linear
scale, as is seen in Fig. 4.2 (nT is indicated by the vertical dashed line). An important
consequence of the exponential decay of the weights wn for n� nT is that by taking a long
enough Wilson chain to start with, FDM-NRG automatically truncates the length of the
Wilson chain around n ∼ nT .

The weights wn are fully determined within an NRG calculation, yet depend sensitively
on the specific physical as well as numerical parameters. Most obviously, this includes
the state space dimension d of a given Wilson site. However, the weights wn clearly also
depend on the specific number of states kept from one iteration to the next. For example,
the weights are clearly zero for iterations where no truncation takes place. This is usually
the case for the first few NRG iterations including the impurity. In general, the weights
fully adapt to the specific truncation scheme adopted, which includes, for example, adaptive
truncation based on an energy threshold. In the case of fixed NK =512 in Fig. 4.2, note
that if d = 4 times the number of states had been kept, i.e. NK = 512 → 2048, this
essentially would have shifted the entire weight distribution in Fig. 4.2 by one iteration
to lower energy scales, i.e. to the right, resulting in an improved spectral resolution for
frequencies ω . T .68

Interestingly, given a constant number NK of kept states in Fig. 4.2, the weights wn show
a completely smooth behavior, irrespective of even or odd iteration. This is somewhat
surprising at first glance, considering that NRG typically does show even-odd behavior,
specifically so for the SIAM. There, at even iterations an overall non-degenerate singlet can
be formed to be the ground state. Having no unpaired spin in the system, this typically
lowers the energy more strongly as compared to odd iterations which do have an unpaired
spin. Therefore while even iterations show a stronger energy reduction in its low energy
states, its ground state space consists of a single state. In contrast, for odd iterations the
energy reduction by adding the new site is weaker, yet the ground state space is degenerate,
having no magnetic field (Kramers degeneracy). As can be clearly seen in Fig. 4.2, both
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Figure 4.2: Typical FDM weight distribution calculated for the SIAM for the parameters as
shown in the panel [cf. Eq. (3.5); all energies in units of bandwidth]. The number of states
NK kept at every iteration was taken constant. The distribution is strongly peaked around
the energy shell nT (vertical dashed line) corresponding to the energy scale of temperature.
The inset shows the weights wn on a logarithmic scale, showing plain exponential decay for
small energies n > nT , and super-exponentially fast decay towards large energies (n < nT ).

effects combined together compensate each other, resulting in a smooth distribution of the
FDM weights wn.

Above analysis shows that the density matrix generated by FDM is dominated by several
shells around the energy scale of temperature. The physical information encoded in these
shells can critically affect physical observables at much larger energies. This construction
therefore shall not be shortcut in terms of the density matrix in the kept space at much
earlier iterations, say using Ĥ|s〉Kn ' En

s |s〉Kn with the Boltzmann weights in Eq. (4.10).
The latter can fail for exactly the reasons already discussed in detail with the introduction
of the DM-NRG by Hofstetter (2000): the low-energy physics can have important feedback
to larger energy scales. To be specific, the low-energy scales on the order of temperature
can have a decisive role on the decay channels of high-energy excitations. As a result, for
example, the low-energy physics can lead to a significant redistribution of spectral weight
in the local density of states at large energies.
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4.3 Applications

4.3.1 Spectral functions

The calculation of spectral properties within the NRG started with Oliveira and Wilkins
(1981) in the context of X-ray absorption spectra, which was extended to spectral functions
at zero temperature by Sakai et al. (1989). Finite temperature together with transport prop-
erties was finally introduced by Costi and Hewson (1992). An occasionally crucial feedback
from small to large energy scales finally was taken care of by the explicit incorporation of
the reduced density matrix for the remainder of the Wilson chain (DM-NRG) by Hofstetter
(2000). While these methods necessarily combined data from all NRG iterations to cover
the full spectral range, they did so through heuristic patching schemes. Moreover, in the
case of finite temperature, these methods had been formulated in a single-shell setup that
associates a well-chosen temperature corresponding to the energy scale of this shell. For a
more complete listing of references see Bulla et al. (2008).

The possible importance of a true multi-shell framework for out-of-equilibrium situations
had already been pointed out by Costi (1997). As it turns out, this can be implemented in
a fully transparent well-defined way using the complete basis sets by Anders and Schiller
(2005). While nevertheless more traditional single-shell formulations of the NRG exist
using complete basis sets,48 a clean multi-shell formulation can be obtained using the
full density matrix in Eq. (4.9) (FDM-NRG, Weichselbaum and von Delft (2007)). The
clean treatment of reduced density matrices to describe the low-energy sector essentially
generalizes the DM-NRG31 to a black-box algorithm, which in addition also allows to treat
arbitrary finite temperatures on a fully generic footing.

Consider the retarded Greens function

GR
BC(t) = −iϑ(t)〈B̂(t)Ĉ†〉T︸ ︷︷ ︸

≡GBC(t)

(4.13)

with B̂(t) ≡ eiĤtB̂e−iĤt. Here the Hamiltonian Ĥ of the system is assumed to be time-
independent. In Eq. (4.13), the operator Ĉ† acts at time t = 0 on a system in thermal

equilibrium at temperature T , described by the thermal density matrix ρ̂(T ) = e−βĤ
Z

, i.e.
〈·〉T ≡ tr

(
ρ̂(T )·

)
. The system then evolves to some time t > 0, where a possibly different

operator B̂ acts on the system. The overlap with the time evolved wave function then
defines the causal correlation of the two events. Fourier-transformed into frequency space,
GR(ω) ≡

∫
dt
2π
eiωtGR(t), its spectral function is defined by

ABC(ω) ≡ − 1
π
ImGR

BC(ω) =

∫
dt
2π
eiωtG(t)

=

∫
dt
2π
eiωt tr

(
ρ̂(T )eiĤtB̂e−iĤtĈ†

)
. (4.14)

When evaluated in the full many-body eigenbasis, this requires the insertion of two identities
as in Eq. (4.2b), (i) to evaluate the trace, and (ii) in between the operators B̂ and Ĉ†. Using
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for simplified notation, the eigenbasis sets 1 =
∑

a |a〉〈a| =
∑

b |b〉〈b|, the spectral function
becomes,

ABC(ω) =
∑

ab

∫
dt
2π
ei(ω−Eab)tρa〈a|B̂|b〉〈b|Ĉ†|a〉

≡
∑

ab

ρaBabC
∗
ab · δ (ω − Eab) , (4.15)

with Eab ≡ Eb − Ea and ρa ≡ e−βEa
Z

. Equation (4.15) is referred to as the Lehmann

representation of given correlation function. In the case of equal operators, B̂ = Ĉ, the
spectral function is a strictly positive function, i.e. a spectral density. In either case, the
integrated spectral function results in the plain thermodynamic expectation values,

∫
dωABC(ω) =

∑

ab

ρaBabC
∗
ab =

〈
B̂Ĉ†

〉
T

. (4.16)

Using the complete NRG eigenbasis, |a〉 → |se〉n and |b〉 → |s′e′〉n′ , one may be tempted
of directly reducing the double sum in Eq. (4.15) to a single sum over Wilson shells, as in
Eq. (4.5). This implies that the thermal weight would be constructed as ρa(T ) ∼ e−βEa →
e−βE

n,X
s from simply the discarded (X = K) or kept (X = K) space at iteration n. This

ignores, however, a possible feedback from small to large energy scales which has been shown
to be crucial in certain NRG calculations by the DM-NRG.31 The solution is to keep track
of the FDM as it stands in Eq. (4.9). This, however, introduces another independent sum c
over Wilson shells in addition to a and b which, nevertheless, can be dealt with in complete
analogy to Eq. (4.7). With {a, b, c} ∈ {XX′Xρ 6= KKK}, respectively, it turns out that
X = Xρ are locked to each other due to the orthogonality of the discarded and the kept
states at iteration n. Therefore only the contributions XX′ 6= KK as known from a double
sum remain. Nevertheless, the FDM in Eq. (4.9) must be projected into the respective
state spaces.

Let me give a more detailed explanation of the previous argument. Using the cyclic
property of the trace in Eq. (4.14), the Lehmann representation in Eq. (4.15) can be
rewritten as

ABC(ω) ≡
∑

n,ss′

′
(Ĉ†ρ̂FDM

T )s′sBss′δ (ω − En
ss′) . (4.17)

The prime with the sum in Eq. (4.17) again indicates that only states ss′ /∈ KK are to be
considered. The MPS diagram of underlying tensor structure is shown in Fig. 4.3. Every
leg of the “ladders” in Fig. 4.3 corresponds to an NRG eigenstate (MPS) |s〉n for some
intermediate iteration n. The blocks for the MPS coefficient spaces (A-tensors) are no
longer drawn, for simplicity. The outer sum over the states s′ in Eq. (4.17) corresponds to
the overall trace. Hence the upper- and lower-most leg in Fig. 4.3 at iteration n carry the
same state label s′ which are connected by a line (contraction). Furthermore, the inserted
identity in the index s initially also would have been identified with two legs [similar to
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s’ 

s’’ 

collecting spectral data in a single sweep having (s,s’)  {KK} 

s’ 

s 
e
¡¯En0

~sD

Z

B̂
Ĉ

y

iteration n 

Figure 4.3: MPS diagram for calculating spectral functions within the FDM-NRG. Spec-
tral functions are calculated after a prior NRG forward sweep, which generates the NRG
eigenbasis decomposition (horizontal ladders, with the boxes for the A-tensors skipped for
simplicity; cf. Fig. 2.3). The calculation of a spectral function as in Eq. (4.15) then includes
the evaluation of the matrix elements tr

(
Â · ρ

T
· (s)B̂(s′)

)
, as indicated to the left of above

figure. The energies of the indices (states) s and s′ are “probed” such that their difference
determines the energy ω = En

ss′ ≡ En
s′ − En

s of an individual contribution to the spectral
function, as indicated by the ×δ(ω − Ess′) next to the indices s and s′ in the upper right
of the figure. The sum

∑
n′>n in the discarded state space of ρ̂FDM(T ), indicated to the

lower right, results in the object Rn. The individual contributions ρFDM
n,n′ (T ) are generated

by the Boltzmann weights in the discarded space at iteration n′, as indicated to the right.
The contribution at n′ = n, i.e. RD

n , can simply be determined when needed. On the
other hand, the cumulative contributions n′ > n are obtained in a simple backward sweep,
starting from the last Wilson shell N included, as indicated by the small arrow pointing to
the left. Having n′ > n, this calculation always maps to the kept space, thus resulting in
RK
n . As such, this operation is typically much faster as compared to the actual collection

of the spectral data in a final forward sweep, as indicated at the bottom of the figure.

what is seen in Fig. 4.4 later]. At iteration n, however, the state space s directly hits the
FDM, leading to the overlap matrix X

n 〈s|s′〉X
′

n = δss′δXX′ [hence this eliminates the second
block from the top in Fig. 4.4]. Therefore only the single index s from the second complete
sum remains in Fig. 4.3.

The two legs in the center of Fig. 4.3 finally stem from the insertion of the FDM which
can extend to all iterations n′ ≥ n. Note that the case n′ < n does not appear, since
there the discarded state space used for the construction of the FDM is orthogonal to the
state space s at iteration n. This justifies to trace out the environmental states |e〉n for the
density matrices ρFDM

n (T ), as already pointed out with Eq. (4.10). The FDM thus reduces
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to the following structure at iteration n,

Rn ≡
∑

n′≥n

wn′ρ
FDM
n,n′ (T ) (4.18)

with the (reduced) density matrices

ρFDM
n,n′ (T ) ≡ tr

{σn+1,...,σn′}

(
ρ̂FDM
n′ (T )

)
, (4.19)

defined for n′ ≥ n, with ρFDM
n,n (T ) = ρFDM

n (T ). Note that in the definition of the ρ̂FDM
n′ (T )

in Eq. (4.10) the environment consisting of all sites n̄ > n′ had already been traced out,
hence only the sites n̄ = n + 1, . . . , n′ remain to be considered in Eq. (4.19). For n′ > n
then, ρFDM

n,n′ (T ) is built from the effective basis |s〉Dn at iteration n, where subsequently the

local state spaces σn̄ of sites n̄ = n′, n′−1, . . . , n+ 1 are traced out. In Eq. (4.19), ρFDM
n,n′ (T )

and thus also Rn are understood as the matrix elements w.r.t. to the states |s〉Xn , hence are
simple coefficient spaces written without hats (the latter are reserved for explicit operators).

The object Rn can be written in terms of two contributions, (i) the contribution from
iteration n′ = n itself (encoded in D-space, i.e. the discarded space X=D), and (ii) the
contributions of all later iterations n′ > n (encoded in K-space, i.e. the kept space X = K,
at iteration n),

Rn = wnρ
FDM
n (T )

︸ ︷︷ ︸
≡RD

n

+
∑

n′>n

wn′ρ
FDM
n,n′ (T )

︸ ︷︷ ︸
≡RK

n

, (4.20)

Consequently, Rn only has matrix elements in K and D, referred to as RX
n with X ∈ {K,D},

similar to the structure of the projectors in Eq. (4.3). By construction, there are no
mixed matrix elements between K- and D-sectors (due to the orthogonality of kept and
discarded space at iteration n). Therefore Rn has a simpler structure as compared to a
generic operator with matrix elements BXX′ . The fundamental reason for this is the fact
that reduced density matrices transform as scalars with respect to the symmetries of the
Hamiltonian, and thus are block-diagonal.

The double sum of Eq. (4.17) includes all sectors XX′ for a given iteration n except for
the KK sector, i.e. ss′ /∈ KK. In summary, by insisting on using the FDM in Eq. (4.9)
this only leads to the minor complication that RK

n needs to be constructed and included in
the calculation. The construction of RK

n , on the other hand, can be done in a simple prior
backward sweep, which allows to generate RK

n iteratively and thus efficiently. All of the
RK
n need to be stored for the actual calculation of the correlation function. Living in kept

space, however, their respective space requirement is typically negligible.

Implications for complex Hamiltonians

Typically, the Hamiltonians analyzed by NRG are time-reversal invariant, and therefore
can be computed using non-complex numbers. In case the Hamiltonian is not time-reversal
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invariant, i.e. the calculation is intrinsically complex, the A-tensors on the lower leg of the
ladders for the operators B̂ and Ĉ† in Fig. 4.3 must be complex conjugated. For consistency,
this implies for the FDM contributions Rn, that in Fig. 4.3 its corresponding A-tensors in
the upper leg need to be complex conjugated.

Sum rules

By construction, FDM allows to exactly obey sum-rules for spectral functions as a direct
consequence of Eq. (4.16) and fundamental quantum mechanical commutator relations.
For example, after completing the Greens function in Eq. (4.13) to a proper many-body
correlation function for fermions, Gd(t) ≡ −iϑ(t)〈{d̂(t), d̂†}〉T , with d̂† creating an electron
in level d at the impurity and {·, ·} the anticommutator, the integrated spectral function
results in

∫
dωA(ω) =

〈
{d̂, d̂†}

〉
T

= 1, (4.21)

due to the fundamental fermionic anticommutator relation, {d̂, d̂†} = 1. In practice,
Eq. (4.21) is obeyed exactly within numerical double precision noise (10−16), which un-
derlines the fact that the full exponentially large quantum-many body state space can be
dealt with in practice, indeed. The fundamental reason for this is the underlying one-
dimensional MPS structure, as shown in Fig. 4.3.

4.3.2 Thermal expectation values

Arbitrary thermodynamic expectation values can be calculated consistently and accurately
within the FDM-NRG framework through Eq. (4.16). Given the spectral data on the l.h.s.
of Eq. (4.16), for example, this can be integrated to obtain the thermodynamic expectation
value on the r.h.s. of Eq. (4.16). In practice, this corresponds to a simple sum of the non-
broadened discrete spectral data obtained from FDM-NRG. Using the plain discrete data
has the advantage that it does not depend on any further details of smoothening procedures
which usually would somewhat larger error bars for the expectation values otherwise.

Typically only local operators are of interest within the NRG, in the sense that the
operators B̂ or Ĉ in Eq. (4.16), for example, only act at the impurity or in the bath at
the location of the impurity (Wilson shell n = 0). With temperature usually much smaller
than the bandwidth of the system, the weight distribution wn has absolutely negligible
contribution at very early iterations [see for example Fig. 4.2 and its discussion]. Moreover,
with the state space truncation starting with iteration n0 > 0, the reduced thermal density
matrix for iteration n is fully described for n < n0 by RK

n (T ). For a given temperature, the
aforementioned simple backward sweep to calculate RX

n then already provides all necessary
information for the simple evaluation of the thermal expectation value of any local operator
Ĉ [e.g. Ĉ := B̂Ĉ† in Eq. (4.16)],

〈
Ĉ
〉
T

= tr
[
R(K)
n (T )C(KK)

n

]
, (n < n0) (4.22)
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with C
(KK)
n the matrix elements of the operator Ĉ in the kept space of iteration n. With

no truncation yet at iteration n, the kept space is the only space available, i.e. represents
the full state space up to iteration n (hence the brackets around the K’s). In Eq. (4.22),
it was assumed that the operator Ĉ acts on sites ≤ n only. For local operators acting
within the state space of H0, only the matrix elements C0 ≡ C

(KK)
0 are required, leading to

〈Ĉ〉T = tr
[
R0(T )C0

]
with R0(T ) ≡ R

(K)
0 (T ).

In the case that the operator Ĉ is not a local operator, in the sense that it does not act
on the very first sites of the Wilson chain, but nevertheless acts locally on some specific
Wilson site n already in the presence of truncation, i.e. n ≥ n0, then using Eqs. (4.10) and
(4.20) it follows,

〈
Ĉ
〉
T

= tr
[
RK
n (T )CKK

n

]
+ tr

[
RD
n (T )CDD

n

]
+ c

∑

n′<n

wn′ . (4.23)

The last term in Eq. (4.23) derives from the discarded state spaces for the Wilson shells
n′ < n, and corresponds to the trace over the environmental states |e〉n in Eq. (4.10).
Therefore the constant c ≡ 1

d
tr σn

(
Ĉ
)

is the plain average of the operator Ĉ in the local
basis |σn〉 that it acts upon. Equation (4.22) follows from Eq. (4.23), in that for n < n0,
due to the absence of truncation, the second and third term in Eq. (4.23) are zero by
construction.

4.3.3 Time-dependent NRG

Non-equilibrium dynamics for quantum quench settings were pioneered within the NRG
by Costi (1997). Nevertheless, this original setting was still significant patch work. Only
through the introduction of the complete basis sets by Anders and Schiller (2005) [cf.
Eq. (4.2b)] finally, this could be based on a firm transparent framework. This milestone
development allowed for the first time to use the quasi-exact method of NRG to perform
real-time evolution to exponentially long time-scales. It emerged together with other ap-
proaches to real-time evolution of quantum many-body systems such as the DMRG.17,71

While the complete basis sets were originally introduced within the NRG for the sole pur-
pose of real-time evolution,2 however, they turned out significantly more versatile.48,66,68,69

Starting from the thermal equilibrium of some initial Hamiltonian H I, at time t = 0 a
quench at the location of the quantum impurity occurs with the effect that for t > 0 the
time-evolution is governed by a different final Hamiltonian HF. While initially introduced
within the single-shell framework for finite temperature,2 the same analysis can also be
rigorously generalized to the multi-shell approach of FDM-NRG. Here the description will
focus on the FDM approach.

In the presence of a quantum quench, the time-dependent expectation value of interest
is

C(t) ≡
〈
Ĉ(t)

〉
T
≡ tr

[
ρI(T ) · eiHFtĈe−iH

Ft
]
, (4.24)
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with Ĉ some observable. While one is interested in the dynamics after the quench only,
i.e. for t > 0, one is nevertheless free to extend the definition of Eq. (4.24) also to negative
times. The advantage of doing so is, that the Fourier transform into frequency space of the
C(t) in Eq. (4.24) defined for arbitrary times becomes purely real, as will be shown shortly.
With this the actual time-dependent calculation can be performed in frequency space first
in a simple and for the NRG natural way,

C(ω) =

∫
dt
2π
eiωt tr

(
ρ̂I(T ) · eiĤFtĈe−iĤ

Ft
)

, (4.25)

A Fourier transform back into the time-domain at the end of the calculation finally provides
the desired time-dependent expectation value C(t) =

∫
C(ω)e−iωt dω for t ≥ 0. In order

to obtain smooth data closer to the thermodynamic limit, a weak log-Gaussian broadening
in frequency space quickly eliminates artificial oscillations that come from the logarithmic
discretization. Note that for the sole purpose of damping these artificial oscillations in
the time domain, typically a significantly smaller broadening parameter α . 0.1 suffices
as compared to what is typically used to obtain fully smoothened correlation functions in
the frequency domain, e.g. α & 0.5 for Λ = 2 [see EPAPS in Weichselbaum and von Delft
(2007)].

Lehmann representation

In order to evaluate Eq. (4.25), three complete basis sets are required: one completed basis
set c derived from an NRG run in H I to construct ρI(T ), and two complete basis sets a and
b from an NRG run in HF to be inserted right before and after the Ĉ operator, respectively,
to describe the dynamical behavior. Clearly, two NRG runs in H I and HF are required to
describe the quantum quench. With this, the spectral data in Eq. (4.25) becomes

C(ω) =
∑

abc

〈a|c〉︸︷︷︸
≡Sac

· ρI
c(T ) · 〈c|a〉︸︷︷︸

≡S∗ac

· Cab · δ
(
ω − EF

ab

)
, (4.26)

which generates the overlap matrix S. Using the complete NRG eigenbasis sets, the corre-
sponding MPS diagram that needs to be evaluated, is shown in Fig. 4.4.

The MPS diagram in Fig. 4.4 is similar to Fig. 4.3, yet with a few essential differences:
the block describing the matrix elements of the original operator B̂ has now become the
block containing Ĉ. The original operator Ĉ† is absent, i.e. has become the identity. Yet
since its “matrix elements” are calculated with respect to two different basis sets (initial
and final Hamiltonian), an overlap matrix remains (lowest block in Fig. 4.4). In context
of the correlation functions in Fig. 4.3, the complete basis set in the index s could be
reduced to the single index s. Here, however, two different complete basis sets hit upon
each other, which inserts another overlap matrix (second block from the top in Fig. 4.4,
which corresponds to the Hermitian conjugate of the lowest block). The reduced density
matrices RX

n , finally, are built from the initial Hamiltonian, yet are completely identical in
structure otherwise to the ones already discussed with Eq. (4.20) for correlation functions.
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Figure 4.4: MPS diagram for the simulation of quantum quenches in the NRG (TDM-
NRG with extension to FDM). The calculation is performed in frequency space as depicted,
which only at the very end is Fourier transformed into the time domain to obtain the desired
time-dependent expectation value Ĉ(t). The calculation requires initial (black horizontal
lines) and final Hamiltonian (dark orange horizontal lines). An overlap matrix is required
between the complete basis sets of initial and final Hamiltonian (light gray boxes at the
lower left), which are computed in two prior NRG runs. The partial contributions RI

n to
the FDM (box at the lower right) are evaluated with respect to the initial Hamiltonian,
but have exactly the same structure otherwise as already described with Fig. 4.4. The
plain contraction SRS† w.r.t. the indices s1 and s2 at the bottom of the MPS diagram can
simply be evaluated through efficient matrix multiplication, while nevertheless respecting
the block structure of the symmetries included in the calculation.

The basis of the initial Hamiltonian enters through the two legs connecting to the
density matrix in Fig. 4.4 (horizontal black lines), while all other legs refer to the NRG basis
generated by the final Hamiltonian [horizontal dark orange (gray) lines]. It is emphasized
here, that the reduction of multiple sums in Wilson shells as in Eqs. (4.5) and (4.7) is not
constrained to having the complete basis sets being identical to each other. It is easy to
see that it equally applies to the current context of different basis sets from initial and final
Hamiltonian.

4.3.4 Fermi-Golden-Rule calculations

The NRG is perfectly suited to deal with local quantum events such as absorption or
emission of a generalized quantum impurity system in contact with non-interacting reser-
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voirs.30,38,45,61,69 If the rate of absorption is weak, such that the system has sufficient time
to equilibrate on average, then the resulting absorption spectra are described by the Fermi-
Golden rule,54

A(ω) = 2π
∑

i,f

ρI
i(T ) · |〈f |Ĉ|i〉|2 · δ(ω − Eif ), (4.27)

where i and f describe complete basis sets for initial and final system, respectively. The
system starts in the thermal equilibrium of the initial system. The operator Ĉ describes
the absorption event at the impurity system, i.e. corresponds to the term in the Hamil-
tonian that couples to the light field. The transition amplitudes between initial and final
Hamiltonian are fully described by the matrix elements Cfi ≡ 〈f |Ĉ|i〉. In Eq. (4.27), the
frequency ω shows threshold behavior, with the frequency threshold given by the difference
in the ground state energies of initial and final Hamiltonian, ωthr ≡ ∆Eg ≡ EF

g − EI
g.

The only difference between emission and absorption spectra is the reversed role of initial
and final system, while also having Ĉ → Ĉ†. Specifically, the emission process starts in the
thermal equilibrium of the final Hamiltonian, with subsequent transition matrix elements
to the initial system. This also implies that emission spectra have their contributions at
negative frequencies, i.e. frequencies smaller than the threshold frequency yet blurred by
temperature, indicating the emission of a photon.

While absorption or emission spectra are already defined in frequency domain, they can
nevertheless be translated into the time domain through Fourier transform,

A(t) ≡
∫
dω

2π
e−iωtA(ω) =

∑

i,f

ρI
i(T )〈i|Ĉ†|f〉e−iEf t〈f |Ĉ|i〉eiEit

=
〈
eiĤ

ItĈ†e−iĤ
Ft

︸ ︷︷ ︸
≡Ĉ(t)

· Ĉ
〉I

T
. (4.28)

Thus absorption spectra can also be interpreted similar to correlation functions: at time
t = 0 an absorption event occurs (application of Ĉ, which for example rises an electron
from a low lying level into some higher level that participates in the dynamics). This
alters the Hamiltonian, such that the subsequent time evolution is governed by the final
Hamiltonian. At some time t > 0 then, the absorption event relaxes back to the original
configuration (application of Ĉ†), such that A(t) finally describes the overlap amplitude
of the resulting state with the original state with no absorption. While the “mixed” time
evolution of Ĉ(t) in Eq. (4.28) appears somewhat artificial, it can be easily rewritten in
terms of a regular time-dependent Heisenberg operator with a single Hamiltonian. By
explicitly including a further static degree (e.g. a low lying hole from which the electron
was lifted through the absorption event, or the photon itself), this switches Ĥ I to ĤF,
i.e. between two dynamically disconnected sectors in Hilbert space [compare discussion of
type-1 and type-2 quenches in Münder et al. (2011)].

Within the complete NRG eigenbasis, Eq. (4.27) becomes

A(ω) = 2π
∑

ss′ /∈KK

F
n〈s′|Â|s〉In ·RXsI

n (T ) · I
n〈s|Â†|s′〉Fn × δ(ω − Ess′), (4.29)
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Figure 4.5: MPS diagram for the calculation of absorption or emission spectra using Fermi-
Golden-rule (FGR-NRG) mediated by the operator Ĉ. The two center legs (horizontal black
lines) refer to the state space of the initial Hamiltonian, while the outer legs (horizontal dark
gray lines) refer to the state space of the final Hamiltonian. Note that the matrix elements
of Ĉ are mixed matrix elements between eigenstates of initial and final Hamiltonian.

with Xs ∈ {K,D} the state space sector of state s. The MPS diagram for Eq. (4.29) to be
evaluated is shown in Fig. 4.5. Its structure is completely analogous to the calculation of
generic correlation functions in Fig. 4.3, except that similar to the quantum quench earlier,
here again the basis sets from two different Hamiltonians come into play.30 In contrast to
the quantum quench situation in Fig. 4.4, however, no overlap matrices emerge. Instead,
all matrix elements of the local operator Ĉ† are calculated in a mixed basis between initial
and final eigenstates. The double sum over Wilson shells (one from the outer trace Fig. 4.5
in the complete basis of the final Hamiltonian, and one in the construction of the FDM) is
again reduced to a single sum over Wilson shells with the constraint (i, f) ≡ (s, s′) /∈ KK.
The reduced density matrices RX,I

n are constructed w.r.t. the initial Hamiltonian, but
exactly correspond to the ones introduced in the FDM context in Eq. (4.20) otherwise.

Technical remarks

Absorption or emission spectra in the presence of Anderson orthogonality or strongly cor-
related low-energy physics typically exhibit sharply peaked features close to the threshold
frequency with clear physical interpretation. While in principle, a single Hamiltonian with
dynamically disconnected Hilbert space sectors may be used, this is ill-suited for an NRG
simulation. Using a single NRG run, this can only resolve the low-energy of the full Hamil-
tonian, i.e. of the initial system as it is assumed to lie lower. Consequently, the sharp
features at the threshold frequency will have to be smoothened by an energy window com-
parable to ωthr = ∆Eg in order to suppress discretization artifacts. This problem is fully
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Figure 4.6: MPS diagram for the evaluation of a three-point correlation functions as in
Eq. (4.31).

circumvented only by using two separate NRG runs, one for the initial and and one for
the final Hamiltonian. With the NRG spectra typically collected in logarithmically spaced
bins, having two NRG runs then, it is important that the data is collected in terms of the
frequencies ν ≡ ω − ωthr taken relative to the threshold frequency ωthr.

4.3.5 Higher-order correlation functions

Consider the three-point correlation function

GBCD(t1, t2) = 〈B̂(t1)Ĉ(t2)D̂〉T
= tr

(
ρ̂(T ) · eiĤt1B̂eiĤ(t2−t1)Ĉe−iĤt2D̂

)
(4.30)

Within the NRG energy eigenbasis, this acquires four independent sums over shells, (1)
from the FDM, (2) from performing the overall outer trace, (3) and (4) by inserting an
identity after B̂ and Ĉ, respectively. All four sums can be combined into a single sum over
Wilson shells, by also including the kept state spaces, yet excluding (X2, X3, X4) 6= KKK
(note that X1 and X2 must be the same, as they directly act onto each other). In frequency
space, this implies

GBCD(ω1, ω2) =
∑

n

′[
DX4X2
s4s1

RX2
s1s2

]
BX2X3
s2s3

CX3X4
s3s4

δ(ω1 − Es2,s3) δ(ω2 − Es3,s4), (4.31)
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where the prime next to the sum again indicates (X2, X3, X4) 6= KKK. The corresponding
MPS diagram is shown in Fig. 4.6. The more challenging part with Eq. (4.31) is the de-
pendence on two frequencies. So the corresponding full collection of data into bins (ω1, ω2)
can become expensive. Certain fixed frequency points together with different kernels cor-
responding to a different analytic structure of the higher-order correlation function other
than the δ-functions in Eq. (4.31), however, appear feasible with reasonable effort.

4.4 Fermionic signs

The NRG is typically applied to fermionic systems (while nevertheless also extensions to
bosonic applications exist11,12,29). Through its iterative prescription, the resulting MPS
has a specific natural fermionic order in Fock space,

|s〉n =
∑

σd,σ0,σ1,...,σn

(
A[σn] · . . . · A[σ1]A[σ0]A[σd]

)
s
· |σn〉 . . . |σ1〉|σ0〉|σd〉︸ ︷︷ ︸

≡|σn,...,σ0,σd〉

, (4.32)

where |σd〉 stands for the local state space of the impurity. Site n′ > n is added after site
n, hence the state space |σn′〉 appears to the left |σn〉. The environmental states |e〉n w.r.t.
to iteration n which refers to the sites n′ > n is irrelevant for the following discussion, and
hence will be skipped.

Let ĉ be a fermionic operator that acts onto the impurity. Here ĉ is assumed an arbitrary
operator that nevertheless creates or destroys an odd number of fermionic particles such
that fermionic signs apply. A very frequent task then is to represent this operator in
the effective many-body-basis at iteration n, i.e. to calculate the matrix elements Cn

ss′ ≡
n〈s|ĉ|s′〉n. This involves the basic matrix-element,

〈σn, . . . , σ0, σd|ĉ|σ′n, . . . , σ′0, σ′d〉 =
[ ∏

i=n,...,0

(
δσi,σ′i(−1)

nσ′
i

)

︸ ︷︷ ︸
≡(ẑi)σi,σ′i

]
· 〈σd|ĉ|σ′d〉, (4.33)

with ẑ ≡ (−1)n̂ = exp(iπn̂). That is, by pulling the operator ĉ acting on the impurity to
the right past the second quantization operators that create the states σni , fermionic signs
apply, resulting in a Jordan-Wigner string

Ẑ ≡
⊗

i=0,...,n

ẑi, (4.34)

to be called z-string in short (since ẑ is akin to the Pauli z-matrix). Note that through
the Jordan-Wigner transformation, which maps fermions onto spins and vice versa, exactly
the same string operator as in Eq. (4.33) emerges. For a one-dimensional system with
nearest neighbor hopping, the Jordan-Wigner transformation to spins allows to eliminate
on the level of the Hamiltonian further complications with fermionic signs. This is fully
equivalent, of course, to the explicit treatment of the Jordan-Wigner string in a numerical
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Figure 4.7: MPS diagrams and fermionic signs. Consider the matrix elements of a local
operator d̂† which creates a particle at the impurity. Given the MPS states |s〉n and |s′〉n, a
z-string (Jordan-Wigner string) Ẑ =

⊗
i ẑi arises (light solid horizontal line). The endpoints

(open circles) indicate the range of the z-string, i.e. starting from and including site 0 to
site n. For every crossing of the z-string with a black line, which represent state spaces,
fermionic signs apply. Panel (a) shows that a z-string can be rerouted (light dashed lines,
pushed in the direction of the red arrow). The final resulting configuration shown in panel
(b) shows that by rerouting the z-string significantly fewer crossings with black lines can
be achieved. In particular, the z-strings which applied to all sites to the right of d̂†, can
be significantly reduced to local fermionic signs at the impurity and another fermionic sign
with the state space s′.

setting that keeps a fermionic basis. The operators ẑi in Eq. (4.33) take care of the book
keeping of fermionic signs, by inserting −1 (+1) for all states σi at site i with odd (even)
number of particles nσi . The operators ẑi are diagonal and hence commute with each other.
In the case of additional explicit spin-degrees of freedom, such as the localized spin in the
Kondo model, its z-operator is proportional to the identity matrix and hence can be safely
ignored.

The following viewpoints highlight three alternative equivalent ways of dealing with
fermionic signs in the MPS setup of the NRG. To be specific, the following discussion
assumes ĉ = d̂† which creates a particle at the impurity. As such, it generates a Jordan
Wigner string for all sites added later to the MPS, i.e. sites i = 0, . . . , n [cf. Eq. (4.34)].
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Viewpoint 1: rerouting of z-string in tensor network

Figure 4.7 depicts an MPS diagram for the typical evaluation of matrix elements with
relevant fermionic signs. The individual boxes (A-tensors) derive from the iterative state
space generation of the NRG. This basis generation is obtained in a prior single left-to-right
sweep, with all A-tensors orthonormalized left-to-right, as indicated by the ’>’ in each block
(cf. Fig. 2.3). All black lines correspond to state space indices. Hence by keeping track of
the total number n of particles for all indices, for some specific index a the fermionic sign
is given by (−1)na .

The z-string (depicted by the light green line), that is required for the evaluation of the
matrix elements of d†, stretches across all local state spaces σi with 0 ≤ i ≤ n. Here the
interpretation is such, that a crossing of the z-string with a state space inserts fermionic
signs for this state space.13 Consider then, for example, the upper right A-tensor in Fig. 4.7.
For simplicity, its three legs are labeled l (state space from previous iteration), σ (new local
state space), and r (specific combinations of the tensor product of state spaces l and σ, yet
with well-defined total particle number). Hence it must hold, nl + nσ = nr. The index σ is
crossed by z-string, hence fermionic signs apply,

zσ ≡ (−1)nσ = (−1)nr(−1)−nl︸ ︷︷ ︸
=(−1)+nl

≡ zlzr. (4.35)

Therefore, instead of applying fermionic signs with index σ, it is equally correct to apply
fermionic signs with the indices l and r. This allows to reroute the z-string5,13,35 as indicated
in Fig. 4.7 (dashed line to the upper right, with the shift in the z-string indicated by short
red arrow). Note that for this rerouting to work, the actual left-to-right orthonormalization
is not strictly required, and could be relaxed, in general, to the more general condition
nl ± nr ± nσ = even. In particular, this includes nl ± nr ± nσ = 0, which suggests that
any direction of orthonormalization is acceptable, together with a generic current site that
combines all (effective) state spaces to an even number of particles, i.e. nl + nr + nσ =
ntot = even (for ntot = odd, a global minus sign would apply).

The basic rerouting step as indicated above can be repeated, such that the z-string can
be pulled to the top outside the MPS diagram in Fig. 4.7(a), with the final configuration
shown in Fig. 4.7(b). The state to the very left (black dot) is the vacuum states with no
particles, hence the z-string can also be pulled outside to the left. Thus two crossings of
the z-string with state spaces (black lines) remain: one crossing with the local state space
at the impurity itself, leading to

d̂† → d̂†ẑd, (4.36)

which fully acts within the state space of the impurity, and another crossing with the state
space |s′〉n at iteration n.

In typical applications which include thermal expectation values or correlation functions,
however, an operator d̂† never comes alone, as its expectation value with respect to any
state with well-defined particle number would be zero. Therefore creation and annihilation
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Figure 4.8: Example: fermionic signs in correlation functions. Two MPS diagrams as
in Fig. 4.8 for the matrix elements of d̂ and d̂† are combined, as required, for example,
for the calculation of correlation functions. The resulting product of matrix elements

n〈s′|d̂|s′′〉n · R[n]
s′′,s · n〈s|d̂†|s′〉n leads to cancelation of the fermionic signs in the index s′ in

the rerouted z-strings (light green lines), as indicated by the two splashes to the right.
Hence the right end-point of the z-string can be retracted to the very left of the system,
as indicated by the dashed red arrows. The partial contribution R to the FDM is a scalar
operator, such that assuming charge conservation, the particle number of the states s and
s′′ also must be same. Hence the z-string in Fig. 4.8 could have been equally well also
rerouted downwards, instead. The respective fermionic signs with states s and s′′ still
would have canceled, while the order of application of the z-operator with the impurity
would have changed.

operators always appear in pairs. For the local spectral function, for example, d̂† is paired
with its daggered version d̂. In their overall combination, the fermionic signs w.r.t. the
index s′ appear twice and hence disappear. This situation is sketched in Fig. 4.8. The
matrix element discussed previously with Fig. 4.7 is shown at the top of the figure. Given
the case of spectral functions (cf. Fig. 4.3), its counterpart is shown at the bottom. The
contribution R to the reduced density matrix is a scalar operator, such that the particle
number of the states s and s′′ must match. Similarly, the outer two states are connected
through the overall trace (black solid line to the very right), hence even correspond to the
same state. Consequently, the same fermionic sign factor applies twice with the rerouted
z-strings, which thus cancels, i.e. [(−1)ns ]2 = 1 (indicated by the two splashes with s′ at
the right). Consequently, the right end-point of the z-strings can be retracted along the
rerouted z-string all to the way to the left of the impurity (indicated by the red dashed
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arrow). Given the A-tensors for the basis transformations from a prior NRG run that only
generates the basis, above line of argument therefore allows to ignore fermionic signs for
most of the subsequent calculation of thermodynamic quantities or spectral properties. In
given example, it is sufficient to calculate the spectral functions for the operator d̂ → ẑdd̂
and fully ignore fermionic signs for the rest of the chain. This is in contrast to the original
setup where the full z-string had to be included, stretching from the impurity across all
sites 0 ≤ n′ ≤ n.

Viewpoint 2: Operator representation

An alternative way to demonstrate the effect of rerouting of the z-string can be given by
looking at the equivalent (numerical) representation of operators in the full many-body
Hilbert space, i.e. without making reference to MPS notation. Given the fermionic order
of sites as in Eq. (4.32), a fermionic operator f̂k that destroys a particle at site k < n, has
the tensor-product form

F̂k ≡ 1̂d ⊗ 1̂0 ⊗ . . . 1̂k−1 ⊗ f̂k ⊗ ẑk+1 ⊗ . . .⊗ ẑn, (4.37)

where 1̂i is the identity matrix at site i, f̂k the the desired operator acting within the state
space of site k, and ẑi ≡ (−1)n̂i the z-operator taking care of fermionic signs. Now, applying
a z-operator to the states s′ at the last site n is equivalent to applying a z-operator to each
individual site,

ẐF̂k ≡
(⊗

i

ẑi

)
f̂k

= ẑd ⊗ ẑ0 ⊗ . . . ẑk−1 ⊗ [ẑf̂ ]k ⊗ 1̂k+1 . . . 1̂n, (4.38)

since (ẑi)
2 = 1̂i. In the application to thermodynamic quantities such as correlations

functions, the operator F̂k would again appear together with its daggered version F̂ †k , hence

insertion of Ẑ2 has no effect, yet can be split in equal parts, i.e. F̂ †k F̂k = (ẐF̂k)
†(ẐF̂k).

Therefore, ẐF̂k can be equally well used instead of F̂k. As a result, similar to Fig. 4.8, the
z-strings have again been flipped from the sites to the right of site k to the left of site k,
with the additional transformation f̂k → [ẑf̂ ]k.

Viewpoint 3: Auxiliary fermionic level

In the case of absorption spectra, the absorption of a photon creates an electron-hole pair,
ĥ†d̂†, where the hole ĥ† can be simply treated as a spectator in the dynamics. Nevertheless,
by explicitly including the hole in the correlation function, i.e. by using the operator d̂† →
ĥ†d̂†, this operator itself already forms a pair of fermions that preserves particle number
(assuming that ĥ† creates a hole). Therefore, by construction, ĥ†d̂† simply commutes with
all Wilson sites except for the impurity upon which it acts.

The same argument can be repeated for a standard spectral function, by introducing an
auxiliary fermionic level ĥ that does not participate in the dynamics, i.e. does not appear
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in the Hamiltonian. In general, prepending the states in Eq. (4.32) by the states |σh〉 of
the “hole”, i.e.

|σn, . . . , σ0, σd〉 → |σn, . . . , σ0, σd〉|σh〉, (4.39)

immediately results in the same consistent picture as already encountered with Fig. 4.8 or
Eq. (4.38).
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[56] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix
product states. Ann. Phys., 326:96–192, 2011.

[57] J. R. Schrieffer and P. A. Wolff. Relation between the anderson and kondo hamiltoni-
ans. Phys. Rev., 149(2):491–492, Sep 1966.

[58] Norbert Schuch, Michael M. Wolf, Frank Verstraete, and J. Ignacio Cirac. Entropy
scaling and simulability by matrix product states. Phys. Rev. Lett., 100:030504, Jan
2008.

[59] Sukhwinder Singh, Robert N. C. Pfeifer, and Guifré Vidal. Tensor network decompo-
sitions in the presence of a global symmetry. Phys. Rev. A, 82(5):050301, Nov 2010.

[60] Sukhwinder Singh, Robert N. C. Pfeifer, and Guifre Vidal. Tensor network states and
algorithms in the presence of a global u(1) symmetry. Phys. Rev. B, 83:115125, Mar
2011.
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Appendix P

Selected Publications

In this appendix, a few of the papers highlighted in Sec. 1.1 are reprinted, preceded a
short introduction for each. The sections are numbered by Pn, indicating paper number n.
The thumb marks Pn are intended as a visual guide to separate the individual papers.
Similarly, references such as Eq. (Pn-m) refer to equation (m) of the subsequently included
paper n.

P1. Sum-Rule Conserving Spectral Functions from the

NRG

I Andreas Weichselbaum, and Jan von Delft, Phys. Rev. Lett. 99, 076402 (2007)

Inspired by the treatment of real-time evolution of quantum quenches through the
complete basis sets by Anders and Schiller (2005), the similarity with the DM-NRG by
Hofstetter (2000) had been stunning. In particular, the complete basis sets naturally gen-
erated the reduced density matrices for the environment n′ > n for a given iteration n. It
was soon clear then within the MPS framework, how complete basis sets also can be related
to the calculation of spectral functions. This has lead to an independent publication Pe-
ters et al. (2006) which, however, still treats temperature in a single shell-approximation.
Importantly, however, the complete basis sets also provide a natural definition for the full
density matrix (FDM) in Eq. (P1-8) for arbitrary but fixed temperature.1 This leads to a
multi-shell calculation within the NRG, in that the full density matrix is naturally built
from a range of Wilson shells around the energy scale of temperature (cf. Sec. 4.2). Over-
all then, this results in a black-box algorithm without any further requirement for specific
patching schemes prevalent until then.

With my codes for abelian symmetries fully developed by then, the setup of the FDM-
NRG was straightforward and finished within a few weeks. Using the discrete FDM-NRG

1By definition of a thermal density matrix, all energies in the exponent necessarily must be taken on
the same footing, i.e. taken in unrescaled energy units relative to a common energy reference. This is
obvious, of course, but given the usual procedure of rescaling of energies within the NRG, this has initially
led to some confusion in the community.
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data for spectral functions, one of the first observation was, that spectral sum rules are
fulfilled exactly up to numerical double precision noise (10−16). This clearly indicated, that
from a numerical point of view (i) the insertion of complete basis sets was setup correctly.
More generally, this implies that (ii) despite having exponentially large quantum-many-
body spaces, due to the quasi-one-dimensional structure of the problem, complete basis sets
can be dealt with exactly in an efficient systematic manner. Note however, that spectral
sum rules are fulfilled by construction, irrespective of the accuracy of the calculation.
Therefore the latter still needs to be checked independently. Nevertheless, exact sum rules
are an important prerequisite, for example, for dynamic mean field calculations (DMFT).48

The price to pay for the black-box algorithm of the FDM-NRG is, that the discarded
state spaces must be explicitly included in the calculation of spectral properties, while
conventional patching schemes only operate within kept spaces. Finally, it may be argued
that the discarded state spaces are somewhat more strongly affected by the sharp trun-
cation of the high-energy states. Hence this may affect higher-moment spectral sum rules
using FDM-NRG,76 the detailed analysis of which is left for future studies. With respect
to typical calculations within the NRG, however, FDM-NRG turned out a very valuable,
systematic, and accurate approach to the simulation of quantum impurity models at arbi-
trary temperatures. Moreover, due to its clean derivation, also the spectral properties for
frequencies comparable or smaller than temperature show clearly improved behavior.
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Sum-Rule Conserving Spectral Functions from the Numerical Renormalization Group

Andreas Weichselbaum and Jan von Delft
Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience,

Ludwig-Maximilians-Universität München, D-80333 München, Germany
(Received 1 August 2006; published 16 August 2007)

We show how spectral functions for quantum impurity models can be calculated very accurately using a
complete set of discarded numerical renormalization group eigenstates, recently introduced by Anders and
Schiller. The only approximation is to judiciously exploit energy scale separation. Our derivation avoids
both the overcounting ambiguities and the single-shell approximation for the equilibrium density matrix
prevalent in current methods, ensuring that relevant sum rules hold rigorously and spectral features at
energies below the temperature can be described accurately.

DOI: 10.1103/PhysRevLett.99.076402 PACS numbers: 71.27.+a, 73.21.La, 75.20.Hr

Quantum impurity models describe a quantum system
with a small number of discrete states, the ‘‘impurity,’’
coupled to a continuous bath of fermionic or bosonic
excitations. Such models are relevant for describing trans-
port through quantum dots, for the treatment of correlated
lattice models using dynamical mean field theory, or for the
modeling of the decoherence of qubits.

The impurity’s dynamics in thermal equilibrium can be
characterized by spectral functions of the type ABC�!� �R
dt
2� e

i!thB̂�t�ĈiT . Their Lehmann representation reads

 ABC�!� �
X
a;b

hbjĈjai
e��Ea

Z
hajB̂jbi��!� Eba�; (1)

with Z �
P
ae
��Ea and Eba � Eb � Ea, which implies the

sum rule
R
d!ABC�!� � hB̂ ĈiT . In this Letter, we de-

scribe a strategy for numerically calculating ABC�!� that,
in contrast to previous methods, rigorously satisfies this
sum rule and accurately describes both high and low
frequencies, including ! & T, which we test by checking
our results against exact Fermi-liquid relations.

Our work builds on Wilson’s numerical renormalization
group (NRG) method [1]. Wilson discretized the environ-
mental spectrum on a logarithmic grid of energies ��n

(with �> 1, 1 � n � N ! 1), with exponentially high
resolution of low-energy excitations, and mapped the im-
purity model onto a ‘‘Wilson tight-binding chain,’’ with
hopping matrix elements that decrease exponentially as
��n=2 with site index n. Because of this separation of
energy scales, the Hamiltonian can be diagonalized itera-
tively: adding one site at a time, a new ‘‘shell’’ of eigen-
states is constructed from the new site’s states and the MK
lowest-lying eigenstates of the previous shell (the so-called
‘‘kept’’ states), while ‘‘discarding’’ the rest.

Subsequent authors [2–10] have shown that spectral
functions such as ABC�!� can be calculated via the
Lehmann sum, using NRG states (kept and discarded) of
those shells n for which !���n=2. Though plausible on
heuristic grounds, this strategy entails double-counting

ambiguities [5] about how to combine data from successive
shells. Patching schemes [9] for addressing such ambigu-
ities involve arbitrariness. As a result, the relevant sum rule
is not satisfied rigorously, with typical errors of a few
percent. Also, the thermal density matrix (DM) �̂ �
e��Ĥ=Z has until now been represented rather crudely
using only the single NT th shell for which T ’
��1=2�NT�1� [8], with a chain of length N � NT , resulting
in inaccurate spectral information for! & T. In this Letter
we avoid these problems by using in the Lehmann sum an
approximate but complete set of eigenstates, introduced
recently by Anders and Schiller (AS) [11].

Wilson’s truncation scheme.—The Wilson chain’s ze-
roth site represents the bare impurity Hamiltonian ĥ0 with a
set of d0 impurity states j�0i. It is coupled to a fermionic
chain, whose nth site (1 � n � N) represents a set of d
states j�ni, responsible for providing energy resolution to
the spectrum at scale ��n=2. For a spinful fermionic band,
for example, �n 2 f0; "; #; "#g, hence d � 4. (Bosonic
chains can be treated similarly [10].) The Hamiltonian
Ĥ � ĤN for the full chain is constructed iteratively by
adding one site at a time, using Ĥn � Ĥn�1 � ĥn (acting
in a dnd0-dimensional Fock space F n spanned by the basis
states fj�ni � 	 	 	 � j�0ig), where ĥn links sites n and n�
1 with hopping strength ���n=2. Since the number of
eigenstates of Ĥn grows exponentially with n, Wilson
proposed the following iterative truncation scheme to nu-
merically diagonalize the Hamiltonian: Let n0 be the last
iteration for which a complete set fjsiKn0

g of kept eigenstates
of Ĥn0

can be calculated without trunction. For n > n0,
construct the orthonormal eigenstates fjsiXn g of Ĥn (the nth
‘‘shell’’), with eigenvalues Ens , as linear combinations of
the kept eigenstates jsiKn�1 of Ĥn�1 and the states j�ni of
site n,

 js0iXn �
XK
�ns

j�ni � jsi
K
n�1
A


�n�
KX �ss0 ; (2)

with coefficients arranged into a matrix A
�n�KX whose ele-
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ments are labeled by ss0. The superscript X � K or D
indicates that the new shell has been partitioned into
‘‘kept’’ states (say the MK lowest-lying eigenstates of
Ĥn) to be retained for the next iteration and ‘‘discarded’’
states (the remaining ones). Since ĥn acts as a weak per-
turbation (of relative size ��1=2) on Ĥn�1, the d-fold
degeneracy of the states j�ni � jsiXn�1 is lifted, resulting
in a characteristic energy spacing ��n=2 for shell n.
Iterating until the spectrum of low-lying eigenvalues has
reached a fixed point (for n � N, say), one generates a set
of eigenstates fjsiXn g with the structure of matrix product
states [12] (Fig. 1). The states generated for the last Nth
shell will all be regarded as discarded [11].

Anders-Schiller basis.—Recently, AS have shown [11]
that the discarded states can be used to build a complete
basis for the whole Wilson chain: the states fjsiXn g describ-
ing the nth shell are supplemented by a set of dN�n

degenerate ‘‘environmental’’ states fjeni � j�Ni � 	 	 	 �
j�n�1ig spanning the rest of the chain to construct the set of
states fjseiXn � jeni � jsiXn g. These reside in the complete
Fock space F N of the full chain, spanning F N if n � n0.
Ignoring the degeneracy-lifting effect of the rest of the
chain, these states become approximate eigenstates of the
Hamiltonian ĤN of the full chain (‘‘NRG approximation’’),

 Ĥ NjseiXn ’ Ens jseiXn ; (3)

with eigenenergies independent of the (dN�n)-fold degen-
erate environmental index en. (This will facilitate tracing
out the environment below.) By construction, we have
D
mhsejs0e0iDn � �mn�ene0n�ss0 and

 

K
mhsejs

0e0iDn �
�

0; m 
 n
�ene0n
A

�m�1
KK . . .A�nKD�ss0 ; m < n: (4)

The discarded states of shell n are orthogonal to the dis-
carded states of any other shell, and to the kept states of
that or any later shell. Combining the discarded states from
all shells thus yields a complete set of NRG eigenstates of
ĤN , the ‘‘Anders-Schiller basis,’’ that span the full Fock
space F N (

P
n henceforth stands for

PN
n>n0

):

 1 �d0dN� �
X
se

jseiKn0

K
n0
hsej �

X
n

X
se

jseiDn
D
n hsej: (5)

Local operators.—Let us now consider a ‘‘local’’ opera-
tor B̂ acting nontrivially only on sites up to n0. Two

particularly useful representations are

 B̂ �
X
ss0e

jseiKn0

B
n0�

KK �ss0
K
n0
hs0ej �

X
n

X�KK
XX0

B̂
n�XX0 : (6)

The left equality, written B̂ � B̂
n0�
KK in brief, represents the

operator in the complete basis set fjseiKn0
g, with matrix

elements known exactly numerically (possibly up to fer-
mionic minus signs depending on the environmental states,
but these enter quadratically in correlation functions and
hence cancel). The right-hand side (RHS) of Eq. (6) ex-
presses B̂ in the AS basis and is obtained as follows:
starting from B̂
n0�

KK , one iteratively refines the ‘‘kept-
kept’’ part of B̂ from, say, the (n� 1)th iteration in terms
of the NRG eigenstates fjseixng of the next shell, including
both kept and discarded states (X � K;D),

 B̂

n�1�
KK �

X
XX0

X
ss0e

jseiXn 
B

n�
XX0 �ss0

X0
n hs

0ej �
X
XX0

B̂
n�XX0 ; (7)

thereby defining the operators B̂
n�XX0 , with matrix elements


B
n�XX0 �ss0 � 
A

�n�y
XK B
n�1�

KK A
�n�KX0 �ss0 . Splitting off all XX0 �

KK terms (DD, KD,DK) and iteratively refining each KK
term until n � N, we obtain the RHS of Eq. (6). It has two
important features. First, the matrix elements of the time-
dependent operator B̂�t� � eiĤtB̂e�iĤt, evaluated within
the NRG approximation, 
BXX0

n �t��ss0 ’ 
BXX0
n �ss0e

it�Ens�Ens0 �,
contain differences of eigenenergies from the same shell
only, i.e., calculated with the same level of accuracy.
Second, by excluding KK terms it rigorously avoids the
double-counting ambiguities and heuristic patching rules
plaguing previous approaches [2–10].

Thermal averages.—To calculate thermal averages
h. . .iT � Tr
�̂ . . .�, we write the full density matrix
(FDM) �̂ � e��Ĥ=Z using the NRG approximation
Eq. (3),

 �̂ ’
X
n

X
se

jseiDn
e��E

n
s

Z
D
n hsej �

X
n

wn�̂

n�
DD; (8)

where wn � dN�nZDn =Z and ZDn �
PD
s e
��Ens . The RHS of

Eq. (8) expresses �̂ as sum over �̂
n�DD, the density matrix for
the discarded states of shell n, properly normalized as
Tr
�̂
n�DD� � 1, and entering with relative weight wn, withP
nwn � 1. Similarly, for spectral functions we have

 h. . .iT �
X
n

wnh. . .in; A�!� �
X
n

wnAn�!�; (9)

where the averages h	 	 	in and spectral functions An�!�
are calculated with respect to �̂
n�DD of shell n only.

Previous strategies [4–11] for thermal averaging amount
to using a ‘‘single-shell approximation’’ wn � �nNT for the
density matrix and terminating the chain at a length N �
NT set by T ’ ��1=2�NT�1�. As a result, spectral features on
scales ! � T, which would require a longer chain, are
described less accurately [see Figs. 2(a) and 2(b)]. Our

FIG. 1. Diagram for the kept (or discarded) matrix product
state js0iKn (or js0iDn ): the nth box represents the matrix block
A
�n�KX , its left, bottom, and right legs carry the labels of the states
jsiKn�1, j�ni, and js0iKn (or js0iDn ), respectively.
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novel approach avoids these problems by using the full
density matrix (FDM), summed over all shells, letting the
weighting function wn select the shells relevant for a given
temperature yielding a smooth T dependence [see
Fig. 2(c)]. Since wn has a peak width of five to ten shells
depending on �, d andMK and peaks at n values somewhat
above NT [arrow Fig. 2(b)], spectral information from
energies well below T is retained.

Let us now consider the spectral function ABC�!�, for
local operators B̂ and Ĉ. Equations (4), (6), (8), and (9) can
be used to evaluate hB̂�t�Ĉin. Fourier transforming the
result we find (sums over ss0 and �n implied)

 

ABC
n �!� �

Xn
m>n0

X�KK
XX0

C
m�X0X�


mn�
XX �s0s
B


m�
XX0 �ss0��!� E

m
s0s�;


�
m�n�DD �ss0 � �ss0
e��E

n
s

Zn
;


�
m<n�KK �ss0 � 
A

�m�1�
KK . . .A
�n�KD �


nn�
DD A


�n�y
DK . . .A
�m�1�y

KK �ss0 :

(10)

Similarly, the static quantity hB̂ Ĉin equals the first line’s
RHS without the � function. The matrix elements

�
mn�XX �ss0 �

P
e
X
mhsej�̂


n�
DDjs

0eiXm are given by the second
and third lines, together with �
m�n�KK � �
m<n�DD � 0. After
performing a ‘‘forward run’’ to generate all relevant NRG
eigenenergies and matrix elements, ABC�!� can be calcu-
lated in a single ‘‘backward run,’’ performing a sum with
the structure

PN
m>n0

C�redB 	 ����
m�, starting from m �

N. Here �
m�;red
XX �

PN
n
m wn�


mn�
XX (updated one site at a

time during the backward run) is the full reduced density
matrix for shell m, obtained iteratively by tracing out all
shells at smaller scales ��n=2 (n 
 m).

Equations (8)–(10) are the main results of our ‘‘FDM-
NRG’’ approach. They rigorously generalize Hofstetter’s
DM-NRG [8] (which leads to similar expressions, but
using wn � �nNT and without excluding KK matrix ele-
ments), and provide a concise prescription, free from
double-counting ambiguities, for how to combine NRG
data from different shells when calculating ABC�!�. The
relevant sum rule is satisfied identically, since by construc-
tion

R
d!ABC

n �!� � hB̂ Ĉin holds for every n and arbi-
trary temperature and NRG parameters � and MK.

Smoothing discrete data.—We obtain smooth curves for
ABC�!� by broadening the discrete � functions in Eq. (10)
using a broadening kernel that smoothly interpolates from
a log-Gaussian form (of width �) [2,4] for j!j * !0, to a
regular Gaussian (of width!0) for j!j<!0, where!0 is a
‘‘smearing parameter’’ whose significance is explained
below. To obtain high-quality data, we combine small
choices of � with an average over Nz slightly shifted
discretizations [3] (see [13] for more details).

Application to Anderson model.—We illustrate our
method for the standard single-impurity Anderson model
(SIAM). Its local Hamiltonian ĥ0 �

P
��0c

y
0�c0� �

Ucy0"c0"c
y
0#c0# describes a localized state with energy �0,

with a Coulomb penalty U for double occupancy. It is
coupled to a Wilson chain

P
n��n�c

y
n�1�cn� � H:c:�,

which generates a local level width �. We calculated
A<�!� �Acy0�c0���!�, A>�!� �Ac0�c

y
0��!� and

A �A> �A<. An ‘‘improved’’ version Aim thereof
can be obtained by calculating the impurity self-energy
��!; T� [6,13] via FDM-NRG, which is less sensitive to
smoothening details and yields more accurate results for
the Kondo peak height AT’0�0� at zero temperature.

Sum rules.—As expected, we find FDM-NRG to be
significantly more accurate at lower computational cost
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FIG. 2 (color online). FDM-NRG results for the spectral func-
tion AT�!� of the SIAM, with U � 0:12, � � 0:01, �d �
�U=2 (TK � 2:185� 10�4), � � 1:7, and MK � 1024, unless
indicated otherwise. Inset of (a): FDM-NRG result for AT�!�
with ! in units of bandwidth. For (a),(b), an unconventionally
small smearing parameter was used, !0 � 0:005T [except for
thick gray (red) curve in (a)], with !0 � 0:5T), leading to
spurious low-frequency oscillations. These illustrate the differ-
ences (a) between NRG (dashed green curve), DM-NRG [solid
thin (blue) curve), and FDM-NRG (black curve) results for the
regime ! & T, and (b) between different choices of MK and �
for FDM-NRG, which yield different shapes for the weights wn
[shown in inset of (b)]: larger � reduces the scale �T at which
oscillations set in, but yields less accurate values for the Kondo
peak height in the regime �T & ! & TK. (c),(d) Comparison of
high-quality FDM-NRG data (dots, solid curves) with exact
Fermi-liquid results (black dashed lines) for (c) the conductance
G�T� for T � TK, and (d) for Aim

T �!� for T;!� TK. In (c), cfit

was found from a data fit to cfit�T=TK�2 for T < Tfit (arrow).
In (d) we plot �AT�!� � 
A

im
T �!� � A

im
T �0��=A

im
0 �0� vs !=TK

(curves) and �A�T� � 
Aim
T �0�=A

im
0 �0� � 1� vs �T=TK��=

���
3
p

(dots), for a set of 12 temperatures between 0.001 and
0:069TK (with curves and dots having same T in the same color),
to illustrate the leading ! and T behavior of Aim

T �!�; the dashed
black line represents the expected Fermi-liquid behavior in both
cases, ��3c=2�2�x2 vs x.
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than NRG or DM-NRG [8,15]. The sum rules

 

Z
d!Acy0�c0��!� � hcy0�c0�iT;

Z
d!A�!� � 1 (11)

hold exactly to 10�15 for our discrete data, and to 10�4

after smoothing (due to numerical integration inaccura-
cies). Moreover, even for MK as small as 256, our results
for AT’0�0� and Aim

T’0�0� typically agree to within 2% and
0.2%, respectively, with the Friedel sum rule, which re-
quires ��Aexact

T�0 � sin2�hcy0�c0�i0. The exact relation
A<�!� � f�!�A�!� (f is the Fermi function), which
follows from detailed balance, is likewise satisfied well
(though not rigorously so): the left-hand side of Eq. (11)
typically equals

R
d!f�!�A�!� to better than 10�4.

Low-frequency data.—Because of the underlying loga-
rithmic discretization, all NRG-based schemes for calcu-
lating finite-temperature spectral functions inevitably
produce spurious oscillations at very low frequencies
j!j � T. The scale �T at which these set in can be under-
stood as follows: the Lehmann sum in Eq. (1) is dominated
by contributions from initial states jai with energy Ea ’ T,
represented by NRG shells with n near NT . The character-
istic energy scale of these states limits the accuracy obtain-
able for energy differences Eba to accessible final states
jbi. Thus the scale �T is set by those shells which contrib-
ute with largest weight wn to the density matrix.

We analyze this in more detail in Figs. 2(a) and 2(b) by
purposefully choosing the smearing parameter to be un-
conventionally small, !0 � T. The resulting spurious os-
cillations are usually smeared out using !0 * �T
[Fig. 2(a), thick gray (red) curve], resulting in quantita-
tively accurate spectral functions only for j!j * !0 ’ �T .
For conventional NRG approaches, the ‘‘single-shell’’ ap-
proximation wn � �nNT typically leads to �T ’ T, as can
be seen in Fig. 2(a) [dashed (green) line and thin solid
(blue) line]. In contrast, FDM-NRG yields a significantly
reduced value of �T ’ T=5 [Fig. 2(a), black line, and
Fig. 2(b)], since the weighting functions wn [inset of
Fig. 2(b)] retain weight over several shells below NT , so
that lower-frequency information is included.

Fermi-liquid relations.—To illustrate the accuracy of
our low-frequency results, we calculated Aim

T �!� for
!; T � TK for the symmetric SIAM, and made quantita-
tive comparisons to the exact Fermi-liquid relations [14],

 AT�!� ’ A0

�
1�

c
2

�
T
TK

�
2
�

3c

2�2

�
!
TK

�
2
�
;

 G�T� �
Z 1
�1

d!A�!; T�
�
�
@f
@!

�
’ A0

�
1� c

�
T
TK

�
2
�
:

Here A0 � 1=��, c � �4=16, and the Kondo temperature
TK is defined via the static magnetic susceptibility [4]
	0jT�0 � 1=4TK. Figures 2(c) and 2(d) show the FDM-
NRG data [gray (colored) dots and lines] to be in remark-
ably good quantitative agreement with these relations
(black dashed curves). The results for the ‘‘conductance’’

G�T�, being a frequency integrated quantity obtained by
summing over discrete data directly without the need for
broadening, are more accurate than for Aim

T �!�, and re-
produce the prefactor c with an accuracy consistently
within 5% (until now, accuracies of the order of 10%–
30% had been customary). The smoothness of the data in
Fig. 2(c), obtained using temperatures not confined to the
logarithmic grid ��n=2 [gray vertical lines in Fig. 2(b)],
together with the remarkable stability with respect to dif-
ferent z shifts illustrate the accuracy of our approach.

Conclusions.—Our FDM-NRG method offers a trans-
parent framework for the calculation of spectral functions
of quantum impurity models, with much improved accu-
racy at reduced complicational cost. Its results satisfy
frequency sum rules rigorously and give excellent agree-
ment with other consistency checks such as the Friedel sum
rule, detailed balance, or Fermi-liquid relations, including
the regime ! & T.

We thank F. Anders, R. Bulla, T. Costi, T. Hecht, W.
Hofstetter A. Rosch, and G. Zárand for discussions, and the
KITP in Santa Barbara for its hospitality. The work was
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Note added.—Just before completion of this work we
learned that Peters, Pruschke, and Anders had followed up
on the same idea [15].
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P2. Variational matrix-product-state approach to quan-

tum impurity models

I A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I. Cirac, and Jan von Delft
Phys. Rev. B 80, 165117 (2009); [cond-mat/0504305v2 (2005)].

In this paper we demonstrated for the first time that DMRG can be directly used on the
Wilson chain to reproduce prototypical spectral data obtained by the NRG otherwise. The
initial proof of principle concerned the spectral function for the single impurity Anderson
model (SIAM) [cond-mat/0504305v1 (2005)]. This was complimented by extensive further
numerical calculations on the Kondo model itself, which allowed for a direct comparison to
analytical calculations. The results were finally published in the PRB attached.

In order to calculate spectral data within the DMRG, we used the well-established
correction vector method in Eq. (P2-5). The major complication, however, was that the
broadening η required by the DMRG must be adjusted (1) dynamically, and (2) shall not
exceed and thus smear out sharp physical features such as the (exponentially) narrow Kondo
peak at zero frequency. The strictly variational approach in Eq. (P2-6) while appealing
from a theoretical point of view, turned out insufficient, in practice, to obtain a converged
Kondo peak: squaring the resolvent operator of an already ill-conditioned matrix inversion
problem is fatal. Instead, using a linearized biconjugate gradient method allowed us to
obtain well-converged spectral data throughout the entire spectrum.

Figure P2-1 shows spectral data for a logarithmic discretization using Λ = 1.2. While
this small a Λ is clearly out of reach for the NRG, it is accessible nevertheless to the quasi-
variational setting of the DMRG. Using slightly larger broadening η during the calculation
with subsequent deconvolution leads to excellent agreement with Friedel sum rule [see inset
to Fig. P2-1(d)]. For this calculation, the Wilson chains for spin-up and spin-down had
been unfolded, thus allowing for an altered MPS geometry, with the impurity in the center
rather than at the end of a semi-infinite Wilson chain. This allowed us to argue in favor
of substantially smaller MPS dimensions. Note that the sweeping on the unfolded Wilson
chain is again only allowed within a variational setting, as it clearly violates the principle
of energy scale separation that is essential to the NRG.

Figure P2-2 shows the spectral function for the Kondo model in the presence of a large
magnetic field, B � TK , leading to a sharp shoulder-like structure in the spectral data
in agreement with analytical studies. Using an adapted logarithmic discretization with
uniform resolution for energies |ω| . B, an excellent prediction for the spectral function
was obtained: the result in Fig. P2-2 shows (1) significantly better resolution at finite
frequency as compared to the resolution accessible to the NRG. Moreover, (2) the final
spectral data closely resembles the line shape predicted by analytical calculations, except
for a shift in the peak position, i.e. a renormalized B → Beff . This potential shift had
been estimated already in the original analytical study, and indeed, is nicely confirmed by
the DMRG results.

In order to obtain a spectral function with good resolution for frequencies |ω| ' B,

73



Selected Publications

the linearized discretization within the dynamical window |ω| . B turned out crucial.
In contrast, using fine discretization of the bath around the frequencies with pronounced
structure only, e.g. around ω ' B while again using more coarse-grained discretization for
small frequencies, |ω| � B, this immediately would lead to artificial irregular oscillations
in the resulting spectral function within the window |ω| . B. The underlying reason can
be intuitively understood as follows. By definition of a spectral function, a local excitation
is created at the impurity (e.g. described by a composite operator in case of the Kondo
model). Now having a large magnetic field, this implies that enforcing a certain spin
at the impurity opposite to the direction preferred by the magnetic field, loads a large
amount of excitation energy into the system. This energy will be dissipated in the system
through relaxation. Therefore within the energy window |ω| . B all possible transitions and
relaxations must be allowed without any artificial bias. The latter is provided by a uniform
linear discretization of the bath within this window. A similar kind of argument is clearly
also expected to have implications for true out-of-equilibrium simulations at finite voltage
bias V (e.g. replacing the magnetic field B) in the presence of two thermal reservoirs.

The DMRG represents an accurate and highly flexible framework to deal with the
problem presented. Nevertheless, it should be emphasized that this also comes with a
significant price tag.2 The reason is that for every single frequency data point ωi in the
final spectral function, the corresponding correction vector must be calculated. Using the
correction vector from a neighboring data point in frequency as an initial guess for the
correction vector, this usually leads to slow convergence, to the extent that there is no
gain in efficiency as compared to restarting the calculation from scratch from a randomly
initialized starting vector for each frequency. Therefore the latter was the method of choice
for the calculations presented in the paper attached which also can be easily parallelized
on a cluster.

In the time since above paper was published, however, we developed an alternative
strong method for calculating spectral functions based on Chebyshev expansion, akin to
what is typically used with exact diagonalization [Holzner et al. (2011)]. This allows to
calculate spectral functions in a single-shot calculation over the entire frequency range, the
cost of which, amazingly, for the same accuracy is comparable or less as compared to the
cost of a single frequency data point using the correction vector ansatz!

2I had been asked once to estimate the cost of the curve shown in Fig. P2-2 in terms of electricity. A
conservative estimate was about e 100.
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Variational matrix-product-state approach to quantum impurity models
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We present a unified framework for renormalization group methods, including Wilson’s numerical renor-
malization group �NRG�, and White’s density-matrix renormalization group �DMRG�, within the language of
matrix-product-states. This allows improvements over Wilson’s NRG for quantum impurity models, as we
illustrate for the one-channel Kondo model. Moreover, we use a variational method for evaluating Green’s
functions. The proposed method is more flexible in its description of spectral properties at finite frequencies,
opening the way to time-dependent, out-of-equilibrium impurity problems. It also substantially improves
computational efficiency for one-channel impurity problems, suggesting potentially linear scaling of complex-
ity for n-channel problems.

DOI: 10.1103/PhysRevB.80.165117 PACS number�s�: 72.15.Qm, 75.20.Hr, 02.70.�c, 78.20.Bh

Wilson’s numerical renormalization group �NRG� is a key
method1 for solving quantum impurity models such as the
Kondo, Anderson, or spin-boson models, in which a local
degree of freedom, the “impurity,” is coupled to a continuous
bath of excitations. These models are of high relevance in the
description of magnetic impurities, quantum dots, and prob-
lems of decoherence. NRG has been used with great success
to calculate both thermodynamic1,2 and dynamical3–6 proper-
ties. It is, however, of limited use in more complex situa-
tions: computational cost grows exponentially for a coupling
to multiple bands in the bath. In systems out-of-equilibrium
or with time-dependent external parameters, such as occur in
the tuning of quantum dots, difficulties arise due to NRG’s
focus on low-energy properties through its logarithmic dis-
cretization scheme which looses accuracy at high spectral
frequencies.

In the present paper, we draw attention to the fact that
states generated by the NRG have the structure of matrix-
product-states �MPS�7,8 on a one-dimensional geometry. This
is a simple observation, which however has important con-
ceptual and practical implications:

�i� As White’s density-matrix renormalization group
�DMRG�9 for treating quantum chain models is in its single-
site version identical to variational MPS,8 NRG, and DMRG
are now seen to have the same formal basis of matrix-
product-states, resolving a long-standing question about the
connection between both methods. �ii� All NRG results can
be improved upon systematically by variational optimization
in the space of variational matrix-product-states �VMPS� of
the same structure as those used by NRG. This does not lead
to major improvements at �=0 where NRG works very well,
but leads to the inclusion of feedback from low-to-high-
energy states, also allowing the relaxation of the logarithmic
bath discretization of NRG: spectra away from �=0 can be
described more accurately and with higher resolution. �iii�
Recent algorithmic advances using VMPS,8 in particular
those treating time-dependent problems,10,11 can now be ex-
ploited to tackle quantum impurity models involving time
dependence or nonequilibrium; this includes applications to
the description of driven qubits coupled to decohering baths,

as relevant in the field of quantum computation. �iv� The
VMPS algorithm allows ground state properties of quantum
impurity models to be treated more efficiently than NRG: the
same accuracy is reached in much smaller ansatz spaces
�roughly of square-root size�. Moreover, our results suggest
that for many �if not all� n channel impurity problems it
should be feasible to use an unfolded geometry, for which the
complexity will only grow linearly with n.

The present paper provides a “proof of principle” for the
VMPS approach to quantum impurity models by applying it
to the one-channel Kondo model. We reproduce the NRG
flow of the finite size spectrum,2 and introduce a VMPS ap-
proach for calculating Green’s functions, as we illustrate for
the impurity spectral function,3 which yields a significant
improvement over existing alternative techniques.12–15 Our
results illustrate in which sense the VMPS approach is nu-
merically more efficient than the NRG.

I. NRG GENERATES MATRIX-PRODUCT-STATES

To be specific, we consider Wilson’s treatment of the
Kondo model, describing a local spin-1/2 impurity in an ex-
ternal magnetic field B coupled to a fermionic bath. To
achieve a separation of energy scales, the bath excitations are
represented by a set of logarithmically spaced, discrete ener-
gies �n=�−n, where ��1 is a “discretization parameter.”1

By tridiagonalization, the model is then mapped onto the
form of a semi-infinite chain H=limN→� HN where1

HN = BSz − 2Js · S + �
n=1

N−1

�n�cn�
† cn+1,� + cn+1,�

† cn�� . �1�

HN describes an impurity spin S in a Zeeman field B, ex-
change coupled to the spin s= 1

2c1
†�c1 of the first site of a

chain of length N of fermions with spin � and exponentially
decreasing hopping matrix elements along the chain ��n
��−n/2�. HN lives on a Hilbert space spanned by the set of
dId

N basis states ��i0 , i1 , i2 , . . . iN��, where i0 labels the dI pos-
sible impurity states and in �for n=1, . . . ,N� the d possible
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states of site n �for the Kondo model, i0= �↑ ,↓� and for all
other sites in= �0, ↑ , ↓ , ↑↓�, i.e., dI=2 and d=4�.

To diagonalize the model, NRG starts with a chain of
length �n̄−1�, chosen sufficiently small that Hn̄−1 can be di-
agonalized exactly, yielding a set of eigenstates ��	

n̄−1�. One
continues with the subsequent iterative prescription: project
Hn̄−1 onto the subspace spanned by its lowest D eigenstates,
where D
dId

n̄−1 is a control parameter �typically between
500 and 2000�; add site n̄ to the chain and diagonalize Hn̄ in
the enlarged �Dd�-dimensional Hilbert space, writing the
eigenstates as

���
n̄� = �

in̄=1

d

�
	=1

D

��	
n̄−1��in̄�P	�

	in̄
, �2�

where the coefficients have been arranged in a matrix P	�
	in̄


with matrix indices 	, �, labeled by the site index n̄, and
state index in̄; rescale the eigenenergies by a factor �1/2; and
repeat, until the eigenspectrum converges, typically for chain
lengths N of order 40 to 60. At each step of the iteration, the
eigenstates of HN can thus be written 	by repeated use of Eq.
�2�
 in the form of a so-called matrix-product-state,

��	
N� = P	0

	i0
P	0	1

	i1
 P	1	2

	i2
 . . . P	N−1	
	iN
 �i0,i1, . . . ,iN� �3�

�summation over repeated indices implied�. The ground state
is then the lowest eigenstate of the effective Hamiltonian
H	�

N = ��	
N�HN���

N�, i.e., the projection of the original H on
the subspace of MPS of the form �3�.

II. VMPS OPTIMIZATION

Let us now be more ambitious and aim to find the best
possible description of the ground state within the space of
all MPSs of the form �3�, using the matrix elements of the
matrices �P	n
� with P	n
��P	in
� as variational parameters
to minimize the energy. Using a Lagrange multiplier to en-
sure normalization, we thus study the following optimization
problem:

min
��N���MPS�

	��N�HN��N� − ���N��N�
 . �4�

This cost function is multiquadratic in the dI+d�N−1� ma-
trices �P	n
� with a multiquadratic constraint. Such problems
can be solved efficiently using an iterative method in which
one fixes all but one �let’s say the n̄’th� of the matrices �P	n
�
at each step; the optimal P	n̄
 minimizing the cost function
given the fixed values of the other matrices can then be
found by solving an eigenvalue problem.8 With P	n
 opti-
mized, one proceeds the same way with P	n̄+1
 and so on.
When all matrices have been optimized locally, one sweeps
back again, and so forth. By construction, the method is
guaranteed to converge as the energy goes down at every
step of the iteration, having the ground-state energy as a
global lower bound. Given the rather monotonic hopping
amplitudes, we did not encounter problems with local
minima.

In contrast, NRG constructs the ground state in a single
one-way sweep along the chain: each P	n
 is thus calculated

only once, without allowing for possible feedback of P’s
calculated later. Yet viewed in the above context, the ground-
state energy can be lowered further by MPS optimization
sweeps. This accounts for the feedback of information from
low-to-high-energy scales. This feedback may be small in
practice, but it is not strictly zero, and its importance in-
creases as the logarithmic discretization is refined by taking
�→1. Note that the computational complexity of both
VMPS optimization and NRG scales as NdD3,8,9 and sym-
metries can be exploited �with similar effort� in both ap-
proaches. The inclusion of feedback leads to a better descrip-
tion of spectral features at high frequencies, which are of
importance in out-of-equilibrium and time-dependent impu-
rity problems. Moreover, it also allows to relax the logarith-
mic discretization scheme, further improving the description
of structures at high frequency as illustrated below.

The result of a converged set of optimization sweeps is a

VMPS ground state ��̃0
N� of the form �3�; exploiting a gauge

degree of freedom,8 the P̃’s occurring therein can always be

chosen such that all vectors ��̃	
n�= 	P̃	i0
 . . . P̃	in

	�i0 , . . . , in�

are orthonormal. The effective Hamiltonian at chain length n,

the central object in NRG, is then H̃	�
n = ��̃	

n ��n/2Hn��̃�
n�. Its

eigenspectrum can be monitored as n increases, resulting in
an energy level flow along the chain.

III. GREEN’S FUNCTIONS

Similar techniques also allow Green’s functions to be cal-
culated variationally.15 The typical Green’s functions of in-
terest are of the form G


c ���= ��0�c��� where ���, commonly
called a correction vector,16 is defined by

��� �
1

� − H + i

c†��0� , �5�

with ��0� the ground state of the system, e.g. calculated using
the VMPS approach and thus represented as MPS. The spec-
tral density is then given by A���=−lim
→0

1
�Im�G


c ����.
The �unnormalized� state ��� may be calculated variationally
within the set of MPS by optimizing the weighted norm

N = 
� � −
1

H − � − i

c†��0�


W=�H − ��2+
2

, �6�

where ����W
2 ����W���, and weight W�0 such that it yields

a quadratic equation. Writing ������r�+ i��i� and assuming
H, ��0�, ��r��Re���, and ��i��Im��� real, this norm can be
written as �compare Ref. 14� N2= ��r��H−��2+
2��r�
−2��r��H−��c†��0�+ ��i��H−��2+
2��i�−2
��i�c†��0�
+ ��0�cc†��0�. Minimizing N efficiently by optimizing one P
at a time leads to two independent optimizations over ��r�
and ��i�, respectively. Both involve only multilinear terms
such that each iteration step requires to solve a sparse linear
set of equations.10

Minimizing N involves the calculation of H2, which can
be done efficiently as follows. Generally speaking, H has the
structure of a spin chain with only nearest-neighbor cou-
plings as shown in Eq. �1�. Naively one expects that one will
have to evaluate on the order of N2 expectation values of
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local observables. There is, however, a clever linear scheme
that only requires iterative update of a set of effective opera-
tors. Therefore the computational complexity of calculating �
scales as ND3 similar to just evaluating the energy ���H���.
As a side product, this leads to efficient algorithms for cal-
culating excited eigenstates of Hamiltonians close to a fixed
energy E by minimizing ����H−E�2���. Moreover, it can be
used to estimate errors on eigenenergies as it can be shown
that there exists an exact eigenvalue Eex within an interval
around E specified by �=�����H−E�2���.

For quantum impurity systems with sharp features such as
the Kondo model discussed below, it should be noted, how-
ever, that the broadening 
 may have to be chosen extremely
small. In this case, the minimization of N in Eq. �6� can
become increasingly ill conditioned as 
→0 �see Appendix�,
with conditioning deteriorating quadratically in 
. If one di-
rectly solves � /��P	n
�	����H−�− i
����− ���c†���
�0 by a
nonhermitian equation solver such as the biconjugate gradi-
ent method, conditioning deteriorates only linearly. This is
the strategy that has been followed to obtain the results re-
ported below.

IV. APPLICATION TO KONDO MODEL

Let us now illustrate above strategies by applying them to
the Kondo model. Since the Hamiltonian in Eq. �1� couples ↑
and ↓ band electrons only via the impurity spin, it is possible
�see also Refs. 5 and 17� to “unfold” the semi-infinite Wilson
chain into an infinite one, with ↑ band states to the left of the
impurity and ↓ states to the right, and hopping amplitudes
decreasing in both directions as �−�n�/2. Since the left and
right end regions of the chain, which describe the model’s
low-energy properties, are far apart and hence interact only
weakly with each other 	analyzed quantitatively in terms of
mutual information in Fig. 1�b�
, the effective Hamiltonian
for these low energies will be of the form H↑

eff
� 11↓+11↑

� H↓
eff. Due to the symmetry of the Kondo coupling, H↑

eff and
H↓

eff have the same eigenspectrum for n�1, such that the
fixed point spectrum is already well reflected by analyzing
either one, as illustrated in Fig. 1�a�. Note that for a direct
comparison with NRG, the spin chains can be recombined
within VMPS.17 The resulting standard energy flow diagram
presented in panel �a� for VMPS and NRG, respectively,
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FIG. 1. �Color online� Comparison of VMPS and NRG data for logarithmic discretization of the Kondo model as in Eq. �1� for J
=0.16 and �=2 if not specified otherwise. �a� Energy level flow of the Kondo model as a function of site index n obtained from H�

eff of a
variationally optimized MPS with DMPS=32 �light red/light solid�, of the corresponding recombined spin chains �red/dark solid� �Ref. 17�,
and from NRG using DNRG=322 states �dashed black�. The Wilson shell corresponding to TK��Je−1/J is indicated by the vertical dashed line
through panels �a� to �c�. �b� Correlation along the Wilson chain between spin up and spin down at site n in terms of mutual information
IM�n��S�n↑�+S�n↓�−S�n↑ ,n↓�. Here S is the entropy of the reduced density matrix of the groundstate with respect to the indicated subspace
�Ref. 17� �solid for even, dashed for odd sites n�. �c� Bond entropy S along the unfolded Wilson chain, where S is the usual von Neumann
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Comparison of T matrix �ImT�, see also Fig. 2� for B=0 between VMPS and NRG, including deconvoluted VMPS data �see Appendix�.
Inset shows zoom into peak at �=0. The significantly smaller �=1.2 applicable for VMPS �discretization intervals are indicated by vertical
lines� shows clearly improved agreement with the Friedel sum rule T�0��2 /2=1. �e� Comparison of ground-state energy of the Kondo
Hamiltonian Eq. �1� for fixed chain length relative to the extrapolated energy for D→� for VMPS and NRG as function of the dimension
D of states kept.
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show excellent agreement for low energies for all n including
the fixed point spectrum.

In addition to the energy flow diagram in panel �a�, con-
vergence with and hence sensitivity on the Kondo energy
scale is also nicely seen in other quantities typically calcu-
lated within VMPS: in the internal entanglement of the Wil-
son chain as function of site n in terms of mutual informa-
tion, shown in panel �b�, and the entanglement of Wilson
chain up to site n with the remainder of the Wilson chain,
shown in panel �c�. Note that due to intrinsic even/odd ef-
fects of the model, the data from even/odd Wilson sites is
plotted separately.

The dimensions of the effective Hilbert spaces needed for
VMPS for the unfolded Wilson chain and NRG for the in-
evitably folded chain to capture the low-energy properties
�here energy resolution better than TK� are roughly related by
DMPS��DNRG,17 implying significant computational gain
with VMPS, as calculation time scales as D3 for both. In-
deed, Fig. 1�e� shows that VMPS has three orders of magni-
tude of better precision for the same D. More generally, if the
impurity couples to n electronic bands �channels�, the Wilson
chain may be unfolded into a starlike structure of 2n
branches, with DMPS�DNRG

1/2n . This implies that for maintain-
ing a desired precision in going from 1 to n channels, DMPS
will stay roughly constant, and calculation time for all sites
other than the impurity will scale merely linearly with the
number of channels. Whether the chains can be unfolded in
practice can easily be established by checking whether or not
the correlation between them, characterized, e.g., in terms of
mutual information, decays rapidly with increasing n 	cf.
Fig. 1�b� and caption
.

V. ADAPTIVE DISCRETIZATION

Through its variational character, VMPS does not rely on
logarithmic discretization crucial for NRG. The potential of
greatly enhanced energy resolution using VMPS is already
indicated by the �=1.2 data in Fig. 1�d�. It is illustrated to
full extent in Fig. 2, showing the splitting of the Kondo peak
in the presence of a strong magnetic field calculated using
VMPS �bare: dots, deconvoluted: red solid�, standard NRG
�blue dashed�, and perturbatively18 �black�.

To obtain the VMPS results of Fig. 2, we used an adapted
discretization scheme for the energies �k of the conduction
band Hamiltonian Hband=�k��kck�

† ck� that forms the starting
point for deriving the Wilson chain like Hamiltonian of Eq.
�1�.1 Namely, we use a linear or logarithmic discretization
scheme for ��k�
B or �B, respectively, �as illustrated by
light vertical lines in Fig. 2�. The nearest-neighbor coupling
amplitudes �n of the resulting, modified Wilson chain decay
only very slowly with n once the energy scale of site n,
namely, �−n/2, drops below B, in contrast to their usual ex-
ponential decay for a standard Wilson chain �see inset of Fig.
2, VMPS vs �=1.7 NRG coupling�. The slow decay of �n
implies an increased energy resolution at energies up to B, at
the cost of a loss of energy scale separation. While the latter
fact implies that NRG cannot be used on such a chain, the
VMPS approach does not suffer from this limitation. Indeed,
it exploits the enhanced energy resolution at energies of or-

der B to yield spectral peaks around ��B that are signifi-
cantly sharper than those obtainable by NRG �Fig. 2, com-
pare dotted data points to dashed line�. The resolution can be
enhanced even further �Fig. 2, solid thick light line� by ap-
plying a deconvolution scheme to the VMPS data, detailed in
the appendix, to account for the broadening effects of using
an a priori finite 
 required within the VMPS approach.

Note that such a resolution is out of reach for conven-
tional NRG, whose discretization intervals �shaded inter-
vals�, even for comparatively small choice of �=1.7, are
much broader than the spectral features of interest. Note that
the NRG data shown here is, by conventional NRG stan-
dards, of high quality: first, we used a rather small value of
�=1.7, implying high-energy resolution, by NRG standards;
second, we employed the recently developed full density-
matrix �FDM� approach,19,20 which incorporates systematic
improvements relative to previous NRG implementations.
We have tried extensively to improve the quality of our NRG
data via z-averaging,21 but have found this to be of limited
use.

The line shape of our deconvoluted data �red solid line�
agrees well with the analytic RG calculation18 �black solid
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FIG. 2. �Color online� Impurity spectral function for the Kondo
model −NFImT����=J2��O�

† �O���� for B�TK, where O�

�S ·����c��
† and NF is the density of states at the Fermi energy,

calculated with VMPS �dots: raw data, red solid: deconvoluted�,
NRG �dashed�, and perturbative �black solid� �Ref. 18�. For NRG,
D=1024 states were kept, using a log-Gauss broadening parameter
�Ref. 19� of b=0.4. According to Ref. 18, the peak of the perturba-
tive result should be shifted in � by B /2 log�B /TK� �arrow�. NRG
and VMPS discretization intervals are indicated by shaded areas
and gray vertical lines, respectively. Due to the increased linear
resolution for ����B, the number of states retained within VMPS
needed to be increased, and was dynamically governed by either a
threshold of 4 ·10−8 in discarded weight or a maximum number of
states of D=512. The latter was required only for frequencies
around ��B. The inset shows the hopping amplitudes correspond-
ing to standard logarithmic ��=1.7� and adapted �VMPS� discreti-
zation schemes. The required Lorentzian broadening 
 of the
VMPS data smears out sharper features. Deconvolution �targeting
with adaptive spline� together with subsequent GAUSSIAN broaden-
ing was applied to obtain the solid light line �see Appendix�.
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line�, perturbative in 1 / log�B /TK�. The peak positions agree
well also after a shift in � by −B /2 log�B /TK� of the pertur-
bative result suggested by18 is taken into account.

As pointed out in the context of Fig. 1, numerical re-
sources in terms of matrix dimensions can be drastically re-
duced within VMPS when applied to the NRG discretized
model, in that the variational freedom provides a highly
adaptive method. However, this does come at a price. While
the calculation of spectral functions within NRG for the full
frequency range are obtained in a single run about as expen-
sive numerically as the iterative diagonalization of the NRG
Hamiltonian and as such highly efficient, the correction vec-
tor method 	cf. Eq. �5�
 provides an optimal setting for one
frequency at a time. This is highly tailored toward analyzing
certain features in frequency space, but implies that for every
spectral data point a new correction vector must be obtained,
which is itself equally expensive numerically as the calcula-
tion of the ground state. Nevertheless, in situations that be-
come computationally hard in NRG or are simply out of
reach for NRG due to the required rather crude coarse grain-
ing of the conduction band, VMPS does provide a well-
controlled technique that can clearly compete and in certain
cases outperform NRG. In the example given in Fig. 2, the
logarithmic discretization scheme was adapted by introduc-
ing an energy interval from −B to B in which the level spac-
ing was chosen to be essentially uniform. It appears, indeed,
that for describing dynamical features at frequencies ��B,
all states with frequencies ����B are equally important,
which necessitates the use of a uniform level spacing from
−B to B. Of course, this does break energy scale separation
from the very outset.

VI. OUTLOOK

Let us finish by pointing out that the MPS approach can
readily be extended to the case of finite temperatures by us-
ing matrix-product density operators10 instead of MPS, and
to time-dependent problems 	such as H=H�t� or nonequilib-
rium initial conditions
, by using the recently developed
adaptive time-dependent DMRG11 and MPS analogs
thereof.10 Exploratory work in this direction has been very
encouraging.22

In conclusion, the MPS approach provides a natural lan-
guage for simulating quantum impurity models. The under-
lying reason is that these models, when formulated on the
Wilson chain, feature only nearest-neighbor interactions.
Their low-energy states are thus determined mainly by their
nearest-neighbor reduced density matrices, for which very
good approximations can be obtained by suitably optimizing
the set of matrices constituting a MPS.23 We also showed
how these could be used for a direct �quasi� variational
evaluation of Green’s functions.

Recently, it has come to our attention that two recent pa-
pers by Freyn and Florens24 and Zitko and Pruschke25 who
claimed improved resolution of NRG spectral functions. Be-
sides properly accounting for the wave function renormaliza-
tion A� due to discretization,26 Ref. 25 is heavily based on
z-averaging21 with modest success for finite frequencies—
see for example Fig. 8 in Ref. 25 which shows spurious

oscillations. It is exactly these spurious oscillations we had
also seen in the z-averaging done excessively for our model.
In order to get rid of these spurious oscillations in a system-
atic unbiased manner, however, one would have to rebroaden
the data to get discretization-independent correlation func-
tion. Hence, although z-averaging does show modest im-
provements �as known since Ref. 21�, it cannot be expected
to cure in much detail the rather crude coarse graining of the
conduction band put into the model from the beginning. Ref-
erence 24 introduced a procedure for broadening the raw
NRG data to obtain smooth spectral peaks, employing a
frequency-dependent broadening parameter b���. This led to
significantly increased resolution for spectral peaks of the
spin-boson model with very weak damping. However, when
we tried this method for the present Kondo model, the im-
provements over conventional NRG broadening techniques
were also found to be rather modest.
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APPENDIX: DECONVOLUTION OF SPECTRAL DATA

DMRG obtains spectral data from a discretized model
Hamiltonian. In order for the spectral data to be smooth, an
intrinsic frequency-dependent Lorentzian broadening 
 is
applied during the calculation of the correction vector ���k at
frequency �k 	cf. Eq. �5�
,

�
k
�� − �k� �


k

�

1

�� − �k�2 + 
k
2 . �7�

Since the original model has a continuous spectrum, the
broadening 
k should be chosen of the order or larger than
the artificial coarse grained discretization intervals ��. Larger

 of course improves numerical convergence. However,
since Lorentzian broadening produces longer tails than for
example GAUSSIAN broadening, this makes it more suscep-
tible to pronounced spectral features close by. Our general
strategy for more efficient numerical treatment was then as
follows. �i� Choose somewhat larger 
�
�2��� throughout
the calculation. �ii� Deconvolve the raw data to such an ex-
tent that the underlying discrete structure already becomes
visible again, �iii� followed by a GAUSSIAN smoothening pro-
cedure which then acts more locally. Let us describe step �ii�
in more detail.
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Broadening, by construction, looses information. Hence
trying to obtain the original data from the broadened data via
deconvolution is intrinsically ill conditioned. In literature
there are several ways of dealing with this problem, most
prominently maximum entropy algorithms �see Refs. 5 and
27�. Our approach is targeting the actual spectral function
using the knowledge about the Lorentzian broadening used
during the VMPS calculation, combined with adaptive
spline. Given the data Ã��� obtained through VMPS, let us
propose the existence of some smooth but a priori unknown
target curve A���, which when broadened the same way as
the VMPS data using exactly the same 
k via a Lorenzian
broadening kernel

Ãk � Ã��k� = �
−�

�

d��A�����
k
��� − �k� , �8�

reproduces the original data Ã���. Direct inversion of above
equation as it is ill conditioned, as already mentioned, and
not useful in practice.

Let us assume the unknown target curve A��� is smooth
and parametrized by piecewise polynomials. Given the data
points �k with k=1. . .N, the intervals in between these val-
ues will be approximated in the spirit of adaptive spline
functions27 by 3rd order polynomials �k=1. . .N−1�

fk��� � �ak + bk�� − �k� + ck�� − �k�2 + dk�� − �k�3 for � � 	�k,�k+1

0 otherwise.

� �9�

Since spectral functions decay as 1 /�2 for large �, for our
purposes the ends are extrapolated asymptotically to infinity,
allowing both 1 /� and 1 /�2 polynomials

f0��� � �a0

�
+

b0

�2 � � �1

0 otherwise
�

fN��� � �aN

�
+

bN

�2 � � �N

0 otherwise.
� �10�

In total, this results in 4�N−1�+2�2=4N parameters, with
the target function parametrized piecewise as A���� f���
��k=0

N fk���. In cases where one has not approached the
asymptotic limit yet, the ends may simply be modeled also
by Eq. �9�, taking c0=d0=cN=dN=0. Moreover, if informa-
tion about the gradient f���� is known, it can be built in
straightforwardly in the present scheme by replacing bk.

The parameters for the piecewise parametrization are
solved for by requiring the following set of conditions:

�i� The function f should be continuous and smooth by
requiring that f , f�, and f� are continuous �3N equations�.

�ii� The function f , when broadened as in Eq. �8�, should

reproduce the VMPS data Ãk

Ãk
c � �

k�=0

N �
�k�

�k�+1

d��fk�����

k/�

��� − �k�2 + 
k
2 �11�

Ãk − Ãk
c = pkrk �12�

where rk� fk
�3���k�− fk−1

�3� ��k� and �0�−�, �N+1�+� �N
equations�.

In the spirit of adaptive spline, the third derivative of the
piecewise polynomials is no longer required to be continu-

ous. Its jump rk is set proportional to the change in Ãk− Ãk
c

introducing the additional prespecified parameter set pk, kept
small for our purposes �note that enforcing the strict equality

Ãk
c= Ãk by setting pk=0 would result in an ill-conditioned

problem�.
If interval spacings specified by �k are nonuniform, the pk

have to be adapted accordingly. For this paper we used pk
= p · ��k+1−�k�	 with p on the order of 10−6 and 	�1. With
pk fixed, Eqs. �11� and �12� determine all spline parameters

uniquely in terms of the original VMPS data Ãk. The inte-
grals emerging out of Eq. �11� can all be evaluated analyti-
cally. The final inversion of Eq. �11� to obtain the parameters
for f��� is well behaved for small but finite p, small enough
to clearly sharpen spectral features.
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P3. Discarded weight and entanglement spectra in the

NRG

I Andreas Weichselbaum Phys. Rev. B 84, 125130 (2011).

Discarded weight

Inspired by the DMRG and its common algebraic basis with the NRG, many of the con-
cepts, well-established within the DMRG, can also be transferred to the NRG. A very
prominent example in that respect is the concept of discarded weight. Within the DMRG,
this appears naturally through the truncation based on Schmidt-decomposition given effec-
tive orthonormal basis sets. As such it endows the DMRG with a direct absolute measure
for the accuracy of a given calculation. In contrast, the NRG lacks such a quantitative
measure for accuracy. The only way to demonstrate convergence within the NRG had been
backup runs at different number of states kept, showing that the results are stable. Com-
pared to the DMRG, this situation appeared unsatisfactory. Specifically, in cases where one
cannot afford significantly larger number of states kept due to the complexity of a given
model, it appears desirable to have a predictive measure that also allows to get a good
estimate on the accuracy of a given calculation within the NRG.

Now reduced density matrices [cf. Eq. (P3-11)] can be obtained within the NRG without
much extra cost, since reduced density matrices are defined within the kept state spaces,
by construction. The latter, however, can be used to motivate a sensible estimate for
the discarded weight within the NRG. As shown in the paper, quite generally, a global
discarded weight of εD . 10−12 suggests well-converged NRG data. By now, this argument
has also been extensively applied to more complex three-channel setups (which served as
the original motivation for this paper), with the same conclusion.

Entanglement spectra

Entanglement spectra, on the other hand, at first glance represent a completely discon-
nected discussion. Nevertheless, by definition, entanglement spectra are derived from the
eigenspectra [cf. Eq. (P3-23)] of exactly the same reduced density matrices. While for
discarded weight the emphasis is on the low-energy spectrum of these reduced density ma-
trices, entanglement spectra, in contrast, analyze their high-energy spectrum. Therefore
similar to the discarded weight, entanglement spectra are easily accessible within the NRG
framework.

The entanglement spectra are calculated w.r.t. a specific iteration n. Consequently,
given the iterative RG interpretation of the NRG, the entanglement spectra can also be
combined into entanglement flow diagrams (in complete analogy to a standard energy flow
diagram), which was demonstrated the first time in the attached paper. As it turns out,
despite being a non-gapped system and despite being a pure analysis of the ground state
wave function only, given energy scale separation, the lowest energies in the entanglement
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flow diagram often nicely replicate features seen the energy flow diagram otherwise! On the
other hand, there are cases where the energy- and the entanglement-flow-diagram clearly
show qualitatively different structure even at low energies. The latter directly suggests the
importance of the physics at much smaller energy scales when discussing the dynamics at
higher energies, i.e. much larger than temperature. The latter had been pointed by Hof-
stetter (2000) for a specific model, namely the Kondo model in the presence of a magnetic
field. The prescription of entanglement spectra, however, is more general, in that it allows
to predict when non-trivial low-energy physics feeds back to larger energies.
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Discarded weight and entanglement spectra in the numerical renormalization group

A. Weichselbaum
Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience,

Ludwig-Maximilians-Universität, D-80333 Munich, Germany
(Received 16 June 2011; revised manuscript received 2 August 2011; published 16 September 2011)

A quantitative criterion to prove and analyze convergence within the numerical renormalization group (NRG)
is introduced. By tracing out a few further NRG shells, the resulting reduced density matrices carry relevant
information on numerical accuracy as well as entanglement. Their spectra can be analyzed twofold. The smallest
eigenvalues provide a sensitive estimate of how much weight is discarded in the low-energy description of later
iterations. As such, the discarded weight indicates in a site-specific manner whether sufficiently many states
have been kept within a single NRG run. The largest eigenvalues of the reduced density matrices, on the other
hand, lend themselves to a straightforward analysis in terms of entanglement spectra, which can be combined
into entanglement flow diagrams. The latter show strong similarities with the well-known standard energy flow
diagram of the NRG, supporting the prevalent usage of entanglement spectra to characterize different physical
regimes.
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I. INTRODUCTION

The numerical renormalization group (NRG)1 is a powerful
method that provides a highly systematic nonperturbative
approach to the wide realm of so-called quantum impurity
systems. These consist of an arbitrary small quantum system
(the impurity) in contact with a macroscopic noninteracting
usually fermionic bath. Each part is simple to solve exactly
on its own. In the presence of interaction at the location
of the impurity, however, the combination of both gives
rise to strongly correlated quantum-many-body phenomena.2

Wilson’s logarithmic coarse-graining of the bath leads to a
semi-infinite chain with exponentially decaying couplings,
which justifies the concept of energy scale separation. That
is, the Wilson chain can be diagonalized iteratively by adding
one site at a time and retaining the lowest MK states only.
The obvious question, however, is how many states should
one keep on average for convergence in this procedure? At
a given iteration there is no quantitative a priori measure
that indicates how many low-energy states are required for
a proper description of the remaining low-energy physics.
Usually, the only way to check convergence within the NRG is
by repeating the entire calculation and showing that the results
no longer change when further increasing MK. Therefore an
NRG calculation is typically run somewhat blindly for some
predetermined MK.

This somewhat uncontrolled truncation in the NRG is in
stark contrast to the situation in the density matrix renor-
malization group (DMRG).3–5 DMRG is based on a (strictly)
variational principle, and as such has a clean well-defined
truncation of the state space for part of the system through the
discarded weight in its reduced density matrix.4 In contrast
to the less suggestive plain number MK of states kept, the
discarded weight represents a reliable quantitative measure
for the accuracy of a calculation. Within the DMRG, MK can
be easily adjusted according to some predefined threshold in
the discarded weight instead. Motivated by DMRG then, an
approximate similar criterion can be established within the
NRG as will be shown in the following. The analysis requires

a slightly longer chain, as shown schematically in Fig. 1. With
the extra n0 sites traced out again from the ground state space
of the enlarged system, this allows to estimate the discarded
weight. The latter offers a quantitative convergence measure
that is specifically of interest for numerically expensive models
such as multichannel models, or models where the energy
scale separation along the Wilson chain might be in question
due to modifications in the discretized Hamiltonian. In either
case, a small discarded weight provides a strong indication for
converged NRG data.

Furthermore, the reduced density matrices generated for
the evaluation of the discarded weight also allow a quite
different analysis in terms of their dominant correlations.
In particular, combining their entanglement spectra into
entanglement flow diagrams offers a complementary view
to the usual NRG energy flow diagram, which is entirely
based on the analysis of the low-energy state space of a prior
NRG run.

The paper is thus organized as follows. In Sec. I the
essentials of the numerical renormalization group are revisited,
including the construction of reduced density matrices. Sec-
tion II then uses a specific set of reduced density matrices in the
definition and analysis of the discarded weight within the NRG.
Section III offers a complementary view on these reduced
density matrices by analyzing their entanglement content in
terms of entanglement spectra. Section IV, finally, summarizes
and presents a brief outlook.

FIG. 1. Schematic depiction of tracing out the low-energy sector
of the Wilson chain at iteration n by including and analyzing n0 more
NRG iterations. The impurity (dot) is entirely contained in the first
site, while the bath is coarse-grained and mapped onto the remaining
semi-infinite tight-binding chain of sites n = 0,1,2, . . ..
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A. Numerical renormalization group

Within the NRG, the continuum of the noninteracting
bath of half-bandwidth W is logarithmically coarse-grained
in energy space, followed by an exact mapping onto a
semi-infinite so-called Wilson-chain.1,6 The impurity space
is coupled to the first site of this chain only, as depicted
schematically in Fig. 1. The logarithmic coarse-graining is
defined through the dimensionless discretization parameter
� > 1. With the chemical potential at energy zero, the contin-
uum of states in the energy intervals ±W [�−(n−z+1),�−(n−z)]
is effectively represented by single fermionic levels (coarse-
graining), including an arbitrary z-shift with z ∈ [0,1].7–9 The
subsequent exact mapping onto the semi-infinite chain (Lanc-
zos tridiagonalization)10 results in an effective tight-binding
chain with the exponentially decaying hopping tn ∼ �−n/2

between sites n and n + 1. For sufficiently large �, typically
� � 1.7, this then justifies the essential NRG assumption of
energy scale separation: by iterative diagonalization of the
Wilson chain by adding one site at a time, large energies
are considered first, with the (approximate) eigenstates at
large energies discarded and considered unimportant in the
description of the lower energy scales still to follow. Thus
each site of the Wilson chain corresponds to an energy shell
with a characteristic energy scale

ωn ≡ �z−1(� − 1)

log �
W�− n

2 . (1)

Here, the prefactor was chosen such that the rescaled couplings
limn→∞(tn/ωn) = 1 quickly approach unity for longer Wilson
chains for arbitrary � and z-shift, with the discretization
following the prescription of Ref. 9 for a flat hybridization,
i.e. �(E) = �θ (W − |E|).

With Ĥn the full Hamiltonian Ĥ of the Wilson chain up to
and including site n, its low-energy eigenstates, are given by
the NRG eigenstates Ĥn|sn〉 = En

s |sn〉. Complemented by an
arbitrary state |en〉 for the remainder of the system following
site n, the NRG assumption of energy scale separation can be
summarized then in the following approximation11

Ĥ |se〉n � En
s |se〉n, (2)

that is, the states |se〉n ≡ |sn〉 ⊗ |en〉 are, to a good approx-
imation, also eigenstates of the entire Wilson chain. The
energies En

s at iteration n are usually expressed relative to the
ground state energy of that iteration, and rescaled by a factor
W
2 (� + 1)�−n/2 ∝ ωn to resolve the energy shell at iteration
n. The resulting energies are referred to as rescaled energies.
For fully fermionic systems, they typically show an intrinsic
even-odd behavior. Thus combining the rescaled energies vs.
even and odd iterations n separately, this results in the standard
energy flow diagrams of the NRG.1,6

The approximate many-body eigenstates |se〉n are con-
structed iteratively, and therefore described in terms of matrix-
product states.5,12–14 Each iterative step results in a basis
transformation, encoded in an A-tensor, that combines an
existing effective basis |sn〉 for the system up to and including
site n with the state space |σ 〉 of site n + 1

|sn+1〉 =
∑

s ′
n,σn+1

|s ′
n,σn+1〉〈s ′

n,σn+1|sn+1〉︸ ︷︷ ︸
≡A

[σn+1]

s′nsn+1

, (3)

with |s ′
n,σn+1〉 ≡ |s ′

n〉 ⊗ |σn+1〉. The orthogonality of state
spaces, 〈sn+1|s ′

n+1〉 = δss ′ , directly implies the orthonormality
relation for A-tensors4∑

σn+1

A[σn+1]†A[σn+1] = 1. (4)

Without truncation, the dimension Mn of the state space |sn〉
increases exponentially with the number of sites included,
Mn ∼ dn, with d the dimension of a local Wilson site. There-
fore the maximum number of states MK, that one can maintain
in a calculation, is quickly reached after n0 � log(MK)/ log(d)
iterations. For every subsequent iteration, the state space |sn〉
is truncated by retaining the lowest MK states in energy only.
This leads to the distinction between |sK

n 〉 and |sD
n 〉 for kept

and discarded states at iteration n, respectively. Correspond-
ingly, this also splits the A-tensor into two parts, AKK and
AKD , that propagate the state kept space from the previous
iteration into the newly generated kept or discarded space,
respectively.

The truncation criteria with respect to a fixed prespecified
MK can be softened in terms of an energy cutoff,2 EK, that
is taken constant in rescaled energies. For a fair comparison
for different z-shifts, it will be specified in units of the
energy scale ωn in Eq. (1). Since NRG data typically appears
bunched at certain energies (e.g., see Fig. 3), EK may hit a
“gap” in the NRG spectrum at some iteration, and the last
“bunch” of states included may lie, on average, at clearly
smaller energies than EK. Given the empirical importance of
the first few NRG iterations, therefore as a safety measure,
by default, EK was taken by 20% larger for the very first
iteration where truncation occurred, i.e. using 1.2EK there
with EK specified in context. Typical values are in the range
EK = 5, . . . ,8.

The model system considered in this paper is the well
known standard single impurity Anderson model (SIAM)

H SIAM
N =

∑
σ

εdσ n̂σ + Un̂d↑n̂d↓ +
∑

σ

√
2�

π
(d̂†

σ f̂0σ + H.c.)

+
∑

σ

N−1∑
n=0

tn(f̂ †
n,σ f̂n+1,σ + H.c.), (5)

with the operators d̂†
σ (f̂ †

nσ ) creating a particle with spin
σ ∈ {↑ , ↓} at the impurity (at site n in the bath), respectively,
having n̂dσ ≡ d̂†

σ d̂σ . The energy εdσ ≡ εd − B
2 (n̂d↑ − n̂d↓)

is the spin-dependent level position of the impurity in the
presence of a magnetic field B. Furthermore, U is the on-site
Coulomb interaction and � the hybridization of the impurity
with the bath. All parameters will be specified in units of the
bandwidth W := 1 in context with the figure panels. The bath
in Eq. (5) is already represented in terms of a Wilson chain,1

described by the semi-infinite tight binding chain (N → ∞)
with exponentially decaying hopping amplitudes tn ∼ �−n/2.
In practice, N can be taken finite, with Ĥn describing the
Wilson chain up to and including site n � N .

Charge and spin are conserved in the SIAM in Eq. (5),
where, however, only the Abelian part of the symmetries
is included in the calculations. Hence the number of states
MK directly refers to the actual number of states kept in a
calculation (in contrast to the dimension of reduced multiplet
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spaces with non-Abelian symmetries). Similarly, also the
discussion of the entanglement spectra further below will
refer to the Abelian symmetry labels which also applies
when non-Abelian symmetries are broken. Note that while,
in general, a particle-hole symmetric impurity setting will be
used, this can be easily broken by applying a (small) gating
potential to the impurity level. Moreover, the SU (2) spin
symmetry, in fact, will be broken explicitly by the application
of an external magnetic field.

B. Density matrices

The NRG eigenbasis of Eq. (2) with respect to the discarded
space forms a complete many-body eigenbasis.11 Initially
introduced for the feat of real-time evolution within the
NRG, this eigenbasis is actually applicable and tractable more
generally within the NRG framework.15 In particular, this
allows the clean calculation of correlation functions in terms of
the full density matrix (FDM) in the many-body eigenbasis,12

in that

ρ̂(T ) ≡ 1

Z
e−βĤ ∼= 1

Z

∑
nse

e−βEn
s |se〉DD

n n〈se|, (6)

with β ≡ 1/kBT for arbitrary temperatures T , using non-
rescaled energies En

s relative to a common energy reference,
by construction of a thermal density matrix. Equation (6)
can be rewritten as ρ̂(T ) ≡ ∑

n wn(T )ρ̂n(T ), i.e. a normal-
ized distribution

∑
n wn = 1 of the density matrices ρ̂n(T )

generated in the basis of iteration n.12 For a given tem-
perature T , the distribution wn is strongly peaked around
iteration nT that corresponds to the energy scale of temper-
ature. Hence temperature essentially terminates the Wilson
chain.

In this paper, however, mainly reduced density matrices de-
rived from ground states will be considered, hence temperature
is essentially zero. More generally then, consider an arbitrary
density matrix defined in the many-body basis |sn〉 of iteration
n in either kept or discarded space, X ∈ {K,D},

ρ̂[X]
n ≡

∑
sns ′

n∈X

ρ
[X]
sns ′

n
|sn〉〈s ′

n|, (7)

where ρ[X]
n (i.e. without the hat) represents the space of matrix

elements ρ
[X]
sns ′

n
. The prototypical and well-known operation on

such a density matrix is tracing out the last site n,11,12,15–17

ρ̂
[K]
n−1 =

∑
sn−1,s

′
n−1

σn

(
A

[σn]
KXρ[X]

n A
[σn]†
KX

)
sn−1s

′
n−1

|sn−1〉〈s ′
n−1|

≡ P̂nρ̂
[X]
n , (8)

written as a matrix product of the matrices A
[σn](†)
KX and ρ[X]

n

in the first line. Equation (8), in the following referred to
as backward update, introduces the notational shorthand P̂n

for the bilinear product of the A- and A∗-tensor at site n,
that acts as a linear superoperator on the density matrix ρ̂n.
The corresponding contraction pattern is shown in a simple
graphical depiction in Fig. 2. By construction, the backward
update of a density matrix in Eq. (8) always results in a density
matrix in the kept space of the earlier iteration, and with Eq. (4)

FIG. 2. Backward update of a given density matrix ρn at iteration
n. Blocks represent data spaces, lines correspond to indices. The
lines connecting different blocks are contracted indices (i.e. indices
summed over), such as σn, sn, and s ′

n, while open lines represent open
indices (e.g., the indices sn−1 and s ′

n−1).

representing a complete positive map, Eq. (8) clearly also
preserves the properties of a density matrix.

II. DISCARDED WEIGHT WITHIN THE NRG

The standard notion of NRG is that it zooms in toward
the low-energy sector of a given many-body Hamiltonian,
while iteratively discarding states at higher energies. Having
a semi-infinite chain, this can continue to arbitrarily small
energy scales, which enables NRG to resolve dynamically
generated small energy scales as they appear, for example, in
the context of Kondo physics. From a variational point of view
for matrix-product states, this implies that the cost function
can be identified as

lim
N→∞

〈sN |HN |sN 〉 → MIN, (9)

yielding the ground state |0〉∞ of the semi-infinite Wilson
chain. For a sufficiently long chain of total length N then
included in a given calculation, the state |0〉N will be referred
to as the overall ground state of this Wilson chain. In fact,
the cost function in Eq. (9) is well captured within the NRG
through its principle of energy scale separation.18

If at a given iteration within the NRG states essentially
decouple with respect to the low-energy state space still to
follow, these states will quickly and efficiently be discarded
as high-energy states. The truncation toward the low-energy
sector also implies that the state space at large energies is
necessarily more crudely resolved, consistent with the coarser
discretization there. The lowest MK states kept at a given
iteration n then are important for the correct description of
the low-energy sector still to come. However, there is no real
quantitative a priori measure to indicate whether the number
MK of states to be kept is appropriate. Conversely, however,
at a given iteration n one can ask whether all states kept a few
iterations earlier were actually important. This question can
be answered entirely within the kept spaces of these iterations,
and hence is numerically cheap to analyze.

A. Construction of reduced density matrices

Consider the actual ground state space G at some arbitrary
but fixed iteration n′. In general, it may be gn′-fold degenerate,
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hence consider its fully mixed density matrix,

ρ̂0,n′ ≡ 1

gn′

∑
s∈G

|sn′ 〉〈sn′ |. (10)

By construction, the number of eigenvalues of ρ̂0,n′ unequal
zero, i.e. its Schmidt rank, is equal to gn′ . Now, tracing out
the last iteration n′, i.e. the lowest-energy scale included in
ρ̂0,n′ , is equivalent to the back-propagation ρ̂

[n′−1;1]
0 ≡ P̂n′ ρ̂0,n′

in Eq. (8). Through this operation, the Schmidt rank will rise,
in general, by a factor of d, with d the state space dimension
of a Wilson site. Repeating this process iteratively, this allows
to trace out the n0 smallest energy shells in ρ̂0,n′ . Thus with
n′ = n + n0, this leads to the reduced density matrix,

ρ̂
[n;n0]
0 ≡

(
n+n0∏
l=n+1

P̂l

)
ρ̂0,n+n0 ≡

MK∑
ss ′

ρ
[n;n0]
ss ′

∣∣sK
n

〉〈
s ′K
n

∣∣, (11)

which, by construction, is defined in the kept space of iteration
n. The Schmidt rank will grow quickly (i.e., exponentially) in
this process, until after n0 iterations, with

n0 � ceil[log(MK)/ log(d)] (n0 � N ), (12)

it reaches the full dimension MK of the kept space. Typically,
n0 is much smaller compared to the full length N of the
Wilson chain considered, and conversely also specifies the
initial number of NRG iterations in a forward direction that can
be typically performed without truncation. For the definition
of the discarded weight below, it is sufficient to stop the back
propagation of ρ̂0,n+n0 at this point.

The reduced density matrix ρ̂
[n;n0]
0 generated in Eq. (11)

is, in general, not diagonal in the energy eigenbasis |sK
n 〉,

since through the traced out lower-energy sites it does know
about an enlarged system. Its eigenvectors are described by a
unitary transformation u

[n;n0]
rs ′ within the NRG eigenstates kept

at iteration n,

|rn;n0〉 ≡
∑
s ′

u
[n;n0]
rs ′

∣∣s ′K
n

〉
,

(13)
with ρ̂

[n;n0]
0 |rn;n0〉 = ρ[n;n0]

r |rn;n0〉,
where the index r shall refer to the eigenstates of the
reduced density matrix, in contrast to the index s for the
energy eigenstates. Here, the eigenvalue ρ[n;n0]

r describes
the importance of a specific linear superposition of NRG
eigenstates at iteration n for the low-energy description of
later iterations.

This offers two routes for the analysis of the density
matrices ρ̂

[n;n0]
0 . (i) Adhering to the energy eigenbasis of the

NRG, the importance of the kept state |sK
n 〉 at eigenenergy En

s

for the later low-energy physics is given by the expectation
value

ρ[n;n0]
s ≡ 〈

sK
n

∣∣ρ̂[n;n0]
0

∣∣sK
n

〉
, (14)

i.e. the diagonal matrix elements ρ[n;n0]
ss . Alternatively,

(ii) using the eigenbasis of the reduced density matrices, the
weights of these states are given by the eigenvalues ρ[n;n0]

r ,
while now their energies are given by the expectation values

E[n;n0]
r ≡ 〈rn;n0 |Ĥn|rn;n0〉. (15)

Both routes will be analyzed and compared in the following.
However, the actual eigendecomposition of the reduced den-
sity matrices will be preferred for the remainder of the paper
as explained.

In either case, a set of states i with (average) energy Ei is
given together with their respective (average) weight ρi that
represents the states importance for later iterations. For the
first [second] route above this data is given by (En

s ,ρ[n;n0]
s )

[(E[n;n0]
r ,ρ[n;n0]

r )], respectively. Given that the reduced density
matrix ρ̂

[n;n0]
0 , by construction, exists in the kept space only,

therefore all states i refer to the kept space or a linear
superpositions thereof. Moreover, for every iteration, the
weights ρi are normalized, that is, they are positive and add
up to 1, while by combining data from different iterations, the
energies Ei are always specified in rescaled units.

The resulting data (Ei,ρi) then is clearly correlated. It is
analyzed threefold, (i) in terms of the average distribution of
the rescaled energies Ei

ν(E) ∼= 1

N ′

N∑
n=1

′ ∑
E<Ei<E+dE

1, (16)

(ii) the average distribution of the weights ρi ,

ν(ρ) ∼= 1

N ′

N∑
n=1

′ ∑
ρ<ρi<ρ+dρ

1, (17)

and (iii) their average dependence on each other

ρ(E) ∼= 1

N ′dE

N∑
n

′ ∑
E<Ei<E+dE

ρi (18a)

∼= κe−κE . (18b)

Here some appropriate linear (logarithmic) binning of the
data is assumed with energy (weight) intervals dE (dρ),
respectively. In particular, the densities in Eqs. (16) and (17) are
clearly dependent on these binning intervals, which therefore
will be properly indicated in the subsequent plots. The prime in
the summation and the normalization indicates that only those
iterations n are included where state space truncation occurred,
i.e. typically n � n0. The total number of these iterations is
given by N ′. With chosen normalization then, the sum over
the binned ν(E) and ν(ρ) data both yield the average number
of kept states, while the integrated weight distribution ρ(E) in
Eq. (18a) is normalized to 1 since tr(ρ) ∼ ∫ ∞

0 ρ(E) dE = 1.
As will be seen later, the weight distribution ρ(E) typically
shows a clear exponential decay with a characteristic exponent
κ , as indicated already in Eq. (18b), with the prefactor chosen
such that it also preserves normalization.

1. Energy eigenbasis

The correlation between the eigenenergies En
s and their

corresponding weights ρ[n;n0]
s is plotted as a scatterplot in the

main panel of Fig. 3. The model analyzed is the SIAM in
Eq. (5) in the Kondo regime using a fixed number of kept
states, with all parameters specified in the figure caption. The
weights ρ[n;n0]

s clearly diminish exponentially with energy,
which is intuitively expected as a consequence of energy
scale separation within the NRG. The integrated weight

125130-4

P3.

88



DISCARDED WEIGHT AND ENTANGLEMENT SPECTRA IN . . . PHYSICAL REVIEW B 84, 125130 (2011)

FIG. 3. (Color online) Weight distribution of energy eigenstates
over full NRG run at fixed MK = 512 for the SIAM [Eq. (5):
U = 0.20,εd = −U/2,� = 0.01]. The main panel shows the rescaled
eigenenergies En

s vs. their weights ρ[n;n0]
s as in Eq. (14). Data is

shown only for those iterations where truncation occurred, with data
from the same iteration shown in the same color. The two iterations
with smallest (largest) energy range, nmax (nmin), are highlighted in
strong colors [black diamonds (red crosses)], respectively, while light
colors are used for all other iterations. The top [right] panel shows
the energy [weight] distribution ν(E) [ν(ρ)], Eq. (16) [Eq. (17)],
respectively, for the data in the main panel, with matching energy E

[weight ρ] axis. The binning referred to in the text to Eqs. (16) and
(17) is indicated by the intervals between the data points in the top
and right panel.

distribution ρ(E) [dashed black line, cf. Eq. (18a)] shows a
clear exponential decay with an exponent κ � 2.7. As seen in
Fig. 3, this distribution clearly also serves as an upper bound
of the weights ρ[n;n0]

s at a given energy.
The upper panel in Fig. 3 shows the distribution ν(E) in

Eq. (16) of the energies En
s plotted in the main panel (matching

horizontal axis). This distribution shows a strong increase with
energy E, consistent with the notion that the many-body phase
space grows quickly as the available energy for excitations
becomes larger. Toward large energies, eventually, the data is
necessarily truncated to the finite number MK of kept states,
which leads to a drop in the density ν(E). The exact boundary
with respect to energy is somewhat blurred, though, since
in given case fixed MK allows the energy range to vary for
different iterations n. The right panel of Fig. 3, on the other
hand, shows the distribution ν(ρ) in Eq. (17) of the weights
ρ[n;n0]

s plotted in the main panel (matching vertical axis). This
distribution is peaked around the largest weights ρ[n;n0]

s for the
largest energies En

s .
The data in the main panel of Fig. 3 is typically bunched

around a set of energies for a fixed iteration n. This is also
reflected in the distribution ν(E) in the upper panel of Fig. 3,
and is due to the discretization of the model. Moreover, two
iterations are highlighted in strong colors. These correspond
to the iterations whose energy range is smallest [nmin = 6, red
bullets] or largest [nmax = 74, black diamonds]. Intuitively,
the largest numerical error is expected from iterations such as
nmin since, through Eq. (18b), stopping at premature energies

directly translates to the largest missing (i.e. discarded) weight
in the density matrix. As an aside, this serves as a strong
argument in favor of truncation with respect to a fixed energy
cutoff EK rather than a fixed number MK of states. Fixed EK,
however, also introduces more noise to the data in particular
for higher-lying states. Hence both truncations will be used
and pointed out in context.

The weights ρ[n;n0]
s in the main panel of Fig. 3 show

significant vertical spread, which translates into a pronounced
tail toward exponentially smaller ρ in the distribution ν(ρ) in
the right panel. For a given energy E therefore, many of the
states have orders of magnitude lower weight than the topmost
weights close to ρ(E) in the main panel. This indicates that the
energy representation with its corresponding diagonal weights
ρ[n;n0]

s is not necessarily the optimal basis to analyze accuracy.
Moreover, note that using the energy eigenbasis |sn〉 with
energies En

s in the analysis of the reduced density matrices
actually mingles the energy scales of an effectively larger
system Ĥn+n0 with the basis generated w.r.t. Ĥn only.

2. Eigenbasis of reduced density matrices

From the point of view of a variationally optimal repre-
sentation of the ground state space of an enlarged system,
on the other hand, one is directly led to the eigenspec-
trum of the reduced density matrix, as exemplified within
DMRG.3 The analysis of Fig. 3 therefore is repeated for the
same underlying Wilson chain, yet with two modifications:
(i) the eigen decomposition of the reduced density matrices
in Eq. (13) together with Eq. (15) is used instead of the
energy eigenbasis, and furthermore (ii) the NRG truncation
criterion is based on a fixed energy cutoff, EK = 6. The results
are shown in Fig. 4, with striking quantitative differences
compared to Fig. 3. The spread in the scatterplot is significantly

FIG. 4. (Color online) Similar analysis as in Fig. 3 (see caption
there for further information) for the same underlying Hamiltonian,
except that the eigenspectrum of the reduced density matrices in
Eq. (13) was used together with Eq. (15) and a fixed energy cutoff
EK = 6. Similar to Fig. 3, only those iterations are shown where
truncation occurred (same color for data from the same iteration), with
the same two iterations highlighted as in Fig. 3, indicated by n1 and
n2. The estimate for the overall discarded weight εD

χ=5% � 6 · 10−12

as defined in Eq. (21) is indicated by the horizontal dashed line.
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narrowed, and overall, the data decays much faster with κ �
4.6 [cf. Eq. (18b)]. Therefore this leads to a clearly improved
separation of the actually relevant states for the subsequent
description of the lower-energy scales. This suggests that
many of the NRG eigenstates, as their energy increases, loose
importance much faster as compared to Fig. 3, despite the
relatively large diagonal weights ρs in the density matrix
still seen there. In a sense, the weights there represent mere
matrix-elements in a nondiagonal representation.

The iterations highlighted in Fig. 4 are the same iterations
as in Fig. 3. Given a fixed energy cutoff EK = 6 here, however,
both have a comparable energy range (hence the altered
notation n1 and n2), with the number MK of kept states varying
from ∼1000 at very early iterations (in particular iteration n1),
down to ∼250 at late iterations (such as iteration n2). Note
also the markedly fewer data points seen for iteration n2.
This is only partly due to the reduced number of states, as
there are also large systematic (approximate) degeneracies at
the strong-coupling Kondo fixed point already reached at this
iteration. This results in many of the black diamonds lying
indistinguishably on top of each other (see also the discussion
on entanglement spectra later).

As seen from above discussion, rather than taking the
energy eigenstates |sn〉 and the corresponding diagonal matrix
elements ρ[n;n0]

s (Fig. 3), the eigenvalues ρ[n;n0]
r of the reduced

density matrix ρ̂
[n;n0]
0 do represent a clearly better choice for

the analysis of accuracy or entanglement in the system (Fig. 4),
and thus will be used henceforth. This prescription, in general,
also shows a more systematic exponential decay all the way
down to numerical double precision noise (10−16), with the
decay rate κ of ρ(E) roughly independent of the discretization
parameter �.

3. Definition of discarded weight

With the motivation above, the definition of the discarded
weight is based on the eigen decomposition of the reduced
density matrices ρ̂

[n;n0]
0 in Eq. (11), using the combined data

of Eqs. (13) and (15). In terms of Fig. 4, adding more states to
the calculation essentially extends the data to larger energies
and smaller weights, while the large-weight low-energy sector
already remains widely intact. Therefore the largest discarded
weight, i.e. the weight missing by states not included and hence
not available, can be estimated to a good approximation, up to
an overall prefactor, by the smallest weights in the kept space
which are easily accessible. Given the exponential decay of the
weights together with the residual spread in the data as seen
in Fig. 4, the discarded weight at given iteration n can thus
be defined through the average weights ρ[n;n0]

r for the highest
energies E[n;n0]

r in the kept space,

ε
Kχ

n;n0 ≡ 〈
ρ[n;n0]

r

〉
E

[n;n0]
r �(1−χ) max(E

[n;n0]
r ). (19a)

The parameter χ � 1 is considered small, yet is chosen large
enough (typically χ � 0.05) to average over the residual
spread of weights. Alternatively and for comparison, an even
simpler measure in terms of the minimum eigenvalue of ρ̂

[n;n0]
0

will be considered,
εK
n;n0

≡ min
(
ρ[n;n0]

r

)
, (19b)

which no longer makes any explicit reference to energies.
Note that even though ε

Kχ

n;n0 or εK
n;n0

, written ε
K(χ)
n;n0 in short, are

purely determined within the kept space, they clearly represent
a sensible estimate for the discarded weight at iteration n (i.e.,
ε

D(χ)
n ∼ ε

K(χ)
n;n0 ) defined as the fraction of relevant state space

missing from the latter description of the low-energy physics.
If no truncation has occurred at iteration n, however, such as
typically for the first n < n0 iterations, of course, then there is
no truncation error either, hence ε

D(χ)
n = 0 for these iterations.

In summary, the discarded weight εD
n at iteration n is defined

as follows,

ε
D(χ)
n ≡

{
ε

K(χ)
n;n0 in the presence of truncation

0 without truncation at iteration n.
(20)

Here ε
K(χ)
n;n0 can be determined efficiently by including and

analyzing n0 further NRG iterations within the kept space,
where typically n0 � N [cf. Eq. (12)]. The overall discarded
weight εD

(χ ) of a full NRG run then is taken, for simplicity, as
the largest discarded weight per iteration,

εD
(χ) ≡ max

n

(
ε

D(χ)
n

)
. (21)

Using χ = 5% as in Eq. (19a), the discarded weight for the
NRG run in Fig. 4 is estimated by εD

χ � 6 · 10−12, indicated
by the horizontal dashed line. As seen from Fig. 4, the overall
discarded weight εD

χ for an NRG run essentially coincides
with ρ(E) at the largest energies within the kept space. On the
other hand, εD [i.e. without the usage of χ based on the plain
minimum eigenvalue of the reduced density matrices ρ̂

[n;n0]
0 ,

cf. Eq. (19b)] will, in general, lie a (constant) few orders of
magnitude lower, as it happens, for example, for the data in
Fig. 4. Nevertheless, as will be shown in the following, up
to an overall global prefactor the discarded weight based on
either, εD or εD

χ , both behave in an essentially similar fashion.

B. Application

The discarded weight εD
(χ) defined in Eq. (21) sensitively

depends on the number MK of states kept or the energy
threshold EK. From Fig. 4 one expects a strongly diminishing
discarded weight with increasing MK or EK, a quantitative
analysis of which is presented in Figs. 5 and 6 for the SIAM.
Figure 5 analyzes the dependence of the discarded weight εD

(χ)
on the number MK of states kept. As seen in Fig. 5(a), the
discarded weight εD

(χ) strongly decays with MK, with minor
variations when a new Wilson shell is fully included without
truncation, e.g. at MK ∈ {256,1024}. With Fig. 5(a) being
a log-log plot, the decay of the discarded weight with MK

rather resembles a polynomial convergence, yet with very
large power (on the order of 10). The reason for the slower
than exponential decay is due to the strong increase in the
density of states ν(E) of the full many-body eigenspectrum
with increasing E as discussed with Figs. 3 and 4.

Together with the analysis of the discarded weight in
Fig. 5, an independent physical check for convergence
is provided by the numerically computed conductance g0

in units of 2e2/h shown in Fig. 5(b). The conductance
was calculated via the (spin-resolved) spectral function
A(σ )(ω) = ∫

dt
2π

eiωt 〈{d̂σ (t),d̂†
σ }〉T of the impurity level, with
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FIG. 5. (Color online) Discarded weight εD for the SIAM [Eq. (5):
U = 0.20, εd = −U/2, � = 0.01 (same parameters as in Fig. 3), with
TK � 1.23 · 10−5]. Panel (a) shows the discarded weight εD

(χ ) defined
in Eq. (21) vs. MK using n0 ∈ {6,7,8}. The data εD

χ=5% is shown
in solid lines, while the data based on the minimum eigenvalue of
ρ̂

[n;n0]
0 [cf., Eq. (19b)] is shown in dashed lines. The distribution of

the discarded weight ε
Dχ
n along the Wilson chain is shown in the inset

for MK ∈ {128,256,512,1024}, also marked by the vertical dashed
lines in the main panels. Panel (b) shows the conductance g0 vs. MK

in units of 2e2/h while using a set of shifted discretizations, with
the z-values as specified. Convergence in the conductance toward the
expected unitary limit is seen for MK � 400, i.e. εD

χ � 10−12.

g0 = π�
∫

dω(− ∂f

∂ω
)A(ω). Here the Fermi function f (ω) and

the spectral function A(ω) are evaluated at small but finite
temperature T � 6 · 10−8, which is much smaller than the
Kondo temperature of TK � 1.23 · 10−5 for given parameter
set and corresponds to the energy scale close to the end
of the Wilson chain, having � = 2 and N = 60. Expecting
g0 = 1 for the symmetric SIAM, the data in Fig. 5 indicate
convergence for MK � 400. The data for smaller MK is not
yet converged, and therefore (strongly) depends on numerical
details, such as non-averaged z-shifts.8,9

With MK being constant, the energy of the topmost kept
states can vary significantly with Wilson shell n, which directly
also leads to a clear dependence of the discarded weight εD

(χ )
on n. This is shown in the inset to Fig. 5(a) for the set of
different values of MK marked in the main panels by the
vertical dashed lines. The discarded weight εD

χ clearly varies
over more than three orders of magnitude within a single
NRG run, irrespective of the actual MK. In particular, one
can see that earlier iterations dominate the discarded weight
εD
χ for physical reasons. In the strong-coupling regime for

FIG. 6. (Color online) Similar analysis as in Fig. 5, yet for
truncation with respect to fixed energy EK . For several values of EK,
marked by the vertical dashed lines in the main panels, the distribution
of the discarded weight ε

Dχ
n along the Wilson shell n is shown in the

inset to panel (a). With MK allowed to vary over a wider range, panel
(c) shows the correlation of MK with EK, plotting average, minimum,
and maximum of MK along the Wilson chain. For the average MK,
data for different z-shifts is shown [several lines on top of each other,
with same color coding as in panel (b)].

n � nK (with iteration nK � 35 corresponding to the energy
scale of TK), the discarded weight is smallest, while for the
intermediate free orbital or local moment regime for n � nK,
these regimes require a larger number of states for comparable
numerical accuracy from a physical point of view, indeed.

Given the underlying energy scale separation of the NRG, a
straightforward way to obtain a more equally distributed ε

D(χ)
n is

achieved using an energy cutoff EK, as demonstrated in Fig. 6
for exactly the same system as in Fig. 5 otherwise. For the
values of EK indicated by the vertical dashed lines in the main
panels, the inset to Fig. 6(a) shows the distribution of ε

Dχ

n . By
construction, the discarded weight is, up to even-odd oscilla-
tions, clearly more uniformly distributed over the Wilson shells
as compared to the case of fixed MK in Fig. 5(a). The discarded
weight in Fig. 6(a) clearly diminishes exponentially with EK,
yet with pronounced intermediate plateaus since the discrete
eigenenergies within an NRG run are usually bunched around
certain energies. The corresponding average MK as function of
EK, nevertheless, follows a rather smooth monotonic behavior,
as shown in Fig. 6(c). Given fixed EK, however, clear variations
of MK are seen within a given NRG run, hence also the smallest
and largest MK are shown in Fig. 6(c). Ignoring iterations
without truncation, in given example, typically the largest
MK is required at early iterations, while the smallest MK are
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encountered in the strong coupling regime at late iterations
n � nK .

The calculated conductance shown in Fig. 6(b) converges
clearly more uniformly with increasing EK as compared to
Fig. 5(b). In particular, it indicates converged NRG data for
EK � 5.5, which corresponds to εD

χ � 10−12. Therefore in
both settings, for constant MK in Fig. 5 as well as for constant
EK in Fig. 6, convergence of the physical data is found for
a similar discarded weight of εD

χ � 10−12 with a negligible
dependence on n0. This value therefore is considered a
sufficient bound in accuracy to capture the main physics, with
other quantities such as the NRG energy flow diagram already
also well converged.

Alternatively, using the plain minimum of the eigenvalues
of the reduced density matrices in Eq. (19b), this leads to
convergence for εD � 10−16. Given that εD refers to the
minimum eigenvalue in the kept space, εD consistently lies
about three orders of magnitudes lower than εD

χ and is
considered a lower bound to the actual discarded weight. While
εD fluctuates slightly more strongly compared to εD

χ owing
to the fact that it is not an averaged quantity such as εD

χ , it
nevertheless follows a similar consistent picture in terms of
convergence with the number MK of states kept or the energy
EK used for truncation. In this sense, either discarded weight,
εD as well as εD

χ , can be used quite generally as a quantitative
measure, indeed, to demonstrate accuracy within the NRG. To
avoid confusion, however, it shall be made clear which one is
used.

III. ENTANGLEMENT SPECTRA

The reduced density matrices ρ̂
[n;n0]
0 clearly also carry

physical information in terms of entanglement along the
Wilson chain. This is provided by the high end of their
spectral decomposition. There the exact details of the largest
eigenvalues of ρ̂

[n;n0]
0 are of interest, which do vary with n0

over a wider range depending on the underlying physics.
Hence, in the following, the actual entanglement spectra will
be calculated with respect to the reduced density matrices ρ̂

[n]
0

of the overall ground state of the system,

ρ̂
[n]
0 ≡ lim

n0→∞ ρ̂
[n;n0]
0 � ρ̂

[n;N−n]
0 . (22)

The length N of the Wilson chain is taken sufficiently large,
such that the energy scale of the last iteration N is much smaller
than any other energy scale in the system. Temperature is
therefore essentially zero. For comparison, also the truncated
entanglement spectra will be calculated from ρ̂

[n;n0]
0 for finite

small n0, with n0 specified in context. Motivated by the
discussion following Eq. (6), the later analysis can be linked
to finite temperature settings.

1. General definition

The partitioning of the Wilson chain into two parts, the
chain up to and including site n (part A), and the traced out
remainder of the system (part B) is generic. In particular, this
allows to make use of the recently introduced entanglement
spectra (ES)19 for the physical characterization of a given wave
function. Here these entanglement spectra provide a powerful

tool for the systematic analysis of the physical correlations in
the reduced density matrices ρ̂

[n]
0 in Eq. (22).

Consider a given wave function of some system partitioned
into parts A and B. The reduced density matrix ρ̂A ≡ trB(ρ)
is obtained by tracing out part B of the overall density matrix
ρ. Within this setting, the entanglement spectrum is defined as
the spectrum of the fictitious Hamiltonian ĤA

ρ ,19

ρ̂A =: exp
( − ĤA

ρ

)
.

One may assume an effective inverse temperature β := 1 to
make contact with a thermal density matrix. This β also sets the
(otherwise arbitrary) energy scale in the per se dimensionless
ĤA

ρ . With ρ̂A a positive operator, the entanglement spectrum
ξr is defined as the eigenvalues of ĤA

ρ , that is,

ξr := − log ρr , (23)

with ρr the spectral decomposition of the reduced density
matrix ρ̂A. Particular information can be read off from the en-
tanglement spectrum as soon as there is a rich amount of quan-
tum numbers specifying the entanglement levels and when
entanglement gaps appear which separate a low-lying generic
set of levels from irrelevant background correlations.19–21 The
spectra ρr and ξr are independent of whether A or B is traced
out, while, of course, they are dependent on the specific choice
of the partitioning. For entanglement spectra, the partitioning
typically occurs in real space for gapped systems, analyzing
the edge of the thus created boundary, while for gapless
systems momentum space is preferred.20 The second case
then is consistent with the systematic NRG prescription of
energy scales based on the underlying discretization in energy
(momentum) space.

By construction, the dominant correlations between sys-
tems A and B correspond to the lowest entanglement energies
ξr , while weaker correlations will rise to higher energies.
By tracing out a major part of the system, entanglement
spectra provide significantly more information, say, than just
the entanglement entropy between A and B. In particular, it
has been shown that it provides fingerprints of the underlying
physics, and as such allows to characterize the physical nature
of a given wave function.19,20 This analysis is therefore entirely
targeted at a given (ground state) wave function, without any
further reference to an underlying physical Hamiltonian that it
may have originated from.

2. Application to NRG

The general concept of the entanglement spectra can be
readily transferred to the NRG. At each iteration n, the reduced
density matrix ρ̂

[n]
0 in Eq. (22) is computed and diagonalized,

with its eigenspectrum mapped onto the entanglement spec-
trum in Eq. (23). Collecting these spectra and plotting them
vs. iteration index n for even and odd iterations separately,
the result will be referred to as entanglement flow diagram,
in complete analogy to the standard energy flow diagrams of
the NRG. For comparison, also the truncated entanglement
spectra for finite small n0 will be analyzed, which in their
combination will be referred to as truncated entanglement flow
diagram. In either case, the entanglement spectra are obtained
in a backward sweep, purely based on the iterative low-energy
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FIG. 7. (Color online) Comparison of the standard NRG energy
flow diagram (left panels) to the entanglement flow diagram (right
panels) for the symmetric SIAM [U = 0.2, εd = −U/2, � = 0.01,
TK = 1.2 · 10−5; � = 2, MK = 512, N = 80], with top (bottom)
panels for even (odd) iterations, respectively. In addition to the actual
entanglement flow diagram obtained from the ground state of the
last iteration at N = 80 [black lines], the truncated entanglement
flow diagram is shown, using n0 = 8 orange (gray) lines. For
better comparison with the energy flow diagram, the entanglement
spectra (right panels) are also shifted at every iteration with respect
to the smallest entanglement energy min(ξ ). The y-scale of the
entanglement spectra was adjusted to best match the energy fixed
point spectrum in the left panels. Degeneracies of energies at large n

(i.e., lines lying indistinguishably on top of each other) are specified
by the numbers on top of the lines in all panels.

FIG. 8. Comparison of spin-resolved fixed point spectra for the
symmetric SIAM in Fig. 7 in the SC regime (n = 60). Panel
(a),(b) show the energy [entanglement] fixed point spectrum, re-
spectively, vs. spin symmetry quantum number Sz. For all low-
energy multiplets the underlying (approximate) degeneracy is in-
dicated. The entanglement spectrum is shifted w.r.t. to its lowest
energy and scaled to match the energy fixed point spectrum in
panel (a).

Hilbert-space decomposition of a prior NRG run in terms of
the A-tensors in Eq. (3). This is in contrast to the energy flow
diagram, which is calculated with increasing shell index n in a
forward sweep making explicit reference to the Hamiltonian.

The entanglement spectra were calculated for the
symmetric SIAM in the absence of magnetic field. The
resulting entanglement flow diagram is presented in Fig. 7
together with a direct comparison to the standard NRG energy
flow diagram. The data is plotted for even (odd) Wilson shells
n in the upper (lower) panels, respectively. The energy flow
diagram, shown in the left panels, clearly distinguish the
well-known physical regimes of the SIAM, namely the free
orbital regime (FO; n � 10), the local moment regime (LM;
10 � n � nK), and the strong coupling regime (SC; n � nK),
where nK � 35 corresponds to the energy scale of the Kondo
temperature TK = 1.2 · 10−5, having � = 2. All degeneracies
for n > nK are explicitly specified in Fig. 7. In particular, for
even iterations, the ground state is unique throughout, i.e. the
Kondo singlet for n > nK Fig. 7(a)], while for odd iterations
the ground state space at small energies is four-fold degenerate
due to the particle-hole symmetric parameter set Fig. 7(c)].

Interestingly, a very similar picture emerges from the
entanglement flow diagram in the right panels, Figs. 7(b) and
7(d) (black lines). For comparison, also the truncated entan-
glement spectra are shown using n0 = 8 [orange (gray) lines],
which in given case converge rapidly, in fact, exponentially,
with increasing n0 � 10 toward the actual entanglement flow
diagram. These then mimic the energy flow diagram in the left
panels over a wide range. For example, the convergence toward
the Kondo fixed point occurs around similar iterations, and
even the degeneracies of the lowest states of the energy flow
diagram are exactly recovered by the entanglement spectra.
The same also holds on the symmetry-resolved level, as
demonstrated in Fig. 8 for the even iteration n = 60 (see later
discussion). Nevertheless, looking more closely, a few notable
qualitative differences of the entanglement flow diagrams in
the right panels of Fig. 7 are seen compared to the energy
flow diagrams in the left panels. Overall, the entanglement
flow diagrams appear shifted by about five iterations to
larger energies. This can be understood, considering that
the entanglement spectra are calculated for enlarged systems
together with the rapid convergence with increasing n0 in given
case. However, there are further pronounced differences with
the energy flow diagram for the earliest iterations in the FO
regime, n � 10.

These differences in the entanglement flow diagram can
be significantly enhanced by turning on a magnetic field on
the order of the Kondo temperature, as shown in Fig. 9 for
B = 1.6 TK. This corresponds to the energy scale at iteration
nB � 32, given � = 2. The magnetic field has been chosen
such that, for late iterations n � nB, the fixed point spectrum
for even and odd iterations become essentially the same
[compare the low-energy fixed point spectra in panel a(b) to
panel c(d) of Fig. 9, respectively]. Due to the magnetic field, the
Kondo singlet (previously the unique state at even iterations)
is largely destroyed for n � nB with a sizable magnetization
at the impurity. Clearly, the NRG eigenbasis at early iterations
n < nB does not yet know about the small energy physics to
come, e.g. the small B ∼ TK applied in given case. Therefore
the energy flow diagram essentially remains unaltered there,
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when compared to the case without magnetic field in panels
(a) and (c) of Fig. 7. The flow changes strongly only starting
from the energy scale of the magnetic field value, i.e. for
n > nB where it moves into a different fixed-point spectrum.
In particular, there also emerges a unique state now in the
energy flow diagram for odd iterations for n � nB, i.e. the
symmetry broken spinful state favored by the magnetic field.

By including magnetic field, the entanglement flow diagram
shows pronounced differences from the energy flow diagram
for n � nB, which includes large portions of the LM regime.
While the energy spectrum up to and including site n is
ignorant of the low-energy physics to come, this very low-
energy physics is captured by the reduced density matrices
and thus reflected in the entanglement flow diagram.22

Consider the entanglement spectra derived from the overall
ground state in Figs. 9(b) and (d) [black lines]. In Fig. 9(d)
the ground state remains unique throughout, i.e. remembers
the symmetry broken magnetic state, determined at much
lower energy scales, all the way up to the largest energies.
Within the split-up lowest-energy space with subsequent
degeneracies [1-2-1] in Fig. 9(d) for n � nB (to be called
[1-2-1] configuration), the first and second excited states cross
each other with decreasing n leading to a [1-1-2] configuration
for small n, i.e. large energies. Nevertheless, the singly
degenerate excited state clearly remains split off, and does
not merge with the ground state, which is in strong contrast to
the energy flow diagram in Fig. 9(c) with a [2-2] configuration
for n � nB. This degeneracy in the ground state space that
is ignorant of the small magnetic field is partly reflected only
in the truncated entanglement flow diagram. Using small n0

[orange (gray) lines in Fig. 9(d)], this eventually also misses
the low-energy physics. Therefore these spectra in Fig. 9(d)
eventually are also in a [2-2] configuration for the smallest n,
with a more irregular transient behavior with increasing n. A
similar trend is also observed for even iterations in Figs. 9(a)
and (b). While the ground state remains unique for all iterations
in both panels, the entanglement flow in Fig. 9(b) tends to split
off the excited levels right above the lowest [1-2-1] state space
configuration for small n. For the truncated entanglement flow,
on the other hand, the lines of these excited levels remain
entangled with higher excitations, which is similar to the
situation in the energy flow diagram in Fig. 9(a).

Nevertheless, the low-energy fixed-point spectra for n �
nB again agree well for both the energy and entanglement flow
diagram in Fig. 9, which again also holds for the symmetry-
resolved spectra, as demonstrated for the even iteration n = 60
in Fig. 10. This agreement in the spectra of the stable low-
energy fixed point, present in both the nonmagnetic as well as
the magnetic case, is understood as a generic feature. There
both the energy eigenstates as well as the reduced density
matrices are deeply rooted in the low-energy physics, i.e. of
the overall ground state of the system at T → 0, and hence
present a consistent description of the system.

The detailed structure of the energy fixed point spectra pro-
vides clear physical information.1,2 This includes, for example,
phase shifts if a Fermi-liquid point of view is supported as is
the case for the SIAM. This then directly explains all of the
splittings and degeneracies in the low-energy sector of the
energy fixed point spectra. For example, consider the energy
spectrum in Fig. 8(a) for the fully symmetric SIAM in the

FIG. 9. (Color online) Comparison of the standard NRG energy
flow diagram (left panels) to the entanglement flow diagram (right
panels) for the SIAM at finite magnetic field (same analysis as in
Fig. 7, otherwise, see caption there for details, with same model
parameters, except B = 2 · 10−5 � 1.6 TK).

FIG. 10. Comparison of spin-resolved fixed point spectra for the
SIAM at finite magnetic field in Fig. 9 at the even iteration n = 60
(similar analysis as in Fig. 8 otherwise).

nonmagnetic case. Note that while spin-resolved spectra are
shown in Fig. 8, in given case the charge-resolved spectra
would look exactly the same due to particle-hole symmetry.
With the spectra shown for an even iteration, the ground state
is unique (i.e., represents the Kondo singlet with Sz = 0). The
first excited states for Sz = + 1

2 correspond to an extra particle
with spin-up or a hole with spin-down. Given particle-hole
symmetry, both processes have the same energy δ/2 = 0.63
(in rescaled energy units), and hence are two-fold degenerate,
indicated by the number on top of the level in Fig. 8. By
symmetry, the same excitations exist for 2Sz = −1, leading to
the [2-2] degeneracy (four states) in the lowest excitations
in Fig. 8(a). The next higher excitation combines two of
the above processes. This leads to a total of six excitations,
all with energy δ and distributed over 2Sz ∈ {−2,0, +2}.
Here two of the excitations at 2Sz = 0 correspond to the
extraction or annihilation of two particles with opposite spin.
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This fully explains the [1-4-1] degeneracy of the excited states
at energy δ = 1.26 in Fig. 8(a), and also the combined six-fold
degeneracy seen in the energy flow diagram seen at this
energy in Fig. 7(a). The argument can be continued along
similar lines to explain the [4-4] (eight states) and [4-9-4] (17
states) degenerate subspaces of the next higher excitations.
Excitations with even higher energy eventually have missing
levels due to NRG truncation.

The same analysis as for the energy spectra, however,
cannot be applied with equal rigor to the entanglement spectra.
While the ground state 1 and the lowest [2-2] and [1-4-1]
excitations in Fig. 8(b) fully agree in symmetries, degeneracy,
and also in the precise relative level spacing, the next higher
[4-4] excitation in Fig. 8(a) is broken up in Fig. 8(b), with some
of the levels shifting to higher entanglement energy. Neverthe-
less, the degenerate set [2-10-10-2] further up in energy again
equally appears for both energy and entanglement spectra.

The same analysis as in Fig. 8 is repeated for the magnetic
case in Fig. 10 for the same even iteration n = 60. Despite
the rather different level spectrum for large n in the flow
diagram in Fig. 9, the actual spin-resolved fixed point spectrum
is qualitatively very similar to the nonmagnetic case in Fig. 8.
Aside from an overall tilt of the level structure, all degeneracies
and level positions of the lower part of the energy spectrum
in Fig. 8(a) are again fully described by elementary single-
particle excitations. The underlying reason for this similarity
of the fixed points spectra in the magnetic and nonmagnetic
case is that, apart from the (screened) impurity spin, the
system is well described by an effective Fermi-liquid picture.
With the low-energy fixed point spectra well reflected in the
entanglement spectra, a similar tilt in the level structure is also
observed in Fig. 10(b) when compared to Fig. 8(b). Note, for
example, that to the lower left of the spectrum the same [1-2-1],
as well as the [2-4-2, 2-4-2] state sequence with increasing
energy is seen.

IV. SUMMARY AND OUTLOOK

The reduced density matrices of the NRG by tracing out
the low-energy sector have been analyzed in detail. The low
end of their eigenspectra was used to estimate the discarded
weight εD

(χ ) in Eqs. (19)–(21) as a quantitative and site-resolved
measure of the accuracy within the NRG. While, in principle,
the same reduced density matrices could also be utilized as the
basis for an altered truncation criteria similar to the DMRG,
this, however, requires sufficiently large MK to start with. In

practice, this is sufficiently close to a truncation with respect
to an energy cutoff EK. Either way, all of this can be easily
and quickly checked using the proposed analysis in terms
of the discarded weight which provides a useful quantitative
tool.

Furthermore, the dominant correlations of the reduced
density matrices were analyzed in terms of their entanglement
spectra. Due to the NRG flow toward small energy scales, these
spectra can be combined into entanglement flow diagrams.
There different physical regimes can be identified similar to
the standard NRG energy flow diagrams. Considering that
the entanglement spectra are obtained solely based on the
wave function, the agreement of the low-energy fixed point
spectra is stunning. A possible larger disagreement at higher
energies (i.e., for earlier Wilson shells), on the other hand,
depends on the specific physical situation. Given the NRG
background, this appears to suggest the following. For all
energy shells (iterations) n where the entanglement spectrum is
quantitatively comparable to the NRG energy spectrum for the
lowest set of states, the reduced density matrices themselves
are not crucially important in the description of the system.
Instead, they may be replaced by thermal density matrices in
the NRG eigenbasis. In a sense, by tracing out the low-energy
sector, the resulting reduced density matrices maintain an
approximate thermal character, with implications to thermal-
ization at a given energy shell.24 For energy shells with a
qualitative difference between the energy and entanglement
spectra, however, the reduced density matrices are crucially
important to capture the correct physics in the NRG calculation
that explicitly uses data from such energy shells.

A detailed analysis of the deeper connection and the
explicit differences between the energy and the entanglement
spectra appears interesting, yet is out of the scope of this
paper. In particular, it also appears instructive to analyze the
entanglement spectra for non-Fermi liquid systems such as
the symmetric two-channel Kondo model, as the analysis
presented in this paper suggests a strong physical connection
of the entanglement spectra to the underlying physics.
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P4. Kondo Decoherence: Finding the Right Spin Model

for Iron Impurities in Gold and Silver

I T. A. Costi, L. Bergqvist, A. Weichselbaum, J. von Delft, T. Micklitz, A. Rosch, P.
Mavropoulos, P. H. Dederichs, F. Mallet, L. Saminadayar, and C. Bäuerle
Phys. Rev. Lett. 102, 056802 (2009).

The very original system where the Kondo effect was observed the first time, was iron
impurities in gold or silver [de Haas et al. (1934)]. With the Kondo physics understood
since Kondo (1964), nevertheless, the underlying microscopic model of above experimen-
tal system has remained controversial until very recently. Having partially filled d-orbital
levels, it appears very plausible that the plain simple impurity Anderson model is oversim-
plistic. Through a range of previous studies, nevertheless, a consensus had been reached
that the microscopic model corresponds to a fully screened Kondo model. The strategy of
the attached paper then was three-fold.

(1) An experimental study of quasi-one-dimensional samples of gold or silver with a care-
fully controlled impurity density through ion-implantation. These samples were then
analyzed w.r.t. two clearly distinctive physical quantities, namely resistivity and de-
phasing rate as a function of temperature.

(2) Using ab-initio calculations, the environment of the iron impurity as well the crystal
field splitting of the otherwise 5-fold degenerate d-orbitals was estimated in the presence
of spin-orbit coupling. This allowed to obtain an effective low-energy Hamiltonian. The
results showed that the d-orbitals are split into the 2-fold degenerate eg and the 3-fold
degenerate t2g set, with a somewhat larger density of states of the latter at the fermi
energy.

(3) NRG calculations finally allowed to simulate the strongly-correlated Kondo regime of
the model Hamiltonians derived from the ab-initio calculations.

Given a fully screened Kondo model, the ab-initio calculations therefore permit setups
with n = 2 (eg) or n = 3 (t2g) spinful bath channels, screening an impurity with spin
S = n/2. From the NRG point of view, the results were complimented still by n = 1, for
comparison. The experimental resistivity data was used to calibrate each model with the
NRG simulations, which then allowed a parameter-free prediction for the dephasing rate.
As seen in Fig. P4-4, the best agreement is seen for n = 3, which thus strongly suggests
the fully screened three-channel model as the actual microscopic model, with an impurity
spin of S = 3/2. The latter is also supported by the ab-initio calculations, as well as other
experiments using Mössbauer spectroscopy.

For above NRG calculations, the consistent and accurate approach to arbitrary tem-
peratures provided by the FDM-NRG was absolutely essential. Nevertheless, the NRG
calculations were performed using abelian symmetries only, which due to the complexity
of the model did not provide fully converged bare-spectral functions then. Only by using
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the self-energy improved spectral functions,10 a good agreement with the Friedel-sum-rule
was obtained which thus served as indication that the physics is well-captured. This has
been confirmed recently using the full-fledged non-abelian NRG, with a further detailed
comparison to magnetoresistivity data to be published in a separate publication (Markus
Hanl et al., in preparation).
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We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to

resolve a long-standing question concerning the classic Kondo systems of Fe impurities in the noble

metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple

bands, spin, and orbital degrees of freedom? Previous studies suggest a fully screened spin S Kondo

model, but the value of S remained ambiguous. We perform density functional theory calculations that

suggest S ¼ 3=2. We also compare previous and new measurements of both the resistivity and

decoherence rate in quasi-one-dimensional wires to numerical renormalization group predictions for S ¼
1=2, 1, and 3=2, finding excellent agreement for S ¼ 3=2.

DOI: 10.1103/PhysRevLett.102.056802 PACS numbers: 73.23.�b, 72.70.+m, 75.20.Hr

Introduction.—The Kondo effect of magnetic impurities
in nonmagnetic metals, e.g., Mn, Fe, or Co in Cu, Ag, or
Au, first manifested itself in the early 1930s as an anoma-
lous rise in resistivity with decreasing temperature, leading
to a resistivity minimum [1]. In 1964 Kondo explained this
effect [2] as resulting from an antiferromagnetic exchange
coupling between the spins of localized magnetic impuri-
ties and delocalized conduction electrons.

However, for many dilute magnetic alloys a fundamental
question has remained unresolved to this day: which effec-
tive low-energy Kondo-type model yields a realistic de-
scription of the relevant multiple bands, spin, and orbital
degrees of freedom [3]? Cases in point are Fe impurities in
Au and Ag, the former being the very first magnetic alloy
known to exhibit an anomalous resistivity minimum [1].
Previous attempts to fit experimental data on, for example,
Fe impurities in Ag (abbreviated as AgFe) with exact
theoretical results for thermodynamics, by assuming a
fully screened low-energy effective Kondo model [4,5],
have been inconclusive: specific heat data are absent and
the local susceptibility of Fe in Ag obtained from
Mössbauer spectroscopy [6] indicated a spin of S ¼ 3=2
while a fully screened S ¼ 2model has been used to fit the
temperature dependence of the local susceptibility [7].

A promising alternative route towards identifying the
model for Fe in Au or Ag is offered by studying transport
properties of high purity quasi-one-dimensional meso-
scopic wires of Au and Ag, doped with a carefully con-
trolled number of Fe impurities by means of ion
implantation [8–13]. Magnetic impurities affect these in
two different ways. Besides causing the aforementioned

resistivity anomaly, they also make an anomalous contri-
bution �mðTÞ to the electronic phase decoherence rate
��ðTÞ measured in weak (anti)localization: an itinerant

electron which spin flip scatters off a magnetic impurity,
leaves a mark in the environment, and thereby suffers
decoherence. By checking model predictions for both ef-
fects against experimental observations over several deca-
des in temperature, decoherence can thus be harnessed as a
highly sensitive probe of the actual form of the effective
exchange coupling. Experiments along these lines [11,12]
were consistent with a Kondo model in which the impurity
spin is fully screened and inconsistent with underscreened
or overscreened Kondo models [11]. A consistent descrip-
tion of both resistivity and decoherence measurements
using the simplest fully screened Kondo model, the S ¼
1=2 single-channel Kondo model, was, however, not pos-
sible: different Kondo scales were required for fitting the
resistivity and decoherence rates [11,12].
In this Letter we address the above problem via the

following strategy. (i) We carry out density functional
theory calculations within the local density approximation
(LDA) for Fe in Au and Ag to obtain information that
allows us to prescribe a low-energy effective model featur-
ing three bands coupling to impurities with spin S ¼ 3=2.
(ii) We calculate the resistivity �mðTÞ and decoherence rate
�mðTÞ due to magnetic impurities for three fully screened
Kondo models, with n ¼ 2S ¼ 1, 2, and 3, using Wilson’s
numerical renormalization group (NRG) approach. (iii) We
compare these predictions to experimental data: extracting
the characteristic Kondo temperature TS

K for each choice of
n from fits to �mðTÞ and using these TS

K to obtain
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parameter-free predictions for �mðTÞ, we find that the latter
agree best with experiment for n ¼ 3.

LDA calculations.—Fully relaxed density functional
theory calculations employing the VASP code [14] showed
that low-symmetry Fe configurations (split interstitials
[15]) are energetically unfavorable: Fe impurities prefer
an environment with cubic symmetry. As the calculated
defect formation energy of an Fe interstitial was found to
be about 2 eV higher than the energy of a substi-
tutional defect, we discuss the latter case in the following.
This is in line with experiments on Fe implantation in
AgAu alloys, where only substitutional Fe-atoms are found
[16].

Figure 1 shows the d-level local density of states of
substitutional Fe in Ag and Au, obtained by spin-polarized
calculations using a 108 atom supercell, with similar re-
sults being found for a 256 atom supercell. The cubic local
symmetry leads to eg (doublet) and t2g (triplet) compo-

nents with a eg-t2g splitting, � * 0:15 eV in LDA

[Figs. 1(a) and 1(b)]. The widths �eg and �t2g of the eg
and t2g states close to the Fermi level (EF) are of the order

of 1 eV, resulting from a substantial coupling to the con-
duction electrons. The large t2g component at EF persists

within LDAþ U [Figs. 1(c) and 1(d)] usingU ¼ 3 eV and
a Hund’s coupling JH ¼ 0:8 eV.

The spin and orbital moments are given in the legends of
Fig. 1 (spin-polarized Korringa-Kohn-Rostoker calcula-
tions yielded similar values [16]): Within spin-polarized
LDA a large spin moment �S of approximately 3–3:1�B

forms spontaneously, consistent with Mössbauer measure-
ments that give 3:1–3:2�B for the spin moment for Fe in
Ag [6]. In contrast, there is no tendency for a sizable orbital

moment (or a Jahn-Teller distortion). The small orbital
moments �L of <0:1�B (consistent with experimental
results [17]) arise only due to weak spin-orbit coupling.
We therefore conclude that the orbital degree of freedom is
quenched on an energy scale set by the width �t2g of the t2g
orbitals. Moreover, since the spin-orbit splitting of the
localized spin in the cubic environment is proportional to
�4

L, it is tiny, well below our numerical precision of
0.01 meV, and, therefore, smaller than the relevant
Kondo temperatures.
Low-energy effective models.—The above results justify

formulating an effective low-energy model in terms of the
spin degree of freedom only. The large spin moment �S of
3–3:1�B suggests an effective spin S ¼ 3=2. Our LDA
results thus imply as effective model a spin-3=2 three-
channel Kondo model, involving local and band electrons
of t2g symmetry. An alternative possibility, partially sup-

ported by the large (almost itinerant) t2g component at EF,

would be to model the system as a spin 1 localized in the eg
orbitals, that is perfectly screened by two conduction elec-
tron channels of eg symmetry. This spin is then also

coupled to (almost itinerant) t2g degrees of freedom via

the ferromagnetic JH. At high temperature, the latter binds
an itinerant t2g spin 1=2 to the local spin 1 to yield an

effective spin 3=2, consistent with the spin moment of
3–3:1�B obtained within LDA, whereas in the low tem-
perature limit, the irrelevance of JH under renormalization
[4] leads to the stated effective spin-1, two-band model.
Though such a model is well justified only for JH � �t2g ,

which is not the case here where JH � �t2g , our LDA

results do not completely exclude such a model. To identify
which of the models is most appropriate, we shall confront
their predictions with experimental data below.
We thus describe Fe in Ag and Au using the following

fully screened Kondo model:

H ¼ X

k��

"kc
y
k��ck�� þ J

X

�

S � s�: (1)

It describes n channels of conduction electrons with wave
vector k, spin �, and channel index �, whose spin density
��s� at the impurity site is coupled antiferromagnetically
to an Fe impurity with spin S ¼ n=2. Whereas our LDA
results suggest n ¼ 3, we shall also consider the cases
n ¼ 1 and 2.
NRG calculations.—The resistivity �mðTÞ and decoher-

ence rate �mðTÞ induced by magnetic impurities can be
obtained from the temperature and frequency dependence
of the impurity spectral density [18,19]. We have calcu-
lated these quantities using the NRG [20–22]. While such
calculations are routine for n ¼ 1 and 2 [21], they are
challenging for n ¼ 3. Exploiting recent advances in the
NRG [20] we were able to obtain accurate results also for
n ¼ 3 (using a discretization parameter of � ¼ 2 and
retaining 4500 states per NRG iteration).
Figure 2 shows �mðTÞ and �mðTÞ for n ¼ 2S ¼ 1, 2, and

3. For T * TS
K, enhanced spin-flip scattering causes both
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FIG. 1 (color online). The d-level local density of states
(LDOS) of substitutional Fe in Ag and Au within spin-polarized
LDA (a),(b) and LDAþ U (c),(d), with inclusion of spin-orbit
interactions, and showing the eg [gray (red)] and t2g (black)

components of the d-level LDOS of FeAg (left-hand panels) and
FeAu (right-hand panels). Majority (minority) contributions are
shown positive (negative). Legends give the spin (�S) and orbital
(�L) magnetic moments in units of the Bohr magneton �B and
the splitting (�) between the eg and t2g components of the

d-level LDOS.
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�mðTÞ and �mðTÞ to increase with decreasing temperature.
For T & TS

K the effective exchange coupling becomes so
strong that the impurity spins are fully screened by con-
duction electrons, forming spin singlets, causing �mðTÞ to
saturate to a constant and �mðTÞ to drop to zero. While
these effects are well known [2,8–12], it is of central
importance for this study that they depend quite signifi-
cantly on S ¼ n=2, in such a way that conduction electrons
are scattered and decohered more strongly the larger the
local spin S: With increasing S, (i) both resistivities and
decoherence rates decay more slowly with T at large
temperatures (�TS

K), and (ii) the ‘‘plateau’’ near the
maximum of �mðTÞ increases slightly in maximum height
�max
m and significantly in width. These changes turn out to

be sufficient to identify the proper value of S when com-
paring to experiments below.

Comparison with experiment.—We compared our theo-
retical results for �mðTÞ and �mðTÞ to measurements on
quasi-one-dimensional, disordered wires, for two AgFe
samples [11], (AgFe 2 and AgFe 3 having 27� 3 and
67:5� 7 ppm Fe impurities in Ag, respectively), with a
Kondo scale TK � 5 K (for S ¼ 3=2, see below). These
measurements extend up to T & TK allowing the region
T=TK & 1 of the scaling curves in Fig. 2 to be compared to
experiment. At T * TK � 5 K (i.e., T=TK � 1) the large
phonon contribution to the decoherence rate prohibits re-
liable extraction of �mðTÞ for our Ag samples (see below).
In order to compare theory and experiment for tempera-
tures T=TK � 1, above the maximum in the decoherence

rate, we therefore carried out new measurements on a
sample (AuFe 3) with 7� 0:7 ppm Fe impurities in Au
with a lower Kondo scale TK � 1:3 K but, as discussed
above, described by the same Kondo model. Combining
both sets of measurement thereby allows a large part of the
scaling curves in Fig. 2 to be compared with experiment.
Following [11], we subtract the electron-electron con-

tribution [23] from the total resistivity �, yielding �� due
to magnetic impurities (m) and phonons (ph):

��ðTÞ ¼ �mðTÞ þ �phðTÞ þ �: (2)

Here � is an (unknown) offset [24] and ��ðTÞ is expressed
per magnetic impurity. For temperatures low enough that
�phðTÞ can be neglected, ��ðTÞ � � corresponds to the

theoretical curve �mðTÞ ¼ �mð0ÞfSðT=TS
KÞ (cf. caption of

Fig. 2), where �mð0Þ ¼ ��ð0Þ � � is the unitary Kondo
resistivity. Figure 3 illustrates how we extract the Kondo
scale TS

K and �mð0Þ from the experimental data, by fitting
the Kondo-dominated part of ��ðTÞ in a fixed temperature
range (specified in the caption of Fig. 3) to the NRG results
of Fig. 2(a), using the ansatz

��ðTÞ � �þ ½��ð0Þ � �	fSðT=TS
KÞ: (3)

Such fits are made for each of the fully screened Kondo
models, using TS

K and � as fit parameters. Importantly, the
values for TS

K and �mð0Þ obtained from the fits, given in the
inset and caption of Fig. 3, respectively, show a significant
S dependence: both TS

K and �mð0Þ increase with S, since the
slope of the logarithmic Kondo increase of the theory
curves for �m (cf. Fig. 2) decreases significantly in magni-
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FIG. 2 (color online). (a) Resistivity �mðTÞ (solid lines) and
(b) decoherence rate �mðTÞ for 2S ¼ n ¼ 1; 2; 3; �mð0Þ ¼
2� ��=	@
0, �

0
m ¼ 2=	@
0, where �� is the residual resistivity,


0 the density of states per spin and channel, � the elastic
scattering time, and �max

m is the maximum value of �mðTÞ. We
defined the Kondo scale TS

K for each S via �mðTS
KÞ ¼ �mð0Þ=2.

Dashed lines in (a) show that the empirical form �mðTÞ=�mð0Þ �
fSðT=TS

KÞ with fSðxÞ ¼ ½1þ ð21=�S � 1Þx2	��S , used to fit ex-

perimental to NRG results for S ¼ 1=2 [25], also adequately fits
the NRG results for S ¼ 1 and S ¼ 3=2.
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FIG. 3 (color online). Measured resistivities ��ðTÞ (symbols)
fitted to Eq. (3) (lines), for n ¼ 2S ¼ 1, 2, and 3, in the range
below the onset of the phonon contribution, but above 100–
200 mK [26]. Specifically, we used 0.1–1.6 K for AuFe and
0.29–5.9 K for AgFe (arrows). The curves for AgFe 2 and
AuFe 3 have been offset vertically by 0.25 and 0.75, respectively.
The inset gives the Kondo scales TS

K for AgFe and AuFe

extracted from the fits. Estimates of the unitary Kondo resistiv-
ities for n ¼ 1, 2, and 3 (in units of n� � cm=ppm) yield
�mð0Þ ¼ 0:041, 0.047, and 0.049 for AgFe (averaged over the
two samples) and 0.23, 0.26, and 0.27 for AuFe, respectively.
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tude with S. Nevertheless, all three models fit the Kondo
contribution very well, as shown in Fig. 3, so a determi-
nation of the appropriate model from resistivity data alone
is not possible.

To break this impasse, we exploit the remarkably sensi-
tive S dependence of the spin-flip-induced decoherence
rate �mðTÞ. Figure 4 shows the measured dimensionless
decoherence rate �mðTÞ=�max

m for Ag and Au samples
(symbols) as function of T=TS

K for S ¼ 1=2, 1, and 3=2,
using the TS

K values extracted from the resistivities, to-
gether with the corresponding parameter-free theoretical
predictions (lines), taken from Fig. 2(b). The agreement
between theory and experiment is poor for S ¼ 1=2, better
for S ¼ 1, but excellent for S ¼ 3=2, confirming the con-
clusion drawn above from ab initio calculations. The de-
pendence on S is most strikingly revealed through the
width of the plateau region (in units of T=TS

K), which grows
with S for the theory curves but shrinks with S for the
experimental data (for which TS

K grows with S), with S ¼
3=2 giving the best agreement.

Conclusions.—In this Letter we addressed one of the
fundamental unresolved questions of Kondo physics: that
of deriving and solving the effective low-energy Kondo
model appropriate for a realistic description of Fe impuri-
ties in Au and Ag. Remarkably, for both Ag and Au
samples, the use of a fully screened S ¼ 3=2 three-channel
Kondo model allows a quantitatively consistent description
of both the resistivity and decoherence rate with a single
TK (for each material). Our results set a benchmark for the
level of quantitative understanding attainable for the
Kondo effect in real materials.
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While I haven been much engaged with methods and method development myself, there
have also been many applications on interesting physical systems. This was usually done
through projects with diploma, masters, as well as Ph.D. students. A very successful project
that I would like to point out in that respect, is work done with the Ph.D. student Markus
Hanl in a very fruitful collaboration with Hakan E. Türeci and the experimental group of
Atac Imamoglu in the context of absorption spectra of Kondo-excitons in quantum dots.

In this project, the clear challenge from the experimental point of view was to have a
large enough Kondo-temperature, such that for reasonably small temperatures within the
lifetime of an exciton, that is generated through the absorption of a photon, Kondo cor-
relations can build up. What from a theorists point of view corresponds to a few tunable
parameters (here in particular the coupling of a quantum dot through the hybridization Γ
to a close-by fermionic reservoir), requires cutting-edge experimental expertise. Amazingly,
most of the experimental setting eventually can be understood in terms of a plain single
impurity Anderson model together with Anderson orthogonality physics. After significant
fine-tuning of the corresponding Fermi-Golden rule calculation, we achieved a good the-
oretical understanding of the Kondo-exciton dynamics in the experimental setting, fully
fitted and understood through FDM-NRG simulations in combination with analytical cal-
culations by Türeci et al. (2011).
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Quantum quench of Kondo correlations in optical
absorption
C. Latta1, F. Haupt1, M. Hanl2, A. Weichselbaum2, M. Claassen1, W. Wuester1, P. Fallahi1, S. Faelt1, L. Glazman3, J. von Delft2,
H. E. Türeci1,4 & A. Imamoglu1

The interaction between a single confined spin and the spins of an
electron reservoir leads to one of the most remarkable phenomena of
many-body physics—the Kondo effect1,2. Electronic transport mea-
surements on single artificial atoms, or quantum dots, have made it
possible to study the effect in great detail3–5. Here we report optical
measurements on a single semiconductor quantum dot tunnel-
coupled to a degenerate electron gas which show that absorption
of a single photon leads to an abrupt change in the system
Hamiltonian and a quantum quench of Kondo correlations. By
inferring the characteristic power-law exponents from the experi-
mental absorption line shapes, we find a unique signature of the
quench in the form of an Anderson orthogonality catastrophe6,7,
induced by a vanishing overlap between the initial and final many-
body wavefunctions. We show that the power-law exponent that
determines the degree of orthogonality can be tuned using an
external magnetic field8, which unequivocally demonstrates that
the observed absorption line shape originates from Kondo correla-
tions. Our experiments demonstrate that optical measurements on
single artificial atoms offer new perspectives on many-body phe-
nomena previously studied using transport spectroscopy only.

Optical spectroscopy of single quantum dots has demonstrated its
potential for applications in quantum information processing, particu-
larly in the realization of single- and entangled-photon sources9,10,
coherent spin qubits11,12 and a spin–photon interface13,14. Although
recent experiments have established this system as a new model for
solid-state quantum optics, all of the striking experimental observa-
tions made so far can be understood within the framework of single- or
few-particle physics enriched by perturbative coupling to reservoirs
involving phonons, a degenerate electron gas15–17 or nuclear spins18,19.

We present differential transmission experiments20 on single,
charge-tunable quantum dots that reveal optical signatures of the
Kondo effect. By contrast with prior experiments17,21, the tunnel coup-
ling between the quantum dot and a nearby degenerate electron gas,
which we refer to as the fermionic reservoir, is engineered to be so
strong that the resulting exchange interactions cannot be treated using
a perturbative system–reservoir theory: in the initial state, the ‘system’—
quantum dot spin—is maximally entangled with the fermionic reservoir,
forming a singlet. Various settings have been proposed for finding
optical signatures of Kondo physics8,22–25; our work is most closely
related to the theoretical investigation of refs 8, 25.

The feature that differentiates our results from all prior transport-
based investigations of the Kondo effect3–5 is the realization of a
quantum quench of the local Hamiltonian; in our experiments, photon
absorption abruptly turns off the exchange interaction between the
quantum dot electron and the fermionic reservoir, leading to the
destruction of the correlated dot–reservoir singlet that otherwise acts
as a local scattering potential for all reservoir electrons. The overlap
between N-electron fermionic reservoir states with and without a local
scattering potential scales as N2a, with a . 0 (refs 6, 7). This reduced
overlap, called an Anderson orthogonality catastrophe (AOC), leads to

a power-law tail in absorption if the scattering potential is turned on or
off by photon absorption. Here we determine the AOC-induced
power-law exponents in the absorption line shape that uniquely char-
acterize the quench of Kondo correlations. Moreover, by tuning the
applied laser frequency, we observe both the perturbative and the non-
perturbative regimes of the Kondo effect in one absorption line shape,
without having to change the fermionic reservoir (electron) temper-
ature, TFR. The AOC after a Kondo quench can, in principle, also be
probed by core-level X-ray absorption spectroscopy of suitable bulk
materials26, but optical studies of quantum dots offer higher resolution
and a tunable local Hamiltonian.

The quantum dot sample we study is shown schematically in Fig. 1a: a
gate voltage, Vg, applied between a top Schottky gate and the degenerate
electron gas, allows us to tune the charging state of the quantum dot27.
Figure 1b shows the photoluminescence spectrum of a particular
quantum dot (dot 1), as a function of Vg, where different discrete ‘char-
ging plateaux’ are clearly observable. The dependence of the photo-
luminescence energy on the quantum dot charging state originates from
a Coulomb renormalization of the optical transition energy. In addition
to photoluminescence lines (for example X0) associated with a fixed
charging state (for example neutral) of the quantum dot, we also observe
spatially indirect transitions with a strong dependence on Vg (refs 8, 17;
see Fig. 1b, red arrow).

1Institute of Quantum Electronics, ETH-Zürich, CH-8093 Zürich, Switzerland. 2Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
3Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520, USA. 4Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA.
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In this Letter, we focus on the X2 plateau, for which the quantum
dot carries the charge of a single electron and the influence of the
fermionic reservoir on the quantum dot photoluminescence disper-
sion and linewidth is strongest. The X2 optical transition couples the
initial configuration, containing on average one electron in the
quantum dot, to a final configuration, containing on average two
electrons and a valence-band hole (a negatively charged trion). This
transition can be described within the framework of an excitonic
Anderson model8,25 (EAM), depicted schematically in Fig. 2c (and
described explicitly in Supplementary Information). It is parameterized
by the energy, e, of the quantum dot electron level with respect to the
Fermi level; the on-site Coulomb repulsion, Uee; the tunnelling rate, C,
between quantum dot and fermionic reservoir; the half-bandwidth, D,
of the fermionic reservoir; and the electron–hole Coulomb attraction,
Ueh. The last is relevant only in the final configuration, where it effec-
tively lowers the electron level energy to e 2 Ueh, thus ensuring the
double occupancy of the electron level. An estimate from the photo-
luminescence data in Fig. 1b yields Ueh < Uee 1 4 meV.

The inset of Fig. 2a shows high-resolution laser absorption spec-
troscopy on dot 1 across the X2 single-electron charging plateau

(Supplementary Information). Here we parameterize Vg in terms of e,
normalized and shifted such that e 5 2Uee/2 for the gate voltage at which
the absorption contrast is maximal. Instead of the usual linear d.c. Stark
shift of the absorption peak that is characteristic of charge-tunable
quantum dots, we find a strongly nonlinear, e-dependent shift of the
X2 transition energy15,17, which measures the energy difference between
the final and initial ground states. As shown in Fig. 2c, this energy shift
arises from a renormalization of the initial state energy28 due to virtual
tunnelling between the singly occupied quantum dot and the fermionic
reservoir (analogous to the Lamb shift of atomic ground states). The final
trion state energy, on the other hand, is hardly affected by virtual tunnel-
ling processes, owing to Ueh 2 Uee being large. This renormalization-
induced redshift of the initial state is strongest at the plateau edges and
leads to an e-dependent blueshift of the optical resonance frequency. The
latter can be used to determine the EAM parameters for dot 1:
Uee 5 7.5 meV, C 5 0.7 meV and D 5 3.5 meV. Numerical renormaliza-
tion group (NRG) calculations for the transition energy (Fig. 2a, blue line)
give excellent agreement with the experimental data (blue symbols).

We now consider the detailed form of the absorption line shape,
A(n), as function of the detuning, n, between the applied laser fre-
quency and the transition threshold. Figure 3a shows, on a log–log
scale, the blue (n . 0) tail of A(n) for dot 1, for the four values of gate
voltage indicated by arrows in the inset of Fig. 2a. The inset of Fig. 3a
compares the full, un-normalized absorption line shapes for the same
gate voltages on a linear scale; the red (n , 0) absorption tail allows us
to determine the temperature of the fermionic reservoir to be
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energy,DEtransition (blue, left axis), and the absorption contrast (red, right axis) are
well reproduced by NRG calculations (solid lines) for the following parameters:
Uee 5 7.5 meV, C 5 0.7 meV, D 5 3.5 meV, Ueh 5 11 meV, TFR 5 180 mK. Inset,
absorption on the negatively charged exciton X2 transition of dot 1 as a function
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occupancies, ni and nf, of the quantum dot electron level in the initial and final
ground states. c, Energy renormalization process: the initial configuration (left)
features a single electron in the quantum dot, whose energy is lowered by virtual
tunnelling between the dot and the fermionic reservoir. Because virtual
excitations with energy DE contribute a shift proportional to 2C/DE, the total
shift (involving a sum over all possible values ofDE), is strongest near the edges of
the X2 plateau. Towards the right-hand edge (e near zero), the dominant
contribution comes from virtual tunnelling of the quantum dot electron into the
fermionic reservoir (as depicted); towards the left-hand edge (e near 2Uee), it
comes from virtual tunnelling of a fermionic reservoir electron into the quantum
dot (not depicted). In the final configuration (right), the quantum dot contains
two electrons and a hole. The electron–hole Coulomb attraction, Ueh, effectively
lowers the quantum dot electron level energy to e 2 Ueh. This raises the energy
cost, DE, for virtual excitations by Ueh 2 Uee (which is ?C), such that the final-
state energy renormalization is negligible. The renormalization of the transition
energy, probed by a weak laser, is thus mainly due to initial-state energy
renormalization. d, Anderson orthogonality: the Kondo cloud (left-hand
diagram) and local singlet (right-hand diagram) of the initial and final
configurations produce strong or weak scattering phase shifts, respectively.
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Figure 3 | The absorption line shape A(n). a, Blue tail of A(n)/A(nmax) for dot 1,
plotted versus the laser detuning, n, on a log–log scale. Here nmax is the threshold
frequency for which the absorption strength is maximal. The experimental data
were measured at an electron temperature of TFR 5 180 mK for the four values of
gate voltage, e, indicated by arrows in Fig. 2a; the corresponding Kondo
temperatures, TK(e), are indicated by vertical lines in matching colours. The
yellow line indicates TFR. NRG results (solid lines), obtained using the parameters
from the fit in Fig. 2a, are in remarkable agreement with experiment. Inset, the
measured full (un-normalized) absorption line shape for the same e values,
plotted on a linear scale. b, NRG results for T 5 TFR (solid lines) and TFR 5 0
(dashed lines); the latter show the n20.5 behaviour expected in the strong-
coupling regime, TFR= n=TK. c, The rescaled line shape, A(n)/A(TK), versus
n/TK shows a universal scaling collapse characteristic of Kondo physics.
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TFR 5 180 mK, equivalent to 15.6meV (Supplementary Information).
The strong variation of the peak absorption strength and width shown
in the inset of Fig. 3a is a consequence of the exponential dependence
of the Kondo temperature on the gate voltage e:

TK(e)~
ffiffiffiffiffiffiffi
CD
p

exp { 1{
2e

Uee
z1

� �2
 !

pUee

8C

" #
ð1Þ

For dot 1, TK varies between 24 and 118meV; we emphasize that even
though TK 5 464meV for the black curve (Fig. 3a, inset), the dot–reservoir
systemisnolongerinthelocalmomentregimeforthisgatevoltage.All line
shapes carry the signatures of an optical interference effect induced by the
sample structure (causing some line shapes to become negative for small
red detunings), and of independently measured fluctuations in gate volt-
age; both effects have been taken into account in the calculated line shapes
(Supplementary Information). Calculating the line shapes using NRG
(solid lines) without any further fit parameters, we find remarkable agree-
ment with experiment for all four line shapes shown in Fig. 3a, demon-
strating the validity of the EAM8 for the coupled dot–reservoir system.

For blue detunings satisfying n . max(TFR, TK), a perturbative
description for A(n) is possible. The frequency scale for which the
perturbative ,n21 dependence in Fig. 3a sets in and the peak absorp-
tion contrast itself both strongly depend on gate voltage. Remarkably,
for gate voltages such that the initial ground state is a Kondo singlet,
this dependence is such that it permits a scaling collapse: Fig. 3c shows
the normalized absorption line shape, A(n)/A(TK(e)), as a function of
n/TK for the red, green and blue curves of Fig. 3a (but omitting the black
curve, which is in the mixed valence regime). We find that all three
curves collapse to a universal scaling function of n/TK, as expected8 for
the regime TFR= n=Uee. Thus, the e dependence of the crossover
scale is captured by equation (1) for TK; this observation is unequivocal
proof that the Kondo effect is indeed present in our system.

In the limit TFR , n , TK, a perturbative description of the line shape
is no longer valid. In the initial configuration, the exchange interaction
between the quantum dot and the fermionic reservoir induces a ‘Kondo
screening cloud’ that forms a singlet with the quantum dot spin. This
acts as a scattering potential that induces strong phase shifts for those
low-energy fermionic excitations whose energies differ from the Fermi
level by TK or less. In the final configuration after photon absorption,
the quantum dot has two electrons in a local singlet state. Therefore, the
Kondo screening cloud, and the scattering potential that it constitutes
for reservoir electrons, disappears in the long-time limit: the corres-
ponding ground-state wavefunction is a tensor product of the local
singlet and free electronic states, with only weak phase shifts. Because
the initial and final fermionic reservoir phase shifts differ (as depicted
schematically in Fig. 2d), the fermionic reservoir does not remain a
spectator during the X2 transition; instead, the transition matrix ele-
ment between the ground states of the initial and final configurations is
vanishingly small. This leads to an AOC that manifests itself by trans-
forming a delta-function resonance (of an uncoupled quantum dot)
into a power-law singularity6 of the form n2g, where the exponent g
characterizes the extent of the AOC. For TFR= n=TK, the absorption
line shape of the X2 transition is expected to show an analogous power-
law singularity. The exponent g is predicted8,25 to range between 0 and
0.5 (assuming no magnetic field), with g < 0.5 being characteristic for a
Kondo-correlated initial state and an uncorrelated final state. This line
shape modification is a consequence of a redistribution of the optical
oscillator strength, associated with the fact that the fermionic reservoir
wavefunction in the Kondo-correlated initial state has finite overlap
with a range of final states consisting of electron–hole pair excitations
out of a non-interacting fermionic reservoir.

If TFR=TK and the optical detuning is reduced below TK, the line
shape is predicted to cross over smoothly from the perturbative 1/n tail
to the strong-coupling 1/n0.5 power law just discussed. This crossover is
illustrated in Fig. 3b (dashed lines) by NRG calculations, performed at
TFR 5 0 for the three e values of Fig. 3c: Remarkably, despite drastic

differences in the n . TK tails due to different values of TK(e), all three
line shapes show similar power-law exponents, of around g < 0.5, for
n=TK. For non-zero temperature, however, the 1/n0.5 power law is cut
off and saturates once n decreases past TFR (Fig. 3b, solid lines), because
of thermal averaging over initial states with excitation energies #TFR.

A direct extraction of the 1/n0.5 power law from the measured data is
difficult owing to the small accessible experimental window,
TFR , n , TK. Nevertheless, we are able to determine the power-law
exponent accurately for a more strongly coupled quantum dot (dot 2)
by using the fact that the detailed form of the line shape sensitively
depends on the exponent g, which can be tuned using an external mag-
netic field8. This tunability arises because the magnetic field, Bext, changes
the initial dot occupancies, favouring spin up over spin down, and hence
affects the overlap between the initial and final states of the transition
(Supplementary Information). Figure 4a shows the Bext 5 0 absorption
line shape for dot 2 with parameters Uee 5 7.5 meV, C 5 1 meV,
D 5 6.5 meV and Ueh 5 (3/2)Uee, measured at e/Uee 5 20.43 (where
TK 5 140meV) and TFR 5 15.6meV. An attempt to obtain a fit to the
experimental absorption line shape using a perturbative formula8

A(n)!
n=TFR

1{e{n=TFR

c

n2zc2=4

where c # TFR denotes a phenomenological relaxation rate, fails markedly
for dot 2 (Fig. 4a, red curve). By striking contrast, Fig. 4b shows that an
excellent fit is obtained for a weakly coupled dot (dot 3; Supplementary
Information).
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Figure 4 | Magnetic field dependence of the absorption. a, The absorption
line shape of dot 2 for B 5 0 (symbols) cannot be fit by the perturbative formula
(red line) given in the text. b, By contrast, for dot 3 such a fit works well.
c, Absorption line shapes for dot 2, at Bext 5 0 and 1 T, for the blue–red trion
transition. The magnetic field changes the strength of the AOC and the line
shape. The small peak that appears at n < 80meV in the red trion absorption is
due to incomplete suppression of the laser polarization that couples to the blue
trion transition. Inset, the peak absorption contrast shows good agreement with
the NRG calculations for Bext # 1.5 T. d, Normalized absorption line shape for
dot 2 in a log–log plot. These measurements pin the value of g(Bext 5 0) to ,0.5,
which is a direct signature of a Kondo singlet in the absorption line shape. In
addition, they demonstrate the tunability of an orthogonality exponent.
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Figure 4c shows the magnetic field dependence of the line shape of dot
2, measured in Faraday geometry, where quantum dot optical selection
rules13 ensure that by choosing right- or left-handed circular polarization
of the laser field, it is possible to probe selectively the blue or, respectively,
red trion transition that couples exclusively to the spin-up or, respectively,
spin-down initial state. In comparison with the Bext 5 0 (Fig. 4c, black
squares) results, the absorption line shapes for the blue (Fig. 4c; blue dots)
and red (Fig. 4c; red triangles) trion transitions at Bext 5 1 T exhibit two
striking features: the peak contrast increases (blue) or decreases (red) by a
factor of ,2, and the area under the absorption curve increases (blue) or
decreases (red) by less than 20%. These observations indicate that the
change in the Bext # 1.5 T line shapes is predominantly due to a line
narrowing associated with an increase in the AOC power-law exponent,
g, of the blue trion transition and a line broadening associated with a
decrease in g for the red trion transition. To quantify the field-induced
change in g, we plot in Fig. 4d the corresponding normalized line shapes,
A(n)/A(TK), as functions of n/TK in a log–log plot, together with the
corresponding NRG results (solid lines): the latter yield g 5 0.5 at
Bext 5 0 and g 5 0.31 (red trion) and g 5 0.66 (blue trion) at Bext 5 1 T,
proving the remarkable sensitivity of the measured line shapes to the
AOC-determined power-law exponents. By contrast with Fig. 3c, the line
shapes in Fig. 4d do not show a scaling collapse. We emphasize that
qualitatively similar features are observed for all field values
Bext # 1.5 T; for Bext . 1.5 T, the blue trion absorption contrast has oscil-
lations (Fig. 4c, inset), most probably stemming from the modification of
the fermionic reservoir density of states at high fields in Faraday geometry.

The area under the (un-normalized) absorption line shape is pro-
portional to the initial occupancy, n" or n#, of the spin-up or, respect-
ively, spin-down state. The small (#20%) field-induced change in the
measured areas in Fig. 4c implies a small magnetization, m 5 (n"2

n#)/2 < 0.16 (Supplementary Information). By contrast, the corres-
ponding magnetization for a free spin would have been m 5 0.40. This
measurement confirms that the static spin susceptibility of the initial
configuration is substantially reduced relative to that of a free spin,
providing yet another optical signature of the Kondo screening.

The remarkable agreement between our experimental data depicted
in Figs 2–4 and the NRG calculations demonstrates Kondo correla-
tions between a quantum dot electron and the electrons in a fermionic
reservoir. The optical probe of these correlations unequivocally shows
the signatures of Anderson orthogonality physics associated with the
quantum quench of Kondo correlations, with field-tunable power-law
exponents. Our experiments establish the potential of single, optically
active quantum dots in investigating many-body physics. In addition,
they pave the way for a new class of quantum optics experiments in
which the influence of the simultaneous presence of non-perturbative
cavity or laser coupling and Kondo correlations on electric field and
photon correlations could be investigated.

METHODS SUMMARY
The InGaAs quantum dots studied in this work were grown by molecular beam
epitaxy; the quantum dot layer was separated by a nominally 15-nm-thick GaAs
tunnel barrier from a back gate consisting of a 40-nm-thick n11-doped GaAs layer.
This back gate serves as an electron reservoir. The distance from the quantum dot
layer to the sample surface was 90 nm. A voltage applied between a 5-nm-thick
NiCr top gate and the n11 GaAs back gate allows for discrete charging of the
quantum dots. The sample was placed inside a fibre-based confocal microscope
embedded in a dilution refrigerator with a base temperature of 20 mK in the mixing
chamber. The objective was mounted on a stack of low-temperature x–y–z posi-
tioners. The cryostat was equipped with a 7-T magnet. The absorption experiments
were performed by focusing on a single quantum dot a power- and frequency-
stabilized, single-mode tunable laser with an intensity of 15 nW. The objective had a
numerical aperture of 0.6, yielding a diffraction-limited spot size. The change in
transmission through the sample was recorded using a silicon photodiode. To
increase the signal-to-noise ratio, a lock-in technique was used whereby the gate
voltage was modulated at 187.195 Hz with a modulation amplitude of 50 mV.

The calculations were carried out using the NRG. The continuous energy spec-
trum of the Fermi reservoir was logarithmically discretized and mapped onto a
semi-infinite chain with exponentially decaying hopping amplitudes. In each

iteration, a new site was added to the chain, which corresponds to including ever
lower energy scales of the system. By combining NRG data from all iterations, it
was possible to construct a complete set of approximate many-body eigenstates of
the full Hamiltonian, which could be used to calculate the physical quantities using
the full-density-matrix NRG (Supplementary Information).
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Anderson orthogonality (AO) deals with the fact that, given some local perturbation of
the underlying Hamiltonian, quantum-many-body states in the low-energy-sector quickly
become orthogonal to each other in the the thermodynamic limit. Since Anderson orthog-
onality typically considers an arbitrary local perturbation in some effective non-interacting
environment, this setup is ideally suited for the NRG. Anderson orthogonality typically
manifests itself in absorption spectra, in that the absorption of a photon changes the lo-
cal charge configuration. If by creating an electron-hole pair, the hole has a significantly
long lifetime such that the entire system can equilibrate prior to recombination, then the
latter setting corresponds to a “final Hamiltonian” amenable for AO physics. The related
dynamics for complex interacting systems has been studied in much detail in Münder et al.
(2011), which was just accepted for publication.

The essential simple observation of the attached paper is Eq. (P6-16) which was in-
spired by the standard analysis of the finite-size spectra obtained from the NRG:12,72,75

even though one has a finite Wilson chain of linear length k, due to the logarithmic
discretization this mimics an exponentially large system in terms of mean level-spacing.
Starting from this, all AO related relations can be nicely demonstrated. While originally
shown for non-interacting fermi ground states,4 AO nevertheless also holds for interacting
systems. For the latter, however, the overlap of ground state wave functions is far from
trivial. Yet nevertheless, as we demonstrate in the paper, within the framework of the
NRG this becomes a simple exercise in MPS. Overall then, the NRG provides an accurate
self-contained framework that allows (1) to directly calculate the AO exponent related to
the explicit decay of ground state wave functions in the thermodynamic limit, and compare
this with known exponents in terms of (2) phase shifts, or (3) overall charge that flows to
or comes in from infinity due to the local perturbation. All of this is demonstrated and
discussed in detail for a range of interacting models in the attached paper.
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Anderson orthogonality and the numerical renormalization group
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Anderson orthogonality (AO) refers to the fact that the ground states of two Fermi seas that experience different
local scattering potentials, say |GI〉 and |GF〉, become orthogonal in the thermodynamic limit of large particle
number N , in that |〈GI|GF〉| ∼ N− 1

2 �2
AO for N → ∞. We show that the numerical renormalization group offers

a simple and precise way to calculate the exponent �AO: the overlap, calculated as a function of Wilson chain
length k, decays exponentially ∼e−kα , and �AO can be extracted directly from the exponent α. The results for
�AO so obtained are consistent (with relative errors typically smaller than 1%) with two other related quantities
that compare how ground-state properties change upon switching from |GI〉 to |GF〉: the difference in scattering
phase shifts at the Fermi energy, and the displaced charge flowing in from infinity. We illustrate this for several
nontrivial interacting models, including systems that exhibit population switching.

DOI: 10.1103/PhysRevB.84.075137 PACS number(s): 02.70.−c, 05.10.Cc, 75.20.Hr, 78.20.Bh

I. INTRODUCTION

In 1967, Anderson considered the response of a Fermi
sea to a change in local scattering potential and made the
following observation1: The ground states |GI〉 and |GF〉 of
the Hamiltonians ĤI and ĤF describing the system before
and after the change, respectively, become orthogonal in the
thermodynamic limit, decaying with total particle number N

as

|〈GI|GF〉| ∼ N− 1
2 �2

AO , (1)

because the single-particle states comprising the two Fermi
seas are characterized by different phase shifts.

Whenever the Anderson orthogonality (AO) exponent �AO

is finite, the overlap of the two ground-state wave functions
goes to zero as the system size becomes macroscopic. As a
consequence, matrix elements of the form |〈GI|Ô|GF〉|, where
Ô is a local operator acting at the site of the localized potential,
necessarily also vanish in the thermodynamic limit. This
fact has far-reaching consequences, underlying several fun-
damental phenomena in condensed matter physics involving
quantum impurity models, i.e., models describing a Fermi sea
coupled to localized quantum degrees of freedom. Examples
are the Mahan exciton (ME) and the Fermi-edge singularity2–5

(FES) in absorption spectra, and the Kondo effect6 arising
in magnetic alloys7 or in transport through quantum dots.8

For all of these, the low-temperature dynamics is governed
by the response of the Fermi sea to a sudden switch of a
local scattering potential. More recently, there has also been
growing interest in inducing such a sudden switch, or quantum
quench, by optical excitations of a quantum dot tunnel-coupled
to a Fermi sea, in which case the post-quench dynamics leaves
fingerprints, characteristic of AO, in the optical absorption or
emission line shape.9–11

The intrinsic connection of local quantum quenches to the
scaling of the Anderson orthogonality with system size can be
intuitively understood as follows. Consider an instantaneous
event at the location of the impurity at time t = 0 in a system
initially in equilibrium. This local perturbation will spread
out spatially, such that for t > 0, the initial wave function is
affected only within a radius L � vf t of the impurity, with

vf the Fermi velocity. The AO finite-size scaling in Eq. (1)
therefore directly resembles the actual experimental situation
and, in particular, allows the exponent �AO to be directly
related to the exponents seen in experimental observables
at long-time scales, or at the threshold frequency in Fourier
space.12

A powerful numerical tool for studying quantum impurity
models is the numerical renormalization group (NRG),13,14

which allows numerous static and dynamical quantities to
be calculated explicitly, also in the thermodynamic limit of
infinite bath size. The purpose of this paper is to point out
that NRG also offers a completely straightforward way to
calculate the overlap |〈GI|GF〉| and hence to extract �AO. The
advantage of using NRG for this purpose is that NRG is able to
deal with quantum impurity models that in general also involve
local interactions, which are usually not tractable analytically.
Although Anderson himself did not include local interactions
in his considerations,1 his prediction (1) still applies, provided
the ground states |GI,F〉 describe Fermi liquids. This is the
case for most impurity models (but not all; the two-channel
Kondo model is a notable exception). Another useful feature
of NRG is that it allows consistency checks on its results for
overlap decays since �AO is known to be related to a change of
scattering phase shifts at the Fermi surface. These phase shifts
can be calculated independently, either from NRG energy flow
diagrams, or via Friedel’s sum rule from the displaced charge,
as will be elaborated below.

A further concrete motivation for the present study is
to develop a convenient tool for calculating AO exponents
for quantum dot models that display the phenomenon of
population switching.15–19 In such models, a quantum dot
tunnel-coupled to leads contains levels of different widths, and
is capacitively coupled to a gate voltage that shifts the levels
energy relative to the Fermi level of the leads. Under suitable
conditions, an (adiabatic) sweep of the gate voltage induces
an inversion in the population of these levels (a so-called
population switch), implying a change in the local potential
seen by the Fermi seas in the leads. In this paper, we verify
that the method of extracting �AO from 〈GI|GF〉 works reliably
also for such models. In a separate publication,12 we will use
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this method to analyze whether AO can lead to a quantum
phase transition in such models, as suggested in Ref. 19.

The remainder of this paper is structured as follows: In
Sec. II, we define the AO exponent �AO in general terms,
and explain in Sec. III how NRG can be used to calculate it.
Section IV presents numerical results for several interacting
quantum dot models of increasing complexity: first the spinless
interacting resonant level model (IRLM), then the single-
impurity Anderson model (SIAM), followed by two models
exhibiting population switching, one for spinless and the other
for spinful electrons. In all cases, our results for �AO satisfy
all consistency checks to within less than 1%.

II. DEFINITION OF ANDERSON ORTHOGONALITY

A. AO for a single channel

To set the stage, let us review AO in the context of
a free Fermi sea involving a single species or channel
of noninteracting electrons experiencing two different local
scattering potentials. The initial and final systems are described
in full by the Hamiltonians ĤI and ĤF, respectively. Let ĉ†

ε,X|0〉
be the single-particle eigenstates of ĤX characterized by the
scattering phase shifts δX(ε), where X ∈ {I,F} and ĉ

†
ε,X are

fermion creation operators, and let εf be the same Fermi
energy for both Fermi seas |GX〉. Anderson showed that in
the thermodynamic limit of large particle number N → ∞,
the overlap

〈GI|GF〉 = 〈0|
∏

ε < εf

ĉε,I

∏
ε < εf

ĉ
†
ε,F|0〉 (2)

decays as in Eq. (1),1,4 where �AO is equal to the difference in
single-particle phase shifts at the Fermi level

�AO = �ph ≡ [δF(εf ) − δI(ε
f )]/π . (3)

The relative sign between �AO and �ph (+, not −) does not
affect the orthogonality exponent �2

AO, but follows standard
convention [Ref. 20, Eq. (7), or Ref. 21, Eq. (21)].

In this paper, we will compare three independent ways of
calculating �AO. (i) The first approach calculates the overlap
|〈GI|GF〉| of Eq. (1) explicitly as a function of (effective)
system size. The main novelty of this paper is to point out that
this can easily be done in the framework of NRG, as will be
explained in detail in Sec. III.

(ii) The second approach is to directly calculate �ph via
Eq. (3), since the extraction of phase shifts δX(εf ) from NRG
finite-size spectra is well known13: Provided that ĤX describes
a Fermi liquid, the (suitably normalized) fixed point spectrum
of NRG can be reconstructed in terms of equidistant free-
particle levels shifted by an amount determined by δX(εf ).
The many-body excitation energy of an additional particle, a
hole and a particle-hole pair, thus allow the phase shift δX(εf )
to be determined unambiguously.

(iii) The third approach exploits Friedel’s sum rule,20 which
relates the difference in phase shifts to the so-called displaced
charge �ch via �ch = �ph. Here the displaced charge �ch is
defined as the charge in units of e (i.e., the number of electrons)
flowing inward from infinity into a region of large but finite

volume, say Vlarge, surrounding the scattering location, upon
switching from ĤI to ĤF:

�ch ≡ 〈GF|n̂tot|GF〉 − 〈GI|n̂tot|GI〉
≡ �sea + �dot . (4)

Here, n̂tot ≡ n̂sea + n̂dot, where n̂sea is the total number of
Fermi-sea electrons within Vlarge, whereas n̂dot is the local
charge of the scattering site, henceforth called “dot.”

To summarize, we have the equalities

�2
AO = �2

ph = �2
ch , (5)

where all three quantities can be calculated independently and
straightforwardly within the NRG. Thus, Eq. (5) constitutes
a strong consistency check. We will demonstrate below that
NRG results satisfy this check with good accuracy (deviations
are typically below 1%).

B. AO for multiple channels

We will also consider models involving several independent
and conserved channels (e.g., spin in spin-conserving models).
In the absence of interactions, the overall ground-state wave
function is the product of those of the individual channels.
With respect to AO, this trivially implies that each channel
adds independently to the AO exponent in Eq. (1),

�2
AO =

Nc∑
μ=1

�2
AO,μ

, (6)

where μ = 1, . . . ,Nc labels the Nc different channels. We
will demonstrate below that the additive character in Eq. (6)
generalizes to systems with local interactions, provided that
the particle number in each channel remains conserved. This is
remarkable since interactions may cause the ground-state wave
function to involve entanglement between local and Fermi-sea
degrees of freedom from different channels. However, our
results imply that the asymptotic tails of the ground-state wave
function far from the dot still factorize into a product of factors
from individual channels. In particular, we will calculate the
displaced charge for each individual channel [cf. Eq. (4)]

�ch,μ ≡ 〈GF|n̂tot,μ|GF〉 − 〈GI|n̂tot,μ|GI〉
≡ �sea,μ + �dot,μ , (7)

where n̂tot,μ = n̂sea,μ + n̂dot,μ. Assuming no interactions in the
respective Fermi seas, it follows from Friedel’s sum rule that
�2

AO,μ
= �2

ch,μ
, and therefore

�2
AO =

Nc∑
μ=1

�2
ch,μ ≡ �2

ch , (8)

where �2
ch is the total sum of the squares of the displaced

charges of the separate channels. Equation (8) holds with great
numerical accuracy, too, as will be shown below.
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III. TREATING ANDERSON ORTHOGONALITY
USING NRG

A. General impurity models

The problem of a noninteracting Fermi sea in the presence
of a local scatterer belongs to the general class of quantum
impurity models treatable by Wilson’s NRG.13 Our proposed
approach for calculating �AO applies to any impurity model
treatable by NRG. To be specific, however, we will focus here
on generalized Anderson impurity type models. They describe
Nc different (and conserved) species or channels of fermions
that hybridize with local degrees of freedom at the dot, while
all interaction terms are local.

We take both the initial and final (X ∈ {I,F}) Hamiltonians
to have the generic form ĤX = Ĥb + Ĥd,X + Ĥint. The first
term

Ĥb =
Nc∑

μ=1

∑
ε

ε ĉ†
εμĉεμ (9)

describes a noninteracting Fermi sea involving Nc channels.
(Nc includes the spin index, if present.) For simplicity, we
assume a constant density of states ρμ(ε) = ρ0,μθ (D − |ε|)
for each channel with half-bandwidth D. Moreover, when
representing numerical results, energies will be measured in
units of half-bandwidth, hence D := 1. The Fermi sea is
assumed to couple to the dot only via the local operators
f̂0μ = 1√

Nb

∑
ε ĉεμ and f̂

†
0μ, that, respectively, annihilate or

create a Fermi-sea electron of channel μ at the position of the
dot �r = 0, with a proper normalization constant Nb to ensure
[f0μ,f

†
0μ′ ] = δμμ′ .

The second term Ĥd,X contains the noninteracting local part
of the Hamiltonian, including the dot-lead hybridization

Ĥd,X =
Nc∑

μ=1

εdμ,Xn̂dμ +
Nc∑

μ=1

√
2
μ

π
[d̂†

μf̂0μ + H.c.]. (10)

Here, εdμ,X is the energy of dot level μ in the initial or
final configuration, and n̂dμ = d̂†

μd̂μ is its electron number.

μ ≡ πρμV 2

μ is the effective width of level μ induced by its
hybridization with channel μ of the Fermi sea, with Vμ the
μ-conserving matrix element connecting the d-level with the
bath states ĉεμ, taken independent of energy, for simplicity.

Finally, the interacting third term is given in the case of
the single-impurity Anderson model (SIAM) by the uniform
Coulomb interaction U at the impurity

Ĥ SIAM
int = 1

2Un̂d(n̂d − 1), (11)

with n̂d = ∑
μ n̂dμ, while in the case of the interacting

resonant-level model (IRLM), the interacting part is given by

Ĥ IRLM
int = U ′n̂dn̂0, (12)

with n̂0 = ∑
μ f

†
0,μf0,μ ≡ ∑

μ n̂0,μ. In particular, most of our
results are for the one- or two-lead versions of the SIAM for
spinful or spinless electrons

Ĥ SIAM
X = Ĥb + Ĥd,X + Ĥ SIAM

int . (13)

We consider either a single dot level coupled to a single
lead (spinful, Nc = 2 : μ ∈ {↑ , ↓}), or a dot with two levels

coupled separately to two leads (spinless, Nc = 2 : μ ∈ {1,2};
spinful, Nc = 4 : μ ∈ {1↑ ,1↓ ,2↑ ,2↓}). A splitting of the
energies εdμ,X in the spin label (if any) will be referred to as
magnetic field B. We also present some results for the IRLM,
for a single channel of spinless electrons (Nc = 1):

Ĥ IRLM
X = Ĥb + Ĥd,X + Ĥ IRLM

int . (14)

In this paper, we focus on the case that ĤI and ĤF

differ only in the local level positions (εdμ,I �= εdμ,F). It is
emphasized, however, that our methods are equally applicable
for differences between initial and final values of any other
parameters, including the case that the interactions are channel
specific, e.g.,

∑
μμ′ Uμμ′ n̂dμn̂dμ′ or

∑
μμ′ U

′
μμ′ n̂dμn̂0μ′ .

B. AO on Wilson chains

Wilson discretized the spectrum of Ĥb on a logarithmic
grid of energies ±D�−k (with � > 1, k = 0,1,2, . . .), thereby
obtaining exponentially high resolution of low-energy excita-
tions. He then mapped the impurity model onto a semi-infinite
“Wilson tight-binding chain” of sites k = 0 to ∞, with the
impurity degrees of freedom coupled only to site 0. To this end,
he made a basis transformation from the set of sea operators
{ĉεμ} to a new set {f̂kμ}, chosen such that they bring Ĥb into
the tridiagonal form

Ĥb �
Nc∑

μ=1

∞∑
k=1

tk(f̂ †
kμf̂k−1,μ + H.c.) . (15)

The hopping matrix elements tk ∝ D�−k/2 decrease expo-
nentially with site index k along the chain. Because of this
separation of energy scales for sufficiently large �, typically
� � 1.7, the Hamiltonian can be diagonalized iteratively by
solving a Wilson chain of length k [restricting the sum in
Eq. (15) to the first k terms] and increasing k one site at
a time: Starting with a short Wilson chain, a new shell of
many-body eigenstates for a Wilson chain of length k, say |s〉k ,
is constructed from the states of site k and the MK lowest-lying
eigenstates of shell k − 1. The latter are the so-called kept
states |s〉Kk−1 of shell k − 1, while the remaining higher-lying
states |s〉Dk−1 from that shell are discarded.

The typical spacing between the few lowest-lying states of
shell k, i.e., the energy scale dEk , is set by the hopping matrix
element tk to the previous site, hence,

dEk � tk ∝ D�−k/2. (16)

Now, for a noninteracting Fermi sea with N particles, the
mean single-particle level spacing at the Fermi energy scales
as dE ∝ D/N . This also sets the energy scale for the mean
level spacing of the few lowest-lying many-body excitations
of the Fermi sea. Equating this to Eq. (16), we conclude that
a Wilson chain of length k represents a Fermi sea with an
actual size L ∝ N , i.e., an effective number of electrons N ,
that grows exponentially with k,

N ∝ �k/2 . (17)

Now consider two impurity models that differ only in
their local terms Ĥd,X, and let |GX〉k be the ground states
of their respective Wilson chains of length k, obtained via
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two separate NRG runs.9 Combining Anderson’s prediction
(1) and Eq. (17), the ground-state overlap is expected to decay
exponentially with k as

|k〈GI|GF〉k| ∝ �−k�2
AO/4 ≡ e−αk (18)

with

�2
AO = 4α

log �
. (19)

Thus, the AO exponent can be determined by using NRG to
directly calculate the left-hand side of Eq. (18) as a function
of chain length k, and extracting �AO from the exponent α

characterizing its exponential decay with k.
For noninteracting impurity models (U = U ′ = 0), a finite

Wilson chain represents a single-particle Hamiltonian for
a finite number of degrees of freedom that can readily be
diagonalized numerically, without the need for implementing
NRG truncation. The ground state is a Slater determinant
of those single-particle eigenstates that are occupied in the
Fermi sea. The overlap 〈GI|GF〉 is then given simply by
the determinant of a matrix whose elements are overlaps
between the I and F versions of the occupied single-particle
states. It is easy to confirm numerically in this manner that
〈GI|GF〉 ∼ e−αk , leading to the expected AO in the limit
k → ∞. We will thus focus on interacting models henceforth,
which require the use of NRG.

In the following three sections, we discuss several technical
aspects needed for calculating AO with NRG on Wilson chains.

C. Ground-state overlaps

The calculation of state space overlaps within the NRG
is straightforward, in principle,9,22 especially considering
its underlying matrix product state structure.23–25 Now, the
overlap in Eq. (18), which needs to be calculated in this
paper, is with respect to ground states as a function of Wilson
chain length k. As such, two complications can arise. (i) For a
given k, the system can have several degenerate ground states
{|s〉Xk : s ∈ G}, with the degeneracy dX,k typically different for
even and odd k. (ii) The symmetry of the ground-state space
may actually differ with alternating k between certain initial
and final configurations X ∈ {I,F}, leading to strictly zero
overlap there. A natural way to deal with (i) is to essentially
average over the degenerate ground-state spaces, while (ii) can
be ameliorated by partially extending the ground-state space
to the full kept space {|s〉Xk : s ∈ K}, as will be outlined in the
following.

The dX,k-fold degenerate ground-state subspace is de-
scribed by its projector, written in terms of the fully mixed
density matrix

ρ̂X
G,k ≡ 1

dX,k

dX,k∑
s∈G

|s〉Xk X
k 〈s|. (20)

It is then convenient to calculate the overlap of the ground-state
space as

z2
GK (k) ≡ trF

K,k

(
ρ̂I

G,k

)

= 1

dI,k

∑
s∈G

∑
s ′∈K

∣∣I
k〈s|s ′〉F

k

∣∣2
, (21)

where trF
K,k(·) refers to the trace over the kept space at iteration

k of the final system. The final expression can be interpreted,
up to the prefactor, as the square of the Frobenius norm of
the overlap matrix I

k〈s|s ′〉F
k between the NRG states s ∈ G and

s ′ ∈ K at iteration k for the initial and final Hamiltonians,
respectively.

Note that the specific overlap in Eq. (21), as used throughout
later in this paper, not only includes the ground space of the
final system at iteration k, but rather includes the full kept
space of that system. Yet, each such overlap scales as e−αk ,
with the same exponent α for all combinations of s and s ′,
because (i) the states |s〉I

k with s ∈ G are taken from the initial
ground-state space, and (ii) the states |s ′〉F

k with s ′ ∈ K from
the final kept shell differ from a final ground state only by a
small number of excitations. Therefore, Eq. (21) is essentially
equivalent, up to an irrelevant prefactor, to strictly taking the
overlap of ground-state spaces as in z2

GG(k) ≡ trF
G,k(ρ̂I

G,k). This
will be shown in more detail in the following. In particular, the
overlap in Eq. (21) can be easily generalized to

z2
PP ′(k) ≡ trF

P ′,k
(
ρ̂I

P,k

)
, 0 � z2

PP ′(k) � 1 (22)

where P (′) ∈ {G,K,∞} represents the ground-state space, the
full kept space, or the ground state taken at k → ∞ with
respect to either the initial or final system, respectively. The
overlap z2

PP ′(k) in Eq. (22) then represents the fully mixed
density matrix in space P of the initial system traced over
space P ′ of the final system, all evaluated at iteration k.

A detailed comparison for several different choices of
z2
PP ′(k), including z2

GG(k), is provided in Fig. 1 for the standard
SIAM with μ ∈ {↑ , ↓}). The topmost line (identified with
legend by heavy round dot) shows the overlap Eq. (2) used as
default for calculating the overlap in the rest of the paper.
This measure is most convenient, as it reliably provides
data with a smooth k-dependence for large k, insensitive to
alternating k-dependent changes of the symmetry sector and
degeneracy of the ground-state sector of ĤX,k (note that the
exact ground-state symmetry is somewhat relative within the
NRG framework, given an essentially gapless continuum of
states of the full system). The overlap zGG (data marked by
triangle) gives the overlap of the initial and final ground-state
spaces, but is sensitive to changes in symmetry sector; in
particular, for k � 28, it is nonzero for odd iterations only.
The reason as to why it can be vanishingly small for certain
iterations is, in the present case, that the initial and final
occupancies of the local level differ significantly, as seen from
the values for 〈nI

dot〉 and 〈nF
dot〉 specified in the panel. Therefore,

initial and final ground states can be essentially orthogonal, in
the worst case throughout the entire NRG run. Nonetheless,
the AO exponent is expected to be well defined and finite, as
reflected in zGK .

The AO measure zKK (data marked by star) is smooth
throughout, and although it is not strictly constrained to the
ground-state space at a given iteration, in either the initial or
final system, it gives the correct AO exponent, the reason being
the underlying energy scale separation of the NRG. Finally,
z∞,K = TrKF,k{ρ̂G

I,∞} (data marked by squares) refers to an AO
measure that calculates the overlap of the ground-state space
of an essentially infinite initial system (i.e., k → ∞, or in
practice, the last site of the Wilson chain), with the kept space
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FIG. 1. (Color online) Anderson orthogonality for the spin-
degenerate standard SIAM for a single lead [Eq. (10), μ ∈ {↑ , ↓}],
with μ-independent parameters εd and 
 for ĤI and ĤF as specified
in the panel (the full εF

d dependence of �AO for fixed εI
d is analyzed

in more detail in Fig. 5). Several alternative measures for calculating
the AO overlap are shown, using zPP ′ (k) in Eq. (22) with P (′) ∈
{G,K,∞}, as defined in the text. All overlaps are plotted for even and
odd iterations separately to account for possible even-odd behavior
within the Wilson chain (thin solid lines with dots, and dashed lines,
respectively, while heavy symbols identify lines with corresponding
legends). If even and odd data from the same zPP ′ (k) do not lie
on the same smooth line, the combined data are also plotted (light
zigzag lines) as guides to the eye. For large k, all AO overlaps exhibit
exponential decay of equal strength. Separate fits of eλ−αk to even
and odd sectors are shown as thick solid lines, the lengths of which
indicate the fitting range used. The values for �2

AO extracted from
these fits using Eq. (19) are in excellent agreement with the displaced
charge �2

ch, as expected from Eq. (8). The relative error is less than
1% throughout, with the detailed values specified in the legend, and
〈4α/ ln �〉 representing the averaged value with regard to the four
measures considered.

at iteration k of the final system. Since the latter experiences
k-dependent even-odd differences, whereas the initial density
matrix ρ̂G

I,∞ is independent of k, z∞,K exhibits rather strong k-
dependent oscillations. Nevertheless, their envelopes for even
and odd iterations separately decay with the same exponent α

as the other AO measures.
In summary, Fig. 1 demonstrates that all AO measures

decay asymptotically as eλ−αk , as expected from Eq. (18),
with the same exponent α, independent of the details of the
construction. These details only affect the constant prefactor λ,
which is irrelevant for the determination of �AO.

D. Channel-specific exponents from chains of different lengths

Equation (6) expresses the exponent �AO of the full system
in terms of the AO exponents �AO,μ of the individual channels.
This equation is based on the assumption (the validity of
which, for the models studied here, is borne out by the
results presented below) that for distances sufficiently far
from the dot, the asymptotic tail of the ground-state wave
function factorizes, in effect, into independent products, one
for each channel μ. This can be exploited to calculate, in a
straightforward fashion, the individual exponent �AO,μ for a

given channel μ: one simply constructs a modified Wilson
chain, which, in effect, is much longer for channel μ than for
all others. The overlap decay for large k is then dominated by
that channel.

To be explicit, the strategy is as follows. First we need
to determine when a Wilson chain is “sufficiently long” to
capture the aforementioned factorization of ground-state tails.
This will be the case beyond that chain length, say k0, for
which the NRG energy flow diagrams for the kept space
excitation spectra of the original Hamiltonians ĤI and ĤF are
well converged to their T = 0 fixed point values. To calculate
�AO,μ, the AO exponent of channel μ, we then add an artificial
term to the Hamiltonian that in effect depletes the Wilson chain
beyond site k0 for all other channels ν �= μ by drastically
raising the energy cost for occupying these sites. This term
has the form

H
μ
art = C

∑
ν �=μ

∑
k>k0

tkf̂
†
kν f̂kν, (23)

with C � 1. It ensures that occupied sites in the channels
ν �= μ have much larger energy than the original energy scale
tk , so that they do not contribute to the low-energy states of
the Hamiltonian. We then calculate a suitable AO measure
(such as zGK ) using only k values in the range k > k0. From
the exponential decay found in this range, say ∼ e−αμk , the
channel-specific AO exponent can be extracted [cf. Eq. (19)]:

�2
AO,μ = 4αμ

log �
. (24)

This procedure works remarkably well, as illustrated in Fig. 2,
for the spin-asymmetric single-lead SIAM of Eq. (13) (with
Nc = 2, μ ∈ {↑ , ↓}). Indeed, the values for �AO,μ and �AO

displayed in Fig. 2 fulfill the addition rule for squared
exponents [Eq. (6)] with a relative error of less than 1%.

−0.55 −0.525 −0.5 −0.475 −0.45
0

0.1

0.2

0.3

0.4

0.5

εd,F/U

Δ2
AO

Δ2
AO,↑ Δ2

AO,↓

Δ2
AO,↑+ Δ2

AO,↓

U = 0.2 εd, I /U = − 0. 5
Γ↑/U = 0. 02 Γ↓/U = 0. 1

FIG. 2. (Color online) AO exponents for the standard spin-
degenerate SIAM with spin-asymmetric hybridization [Eq. (13),
with μ ∈ {↑ , ↓}] as functions of εd,F (all other parameters are
fixed as specified in the panel). The vertical dashed line indicates
εd,I/U = −0.5; at this line, the initial and final Hamiltonians are
identical, hence all exponents vanish. The squared AO exponents
for the individual channels �2

AO,↑ (squares) and �2
AO,↓ (dots) were

calculated from Eq. (24). Their sum agrees (with a relative error of
less than 1%) with �2

AO calculated from Eq. (19) (downward- and
upward-pointing triangles coincide), confirming the validity of the
addition rule for squared exponents in Eq. (6).
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E. Displaced charge

The displaced charge �ch,μ defined in Eq. (7) can be
calculated directly within NRG. However, to properly account
for the contribution from the Fermi sea �sea,μ, a technical
difficulty has to be overcome: the Hamiltonians considered
usually obey particle conservation and thus every eigenstate
of Ĥ is an eigenstate of the total number operator, with an
integer eigenvalue. Consequently, evaluating Eq. (4) over the
full Wilson chain always yields an integer value for the total
�ch,μ. This integer, however, does not correspond to the charge
within the large but finite volume Vlarge that is evoked in the
definition of the displaced charge.

To obtain the latter, we must consider subchains of shorter
length. Let

n̂(k)
sea,μ =

k∑
k′=0

f̂
†
k′μf̂k′μ (25)

count the charge from channel μ sitting on sites 0 to k. These
sites represent, loosely speaking, a volume V

(k)
large centered on

the dot, the size of which grows exponentially with increasing
k. The contribution from channel μ of the Fermi sea to the
displaced charge within V

(k)
large is

�(k)
sea,μ ≡ 〈GF|n̂(k)

sea,μ|GF〉 − 〈GI|n̂(k)
sea,μ|GI〉, (26)

where |GI〉 and |GF〉 are the initial and final ground states of
the full-length Wilson chain of length N (� k).

Figure 3 shows �(k)
sea for the spinless IRLM of Eq. (14),

where we dropped the index μ, since Nc = 1. �(k)
sea exhibits

even-odd oscillations between two values, say �even
sea and �odd

sea ,
but these quickly assume essentially constant values over a
large intermediate range of k values. Near the very end of
the chain, they change again rather rapidly, in such a way
that the total displaced charge associated with the full Wilson
chain of length N , �

(N)
ch = �(N)

sea + �dot, is an integer (see
Fig. 3) because the overall ground state has well-defined
particle number. Averaging the even-odd oscillations in the
intermediate regime yields the desired contribution of the
Fermi sea to the displaced charge �sea = 1

2 (�even
sea + �odd

sea ).
The corresponding result for �ch = �sea + �dot is illustrated
by the black dashed line in Fig. 3.
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Γ/U = 0. 5
εd, I /U = 0

εd, F /U = −1. 75
N = 100

FIG. 3. (Color online) Determination of �ch, for the interacting
resonant-level model of Eq. (14), for a single specific set of parameters
for ĤI and ĤF, specified in the figure legend (the εd,F dependence of
�AO for fixed εd,I is analyzed in more detail in Fig. 4). We obtain �ch

(dashed line) by calculating �(k)
sea + �dot and averaging the results for

even and odd k. To reduce the influence of chain’s boundary regions,
we take the average over the region between the vertical dashed lines.

IV. RESULTS

In this section, we present results for the single-channel
interacting resonant-level model [Eq. (14)], and for single-lead
and two-lead Anderson impurity models [Eq. (13)]. These
examples were chosen to illustrate that the various ways of
calculating AO exponents by NRG, via �AO, �ph, or �ch,
are mutually consistent with high accuracy, even for rather
complex (multilevel, multilead) models with local interactions.
In all cases, the initial and final Hamiltonians ĤI and ĤF differ
only in the level position: εd,I is kept fixed, while εd,F is swept
over a range of values. This implies different initial and final
dot occupations ndμ,X = 〈GX|n̂dμ|GX〉, and hence different
local scattering potentials, causing AO.

AO exponents are obtained as described in the previous
sections: We calculate the AO measure zGK (k) using Eq. (2),
obtaining exponentially decaying behavior (as in Fig. 1). We
then extract α by fitting to e−αk and determine �AO via
Eq. (19). In the figures below, the resulting �2

AO is shown
as function of εdμ,F, together with �2

ch, and also �2
ph in Fig. 4.

The initial dot level position εdμ,I is indicated by a vertical
dashed line. When εdμ,F crosses this line, the initial and final
Hamiltonians are identical, so that all AO exponents vanish.
To illustrate how the changes in εdμ,F affect the dot, we also
plot the occupancies ndμ,F of the dot levels.

A. Interacting resonant-level model

We begin with a model for which the contribution of
the Fermi sea to the displaced charge is rather important,
namely, the spinless fermionic interacting resonant-level
model [Eq. (14), Nc = 1]. The initial and final Hamiltonians
Ĥ IRLM

I and Ĥ IRLM
F differ only in the level position: the

initial one is kept fixed at εd,I = 0, while the final one is
swept over a range of values, εd,F ∈ [−1,1]. The results

−5 −2.5 0 2.5 5
−0.5

0

0.5

1

εd,F /U

nd,F

ΔAO

Δph

Δch

Δdot

Δ sea

U = 0. 2
Γ/U = 0. 5
εd, I /U = 0

FIG. 4. (Color online) Verification that �AO = �ph = �ch

[Eq. (5)] for the spinless fermionic interacting resonant-level model
[Eq. (14)]. All quantities are plotted as functions of εd,F, with all other
parameters fixed (as specified in the panel). The vertical dashed line
indicates εd,I/U ′ = 0. Heavy dots indicate the final occupation of the
dot nd. The exponent �AO (light solid line) agrees well with �ph

and �ch (triangles), with relative errors of less than 1%. The local
and Fermi-sea contributions to the displaced charge �ch are plotted
separately, namely, �dot (dashed line) and �sea (dashed-dotted line).
The latter is determined according to the procedure illustrated, for
εd,F/U ′ = −1.75, in Fig. 3.
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are shown in Fig. 4. The final dot occupancy nd,F (heavy
dots) varies from � 1 to 0, and �dot = nd,F − nd,I (dashed
line) decreases accordingly, too. The total displaced charge
�ch = �dot + �sea (downward-pointing triangles) decreases
by a smaller amount since the depletion of the dot implies a
reduction in the strength of the local Coulomb repulsion felt
by the Fermi sea, and hence an increase in �sea (dashed-dotted
line). Throughout these changes, �AO, �ph, and �ch mutually
agree with errors of less than 1%, confirming that NRG results
comply with Eq. (5) to high accuracy.

B. Single-impurity Anderson model

Next we consider the standard spin-degenerate SIAM for a
single lead [Eq. (13), μ ∈ {↑ , ↓}] with εd,μ = εd and 
μ = 
.
This model exhibits well-known Kondo physics, with a
strongly correlated many-body ground state.

In this model, the dot and Fermi sea affect each other only by
hopping, and there is no direct Coulomb interaction between
them (U ′ = 0). Hence, the contribution of the Fermi sea to
the displaced charge is nearly zero, �sea � 0. Apart from
very small even-odd variations for the first ∼35 bath sites
corresponding to the Kondo scale, the sites of the Wilson
chain are half-filled on average to a good approximation.
Therefore, �sea � �dot (explicit numbers are specified in the
figure panels; see also Fig. 1), so that �ch,μ in Eq. (7) is
dominated by the change of dot occupation only,21

�2
ch � �2

dot ≡
∑

μ

(ndμ,F − ndμ,I)
2. (27)

As a consequence, despite the neglect of �sea in some previous
works involving Anderson impurity models, the Friedel sum
rule (�ph = �ch) was nevertheless satisfied with rather good
accuracy (typically with errors of a few percent). However,
despite being small, �sea in practice is on the order of |�sea| �

/D and thus finite. Therefore, the contribution of �sea to
�ch will be included throughout, while also indicating the
overall smallness of �sea. In general, this clearly improves
the accuracy of the consistency checks in Eq. (5), reducing
the relative errors to well below 1%.

The Anderson orthogonality is analyzed for the SIAM
in detail in Fig. 5. The initial system is kept fixed at
the particle-hole symmetric point εd,I = −U/2 [indicated
also by vertical dashed line in Fig. 5(a)], where the initial
ground state is a Kondo singlet. The final system is swept
from double to zero occupancy by varying εd,F/U from −2
to 1. The final ground state is a Kondo singlet in the regime
ndμ,F � 1/2, corresponding to the intermediate shoulder in
Fig. 5(a). Figure 5(b) shows the AO measure zGK (k) as
function of k, for a range of different values of εd,F. Each
curve exhibits clear exponential decay for large k (as in Fig. 1)
of the form eλ−αk . The prefactor, parametrized by λ, carries
little physical significance, as it also depends on the specific
choice of zPP ′ ; its dependence on εd,F is shown as a thick
gray dashed line in Fig. 5(a), but it will not be discussed any
further. In contrast, the decay exponent α directly yields the
quantity of physical interest, namely, the AO exponent �2

AO
via Eq. (19). Figure 5(a) compares the dependence on εd,F of
�2

AO (dashed line) with that of the displaced charge �2
ch (light

thick line), that was calculated independently from Eqs. (7)

FIG. 5. (Color online) Anderson orthogonality for the single-
lead, spin-symmetric SIAM [Eq. (13), with parameters as specified in
the legend]. The energy of the d-level of the final system εd,F is swept
past the Fermi energy of the bath, while that of the initial reference
system is kept fixed in the Kondo regime at εd,I = −U/2, indicated
by vertical dashed line in panel (a) and in the inset to panel (b). Panel
(a) shows, as function of εd,F, the dot occupation per spin ndμ (dotted
solid line), the contribution to the displaced charge by the Fermi sea
�seaμ (thin black line), the displaced charge �2

ch (light solid line), and
the parameters of the large-k exponential decay eλ−αk of zGK (k) as
extracted from panel (b), namely, λ (thick dashed line) and �AO (dark
dashed line), derived from α via Eq. (19). Panel (b) shows the AO
measure zGK (k) in Eq. (2) (light lines) for the range of εd,F values used
in panel (a). The heavy lines shown on top for k � 64 are exponential
fits, the results of which are summarized in panel (a). The inset shows
the relative error in the AO exponents δ�2 ≡ (�2

AO − �2
ch)/�2

ch, i.e.,
the deviation between the light solid and dark dashed curves in panel
(a); this error is clearly less than 1% over the full range of εd analyzed.

and (8). As expected from Eq. (5), they agree very well: the
relative difference between the two exponents �2

AO and �2
ch is

clearly below 1% throughout the entire parameter sweep, as
shown in the inset of Fig. 5(b).

The contribution of the Fermi sea to the displaced charge
is close to negligible, yet finite throughout [black line in
Fig. 5(a)]. Overall, �sea � 0.0037, as indicated in Eq. (27).
Nevertheless, by including it when calculating �ch, the relative
error δ�2 is systematically reduced from a few percent to well
below 1% throughout, thus underlining its importance.

C. Multiple channels and population switching

Figure 6 analyzes AO for lead-asymmetric two-level,
two-lead SIAM models, with Hamiltonians of the form
Eq. (13) (explicit model parameters are specified in the
panels). Figure 6(a) considers a spinless case (Nc = 2, μ =
j ∈ {1,2}), the dot levels of which have mean energy εd at fixed
splitting δ,

εd1 = εd − δ/2, εd2 = εd + δ/2. (28a)

Figure 6(b) considers a spinful case [Nc = 4, μ = (jσ ) with
j ∈ {1,2}, σ ∈ {↑ , ↓}], where both the lower and upper levels
have an additional (small) spin splitting B � δ,

εdj↑ = εdj + B/2, εdj↓ = εdj − B/2 . (28b)

Charge is conserved in each of the Nc channels since these
only interact through the interaction on the dot. In both models,
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FIG. 6. (Color online) Anderson orthogonality for a spinless
(a) and spinful (b) two-lead SIAM, with dot levels of unequal width
and a split level structure as defined in Eq. (28) (all relevant model
parameters are specified in the legends). In both cases, the higher level
2 is broader than the lower level 1 (
2 > 
1), leading to population
switching as function of the average final level energy εd,F. The fixed
value of εd,I is indicated by the vertical dashed line. The inset to panel
(a) shows a zoom into the switching region, clearly demonstrating
that population switching occurs smoothly. For panel (b), a finite
magnetic field B causes a splitting between spin-up and spin-down
levels, resulting in a more complex switching pattern. In both panels,
�2

AO and �ch agree very well throughout the sweep, with a relative
error δ�2 well below 1%.

the upper level 2 is taken to be broader than the lower level
1, 
2 > 
1 (for detailed parameters, see figure legends). As a
consequence,15–19 these models exhibit population switching:
When εd,F is lowered (while all other parameters are kept
fixed), the final state occupancies of upper and lower levels
cross, as seen in both panels of Fig. 6.

Consider first the spinless case in Figure 6(a). The broader
level 2 shows larger occupancy for large positive εd,F.
However, once the narrower level 1 drops sufficiently far
below the Fermi energy of the bath as εd,F is lowered, it
becomes energetically favorable to fill level 1, while the

Coulomb interaction will cause the level 2 to be emptied. At
the switching point, occupations can change extremely fast,
yet they do so smoothly, as shown in the zoom in the inset to
Fig. 6(a).

Similar behavior is seen for the spinful case in Fig. 6(b),
although the filling pattern is more complex, due to the nonzero
applied finite magnetic field B (parameters are listed in the
legend). The occupations nd1σ of the narrower level 1 show a
strong spin asymmetry since the magnetic field is comparable,
in order of magnitude, to the level width (B = 
1/2). This
asymmetry affects the broader level 2, which fills more slowly
as εd is lowered. Due to the larger width of level 2, the
asymmetry in its spin-dependent occupancies is significantly
weaker. As in Fig. 6(a), population switching between the
two levels occurs: as the narrower level 1 becomes filled, the
broader level 2 gets depleted.

The details of population switching, complicated as they
are [extremely rapid in Fig. 6(a) and involving four channels
in Fig. 6(b)] are not the main point of Fig. 6. Instead, its
central message is that despite the complexity of the switching
pattern, the relation �2

AO = �2
ch is satisfied with great accuracy

throughout the sweep (compare light thick and dark dashed
lines). Moreover, since �ch was calculated by adding the
contributions from separate channels according to Eq. (8),
this also confirms the additive character of AO exponents for
separate channels.

As was the case for the single-channel SIAM discussed in
Sec. IV B above, a direct interaction between dot and Fermi sea
is not present in either of the models considered here (U ′ = 0).
Consequently, the displaced charge �ch is again dominated by
�dot, with �sea � �dot [cf. Eq. (27)]. Specifically, for the
spinless or spinful models, we find �sea < 0.019 or 0.011,
respectively, for the entire sweep.

V. SUMMARY AND OUTLOOK

In summary, we have shown that NRG offers a straightfor-
ward, systematic, and self-contained way for studying Ander-
son orthogonality, and illustrated this for several interacting
quantum impurity models. The central idea of our work is to
exploit the fact that NRG allows the size dependence of an
impurity model to be studied, in the thermodynamic limit of
N → ∞, by simply studying the dependence on Wilson chain
length k. Three different ways of calculating AO exponents
have been explored, using wave-function overlaps (�AO),
changes in phase shift at the Fermi surface (�ph), and changes
in displaced charge (�ch). The main novelty in this paper
lies in the first of these, involving a direct calculation of the
overlap of the initial and final ground states themselves. This
offers a straightforward and convenient way for extracting
the overall exponent �AO. Moreover, if desired, it can also
be used to calculate the exponents �AO,μ associated with
individual channels, by constructing a Wilson chain that is
longer for channel μ than for the others. We have also refined
the calculation of �ch by showing how the contribution �sea of
the Fermi sea to the displaced charge can be taken into account
in a systematic fashion.

The resulting exponents �AO, �ph, and �ch agree extraordi-
narily well, with relative errors of less than 1% for a wide range
of �. In particular, we have checked in the context of Fig. 1
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that the resulting relative errors remain this small for a range
of � values between 1.7 and 8.0. Moreover, this accuracy can
be achieved using a remarkably small number of kept states
MK . For example, for the spinful SIAM analyzed above, for
� = 2, a better than 5% agreement can be obtained already for
MK � 32. (For comparison, typically MK = 250 is required
to obtain an accurate description of the Kondo resonance of
the d-level spectral function in the local moment regime of
this model.)

Our analysis has been performed on models exhibiting
Fermi liquid statistics at low temperatures. As an outlook,
it would be interesting to explore to what extent the non-Fermi
liquid nature of a model would change AO scaling properties,
an example being the symmetric spinful two-channel Kondo
model.

Finally, we note that nonequilibrium simulations of quan-
tum impurity models in the time domain in response to
quantum quenches are a highly interesting topic for studying
AO physics in the time domain. The tools to do so using
NRG have become accessible only rather recently.10,22,23,26

One considers a sudden change in some local term in

the Hamiltonian and studies the subsequent time evolution,
characterized, for example, by the quantity 〈GI|e−iĤFt |GI〉.
Its numerical evaluation requires the calculation of overlaps
of eigenstates of ĤI and ĤF. The quantity of present interest
|〈GI|GF〉| is simply a particular example of such an overlap. As
a consequence, the long-time decay of 〈GI|e−iĤFt |GI〉 is often
governed by �AO, too,3,5 showing power-law decay in time
with an exponent depending on �AO. This will be elaborated
in a separate publication.12
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8D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrikman,
D. Mahalu, and U. Meirav, Phys. Rev. Lett. 81, 5225 (1998).

9R. W. Helmes, M. Sindel, L. Borda, and J. von Delft, Phys. Rev. B
72, 125301 (2005).
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P7. General framework for non-abelian symmetries in

tensor networks

I Andreas Weichselbaum (cond-mat/1202.5664v1; submitted to Annals of Physics).

Symmetries allow to make numerical calculations efficient. Given the symmetries of a
system, this usually implies that many matrix elements of its corresponding Hamiltonian
are strictly zero, hence the Hamiltonian becomes sparse. Given orthonormal (effective)
state spaces then, abelian symmetries such as U(1) symmetries like charge conservation,
allow to efficiently collect non-zero matrix elements into dense blocks. As a consequence,
the original sparse representation of a Hamiltonian becomes block-diagonal. By dealing
with the set of these blocks sequentially rather than the full original matrix, this captures
the effect of abelian symmetries on numerical efficiency.

Moreover, given non-abelian symmetries, many matrix elements despite being non-zero,
are actually not independent of each other. That is, by knowing one non-zero matrix ele-
ments, typically a range of other matrix elements can be predicted [cf. Wigner Eckart the-
orem]. Therefore by shifting from a state space representation to multiplet representation,
the effective dimension of the Hamiltonian can be significantly reduced. The correspond-
ing Clebsch-Gordan algebra is split off in terms of a tensor product, which again can be
dealt with separately. This captures the essence of non-abelian symmetries in numerical
calculations.

These observations are basic and simple. Nevertheless, implementing these symmetries
in a generic fashion, in practice, generates a significant amount of coding overhead through
book-keeping. It is probably fair to say, that 99% of the coding is spent on the treatment of
symmetries themselves. The payoff, of course, is an orders of magnitude faster code. Given
the significant overhead in book-keeping, however, a transparent framework and setup is
absolutely crucial.

Nevertheless, the non-abelian symmetry SU(2) has already been widely used in the
past. In particular, it was quintessential for the NRG from its very beginning,72 dictated
by numerical resources. Within the NRG, however, the setup is still relatively simple: given
multiplets in some large effective basis for the Wilson chain up to some site n, a new small
local state space σn+1 is added. The resulting multiplet structure needs to be determined. In
contrast, within the DMRG, there is usually always another large effective state space (say
the environment), which implies that locally within a DMRG step, three state spaces must
be combined into a proper total symmetry. For non-abelian symmetries this makes things
significantly more complicated already as compared to the NRG. As a consequence and also
considering the exceedingly abundant numerical resources, significantly fewer numerical
applications exist within the DMRG that use the non-abelian symmetry SU(2).39

Along that spirit, my first implementation of symmetries was based on abelian sym-
metries only. This, however, in a completely generic setting: a tensor library of arbitrary
rank that can deal with an arbitrary number of abelian U(1) symmetries. These codes had
been very successful applied in a multitude of projects since they were developed. Never-
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theless, challenging models16 had been on the horizon, where abelian symmetries alone (1)
were very close to insufficient, and (2) required excessive amount of numerical resources.
This served as the motivation to think about non-abelian symmetries more carefully. The
symmetry SU(2), however, is special in that respect, since one does not have to worry
about inner and outer multiplicity, which are present all the time in a more generic non-
abelian setting, such as SU(N) for N > 2. Hence a transparent framework for arbitrary
non-abelian symmetries was highly desirable.3

An important turning point was the simple realization by Singh et al. (2010) that
Clebsch-Gordan coefficients (CGC) factorize in general. This has been the basis of the
generalization of my original QSpace library to arbitrary non-abelian symmetries. The CGC
spaces are computed and incorporated explicitly. By starting from the Lie algebra with its
defining matrix representation, the CGCs are determined by the commutator relations of
the Lie algebra itself. This allows to easily extend the setup to new symmetries, including
symmetries where analytic formulas in its description are few. CGCs are considered here
generically as the unitary transformation that decomposes a tensor product of irreducible
multiplets into proper global symmetry multiplets. As such the concept of CGCs can be
applied to any symmetry, including abelian or point symmetries.

The QSpace library is well-equipped to deal with a large range of typical operations in
tensor networks. The global Hamiltonian, however, as well as reduced density matrices, by
construction are scalar operators. Therefore one may argue that by constraining oneself
to a very specific set of contractions, actually the 6j symbols for a given symmetry should
suffice for a large range of applications. In this context, the explicit treatment of CGCs
can be replaced by so-called fusion rules, indeed.34,60 Nevertheless, this (1) appears more
constrictive, while (2) the overhead for the Clebsch-Gordan coefficient spaces for symme-
tries up to rank-2 [such as SU(3) or Sp(2)] is negligible. Rank-3 symmetries, such as Sp(6)
are numerically still feasible as demonstrated in the attached paper, but there the multi-
plet dimensions in the CGCs already quickly grows to several thousands, thus becoming
comparable to the actual dimension of the reduced multiplet spaces. Hence the overhead
of CGCs is no longer negligible. Therefore, only for large-rank symmetries the 6j symbols
really become of interest. There, however, it is unclear whether the 6j symbols can be
readily computed from known analytical formulas without explicit reference to CGCs.

3Since NRG as well as DMRG are built from sites, i.e. small local state spaces, the arbitrary non-abelian
symmetries discussed here are limited to compact symmetries, i.e. with finite-dimensional irreducible
representations.
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General framework for non-abelian symmetries in tensor networks

A. Weichselbaum
Physics Department, Arnold Sommerfeld Center for Theoretical Physics,

and Center for NanoScience, Ludwig-Maximilians-Universität, 80333 Munich, Germany
(Dated: February 28, 2012)

A general framework for non-abelian symmetries is presented for matrix-product and tensor-
network states in the presence of local orthonormal basis sets. The two crucial ingredients, the
Clebsch-Gordan algebra for multiplet spaces as well as the Wigner-Eckart theorem for operators,
are accounted for in a natural, well-organized, and computationally straightforward way. The unify-
ing tensor-representation for quantum symmetry spaces, dubbed QSpace, is particularly suitable to
deal with standard renormalization group algorithms such as the numerical renormalization group
(NRG), the density matrix renormalization group (DMRG), or also more general tensor networks
such as the multi-scale entanglement renormalization ansatz (MERA). In this paper, the focus is
on the application of the non-abelian framework within the NRG. A detailed analysis is given for
a fully screened spin-3/2 three-channel Anderson impurity model in the presence of conservation
of total spin, particle-hole symmetry, and SU(3) channel symmetry. The same system is analyzed
using several alternative symmetry scenarios. This includes the more traditional symmetry setting
SU(2)spin ⊗ SU(2)⊗3

charge, the larger symmetry SU(2)spin ⊗U(1)charge ⊗ SU(3)channel, and their much

larger enveloping symplectic symmetry SU(2)spin ⊗ Sp(6). These three symmetry settings are com-
pared in detail, including their respective dramatic gain in numerical efficiency. In the appendix,
finally, an extensive introduction to non-abelian symmetries is given for practical applications, to-
gether with simple self-contained numerical procedures to obtain Clebsch-Gordan coefficients and
irreducible operators sets. The symmetries considered can consist of abelian symmetries together
with arbitrary non-abelian symmetries with compact, i.e. finite-dimensional, semi-simple Lie alge-
bras.
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I. INTRODUCTION

Numerical methods for strongly correlated quantum-
many-body systems are confronted with exponentially
large Hilbert spaces. With a limited number of ex-
act analytical solution at hand and with perturbative
treatments for low-energy or ground-state physics of-
ten insufficient, a certain systematic treatment with re-
spect the Hilbert space is required. Besides quantum
Monte Carlo approaches, that explore quantum systems
stochastically,1 a systematic state space decimation is
provided by renormalization group (RG) techniques such
as the density matrix renormalization group (DMRG)2

or the numerical renormalization group (NRG),3 both
highly efficient for quasi-one-dimensional systems, and
since non-perturbative, considered essentially exact.

Both methods, DMRG as well as NRG, are based on
the same algebraic structure of matrix product states
(MPS).4,5 Initially introduced for one-dimensional sys-
tems with MPS owing its name to this case, a wide range
of activity has emerged within recent years to generalize
MPS to tensor-networks for two- or higher-dimensional
systems.6–9 While clearly appealing from the point of
area laws for entanglement-entropy,10–12 tensor network
states (TNS) often share the same disadvantage as linear
systems with periodic boundary conditions within the

P7.

124



3

DMRG, namely that state spaces become intrinsically
non-orthogonal. Therefore also the unique association of
symmetry labels with each index in a tensor is compro-
mised. This, however, can be circumvented by introduc-
ing an emerging extra-dimension, which is at the basis of
the recently developed multi-scale entanglement renor-
malization ansatz (MERA).13,14 Nevertheless, the tradi-
tional DMRG approach applied to 2D systems15 with
open or cylindrical boundary conditions yet with long-
range interactions has continued to provide a highly com-
petitive, extremely well-controlled, even though numeri-
cally expensive approach.

Within both, traditional DMRG as well as NRG, state
spaces of entire blocks are built iteratively by adding and
merging one site at a time. Clearly, the single index de-
scribing an effective basis for the entire block or site can
be chosen orthogonal. Moreover, the basis states can
be labeled in terms of the symmetries of the underly-
ing Hamiltonian. Operators written as matrix elements
in this very same basis therefore also share the same
well-defined partitioning in terms of symmetry sectors.
By grouping symmetry state spaces together, the Hamil-
tonian becomes block-diagonal, while general operators
usually obey well-defined selection rules between symme-
try sectors. Consequently, the sparsity of these operators
due to symmetry can be efficiently and exactly included
in the numerical description, such that usually only a few
dense data blocks with non-zero matrix elements remain,
given the symmetry constraints. While this well repre-
sents the advantage of implementing generic abelian or
point symmetries in a calculation, the presence of non-
abelian symmetries offers yet another strong simplifica-
tion: many of the non-zero matrix elements are actually
not independent of each other, bearing in mind, for ex-
ample, the Wigner-Eckart theorem. Therefore going be-
yond abelian symmetries, non-abelian symmetries allow
to significantly compress the non-zero blocks in terms of
multiplet spaces,16,17 while also reducing their number.
With the Clebsch-Gordan coefficient spaces factorizing,9

they can be split off systematically in terms of a tensor-
product and dealt with separately.

MPS is optimal for one-dimensional systems. When
exploring systems that are not strictly one dimensional
but acquire width, such as ladders of several rungs in
DMRG or multi-channel models in NRG, the price to
be paid for orthonormal state spaces is that one must
represent the system as a one-dimensional MPS never-
theless. This introduces longer-range interactions to the
mapped 1D system, with the effect that the typically re-
quired dimensions of the state spaces to be kept in a cal-
culation, grow roughly exponentially with system width.
The number of symmetries then that (i) are available and
(ii) are also be exploited in practice, decides whether or
not a calculation is feasible. Abelian symmetries such
as particle (charge Q) or spin (Sz) conservation are usu-
ally implemented in DMRG calculations. However, only
very few groups have implemented non-abelian symme-
tries, and these are also constrained to SU(2) symme-

tries only,16 due to its complexity in the actual imple-
mentation. General treatment of non-abelian symmetries
within the MERA, on the other hand, is currently under
development.9,18 NRG, in contrast, had been set up in-
cluding non-abelian SU(2) spin symmetry from its very
beginning,3 dictated by limited numerical resources. So
far, however, only a very few isolated attempts includ-
ing more complex non-abelian settings exist within the
NRG,19 while to our knowledge there exists no general
realization yet of arbitrary non-abelian symmetries in ei-
ther method.

This paper focuses on the systematic description and
implementation of non-abelian symmetries of a given
Hamiltonian within the generalized MPS framework.
This naturally also does include the description of abelian
symmetries where necessary, as they can be trivially writ-
ten in terms of Clebsch-Gordan coefficients. While the
focus within non-abelian symmetries belongs to SU(N)
and the symplectic group Sp(2n), the generalization to
other non-abelian symmetries or also point groups is
straightforward once their particular Clebsch-Gordan co-
efficients are worked out. In contrast to the well-known
SU(2) then, general non-abelian symmetries, such as
SU(N ≥ 3), represent a significant increase in algorith-
mic complexity, in that they can and routinely do exhibit
inner and outer multiplicity. The latter, for example,
implies that in the decomposition of the tensor-product
of two irreducible representations (IREPs) into a direct
sum of IREPs, the same IREP may occur multiple times.
Nevertheless, this can be dealt with properly on the al-
gorithmic level, as will be shown in detail in this paper.

While the presented non-abelian framework for gen-
eral tensors is straightforwardly applicable to traditional
DMRG as well as NRG, the paper focuses on the appli-
cation within the NRG. Detailed results are presented
for a fully screened spin-3/2 Anderson impurity model
with SU(3) channel-symmetry [i.e. see Hamiltonian in
Eq. (25)]. This model has been suggested as the effective
microscopic Kondo model for iron impurities in gold or
silver20, historically the first system where Kondo physics
was observed experimentally.21,22 Being a true three-
channel system, this cannot be trivially rotated into a
simpler configuration of fewer relevant channels. The re-
sult is an extremely challenging calculation within the
NRG that requires non-abelian symmetries for fully con-
verged numerical results for reasonable coarse-graining
of the continuous bath. The non-abelian symmetries
present in the model considered are (i) particle-hole sym-
metry in each of the three channels, SU(2)⊗3

charge, (ii) to-

tal spin symmetry, SU(2)spin, and (iii) channel symme-
try, SU(3)channel. The non-abelian particle-hole SU(2)
symmetry, however, does not commute with the chan-
nel SU(3) symmetry, while the plain abelian charge U(1)
symmetry does commute. Overall, this suggests a larger
enveloping symmetry, which turns out to be the symplec-
tic symmetry Sp(6) [for an introduction, see App. A 10].
With this, the following symmetry scenarios are consid-
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ered and compared in detail,

SU(2)spin ⊗ SU(2)⊗3
charge ,

SU(2)spin ⊗U(1)charge ⊗ SU(3)channel , and

SU(2)spin ⊗ Sp(6).

While the first setting represents a more traditional setup
based on multiple sets of plain SU(2) symmetries only,
the second setting already includes the larger channel
SU(3) symmetry. Both of these symmetries do not cap-
ture the full symmetry of the model, which finally is
achieved by using the enveloping Sp(6) symmetry.

Due to the internal two-dimensional structure of the
SU(3) symmetry based on the fact that SU(3) has two
commuting generators, i.e. is of rank 2, its multiplets
have significantly larger internal dimension, in practice,
up to over a hundred. Therefore despite the reduction
of the particle-hole symmetry to a plain abelian symme-
try, the second setting with the SU(3) channel symmetry
allows to outperform the more traditional setup based
on SU(2) symmetries only. Similarly, with Sp(6) a rank-
3 symmetry, multiplets then easily reach dimensions of
several thousands there, which allows to reduce multiplet
spaces significantly further still. A detailed analysis of
this is provided in this paper, with a more general self-
contained introduction to non-abelian symmetries con-
sidered given in the appendix [cf. App. C 3].

From an NRG point of view,23 a few essential steps
are required. These are (i) the evaluation of relevant op-
erator matrix elements required to construct the Hamil-
tonian, (ii) the generic setup of an iteration, adding one
site to the so-called Wilson chain, and finally, for thermo-
dynamical properties (iii) also the treatment of the full
thermal density matrix.23 All of these steps are simple in
principle, yet come with the essential challenge to have a
flexible transparent framework for the treatment of non-
abelian symmetries in practice. In this paper, such a
framework is presented in terms of generalized contrac-
tions of tensors in the presence of symmetry spaces, in-
troduced as QSpaces below.

The paper is thus organized as follows. Section II
describes the MPS implementation of non-abelian sym-
metries in terms of QSpaces. Section III describes the
implications for calculating correlation functions in the
presence of irreducible operator sets. Section IV gives
a short review of the NRG together with specialties re-
lated to non-abelian symmetries, such as calculating re-
duced density matrices. This section also introduces the
model Hamiltonian of a fully symmetric 3-channel An-
derson model. Section V then presents explicit NRG re-
sults, followed by summary and outlook. Finally, also an
extended Appendix has been added to the paper. The
latter is intended to provide a more general pedagogical
self-contained introduction to non-abelian symmetries as
they occur in fermionic lattice models, together with their
actual implementation in practice in terms of QSpaces.

II. MPS IMPLEMENTATION OF
NON-ABELIAN SYMMETRIES

Consider some Hamiltonian Ĥ that is invariant under
a set of nS symmetries,

S ≡
nS⊗

λ=1

Sλ, (1)

that is, [Ĥ, Ŝλα] = 0, where α identifies the generator Ŝλα
for the simple (non-abelian) symmetry Sλ. To be spe-
cific, for example, S = SU(2)spin⊗SU(2)charge ≡ S1⊗S2

with λ ∈ {1, 2} would stand for the combination of spin
and charge SU(2) symmetry, respectively. The tensor-
product notation in Eq. (1) indicates that the symmetries

act independently of each other, that is [Ŝλα, Ŝ
λ′
α′ ] = 0 for

λ 6= λ′.
Given the symmetries as in Eq. (1), this allows to or-

ganize the complete basis of eigenstates of Ĥ in terms
of the symmetry eigenbasis. Every state then belongs to
a well-defined irreducible multiplet qλ for each symme-
try Sλ. The multiplet itself has an internal state space
structure that is described by the additional quantum
labels qλz . For example, in the case of Sλ = SU(2), qλ

(qλz ) corresponds to the spin multiplet S (the Sz label),
respectively.

Thus all states in a given vector space can be catego-
rized using the hierarchical label structure

|qn; qz〉 (state-space label structure), (2)

where

(i) q ≡ (q1, q2, . . . , qnS), to be referred to as q-labels
(quantum labels), references the irreducible rep-
resentations (IREPs) for each symmetry Sλ, λ =
1, . . . , nS. All states in given Hilbert space with the
same q-labels are blocked together, to be referred to
as symmetry block q.

(ii) Given a symmetry block q then, the multiplet index
n(q) identifies a specific multiplet within this space.
It is therefore a plain index associated with given
symmetry space q. Together with the q-labels, this
forms the multiplet level which is considered the
topmost conceptual level. Using the composite no-
tation (qn) to identify an arbitrary multiplet, the
subscript q to the multiplet index n(q) is considered
implicit and hence is dropped, for simplicity.

(iii) Finally, the set of labels qz ≡ (q1
z , q

2
z , . . . , q

nS
z ), to

be referred to as z-labels, resolves the internal struc-
ture of each multiplet in q. That is, for each IREP
qλ, referring to the symmetry Sλ in q, qλz labels
its internal IREP space. As such, the z-labels are
entirely defined by the symmetries considered. By
construction, the eigenstates of the Hamiltonian Ĥ
are fully degenerate in the z-labels.
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Here the symmetry labels q and qz describe the combined
record of labels derived from all symmetries considered.
In practice, states can mostly be treated on the higher
multiplet level, while the lower level in terms of the z-
labels is split off and taken care of by Clebsch-Gordan
algebra and the coefficient spaces derived from it.

When non-abelian symmetries are broken, they are of-
ten reduced to their abelian subalgebra. This can be eas-
ily implemented, nevertheless, consistent with the pre-
sented framework. In particular, in the abelian case,
the non-abelian multiplet labels q are absent, while the
abelian qz quantum numbers remain. Therefore the qz
labels can be promoted to the status of q-labels, q := qz.
As a consequence, the concept of the actual qz labels
becomes irrelevant (therefore subsequently, the qz la-
bel space may simply be set to zero, qz := 0). The
corresponding Clebsch Gordan coefficients are all triv-
ial scalars, i.e. equal to 1. Yet these “Clebsch Gordan
coefficients for abelian symmetries” do maintain an im-
portant role, in that they take care of the proper addi-
tion rules that come with abelian symmetries, resulting
in 〈q1; q2|q〉 = 1 · δq,q1+q2 .

Given the MPS background of NRG or DMRG, states
spaces are generated iteratively, in terms of a product-
space of a given effective state space with a newly added
local site. Operators, on the other hand, are typically
represented in local state spaces, and starting from there,
they can be written in terms of matrix elements in the
effective global state spaces. With this in mind, the im-
plementation of non-abelian symmetries within the MPS
framework therefore is based on the following two ba-
sic observations with respect to state space and operator
representations, respectively.

(1) State spaces: consider two distinct state spaces,
|Qn;Qz〉 and |ql; qz〉 that, for example, represent
a large effective state space and a small new local
state space, respectively. Assuming that both state
spaces all well-categorized in terms of IREPs, then
their tensor-product space can also be decomposed
into a direct sum of new combined IREPs |Q̃ñ; Q̃z〉
using Clebsch-Gordan coefficients (CGCs),

|Q̃ñ; Q̃z〉 =
∑

Qn;Qz

∑

ql;qz

(
A

[q]

QQ̃

)[l]
nñ
· C [qz ]

QzQ̃z

×|Qn;Qz〉|ql; qz〉. (3)

Note that the Clebsch Gordan coefficients given by

C
[qz ]

QzQ̃z
≡ 〈QQz; qqz|Q̃Q̃z〉 (i) fully define the inter-

nal multiplet space as specified by the Lie algebra,
and (ii) determine the splitting, i.e. which output

multiplets Q̃ occur for given multiplets Q and q.
On the multiplet level, on the other hand, where

(A
[q]

QQ̃
)
[l]
nñ combines the multiplets Qn and ql into

the multiplet Q̃ñ consistent with the splitting pro-

vided by the CGCs, the coefficients (A
[q]

QQ̃
)
[l]
nñ may

encode an arbitrary unitary transformation within

the ñ output space for each Q̃. The r.h.s. of Eq. (3)
demonstrates, that the CGC spaces clearly factor-

ize from the multiplet space A
[q]

QQ̃
as a tensor prod-

uct.

(2) Operators: the matrix elements of a specific irre-

ducible operator set (IROP) F̂ q, i.e. an IROP that
transforms according to multiplets q for given sym-
metries [cf. App. Eq. (A3b), or also Sec. A 7] within
some symmetry space |Qn;Qz〉 can be written us-
ing the Wigner-Eckart theorem as

〈Q′n′;Q′z|F̂ qqz |Qn;Qz〉 =
(
F

[q]
QQ′
)[1]

nn′
· C [qz ]

QzQ′z
, (4)

with C
[qz ]
QzQ′z

again the Clebsch-Gordan coefficients

as in Eq. (3). On the multiplet level, the reduced

matrix elements (F
[q]
QQ′)

[1]
nn′ ≡ 〈Q′n′‖F̂ q‖Qn〉 refer

to the single irreducible operator set labeled by
q, which is indicated by the superscript [1]. The
Wigner-Eckart theorem thus allows to compactify
the operator matrix elements on the l.h.s. of Eq. (4)
as the tensor-product of reduced matrix elements
and CGCs, as shown on the r.h.s. of Eq. (4).

Therefore in both cases above, i.e. in all tensor objects
relevant for a numerical calculation, the CGC spaces fac-
torize. This allows to strongly compress their size, and
thus to drastically improve on overall numerical perfor-
mance. Moreover, note that in both cases, Eq. (3) as
well as Eq. (4) the underlying structure comprises ten-
sors of rank-3 throughout. This rank-3 structure holds
for both, the reduced multiplet space as well as the CGC
spaces. Therefore, in either case, the final data structure
of either state space decomposition as well as reduced
operator sets is exactly the same. It is implemented, in
practice, in terms of what will be referred to as QSpace
for general tensors of arbitrary rank.

A. General quantum space representation
(QSpaces)

The generic representation, used in practice to describe
all symmetry related tensors B, is given by a listing of
the following type,

B ≡





q-labels reduced space ‖B‖ CGC spaces

{Q}1 B1 {C}1
{Q}2 B2 {C}2
· · · · · · · · ·





.

(5)

By notational convention, an actual operator B̂ will be
written with a hat, while its representation in terms of
matrix elements in a specific basis will be written with-
out the hat, hence the corresponding QSpace is referred
to as QSpace B. Many explicit examples of QSpaces
are introduced and discussed in detail in the appendix
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[Sec. C]. As an up-front illustration, consider, for exam-
ple, the general Hamiltonian of a single spinful fermionic
site in the presence of SU(2) symmetry in the spin (S) and
charge sector (C), which can be written as the QSpace
[see Eq. (C8)]

H ≡





(S;C) (S′;C ′) ‖H‖ CGC spaces
1
2 ; 0 1

2 ; 0 h 1
2 ,0

1(2) 1.

0; 1
2 0; 1

2 h
0,

1
2

1. 1(2)





. (6)

With every non-zero block listed as an individual row,
one can see that the only two reduced matrix elements
‖H‖ free to choose without compromising the SU(2)⊗2

SC ≡
SU(2)spin ⊗ SU(2)charge symmetry are the parameters
(numbers) h1/2,0 and h0,1/2. By definition, the Hamil-
tonian is a scalar operator, therefore it is the only op-
erator within its IROP, hence can be written as plain
rank-2 QSpace (the third dimension for this IROP would
be a singleton dimension, hence can be dropped). Be-
ing a scalar operator, the Hamiltonian is block diagonal,
which is reflected in equal symmetry sectors (C;S) and
(C ′;S′) in each row for first and second dimension, re-
spectively. Moreover, in given case, the corresponding
Clebsch-Gordan coefficient (CGC) spaces also result in
trivial identities, with 1(2) the two-dimensional identity.
Note that the full set of CGC spaces in each row needs to
be interpreted as appearing in a tensor product with the
multiplet space, here the reduced matrix elements h1/2,0

or h0,1/2 [e.g. see Eq. (8) below].
In general, the representation of a tensor B of arbi-

trary rank-r in the QSpace in Eq. (5) [with Eq. (6) an
example for a rank-2 QSpace], only lists the non-zero, i.e.
relevant symmetry combinations. Having r tensor dimen-
sions, each of its r indices refers to its specific state space
|qn; qz〉i ≡ |(q)ini; (qz)i〉 with i = 1, . . . , r, and hence car-
ries its own label structure as in Eq. (2). The q-labels
(q)i ≡ {qλ}i already represent the combined set of nS

IREP labels from all symmetries Sλ for the state space
at tensor dimension i. In general, by convention, the
internal order of the q-labels (q)i w.r.t. λ is fixed and
follows the order of symmetries used in Eq. (1).

For a certain row ν of the QSpace listing in Eq. (5)
then, the set of r q-labels are grouped into

{Q}ν ≡ {(q)1, . . . , (q)r}ν . (7a)

The reduced matrix elements are stored in the dense
rank-r tensor Bν indexed by ni with i = 1, . . . , r. This
is a plain tensor, with the multiplet spaces possibly al-
ready rotated by arbitrary unitary transformations and
truncated. This is also reflected in the fact that the in-
dices ni are plain indices, i.e. carry no further internal
structure. Finally, for every one of the λ = 1 . . . nS sym-
metries included, the corresponding CGC space is stored
in the sparse tensors Cλ,ν , each of which is also of rank
r. These CGC spaces are grouped into {C}ν in the last
column,

{C}ν ≡ {C1;ν , . . . ,CnS;ν}. (7b)

As the q-labels {Q}ν also define the z-labels, there is no
explicit need to store the z-labels (qz)i,ν . The internal
running indices in Cλ,ν , however, are uniquely associated
with the z-labels. Note also the different index setting: in
contrast to Eq. (7a), which contains a set of r q-labels, i.e.
one for every dimension of the rank-r tensor B, Eq. (7b)
contains a set of nS rank-r CGC spaces, i.e. one for every
symmetry.

In addition to the QSpace listing in Eq. (5), also the
type and order of symmetries considered is stored with
a QSpace, cf. Eq. (1), even though this is usually the
same throughout an entire calculation. Moreover, note
that the row or record index ν in Eq. (5) is purely for
convenience without any specific meaning, as the order
of records in a QSpace can be chosen arbitrarily. Nev-
ertheless, it is required to refer to a specific entry in a
QSpace.

For a given record ν in the QSpace in Eq. (5) then, the
reduced space and the CGC spaces are to be interpreted
as an overall tensor-product,

Bν ⊗ {C}ν ≡ Bν ⊗
( nS⊗

s=1

Cs;ν
)
, (8)

while, of course, this is never explicitly done in practice.
Yet Eq. (8) demonstrates the single most important mo-
tivation to implement non-abelian symmetries in a nu-
merical computation. By splitting off the CGC spaces
in terms of a tensor product, block dimensions can be
strongly reduced for larger calculations with several sym-
metries present. For the models analyzed in this paper,
for example, this was typically an average dimensional
reduction from plain abelian symmetries by a factor of
10 up to several hundreds. Considering that both NRG
and DMRG scale like O(D3) with D the typical dimen-
sion of data blocks, this is an enormous gain in efficiency.
The factorized CGC spaces, on the other hand, can be
dealt with independently, as will be explained in detail
later. Assuming that usually the dimensions of the re-
duced states spaces Bν still exceed by far the typical di-
mensions encountered for the CGC spaces, the latter bear
little numerical overhead. Only for larger-rank symme-
tries, such as the symmetry Sp(6) discussed later, mul-
tiplet dimensions can become large themselves such that
one needs to pay more attention to an efficient treatment
of their corresponding CGC spaces [see App. C 3 b].

For QSpaces where the CGC spaces in Eq. (5) exactly
correspond to the standard Clebsch-Gordan coefficients
for each symmetry, one may argue that actually similar
to the z-labels, it is not explicitly necessary to store the
CGC spaces altogether, since these are known. This is
true, indeed, for these particular cases, and CGC spaces
may simply be referenced then. Nevertheless, the explicit
storage of the CGC spaces with a QSpace as in Eq. (5) has
practical value. When combining QSpaces through con-
tractions, i.e. sum over shared indices, for example, quite
frequently intermediate objects can arise that do have
rank different, in particular also larger than 3 [e.g. see
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the intermediate objects indicated by the dashed boxes
marked by X in Fig. 4]. These then elude a description
in terms of standard rank-3 CGCs. In this case, the ac-
tual CGC spaces for intermediate QSpace are important,
and even though they do not necessarily resemble the
interpretation of the original standard rank-3 spaces of
standard Clebsch-Gordan algebra anymore, these spaces
will be referred to as CGC spaces nevertheless, owing to
their origin.

For specific algorithms such as NRG and DMRG then,
one typically ends up with simple scalar operators such
as the Hamiltonian or a density matrix, apart from inter-
mediate steps where complex CGC structures can arise.
Therefore the full combined contractions on the CGC
level [e.g. see Fig. 4] could be replaced by analytical ex-
pressions or sum rules for Clebsch-Gordan coefficients.
Then, again, the explicit storage of the CGS spaces with
the QSpaces would not be strictly necessary and could
be avoided altogether. Note, however, that these afore-
mentioned contractions must be implemented within the
code dependent on the specific contraction and relying on
explicit analytical expressions which, depending on the
symmetry, may or may not be known. For the QSpace
as outlined in this paper, on the other hand, no spe-
cial treatment is required for specific contractions, and
no explicit knowledge of possibly symmetry dependent
CGC sum rules is required. The QSpace approach solely
relies on the correct construction of the standard CGC
spaces to start with, with the subsequent sums over CGC
spaces performed explicitly numerically and not analyt-
ically through exactly the same contraction as on the
reduced multiplet level, as discussed in more detail later.

Finally, the explicit inclusion of the CGC spaces al-
lows to build in strong consistency checks in the actual
numerical implementation. Imagine that the Hamilto-
nian is built by a sequence of complex contractions. The
Hamiltonian eventually must be a scalar operator, i.e. it
is block diagonal in the symmetries and the CGC spaces
reduce to plain identities. This can simply be checked at
the end of the calculation, which thus provides a strong
check of whether the symmetries have been implemented
correctly or not. At the stage of intermediate contraction,
however, the CGC spaces guarantee the correct splitting
and weight distribution between different emerging sym-
metry sectors.

B. A-tensors and Operators

Consider the prototypical MPS scenario as in Eq. (3)
that takes some previously constructed state space |i〉 ≡
|Qn;Qz〉 and adds a new local state space |σ〉 ≡ |ql; qz〉,
e.g. a new physical site. The state spaces are thus com-
bined in a product-space described in terms of the IREPs
|j〉 ≡ |Q̃ñ; Q̃z〉. Here the states i, σ, and j are introduced
as notational shorthand for better readability. The prod-
uct space then is spanned by |iσ〉 ≡ |σ〉|i〉. The order of
states in the latter product emphasizes that state |σ〉 is

typically added after and thus onto the existing state |i〉,
which is of particular importance for fermionic systems.
In general, the combined states24

|j〉 =
∑

lσ

|iσ〉〈iσ|j〉︸ ︷︷ ︸
≡A[σ]

ij

, (9)

are described in terms of linear superpositions of the

product space |iσ〉 given by the coefficients A
[σ]
ij , hence-

forth called A-tensor (rank-3) or A[σ]-matrices (rank-2).

Without truncation, A
[σ]
ij denotes a full unitary matrix

U(iσ),j where the round bracket indicates that the in-
dices i and σ have been fused, i.e. combined into an ef-
fective single index. The presence of symmetry and the
proper categorization of state spaces, however, imposes
certain constraints on this unitary matrix, as pointed out
already with Eq. (3). In particular, the fully determined

CGC spaces C
[qz ]

QzQ̃z
factorize from the A-tensor, allowing

an arbitrary rotation in the reduced multiplet space A
[q]

QQ̃

only. For the specific case then, that the reduced multi-
plet spaces are identical to partitions of identity matrices
with a clear one-to-one correspondence still of input and
output multiplets, the corresponding A-tensor will be re-
ferred to as the identity A-tensor [see Fig. 2 later; for
explicit examples, see App. Eq. (C4) or Eq. (C6)]. An
identity A-tensor therefore represents the full state space
still without any state space truncation, and is unique up
to permutations in the combined output space. Its ex-
plicit construction is a convenient starting point, in prac-
tice, when merging new local state spaces with existing
effective state spaces.

The entire construction of an A-tensor can be encoded
compactly in terms of a rank-3 QSpace. Both coefficient

spaces in Eq. (3), C
[qz ]

QzQ̃z
as well as A

[q]

QQ̃
, directly enter

the QSpace description in Eq. (5). A schematic pictorial
representation of an A-tensor is given in Fig. 1. There
the states i (j) represent the open composite index to
the left (right), respectively, while σ refers to the open
composite index at the bottom.

As already argued with Eq. (4), an irreducible oper-
ator shares exactly the same underlying CGC structure
as an A-tensor. Thus also its representation in terms
of a QSpace is completely analogous. Consider an IROP
set F̂ q ≡ {F̂ qqz}, which transforms according to IREP
q. Here, the composite index σ ≡ (ql; qz), for short,
identifies the specific operators in the IROP set. As al-
ready indicated by the superscript [1] in Eq. (4), its as-
sociated multiplet index l has the trivial range l = 1,
since, by definition, the IROP represents a single IREP
on the operator level. With the states |i〉 ≡ |Q′n′;Q′z〉
and |j〉 ≡ |Qn;Qz〉 now representing the same state space
within which the operator acts, with usually many mul-
tiplets and different symmetries, the operator represen-
tation of the IROP F̂ q in the states 〈i| and |j〉 is evalu-
ated using the Wigner-Eckart theorem in Eq. (4). Similar
to the A-tensor earlier, the resulting factorization of the
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Figure 1. (Color online) Schematic depiction of a rank-
3 QSpace as an example for a basic building block for an
MPS or a tensor network, where lines (boxes) represent in-
dices (data spaces), respectively. Every index is assumed to
refer to a state space with similar physical background, hence
refers to the same global symmetries as in Eq. (1), and has
the generic composite structure |qn; qz〉 as in Eq. (2), where
qz specifies the states within the CGC spaces. The rank-
3 QSpace depicted can be interpreted in two entirely differ-
ent ways while sharing exactly the same underlying algebraic
structure. These are (i) the state space decomposition into
IREPs and (ii) operator representation for a given IROP in
a given basis (see text). For the general interpretation of the
QSpace depicted, consider for simplicity, a single row ν in
Eq. (5). The set {Q}ν defines the q-labels for all tensor di-
mensions (here a total of three). With the q-labels fixed, the
corresponding multiplet index n indexes the typically large
reduced multiplet space, indicated by the thick black lines
for each tensor dimension. The corresponding reduced rank-3
multiplet space Aν is depicted by the large gray box in the
background. Moreover, with the q-labels fixed, this fixes the
IREPs for every tensor dimension and every symmetry. The
resulting sparse CGC spaces are indicated by the small boxes
around the center, with one box for every symmetry, such as,
for example, abelian particle conservation, non-abelian spin
SU(2), non-abelian channel SU(3), or other. By construction,
all CGC spaces share the same rank as the underlying QSpace.
Therefore each CGC space also has three lines attached, one
for every tensor dimension. In general, the CGC spaces re-
fer to finite multiplet dimensions for non-abelian symmetries,
while for simpler symmetries, such as abelian symmetries, the
CGC spaces actually become trivial, i.e. scalars. These, nev-
ertheless, are also interpreted as having the same rank as the
QSpace using singleton dimensions throughout.

CGC spaces C
[qz ]
QzQ′z

together with the remaining multi-

plet space F
[q]
QQ′ of reduced matrix elements directly enter

the QSpace description in Eq. (5).

So even though an operator is usually considered a
rank-2 object, the fact that an IROP consists of an oper-
ator set indexed by σ, adds a third index to the QSpace.
In contrast to the state interpretation of σ for the A-
tensor above, however, here the “index” σ has a different
interpretation in that it points to a specific operator in

the IROP set. By convention, the operator index σ will
always be listed as third tensor dimension in its QSpace
representation. Given the three-dimensional representa-
tion of a general IROP, therefore its entire construction
mimics the construction of an A-tensor in terms of a
QSpace. As a consequence, Fig. 1 exactly also resem-
bles the QSpace structure of an IROP. The states i (j)
used for the calculation of the matrix element represent
the open index to the left (right), respectively, while the
operator index σ refers to the open index at the bottom.

Scalar operators, finally, such as the Hamiltonian of
the system or density matrices, represent a special case,
since there the IROP set contains just a single operator.
Therefore the third index, i.e. the operator index, be-
comes a singleton and hence can simply be dropped [e.g.
see Eq. (6)]. Scalar operators therefore are represented
by rank-2 QSpaces. They are block-diagonal in their sym-
metries, and their CGC spaces are all equal to identity
matrices, with an example already given in Eq. (6).

C. Multiplicity

For general non-abelian symmetries, frequently inner
and outer multiplicity occur.25,26 Both are absent in
SU(2), yet do occur on a regular basis for SU(N ≥ 3). In-
ner multiplicity describes the situation where for a given
IREP, several states may share exactly the same z-labels.
Let mq

z denote the number of times a specific z-label oc-
curs within IREP q. Then the presence of inner multi-
plicity implies mq

z > 1 for at least one z-label. Within
such degenerate subspaces an arbitrary rotation is al-
lowed in principle. For global consistency, therefore the
CGC spaces must adopt a well-defined internal conven-
tion on how to deal with inner multiplicity. This issue,
however, is entirely contained within the CGC algebra,
which is explored in more detail in the App. A [e.g. see
discussion following Eq. (A19), and App. B 1]. On the
level of a QSpace, it is of no further importance other-
wise. Essentially, the only implication of inner multiplic-
ity is qz → (qz, αz) with αz = 1, . . . ,mq

z [cf. Eq. (A19)],
where mq

z depends on the multiplet q. With this minor
adjustment, it is assumed throughout that the z-labels
fully identify the internal multiplet space. Note that, in
practice, the extra label αz is never included explicitly.
What is important, however, is a consistent internal mul-
tiplet ordering that respects multiplicity [see App. B 1].

Outer multiplicity, on the other hand, describes the
situation where in the state space decomposition of a
product-space of two IREPs, q1 and q2, the same output
IREP q may appear multiple times, the number of which

is specified by M
[q1,q2]
q [cf. App. Eqs. (A35-A38) and

discussion]. Therefore outer multiplicity primarily also
enters at the level of Clebsch-Gordan coefficients, as it is
based on pure symmetry considerations. In contrast to
inner multiplicity, however, outer multiplicity also affects
the reduced multiplet space, as will be elaborated upon
in what follows.

P7.

130



9

In the absence of outer multiplicity [i.e. M
[q1,q2]
q ≤ 1

for all q1, q2, and q of the symmetry, an example being
SU(N ≤ 2)], all rows in the QSpace in Eq. (5) must have
unique {Q}ν . If this is not the case, then the rows can be
made unique by combining the rows with the same {Q}.
Assume, for example, {Q}ν = {Q}ν′ with ν 6= ν′: clearly,
the {Q}’s are already the same. Having the same sym-
metry labels, this refers to the same set of IREPs, hence
also the CGC spaces of these records must be identical,
up to a possible global normalization factor which can
be associated with the multiplet space, instead. Further-
more, given {Q}ν = {Q}ν′ , the Aν and Aν′ data blocks
do live in exactly the same vector spaces for each indi-
vidual tensor dimension! Therefore Aν and Aν′ can be
simply added up [here multiple contributions with the
same {Q} are considered additive, consistent with gen-
eral conventions regarding sparse tensors; otherwise, say
having given the same matrix element twice with differ-
ent values, would immediately lead to contradictions].

In the presence of outer multiplicity, on the other hand,
the uniqueness of the q-labels {Q}ν in the QSpace in
Eq. (5) has to be relaxed. The reason for this is as follows.
Since outer multiplicity derives from the Clebsch-Gordan
algebra as in Eq. (A38), the CGC spaces

C
[qz ]

QzQ̃z
→ C

[qz ]

QzQ̃z,α
≡ 〈QQz; qqz|αQ̃, Q̃z〉 (10)

acquire an additional label α = 1, . . . ,M
[Q,q]

Q̃
[different

from the αz used with inner multiplicity], where M
[Q,q]

Q̃

indicates the outer multiplicity in Q̃, given the product
space of the IREPs Q and q. In terms of a QSpace object,
one may therefore be tempted to enlarge the CGC space
from rank-3 to rank-4, with the dimension of the 4th in-

dex being equal to M
[Q,q]

Q̃
. This strategy alone, however,

does not capture the full picture since outer multiplic-
ity also enlarges and thus effects the multiplet space Aν
of an A-tensor. By definition, outer multiplicity means
that different multiplets with the same q can emerge.
The only way they can be distinguished is through their
Clebsch-Gordan coefficients. Therefore rather than en-
larging the CGC space in a QSpace, M

[Q,q]

Q̃
records with

the same {Q}ν are allowed, instead. These records have
CGC spaces of the same rank-3 dimensions, which, how-
ever, are clearly distinguishable, as they are orthogonal

to each other [cf. appendix Eq. (A39)]. The M
[Q,q]

Q̃
sets of

Clebsch-Gordan coefficients arising from outer multiplic-

ity are thus spread over M
[Q,q]

Q̃
records within a QSpace

object.
The situation in the multiplet space for an identity A-

tensor is depicted schematically in Fig. 2. In the absence
of outer multiplicity, each symmetry combination (q, q′)i
can only contribute at most once to a given symmetry
space q′′ and gets its space allocated, as depicted, for
example, for (q, q′)4 in Fig. 2(a), having only one non-zero
block (shaded block) within the q′′ output multiplet. The
symmetry combinations (q, q′)1 and (q, q′)2, on the other

(a) (b)

(q,q’)4

(q,q’)1

(q,q’)2

M1 M2

q’’

(q,q’)1

(q,q’)2

(q,q’)4

(q,q’)5

q’’

(q,q’)3

M1 M2

(q,q’)5 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

Figure 2. Effect of outer multiplicity on multiplet space (Aν)
in terms of an identity A-tensor– Panel (a) Schematic depic-
tion of the state space decomposition of two input multiplet
spaces with unique symmetry combinations (q, q′) into com-
bined multiplets q′′ (rows and columns, respectively). State
spaces of the same symmetry are grouped into blocks sepa-
rated by solid lines (horizontally and vertically). For simplic-
ity, an identity A-tensor is depicted, for which the individ-
ual sectors in q′′ can be uniquely associated with the (q, q′)
they originate from. Hence each column, separated by solid
lines, has exactly one shaded block considered non-zero, with
all-zero blocks shown in white. Here vertical thin lines indi-
cate sub-blocks that originate from different (q, q′), yet are
eventually combined in the same block as they belong to the
same symmetry q′′ (separated by thick lines). Now, in the
presence of outer multiplicity a specific (q, q′) can contribute
to the same q′′ several times, as depicted schematically by
the spaces M1 and M2 for the rows (q, q′)1 and (q, q′)2, re-
spectively, both showing a multiplicity of Mq′′ = 2. Panel
(b) depicts the enlarged multiplet space for the output mul-
tiplet q′′ of panel (a) in order to accommodate the additional
multiplets arising from outer multiplicity. Being an identity
A-tensor, the entire block shown in panel (b) represents an
identity matrix (in contrast to an arbitrary A-tensor, which
may have an arbitrary unitary matrix in its place). The ver-
tical lineup of (q, q′) sectors is arbitrary, making the identity
A-tensor unique up to permutations. The identity matrix
shown in the panel is sliced into horizontal blocks as indi-
cated, each of which is associated with its own unique CGC
space [not shown] as derived from the Lie algebra of the sym-
metry under consideration. Each of these slices then directly
enters as a reduced multiplet space Aν in a separate row in
the QSpace as in Eq. (5).

hand, show outer multiplicity, in that they result twice

in the same multiplet q′′, i.e. M
[q,q′]1
q′′ = M

[q,q′]2
q′′ = 2.

For simplicity, in the absence of truncation and with-
out any further unitary rotation, the tensor-product on
the multiplet level can be represented as an identity A-
tensor with a clear one-to-one correspondence of input to
output multiplets. This is depicted in Fig. 2(b) in terms
of an identity matrix in the reduced multiplet space. The
identity matrix in panel (b) then is sliced horizontally
into blocks for each (q, q′) that contributes to q′′. In the
presence of outer multiplicity, the state space for q′′ needs
to be enlarged to accommodate the additional multiplets.
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The slicing (horizontal solid lines) then also proceeds for
every output multiplet resulting from outer multiplicity,

as indicated in panel (b). As a result, M
[q,q′]
q′′ slices are

associated with exactly the same Q ≡ {q, q′, q′′}, distin-
guishable only through their Clebsch-Gordan coefficients.
These slices directly enter as Aν in separate rows in a
QSpace as in Eq. (5).

In summary, outer multiplicity requires an adaptation
of the multiplet space, which is naturally incorporated
into a QSpace by allowing multiplet entries with the same
{Q}ν labels yet with clearly distinguishable CGC spaces.
That is, specific records are also considered to refer to
different state spaces if their CGC spaces are not exact
copies (up to a global factor that can be incorporated
into the multiplet data) but rather orthogonal to each
other [see App. Eq. (A39)]. In practice, this is checked
within a small numerical threshold (∼ 10−12) accounting
for numerical double precision noise. The great advan-
tage of this prescription is that then multiplicities fall
completely in line with the rest of the MPS algorithm
without any specific further treatment.

Finally, it is important to notice that the same con-
cept of relaxing the uniqueness of the {Q}ν labels ac-
tually also can become relevant for symmetries that do
not have intrinsic outer multiplicity in its actual sense.
Yet, in fact, through contractions intermediate objects
can arise of rank larger than three [e.g. see the QSpaces
indicated by the dashed boxes marked by X in Fig. 4],
where records in a QSpace with the same {Q}ν labels can
also have incompatible CGC spaces, in the sense that they
are not the same up to overall factors. In this case, also
the uniqueness of the {Q}ν must be relaxed temporar-
ily. For simplicity, this will also be referred to as outer
multiplicity.

D. Contractions

The contraction of QSpaces will be introduced in the
following in terms of a simple example, namely the or-
thonormalization condition on the combined state space
in a tensor-product space. Putting symmetry labels aside

for the sake of the argument, the A-tensor A
[σ]
ij ≡ 〈iσ|j〉

in Eq. (9) combines the state spaces |iσ〉 into a combined
(possibly truncated) orthonormal state space |j〉. This
directly leads to the standard orthogonality relation for
an A-tensor,

∑

iσ

A
[σ]∗
ij A

[σ]
ij′ = δjj′ , (11)

which is a simple example for the simultaneous contrac-
tion of two tensors w.r.t. to two common indices, here
i and σ. By construction, it is completely analogous in
structure to the orthogonality condition of CGCs as in
App. Sec. A39. Including symmetries, the contraction in
Eq. (11) is depicted in terms of QSpaces in Fig. 3. Over-
all, indices are represented by lines, and lines connecting

two blocks such as the indices i and σ are summed over,
i.e. contracted. In practice, contraction of QSpaces as
defined in Eq. (5) happens at several levels, since state
indices are always composite indices that refer to a sym-
metry basis of the type |qn; qz〉. This implies for a con-
traction

∑
i=i′ of two QSpace objects with respect to

some common state space i and i′, that (i) the q-labels
qi and qi′ of the QSpaces as in Eq. (5) must be matched
for the indices i and i′, respectively. For a given spe-
cific match of rows ν and ν′ then, (ii) this is followed
by the contraction of the corresponding reduced multi-
plet spaces, and (iii) by exactly the same contraction of
the CGC spaces, one for each symmetry. Note that the
rank of a QSpace and its index order are always shared
by the multiplet space and CGC spaces for consistency.
Hence the overall contraction of the QSpaces is directly
reflected in the elementary contraction of the plain nu-
merical tensors Aν and {C}ν . That is, the contraction
pattern depicted schematically in Fig. 3, drawn in terms
of boxes with connecting lines, is exactly the same on
all levels of the contraction. By collecting the remaining
non-contracted q-labels, this forms a new entry ν′′ in the
resulting QSpace, with the (tensor) index order of the re-
sulting tensor dimensions being the same for all {Q}ν′′ ,
Aν′′ , and {C}ν′′ for consistency.

Finally, the resulting QSpace is made unique in the
{Q}ν′′ labels as far as outer multiplicity permits. Records
can only be combined, i.e. summed over, iff the CGC
spaces for given records are all the same up to global
factors which can be absorbed into the multiplet data,
instead (see Sec. II C). Outer multiplicity plays no spe-
cial role with contractions otherwise. Note that indepen-
dent of whether or not outer multiplicity is present, when
specifying a subset of tensor dimensions within {Q}ν for
contraction, the resulting QSpace will, in general, always
have many contributions to the same {Q}ν′′ . For com-
parison, consider the completely analogous case of reg-
ular square matrices of dimension D > 1: a matrix el-
ement (M)ij is uniquely identified in the overall index
(i, j), while for example, the index i is not sufficient as
it refers to an entire row of matrix elements. Moreover,
when two matrices M1 and M2 are multiplied together,

(B)jj′ = (M1M2)jj′ =
∑

i=i′

(M1)ji(M2)i′j′ , (12)

the common index space (second index of M1 and first
index of M2) is summed over, i.e. contracted. Every
match i = i′ results in a contribution. In particular,
for some given j and j′, all D matches i = i′ contribute
and are summed up to the same output space (j, j′). In
the case of QSpaces the situation is exactly analogous. All
matches i = i′ in the q-labels qi and qi′ for the contracted
index must be included. The only real consequence of
outer multiplicity is that in the resulting QSpace B in
Eq. (12) not necessarily all records with the same {Q}ν
labels can be merged by adding them together. In the
specific case of the contraction in Eq. (11), however, the
resulting QSpace is simply the identity, and as such a
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j j 

j' 

s 

Figure 3. (Color online) Contraction of (i) an A-tensor or
(ii) an irreducible operator into a scalar. All indices speci-
fied are composite indices of the type |qn; qz〉. An A-tensor
describes a (truncated) basis transformation of the product-
space of the new local space |σ〉 with an effective previously
constructed basis |i〉, resulting in the combined state space

|j′〉 ≡ ∑
i′σ′ A

[σ′]
i′j′ |σ′〉|i′〉, with the corresponding bra-space

〈j| ≡ ∑
iσ A

[σ]∗
ij 〈i|〈σ| depicted in the lower part of the fig-

ure. The result is the scalar identity operator, reflecting the
orthonormality condition Eq. (11). An entirely different inter-
pretation of the same contraction pattern can be given when
the A-tensor is replaced by an IROP Fσ. The contraction
then describes Eq. (13b) and yields a scalar operator, with its
generic QSpace representation schematically depicted to the
right.

scalar operator with unique {Q}ν .

E. Scalar operators

Given the definition of an A-tensor in Eq. (9), the con-
traction of the two QSpaces A and A∗ in Fig. 3 leads
to the identity operator 1̂(C) ≡ ∑j |j〉〈j| in the possi-

bly truncated combined space C [cf. Eq. (11)]. Clearly,
this also provides a strong check on the numerical imple-
mentation of the symmetries. In particular, 1̂(C) repre-
sents a (trivial) example of a scalar operator, that can
be described as rank-2 QSpace. The CGC spaces are
all identity matrices (up to overall factors that can be
associated with the multiplet space), and therefore the
lines, that usually connect to the CGC spaces within a
QSpace, can be directly connected through from j to j′

on the r.h.s. of Fig. 3, with the CGC spaces themselves
no longer shown. In given case, due the orthonormality
condition in Eq. (11), also the reduced multiplet space
is given by identity matrices. This actually also would
allow to connect through the thick black line on the r.h.s.
of Fig. 3, and thus also to skip the large remaining block
on the r.h.s. for the reduced multiplet space altogether.

Figure 3, however, allows yet an entirely different in-
terpretation. Remember that an irreducible operator set
F̂ q has a completely analogous structure and interpreta-
tion in terms of its internal CGC spaces when compared
to an A-tensor (cf. Fig. 1). Therefore it must hold that

the scalar-product-like contraction,

F̂ 2 ≡ F̂ · F̂ † ≡
∑

qz

F̂ qqz (F̂
q
qz )
† (13a)

also results in a scalar operator (note that through the
Wigner-Eckart theorem, by convention, the state space
associated with the right index of the operator F̂ q is com-
bined with the multiplet space q; cf. App. A 7). With
σ ≡ (q1; qz) and the further sum through the opera-
tor (matrix) multiplication, Eq. (13a) shares exactly the
same contraction pattern as discussed in Fig. 3 in the
context of the orthonormality of A-tensors earlier. Here
the resulting scalar operator, however, can have arbi-
trary positive hermitian matrices in its multiplet space
still, represented by the large gray box on the r.h.s. of
Fig. 3. The reduction of Eq. (13a) to a scalar operator
is also intuitively clear, given that the Hamiltonian it-
self is typically constructed in terms of scalar operators
of exactly this type [see, for example, App. Eq. (A48)
or Eq. (A60) given the Hamiltonian in Eq. (A46)]. The
notation in Eq. (13a) emphasizes that in the scalar prod-

uct the same irreducible operator set F̂ q must be taken,
considering that the IROP F̂ q is different from the IROP
(F̂ †)q. Nevertheless, since (F̂ qqz )

† ∼ (F̂ †)q−qz , up to pos-
sible signs originating from the definition of the CGC
algebra [e.g. compare the QSpaces in App. Tbls. C3a
and C3b and accompanying discussion], these signs are
irrelevant in the scalar contraction. Hence it follows that
also

F̃ 2 ≡ F̂ † · F̂ ≡
∑

qz

(F̂ qqz )
†F̂ qqz (13b)

is a scalar operator, yet different from Eq. (13a), as in-

dicated by the tilde on F̃ 2. Similarly, note that if the
A-tensor had been contracted on the right instead of the
left index in Fig. 3, this also would have yielded a scalar
operator, namely a reduced density matrix up to normal-
ization (e.g. Fig. 5 below using ρk ≡ 1).

F. Operator matrix elements

The typical calculation of matrix elements of opera-
tors for iterative methods such as NRG or DMRG is de-
picted schematically in Fig. 4. While the complex many
body states are generated iteratively and described by A-
tensors [cf. Eq. (9)], an elementary irreducible operator

set f̂q, on the other hand, usually operates locally within
the state space |σ〉 of a specific site. Therefore, the oper-
ator is described initially in terms of the matrix elements

f
[q]
σσ′ ≡ 〈σ|f̂q|σ′〉. The link to the many body states is

given through the A-tensor that connects given site to a

generated effective state space |i〉, |j〉 =
∑
iσ A

[σ]
ij |σ〉|i〉.

The matrix elements of an IROP in the combined space
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(a)
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X

j' j'
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σσσσ’
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σσσσ
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(b) X

j' j'
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X’ A

≡f H

σσσσ’

qqqq
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F
†
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j j

iiii

A*
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Figure 4. (Color online) Typical evaluation of matrix el-

ements given an A-tensor. The nested dashed boxes X(′)

indicate the sequential order of contractions prior to the fi-
nal contraction. In panel (a), the local IROP set f̂q acts
within the state space |σ〉 of a given site. Its local matrix

elements, 〈σ|f̂q|σ′〉, are assumed to be known and described
in terms of the local rank-3 QSpace f . The local IROP set
is mapped into the larger effective space linked through the

A-tensor, |j〉 =
∑
iσ A

[σ]
ij |σ〉|i〉. The overall result is the rank-

3 QSpace F on the r.h.s., i.e. the desired matrix elements

F
[q]

jj′ ≡ 〈j|f̂q|j′〉. Panel (b) depicts a typical scalar nearest-

neighbor contribution to a Hamiltonian Ĥ ≡ [f̂q]†k · [f̂q]k+1 of
two consecutive sites, say k and k + 1 using their respective
A-tensors. This contraction already uses an effective descrip-
tion of the local operator f̂†k at site k in terms of the QSpace

F †, obtained from the A-tensor A(k) at site k as in panel (a)
form the prior iteration. Using the A-tensor A(k+1) of site
k + 1, the overall contraction can be completed as indicated.

|j〉 then become,

F
[q]
jj′ ≡ 〈j|f̂q|j′〉 =

∑

iσ,i′σ′

A
[σ]∗
ij A

[σ′]
i′j′〈i|〈σ|f̂q|σ′〉|i′〉︸ ︷︷ ︸

≡δii′f
[q]

σσ′

=
[∑

σ

A[σ]†
(∑

σ′

f
[q]
σσ′A

[σ′]
)]

jj′
, (14)

It is exactly this procedure that is depicted in Fig. 4(a).
The matrix elements are calculated in a two-stage pro-
cess. The sum in the round brackets of Eq. (14) (con-
traction of σ′) is carried out first, leading to the tempo-
rary rank-4 tensor with open indices (i, j′, σ, q) [box X in
Fig. 4(a)]. This rank-4 tensor then is contracted simulta-
neously in the indices i and σ with the A∗ tensor, provid-

Ak 

Ak 

i' 

i 

j 

j’ 

 

i 

i' 

s rk-1 rk 

* 

Figure 5. (Color online) Backward update of density ma-
trix ρk given in the effective basis |j〉 of a system up to and
including site k (right index) by tracing out the local state
space |σk〉 (middle index) given the basis transformation Ak
that introduced site k. The result is the reduced density ma-
trix ρk−1 in the effective basis |i〉 of the system up to and
including site k − 1.

ing the final result shown on the r.h.s. of Fig. 4(a). Quite
generally, for contractions including several blocks as in
Fig. 4, these are always done sequentially, adding one
block at a time. This is explicitly indicated in Fig. 4 by
the (nested) dashed boxes, with the final contraction con-
necting the remaining tensor to the outer-most dashed
box. Every individual contraction then follows the multi-
stage process over composite indices as described earlier
in Sec. II D.

The so obtained effective description F
[q]
k of an op-

erator f̂q acting on site k using Ak can be used then to
describe, for example, the typical scalar nearest-neighbor

contribution [f̂q]†k · [f̂q]k+1 to the Hamiltonian including
site k + 1. This operation is shown in Fig. 4(b). In par-
ticular, one may use the identity A-tensor AId

k+1 for site
k+ 1, such that the resulting Hamiltonian is constructed
in the full tensor-product space |σ〉k+1|i〉k of the system
up to and including site k + 1. Here |i〉k describes the
effective space up to and including site k, whereas |σ〉k+1

describes the new local state space of site k+ 1. This ex-
actly corresponds the two-stage prescription used within
the NRG (and similarly also for the DMRG) to build the
Hamiltonian for the next iteration: (i) the tensor-product
space including the newly added site must be mapped
into proper symmetry spaces. This is taken care of by the
construction of the identity A-tensor AId

k+1. (ii) The new
Hamiltonian is built using this identity A-tensor through
contractions as shown in Fig. 4(b) [note that while the
presence of outer multiplicity in QSpace f is typically in-
herited by QSpace F through the basis transformation as
in Fig. 4(a), the internal contraction over the IROP set
index q in Fig. 4(b) eventually leads to a scalar contri-
bution to the Hamiltonian, as discussed with Eq. (13b)].
After diagonalization and state space truncation in the
combined state space, the part of the resulting unitary
matrix describing the kept states can be contracted onto
AId
k+1, yielding the actual final Ak+1.
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G. Density matrix and backward update

Consider the density matrix ρ̂k ≡
∑
jj′(ρk)jj′ |j〉〈j′|

given in the basis |j〉(k), which is assumed to include all
sites of a system up to and including site k. With the lo-
cal state space of the last site k described by |σk〉, tracing
out this last site from the density matrix ρk corresponds
to contracting the Ak-tensor that connected site k to the
system’s MPS,

ρ̂k−1 = tr
σk

(
ρ̂k
)

=
∑

ij,i′j′,σ

A
[σk]∗
ij A

[σk]
i′j′ (ρk)jj′ |i〉〈i′|

≡
∑

ii′

(
A[σk]†ρkA

[σk]
)
ii′
|i〉〈i′|. (15)

Equation (15) leads to a density matrix ρ̂k−1, which now
is written in the many-body basis |i〉(k−1) which includes
all sites up to and including site k−1. This backward up-
date is a well-known operation within the NRG.17,23,27,28

Its graphical depiction is given in Fig. 5 [note that the
sum over i and i′ in Eq. (15) connects to state spaces
that are not yet contracted; hence these correspond to
open indices in Fig. 5].

The backward update of the density matrix in Eq. (15)
preserves its properties as a density matrix and as a scalar
operator. The former directly follows from the realization
that the orthonormality condition Eq. (11) with the A-
tensor in the last line of Eq. (15) is exactly equivalent to
a complete positive map. Moreover, by tracing out part
of a system such as a site that has been added through
a tensor product space and that itself can be fully cat-
egorized using given symmetries, this procedure cannot
break symmetries by itself. This is to say, that the partial
trace in Eq. (15) preserves the property of a scalar opera-
tor. However, the trace over CGC spaces adds important
weight factors to the reduced multiplet spaces, which are
crucial, for example, to preserve the overall trace of the
density matrix during back-propagation. While the con-
traction in Fig. 5 can be easily performed, in practice,
without the explicit knowledge of these weights, their
determination is straightforward and instructive, never-
theless, as will be shown in the following.

The contraction in Fig. 5 clearly also holds for the CGC
spaces of every symmetry individually. Therefore it is
sufficient to focus on one specific symmetry. Let i con-
tain several multiplets qi, and consider, for simplicity, the
special case where the local state space σ contains one
specific multiplet qσ only. In addition, also the reduced
density matrix ρ̂k is chosen such that it only picks one
very specific multiplet qj . Focusing on the Clebsch Gor-

dan coefficients C
[qσz ]
qizqjz ≡ 〈qiqiz; qσqσz|qjqjz〉 for chosen

symmetry then, which properly combine the irreducible
multiplets qi and qσ into the multiplet qj , the contraction

in Eq. (15) with respect to the fixed qj is given by
∑

qσz qjzqj′z

〈qi′qi′z; qσqσz|qjqj′z〉〈qiqiz; qσqσz|qjqjz〉∗ · δqjzqj′z

=
∑

qσz

〈qi′qi′z; qσqσz|
(∑

qjz

|qjqjz〉〈qjqjz|
)
|qiqiz; qσqσz〉

= fqiqj · δqi qi′ δqizqi′z , (16)

where the δqjzqj′z in the first line comes from the as-
sumption that the initial ρ̂k is a scalar. The last iden-
tity follows from the fact that also ρ̂k−1 shall be a scalar
operator. Alternatively, the last equality can also be un-
derstood as a general intrinsic completeness property of
Clebsch-Gordan coefficients. Either way, the remaining
factor fqiqj in the last line must be independent of the
z-labels. The factor fqiqj then, in a sense, reflects the
weight of how the IREP qi together with the traced over
IREPs qσ contributes to the final total qj . If, for exam-
ple, for fixed qi and the known set of qσ some final total
qj cannot be reached, then it holds fqiqj = 0 for this case.

From the scalar property of ρ̂k−1, Eq. (16) can be fur-
ther constrained to some specific qi = qi′ . Also summing
over qiz = qi′z then, the second line in Eq. (16) becomes
equal to tr

(∑
qjz
|qjqjz〉〈qjqjz|

)
= dqj , i.e. the internal

multiplet dimension of the IREP qj . Together with the
last line in Eq. (16), it follows,

fqiqj =
dqj
dqi

. (17)

as demonstrated, for example, for SU(2) in [17]. Note
that Eq. (17) holds in general for arbitrary symmetries,
and also in the presence of outer multiplicity. This fol-
lows by recalling that one of the main assumptions that
entered Eq. (16) was to pick one specific multiplet qj .
This single IREP, however, may equally well also have
been any of the multiplets resulting from outer multi-
plicity, say multiplet qj → qj,α, which nevertheless again
leads to Eq. (17).

H. Generalized A-tensor for tensor networks

The prototypical A-tensor as defined in Eq. (9) com-
bines two physically distinct state spaces in terms of their
tensor-product space. One may be interested, however,
in the case where three or more state spaces need to
be combined into the description of a single combined
state space, while also respecting symmetries. This sit-
uation, for example, occurs regularly in the context of
tensor network states.6–9 Let m be the number of states
spaces to be combined. Then this requires the general-
ized Clebsch-Gordan coefficients 〈q1q1z; . . . ; qmqm,z|qqz〉.
Once known, in principle, they can be combined com-
pactly into a generalized A-tensor of rank m + 1. The
question is, how to obtain this generalized A-tensor in a
simple manner in practice.

For this, the QSpace structure introduced in this paper
proves very useful. In particular, a generalized A-tensor
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Figure 6. (Color online) Generalized A-tensor that com-
bines multiple state spaces, i.e. four effective state spaces
|i1〉, . . . , |i4〉 together with one local degree of freedom |σ〉.
Here it is assumed that all input state spaces describe proper
orthonormal state spaces that act in different spaces, such
that they can be combined into a simple product space. The
index j, finally, represents the common global state space.
In particular, it can be used to truncate the global Hilbert
space to the state space of interest (within the DMRG, this
may simply be the ground state, where the index j, being
a singleton dimension, simply may be skipped then). While
the general Clebsch-Gordan coefficients for the entire object
may not be easily available (object to the right), the overall
A-tensor can be built iteratively by adding one state space at
a time (object to the left), starting, say, from A1 which links
the two state spaces i1 and i2 into the combined state space j2
and hence allows to employ Clebsch-Gordan coefficients in the
usual manner. The state space j2 can then be combined with
state spaces i3, and so forth. Contraction of the intermediate
indices j2, . . . , j4, finally, leads to the generalized A-tensor to
the right.

can be obtained based on the iterative pairwise addition
of individual state spaces, which is a well-established pro-
cedure at every step. The situation is depicted schemat-
ically in Fig. 6. To be specific, Fig. 6 considers four
effective state spaces |iα〉 ≡ |qαqα,z〉 with α = 1, . . . , 4,
together with a local state space |σ〉 ≡ |q5q5,z〉, thus hav-
ing m = 5. This specific setting may correspond, for
example, to the situation in a tensor network state that
describes a two-dimensional system which, from the point
of view of a specific site with state space σ, has four ef-
fective states spaces to the top, bottom, left, and right,
respectively. Note, however, that here the state spaces
|iα〉 with α = 1, . . . ,m are assumed to be physically dif-
ferent, in principle, such that the tensor product space is
a well-defined concept.

Starting with state spaces |i1〉 and |i2 in Fig. 6, their
state space can be combined in terms of and identity A-
tensor AId

1 in the usual fashion using standard Clebsch-
Gordon coefficients. The resulting combined state space
|j2〉 then can be combined with state space i2 in terms of
another identity A-tensor AId

2 , thus yielding |j3〉, again
using standard Clebsch-Gordan algebra. The procedure

is repeated, until at the last step, for example, the local
state space σ is added, resulting in the full combined state
space |j〉 properly categorized in terms of symmetries.
The iteratively generated m − 1 identity A-tensors AId

k ,
on the other hand, can be contracted into a single tensor
of rank m + 1 by contracting the intermediate indices
j2, . . . , jm−1. This then results in the desired generalized
A-tensor, shown at the r.h.s. of Fig. 6. Furthermore, in
the context of DMRG or tensor network states, one is
typically interested in a single state such as the ground
state of the system. In this case, the full combined state
space |j〉 is truncated to a single state, such that the
extra index |j〉 becomes a singleton and can be dropped,
for simplicity.

The construction of a generalized A-tensors, as out-
lined above, emphasizes the versatility of the QSpaces
introduced in this paper. In particular, by explicitly in-
cluding the CGC spaces in Eq. (5), generalized Clebsch-
Gordan coefficients can be easily obtained in terms of a
generalized A-tensor, which itself is constructed through
an iterative transparent procedure.

III. CORRELATIONS FUNCTIONS

Correlations functions are usually calculated with re-
spect to operators whose transformation under given
symmetries is known. This is specifically so, as these op-
erators often naturally derive from the same fundamental
building blocks, that also enter the Hamiltonian. In the
presence of non-abelian symmetries, a single specific op-
erator then that is not a scalar operator, is usually part
of a larger irreducible operator set. In practice, thus also
its correlation function is calculated w.r.t. the full IROP,
for simplicity, as will be explained in the following.

Consider, for example, the retarded Greens function

Gσ(ω) ≡ 〈dσ‖d†σ〉ω (18)

that, in the time domain, creates a particle of preserved
flavor σ, and destroys it some time later. Clearly, a par-
ticle with the same flavor must be destroyed later, other-
wise the Greens function is zero, i.e. the Greens function
is diagonal with respect to symmetries. Now in the pres-
ence of symmetries, it must be possible to write the oper-
ators d†σ as part of an irreducible operator set, e.g. some

spinor (IROP) ψ̂q that transforms according to IREP q
with internal dimension dq (in the case of plain abelian
symmetries, it typically holds dq = 1, i.e. the operator d†σ
is the only member of the IROP). Thus the calculation
of the very specific correlation function with respect to
specific elements dσ and d†σ above can replaced by the
Greens function

Gψq (ω) ≡ 〈(ψ̂q)†‖ψ̂q〉ω. (19)

To be clear, if dq > 1, this includes the scalar product of
the spinor components, and thus one is actually calculat-
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ing the same Greens functions as in Eq. (18) dq times,

Gψq (ω) =

dq∑

qz=1

〈(ψ̂qqz )†‖ψ̂qqz 〉ω = dq · 〈d(σ)‖d†(σ)〉ω

⇒ G(σ)(ω) = 1
dq
Gψq (ω). (20)

with G(σ) independent of σ within its multiplet, as im-
plied by the round brackets. This apparent overhead,
however, only affects the CGC space, so this is negligi-
ble numerical overhead, yet makes the calculation con-
ceptually simple. Specifically, when calculating matrix
elements and their contribution to the Greens function,
eventually all indices can be fully contracted, so there is
no need for a special treatment of a specific z-label that
represents a peculiar d†σ. Moreover, given the discussion
of scalar operators in Sec. II E earlier, one realizes that

the scalar product ψ̂† · ψ̂ of the IROP ψ̂q yields a scalar
operator.

In the following, two explicit prototypical examples for
correlation functions are given that are used explicitly for
the numerical results presented in this paper. The first
example is the spin-spin correlation function or magnetic
susceptibility χd (ω) defined at some site d. In the pres-
ence of spin SU(2) symmetry,

χd(ω) = 〈Sx,d‖Sx,d〉ω = 〈Sy,d‖Sy,d〉ω = 〈Sz,d‖Sz,d〉ω
≡ 1

3

〈
Ŝd‖Ŝd

〉
ω

. (21)

Clearly, the local operator Ŝ2
d ≡ Ŝd · Ŝd is a scalar op-

erator, with the corresponding spinor Ŝ(d) given by [cf.
App. Eq. (A11)]

Ŝ ≡



− 1√

2
Ŝ+

Ŝz
+ 1√

2
Ŝ−


 .

The second example is the spectral function for a sin-
gle spinful channel in the presence of spin and particle-
hole SU(2) symmetry. The spinor is given by [cf. App.
Eq. (A59)],

ψ̂ ≡




sĉ†↑
ĉ↓
sĉ†↓
−ĉ↑


 .

In the evaluation of the correlation function,

〈ψ̂†‖ψ̂〉ω =

dq=4∑

qz=1

〈ψ̂†qz‖ψ̂qz 〉ω

= 〈ĉ↑‖ĉ
†
↑〉ω + 〈ĉ†↓‖ĉ↓〉ω + 〈ĉ↓‖ĉ

†
↓〉ω + 〈ĉ†↑‖ĉ↑〉ω

the signs, including s ≡ ±1, of the individual compo-
nents are irrelevant. Given the spin symmetry and the

fact, that in the presence of particle-hole symmetry spec-
tral functions are symmetric with respect to ω = 0, and
in general GB,B†(ω) ≡ 〈B‖B†〉ω = GB†,B(−ω), it fol-
lows that all four contributions above describe exactly
the same function, indeed, and therefore

Gσ(ω) ≡ 〈ĉσ‖ĉ†σ〉ω = 1
4 〈ψ̂†‖ψ̂〉ω.

IV. THE NUMERICAL RENORMALIZATION
GROUP

The non-abelian setup described above is straightfor-
wardly applicable to the NRG.3,29 Before doing so in de-
tail, here a brief reminder of the essentials of NRG is
given, followed by the introduction of the model Hamil-
tonian to be analyzed. By construction, the NRG deals
with so-called quantum impurity models – an arbitrary
small quantum system (the impurity) that is in contact
with a macroscopic non-interacting typically fermionic
bath. Each part is simple to solve exactly on its own.
The combination of both, specifically in presence of in-
teractions at the location of the impurity, however, gives
rise to strongly-correlated quantum-many-body effects.

The systematic approach introduced by Wilson3 was a
logarithmic discretization in energy space of the contin-
uum of the bath (coarse graining), followed by an exact
mapping onto a semi-infinite so-called Wilson-chain, with
the intact impurity space coupled only to the very first
site of this chain. Given the half-bandwidth W := 1
of the bath, the discretization parameter Λ > 1, typi-
cally Λ & 1.7, defines the logarithmic discretization in
terms of the intervals ±[Λ−m,Λ−(m+1)] with m ≥ 0 an
integer, and energies taken relative to the Fermi energy
εf ≡ 0. Each of these intervals is then described by a sin-
gle effective fermionic state, with its coupling and exact
energy position chosen consistently w.r.t. the hybridiza-
tion of the original continuum model.30,31 The resulting
discretized model is then mapped onto the semi-infinite
Wilson-chain (Lanczos tridiagonalization).32 Hereby, the
logarithmic discretization of the non-interacting bath
translates to an effective tight-binding chain, with the
hopping tk ∼ Λ−k/2 between sites k and k + 1, decay-
ing exponentially in the discretization parameter Λ. The
latter then justifies the essential renormalization group
ansatz of the NRG in terms of energy scale separation
– large energies are considered first, with approximate
eigenstates at large energies discarded and considered
unimportant for the description of the still following
lower energy scales. Thus each site of the Wilson chain
corresponds to an energy shell with a characteristic en-
ergy scale ωk ≡ a

2 (Λ + 1)Λ−k/2. Here the constant a of

order 1. is chosen such, tk/ωk → 1 for large k.28

In practice, when considering the system up to site
k, the Hamiltonian of the rest of the system is ignored,
equivalent to assuming degeneracy in the state space of
the remainder of the system. With Ĥk the full Hamil-
tonian Ĥ including the Wilson chain up to site k, its
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eigenstates |s〉k, Ĥk|s〉k = Eks |s〉k, and with |e〉k an arbi-
trary state of the rest of the system following site k, then
the essential spirit of NRG after coarse graining of the
bath can be condensed in the following approximation,33

H|se〉k ' Eks |se〉k, (22)

expressing energy scale separation, with |se〉k ≡ |s〉k ⊗
|e〉k. The energies Eks are usually taken relative to the
ground state energy Ek0 of iteration k, and rescaled by the
energy scale ωk. All of this will be referred to as rescaled
energies, and has the advantage that independent of the
Wilson shell k, energies are always of order 1.

In this paper, the state space truncation at a given
NRG iteration is energy-based, i.e. all states with Eks ≤
EK are kept, typically with EK ' 5 . . . 7 in rescaled
energies. The number of kept states NK thus changes
dynamically.28,29,31

A. Full density matrix

Within the NRG,3 a complete many-body basis set
can be formulated from the state space discarded at
every iteration.33 Initially introduced for explicit time-
dependence of quantum quenches, they actually can also
be used to improve on existing calculations for thermody-
namical quantities and expectation values,34 with a clean
extension to arbitrary temperatures using the full den-

sity matrix (FDM).23 The density matrix ρ̂ ≡ e−βĤ/Z
with β = 1/kBT , kB the Boltzmann constant and T the
temperature, obviously commutes with the Hamiltonian
and is a scalar operator in itself. Within the FDM-NRG
approach,23 the density matrix

ρ̂ = 1
Z

∑

k;qn;qz ;e

e−βE
k
qn |qn; qz; e〉k k〈qn; qz; e|, (23)

can be constructed straightforwardly in terms of a
QSpace for every Wilson shell k. Here s ≡ (qn) stands
for the multiplet label for a given shell k. Note that the
symmetry of the states e is irrelevant here, as this space
is fully traced over. Given the usual practice of NRG to
rescale and shift energies at every iteration, all of this, of
course, must be undone before entering Eq. (23) [given a
general thermal density matrix, of course, all energies in
Eq. (23) must be (i) at the same energy scale, i.e. non-
rescaled, and (ii) specified with respect to a common en-
ergy reference, e.g. the overall ground state energy of the
Wilson chain].23

By construction, all eigenenergies Ekqn are degenerate,
i.e. do not depend on the z-labels. With the reduced den-
sity matrix being a scalar operator, therefore the CGC
spaces in the QSpaces describing Eq. (23) are all propor-
tional to identity matrices, leading to the overall normal-
ization

Z =
∑

k;qn

dqd
N−k
w e−βE

k
qn , (24)

G JH 
k=0 k=1 k=2 … 

Figure 7. Schematic depiction of the fully screened Kondo-
Anderson hybrid model [Eq. (25) with m = 3] in the NRG
setup of a Wilson chain. Three d-levels with onsite Hund’s in-
teraction of strength JH couple uniformly to their respective
channel with hybridization Γ. The semi-infinite Wilson chain
for each channel represents a tight-binding chain with expo-
nentially decaying couplings, that interacts with the other
channels through the impurity only. For a given NRG iter-
ation, all terms in the Hamiltonian of the same energy scale
must be included simultaneously, leading to an extended Wil-
son site [dashed boxes] of three spinfull fermionic levels with
a state space of 34 = 64 states each.

where dq is the internal dimension of multiplet q, and
dN−ks reflects the degeneracy w.r.t. the rest of the Wilson
chain of final lengthN , with dw the state space dimension
of a Wilson site.23

B. Model: symmetric three-channel system

The historically first physical system where Kondo
physics was observed was that of Fe impurities in Au.21,22

The effective microscopic model for this material, how-
ever, is far from trivial. It was argued only very recently
in an extended study20 that the physics of the five d-
orbitals of substitutional Fe in Ag or Au is dominated
by 3-fold degenerate triplet space t2g, with the doublet
space eg split-off by crystal fields and thus playing a mi-
nor role. Together with the effective spin 3/2 of the iron
impurity, this then results in an SU(3) symmetric fully
screened 3-channel Kondo model.

The actual model analyzed20 is depicted schematically
in Fig. 7. It consists of m = 3 spinful d-levels compris-
ing the impurity, that are interacting through the Hund’s
coupling of strength JH . Each of these impurity levels is
coupled to its own spinful bath channel with uniform hy-
bridization Γ. This leads to the Kondo-Anderson hybrid
Hamiltonian,

Ĥ ≡ Ĥd +
m=3∑

i=1

∑

pσ

[√
2Γ
π

(
d̂†iσ ĉipσ + H.c.

)
+ εpĉ

†
ipσ ĉipσ

]
,

(25a)
where all energies will be given in context in units of the
half-bandwidth W := 1. The impurity is described by

Ĥd ≡ −JH Ŝ · Ŝ, (25b)

with the impurity spin

Ŝα ≡
m∑

i

Ŝi,α ≡
m∑

i=1

∑

σσ′

( 1
2τα)σσ′ d̂

†
iσd̂iσ′ (25c)

P7.

138



17

given in terms of the Pauli matrices τα with α ∈ {x, y, z}.
Here d̂†iσ [ĉ†ipσ] creates a particle with spin σ ∈ {↑, ↓} on

d-level i at energy εd = 0 [in bath channel i at energy
εp], respectively. For JH & Γ, an effective spin-3/2 forms
at the impurity, leading to a symmetric fully-screened
spin-3/2 system. The resulting Kondo temperature TK

decays exponentially with JH/Γ, with TK quickly becom-
ing the smallest energy scale in the system. In practice,
choosing JH = 2Γ/(m + 1

2 ) leads to comparable Kondo
temperatures TK for different m. Compared to the stan-
dard Kondo Hamiltonian with S · s coupling of the dot
spin S with the lead spin s, the Hamiltonian in Eq. (25)
in terms of Γ and JH also allows for charge-fluctuations,
while the model maintains particle-hole symmetry.

In particular, the Anderson-like model in Eq. (25)
has the advantage that the impurity self-energy Σ(ω)
can be evaluated within the NRG in a simple fashion.
From a more technical point of view, this allows the
straightforward calculation of an improved spectral func-
tion from the self-energy.35 The impurity Greens function
[cf. Eq. (20)]

G(iσ)(ω) ≡ 〈d̂(iσ)‖d̂
†
(iσ)〉ω

≡ G′(iσ)(ω)− iπG′′(iσ)(ω), (26)

consisting of real and imaginary part, respectively, is con-
structed within the NRG framework, as usual, from the
spectral function A(iσ)(ω) ≡ − 1

π ImG(iσ)(ω) ≡ G′′(iσ)(ω).

Subsequently, the real part G′(iσ)(ω) is obtained through

Kramers-Kronig transform of A(iσ)(ω).29 The calculation
of the additional correlation function F(iσ)(ω) then,

F(iσ)(ω) ≡
〈
[d̂(iσ), Ĥd]‖ d̂†(iσ)

〉
ω

, (27)

obtained similarly from its spectral part F ′′(iσ)(ω) ≡
− 1
π ImF (ω), allows to evaluate the self-energy Σ(ω) at

the impurity35

Σ(iσ),JH ≡
F(iσ)

G(iσ)
, (28)

Note that, the commutator of the IROP d̂(iσ) with the
scalar Hamiltonian in Eq. (27) again leads to an IROP
w.r.t. the same IREP q. Moreover, by symmetry, both
G(iσ) and F(iσ) are independent of (iσ), as indicated by
the subscript bracket, and hence will be skipped alto-
gether in the following, for simplicity.

1. Kondo limit from numerical perspective

While the procedure to obtain the self-energy is
straightforward for an Anderson-like model, there is no
simple way to do so for the plain Kondo-like model with
S ·s interaction.35 However, from the NRG point of view,
the transition from one to the other is straightforward.
That is, knowing that the Kondo temperature TK decays

exponentially with JH/Γ, both, JH as well as Γ can be
taken much larger than the bandwidth W := 1 of the
model, while keeping their ratio constant,

JH , Γ� 1, JH
Γ = const. (29)

This is a well-known procedure in the analytical
Schrieffer-Wolff transformation for the Anderson model
into a Kondo model.36 But, of course, exactly the same
strategy can also be pursued here within the NRG [see
Fig. 8 later]. For the local density of states at the
impurity this leads to a well-separated nearly discrete
contribution to the spectral function at |ω| � 1 far
outside the bandwidth. For the spectral range within
the bandwidth, the actual spectral function for the
Kondo-model emerges. In particular, this procedure al-
lows to fully eliminate the free-orbital (FO) regime with
strong charge-fluctuations in the Anderson-like model
right within the first truncation step. From a numeri-
cal point of view, this is desirable as the FO regime is
typically the most expensive one. For example, for the
model discussed here using the symmetries below, using
energy-based truncation indicates that about a factor of
5 . . . 10 more multiplets are required for the FO regime as
compared to the local moment (LM) or strong coupling
(SC) regime at later NRG iterations [cf. Fig. 9]. Never-
theless, by maintaining an Anderson-like description, the
impurity self-energy remains easily accessible numerically
within the NRG, even though essentially the correlation
functions for the Kondo model are calculated.

V. NRG RESULTS

The model in Eq. (25) is a true three-channel system,
in that it is not possible to simply decouple a certain uni-
tary superposition of bath channels. Furthermore, within
an NRG iteration, a site from each channel must be in-
cluded as they have the same coupling strength, i.e. en-
ergy scale, as schematically depicted in Fig. 7 [dashed
boxes].

The non-abelian symmetries present in the system are,

• total spin symmetry: SU(2)spin,

• particle-hole symmetry in each of the three chan-
nels: SU(2)⊗3

charge, and

• channel symmetry: SU(3)channel.

The latter symmetry SU(3)channel, however, does not
commute with particle-hole symmetry, while it does
commute with the total charge U(1)charge, i.e. the
abelian subalgebra of particle-hole symmetry [cf. App.
Eq. (A72), and subsequent discussion]. Having non-
commutative symmetries, however, directly suggests a
larger enveloping symmetry, which in the present case is
the symplectic symmetry Sp(6) [i.e. Sp(2m) with m = 3,
cf. App. A 10].
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This allows to consider the following symmetry set-
tings,

SU(2)spin ⊗ SU(2)⊗3
charge ≡ SU(2)⊗4

SC, (30a)

SU(2)spin ⊗U(1)charge ⊗ SU(3)channel, and (30b)

SU(2)spin ⊗ Sp(6). (30c)

All of these symmetry settings have been implemented, in
practice, and applied within the NRG framework, with
results presented in the following. The first setting in
(30a) represents a more traditional NRG scenario based
on a set of plain SU(2) symmetries. The second set-
ting (30b) includes SU(3)channel together with the simple
abelian symmetry U(1)charge for total charge, while the
last setting (30c) represents the actual full symmetry of
the model.

Even though the second setting in (30b) actually in-
cludes an abelian component in terms of charge, it nev-
ertheless represents a stronger symmetry as compared to
the first setting (30a). Since SU(3)channel is a rank-2 sym-
metry with two commuting z-operators, i.e. generators
of the Cartan subalgebra, it possesses a two-dimensional
multiplet representation. This results in much larger
multiplets for setting (30b), with the bare SU(3) multi-
plet dimensions easily reaching up to 100 (e.g. dq ≤ 125
for the NRG run underlying Fig. 12, cf. App. C 3). As
a consequence, this allows, on average, smaller multiplet
spaces and thus better numerical performance.

The first two symmetry settings in (30) emphasize dif-
ferent symmetry aspects, yet allow to break certain sym-
metries which, nevertheless, are present in the model
Hamiltonian in Eq. (25). The first symmetry setup (30a)
strongly emphasizes particle-hole symmetry, while it does
not use the symmetric coupling of the levels to their
respective channels. The channel symmetry can thus
be broken without reducing the symmetry setting (30a).
The second symmetry setting (30b), on the other hand,
emphasizes the channel symmetry (uniform Γ), while it
allows to break the particle-hole symmetry. Hence, in
principle, a uniform level-shift could be applied to the d-
levels within this setting. Only the third symmetry (30c)
captures the full symmetry of the model, as it combines
channel symmetry with particle-hole symmetry into the
enveloping symmetry Sp(6). This is a rank-3 symme-
try with multiplet dimensions now easily reaching up to
a several thousands (e.g. see Tbl. VIII for actual mul-
tiplets generated in a full NRG run). A more detailed
general discussion and comparison of all of above sym-
metry setups in terms of their overall multiplet structure
and representation of a site with three spinful levels (i.e.
a Wilson site) is given in App. C 3.

A. Spectral functions

The spinor ψ̂q to be used for fermionic hopping term
as well as for the calculation of spectral functions can
be represented for all symmetry settings by IROPs with

a well-defined multiplet label q [cf. Eq. (20)]. For the
first symmetry setting in (30), SU(2)⊗4

SC, the IROP for
the calculation of spectral functions involves three 4-

component spinors, ψ̂
[4]
i for short, one for every chan-

nel i = 1, . . . , (m = 3). The corresponding IROP la-
bels are q1 = ( 1

2 ,
1
2 , 0, 0), q2 = ( 1

2 , 0,
1
2 , 0), and q3 =

( 1
2 , 0, 0,

1
2 ), respectively. The number of components in

the spinor derives from the two participating SU(2) mul-
tiplets (S,C) = 1

2 for spin and one specific channel, thus

having 2 × 2 = 4 operators in one specific IROP ψ̂
[4]
i ,

indeed. With this, the hopping in the Hamiltonian, for

example, is given by ĥk,k+1 =
∑m
i=1 ψ̂

[4]†
k,i · ψ̂

[4]
k+1,i. Note

that this excludes the hermitian conjugate part, as this is
already fully incorporated through the particle-hole sym-
metry [see App. Eq. (A73b)]. Furthermore, note that
particle-hole symmetry gives rise to intrinsic even-odd
alternations for the spinors along a chain [see App. A 9 b
for a detailed discussion].

In contrast, the second symmetry setting in (30),
SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel, leads to a single

6-component spinor, ψ̂[6] for short. Its IROP multi-
plet label is given by q = (1

2 ,− 1
2 , 0 1). This com-

bines a 2-dimensional SU(2)spin multiplet S = 1
2 and

an abelian 1-dimensional multiplet Cz = − 1
2 with the

3-dimensional SU(3)channel multiplet T = (0 1), result-
ing in the 2 × 1 × 3 = 6 operators in the multiplet.
For comparison, here the hopping term in the Hamil-
tonian in Eq. (25) is reduced to a total of two terms,

ĥk,k+1 =
(
ψ̂

[6]†
k · ψ̂[6]

k+1 + H.c.
)

[see App. Eq. (A73a)].

Finally, for the third symmetry setting in (30),

SU(2)spin ⊗ Sp(6), again a single spinor ψ̂q is obtained,

but now with 12 components, written as ψ̂[12] for short.
Its IROP label is given by q = ( 1

2 , 1 0 0), which combines

the 2-dimensional SU(2)spin multiplet S = 1
2 with the

6-dimensional Sp(6) multiplet (1 0 0), i.e. defining repre-
sentation of Sp(6). Overall, this again recovers the 2×6 =
12 components of the spinor, indeed. For comparison,
now the hopping term in the Hamiltonian in Eq. (25) is

reduced to the single term ĥk,k+1 =
(
ψ̂

[12]†
k · ψ̂[12]

k+1

)
. The

scalar contraction of the spinor ψ̂[12] with itself recovers
the original 12 terms in the fermionic hopping structure
between two sites in the Hamiltonian in Eq. (25). Since
particle-hole symmetry is part of Sp(6), this again im-
plies that (i) the hermitian conjugate is already taken
care of in the hopping term, and (ii) that Sp(6) again
gives rise to the same intrinsic even-odd alternations for
the spinors along a chain, exactly analogous to what has
already been encountered for standard particle-hole sym-
metry.

The correlation functions calculated for the model in
Eq. (25) are presented in Fig. 8, with the model param-
eters indicated at the bottom left of panel (a). Panel
(a) shows the spectral data on a linear scale, while panel
(b) shows the same data vs. log(|ω|) which therefore al-
lows a logarithmic zoom into the low energy regime. The
legend shown with panel (b) also applies to panel (a).
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Figure 8. (Color online) SU(2)spin⊗U(1)charge⊗SU(3)channel
analysis of the symmetric three-channel Anderson model
[Eq. (25) with model parameters specified in the lower left of
panel (a)]; the same data as in panel (a) is shown vs. log(|ω|)
in panel (b) to zoom into the Kondo peak at small frequencies
with the legend for both panels shown in panel (b). The spec-
tral data ANRG and the auxiliary F ′′NRG are shown together
with the derived self-energy Σ′′(ω) and the improved spectral
function Aimp (see text). A zoom around ω = 0 is show in
the right inset of panel (a), with the left (right) axis belonging
to A(ω) [Σ′′(ω) and F ′′(ω)], respectively. The spectral data
for A(ω) and Σ′′(ω) is symmetric around ω = 0 and strictly
positive, while F ′′(ω) is antisymmetric. In panel (b) therefore
the ω < 0 branch of F ′′(ω) has been plotted in dashed lines,
same color otherwise. The left inset to panel (a) shows the
spin-spin spectral data χ′′(ω), with the resulting TK ≡ 1/4χ0

indicated in panel (b) and the left insets of both panels by
the vertical dashed line.

The data in Fig. 8 was obtained using the symmetry set-
ting in (30b) including SU(3)channel. Note that having
chosen an energy-based NRG truncation with EK = 7,
the spectral data for the other two symmetry settings
is identical, hence not shown. While the calculation is
somewhat more involved for the more traditional setup
(30a), it becomes significantly more compact still when
finally including Sp(6) as in (30c). Their individual nu-

merical efficiency will be discussed with Fig. 9 below.

In Fig. 8, the spectral function obtained from the NRG
is plotted as ANRG(ω) ≡ G′′NRG(ω). The spectral data
satisfies the Friedel sum-rule to an excellent approxima-
tion, in that limω→0

(
πΓANRG(ω)

)
= 1 [see right inset to

panel (a) for a zoom around ω = 0]. The self-energy Σ(ω)
was obtained by calculating the additional correlation
function FNRG(ω) [Eq. (27), to be used in Eq. (28)]. The
imaginary part Σ′′(ω) ≡ − 1

π ImΣ(ω), plotted in Fig. 8,
clearly approaches zero in a smooth parabolic fashion at
the Fermi energy, i.e. limω→0 Σ(ω) = limω→0

d
dωΣ(ω) =

0, as expected for a system who’s low-energy behavior
corresponds to that of a Fermi liquid. This is seen more
clearly still in the zoom around ω = 0 in right inset of
Fig. 8(a), with the self-energy data associated with the
right axis. The self-energy Σ(ω)/JH sharply drops within
|ω| . TK from order 1. accurately down to about 10−4

which is considered the NRG resolution limit.

The improved spectral function Aimp(ω) derived from
the self-energy35 is also shown in Fig. 8 [dashed red
(black) line]. Within the Kondo regime, the result closely
follows the original ANRG(ω), as demonstrated in the
zoom in the right inset of Fig. 8(a) or also in panel (b).
As expected from the self-energy treatment,35 the im-
proved spectral function Aimp(ω) allows clearly sharper
resolution for structures at finite frequencies, specifically
so for larger Λ. This can be observed, for example, for
the hybridization side peaks in Fig. 8(b) at the energy of
the Hund’s coupling JH . Having chosen JH much larger
than the bandwidth [with the bandwidth indicated by
the vertical dotted line in panel (b)], these hybridization
side peaks essentially correspond to very narrow, nearly
discrete peaks that are much overbroadened through the
standard log-Gauss broadening of the NRG.23,29 In prin-
ciple, these side peaks could be narrowed significantly
further by an adaptive broadening scheme.37 For the pur-
poses of this paper, however, this was irrelevant.

The dynamically generated exponentially small Kondo
temperature TK for the system can be determined by
taking the full-with-at-half-maximum (FWHM) of the
Kondo peak in the spectral function. However, with
NRG somewhat sensitive to broadening of the underly-
ing discrete data29 (see also supplementary material in
Ref. 23), TK is simply determined therefore through the
static magnetic susceptibility χ0 =: 1/4TK,35 where χ0

is obtained from the impurity spin-spin correlation func-
tion χ(ω) ≡ 〈S(z),d‖S(z),d〉ω ≡ χ′(ω)− iπχ′′(ω) evaluated
at ω = 0, with S(z),d the total spin at the impurity [cf.
Eq. (21)]. The resulting spin-spin spectral function χ′′(ω)
is shown in the left inset to Fig. 8(a), together with the
resulting TK = 4.4 · 10−7 (in units of bandwidth). As
expected, χ′′(ω) shows a pronounced maximum around
TK. The value for TK is also indicated by the vertical
dashed line in panel (b).

The NRG data presented in Fig. 8 clearly suggests con-
verged data, even without necessarily having to resort to
self-energy to get the low energy physics correct.20 The
convergence is also supported by the analysis of the dis-
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carded weight28 which, inspired by DMRG, analyzes the
decay of the eigenspectrum of site-specific reduced den-
sity matrices built from the ground state space a few it-
erations later. For given NRG run, the discarded weight
is estimated as εDχ=5% = 3 · 10−11. This suggests good

convergence, in agreement with Ref. 28. If, for example,
an energy truncation of EK = 5, . . . , 6 had been used,
instead, NRG intrinsic parameter dependent deviations
of up to ten percents can still be seen w.r.t. to the Friedel
sum-rule or the agreement of ANRG(ω) with Aimp(ω).

B. Detailed comparison of symmetry settings

An NRG specific technical comparison of the symme-
try settings in Eq. (30) for the calculation in Fig. 8 is
presented in Fig. 9. The underlying truncation had been
energy-based in all calculations (EK = 7), thus leading
to a fair comparison in terms of accuracy. With this,
the physical properties, and in particular the energy flow
diagram3,35 in Fig. 9(a), show perfect agreement using
either symmetry setting. Having sufficiently many states
implies that for symmetries, that are not explicitly and
thus exactly included in the QSpace setup, their unin-
tended breaking due to numerical double precision noise
does not play role.

Figure 9(b) shows the number of kept multiplets for
each iteration k. Having chosen JH and Γ much larger
than the bandwidth [cf. Fig. 8(a)], the free-orbital regime
is absent, with the transition from the local moment to
the strong coupling regime given by the energy scale of
TK [vertical dashed line at k ' 22]. As expected from
physical grounds, also the local moment regime (k < 22)
requires a larger state space (multiplet) dimension still
for the same accuracy, i.e. the same EK, as compared to
the strong coupling regime (k > 22).

With the state space truncation based on the energy
cutoff EK = 7, the actual Hilbert state space dimension,
i.e. when including the internal CGC space dimensions,
is exactly the same for all symmetry settings. In particu-
lar, the maximum total Hilbert state space dimension per
iteration that was diagonalized exactly for either symme-
try setting was N∗tot ≤ 4, 369, 024 or N∗K ≤ 68, 266 w.r.t.
kept space only. These state spaces could be strongly re-
duced to the effective and manageable multiplet dimen-
sion as indicated at the top of Fig. 9(b), with Wilson
shell specific multiplet dimensions plotted in the panel.

Figure 9(c) analyzes the actual reduction in multiplet
space due to presence of the CGS spaces in terms of the
ratio of the actual Hilbert space dimension N∗tot relative
to the total multiplet dimension Ntot for each site along
the Wilson chain. Depending on the symmetry setting,
on average, the treatment of non-abelian symmetries al-
lows to reduce the Hilbert space dimension by at least
a factor of 16, 20, or 300 for the symmetries in (30),
respectively. This demonstrates an enormous numerical
gain, considering that the numerical cost of NRG roughly
scales likeO(N3

tot). Note that it is exactly through the di-

AWb, Feb 17, 2012dma_plot_SUNppr2

Γ=10, JH=30, Λ=4, L=40, NC=3, N
K
=9000, E

tr
=7, AΛ, D=3336, ’SU2,SU2,SU2,SU2’            

Γ=10, JH=30, Λ=4, L=42, NC=3, N
K
=10000, E

tr
=7, ETRUNC=[300 300 60], AΛ                 

Γ=10, JH=30, Λ=4, L=42, NC=3, N
K
=4096, E

tr
=7, ETRUNC=[300 300 60], AΛ, D=406, ’SU2,Sp6’

0

1

2

3

4

(a) NRG_SU2x4/Wb111002_D9000_Etr70_l40_J300000 Etr=7, D≤9000 N
K
∗ ≤68,266 N

K
∗ ≤4,369,024

(b) NRG_SU123/Wb110930_D10000_Etr70_l40_J0300 Etr=7, D≤10000 N
K
∗ ≤68,266 N

K
∗ ≤4,369,024

N
R

G
 e

ne
rg

y 
flo

w
 d

ia
gr

am

(c) NRG_Sp23/Wb120123_D4096_Etr70_l40_j30 Etr=7, D≤4096 N
K
∗ ≤68,266 N

K
∗ ≤4,369,024

 

 

(a)

0

1000

2000

3000

4000

5000
→ N

K
≤3,336  N

tot
≤142,024

→ N
K
≤2,151  N

tot
≤  88,707

nu
m

er
 o

f k
ep

t m
ul

tip
le

ts
 (

N
K
)

→ N
K
≤   406  N

tot
≤   9,977

(b)

 

 

1 10 20 30
10

1

10
2

10
3

10
4

N
∗ to

t / 
N

to
t

Wilson shell k

(c)

 

 

1 10 20 30
10

20

30

40

50

k

x k ≡
 N

(k
+

1)
to

t
 / 

N
K(k

)

SU(2)
SC
⊗ 4

SU(2)⊗ U(1)⊗ SU(3)

SU(2)⊗ Sp(6)

(a)  SU(2)
SC
⊗ 4

(b)  SU(2)⊗ U(1)⊗ SU(3)
(c)  SU(2)⊗ Sp(6)

1 10 20 30
0

5

10

k

q k≡ 
N

K
/N

K(c
)

 

 

(a) (b)

SU(2)
SC
⊗ 4

SU(2)⊗ U(1)⊗ SU(3)

SU(2)⊗ Sp(6)

Figure 9. (Color online) Comparison of the efficiency of the
symmetry settings as outlined in Eq. (30) for the calculation of
the spectral data in Fig. 8 for the 3-channel model in Eq. (25).
For a fair comparison, all calculations were performed using
the same energy-based truncation with EK = 7 for the same
discretization Λ = 4 as in Fig. 8. The vertical dashed lines
in all panels indicates the energy scale of TK. Panel (a) com-
pares the energy flow diagrams resulting for even iterations
from the individual NRG runs, indicating perfect consistency
for all symmetry settings. Panel (b) shows the number of kept
multiplets for each iteration. For each symmetry setting, at
the top of the panel the maximum dimension in the multi-
plet space over the entire NRG run is specified for kept (NK)
and total (Ntot), i.e. kept and discarded space, respectively.

The inset shows the ratio qk ≡ NK/N
(c)
K of the multiplets

that needed to be kept for the symmetry settings in Eq. (30a)
and Eq. (30b) relative to the case when the full Sp(6) is in-
cluded [Eq. (30c)]. Panel (c) shows the ratio N∗tot/Ntot of the
actual Hilbert-space dimension (N∗tot) at a given iteration,
which includes the internal multiplet dimensions, relative to
the dimension of the multiplet space (Ntot). The inset shows
the ratio xk that describes the increase in the number of mul-
tiplets when adding a new site prior to truncation.

mensional reduction to multiplet spaces, that above NRG
calculations had been feasible in practice, and this within
a few hours of runtime. In contrast, the plain abelian
setting simply would not have been able to deal with the
underlying Hilbert state space dimension using state of
the art workstations [cf. App. Tbl. VI].

Within the kept space, the multiplet dimension of the
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first two settings in (30a) and (30b) relative the setting
including the Sp(6) are shown in the inset to Fig. 9(b)
[(a) and (b), respectively]. This clearly demonstrates a
further reduction by a factor of about 5 . . . 8 when in-
cluding the full Sp(6) symmetry. From the same inset,
it is also clear that the symmetry setting in Eq. (30b)
including SU(3)channel allows, on average, a 40% further
reduction of the number of multiplets in the simulation
as compared to the SU(2)⊗4

SC setting.

Furthermore, the inset to Fig. 9(c) shows the ratio

xk ≡ N
(k+1)
tot /N

(k)
K which indicates the increase in to-

tal number of multiplets when adding a new site prior
to truncation. While this factor shows a clear reduction
from the actual dimension of the local Hilbert space of a
Wilson site of 43 = 64 states, the ratio xk is somewhat
larger than what one may naively expect, considering
that, depending on the symmetry, a Wilson site reduces
to a total number of 4, 10 or 13 multiplets [see App.
Tbl. V, Tbl. IV, and Tbl. III, respectively]. On the other
hand, given non-abelian symmetries, the combination of
two multiplets typically leads to clearly more than just
one overall multiplet. In this sense, the major gain of
using non-abelian symmetries is given by the state space
reduction demonstrated in Fig. 9(b). For the first two
symmetry settings in (30), the multiplet space increase
by adding a new site in terms of a product space reduces
the original abelian factor of 64 only modestly down to
about 38. Only when using of the full Sp(6), this leads
to a significant further reduction of the ratio xk down
to about 20, which thus becomes nearly comparable in
numerical cost to a two-channel calculation with abelian
symmetries, where a Wilson sites adds 42 = 16 states to
the system.

The SU(3) representations that are explicitly gen-
erated in the calculation of Fig. 8 using SU(2)spin ⊗
U(1)charge ⊗ SU(3)channel are listed in Fig. 12 [App. C 3].
The largest Clebsch-Gordan space that is split off with
respect to the SU(3) sector only is the (4, 4) represen-
tation with an internal multiplet dimension of 125. In
other words, by explicitly accounting for SU(3) symme-
tries, in the present case, a 125-fold degeneracy in the
Hamiltonian had been reduced to a single multiplet, with
the SU(3) symmetry space taken care of separately with
minor computational overhead. Nevertheless, the eigen-
states in the SU(3) setting still show significant degenera-
cies. These can be entirely removed only by using the full
Sp(6) symmetry, which allows to remove original degen-
eracies in the Hamiltonian of several thousands. Note
that on top of above symmetries, the spin SU(2) mul-
tiplets present yet another independent multiplet space
that enters as a tensor product, thus enlarging the overall
symmetry space still further.

In terms of overall runtime on a state-of-the-art 8-core
workstation, this translated to about 6 hours of runtime
for the SU(2)⊗4

SC symmetries, as compared to about 4.5
hours of runtime when including SU(3)channel. Using the
full symmetry as in (30c), on the other hand, took about
24 hrs. While significantly more efficient in terms of stor-

age requirements [cf. Tbl. VII] thus facilitating calcula-
tions on standard workstations, the huge CGC spaces in
the last setting must be dealt with carefully. As can be
seen from Fig. 9(b), the total number of kept multiplets
hardly reaches 400, while the Sp(6) multiplets are fully
comparable in terms of dimensionality, with some mul-
tiplets even much larger internally than the actual num-
ber of multiplets considered [cf. App. Tbl. VIII]. While
the sparse algebra had been optimized by ourselves to
also make use of the parallel shared memory capacity [cf.
App. C 3 b], in contrast, the full multiplet spaces had ac-
cess to the highly optimized shared BLAS libraries. The
latter benefitted the first two symmetry settings (30a)
and (30b) in terms of overall runtime. However, there is
clearly room for further improvement in dealing with the
sparse algebra for larger rank symmetries as in (30c).

VI. SUMMARY AND OUTLOOK

A generic and transparent framework has been pre-
sented for the implementation of non-abelian symme-
tries in tensor-networks in terms of QSpaces. For this,
it was assumed that all participating state spaces are
strictly orthonormal and can be assigned proper well-
defined symmetry labels. Therefore the presented frame-
work is straightforwardly applicable to the traditional
DMRG as well as to the NRG. The latter was demon-
strated in detail in this paper for an SU(3) symmetric
3-channel problem which, in the presence of particle-hole
symmetry, can be enlarged into the symplectic symmetry
Sp(6). By reducing the actual state space to the reduced
multiplet space, while factorizing the Clebsch Gordan
coefficient space, this allows an efficient description of
all relevant tensors. While the explicit Clebsch Gordan
algebra bears little overhead for combinations of lower
rank symmetries, the average internal multiplet dimen-
sions grow quickly with increasing rank r of a symmetry.
In practice, one may roughly estimate that the typical
internal multiplet dimension grows like O(10r), for ex-
ample, having r = 0, 1, 2, 3 for abelian, SU(2), SU(3),
and Sp(6), respectively. Starting with r = 3, an effi-
cient sparse scheme on all CGC spaces becomes crucial.
For symmetries with rank larger than three, finally, it
appears desirable to develop general strategies and sum
rules for the contraction of extended complex networks
of CGC spaces.

A detailed self-contained general introduction to non-
abelian symmetries is given in the appendix, together
with many explicit examples that arise in practice
(App. A and C). Several further highlights explained in
detail in the appendix (App. B) are: (i) a straightforward
numerical recipe for the general calculation of Clebsch
Gordan coefficients based on explicit product space de-
composition in the presence of multiplicity, (ii) a generic
recipe for the determination of irreducible operator sets,
and last but not least, (iii) also a general algorithm to
get the framework for several symmetries initialized from
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plain Fock space. The latter does not require any initial
detailed knowledge of specific symmetry labels other than
the general action of the underlying generators. These
are known in second-quantized form and thus also easily
defined in Fock space.
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Appendix A: Non-abelian symmetries 101

The general more pedagogical introduction of non-
abelian groups in this appendix emerges from a practical
numerical background of treating quantum many-body
phenomena. It does not claim to cover non-abelian sym-
metries in every theoretical detail, yet requires certain
elementary concepts which will be briefly reviewed. The
main focus of this appendix then is on practical applica-
tions in quantum lattice models. Specifically, this targets
the numerical renormalization group (NRG),3,29 density
matrix renormalization group (DMRG)2,24 or more gen-
erally tensor networks,9,18 yet also exact diagonaliza-
tion, which itself may be formulated in a matrix prod-
uct state language. The appendix offers a general treat-
ment of continuous non-abelian symmetries, with modi-
fications towards abelian, point-groups, or discrete non-
abelian symmetries straightforward. Overall, this ap-
pendix should be self-contained, sufficient and hopefully
helpful to deal with general abelian and non-abelian sym-
metries in numerical simulations.

The non-abelian symmetries of concern in this paper
are continuous symmetries. An element Ĝ of the corre-
sponding Lie group Ĝ can be parameterized by a set of g
continuous, independent, and real parameters aσ,25

Ĝ(a1, . . . , ag) = exp
(
i

g∑

σ=1

aσŜσ

)
, (A1)

with g the dimension of the symmetry group. Infinites-
imal operations with aσ � 1 then define the set of g
generators {Ŝσ}, the number of which thus also reflects
the dimension of the group (note that the identity oper-
ator is a trivial operation which therefore is never part of
the set of generators). For unitary symmetries, as consid-
ered throughout in this paper, the generators in Eq. (A1)
are hermitian. Furthermore, when dealing with exponen-
tially large yet finite-dimensional quantum-many-body
Hilbert spaces, the non-abelian symmetries also must
have finite-dimensional Lie algebras.

The commutator relations of the generators in
Eq. (A1),

[Ŝσ, Ŝµ] =
∑

ν

fσµν Ŝν , (A2)

determine the tensor of the structure constants fσµν ,
which itself fully defines the underlying Lie algebra. The
tensor fσµν is antisymmetric in that by construction
fσµν = −fµσν , yet not necessarily fully antisymmetric
also w.r.t. to the last index ν [in principle, it can be
made fully antisymmetric using the Cartan-Killing met-
ric, while distinguishes between co- and contravariant in-
dices in Eq. (A2);38,39 for simplicity, however, this dis-
tinction is not made in this paper]. All generators are
assumed to be connected to each other through above
commutator relations. That is, if a subgroup of gener-
ators fully decouples in that it commutes with the rest

of the generators, then this subgroup forms a symmetry
of its own. In this sense the group of generators for a
specific simple symmetry is irreducible.

A set of matrices {Rσ}, that obeys exactly the same

commutator relations as the generators (operators) {Ŝσ}
in Eq. (A2), allows a one-to-one correspondence between
the matrices {Rσ} and the generators of the symmetry.
It is called a matrix representation of the Lie algebra.
If the carrier space, i.e. the vector space within which
the matrix representation is defined, is fully explored
through repeated application of the individual matrices
of the representation, then this is called an irreducible
matrix representation, to be denoted as {Iσ} henceforth.
It is unique up to an overall similarity transformation.
Together with its carrier space it refers to an irreducible
representation (IREP), specified by a unique label q. If,
on the other hand, part of the carrier space of a matrix
representation decouples, the representation is called re-
ducible. This will be discussed in significantly more de-
tail later in the context of state space decomposition in
Secs. A 5 and A 6.

Consider an irreducible matrix representation {Iqσ} for
IREP q of dimension dq. Its carrier space is spanned
by the multiplet |q〉 ≡ {|qqz〉}, where qz references the
individual states within the multiplet q (consider, for ex-
ample, spin multiplets, where |qqz〉 ≡ |S, Sz〉). The states
|qqz〉 forms an irreducible space w.r.t. the action of the
generators, in that for an arbitrary symmetry operation
Ĝ as in Eq. (A1),

Ĝ|qqz〉 =
∑

q′z

Gqqz,q′z |qq
′
z〉, (A3a)

some linear superposition within the same multiplet
space arises. The coefficients Gqqz,q′z form a dq × dq di-

mensional matrix, which represents the symmetry op-
eration Ĝ within multiplet q, and is given by Gq ≡
exp (i

∑
σ aσI

q
σ) for some arbitrary but fixed values aσ.

Similar to the multiplet space |qqz〉 of dimension dq,

an irreducible operator (IROP) set F̂ q ≡ {F̂ qqz} can be
defined in a completely analogous manner. While it is
not constrained to a specific carrier space, the IROP F̂ q

consists of a set of dq operators that are associated with
multiplet q. As such, it can be written as a vector of op-
erators, i.e. a generalized spinor. For a given symmetry
operation Ĝ then, the IROP transforms analogously to
Eq. (A3a), which for an operator implies

ĜF̂ qqz Ĝ
−1 =

∑

q′z

Gqqz,q′z F̂
q
q′z

. (A3b)

On the level of infinitesimal operations, |aσ| � 1, in con-
trast to the plain action of generators on a ket-state as
in Eq. (A3a), Eq. (A3b) shows that the transformation
of an IROP directly translates to commutator relations
[l.h.s. of Eq. (A3b)] with the generators of the symmetry,
instead.

The practical relevance of above general statements
will be discussed in much detail in what follows, together
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with many examples relevant in actual numerical calcu-
lations.

1. Simple example: rotational symmetry

A simple and well-known example of a non-abelian
symmetry is the rotational group O(3) in real space in
three dimensions. An arbitrary rotation can be written as
G = eiS with S an arbitrary hermitian, yet fully complex
three-dimensional matrix (hence no hats). The latter is
required for G to be real. Consequently, this leaves three
real parameters (ax, ay, az), with S = axSx+aySy+azSz.
The generators25

Sx =




0 0 0

0 0 −i
0 i 0


 , Sy =




0 0 i

0 0 0

−i 0 0


 , Sz =




0 −i 0

i 0 0

0 0 0




(A4)
represent infinitesimal rotations around the x, y, and z-
axis, respectively. The O(3) symmetry therefore has di-
mension g = 3, and its Lie algebra is defined by,

[Ŝσ, Ŝµ] = i
∑

ν

εσµν Ŝν , (A5)

with σ, µ, ν ∈ {x, y, z} and εσµν the Levi-Civita tensor,

having switched to general operator notation [operator Ŝ
(with hat) rather matrix S]. Being generators of O(3),
the matrix representation in Eq. (A4) already represents
a 3-dimensional IREP. As it is the simplest non-trivial
IREP for O(3), it is also called its defining representa-
tion. By combining state spaces that share this symme-
try then, many other IREPs can be generated, including,
for example, the (trivial) scalar representation of dimen-
sion 1.

With respect to continuous functions f(x, y, z) in
three-dimensional space, the generators of infinitesimal
rotations are given by the differential operator described
by the angular momentum operator L̂ = r̂ × p̂ with
p̂ ∼ ∇r. By construction, its three components L̂i also
obey exactly the same Lie algebra as the generators in
Eq. (A5). The same also holds for the spin algebra SU(2)
in complex space, which describes the symmetry for spin-
ful particles such as electrons if rotational spin symmetry
is not broken, i.e. in the absence of an external magnetic
field. Hence the rotational group O(3) is isomorphic to
the spin SU(2). In contrast to O(3), however, the defining
representation of SU(2) is two-dimensional [cf. Eq. (A6)],
and hence also allows half-integer spin multiplets, which
are entirely absent in O(3). Having essentially twice as
many multiplets in SU(2) as compared to O(3), SU(2) is
thus called a double cover or 2:1 cover of O(3).

2. SU(2) spin algebra

In this paper, the setup and notation for non-abelian
symmetries is generalized from SU(2). Therefore the

symmetry SU(2) will be recapitulated in some more de-
tail, introducing the semantics used for the general treat-
ment of non-abelian symmetries. In this sense, the se-
mantics used in this paper is somewhat more inclined
towards the physics background, rather than strictly ad-
hering to the mathematical language of Lie algebras. The
latter, nevertheless, will be indicated in context.

Similar to the O(3) symmetry, an arbitrary unitary
transformation in two-dimensional complex space is given
by G = eiS with S an arbitrary two-dimensional hermi-
tian matrix. This again has three independent real pa-
rameters (ax, ay, az), such that S = axSx + aySy + azSz.
Here Sσ = 1

2τσ, with σ ∈ {x, y, z}, is given by the stan-
dard Pauli spin matrices τσ,

τx =

(
0 1

1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0

0 −1

)
, (A6)

For SU(2), this represents the smallest non-trivial ma-
trix representation, therefore this also becomes its defin-
ing representation. The commutator relations of the ma-
trices τσ are exactly the same as for O(3) in Eq. (A5),
since SU(2) also refers to the same rotational symmetry.
Therefore, the generators for SU(2) will again also be de-

noted by the operators {Ŝσ} with σ ∈ {x, y, z} in what
follows.

For a general irreducible representations of SU(2), e.g.
a spin multiplet, the usual choice of basis is such that
the z-component of the spin operator, Ŝz, becomes diag-
onal in its matrix representation Sz, while the other two
operators Ŝx and Ŝy remain non-diagonal (due to their
non-commuting properties, only one spin component can
be fully diagonalized, given the freedom of a similarity
transformation for the whole representation). Using the
notation |qqz〉 ≡ |S, Sz〉 for general spin multiplets, the
multiplet label q (q-label) then can take the values q =
0, 1

2 , 1,
3
2 , 2, . . . with the internal multiplet label (z-label)

spanning the 2q + 1 values qz ∈ {−q,−q + 1, . . . ,+q}.
The raising and lowering operators (RLOs) are defined
as40

Ŝ± ≡ Ŝx ± iŜy, (A7)

such that Ŝ− ≡ (Ŝ+)†, with the commutator relations

[Ŝz, Ŝ±] = ±Ŝ± (A8a)

[Ŝ+, Ŝ−] ≡ [Ŝ+, Ŝ
†
+] = 2Ŝz. (A8b)

For spin multiplets |qqz〉 then, it holds40

Ŝz|qqz〉 = qz|qqz〉
Ŝ±|qqz〉 =

√
q(q + 1)− qz(qz ± 1) |q, qz ± 1〉. (A9)

While the operator set {Ŝx, Ŝy, Ŝz} generates the
SU(2) symmetry group, this set itself does not yet repre-
sent an irreducible operator (IROP), in that it does not
yet transform according to a specific symmetry multi-
plet. For this, a specific linear superposition of the orig-
inal operators as in Eq. (A8b) is required. In particular,
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the transformation of an IROP set under given symme-
try is completely analogous to the transformation of the
symmetry eigenstates in Eq. (A9). As indicated with
Eq. (A3b), the major difference is that the action of a

generator Ŝσ applied onto a state is simply replaced by
the commutator of the generator with an operator. For
example, for an IROP F̂ q given in terms of the set of op-
erators {F̂ qqz} which transform like the (state) multiplet
q, it follows for consistency with Eq. (A9),

[Ŝz, F̂
q
qz ] = qzF̂

q
qz (A10a)

[Ŝ±, F̂
q
qz ] =

√
q(q + 1)− qz(qz ± 1) · F̂ qqz±1 (A10b)

This allows, for example, to complete the operator Ŝz
into an irreducible spin operator set as follows. Clearly,
[Ŝz, Ŝz] = 0·Ŝz, which implies that the operator Ŝz has z-

label qz = 0, i.e. Ŝq0 ≡ Ŝz with q still unknown. Applying
the RLOs yields the operators corresponding to qz = ±1,

[Ŝ±, Ŝ
q
0 ]︸ ︷︷ ︸

=[Ŝ±,Ŝz ]=∓Ŝ±

=
√
q(q + 1) + 0 · Ŝq±1.

With the further application of RLOs yielding zero, i.e.
[Ŝ+, Ŝ+] = [Ŝ−, Ŝ−] = 0, the operator space is thus ex-
hausted. The irreducible spin operator set therefore has
three members qz ∈ {−1, 0,+1}, and thus transforms like
a spin multiplet q = max(qz) = 1,

Ŝ1 ≡ {Ŝ1
qz} ≡



Ŝ1,+1

Ŝ1,0

Ŝ1,−1


 =



− 1√

2
Ŝ+

Ŝz
+ 1√

2
Ŝ−


 . (A11)

Note that the signs and prefactors are crucial for consis-
tency with the Wigner-Eckart theorem later.

In above derivation, the z-operator in Eq. (A10a) al-
lowed to directly determine the z-label qz. The RLOs
in Eq. (A10b), on the other hand, served to explore the
multiplet space, in that they generated the remaining op-
erators F̂ qq′z with proper well-defined prefactors. In given

case of spin SU(2), these factors are known [cf. r.h.s.
of Eq. (A10b)]. In situations, where they may not be
known right away, they can nevertheless be determined
in a straightforward manner. For simplicity, in the ab-
sence of inner multiplicity for given multiplet, for canon-
ical raising or lowering operator S± (see Sec. A 3 b) the

combined application of Ŝ± followed by Ŝ†± onto an op-
erator of given multiplet q results in the same operator,
i.e.

[Ŝ†±, [Ŝ±, F̂
q
qz ]] = a2

±F̂
q
qz ,

from which the prefactor a2
± can be easily determined.

The analogous situation for a state space multiplet |qqz〉
is Ŝ†±Ŝ±|qqz〉 = a2

±|qqz〉, with a2
± ≥ 0 since Ŝ†±Ŝ± is

a positive operator; in case of spin SU(2), this exactly
reflects the prefactor on the r.h.s. of Eq. (A10b), i.e.

a2
± = q(q + 1) − qz(qz ± 1) ≥ 0. Therefore if the appli-

cation of Ŝ± results in a new operator component in the
multiplet, i.e. a2

± > 0, then this operator is exactly given
by

F̂ qq′z = 1√
a2±

[Ŝ±, F̂
q
qz ]. (A12)

This already contains the correct normalization and sign,
with the the latter strictly determined by the outcome of
the commutator. The z-label qz can be derived directly
from the structure constants of the underlying Lie alge-
bra, i.e. Eq. (A10a). For a more general discussion on
IROPs and their general decomposition also in the pres-
ence of inner multiplicity for the IROP multiplet q, see
Sec. A 7.

3. Generators and symmetry labels

Symmetries S within a quantum mechanical frame-
work are described by a set of generators Ŝσ that leave
the Hamiltonian Ĥ of the system invariant. Therefore it
must hold for all generators of the symmetries considered
that

[Ŝσ, Ĥ] = 0. (A13)

Thus by definition, the Hamiltonian is a scalar opera-
tor. The generators of independent symmetries S and
S ′ commute trivially, by definition, as they operate in
independent symmetry sectors. Therefore, for simplicity,
a single specific non-abelian symmetry S is considered
in the following, also referred to as simple non-abelian
symmetry, a prototypical example being SU(N).

Therefore let S be a simple non-abelian symmetry. By
construction then, its set of generators {Ŝσ} is fully con-
nected via the structure constants in Eq. (A2), i.e. is irre-
ducible but not necessarily an IROP yet [e.g. see previous
discussion for SU(2) ]. With the symmetry reflected in

the unitary transformation Ĝ = eiεŜσ with hermitian Ŝσ
[cf. Eq. (A1)], it follows that for infinitesimal ε� 1, the
invariance of the Hamiltonian under this unitary trans-
formation, i.e. ÛĤÛ† = Ĥ, is trivially equivalent to
Eq. (A13).

In order to ensure maximally independent generators,
all operators in {Ŝσ} can be taken orthogonal with re-
spect to each other and specifically also with respect to
the identity matrix (which is always excluded from the
set of generators {Sσ}). This requires a scalar or inner
product for matrices, which is provided by

〈A,B〉 ≡ tr
(
A†B

)
, (A14)

together with the resulting Frobenius norm ‖A‖2 =
〈A,A〉 = tr

(
A†A

)
. For the generators of the symmetry,

thus one requires

tr
(
S†σSσ′

)
= aσδσσ′ (A15a)

tr
(
Sσ
)

= tr
(
1(†)Sσ

)
= 0, (A15b)
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The generators in Eq. (A15b) are understood as finite-

dimensional matrix representations of the operators Ŝσ
in some specific carrier space, here the defining represen-
tation. Moreover, the orthogonality w.r.t. to the identity
in the last equation implies that all generators Sσ are
traceless.

a. Z-operators (Cartan subalgebra)

For a given simple non-abelian symmetries, it is al-
ways possible to identify a maximal set of mutually com-
muting hermitian generators which form the so-called
Cartan subalgebra of the symmetry’s Lie algebra. These
can be fully diagonalized simultaneously (together with
the Hamiltonian), and hence can be considered diago-
nal. They shall be referred to as the z-operators [as they
generalize the concept of the operator Sz for SU(2)],

[Ŝz , Ŝz′ ] = 0 (z-operators). (A16)

For a given Hamiltonian Ĥ then, this implies that every
eigenstate Ĥ|n〉 = En|n〉, in addition, can also be labeled
with its respective set of symmetry labels |n〉 → |qn; qz〉,
leading to

Ĥ|qn; qz〉 = Eqn|qn; qz〉. (A17)

Here q identifies the multiplet, i.e. a set of states qz that
are connected in an irreducible manner through all of
the generators of the symmetry. While the index n origi-
nally identified all states in given Hilbert space, it is now
sufficient that it labels the multiplet within the space of
multiplets that share the same q. The composite index
(qn) then is referred to as multiplet index. Similarly, also
the eigenenergies Eqn in Eq. (A17) acquire symmetry la-
bels. These, however, are independent of qz since, by
construction, the states within a symmetry multiplet are
degenerate in energy. More generally, with qz entirely de-
termined by symmetry for a given multiplet q, they can
easily be generated and thus omitted where convenient.

Given a specific multiplet qn, the labels qz are equal
to the eigenvalues of the z-operators,

Ŝz|qn; qz〉 = qz|qn; qz〉 (z-labels), (A18)

which will be referred to as z-labels. If more than one
z-operator is associated with given symmetry S, say a
total of r z-operators, where r thus defines to the rank
of the symmetry, then the z-label structure associated
with a multiplet also consist of a collective set of r z-
labels (note that r needs to be differentiated here from
the rank r of a tensor or QSpace as used in the main
text). For example, the symmetry group SU(N) has rank
r = N − 1. Therefore the rank of SU(2) is 1, e.g. a single
label q suffices to identify a state within an SU(2) spin
multiplet. SU(3), on the other hand, already acquires a
two-dimensional label structure for qz, and thus also for
q.

Note that the z-labels in Eq. (A18) for the states of a
specific multiplet q may not necessarily be unique, in that
the same qz may occur multiple times. Let mz describe
how often a specific z-label occurs within given multiplet
q. Then the presence of mz > 1 for at least one z-label is
called inner multiplicity. It is then necessary to introduce
an extra label α that uniquely identifies the state within
this degeneracy,

|qn; qz〉 → |qn; qzαz〉, (inner multiplicity) (A19)

with αz ∈ {1, . . . ,mz}. While inner multiplicity is absent
for SU(N ≤ 2), it occurs on a regular basis for SU(N ≥
3). The situation for outer multiplicity is analogous (see
Sec. A 5).

The label for the entire multiplet q (to be referred to
collectively as q-labels) is in principle arbitrary, yet must
be unique to identify the multiplet. Since for a continu-
ous symmetry infinitely many IREPs exist, it is natural
that the q-labels inherit the r-dimensional label structure
of the z-labels. In particular, it is possible to construct
a set of r scalar operators, called Casimir operators (see
Sec. ??), that define a unique set of r constants for each
multiplet. In practice, however, the q-labels are derived
from q ≡ max{qz}, i.e. by the z-labels corresponding to
the maximum weight state (see Sec. A 3 c) which in prin-
ciple can be related to the constants derived from the
Casimir operators.25

b. Raising and lowering operators (roots)

While for an arbitrary unitary element Ĝ of the sym-
metry hermitian {Ŝσ} are required, on the level of gener-
ators, in principle, arbitrary linearly-independent linear
superpositions within the space of generators Ŝσ can be
taken. Using such a reorganized set of generators, in-
stead, this still preserves Eq. (A13), yet alters the struc-
ture constants fσµν for given symmetry S. This freedom
is used in the following to define canonical raising and
lowering operators, which are non-hermitian, in general.

Consider the action of a generator Ŝσ onto a symmetry
eigenstate |qn; qz〉. The z-operators are special, in that
they are diagonal and hence return the same state, yet
weighted by the eigenvalue qz. The remaining genera-
tors, however, are non-diagonal, hence change the state
and thus explore the multiplet space. In general, these
generators can be reorganized such that all of them rep-
resent proper raising or lowering operators (RLOs), with
the canonical commutator relations,

[Ŝz, Ŝσ] = fzσσŜσ ≡ fzσŜσ, (A20)

with no summation over σ. The action of these canonical
RLOs in z-label space, in the literature also referred to as
root space, then defines the canonical form. By definition,
the canonical RLOs {Ŝ±} of a specific Lie algebra are ex-
pected to have the property that their application onto a
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symmetry eigenstate in the multiplet with well-defined z-
labels will generate another eigenstate of the z-operators,
yet with raised or lowered, i.e. well-defined different z-
labels. This is exactly what is expressed through the
commutator relations in Eq. (A20). In particular, the
structure constants take the simple form, where a non-
zero contribution can only arise if the last two indices
in fzσσ′ are identical, hence the shortcut notation fzσ
in the last term in Eq. (A20). By construction, fzσ is
fully antisymmetric. Note that Eq. (A20) also can be in-
terpreted as an eigenvalue equation for the generators of
the group. Since the z-operators Ŝz are symmetric, the
resulting eigenvalue problem is always well-defined with
real eigenvalues fzσ.

As a specific example, Eq. (A20) was already encoun-
tered for SU(2) in Eq. (A8a). Here it states more gen-

erally that the commutator of an arbitrary generator Ŝσ
with a z-operator yields the very same operator Ŝσ up to
the scalar structure factor fzσ. This factor can be zero,
e.g. when Ŝσ refers to another z-operator as in Eq. (A16),
therefore fzz′ = 0. For every z-operator, however, there
must exist at least one RLO Ŝσ with fzσ 6= 0, since oth-
erwise the group of generators would be reducible.

With Eq. (A20), the application of a generator Ŝσ onto
a symmetry eigenstate |qn; qz〉 yields

Ŝz · Ŝσ|qn; qz〉 = [Ŝz, Ŝσ]︸ ︷︷ ︸
(A20)

= fzσŜσ

|qn; qz〉+ Ŝσ · Ŝz|qn; qz〉︸ ︷︷ ︸
=qz|qn;qz〉

= (qz + fzσ)Ŝσ|qn; qz〉. (A21)

If Ŝσ is an RLO with fzσ 6= 0, the state Ŝσ|qn; qz〉 is
again a symmetry eigenstate, yet with a uniform shift in
the z-labels,

qz → qz′ ≡ qz + fzσ. (A22)

Therefore the action of an RLO Ŝσ in root space is
generic, i.e. independent of the specific multiplet q or
the state qz under consideration. Nevertheless, the RLO
may annihilate the state, i.e. Ŝσ|qn; qz〉 = 0, which is
essential to obtain a finite-dimensional multiplet space.
Furthermore, Eq. (A22) allows to pair up raising and low-

ering operators. That is, if Ŝσ is a raising operator, then
with

[Ŝz, (Ŝσ)†] = −[Ŝz, Ŝσ]† = −fzσ(Ŝσ)†, (A23)

the operator (Ŝσ)† changes the z-labels exactly in the

opposite direction as Ŝσ in Eq. (A22). In this sense,

(Ŝσ)† ≡ Ŝ−σ represents the corresponding lowering oper-
ator. The actual definition of what is a raising or lowering
operator is not entirely unique, as it depends on the spe-
cific underlying sorting scheme of the z-labels adopted in
root space. This does not matter, however, as long as
the sorting is done consistently throughout.38,39

In the presence of inner multiplicity a few complica-
tions arise. Most importantly, an RLO usually will gen-
erate a superposition in the mz′ -fold degenerate state

space in the resulting qz′ ,

Ŝσ|qn; qzαz〉 =

mz′∑

αz′=1

s[qσ]
qzαz ;qz′αz′

|qn; qz′αz′〉 (A24)

with some coefficients s
[qσ]
qzαz ;qz′αz′ . As a consequence, the

application of a raising operator Ŝσ followed by its com-
plimentary lowering operator Ŝ†σ onto a symmetry eigen-
state,

Ŝ†σŜσ|qn; qzαz〉 =

mz∑

αz′=1

s[qσ]
qz ;αzαz′

|qn; qzαz′〉 (A25)

with some other coefficients s
[qσ]
qz ;αzαz′ , does return to the

same symmetry labels qz, yet not necessarily to the same
state. If the resulting state in Eq. (A25) does not repli-
cate the initial state |qn; qzαz〉 up to an overall factor,
then this allows to explore the other states in the de-
generate subspace at qz. This is relevant for the decom-
position of state spaces, where the resulting state as in
Eq. (A25) needs to be orthonormalized in a consistent
fashion with respect to the already explored states of the
multiplet including the state |qn; qzαz〉 (see Sec. B 1, for
more detail on the numerical implementation).

While all z-operators are required, e.g. for the defini-
tion of the z-labels, it is usually not required to explicitly
construct all of the RLOs, as some of these operators can
be generated through a product of a smaller set of RLOs.
As will be seen below in the case of SU(N) or Sp(2n),
the number of actually required RLOs can always be re-
duced to the rank of the symmetry, i.e. the number of
z-operators. This minimal set of RLOs will be referred
to as simple RLOs, consistent with their general notation
in the literature as simple roots of the symmetry. In a
sense, these simple RLOs are the ones that induce the
smallest shifts in the z-labels.38,39 Again, their definition
is not entirely unique, depending on conventions such
as normalization of generators or what specific sorting
scheme is applied to the z-labels. The simple RLOs still
fully generate and connect the state spaces of any IREP.
The underlying intuitive reason is that an r-dimensional
z-label structure only requires r linearly independent vec-
tors to explore its space (for a rigorous proof, see for ex-
ample Refs. 38 and 39). Therefore given r z-operators
{Z1, . . . , Zr}, it is sufficient to choose a specific subset of
r raising operators {S1+, . . . , Sr+}, with the correspond-
ing lowering operators Si− ≡ (Si+)†. This reduction to
simple RLOs is very useful in practice, yet does not re-
strict the non-abelian treatment in any way.

c. Maximum-weight state

Consider some multiplet q of internal dimension dq for
a given non-abelian symmetry group S of rank r. Then
each of the dq states carries a set of r z-labels. When de-
picted graphically as points in r-dimensional space, this
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is called the weight diagram for the multiplet [for SU(3),
for example, a collection of weight diagrams generated
in an actual NRG run is shown in Fig. 12]. Since the
z-operators are traceless, the values of the z-labels are
naturally centered around the origin, i.e. qz = 0. Inner
multiplicity, if present, decreases as a function of dis-
tance |qz| to the origin, such that the outermost points
in a weight diagram always refer to unique states without
any remaining multiplicity. By choosing a lexicographic
ordering in the r z-labels,25 the maximum weight (MW)
is defined by

qMW ≡ max
{
qz
}

. (A26)

The state with qz = qMW is called the maximum-weight
state. This state is guaranteed to be unique to the multi-
plet for non-abelian symmetries,25,38,39 hence can be used
as label for the entire multiplet, i.e. q = qMW. While the
state space |qz| = max(|qz|) will not be unique, in gen-
eral, since it refers to several states at the circumference
of the weight diagram, max{qz} does provide a unique
set of z-labels. This underlines the importance of lexico-
graphic ordering.

As an example, consider the well-known spin SU(2).
The states within the multiplet q are labeled by |qqz〉
where qz = −q, . . . ,+q identifies each state within the
multiplet. This results in a one-dimensional weight dia-
gram, with the multiplet itself labeled by the maximum
weight states, q = max(qz), indeed.

Clearly, the q-labels for a multiplet themselves are also
not entirely unique and hence depend on convention. In
particular, if the rank of a symmetry group S is r > 1,
the order of the z-operators themselves is a priori ar-
bitrary. Hence there is a certain freedom in the order
of the z-labels, which in return affects the definition of
the maximum weight state. Given a certain order in the
z-operators then, the lexicographic sorting of sets of z-
labels is typically done in reverse order, i.e. starting with
the last of the r label for a given qz. Moreover, hav-
ing identified qMW, this still leaves the freedom to use a
linearly independent transform of qMW as label for the
entire multiplet for consistency with literature. For ex-
ample, for SU(3) [Sp(6)] this is discussed with Eq. (A34)
[Eq. (A91a)], respectively.

4. Example SU(N)

a. Defining representation

The symmetry SU(N) is defined as the unitary sym-
metry of an N -dimensional space. The defining represen-
tation, i.e. the IREP with smallest non-trivial dimension,
is therefore given by N ×N dimensional matrices. Since
according to Eq. (A15b) all generators are traceless, only
N − 1 diagonal z-operators exist, the diagonals of which
form an N -dimensional orthogonal vector space that is
also orthogonal to the diagonal of the identity matrix.

The raising (lowering) operators are chosen as N × N
matrices with a single entry of 1. anywhere in the up-
per (lower) triangular space, respectively, away from the
diagonal. For this, let

|ei〉 ≡ (0, . . . , 0, 1(i), 0, . . . , 0)T , (A27a)

with i ∈ {1, . . . , N} be the N -dimensional cartesian col-
umn basis vectors, and

Eij ≡ |ei〉〈ej |, (A27b)

the matrices of the related operator basis, which also
contain just a single entry of 1 in their N×N dimensional
matrix space, i.e. (Eij)i′j′ = δii′δjj′ . Then the generators
can be written as follows,

S
SU(N)
i 6=j = Eij =

{
raising operator for i < j

lowering operator for i > j
(A28a)

SSU(N)
z,k<N

=
( k∑

i=1

Eii
)
− kEk+1,k+1. (A28b)

These matrices are orthogonal as in Eq. (A15), while the
(arbitrary) normalization was chosen such that, for con-
venience, all entries are integers. The choice of generators
for SU(N) in Eq. (A28) guarantees canonical RLOs, and
thus simplifies the groups commutator relations w.r.t. z-
operators exactly the way as indicated in Eq. (A20). This
can be easily seen by observing that for a diagonal op-
erator of the type (Ẑ)ij = ziδij , the matrix elements of

the commutator with an arbitrary operator (Ŝ)ij = sij
is given by

[Ẑ, Ŝ]ij = sij(zi − zj),

that is, existing non-zero matrix elements in Ŝ are
weighted by differences in diagonal elements of Ẑ, while
there cannot arise any new matrix elements unequal zero
in [Ẑ, Ŝ] as compared to Ŝ. Clearly, if Ŝ± only has a sin-
gle non-zero entry as for the operators in Eq. (A28a), it

follows [Ẑ, Ŝ±] = const·Ŝ±, in agreement with Eq. (A20).
From Eq. (A28a) above, a total of 1

2N(N−1) different
raising operators arise. However, not all of these are
required to fully explore the multiplet space. Consider,
for example, the subset of r = N − 1 raising operators

{SSU(N)
+ }r ≡ {ŜSU(N)

12 , Ŝ
SU(N)
23 , . . . , Ŝ

SU(N)
N−1,N}, (A29)

which thus matches the rank r of the symmetry group
SU(N) and thus also the number of z-operators. From
repeated application of these operators, it is easily seen
that the remaining raising operators not contained in

Eq. (A29) can be generated. For example, Ŝ
SU(N)
13 is

generated by Ŝ
SU(N)
12 · ŜSU(N)

23 . Therefore, above minimal
set of r raising operators with their hermitian conjugate
set of lowering operators is sufficient, indeed, to explore
all multiplet spaces.
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b. The symmetry SU(3)

The defining representation for SU(3) is chosen as in
Eq. (A28), with the z-operators given by,

Z1 ≡




1 0 0

0 −1 0

0 0 0


 , Z2 ≡




1 0 0

0 1 0

0 0 −2


 . (A30)

Their diagonals can be collected as rows into a matrix,

z =

(
1 −1 0

1 1 −2

)
, (A31)

the columns of which give the z-labels (z1, z2) for the
three states in the defining representation (see large black
dots in Fig. 10). This represents the weight diagram for
the defining representation.

The canonical commutator relations as in Eq. (A20)
yield the structure constants (f)z,σ ≡ fzσ for z ∈ {1, 2}
and σ ∈ {12, 23, 31},

f =

(
2 −1 −1

0 3 −3

)
. (A32)

The columns in Eq. (A32) thus define the roots, i.e. the
shift in z-labels when applying either S12, S23, or S31, re-
spectively. These vectors (roots) are depicted in Fig. 10
by large thick arrows. Clearly, the three points in the
weight diagram of the defining representation can be con-
nected by these roots, equivalent to (repeatedly) applying
raising or lowering operators.

With the convention, that z-labels are lexicographi-
cally sorted starting with the last z-label, i.e. sorting
w.r.t. z2 first and then z1, the three states in the defining
representation are already properly sorted from largest
to smallest [left to right in Eq. (A30)]. Furthermore,
Eq. (A32) shows that S12 and S23 correspond to posi-
tive roots, since (2, 0) > (0, 0) and also (−1, 3) > (0, 0).
As their application makes z-labels larger, they represent
raising operators, indeed, while S31 is a lowering opera-
tor, all in agreement with Eq. (A28a). The third raising
operator thus would be S13 with root (1, 3) which, how-
ever, is not a simple root and hence can be dropped.

Finally, SU(3) still contains well-known SU(2) subal-
gebras. That is, for example, by using S12 as a raising
operator for the (x, y) subspace together with its corre-

sponding z-operator [S12, S
†
12] =: 2S

(12)
z = Z1 while keep-

ing the y component abelian, this shows that every line
of points in the (z1, z2) plane in Fig. 10 parallel to S12

must correspond to a proper SU(2) multiplet. The same
also holds for the two remaining permutations of (x, y, z)
using S23 or S31 for the SU(2) subspace, instead. These
SU(2) subalgebras clearly obey the standard commutator
relations for SU(2).

plotSU3_zplane AWb, Feb 20, 2012
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Figure 10. (Color online) Root space (z1, z2) for SU(3). The
three large black dots depict the weight diagram of the three-
dimensional defining representation of SU(3). Large arrows
indicate the shifts in z-labels due to the action of the rais-
ing operators S12, S23, and the lowering operator S31, while
dashed lines close to orthogonal to these arrows indicate lines
of constant S12, S23, and S31 (color match with correspond-
ing arrows). Dark symbols indicate accessible z-labels, while
light crossed-out symbols are not accessible within SU(3) (see
text).

c. Symmetry labels for SU(3)

The q-labels for a given IREP within SU(3) are derived
from its maximum-weight labels qMW ≡ max{(z1, z2)}.
With the z-labels additive through tensor products (see
latter in the appendix), the z-labels of arbitrary mul-
tiplets must be integer multiples of the z-labels of the
defining representation. This immediately excludes the
z-labels (points) in Fig. 10 that are crossed out. In par-
ticular, with the columns of Eq. (A31) being linearly de-
pendent, one may therefore use the columns of

z̃ =

(
1 0

1 2

)
, (A33)

as basis for the maximum weight labels, for consistency
with literature.25,41 Given qMW, the actual label of the
multiplet then is determined by

q ≡ (q1, q2) ≡ z̃−1 · qMW =

(
1 0

− 1
2

1
2

)
qMW. (A34)

This prescription makes the q-labels independent of
the specific normalization conventions chosen for the z-
operators. Furthermore, with z̃ = z · (1, 0,−1)T and the
vectors in the columns in Eq. (A33) being positive by
the adopted sorting scheme, this guarantees plain posi-
tive integers for the multiplet labels q. These labels also
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lie dense, in the sense that any (q1, q2) with qi ≥ 0 results
in a valid multiplet.

The defining representation with qMW = (1, 1) has the
q-label (1, 0). Its weight diagram together with many
further examples for multiplets, as generated, in practice,
from an actual NRG run using SU(3), are presented in
Fig. 12. Note, however, that weight diagrams are mainly
a matter of presentation of multiplets, while in practice a
listing of z-labels suffices to describe the multiplet space.

5. Decomposition into irreducible representations

The generators of a specific symmetry group S repre-
sent an irreducible finite set of operators {Ŝσ}, assumed
to act in the full Hilbert space of a given physical system.
Within (small) subspaces of the system, finite dimen-
sional matrix representations can be constructed that
obey exactly the same commutator relations as the gen-
erators in terms of their structure constants in Eq. (A2).
As such, a given matrix representation {Rσ} inherits all
the properties of the generators. In particular, the matrix
representation has the same number of operators as {Ŝσ}
with a one-to-one correspondence in the symmetry label
σ. Therefore the z-operators as well as the RLOs share
exactly the same interpretation within theD-dimensional
carrier space of {Rσ}.

Consider some arbitrary matrix representation {Rσ}
that may have emerged, for example, from a tensor prod-
uct space. As it operates in a D-dimensional carrier
space, all of its matrices share the same dimension D×D.
Assume a well-defined symmetry eigenstate within this
space is available, to be called seed state, with a typically
easy example being a maximum weight state. Then re-
peated application of RLOs from the set {Rσ} generates
a (sub)space which eventually describes a full symmetry
multiplet, i.e. an IREP. By construction this subspace
already diagonalizes the z-operators. Thus the z-labels
are known, which also provides the q-labels for the mul-
tiplet, e.g. by simply taking the maximum weight labels,
q1 = qMW.

If this multiplet q1 with dq1 symmetry eigenstates
spans the entire D-dimensional carrier space, then the
matrix representation {Rσ} is already irreducible. If only
a subspace of the D-dimensional carrier space was gener-
ated, i.e. dq1 < D, the matrix representation {Rσ} is re-
ducible. Multiplet q1 then defines a fully separated space,
given the symmetry operations in {Rσ}. Combining the
orthonormal state space of multiplet q1 as columns into
a matrix V1, the matrix representation {Rσ} can be cast

into the space of multiplet q1, Rσ → I [q1] ≡ V †1 RσV1,
which thus constructs the irreducible matrix representa-
tion I [q1] for IREP q1.

In case the D-dimensional vector space is not ex-
hausted yet, above procedure can be repeated with an-
other seed state within the remainder of the vector space,
generating further irreducible multiplets q2, q3, . . ., until
the D-dimensional vector space is fully exhausted. By

combining the state spaces of the multiplets thus gen-
erated, the resulting unitary matrix V ≡ [V1, V2, . . .] al-
lows to block-decompose the original matrix representa-
tion {Rσ} in terms of its irreducible representations,

V †RσV =
⊕

q

MqI
[q]
σ . (A35)

where q runs through all IREPs I [q]. Note that a given
IREP may be generated multiple times in the decom-
position, which is indicated by the outer multiplicity
Mq ∈ [0, 1, 2, . . .]. The presence of outer multiplicity
therefore refers to the situation that Mq > 1 for at least
one q in the decomposition. In this case, also inner mul-
tiplicity may occur, which refers to non-uniqueness of
z-labels within an irreducible multiplet [cf. Eq. (A19)],
both of which are specifically relevant, for example, for
SU(N > 2) or Sp(2n > 2).

As seen from above construction, the matrix represen-
tation I [q] of IREP q is tightly connected to the symmetry
multiplet q. In general, I [q] is unique only up to a global
similarity transformation, as this does not affect commu-
tator relations. By using its related multiplet state space,
however, this space (i) can be chosen such that it diago-
nalizes all z-operators, and (ii) can put into a well-defined
order as provided, for example, by the lexicographic or-
dering in the z-labels used to define the maximum weight
state. Based on this basis, the matrix representation I [q]

can be determined uniquely. This procedure on obtaining
unique irreducible matrix representations will be adopted
throughout.

The decomposition in Eq. (A35), finally, can be done
fully numerically along the same lines as already sketched
above. Particular attention, however, must be paid to
issues related to inner and outer multiplicity for over-
all consistency. This will be discussed in more detail in
Sec. B 1.

6. Tensor product spaces

Consider two irreducible matrix representations I [q1]

and I [q2] of some non-abelian symmetry group S, with
their matrix elements written in the basis of the symme-
try eigenstates |q1q1z〉 and |q2q2z〉 of the two IREPs q1

and q2, respectively. The two multiplets are assumed to
live in different spaces, so they can be joined through a
tensor product, i.e. |q1q1z〉|q2q2z〉 ≡ |q1q1z; q2q2z〉. Then
the generators of the symmetry in the combined space
are defined in an additive fashion, which derives from
the origin of the generators in infinitesimal symmetry
operations, cf. Eq. (A1),

Rtot
σ ≡ I [q1]

σ ⊗ 1[q2] + 1[q1] ⊗ I [q2]
σ . (A36)

Note that the additivity of the symmetry generators
directly also implies the additivity of z-labels for non-
abelian symmetries in general. And even if the non-
abelian part of the SU(N) symmetry is broken, e.g. re-
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duced to an abelian symmetry with quantum labels qz,
these are, of course, still additive.

By construction, the tensor product representation
{Rtot

σ } in Eq. (A36) is also a representation of the sym-
metry, as it obeys the same commutator relations within

the combined system as the IREPs I
[qi]
σ within their in-

dividual space,

[Rtot
σ , Rtot

σ′ ] = [R[q1]
σ , R

[q1]
σ′ ]︸ ︷︷ ︸

=
∑
µ
fσσ′µR

[q1]
µ

⊗ 1[q2] + 1[q1] ⊗ [R[q2]
σ , R

[q2]
σ′ ]︸ ︷︷ ︸

=
∑
µ
fσσ′µR

[q2]
µ

=
∑

µ

fσσ′µR
tot
µ . (A37)

The product representation {Rtot
σ }, however, is typically

reducible. The resulting decomposition into IREPs is
done exactly the same way as in Eq. (A35).

The unitary transformation that rotates the product
space |q1q1z; q2q2z〉 into its combined symmetry multi-
plets |qqz; (α)〉 is given by the Clebsch-Gordan coeffi-
cients (CGC),

|qqz; (α)〉 =
∑

q1z,q2z

|q1q1z; q2q2z〉〈q1q1z; q2q2z|qqz; (α)〉︸ ︷︷ ︸
≡C[q2z ]

q1zqz ;(α)

,

(A38)

with the shorthand notation C
[q2z ]
q1zqz ;(α) for CGCs, con-

sistent with the MPS tensors in the main body of the
paper [cf. Eq. (10)]. Note that the CGCs implicitly also
carry the multiplet labels q1, q2, and q. The index α has
been added to account for possible outer-multiplicity [cf.
Eq. A35], in that for input multiplets q1 and q2 the same

output multiplet q can appear M
[q1,q2]
q times, therefore

α = 1, . . . ,M
[q1,q2]
q for a given q. If outer multiplicity

is absent, the index α can be omitted, hence the round
brackets around α in Eq. (A38) or Eq. (A39).

As outer multiplicity also refers to different multiplets
and hence state spaces, the Clebsch-Gordan coefficients,
reflecting a unitary transformation, obey the general or-
thogonality condition,

∑

q1zq2z

C
[q2z ]
q1zqz ;(α)C

[q2z ]
q1zq′z ;(α′) = δqz,q′z ·

(
δα,α′

)
. (A39)

This holds within the same output multiplet q, whereas
the overlap between different output multiplets is strictly
zero. While outer multiplicity is intrinsically connected
to the underlying symmetry and hence to CGCs, in
addition, this also affects the output multiplet space
which must accommodate the additional multiplets [e.g.
see QSpace discussion in the main text; note also that
Eq. (A39) is completely analogous in structure to the
orthogonality relation of A-tensors as in Eq. (11)].

7. Irreducible operator sets and Wigner-Eckart
theorem

Consider a set of generators {Ŝσ} of some symmetry

group S that a Hamiltonian Ĥ commutes with. Then
all energy eigenstates of the Hamiltonian can be cate-
gorized with well-defined quantum-labels, as indicated in
Eq. (A17). In order to maintain an effective book keeping
of the quantum labels when calculating matrix elements
of operators, it must be possible to similarly categorize
the operators themselves. Typically, the operators of in-
terest are closely related to the Hamiltonian, i.e. consist
of operators that also appear in the Hamiltonian or are
composites thereof, such as creation, annihilation, occu-
pation, spin operators, etc. Since the Hamiltonian can
be properly constructed within the given symmetry, so
can be its constituents.

An irreducible operator set is constructed in a com-
pletely analogous fashion as an irreducible state space,
with an explicit example already derived for the spin op-
erator in Eq. (A11) using Eq. (A10). Consider the generic

setup of a set of generators {Ŝσ} including RLOs. Then
irreducible state multiplets can be generated through it-
erative application of these operators,

Ŝσ|qqz〉 = s
[qσ]
qzq′z
|qq′z〉, (A40)

as in Eq. (A24), while ignoring inner multiplicity for the
sake of the argument and having dropped the energy mul-
tiplet index n for simplicity. Given an operator F̂ , on the
other hand, its transformation according to a symmetry
is fully reflected in its commutator relations with the gen-
erators of the symmetry. This is easily motivated through
infinitesimal symmetry operations as in Eq. (A3b). The
commutator relations, on the other hand, also emerge
naturally when analyzing the effect of a generator of the
symmetry acting onto a symmetry state |qqz〉 that al-

ready also has the operator F̂ applied to it,

Ŝσ · F̂ |qq′z〉 = [Ŝσ, F̂ ]|qq′z〉+ F̂ · Ŝσ|qq′z〉. (A41)

The second term on r.h.s. clearly describes the symmetry
properties of the state |qqz〉, while the first term yields

the transformation properties of the operator F̂ which
are independent of the carrier space. This is similar to
what has already been seen in Eq. (A21) for the combined
action of two generators.

Now iff an operator set F̂ q ≡ {F̂ qqz} transforms exactly
the same way as the state space of IREP q in Eq. (A40),
that is

[Ŝσ, F̂
q
qz ] = s

[qσ]
qzq′z

F̂ qq′z , (A42)

then the operator set F̂ q is called an irreducible opera-
tor (IROP) set that transforms like the multiplet q. It
carries the symmetry labels (q, qz) the same way as an
irreducible state multiplet does.
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a. IROP decomposition

In the case that a specific member of the IROP set is
already known, then Eq. (A42) allows to generate the full
IROP set exactly the same way as a state multiplet can be
generated. Again, the maximum weight label determined
the multiplet q that the IROP represents. This was ex-
actly the procedure adopted, for example, to obtain the
spin operator in Eq. (A11). Furthermore, Eq. (A11) also
serves as a simple demonstration that the space of gen-
erators itself clearly also can be cast into a single IROP.
The corresponding multiplet is called the regular repre-
sentation then.

More generally, it is instructive to realize that irre-
ducible operator sets (IROPs) and symmetry multiplets
(IREPs) can be treated on a nearly equal footing. In
particular, the notion of proper orthonormalization of
state spaces can be directly applied also to IROP sets,
up to a global normalization factor. This is motivated
by the observation, that given a scalar multiplet |0〉 for
which |F qq′z 〉 ≡ F

q
q′z
|0〉 6= 0, i.e. does not vanish, then |F qq′z 〉

represents the multiplet vector space for IREP q. With
proper overall normalization of the IROP F q, it follows

δqz,q′z = 〈F qqz |F
q
q′z
〉 = 〈0|F q†qz F

q
q′z
|0〉.

The last equation also holds, if the scalar multiplet |0〉
is replaced by an arbitrary other symmetry eigenstate
|qqz〉. For matrix representations of IROPs and oper-
ators more generally, this motivates the scalar or inner
product for two matrices as in Eq. (A14). Thus equipped
with scalar product and norm for matrices, an IROP de-
composition can be done exactly the same way as the
multiplet decompositions for symmetry multiplets start-
ing from a specific symmetry eigenstate (IROP compo-
nent). This is important, in particular, in the presence
of inner multiplicity in the multiplet of an IROP for con-
sistency with the Wigner-Eckart theorem.

b. Wigner Eckart theorem

It follows from Eqs. (A41) and (A42), that the states

resulting from the IROP {F̂ q1q1z} applied to a multiplet
|q2q2z〉,

Ŝσ · F̂ q1q1z |q2q2z〉
= [Ŝσ, F̂

q1
q1z ]︸ ︷︷ ︸

=s
[q1σ]

q1zq
′
1z
F̂
q1
q′1z

|q2q2z〉+ F̂ q1q1z · Ŝσ |q2q2z〉︸ ︷︷ ︸
=s

[q2σ]

q2zq
′
2z
|q2q′2z〉

,

transforms exactly the same way under given symmetry
as a tensor product of two state multiplets,

Ŝσ · |qqz〉1|qqz〉2
= Ŝ1σ|qqz〉1︸ ︷︷ ︸

=s
[q1σ]

q1zq
′
1z
|qq′z〉1

⊗ |qqz〉2 + |qqz〉1 ⊗ Ŝ2σ|qqz〉2︸ ︷︷ ︸
=s

[q2σ]

q2zq
′
2z
|qq′z〉2

,

using Eqs. (A36) and (A40). Therefore the action of an

IROP F̂ q1 onto the state space of an IREP q2 shares ex-
actly the same algebraic structure in terms of symmetries
like the product space of the two multiplets q1 and q2.

This motivates the Wigner-Eckart theorem. With
the definition of the Clebsch-Gordan coefficients in
Eq. (A38), it is thus clear that up to scalar factors de-
pending on the normalization of the operator set, the
same CGCs also apply for the state space decomposition
arising out of F̂ q1q1z |q2q2z〉. In particular, it follows for the
matrix elements of the operator w.r.t. a given state space,

〈qqz; (α)|F̂ q1q1z |q2q2z〉 ≡ 〈qqz; (α)| ·
(
F̂ q1q1z |q2q2z〉

)

= 〈q; (α)‖F̂ q1‖q2〉 · C [q2z ]
q1zqz ;(α),

(A43)

where, again, α accounts for possible outer multiplicity.
〈q; (α)‖Âq1‖q2〉 is called the reduced matrix element. It
is entirely independent of the z-labels, i.e. the internal
structure of the IREPs q1, q2, and q.

The first line in Eq. (A43) specifies the adopted con-
vention for matrix elements given the Wigner-Eckart the-
orem: the operator is acting to the right ket-state, the
symmetry labels of which are combined. The result-
ing object is contracted with the bra-states. This is
important for consistency, since the IROP F̂ q is sub-
tly different from the IROP (F̂ †)q. Therefore one must
be careful with expressing a matrix element through
〈qqz|F̂ |q2q2z〉 = 〈q2q2z|F̂ †|qqz〉∗. Even though usually

(F̂ qqz )
† ∼ (F̂ †)q−qz , further signs may bee needed to en-

sure for consistency within the Clebsch-Gordan coeffi-
cients [e.g. see discussion around Eq. A49 later].

8. Several independent symmetries

A physical system often exhibits several symmetries.
Each of the λ = 1, . . . , nS symmetries Sλ is completely
described by its own set of generators {Ŝλσ}. As these
symmetries act independently of each other, this implies
that their generators must commute,

[Ŝλσ , Ŝ
λ′
σ′ ] = 0 for λ 6= λ′. (A44)

This allows to assign independent quantum labels (qλqλz )
with respect to each individual symmetry [cf. discussion
following Eq. (1) in the main paper]. On the multiplet
level, the symmetries are given compactly by the com-
bined q-labels, q ≡ (q1, q2, . . . , qnS), while similarly their
z-labels are given by qz ≡ (q1

z , q
2
z , . . . , q

nS
z ). Here the el-

ementary multiplet labels qλ and qλz can already consist
of a set of labels themselves, the number of which is de-
termined by the rank r of the respective symmetry Sλ
[cf. Eq. (A18)].

When a non-abelian symmetry is broken, it it is re-
duced to simpler subalgebras. In particular, it may be
reduced to its abelian core of z-operators (Cartan subal-
gebra). For example, consider the rotational spin SU(2)
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symmetry. This symmetry can be broken by applying a
magnetic field. The system still maintains, however, a
continuous rotational symmetry around the axis of the
magnetic field, leaving the qz symmetry intact, while
the multiplet label q becomes irrelevant. Similarly, if
particle-hole symmetry (see later) is broken, only the
abelian quantum number of total charge [i.e. the z-label]
remains.

Abelian symmetries therefore fit seamlessly into the
general non-abelian framework outlined in this paper.
With the multiplet label q irrelevant, the qz are promoted
to the status of a q-label, instead, with no z-labels re-
maining [with all multiplets being one-dimensional, the
z-labels are no longer required, i.e. can be set to zero, for
simplicity]. This then allows to write the abelian symme-
try in terms of trivial scalar Clebsch-Gordan coefficients.
The latter, nevertheless, are important as they account
for the proper addition rules w.r.t. the abelian z-labels,

〈q1(z)q2(z)|q(z)〉 = δq(z),q1(z)+q2(z) . (A45)

9. Symmetries in physical systems

In the following, several examples of symmetries in
simple physical systems will be given, with the associated
spinors and irreducible operator sets explained in detail.
In particular, this concerns fermionic systems with spin
or particle-hole symmetry.

For the model Hamiltonians in strongly correlated
electron systems, correlation through interaction plays
an important role, while the terms describing interac-
tion typically preserve certain underlying global symme-
tries. Since the arguments of demonstrating symmetries
of a specific Hamiltonian, however, are rather similar, in
general, it suffices to consider a simple non-interacting
Hamiltonian. Simple issues related to interactions are
discussed with Eq. (A58) below.

For simplicity, therefore much of the following discus-
sion will be exemplified in terms of the Hamiltonian of a
plain spinful fermionic tight-binding chain,

Ĥ =
∑

k

tk
∑

σ

(
ĉ†kσ ĉk+1,σ + H.c.

)

︸ ︷︷ ︸
≡ĥk,k+1

, (A46)

where ĉ†kσ creates a particle at site k with spin σ ∈ {↑, ↓}.
The Hamiltonian in Eq. (A46) has spin-independent hop-
ping amplitudes tk, hence possesses spin-SU(2) symme-
try, SU(2)spin in short. Furthermore, it is particle-hole
symmetric, implying particle-hole SU(2) symmetry, also
called charge-SU(2) symmetry, or SU(2)charge in short.

a. SU(2) spin symmetry

Using the two-dimensional spinor

ψ̂S,k ≡
(
ĉk↑
ĉk↓

)
(A47)

for each site k, the Hamiltonian in Eq. (A46) can be
rewritten as

Ĥ =
∑

k

tk
(
ψ̂†S,k · ψ̂S,k+1 + H.c.

)
, (A48)

where the sum over σ was incorporated in the scalar

product of the vector of operators in ψ̂S,k. Clearly, the
two-dimensional scalar product is invariant under an ar-
bitrary unitary two-dimensional transformation U , i.e.

ψ†kψk+1 = (Uψk)†(Uψk+1), thus exhibiting spin-SU(2)
symmetry. The spinor in Eq. (A47) is defined in a site
specific manner. When concentrating on a single site,
therefore the index k can be dropped for convenience.

The generators of spin-SU(2) symmetry are con-
structed in terms of the two-dimensional defining rep-
resentation of {Sσ} ≡ {S+, Sz, S−} [cf. Eq. (A7)]. These
can be written as operators (distinguished by the hat)
through second quantization in the full Hilbert space,

Ŝσ = ψ̂†SSσψ̂S ,

which up to prefactors leads to the spin IROP Ŝ1 ≡
{− 1√

2
Ŝ+; Ŝz; + 1√

2
Ŝ−}, already derived in Eq. (A11).

The raising operator, for example, is given by

Ŝ+ = ψ̂†S

(
0 1

0 0

)
ψ̂S = ĉ†↑ĉ↓,

which flips a down-spin to an up-spin for given site. Sim-
ilarly, the z-operator is given by

Ŝz = ψ̂†( 1
2τz)ψ̂ = 1

2 (ĉ†↑ĉ↑ − ĉ
†
↓ĉ↓) ≡ 1

2 (n̂↑ − n̂↓).

Furthermore, [Ŝ+, ĉ
†
↓] = [ĉ†↑ĉ↓, ĉ

†
↓] = ĉ†↑ shows that the

spinor ψ̂†S already represents an IROP for the q = 1
2

multiplet of SU(2)spin,

(ψ̂†S)[1/2] =

(
ĉ†↑
ĉ†↓

)
. (A49a)

This is already properly sorted w.r.t. z-labels, in that
the second component correspond to the lower qz = − 1

2

element of the multiplet, since [Ŝz, ĉ
†
↓] = (− 1

2 ) · ĉ†↓.
In contrast, the IROP for the spinor ψ̂S , i.e. without

the dagger, is similar, yet has subtle differences. In par-

ticular, with [Ŝ+, ĉ↑] = [ĉ†↑c↓, ĉ↑] = −ĉ↓, the role of spin
within the multiplet is reversed, i.e. qz → −qz, while also
an additional sign is acquired,

(ψ̂S)[1/2] =

(
−ĉ↓
ĉ↑

)
. (A49b)
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This extra sign is important in context of the Wigner-
Eckart theorem in Eq. (A43), where the particular or-
der of first applying, i.e. combining an operator with the
ket-state is directly related to the order in the Clebsch-
Gordan coefficients. This is convention, of course, but
consistency is crux.

In terms of the proper IROPs in Eqs. (A49), finally,
the Hamiltonian in Eq. (A46) can be written in either
IROP while, however, one must not mix them,

Ĥ =
∑

k

tk

([
(ψ̂S)[1/2]

]† · (ψ̂S)[1/2] + H.c.
)

(A50a)

=
∑

k

tk

(
(ψ̂†S)[1/2] ·

[
(ψ̂†S)[1/2]

]†
+ H.c.

)
. (A50b)

The second line is essentially the same as the spinor ex-
pression in Eq. (A48), yet with the difference, that here
the underlying IROP structure has been pointed out ex-
plicitly.

b. SU(2) particle-hole symmetry for spinful system

The particle-hole symmetry SU(2)charge of the Hamil-
tonian in Eq. (A46) can be made apparent in a similar
way as for the spin symmetry above. Consider the spinor
in the charge sector,

ψ̂C,kσ ≡
(

ĉkσ
sk ĉ
†
k,−σ

)

with alternating phases sk = (−1)k along the chain in
Eq. (A46). Again, the Hamiltonian can be written as
sum over scalar products in the spinors,

∑

σ

ψ̂†C,kσ · ψ̂C,k+1,σ =
∑

σ

(
ĉ†kσ ĉk+1,σ − ĉk,−σ ĉ

†
k+1,−σ

)

= ĥk,k+1,

suggesting another underlying SU(2) symmetry. Note
that the alternating sign sk is crucial to recover the cor-
rect hopping structure in Eq. (A46). Given the spinor in
the charge sector, the raising operator becomes

ψ̂†C,kσ

(
0 1

0 0

)
ψ̂C,kσ = sk ĉ

†
kσ ĉ
†
k,−σ

which, up to a sign, is the same for both spins. It is there-
fore sufficient in the charge sector to consider a spinor for

one specific σ in ψ̂C,kσ only. Therefore, again concentrat-
ing on a single site and hence dropping the site index k,
now with fixed σ =↑, the spinor in the charge sector is
given by,

ψ̂C ≡
(
ĉ↑
sĉ†↓

)
. (A51)

The associated raising operator becomes

Ĉ+ = sĉ†↑ĉ
†
↓, (A52)

which now creates a pair of particles with opposite spin,
while the z-operator is

Ĉz = ψ̂†C( 1
2τz)ψ̂C = 1

2 (ĉ†↑ĉ↑ − ĉ↓ĉ
†
↓)

≡ 1
2 (n̂↑ + n̂↓ − 1). (A53)

With n̂ ≡ n̂↑ + n̂↓, the z-operator Ĉz counts the to-
tal charge on given fermionic site relative to half-filling.
With

[Ĉ+, ĉ↑] = [sĉ†↑ĉ
†
↓, ĉ↑] = −sĉ†↓ (A54a)

[Ĉ+, ĉ↓] = [sĉ†↑ĉ
†
↓, ĉ↓] = sĉ†↑, (A54b)

this allows to construct the q = 1
2 IROPs for SU(2)charge,

(ψ̂C)[1/2] =

(
sĉ†↓
−ĉ↑

)
(A55a)

(ψ̂†C)[1/2] =

(
sĉ†↑
ĉ↓

)
, (A55b)

again associating the lower component with the qz =
− 1

2 element of the q = (1/2) multiplet [cf. Eqs. (A49)].
An irrelevant overall minus sign has been applied to the
spinor in Eq. (A55a) for later convenience. With this,
the hopping term in the Hamiltonian in Eq. (A46) can
be rewritten in terms of the scalar products

ĥk,k+1 =
[
(ψ̂Ck)[1/2]

]† · (ψ̂C,k+1)[1/2]

+
[
(ψ̂†Ck)[1/2]]† · (ψ̂†C,k+1)[1/2] (A56)

The spinors in the charge sector do mix spin compo-
nents, which essentially also requires full spin symme-
try [see later discussion of symplectic group Sp(2m) in
Sec. A 10]. More importantly, the construction of the
SU(2)charge symmetry allows it to fully commute with
the spin-SU(2) symmetry introduced earlier,

[Ŝz, Ĉz] = 1
4 [n̂↑ − n̂↓, n̂− 1] = 0

[Ŝz, Ĉ+] = s
2 [ĉ†↑ĉ↑, ĉ

†
↑ĉ
†
↓]︸ ︷︷ ︸

=ĉ†↑ĉ
†
↓

− s
2 [ĉ†↓ĉ↓, ĉ

†
↑ĉ
†
↓]︸ ︷︷ ︸

=ĉ†↑ĉ
†
↓

= 0

[Ŝ+, Ĉz] = 1
2 [ĉ†↑ĉ↓, ĉ

†
↑ĉ↑]︸ ︷︷ ︸

=−ĉ†↑ĉ↓

+ 1
2 [ĉ†↑ĉ↓, ĉ

†
↓ĉ↓]︸ ︷︷ ︸

=ĉ†↑ĉ↓

= 0

[Ŝ+, Ĉ+] = s[ĉ†↑ĉ↓, ĉ
†
↑ĉ
†
↓] = sc†↑ĉ

†
↑ = 0. (A57)

That is, the two symmetries act completely independent
of each other and thus can coexist simultaneously, writ-
ten as the overall symmetry SU(2)spin ⊗ SU(2)charge.

If interactions are present in the system, such as local
Coulomb interaction Un̂↑n̂↓, then the particle-hole sym-
metric regime requires a specific altered onsite energy
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relative to the chemical potential. With n̂2
σ = n̂σ, and

n̂ ≡ n̂↑+ n̂↓, it follows that n̂↑n̂↓ = 1
2 (n̂− 1)2 + 1

2 (n̂− 1),
and therefore

εdn̂+ Un̂↑n̂↓ = (εd + U
2 )(n̂− 1)︸ ︷︷ ︸

=Ĉz

+ U
2

(
n̂− 1

)2
+ const.

(A58)

The first term on the r.h.s. is proportional to the Ĉz oper-
ator, which thus acts like a magnetic field for SU(2)spin.
Therefore for full particle-hole symmetry to hold, this
term must be zero, which requires εd = −U2 . In particu-
lar, in the absence of interaction, this implies εd = 0. The
actual interaction term, i.e. the second term on the r.h.s.
in Eq. (A58), also resembles Ĉz. Yet it is quadratic, and

for this it also holds, Ĉ2
z = Ĉ2

x = Ĉ2
y . Therefore, this term

can actually be written as Ĉ2 which itself, like spin Ŝ2

for SU(2)spin, represents the Casimir operator for SU(2),
and thus is compatible with SU(2)spin ⊗ SU(2)charge.

The actual IROP for particle creation and annihila-
tion given SU(2)⊗2

SC ≡ SU(2)spin ⊗ SU(2)charge symmetry
can be generated using above symmetry operations. This
generates a four-dimensional spinor. As it turns out, the
resulting IROP is the combination of the two IROPs gen-
erated in the spin symmetric case in Eqs. (A49) as well
as in the particle-hole symmetric case in Eqs. (A55),

ψ̂

[
1
2 ,

1
2

]
CS ≡




sĉ†↑
ĉ↓
sĉ†↓
−ĉ↑


 . (A59)

The multiplet labels
[

1
2 ,

1
2

]
will be derived with Eq. (A61)

below. The signs for the individual components in above
IROP have been properly adjusted, considering that the
raising operator in the charge sector itself, Eq. (A52),
carries the alternating sign s(k) = (−1)k. For example,

commuting Ĉ+ onto the fourth component, yields the

third component of the spinor ψ̂CS [cf. Eq. (A54a)], while

commuting Ŝ+ onto the third component yields the first
component, and so on. Again, keeping track of the alter-
nating sign sk = (−1)k is crucial to recover the hopping
structure in Eq. (A46),

(
ψ̂CS,k

)† · ψ̂CS,k+1

= − ĉk↑ĉ
†
k+1,↑︸ ︷︷ ︸

=−ĉ†k+1,↑ĉk↑

+ ĉ†k↓ĉk+1,↓ − ĉk↓ĉ
†
k+1,↓︸ ︷︷ ︸

=−ĉ†k+1,↓ĉk↓

+ ĉ†k↑ĉk+1,↑

= ĥk,k+1, (A60)

The full tight-binding Hamiltonian simply becomes Ĥ =∑
k tk(ψ̂CS,k)†ψ̂CS,k+1 where the hermitian conjugate

term has been incorporated already in the spinor struc-
ture. This also reflects the irrelevance of taking the her-
mitian conjugate version of the IROP in Eq. (A59) as
this results in essentially the same object after properly
reordering of its components and taking care of signs.

With Eq. (A60) being a scalar product in a four-
dimensional spinor space, one may be tempted to think
that a plain tight binding chain actually has a non-
abelian symmetry with a defining representation of di-
mension 4. This cannot be the symmetry SU(4), how-
ever, since SU(4) has rank-3 and thus requires three com-
muting abelian z-operators. The symmetries discussed
here, however, only have two abelian z-operators, namely
total spin and total charge. The symmetry that ap-
pears compatible with this scenario, at second glance,
is the symplectic symmetry Sp(4) [see Sec. A 10 be-
low]. Nevertheless, even the latter can be excluded, since
raising and lowering operators are severely constrained
by the fact that the creation and annihilation opera-
tors appear in pairs for the same fermionic particle in
the IROP of Eq. (A59). Consequently, quadratic oper-
ators of the type (ĉσ)†ĉ†σ = (ĉ†σ)†ĉσ = 0 are immedi-
ately excluded. With this, the symmetry of the spinor in
Eq. (A59) has to remain the product of two symmetries,
i.e. SU(2)⊗2

SC ≡ SU(2)spin ⊗ SU(2)charge.

Having determined the IROP ψ̂CS in Eq. (A59) by re-

peated application of RLOs Ŝ± and Ĉ±, the z-labels for
each of the four components, on the other hand, can be

determined through the z-operators Ĉz ≡ 1
2

(
ĉ†↑ĉ↑− ĉ↓ĉ

†
↓
)

and Ŝz ≡ 1
2

(
ĉ†↑ĉ↑ − ĉ

†
↓ĉ↓
)
, resulting in the z-labels qz ≡

(Cz, Sz), respectively. The results are summarized in the
following table.

[ z-operator, IROP component ] (Cz, Sz)

[Ĉz, sĉ
†
↑] = +1

2 (sc†↑)

[Ŝz, sĉ
†
↑] = +1

2 (sĉ†↑)

}
(+ 1

2 ,+
1
2 )

[Ĉz, ĉ↓] = − 1
2 ( ĉ↓)

[Ŝz, ĉ↓] = +1
2 ( ĉ↓)

}
(− 1

2 ,+
1
2 )

[Ĉz, sĉ
†
↓] = +1

2 (sĉ†↓)

[Ŝz, sĉ
†
↓] = − 1

2 (sc†↓)

}
(+ 1

2 ,− 1
2 )

[Ĉz,−ĉ↑] = − 1
2 (−ĉ↑)

[Ŝz,−ĉ↑] = − 1
2 (−ĉ↑)

}
(− 1

2 ,− 1
2 )

(A61)

These z-labels demonstrate that both the charge and spin

multiplet contained in ψ̂CS corresponds to a q = 1
2 multi-

plet. The maximum weight state has the z-labels ( 1
2 ,

1
2 ),

which thus labels the spinor, as was already indicated in
Eq. (A59).

Similarly, the local state space of a fermionic site must
be organized consistent with the SU(2)spin ⊗ SU(2)charge

symmetry above. The local state space consists of the
empty state |0〉, the singly occupied states |↑〉 and |↓〉,
and the doubly occupied state s |↑↓〉. Note that the sign
in the last state is crucial, as it is generated by the raising
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operator Ĉ+ acting on the empty state |0〉. In summary,

state C Cz S Sz
|0〉 1

2 − 1
2 0 0

|↑〉 ≡ ĉ†↑|0〉 0 0 1
2 + 1

2

|↓〉 ≡ ĉ†↓|0〉 0 0 1
2 − 1

2

s |↑↓〉 ≡ sĉ†↑ĉ
†
↓|0〉 1

2 + 1
2 0 0.

(A62)

Therefore the local four-dimensional state space of
fermionic site is spanned by the two multiplets, q ≡
(C, S) ∈ {(0, 1

2 ), ( 1
2 , 0)}. If particle-hole symmetry is bro-

ken yet particle number still preserved, then 2Cz from
the middle column describes the total number of parti-
cles relative to half-filling [cf. Eq. (A53)].

With the ordering convention of state labels being
|C,Cz;S, Sz〉 and σ ∈ {↑, ↓} ≡ {+1,−1}, the non-zero
matrix elements of the 4-component spinor in Eq. (A59)
can be calculated. For example,

+sσ = 〈−σ|ĉσ · s| ↑↓〉 = s〈↑↓ |s · sĉ†σ · | − σ〉(∗)

≡ s〈 12 , +1
2 ; 0, 0|ψ̂

(
1
2

+1
2 ;

1
2
σ
2 )
|0, 0; 1

2 ,
−σ
2 〉

= s〈 12 , +1
2 | 12 , +1

2 ; 0, 0〉︸ ︷︷ ︸
=1 (charge)

〈0, 0| 12 , σ2 ; 1
2 ,
−σ
2 〉︸ ︷︷ ︸

=
+σ√

2
(spin)

〈 12 , 0‖ψ‖0, 1
2 〉

⇒ 〈 12 , 0‖ψ‖0, 1
2 〉 =

√
2.

The order inversion of the matrix element in the first
line was used since the spinor ψ̂CS in Eq. (A59) contains
the creation operator sĉ†σ and not its hermitian conju-
gate. The overall complex conjugation 〈·〉(∗), however, is
irrelevant since all matrix elements are real, hence the
notation of putting the asterisk in brackets.

The second non-zero reduced matrix element can be
calculated in a similar fashion,

1 = 〈0|ĉσ|σ〉 = s〈σ| · sĉ†σ · |0〉(∗)

≡ s〈0, 0; 1
2 ,

σ
2 |ψ̂(

1
2

+1
2 ;

1
2
σ
2 )
| 12 , −1

2 ; 0, 0〉

= s〈0, 0| 12 , +1
2 ; 1

2 ,
−1
2 〉︸ ︷︷ ︸

=+
1√
2

(charge)

〈 12 , σ2 | 12 , σ2 ; 0, 0〉︸ ︷︷ ︸
=1 (spin)

〈0, 1
2‖ψ‖ 1

2 , 0〉

⇒ 〈0, 1
2‖ψ‖ 1

2 , 0〉 = s
√

2

Overall, this leads to the reduced matrix elements in the
charge-spin sectors (C, S) ∈ {(0, 1

2 ), ( 1
2 , 0)}

ψ
[1/2,1/2]
CS =

(
0 s
√

2√
2 0

)
. (A63)

Note that although the spinor in Eq. (A59) has four com-
ponents, i.e. is of rank-3, on the reduced multiplet level in
Eq. (A63) the spinor becomes a two-dimensional object
as expected from an IROP. The further internal struc-
ture is entirely taken care of by rank-3 Clebsch Gordan
coefficients, which have been omitted in Eq. (A63) [for

a full description of ψ
[1/2,1/2]
CS including Clebsch-Gordan

coefficients in terms of a QSpace see Tbl. C5].
The operator in Eq. (A63) is non-hermitian. In the

context of two-site hopping, however, this nevertheless
leads to a hermitian term in the Hamiltonian, as required.
Indicating the local symmetry eigenspace for site k by
|σ〉k, the matrix elements of the hopping term in the
tensor-product basis |σk+1〉 |σk〉 (in this order, assuming
site k + 1 is added after site k) are given by

〈σk|〈σk+1|ψ̂†kψ̂k+1|σ′k+1〉|σ′k〉 = ψ†k ⊗ [zψ]k+1, (A64)

where the ψ’s to the right without the hat denote the ma-
trix elements in the local |σ〉 basis. Note, that fermionic

signs apply, when ψ̂†k is moved, for example, to the left
of 〈σk+1|, such that the tensor-product on the r.h.s. of
Eq. (A64) contains [zψ]k+1 rather than ψk+1, where ẑk ≡
(−1)n̂k is diagonal in |σk〉 and adds signs corresponding
to the number of particles in |σk〉. Note that with the par-

ticle number being related to Ĉz = 1
2 (n̂−1), the operator

ẑ is well-defined in terms of the symmetry labels. It is a

scalar operator, since (−1)n̂−1 = (−1)(n̂−1)2 = (−1)4Ĉ2
z ,

hence does not alter the Clebsch-Gordan content of the
operator ψ̂ but rather acts on the multiplet level only.

For the hopping ψ̂†kψ̂k+1 between two nearest-neighbor
sites, Eq. (A63) finally leads to

Hk,k+1 =

(
0
√

2

sk
√

2 0

)
⊗
(
−1 0

0 1

)(
0 sk+1

√
2√

2 0

)

︸ ︷︷ ︸

=


 0 −sk+1

√
2√

2 0




,

written as a plain tensor product on the level of the mul-
tiplet spaces of two fermionic sites. For the sake of the
argument, the product space here is not yet described in
terms of proper combined symmetry multiplets of sites k
and k + 1.

With sk = (−1)k, Hk,k+1 in the last equation clearly
yields a hermitian object for all iterations. For example,
for even k, the hopping term is given by

H
[k even]
k,k+1 =

(
0
√

2√
2 0

)
⊗
(

0
√

2√
2 0

)

similar in structure to a hermitian object of the type
τx ⊗ τx in terms of Pauli matrices, while for odd k,

H
[k odd]
k,k+1 =

(
0
√

2

−
√

2 0

)
⊗
(

0 −
√

2√
2 0

)

similar in structure to the hermitian (iτy)⊗(iτy) = −τy⊗
τy. Hence for every even (odd) iteration, one has a τx⊗τx
(τy ⊗ τy) structure, respectively, a prescription that is
periodic with every pair of iterations. This intrinsic even-
odd behavior is not specifically surprising, considering,
for example, that two particles are needed to return to
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the same charge quantum numbers related to particle
hole symmetry.

In summary, using Eq. (A60), the hopping in the
Hamiltonian is given by

Ĥ =
∑

k

tkψ̂
†
kψ̂k+1. (A65)

In a sense, the net effect of incorporating spin SU(2)
was to eliminate the spin index, while incorporation of
particle-hole SU(2) eliminates the hermitian conjugate
term in the Hamiltonian. Together they reduce the four
terms initially required for a single hopping in Eq. (A46)

to the single scalar term ψ̂†kψ̂k+1.

c. Particle-hole SU(2) symmetry for several channels

The alternating sign in the raising operator Ĉk,+ =

sĉ†↑ĉ
†
↓ in Eq. (A52) defines the doubly occupied states

as | 12 ; +1
2 〉 = Ĉk,+| 12 ; −1

2 〉 = sĉ†↑c
†
↓|0〉; for even sites, s =

+1, therefore | 12 ; +1
2 〉 = ĉ†↑ĉ

†
↓|0〉. For odd sites, on the

other hand, | 12 ; +1
2 〉 = −ĉ†↑ĉ

†
↓|0〉 = ĉ†↓ĉ

†
↑|0〉. In practice, for

consistency, usually a certain well-defined fermionic order
is adopted. Above raising operator Ĉk,+ thus suggests
that it may be useful to reverse the fermionic order of
every other site for the local state space included there.

Fully reversing the fermionic order of a given site k
with several fermionic channels i = 1, . . . ,m implies for
the matrix elements for particle creation or annihilation
operators,

ck,iσ → c̃k,iσ ≡ zkck,iσ
c†k,iσ → c̃†k,iσ ≡ −zkc

†
k,iσ.

This transformation is equivalent to a unitary transfor-
mation local to site k. Similar to Eq. (A64), ẑk ≡ (−1)n̂k

with n̂k ≡
∑
iσ n̂k,iσ and n̂k,iσ ≡ ĉ†k,iσ ĉk,iσ again takes

care of fermionic signs for the full multi-level site k. Be-
ing a scalar operator, ẑk is independent of the fermionic
order.

Now consider the effect of flipping the fermionic order
for the odd sites in the tight-binding chain that carry the
sign s = −1, assuming particle-hole symmetry in every
channel. For a specific channel, this (i) takes away the

sign in the raising operator Ĉk,+, and (ii) implies, for
example, for the 4-component spinor in Eq. (A59) for a
single channel,

ψ̂CS,k odd ≡




−ĉ†↑
ĉ↓
−ĉ†↓
−ĉ↑


→




+ẑĉ†↑
ẑĉ↓

+ẑĉ†↓
−ẑĉ↑


 ≡ ẑkψ̂CS,k even, (A66)

having intermittently dropped the index k for readabil-
ity. Therefore, up to the local operator ẑk which assigns

fermionic signs to the full Hilbert space of a local site,
the matrix elements of the spinor for the odd sites are
exactly the same as the matrix elements of the spinor for

even sites. Therefore with ψ̂ taken as the spinor for even
sites in the chain, the required spinor for odd sites be-

comes ẑψ̂. Together with the additional fermionic signs
in the nearest-neighbor hopping term as already encoun-

tered in Eq. (A64), the hopping structure ĥk,k+1 of the
tight-binding Hamiltonian in Eq. (A65) becomes,

ψ†k ⊗ [z · (zψ)]k+1 = ψ†k ⊗ ψk+1 for k even

(zψ)†k ⊗ [z · ψ]k+1 = (zψ)†k ⊗ (zψ)k+1 for k odd.

This result generalizes to any number of channels with
particle-hole symmetry. As such it much simplifies the
structure and thus the treatment of the two different
kinds of spinors for even and odd sites, respectively, that
had been required initially.

d. Symmetric three-channel system

Consider the generalization of the spinful one-channel
setup in Eq. (A46) to a spinful three-channel system,

Ĥ =
∑

k

tk ·
m=3∑

i=1

∑

σ

(ĉ†k,iσ ĉk+1,iσ + H.c.)

︸ ︷︷ ︸
≡ĥk,k+1

, (A67)

where ĉ†k,iσ creates a particle at site k in channel i with
spin σ. This model is relevant for the system analyzed
in the main body of the paper where the specific num-
ber of three channels, for example, originates from the
underlying orbital band structure in terms of a partially
filled d-shell. The Hamiltonian in Eq. (A67) can also
be complemented with interaction terms that are com-
patible with the symmetries discussed in the following.
This can include onsite interaction U at half-filling [cf.
Eq. (A58)], or uniform local Hund’s coupling JH [e.g. see
Eq. (25b)]. Here, however, the focus of the discussion is
on symmetries, for which the Hamiltonian in Eq. (A67)
suffices.

The Hamiltonian in Eq. (A67) possesses SU(2) spin
symmetry, SU(2) particle-hole symmetry in each channel,
and also SU(3) channel symmetry, while not all of these
symmetries necessarily are independent of, i.e. commute
with each other. All of these symmetries can be defined
within the Hilbert space of a local site, hence again focus-
ing the discussion on a single site k in the following, while
dropping the site index k, for simplicity. For each of the
three channels, the associated spinful fermionic level is
represented by the four states as in Eq. (A62), leading to
a total of 43 = 64 state for a given site.

The total spin-SU(2) symmetry of a site is described
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by the generators

Ŝ+ =
∑
i

Ŝi+ =
∑
i

ĉ†i↑ĉi↓

Ŝz =
∑
i

Ŝiz = 1
2

∑
i

(n̂i↑ − n̂i↓),
(A68)

where Ŝiσ represents the spin operators for the fermionic

level i, with Ŝz = 1
2 [Ŝ+, Ŝ

†
+], as expected for SU(2).

The particle-hole symmetry exists for every channel i,
and is described by the SU(2) symmetry,

Ĉi+ = sĉ†i↑ĉ
†
i↓

Ĉiz = 1
2 [Ĉi+, Ĉ

†
i+] = 1

2

(
n̂i − 1

)
,

(A69a)

which includes the same sign-factor sk = (−1)k as in
Eq. (A52) to correctly represent the hopping structure in
the Hamiltonian Eq. (A67). The total charge relative to
half-filling is given by (up to a factor of 2)

Ĉz ≡
∑

i

Ĉiz. (A69b)

Finally, the channel symmetry is given by the minimal set
of two raising operators {T̂+, Û+} ≡ {Ŝ12, Ŝ23} together

with the z-operator {T̂z, Ŷ } ≡ {Ẑ1, Ẑ2} as introduced
through Eqs. (A28) in Eq. (A30),

T̂+ =
∑
σ
ĉ†1σ ĉ2σ, T̂z =

∑
σ

(
n̂1σ − n̂2σ

)
,

Û+ =
∑
σ
ĉ†2σ ĉ3σ, Ŷ =

∑
σ

(
n̂1σ + n̂2σ − 2n̂3σ

)
.

(A70)

Here the notation for the generators of SU(3) has been
changed to another notation frequently also found in lit-
erature, so these generators can be better distinguished
from the generators for spin and particle-hole symme-
try. In particular, the operators T̂+ and T̂z generate an
SU(2) subalgebra, that is linked to the full SU(3) symme-

try through the generators Û+ and Ŷ . The normalization
of the z-operators, however, has been chosen consistent
with Eqs. (A28), such that plain integer matrix elements
arise.

The spin symmetry clearly commutes with the particle-
hole symmetry in each channel, which follows from the
previous one-channel discussion in Eqs. (A57). There-
fore it remains to analyze the compatibility of the SU(3)
channel symmetry. All z-operators clearly commute. For
the SU(3) raising operators, it follows with respect to the
spin symmetry,

[
T̂+, Ŝ+

]
=
∑

σ,i

[
c†1σ ĉ2σ, ĉ

†
i↑ĉi↓

]

=
∑

σ

(δσ↑ − δσ↓) · ĉ†1↑ĉ2↓ = 0 (A71)

with a similar expression for Û+ instead of T̂+ with a
shift in the channel indices. Note that in order for the
r.h.s. to vanish, the sum over the spin σ is essential

which shows the importance of the summation over σ
in Eqs. (A70). As a consequence, the SU(3) channel
symmetry in Eq. (A70) commutes with the SU(2) spin
symmetry, indeed.

The compatibility of the SU(3) channel symmetry with
the SU(2) particle-hole symmetry, however, cannot be
established, since

[
T̂+, Ĉi+

]
=
∑

σ

[
c†1σ ĉ2σ, sĉ

†
i↑ĉ
†
i↓
]

= sδi2(ĉ†1↑ĉ
†
2↓ − ĉ

†
1↓ĉ
†
2↑) 6= 0 (A72)

cannot be made to vanish for all channels i at the same
time. Therefore the non-abelian channel and particle-
hole symmetries cannot coexist independently of each
other. Nevertheless, the generators of each individual
symmetry do commute with the Hamiltonian, which thus
suggests a larger symmetry, with Eq. (A72) already indi-
cating one of the additional generators. As it turns out,
this symmetry is Sp(2m) with m the number of channels.
This symmetry will be introduced and discussed in the
next section.

By reducing the non-abelian particle-hole symmetry
to its abelian conservation of total charge, however, this
abelian symmetry does commute with the SU(3) channel
symmetry,

∑

i

[
T̂+, Ĉiz

]
=
∑

σ,iσ′

1
2

[
c†1σ ĉ2σ, c

†
iσ′ ĉiσ′

]

=
∑

i

1
2 (δi2 − δi1)

∑

σ

ĉ†1σ ĉ2σ = 0.

In order to get a commuting abelian charge symmetry,
the z-operators for the channel-specific particle-hole sym-
metry must be summed over all channels i. With all com-
muting symmetries combined, this leads to the overall
symmetry SU(2)spin ⊗U(1)charge ⊗ SU(3)channel, consist-
ing of the SU(2) total spin symmetry in Eq. (A68), the
abelian total charge of the system in Eq. (A69b), and the
channel SU(3) symmetry in Eq. (A70).

A more conventional symmetry setup can be obtained
by giving up the channel SU(3) symmetry. Bearing in
mind that the channel-specific SU(2) particle-hole sym-
metries commute with total spin, this also allows the
symmetry setup SU(2)spin ⊗ SU(2)⊗3

charge.
The symmetry combinations above can be motivated

also by a simple counting argument with respect to con-
served abelian quantum numbers. Note that the pre-
served abelian quantum numbers in the Hamiltonian
Eq. (A67) are the particle number in each of the three
channels together with the total spin Sz. This results in a
total of four z-operators, and thus four z-labels. Now, by
including non-abelian flavors, the number of z-operators
clearly cannot increase, but will remain the same. To-
tal spin has one z-operator, the channel SU(3) symme-
try has two z-operators, and the channel-specific particle-
hole symmetries have three z-operators, which combined
results in 1+2+3 = 6 z-operators. This set of z-operators
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therefore cannot be independent of each other, as already
seen in the earlier discussion. Yet, in fact, both of the al-
ternative symmetry setups above do have a total of four
z-operators. For SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel,
these are 1+1+2 from spin, charge, and channel symme-
try, respectively, while for SU(2)spin ⊗ SU(2)⊗3

charge these
are 1 + 3 from spin and each channel.

For the symmetry setting SU(2)spin ⊗ U(1)charge ⊗
SU(3)channel then, the hopping term in the Hamiltonian

in Eq. (A67) is described by a 6-component IROP ψ̂
[6]
k

(annihilation operators for spin-up and spin-down com-
bined), that can be obtained, for example, numerically
as described in Sec. B 2. This leads to

ĥk,k+1 = ψ̂[6]†
n · ψ̂[6]

k + H.c. (A73a)

In contrast, for the second symmetry setting SU(2)spin⊗
SU(2)⊗3

charge, the IROPs ψ̂
[4]
k,i required for the hopping

term are already exactly the 4-component spinors in
Eq. (A59), i.e. one for each individual channel, i =
1, . . . , 3. The hopping in the Hamiltonian is thus de-
scribed by

ĥk,k+1 =
m=3∑

i=1

ψ̂
[4]†
k,i ψ̂

[4]
k+1,i, (A73b)

i.e. without the hermitian conjugate part as this is al-
ready included through particle-hole symmetry. Fur-
thermore, note that particle-hole symmetry also acquires
even-odd alternations for the spinors along a chain [see
App. A 9 b].

10. The symplectic group Sp(2m)

All Hamiltonians considered in this paper are time-
independent, hence obey time-reversal symmetry. Time-
reversal symmetry then is described by an anti-unitary
operator T̂ = Σ̂yK̂,40 that includes a standard unitary

operation Σ̂y together with the operator K̂, which stands

for complex conjugation [the notation of Σ̂y has been
chosen for latter convenience; see Eq. (A77) below]. The

time-reversal operator obeys T̂ 2 = ±1, where for spin-
half particles, such as electrons as considered throughout
in this paper, it holds T̂ 2 = −1. The latter is important
for the symmetry Sp(2m), since it implies that the uni-

tary Σ̂y must be antisymmetric. This follows simply by
looking at the matrix elements of the time-reversal op-
erator for arbitrary states |a〉 and |b〉 in some real basis
i,

〈a|T̂ b〉 =
∑

i,j

a∗i (Σy)ijb
∗
j ,

yet it also holds,

〈a|T̂ b〉 = 〈 T̂ 2
︸︷︷︸
−1

b|T̂ a〉 = −
∑

i,j

b∗j (Σy)jia
∗
i .

As this applies for arbitrary states |a〉 and |b〉, this shows

that, given T̂ 2 = −1, the unitary Σ̂y must be antisym-
metric, indeed.

Since a time-independent Hamiltonian obviously com-
mutes with the time-reversal operator, it follows that
all eigenstates of the Hamiltonian can also be written
as eigenstates of the the time-reversal operator T̂ . As
a consequence, all unitary symmetry operations Ĝ =
exp(i

∑
σ aσŜσ) can be constrained to unitaries which

also leave the time-reversal operator invariant. That is,

T̂
!
= ĜT̂ Ĝ−1 = ĜΣ̂y K̂Ĝ

†
︸ ︷︷ ︸
=ĜT K̂

⇒ Σ̂y = ĜΣ̂yĜ
T . (A74)

For the generators Ŝσ of a symmetry group this implies
(e.g. by expansion of the exponential in Ĝ to first order
in aσ), that

ŜσΣ̂y + Σ̂yŜ
T
σ = 0, (A75)

This exactly corresponds to the definition of the Lie al-
gebra Sp(2m). Having a unitary, i.e. non-singular, yet

also antisymmetric Σ̂y, this requires a global Hilbert
space of even dimension N , since det(Σy) = det(ΣTy ) =

(−1)Ndet(Σy) 6= 0. While this argument holds on the en-
tire Hilbert space, for a specific symmetry subspace (car-
rier space) of an irreducible representation of Sp(2m) this
is not necessarily the case. Specifically, there are IREPs
with odd dimensions, a simple example being the scalar
representation with dimension 1. Within such an irre-
ducible representation, a non-singular antisymmetric Σy
does not exist. This is not a problem, however, since
the existence of Σy is required only globally, and also in
the defining representation, which thus has to be of even
dimension.

Consider such a matrix representation of Sp(2m) of
even dimension, which allows to explicitly construct the
non-singular antisymmetric Σy. In this case, an arbitrary
matrix S(σ) within the space of the generators of the
symmetry can be written as a tensor-product with a two-
dimensional space, which itself can be expanded in terms
of the Pauli matrices τσ [cf. Eq. (A6)],

S(σ) ≡
3∑

x=0

τx ⊗ S(σ)
x , (A76)

where x ∈ {0, 1, 2, 3} ≡ {0, x, y, z} and τ0 ≡ 1(2) the two-
dimensional identity matrix. Here the same letter S is
used left and right in Eq. (A76), as their interpretation is
related. Nevertheless, they refer to different objects. So
in order to distinguish them, the generators on the l.h.s.
are written with Greek-letter subscripts (σ), while their

decomposition S
(σ)
x is denoted in roman font with roman

or numeric subscripts. Moreover, for readability, the in-
dex σ referring to a specific generator will be skipped in
the following where not explicitly required (hence the σ
has been put in brackets).
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Now, with representations of a symmetry unique up
to similarity transformation, one is free to choose the
form of the matrix representation of the operator Σ̂y
in Eq. (A75). In the two-dimensional (block) space
described by the Pauli matrices then, Σy is chosen as
follows,38,39

Σy = τy ⊗ 1(m) ≡
(

0(m) −i1(m)

i1(m) 0(m)

)
, (A77)

where the last term explicitly denotes the tensor block-
decomposition of m×m matrices, with 0(m) [1(m)] an m×
m dimensional zero [identity] matrix, respectively. This
Σy fulfills the minimal requirement that it is (i) unitary
and (ii) antisymmetric. Using the Σy in Eq. (A77) in
the defining equation for Sp(2m), Eq. (A75), and the
fact that the generators S(σ) in Eq. (A76) shall refer to
hermitian operators to start with, this implies for the
decomposition Sx, that S0 ≡ iA is a purely imaginary and
antisymmetric matrix, while the remaining Sx for x =
(1, 2, 3) must be real symmetric matrices. In summary,
this allows to rewrite the matrix block-decomposition in
Eq. (A76) in the form,38,39

S =

(
iA + S3 S1 − iS2

S1 + iS2 iA− S3

)
≡
(

C D†

D −CT

)
, (A78)

where C ≡ iA + S3 (D ≡ S1 + iS2) is an arbitrary hermi-
tian (symmetric) m×m matrix, respectively. The result-
ing number of free parameters is m2 +m for the matrix D
(where the +m comes from the fact that the diagonal can
be fully complex), and m2 for the hermitian matrix C.
The total number of free parameters of the (N ≡ 2m)-
dimensional matrices therefore is,

g = m (2m+ 1) ≡ N
2 (N + 1) . (A79)

In case of the defining representation, by construction,
this also corresponds to the dimension of the symmetry
group Sp(2m). For comparison, for example, the orthog-
onal group O(N) has dimension N

2 (N − 1).
Setting the off-diagonal block-matrix D in Eq. (A78) to

zero, and using arbitrary hermitian yet also traceless ma-
trices C, this directly demonstrates that SU(m) is con-
tained as a subalgebra within Sp(2m). This subalgebra
SU(m) has rank m− 1, i.e. has m− 1 z-operators. Now,
the full Sp(2m) symmetry also includes the tracefull her-
mitian matrix C. This introduces the remaining m-th z-
operator, Zm = τz⊗1(m). With a total of m z-operators,
Sp(2m) therefore has rank m, with the z-operators given
by

Zk ≡ τz ⊗ Z
(m)
k , (A80a)

where

Z
(m)
k =

{
(Z

(m)
k )SU(m) k = 1, . . . ,m− 1

1(m) k = m
, (A80b)

with
(
Z

(m)
k

)SU(m)
the standard m × m dimensional z-

operators for SU(m). By construction, all of these z-
operators can be considered diagonal, as they form a
mutually commuting set of matrices.

Leaving the space of strictly hermitian generators, the
canonical RLOs from the SU(m) subalgebra are given by

Sij ≡
(

Sij 0

0 −STij

)
, (i 6= j) (A81)

with Sij ≡ Eij given by the non-symmetric matrices in
Eq. (A27b). This encodes both, raising and lowering op-
erators, depending on i < j or i > j, respectively. Having
(m2 − 1) + 1 = m2 generators from the SU(m) subalge-
bra together with Zm, the remainingm (m+ 1) operators
are split equally into complimentary raising and lower-
ing operators. The corresponding canonical RLOs can
be chosen as follows,38,39

S̃±ij ≡ 1
2 (τx ± iτy)⊗ S̃ij , (all i, j) (A82)

with the symmetric matrices S̃ij ≡ 1
2 (Eij + Eji). Here

the tilde serves to differentiate the RLOs from the SU(m)

subalgebra in Eq. (A81). Having symmetric S̃ij , i.e.

S̃ij = S̃ji, this describes a total of 1
2m (m+ 1) raising

operators. Complemented by 1
2m (m+ 1) lowering oper-

ators, indeed, this completes the group of generators for
the Lie algebra Sp(2m).

Using the canonical representation for SU(m) together
with above extension to Sp(2m), this provides the canon-
ical representation for Sp(2m) as in Eq. (A20). For ex-
ample, with

(~zi)k ≡ z(m)
k,i ≡ (Z

(m)
k )ii (A83)

referring to the i-th diagonal matrix element of the diag-

onal matrices Z
(m)
k , it follows

Z
(m)
k S̃ij = S̃ijZ

(m)
k =

(
z

(m)
k,i + z

(m)
k,j

)
︸ ︷︷ ︸
≡(~zi+~zj)k

· S̃ij ,

and thus

[
Zk, S̃

±
ij

]
=
[
τz ⊗ Z

(m)
k , 1

2 (τx ± iτy)⊗ S̃ij
]

= 1
2 [τz, τx ± iτy]︸ ︷︷ ︸

=±(τx±iτy)

⊗
(
(~zi + ~zj)kS̃ij

)

= ±(~zi + ~zj)k · S̃±ij , (A84a)

(no summation over i or j). Similarly, for the RLOs Sij
from the SU(m) subalgebra, with

[
Z

(m)
k ,Sij

]
= (~zi − ~zj)k · Sij
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it follows,

[
Zk, Sij

]
=
[
τz ⊗ Z

(m)
k ,

(
Sij 0

0 −STij

)]

=

([
Z

(m)
k ,Sij

]
0

0 +
[
Z

(m)
k ,STij

]
)

= (~zi − ~zj)k · Sij , (A84b)

since
[
Z,ST

]
= − [Z,S]

T
. This confirms that the z-

operators together with the raising and lowering oper-
ators are in the expected canonical form, indeed.

a. Internal multiplet ordering

The block-decomposition of Eq. (A76) is not yet or-
dered w.r.t. to the RLOs, i.e. the z-labels [here, by def-
inition, it is assumed that a raising (lowering) operator
leads to a larger (smaller) z-label in root space which di-
rectly links to the underlying sorting implemented in root
space]. The starting point, however, is correct: (i) The
(D = 2m) dimensional first state |e1〉 [cf. Eq. (A27a)]
does represent the maximum weight state, indeed, and
(ii) by applying the m − 1 lowering operators from the
SU(m) subalgebra, this iteratively demotes the MW-
state through the states |e2〉, . . . , |em〉. So far the state
order is correct.

However, the next lower state is obtained by the m-
th lowering operator, i.e. the one that links to the full
Sp(2m) symmetry. This will generate the state |eD〉,
which thus is not in order. Through another sequence
of lowering operators from the SU(m) subalgebra, finally
this proceeds through the states |eD−1〉, . . . , |eD−m+1〉
with additional alternating signs. The full sequence of
normalized states thus obtained starting from the MW-
state, can be collected as columns into a unitary matrix
U ,

U ≡
(

1(m) 0

0 Σ(m)

)
, (A85a)

with the m×m dimensional matrix Σ(m)

Σ(m) ≡




· · · ...

· · +1 ·
· −1 · ·

+1 · · ·




, (A85b)

to be distinguished from Σy in Eq. (A77) associated with
time-reversal symmetry. The unitary U in Eq. (A85a)
maps the basis into the correct order w.r.t. to sorted z-
labels, as is assumed throughout this paper. Therefore
this basis convention will be used henceforth, which re-
quires U to be applied to all generators.

The transformation of an arbitrary symmetry opera-
tion S in Eq. (A78) then leads to S → U†SU , that is

(
C D†

D −CT

)
→
(

C
(
ΣTD

)†

ΣTD −Ct

)
. (A86)

In ΣTD, ΣT flips the order of the rows in D with alter-
nating signs, starting with +1 on the new first row. The
transformation Ct ≡ ΣTCTΣ in the lower right block, fi-
nally, corresponds to inversion of C w.r.t. its center with
alternating checker-board like minus signs applied, start-
ing with plus signs along the regular matrix diagonal.
With C hermitian, when taken real, Ct is equivalent to
transposition w.r.t. the minor diagonal,39 thus indicated
by superscript lowercase t [this is in contrast to the stan-
dard transposition (·)T around the regular diagonal].

All generators inherited from the SU(m) subalgebra
thus become

S →
(
Si 0

0 −Sti

)
. (A87)

In particular, all z-operators have the diagonal in the
lower-right diagonal flipped to reverse order. The sim-
ple RLOs from the SU(m) subalgebra now have two
strictly positive entries +1 at the first upper subdiag-
onal at symmetric positions w.r.t. the center of the ma-
trix. The remaining simple raising operator completing
the Sp(2m) algebra (see below) is given by the matrix

S̃mm = Emm → EmmΣ = +Em1 in the upper right
block, thus naturally completing the set of simple raising
operators of the type

S+
(α=1) =




0 1 · · · ·
· 0 0 · · ·
· · 0

. . . · ·
· · · . . . 0 ·
· · · · 0 1

· · · · · 0




, (A88)

with α = 1, . . . ,m indicating the position of the entries
of 1 moving towards the center of the first upper off-
diagonal.

b. Multiplet labels for Sp(2m) for m = 3

With the RLOs defined to have at most two matrix ele-
ments exactly equal to 1, the canonical commutator rela-
tions in Eqs. (A84) directly depict the diagonal elements
of the z-matrices. As already indicated in Eq. (A83),
these diagonals can be combined as rows into an r × D
matrix zk,i, to be referred to as z-matrix, with r = m
being the rank of the symmetry and D = 2m the dimen-
sion of the defining matrix representation. The vectors
~zi in Eq. (A83) thus refer to the columns in the z-matrix,
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and therefore directly reflect the qz-labels, i.e. the root
space.

For Sp(6), this 3× 6 dimensional z-matrix reads

z =




1 −1 0

1 1 −2

1 1 1

∣∣∣∣∣∣∣
︸ ︷︷ ︸

≡z̃

0 1 −1

2 −1 −1

−1 −1 −1


 . (A89)

By construction, all matrix elements are integers, for sim-
plicity. The z-labels of the defining representation are di-
rectly specified by the columns ~zi of the z-matrix. More-
over, since the z-labels are additive for tensor-product
spaces, this implies that the z-labels for arbitrary IREPs
also contain integers only.

Consequently, the root space is fully spanned by sim-
ple linear integer combinations of the vectors ~zi. Fur-
thermore, also the action of the RLOs themselves can be
expressed as simple shifts in root space [cf. Eqs. (A84)].
While in the defining representation, the z-labels in the
carrier space are clearly unique, they are not linearly in-
dependent. In particular, it is sufficient to focus the dis-
cussion on the linearly independent subset of the vectors
~zi in terms of the leading 3 × 3 block z̃ of the z-matrix
in Eq. (A89).

In terms of the three column vectors ~zi in z̃, the simple
roots are given (i) by the simple roots of SU(m), which
(ii) is complemented by one further root involving ~z3,

~α1 = ~z1 − ~z2 = ( 2, 0, 0 )T =̂ S12

~α2 = ~z2 − ~z3 = ( −1, 3, 0 )T =̂ S23

~α3 = 2~z3 = ( 0, −4, 2 )T =̂ S̃+
33

, (A90)

where the correspondence with the raising operators indi-
cated in the last column follows from Eq. (A84). Having
~αi · ~αj ≤ 0 for i 6= j together with taking smallest in-
teger combinations derived from the action of RLOs in
Eq. (A84), this suggests simple roots.38,39

Similar to SU(N), the convention on the sorting of
the z-labels is chosen lexicographic, yet as always, start-
ing from the last z-label. In this sense, the vectors ~αi
in Eq. (A90) are greater than (0, 0, 0)T , hence positive.
The corresponding operators thus increase the z-labels,
i.e. correspond to raising operators, indeed. Moreover,
having reduced the symmetry to its simple roots, equiv-
alently, this also defines the set of simple RLOs that are
sufficient to fully explore multiplet spaces. Note that
above convention on the sorting of the z-labels is already
also consistent with the state order in the defining rep-
resentation in Eq. (A89): the z-labels strictly decrease,
starting from the MW-state (the very left column) all
the way to the last state represented by the very right
column.

In principle, the z-labels of the MW-state already could
be used as labels for the entire multiplet. However, us-
ing the vectors ẑi as (non-)orthogonal basis that spans
the root space, also ~q ≡ z̃−1 max {~z} could be used as
multiplet label, instead. The latter has the advantage

that it guarantees that the multiplet labels are strictly
positive integers or zero. For consistency with literature,
however, the multiplet labels for Sp(2m) are still modi-
fied somewhat further, and thus finally derived from the
MW-state as follows,

~q ≡Mz̃−1
︸ ︷︷ ︸
≡Q

·max {~z} (A91a)

where the matrix M ,

M ≡




1 −1 0

0 1 −1

0 0 1


 , (A91b)

has been added as a further minor modification for con-
sistency with standard literature41 which further en-
sures that the multiplet labels lie dense, i.e. with q =
(q1, q2, q3) any qi ≥ 0 will result in a valid multiplet.
Overall,

Q ≡




1 0 0

− 1
2

1
2 0

0 − 1
3

1
3


 . (A91c)

For example, when applied from the right to the z-matrix
in Eq. (A89), all resulting matrix elements (z-labels) are
either ±1 or 0. In particular, the MW-state of the defin-
ing representation of Sp(2 · 3) has the q-labels (1, 0, 0).

c. Construction of Sp(2m) for m-channel setup

Given the three-channel setup in the previous section
with m = 3, the resulting defining representation for
Sp(2m) is (2m = 6)-dimensional. As seen from the ear-
lier introduction of this model in Sec. A 9 d, this contains
an SU(3) subalgebra, together with a third z-operator,
namely total particle conservation. This subalgebra of a
total of 9 generators can now be completed by 6 raising
operators together with their hermitian conjugates, i.e.
their corresponding lowering operators. This leads to a
total of 21 generators, consistent with the dimension of
the group Sp(2 · 3).

Using a sorted z-label space, this requires that the
unitary U in Eq. (A85a) is applied to all generators
of the defining representation, as well as to the initial

spinor ψ̂[2m] ≡ (ĉ1↑, . . . , ĉm↑, ĉ
†
1↓, . . . , ĉ

†
m↓)

T derived from

Eq. (A76). In case of m = 3, the properly sorted 6-
dimensional spinor (IROP) spinor becomes,

ψ̂
[6]
(↑) ≡




ĉ1↑
...

ĉm↑
+ĉ†m↓
−ĉ†m−1,↓

...

(−1)m−1ĉ†1↓




(A92)
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This naturally generalizes particle-hole symmetry in the
presence of channel symmetry. The symmetry preserv-
ing hopping term in Eq. (A67), for example, can now be

written as scalar contraction ĥk,k+1 =
∑
σ

(
ψ̂

[6]
kσ

)†·ψ̂[6]
k+1,σ.

Note that if, in addition, also SU(2)spin is present, this
would further double the dimension of the IROP in
Eq. (A92) to a set of 12 operators, such that the hop-
ping term in Eq. (A67) can be written as single scalar

contraction ĥk,k+1 =
(
ψ̂

[12]
k

)† · ψ̂[12]
k+1.

All generators are given in second quantization by the

quadratic form Ŝσ ≡ ψ̂†Sσψ̂, with Sσ a 2m-dimensional
generator from the defining representation. Specifically,
the remaining 1

2m(m + 1) raising operators for the m-
channel setup in Eq. (A82) that complete Sp(2m) are
given by

S̃+
ij = 1

2 (τx + iτy)⊗
(
S̃ijΣ

)
≡
(

0 S̃ijΣ

0 0

)
, (A93)

which leads to

Ŝ+
ij ≡ ψ̂†S̃+

ij ψ̂ = 1
2

(
ĉ†i↑ĉ

†
j↓ + ĉ†j↑ĉ

†
i↓
)
. (all i, j) (A94)

This generates a pair of particles, the nature of which
originates from the underlying general particle-hole sym-

metry. With
{
ψ̂i, ψ̂

†
j

}
= δij for ν = 1, . . . , 2m, and there-

fore
[
Ŝσ, Ŝσ′

]
≡
[
ψ̂†i (Sσ)ij ψ̂j , ψ̂

†
i′ (Sσ′)i′j′ ψ̂j′

]

= ψ̂† [Sσ, Sσ′ ] ψ̂, (A95)

the commutator relations within the matrix representa-
tions of the defining representation earlier directly carry
over to the quadratic second-quantized operators as in
Eq. (A94).

Appendix B: Numerical implementation

Tensor-product spaces are an essential ingredient to
numerical renormalization group techniques such as NRG
or DMRG. State spaces are enlarged iteratively by adding
a small local state space at a time, i.e. a physical site with
a few degrees of freedom. With respect to the descrip-
tion of strongly-correlated entangled quantum many-
body states, this leads to a description which is well-
known as matrix product states (MPS). Both, the ex-
isting state space (iteratively constructed itself) as well
as the newly added state-space, have finite dimension
and well-defined symmetry labels. New representations
can therefore only emerge through the tensor product
of the two spaces. In particular, all iteratively con-
structed quantum many body states strictly derive from
the IREPs of the elementary sites. With operators usu-
ally acting locally, these are also expressed in the sym-
metries of the local basis. Furthermore, the local state
space of a site is usually small. For example, a fermionic
site has the four states described in Eq. (A62). Therefore

the IREPs present within the local state space are usu-
ally just the smallest non-trivial IREPs, often just the
defining representation itself. For identical sites, the lo-
cal symmetry space can be setup once and for all at the
beginning of the calculation.

Having identified and labeled all symmetries on the
local site level, this sets the stage for generic iterative
algorithms such as NRG or DMRG. The remainder is
a large exercise on tensor-product spaces. By construc-
tion, the iteratively combined spaces are finite, yet as
they grow rapidly, they are eventually truncated on the
multiplet level while leaving the symmetry content of the
individual multiplets, i.e. the CGC spaces, fully intact.

1. Tensor product decomposition of symmetry
spaces

The decomposition of the tensor-product space of two
IREPs into irreducible multiplets has already been dis-
cussed more generally in Secs. A 5 and A 6. In the ac-
tual numerical implementation, however, in particular
the presence of inner and out multiplicity must be taken
care of meticulously for overall consistency. This will be
discussed in the following.

Similar to Sec. A 6, consider a specific arbitrary non-
abelian symmetry group S whose Clebsch-Gordan coef-
ficients may not necessarily be easily accessible analyti-
cally for arbitrary multiplets. Assume two of its IREPs,
q1 and q2, with dimensions dq1 and dq2 , respectively, are
known together with their irreducible representations of

the generators I
[q1]
σ and I

[q2]
σ , specifically the z-operators

(Cartan subalgebra) and the simple RLOs (simple roots).
In practice, these representations either refer to small
IREPs such as the defining representation, or have been
generated through prior iterative calculations. As in
Eq. (A36), consider their tensor-product,

Rtot
σ ≡ I [q1]

σ ⊗ 1[q2] + 1[q1] ⊗ I [q2]
σ , (B1)

resulting in matrices of dimension D = dq1dq2 . Clearly
the commutator relations are preserved, and the z-labels
are additive under this operation [cf. Sec. A 6].

In order to determine the decomposition into IREPs,
a tempting route may be through the construction of the
group’s Casimir operators in the combined state space
and their simultaneous diagonalization together with the
z-operators. However, in the presence of outer or inner
multiplicity, subspaces exist that are fully degenerate in
Casimir operators as well as in the z-operators. In this
case, for overall consistency a unique deterministic algo-
rithm must be constructed that (i) separates multiplets
in the presence of outer multiplicity, and (ii) fixes a choice
of basis for degenerate spaces within a multiplet in the
presence of inner multiplicity. Moreover, the explicit con-
struction of the Casimir operators bears some efforts of
its own. In practice, therefore a more straightforward
approach has been adopted, instead, as will be explained
in the following.
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got unexplored space? 

D dimensional carrier space

with matrix representation fR¾g

Finished. 

no 

yes 

generate multiplet using {Rs}; 

 get z-labels, sort states; 

 get q-label from MW state; 

 generate matrix repre-

sentation I[q] from {Rs} 

jMWin

get |MW>n+1  

 

jMWi1 = jei1
n = 1

n! n+1

Figure 11. Schematic procedure of state space decomposi-
tion of given D dimensional vector space with known set of

generators {R(tot)
σ }.

The main hurdles in the decomposition of the tensor-
product in Eq. (B1) into IREPs is the possible occurrence
of outer and inner multiplicity. The strategy employed
here to deal with this situation is based on the uniqueness
and accessibility of the MW (maximum-weight) states as
introduced in Sec. A 3 c. For this, throughout the pro-
cedure below, the same lexicographic sorting scheme of
the z-labels, used to obtain the MW-state in Eq. (A26),
is employed to order all states within an IREP. The sort-
ing is descending, such that the MW-state appears first
within a multiplet.

Since the z-labels are additive, it also follows for a
tensor product of two such representations that the first
state automatically also represents a MW-state of some
multiplet,

|MW〉1 ≡ |e1〉, (B2)

where the vectors |ek〉 [cf. Eq. (A27a)] form the cartesian
basis for the D-dimensional space of the representation
Rtot
σ in Eq. (B1). Given that the MW-state of a represen-

tation is guaranteed to be unique,25,38,39 the state |MW〉1
is already a proper symmetry eigenstate, i.e. an eigen-
state of all z-operators. This was always double checked,
in practice, as a safety measure. The further procedure
then is schematically depicted in the work flow diagram
in Fig. 11: starting with |MW〉n=1,

1. the symmetry eigenstate |MW〉n is used as the seed
state to sequence its complete IREP (the current
multiplet). This is done by repeatedly applying

an arbitrary but fixed order of simple lowering op-
erators only to the current set of vectors in the
multiplet. Therefore starting with the MW-state
|MW〉n and adding the newly acquired symmetry
states one at a time, this introduces a well-defined
state order, independent of whether their z-labels
are degenerate or not. In the presence of inner mul-
tiplicity, it is important to notice, however, that
it is not guaranteed that a newly acquired state
is automatically orthogonal to the already existing
states within the current multiplet. Therefore, a
newly acquired state, if it represents a new vector
space component, must be orthonormalized with
respect to the existing states. This is repeated, un-
til the current multiplet space is exhausted.

2. The states in the multiplet thus generated, by con-
struction, already have well-defined z-labels (this
again was double-checked, in practice); the states
are sorted with respect to these labels in descending
lexicographic order while keeping subspaces that
are degenerate in the z-labels in their original or-
der in order to remain deterministic. Within this
order, the first state defines the label for the gen-
erated multiplet, i.e. q = qMW. In addition, the
matrix representation in Eq. (B1), when cast into
the current IREP space results in the newly gener-

ated irreducible matrix representation Î
[q]
σ .

3. If the D-dimensional vector space is not fully ex-
hausted yet, a new seed state is determined by find-
ing the smallest k for which |ek〉 exhibits a new vec-
tor component w.r.t. the symmetry states already
collected. Having started with k = 1 above, it fol-
lows k > 1. After proper orthonormalization with
respect to the previously explored space, this state
becomes the next seed state. If it already does rep-
resent a MW-state, which is typically the case in
that it is destroyed by all raising operators, then
|MW〉n+1 has been found. Otherwise repeatedly
apply simple raising operators on the current seed
state until the unique new maximum weight state
|MW〉n+1 is reached. Continue with (1), setting
n→ n+ 1.

4. If on the other hand, the D-dimensional vector
space in Eq. (B1) is already fully exhausted, the
decomposition of the tensor-product space into n
irreducible representations is completed, and the
procedure terminates.

Note that no explicit reference to z-labels has been
made, except for step (2). That step, however, is actually
not required right away for the decomposition, with its
results only relevant for subsequent calculations. By con-
struction, therefore this procedure is deterministic and
does not dependent on dealing with degeneracies in the
z-labels or inner and outer multiplicities. The MW-states
are accessible by keeping IREPs sorted in their z-labels
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throughout. They represent the entry point in sequenc-
ing its IREP, which guarantees that inner and outer mul-
tiplicities are dealt with in a consistent fashion. Finally,
note that the choice of the seed states |MW〉n, i.e. start-
ing with +|e〉k, also provides the sign convention.

The resulting unitary transformation into the ir-
reducible symmetry subspaces directly determines (i)
the Clebsch Gordan coefficients, and (ii) the matrix-
representations of the newly generated IREPs. With only
a few Clebsch-Gordan coefficients usually unequal zero
and of order 1, small numbers below a numerical noise
threshold for double-precision (10−12) are neglected, i.e.
set to zero. Moreover, a non-zero Clebsch-Gordan coeffi-
cient can typically be expressed as a rational number, or
the square root of a rational number, an efficient approxi-
mation of which can be found through continued fraction
techniques. Therefore if an excellent fractional approx-
imation was found within the same accuracy of 10−12,
this rational approximation also was used, instead.

2. State space initialization and operator
compactification

In the presence of several symmetries, a given state
space is represented by a certain set of multiplet combina-
tions. For a single fermionic site in the presence of spin-
symmetry and particle-hole symmetry, this still can be
easily characterized by hand [cf. Eq. (A62)]. The situa-
tion, however, can quickly become more involved. For ex-
ample, for a spinful three-channel calculation with SU(3)
channel symmetry as in Eq. (25a), a site is represented by
43 = 64 states (4 fermionic states for each of the 3 chan-
nels). If for example, particle number, spin symmetry
and channel symmetry is preserved, then this system ex-
hibits SU(2)spin⊗U(1)charge⊗SU(3)channel symmetry, as
discussed in Sec. A 9 d. Given these symmetries, the 64-
dimensional Hilbert space of a site cannot be decomposed
into a tensor product of convenient smaller units with al-
ready well-defined SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel

symmetry labels themselves. For the channel symme-
try it is essential, of course, that all three channels are
present, while it is also essential for the spin symme-
try that both spin species are present. Therefore in the
example above, the 64-dimensional space of site already
appears as the smallest building block. It can be reduced
to a set of irreducible multiplet combinations, of course,
but explicit determination can quickly become tedious if
done by hand, while the problem can be tackled com-
pletely generally and straightforwardly on a numerical
level.

In order to get started numerically, a simple and natu-
ral starting point is the Fock space representation. While
this usually does not represent the symmetry eigenba-
sis, of course, nevertheless all generators of the symme-
tries present, in particular its raising, lowering, and z-
operators, are known in second-quantized form and can
be equally constructed in Fock space.

The z-operators typically have a simple form. In
particular, for 3-channel setup mentioned above, the z-
operators are already all diagonal in the Fock space, cf.
Eqs. (A68), (A69b), or (A70). This thus already pro-
vides the z-labels. Next, note that the order of the states
w.r.t. to their z-labels is important for consistency with
the Clebsch Gordan coefficients later, which suggests us-
ing the same lexicographic order as for the determination
of the MW-states. Sorting the states in this order and
applying the same prescription for state space decomposi-
tion as explained in Sec. B 1, this suffices to fully identify
all symmetry multiplets within the given D-dimensional
Hilbert space.

a. Compactifying operators using Wigner-Eckart theorem

Irreducible operator sets can be equally constructed
starting from the Fock space representation of a seed op-
erator that is part of some irreducible operator set. This
seed operator is typically known, yet can be completed
to an IROP set, by using the RLOs in Fock space repre-
sentation and numerically evaluating the commutators in
Eq. (A42) (see also subsequent discussion in Sec. A 7 a).
Using the same unitary transformation that brings the
Fock space into the correct symmetry eigenbasis as de-
scribed above, the IROP set is rotated into the space of
symmetry eigenstates. With this, however, this IROP set
is still represented in the fully expanded multiplet space,
i.e. this space still references both multiplet labels and
their corresponding z-labels on the same flat level. How-
ever, through the Wigner-Eckart theorem, Eq. (A43),

〈qqz|F̂ q1q1z |q2q2z〉 = 〈q‖F̂ q1‖q2〉 · C [q2z ]
q1zqz(σ), (B3)

many of the matrix elements can be related to each other
through Clebsch Gordan coefficients. The IROP set can
therefore be compactified as a tensor-product of reduced
matrix-elements 〈q‖Âq1‖q2〉 in the multiplet space times

the CGC space C
[q2z ]
q1zqz(σ).

The CGC spaces are known from a separate numerical
calculation, e.g. they can be generated by several itera-
tions of tensor-product decompositions starting from the
defining representation. Therefore, the final compactifi-
cation in Eq. (B3) of the fully expanded matrix elements
of the IROP also serves as a major consistency check.
The first non-zero matrix-element 〈qqz|F̂ q1q1z |q2q2z〉 for the
already known multiplet spaces (q; q1, q2) can be used

to determine the reduced matrix element 〈q‖F̂ q1‖q2〉,
with its corresponding Clebsch Gordan coefficient known.
This, however, immediately predicts the existence of a set
of other non-zero matrix elements within the same multi-
plet spaces (q; q1, q2). These matrix elements must exist
and agree within numerical noise. The matched matrix
elements are marked and considered taken care of. If
the same value of a matrix element occurs several times
within the multiplets (q; q1, q2) for the same z-labels, the
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first one that matches is taken. This check is thus not en-
tirely unique, but nevertheless a strong one, and sufficient
to obtain the space of reduced matrix elements. Finally,
having identified all non-zero matrix elements, the multi-
plet matrix element space 〈q‖F̂ q1‖q2〉 are stored together
with their referenced CGC space in terms of a QSpace as
discussed in the main text.

Appendix C: Example QSpaces

QSpaces represent an efficient numerical description of
tensors of arbitrary rank in the presence of arbitrary
quantum symmetries [cf. Eq. (5)]. This includes both
abelian and non-abelian symmetries, with the extension
to further symmetries such as point symmetries being
straightforward. The QSpaces are decomposed into a set
of reduced multiplet spaces together with their respective
CGC (Clebsch Gordan coefficient) spaces. In the fol-
lowing several elementary examples of QSpaces are given
as they appeared in practice. Elementary QSpaces typi-
cally have rank-2 (such as scalar operators with identity
CGC spaces) or rank-3 (IREPs and IROPs with reference
to standard rank-3 CGC spaces), while combinations of
these through subsequent algebraic operations can easily
result in higher-rank intermediate objects.

The notation regarding the elementary data arrays will
be as follows. Plain matrices of dimension m× n will be
written as a = [a11, . . . , a1n; . . . ; am1, . . . , amn], i.e. m
rows of equal length n separated by semicolons. The
commas within a row are considered optional. In order
to deal with m×n×k dimensional rank-3 objects, the no-
tation {a1, a2, . . . , ak} is used, which shall indicate that
the matrices a1, . . . , ak, all of the same dimension m×n,
are concatenated along the third dimension. Trailing sin-
gleton dimensions will be considered implicit if required,
e.g. a scalar such as 1. can stand for an arbitrary rank-r
object in that a number also represents a 1× 1× . . .× 1
object. Identity matrices of dimension n will be denoted
by 1(n).

1. Fermionic site with U(1)charge ⊗ SU(2)spin
symmetry

Consider the state space of a single fermionic site with
the four states: empty |0〉, singly occupied | ↑〉 and | ↓〉,
and double occupied | ↑↓〉. The symmetries considered
are particle conservation U(1)charge, and full spin symme-

try SU(2)spin. The z-operators are Ĉz ≡ 1
2 (n̂↑ + n̂↓ − 1)

and Ŝz ≡ 1
2 (n̂↑ − n̂↓), with the corresponding quantum

labels Cz for charge and S for total spin. For consistency
with later, here the charge is treated as the reduction
of the non-abelian particle-hole symmetry to its abelian
part, which also reduces the set of symmetry operations
to the z-operator Ĉz only [hence the factor 1

2 ]. Conse-
quently, the z-label of the underlying non-abelian sym-
metry is promoted into a q-label, while the CGC space

becomes trivial (1.) with internal multiplet dimension of
1. In order to stress the difference between the origi-
nal z-label which can become negative, and the SU(2)
q-labels of multiplets which are positive, by definition,
the q-labels are therefore written as (+Cz, S), empha-
sizing the origin of the q-label Cz being derived from a
z-operator.

a. Symmetry space and operators of one site

The states |0〉, |↑〉, |↓〉, and |↑↓〉 already represent the
correct symmetry eigenstates [cf. Eq. (A62)],

multiplet space dimension

|Cz;S〉 dCz × dS = dtot∣∣− 1
2 ; 0
〉
≡ |0〉 1× 1 = 1∣∣+ 1

2 ; 0
〉
≡ |↑↓〉 1× 1 = 1∣∣ 0; 1

2

〉
≡ {|↑〉 , |↓〉} 1× 2 = 2

(C1)

The matrix elements of a generic Hamiltonian in this
basis can be written as QSpace [see definition in Eq. (5)],

H ≡





(Cz;S) (C ′z;S
′) ‖H‖ CGC spaces

− 1
2 ; 0 − 1

2 ; 0 h− 1
2 ,0

1. 1.

+ 1
2 ; 0 + 1

2 ; 0 h
+

1
2 ,0

1. 1.

0; 1
2 0; 1

2 h
0,

1
2

1. 1(2)





(C2)

The Hamiltonian is a scalar operator, hence its rank as
an IROP can be reduced from three to two, as it is
the only operator in its irreducible set. Consequently,
all CGC spaces reduce to the identity, as reflected in
the last two columns of the QSpace (C2). Each of
the remaining two indices explicitly refers to symmetry
states, hence the QSpace requires the two sets of q-labels
q ≡ (Cz;S) and q′ ≡ (C ′z;S

′) referring to the first (sec-
ond) index shown in the first (second) column, respec-
tively. With the Hamiltonian preserving the symmetries,
it must be block-diagonal, i.e. q = q′ for all records
in (C2). Both of the symmetry spaces

(
± 1

2 ; 0
)

have a
single state only, therefore the corresponding entries in
the multiplet space h±1/2,0 are 1× 1 dimensional blocks,

i.e. numbers. The last symmetry multiplet
(
0; 1

2

)
has

two states owing to the SU(2) symmetry, see (C1). By
means of the Wigner Eckart theorem, the space of re-
duced matrix elements, h0,1/2, is therefore again a num-
ber while the CGC space becomes a 2-dimensional iden-
tity matrix. Therefore the most general representation of
a scalar operator for a single fermionic level in the pres-
ence of U(1)charge ⊗ SU(2)spin symmetry is given by the
three numbers {h−1/2,0, h+1/2,0, h0,1/2} in the multiplet
space. The remaining matrix elements are constrained
due to symmetry.

As an example for a non-scalar IROP, consider the

spinor of particle creation operators ψ̂†S = {ĉ†↑, ĉ
†
↓} that
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Table I. Example QSpaces in the presence of U(1)charge ⊗ SU(2)spin symmetry for a single fermionic site (ψ̂†S and ψ̂S), and for
the combination of the state space of two sites (A-tensor). Having the two symmetries of abelian U(1)charge and non-abelian
SU(2)spin, the respective CGC spaces C (trivial) and S appear in the right columns. The record index ν in the first column, as
well as the explicit specification of the dimensions of the reduced multiplet space and the combined CGC spaces are just added
for better clarity. For comparison, Tbl. II shows how the QSpaces (C3a) and (C4) are modified for the case that the abelian
charge symmetry also becomes a non-abelian SU(2)charge particle-hole symmetry.

ψ†S ≡





record reduced matrix elements CGC spaces

index ν (Cz;S) (C′z;S
′) (C′′z ;S′′) ‖ψ†S‖, dimension C S dimension

1. 0; 1
2

−1
2

; 0 +1
2

; 1
2

1. 1× 1× 1 1., {[1; 0], [0; 1]} 2× 1× 2

2. +1
2

; 0 0; 1
2

+1
2

; 1
2

√
2 1× 1× 1 1., 1√

2
{[0 1], [−1 0]} 1× 2× 2





(C3a)

ψS ≡





record reduced matrix elements CGC spaces

index ν (Cz;S) (C′z;S
′) (C′′z ;S′′) ‖ψS‖, dimension C S dimension

1. 0; 1
2

+1
2

; 0 −1
2

; 1
2

1. 1× 1× 1 1., {[1; 0], [0; 1]} 2× 1× 2

2. −1
2

; 0 0; 1
2

−1
2

; 1
2

−
√

2 1× 1× 1 1., 1√
2
{[0 1], [−1 0]} 1× 2× 2





(C3b)

QSpaces ψ̂†S = {ĉ†↑, ĉ†↓} and ψ̂S = {−ĉ↓; ĉ↑} representing IROPs for a single spinful fermionic level [cf. Eqs. (A49)].

Note that the IROP ψ̂†S is interpreted differently compared to the IROP (ψ̂S)†, hence ψ̂†S 6= (ψ̂S)† [e.g. note the

sign in multiplet space ‖ψ̂S‖ in the second record of ψ̂S or the reverted signs in the q-labels for (C′′z ;S′′) associated
with the IROP in the third column; see text].

A ≡





record site 1 site 2 combined multiplet space CGC Spaces

index ν (Cz;S) (C′z;S
′) (C′′z ;S′′) ‖A‖ dimension C S dimension

1. −1
2

; 0 −1
2

; 0 −1; 0 1. 1× 1× 1 1. 1. 1× 1× 1

2. −1
2

; 0 0; 1
2

−1
2

; 1
2
{[1], [0]} 1× 1× 2 1. {[1 0], [0 1]} 1× 2× 2

3. 0; 1
2

−1
2

; 0 −1
2

; 1
2
{[0], [1]} 1× 1× 2 1. {[1; 0], [0; 1]} 2× 1× 2

4. −1
2

; 0 1
2
; 0 0; 0 {[1], [0], [0]} 1× 1× 3 1. 1. 1× 1× 1

5. 0; 1
2

0; 1
2

0; 0 {[0], [1], [0]} 1× 1× 3 1. [0 −1√
2
; 1√

2
0] 2× 2× 1

6. 1
2
; 0 −1

2
; 0 0; 0 {[0], [0], [1]} 1× 1× 3 1. 1. 1× 1× 1

7. 0; 1
2

0; 1
2

0; 1 1. 1× 1× 1 1.

{
[1 0; 0 0],

[0 1√
2
; 1√

2
0],

[0 0; 0 1]
}

2× 2× 3

8. 0; 1
2

1
2
; 0 1

2
; 1
2

{[1], [0]} 1× 1× 2 1. {[1; 0], [0; 1]} 2× 1× 2

9. 1
2
; 0 0; 1

2
1
2
; 1
2

{[0], [1]} 1× 1× 2 1. {[1 0], [0 1]} 1× 2× 2

10. 1
2
; 0 1

2
; 0 +1; 0 1. 1× 1× 1 1. 1. 1× 1× 1





(C4)

QSpace of identity A-tensor combining two fermionic sites. Site 1 with symmetries (Cz;S) and site 2 with symme-
tries (C′z;S

′) are combined into the global symmetry (C′′z ;S′′). The specific order of the records is irrelevant and
hence arbitrary. Here, the records have been sorted with respect to the combined quantum labels q′′ ≡ (C′′z ;S′′),
where groups with the same q′′ are indicated by horizontal lines for clarity. The dimensions in the last (third)
index are therefore the same within a group that shares the same (C′′z ;S′′).

encodes SU(2) spin symmetry [cf. Eq. (A49) ], with its
QSpace representation shown in (C3a). The z-labels of

the IROP set ψ̂†S are determined through the z-operators

Ĉz and Ŝz acting on the components of ψ̂†S ,

[Ĉz, ĉ
†
σ] = +1

2 · ĉ†σ
[Ŝz, ĉ

†
σ] = σ

2 · ĉ†σ,

with σ ≡ {↑, ↓} ≡ {+1,−1}. The IROP ψ̂†S is therefore
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identified with the multiplet q′′ ≡ (C ′′z ;S′′) =
(

+1
2 ; 1

2

)
,

as indicated in the third column of (C3a). The QSpace

representation of ψ̂†S derives from the matrix-elements

ψ†S → 〈CzS| ·
(

(ψ̂†S)

(
+1
2 ;

1
2

)
|C ′zS′〉

)

using the Wigner Eckart theorem as in Eq. (A43).
The operator index in the QSpace (C3a) is listed third,

by convention. The two non-zero matrix elements of each
ĉ†σ within the four-dimensional space of single fermionic
site implies a total of four non-zero matrix elements in

ψ†S , all having norm 1, with one matrix-element being
negative. These matrix elements can be directly identi-
fied in QSpace (C3a). Since the reduced matrix elements

‖ψ†S‖ and the CGC spaces are to be interpreted as ten-

sor product, the
√

2 factors in the last line cancel. With

ψ̂†S representing non-hermitian operators, the first col-
umn q ≡ (Cz;S) is in general different form the second

column q′ ≡ (C ′z;S
′). Moreover, since ψ̂†S creates one

particle, the first column, for example, cannot contain
the empty state (−1

2 ; 0), while the second column cannot

contain the double occupied state (+1
2 ; 0).

In contrast, the QSpace representation of the IROP
ψS , i.e. without the dagger, is shown in (C3b). Note

that for ψ̂S ≡ {−ĉ↓; ĉ↑) to be an irreducible operator

as compared to ψ̂†S = {ĉ†↑, ĉ
†
↓}, the reverse order in spin

and the minus sign in the first component is essential
[see discussion along with Eqs. (A49)]. In terms of the
QSpace (C3b), this leads to the extra minus signs in the
multiplet space of the second row. Moreover, the z-labels

of the operator ψ̂S itself flipped sign w.r.t. ψ̂†S as expected
as it removes a particle rather than adding one [see the
multiplet labels q′′ ≡ (C ′′z ;S′′) in the third column of
(C3b)]. This is to emphasize that the application of the
Wigner Eckart theorem must be performed consistently,
i.e. switching sides in the application of an operator as
in 〈CzS| · (ψ†|C ′zS′〉) = (ψ|CzS〉)† · |C ′zS′〉 must be dealt
with carefully.

b. Identity A-tensor for two fermionic sites

Consider the combination of two fermionic sites. Al-
luding to Fig. 1, let site 1 (2) be described by |i〉 (|σ〉), re-
spectively, both representing a 4-dimensional state space
{|0〉 , |↑〉 , |↓〉 , |↑↓〉} of their own. The decomposition of
the combined space in terms of the overall symmetry
U(1)charge ⊗ SU(2)spin is fully described by the rank-3
QSpace (C4).

Given the U(1)charge ⊗ SU(2)spin symmetries, the
abelian charge quantum number Cz simply adds up,
while for the SU(2) spin symmetry, the usual SU(2) ad-
dition algebra applies. The overall number of multiplets
in the combined space q′′ is given by the last number
(index 3) in the dimensions specified with the multiplet
space. The specific input combinations entering a certain

combined space q′′ are easily verified. The q′′ = (− 1
2 ; 1

2 )
sector, for example, derives from the two configurations
{q, q′} = {(− 1

2 ; 0), (0; 1
2 )} and {(0; 1

2 ), (− 1
2 ; 0)}. There-

fore the dimension of the reduced multiplet space for
this q′′ is 2. Each of these multiplets has an internal
z-space which is itself of dimension 2 [last column]. The
combined total dimension of the q′′ = (−1

2 ; 1
2 ) sector is

therefor given by the product 2 · 2 = 4. Consistently,
the dimension of the two 4-dimensional sites combined
add up correctly to 16 states total. That is, multiplying
the last dimension in the reduced multiplet space with
the last dimension in the combined CGC spaces for each
block separated by horizontal lines, bearing in mind that
the multiplet space and the CGC spaces are to be com-
bined in a tensor-product, yields the overall dimension of
the combined space, 1·1+2·2+3·1+1·3+2·2+1·1 = 16.

The A-tensor in (C4) is an identity A-tensor, in that
up to permutations, plain identity matrices are split-up
on the reduced multiplet level. By considering, for exam-
ple, the q′′ =

(
± 1

2 ; 1
2

)
symmetry sector in records 2 − 3

or 8 − 9 of the QSpace (C4), the multiplet space when
viewed together, i.e. ignoring all brackets, resemble the
structure of a 2-dimensional identity matrix. Similar so
for the q′′ = (0; 0) space in records 4 − 6, having essen-
tially a 3-dimensional identity matrix in the multiplet
space. Allowing for arbitrary unitaries in the multiplet
space in QSpace (C4), this then becomes the most gen-
eral unitary transformation of the product space of two
fermionic sites that also respects the symmetries consid-
ered.

2. Fermionic sites in the presence of particle-hole
symmetry

The tensors introduced in the previous section for
U(1)charge ⊗ SU(2)spin symmetry will now be written
more compactly still by assuming the stronger particle-
hole SU(2)charge symmetry instead of the plain abelian
U(1)charge. The symmetry considered in the following

is therefore SU(2)⊗2
SC ≡ SU(2)spin ⊗ SU(2)charge. The z-

operator for charge, Ĉz, is now complemented by the rais-
ing operator Ĉ+ for charge SU(2) [cf. Eq. (A52)]. The
combined symmetries are given by the multiplet label for
both charge and spin SU(2), i.e. the non-negative labels
q = (C, S) with the z-labels of the charge symmetry now
also taken care of by the CGC spaces.

The basis for a single fermionic level given given
SU(2)⊗2

SC symmetry has been introduced in Eq. (A62).
Therefore the full space of the four states {0, ↑, ↓, ↑↓}
can be reduced to the two symmetry multiplets

multiplet space dimension

|C, S〉 dC × dS = dtot∣∣ 1
2 ; 0
〉
≡ {|0〉 , s |↑↓〉} 2× 1 = 2∣∣0; 1

2

〉
≡ {|↑〉 , |↓〉} 1× 2 = 2

(C7)

The most general scalar operator such as the Hamiltonian
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Table II. Example QSpaces in the presence of SU(2)⊗2
SC ≡ SU(2)spin ⊗ SU(2)charge symmetry for a single fermionic site (ψ̂CS),

and for the combination of the state space of two sites (A-tensor). The CGC spaces for SU(2)charge and SU(2)spin are indicated
by the C and S, respectively. The record index ν as well as the explicit specification of the dimensions are just added for clarity.
For comparison, Tbl. I shows the same QSpaces for the case where the particle-hole symmetry is reduced to abelian charge
conservation.

ψCS ≡





record red. matrix elements CGC spaces combined

index ν (C;S) (C′;S′) (C′′z ;S′′) ‖ψ̂CS‖ dimension C S dimension

1. 0; 1
2

1
2
; 0 1

2
; 1
2

s
√

2 1× 1× 1 1√
2

{
[0 1]; [−1 0]

} {
[1; 0]; [0; 1]

}
2× 2× 4

2. 1
2
; 0 0; 1

2
1
2
; 1
2

√
2 1× 1× 1

{
[1; 0]; [0; 1]

} 1√
2

{
[0 1]; [−1 0]

}
2× 2× 4





(C5)

QSpace of spinor ψ̂CS defined in Eq. (A59) with the reduced matrix elements for given symmetries already calculated
in Eq. (A63). The operator index within the IREP is listed third, as usual. The alternating sign s required with
particle-hole symmetry appears with the reduced matrix elements in the first record only [cf. Eq. (A63); note that
the same sign s is also picked up by the double occupied state, cf. Eq. (A62) or (C7)].

A ≡





record site 1 site 2 combined multiplet space CGC spaces combined

index ν (C;S) (C′;S′) (C′′;S′′) ‖A‖ dimension C S dimension

1. 0; 1
2

0; 1
2

0; 0 {[1], [0]} 1× 1× 2 1. 1√
2
[0 − 1; 0 1] 2× 2× 1

2. 1
2
; 0 1

2
; 0 0; 0 {[0], [1]} 1× 1× 2 1√

2
[0 − 1; 0 1] 1. 2× 2× 1

3. 0; 1
2

0; 1
2

0; 1 1. 1× 1× 1 1.

{
[1 0; 0 0],

1√
2
[0 1; 0 1],

[0 0; 0 1]
}

2× 2× 3

4. 0; 1
2

1
2
; 0 1

2
; 1
2

{[1], [0]} 1× 1× 2 {[1 0], [0 1]} {[1; 0], [0; 1]} 2× 2× 4

5. 1
2
; 0 0; 1

2
1
2
; 1
2

{[0], [1]} 1× 1× 2 {[1; 0], [0; 1]} {[1 0], [0 1]} 2× 2× 4

6. 1
2
; 0 1

2
; 0 1; 0 1. 1× 1× 1

{
[1 0; 0 0],

1√
2
[0 1; 0 1],

[0 0; 0 1]
}

1. 2× 2× 3





(C6)

QSpace of identity A-tensor combining two fermionic sites – the symmetry records are sorted with respect the
combined symmetry q′′ ≡ (C′′, S′′), where groups with the same (C′′, S′′) are separated by horizontal lines for
clarity. Considering the tensor-product of multiplet and CGC spaces, the combined space has total dimension
of 2 · 1 + 1 · 3 + 2 · 4 + 1 · 3 = 16 as expected for two spinful fermionic levels. Compared to the A-tensor in
(C4) with abelian charge conservation, the number of combined symmetry sectors has been further reduced
from 6 to 4 [i.e. number of horizontally separated groups sharing the same q′′], with an overall reduction in
the number of multiplets present in the QSpace reduced from 10 to 6 [having 1 + 2 + 3 + 1 + 2 + 1 = 10 in
(C4), and here 2 + 1 + 2 + 1 = 6].

is given by the QSpace,

H ≡





(C;S) (C ′;S′) ‖H‖ CGC spaces
1
2 ; 0 1

2 ; 0 h 1
2 ,0

1(2) 1.

0; 1
2 0; 1

2 h
0,

1
2

1. 1(2)





. (C8)

Thus only the two reduced matrix elements h1/2,0 and
h0,1/2 are left free to choose without compromising

SU(2)⊗2
SC symmetry.

A non-scalar IROP is given in terms of the 4-element

spinor ψ̂CS in Eq. (A59), which combines two creation
and two annihilation operators. Its symmetries have been

identified in Eq. (A61), leading to the IROP ψ̂CS with

the QSpace presented in (C5). Note that the size of the
third dimension is 4 [see combined CGC dimension in
the last column], consistent with the four operators that
constitute the IROP.

The QSpace representation for the A-tensor combining
two fermionic levels is given in (C6). The standard SU(2)
addition rules are quickly confirmed. For example, the
combined symmetry q′′ = (0, 0) [records 1-2] can result
from two combinations, namely ( 1

2 , 0)⊗( 1
2 , 0), or (0, 1

2 )⊗
(0, 1

2 ), leading to a two dimensional multiplet space. All
of this is transparently encoded in the QSpace. Here,
QSpace (C6) again shows an identity A-tensor, as seen,
for example, in the combined reduced multiplet space of
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multiplet space CG dimension

index |S, C1, C2, C3 〉 dim. dSdC1dC2dC3 = dtot

1. | 0; 0; 0; 1
2
〉 1 1× 1× 1× 2 = 2

2. | 0; 0; 1
2
; 0 〉 1 1× 1× 2× 1 = 2

3. | 0; 1
2
; 0; 0 〉 1 1× 2× 1× 1 = 2

4. | 0; 1
2
; 1

2
; 1

2
〉 1 1× 2× 2× 2 = 8

5. | 1
2
; 0; 0; 0 〉 2 2× 1× 1× 1 = 2

6. | 1
2
; 0; 1

2
; 1

2
〉 1 2× 1× 2× 2 = 8

7. | 1
2
; 1

2
; 0; 1

2
〉 1 2× 2× 1× 2 = 8

8. | 1
2
; 1

2
; 1

2
; 0 〉 1 2× 2× 2× 1 = 8

9. | 1; 0; 0; 1
2
〉 1 3× 1× 1× 2 = 6

10. | 1; 0; 1
2
; 0 〉 1 3× 1× 2× 1 = 6

11. | 1; 1
2
; 0; 0 〉 1 3× 2× 1× 1 = 6

12. | 3
2
; 0; 0; 0 〉 1 4× 1× 1× 1 = 4

Table III. State space of 3-channel site with SU(2)⊗4
SC ≡

SU(2)spin ⊗ SU(2)⊗3
charge symmetry.

multiplet space CG dimension

index |S Cz T 〉 dim. dS ·dCz ·dT = dtot

1. | 0; − 3
2
; 0 0 〉 1 1× 1× 1 = 1

2. | 0; − 1
2
; 2 0 〉 1 1× 1× 6 = 6

3. | 0; 1
2
; 0 2 〉 1 1× 1× 6 = 6

4. | 0; 3
2
; 0 0 〉 1 1× 1× 1 = 1

5. | 1
2
; −1; 1 0 〉 1 2× 1× 3 = 6

6. | 1
2
; 0; 1 1 〉 1 2× 1× 8 = 16

7. | 1
2
; 1; 0 1 〉 1 2× 1× 3 = 6

8. | 1; − 1
2
; 0 1 〉 1 3× 1× 3 = 9

9. | 1; 1
2
; 1 0 〉 1 3× 1× 3 = 9

10. | 3
2
; 0; 0 0 〉 1 4× 1× 1 = 4

Table IV. State space of 3-channel site with SU(2)spin ⊗
U(1)charge ⊗ SU(3)channel symmetry.

multiplet space CG dimension

index |S Sp(6) 〉 dim. dS · dCz · dT = dtot

1. | 0; 0 0 1 〉 1 1× 1× 14 = 14

2. | 1
2
; 0 1 0 〉 1 2× 1× 14 = 28

3. | 1; 1 0 0 〉 1 3× 1× 6 = 18

4. | 3
2
; 0 0 0 〉 1 4× 1× 1 = 4

Table V. State space of 3-channel site with SU(2)spin⊗Sp(6)
symmetry.

records 1− 2, or 4− 5).

3. Three channels with SU(3) channel symmetry

Consider a system with three spinful particle-hole sym-
metric channels, as introduced in Sec. A 9 d. A single site
then has a full Hilbert space of dimension 43 = 64. Three

symmetry settings are analyzed: a set of plain SU(2)
symmetries, a combination with the SU(3) channel sym-
metry, and finally the largest symmetry present which in-
cludes the enveloping symplectic symmetry Sp(6). Since
the QSpaces in given context are extensive, a more com-
pact comparison of these symmetry settings in the nu-
merical context is given, instead.

The first setting, SU(2)⊗4
SC ≡ SU(2)spin ⊗ SU(2)⊗3

charge,

is based on four independent SU(2) symmetries. The 64-
dimensional state space of single site decomposes into 13
multiplets in 12 symmetry sectors, as listed in Tbl. III.
All of these contain a single representative multiplet, ex-
cept for the space | 12 ; 0; 0; 0〉 in row 5, which contains two
multiplets. In contrast, using the SU(2)spin⊗U(1)charge⊗
SU(3)channel symmetry, instead, the 64 states of the three
fermionic levels decomposes into the 10 multiplet spaces
listed in Tbl. IV. Thus compared to the SU(2)⊗4

CS sym-
metry setting in Tbl. III, the number of multiplet spaces
is further reduced with all multiplet spaces containing a
single multiplet only. This suggests that the latter sym-
metry including the channel SU(3) is somewhat more ef-
ficient as it allows to compactify multiplet spaces more
strongly. Given the multiplet space in Tbl. IV, for ex-
ample, the most general Hamiltonian in the 64 × 64 di-
mensional Hilbert space compatible with given symmetry
consists of the 10 reduced matrix elements appearing in
the multiplet space only.

A further strong boost in numerical efficiency can be
obtained, if the Hamiltonian supports it, by combin-
ing the particle-hole symmetry of SU(2)spin⊗SU(2)⊗3

charge

with the channel symmetry in SU(2)spin ⊗ U(1)charge ⊗
SU(3)channel to their enveloping Sp(6) symmetry. The
resulting state space for the state space of a single 3-
channel site is given in Tbl. V. The 64× 64 dimensional
Hilbert space has thus been reduced to a total of four
multiplets only.

All three symmetry settings have been successfully im-
plemented within the NRG framework. By starting with
a single site [i.e. the basic fermionic three-level unit as
introduced in Sec. A 9 d], and iteratively adding a site
within the NRG, new multiplet spaces are quickly ex-
plored and built up within the first few NRG iterations.
In practice, the CGC spaces of newly generated multi-
plets are also stored for latter retrieval. Once truncation
of the state space within NRG sets in, however, the gen-
eration of IREPs eventually saturates to within a finite
range of multiplet spaces.

The resulting space for adding up to three further
sites without truncation is indicated in Tbl. VI. With
reasonable numerical resources, it is feasible within
the SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel (second) or
SU(2)spin ⊗ Sp(6) (third) setting, to keep all states up
to three sites total within the NRG, first truncating only
when a fourth site is added. This leads to NK = 9, 086
[NK = 1, 232] kept multiplets for the second and third
symmetry setting, respectively. The corresponding mem-
ory requirements for a general basis transformation for
adding another site (A-tensor) then amounts to about
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sites abelian dim. SU(2)spin ⊗ SU(2)⊗3
charge SU(2)spin ⊗U(1)charge ⊗ SU(3)channel SU(2)spin ⊗ Sp(6)

n D∗ = 64n NS D D∗/D memory MEM∗ NS D D∗/D memory MEM∗ NS D D∗/D memory MEM∗

1 64 12 13 4.9 < 18 K 10 10 6.4 < 13 K 4 4 16 < 6 K

2 4, 096 61 388 10.6 528 K >8.7 M 69 260 15.8 359 K >12 M 23 61 67.1 162 K >34 M

3 262, 144 192 14,229 18.4 27 M >23 G 226 9,086 28.9 11 M >31 G 60 1,232 213 7 M >112 G

4 16, 777, 216 469 590,856 28.4 24 G >65 T 565 366,744 45.7 6.8 G >85 T 132 31,640 530 334 M >355 T

Table VI. Comparison of different symmetry scenarios for the same underlying physical system of a symmetric 3-channel
setup, analyzing the product spaces of up to n = 4 sites. Each site represents a Hilbert space of dimension 64, thus n sites
amounts to an overall Hilbert space of dimension D∗ = 64n [second column]. This state space can be decomposed into D
multiplets in NS symmetry sectors using an A-tensor for the addition of every new site. These A-tensors are encoded in terms
of QSpaces. The total memory requirement for each A-tensor is listed, given sparse CGC representation. In addition, as a
comparison to a fully abelian setting, MEM∗ indicates the memory that had been required if the tensor products between
reduced multiplets and CGC spaces was carried out explicitly [K,M,G,T for kilo-, mega-, giga-, and tera-bytes, respectively].

sites SU(2)spin ⊗ SU(2)⊗3
charge SU(2)spin ⊗U(1)charge ⊗ SU(3)channel SU(2)spin ⊗ Sp(6)

n dS dC dC dC sparsity CGS/A dS dU(1) dC sparsity CGS/A dS dSp(6) sparsity CGS/A

1 4 2 2 2 0.36 0.8 4 1 8 0.12 0.8 4 14 0.027 0.90

2 7 3 3 3 0.36 0.8 7 1 27 0.12 0.8 7 126 0.027 0.90

3 10 4 4 4 0.28 0.11 10 1 64 0.064 0.33 10 616 0.011 0.94

4 13 5 5 5 0.22 < 10−3 13 1 125 0.039 0.003 13 2457 0.006 0.55

Table VII. Comparison of different symmetry scenarios as in Tbl. VI in terms of (i) largest multiplet dimension d for each
individual symmetry, and (ii) overall average sparsity of the CGC spaces, i.e. the number of non-zero elements divided by the
total number of matrix elements. The last columns for each symmetry (CGS/A) shows the memory requirement of all sparse
CGC spaces in a given QSpace An relative to the entire QSpace.

7 G [0.3 G]. The corresponding full NRG iteration for
adding another site then takes several hours on a state-
of-the-art 8-core workstation.

The same calculation, however, gets quickly impossible
as fewer symmetries are available or used in the actual
computation as can be seen from Tbl. VI. For example,
if only the abelian part of the symmetry had been ac-
counted for in the computation, the corresponding mem-
ory requirement can be estimated by considering the ex-
plicit tensor product of the multiplet space with the CGC
spaces, leading in terms of the SU(2)⊗4

SC setting to about
23 G and 65 T(!) for n = 3 and n = 4, respectively,
the latter being completely hopeless in practice. The
explicit treatment of non-abelian symmetries, however,
clearly makes the latter case feasible with a reasonable
amount of numerical resources.

a. SU(3) symmetry

The irreducible SU(3) multiplets generated in the ac-
tual NRG run using SU(2)spin⊗U(1)charge⊗SU(3)channel

symmetry as presented in the main text [cf. Sec. V],
are shown in terms of their weight diagrams in Fig. 12.
For comparison, the SU(3) IREPs present in the de-
scription of a single site are qSU(3) ≡ (q1, q2) ∈
{(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)}, cf. Tbl. IV. The ap-
parent symmetry w.r.t. to flipping the quantum numbers
in (q1, q2) is also reflected in the overall set of multiplets

generated within the NRG. As seen in Fig. 12, all IREPs
(q1, q2) with q1 + q2 ≤ 8 are present, except for (0, 8) and
(8, 0).

Inner multiplicity, as expected for SU(3), is clearly
present and depicted in the weight diagrams of Fig. 12 by
the encircled set of points. There the number of points
inside a circle stands for the multiplicity of the corre-
sponding z-labels in the multiplet. Inner multiplicity
decreases in shells as one moves outward the multiplet,
which is seen particularly well for the multiplets q1 = q2.
The states on the outer circumference have no multiplic-
ity, i.e. have unique z-labels, as expected. This demon-
strates the uniqueness of the maximum weight state [cf.
Sec. A 3 c], which was required for the numerical state
space decomposition in Sec. B 1.

Due to the two-dimensional label structure of the
SU(3) multiplets together with inner multiplicity, their
internal dimensions can get significantly larger as com-
pared to SU(2) multiplets. The largest SU(3) multiplet
(4, 4) encountered in the actual NRG run presented in
Fig. 12, for example, has an internal irreducible dimen-
sion of d = 125 [see also Tbl. VII]. This implies, for
example, that with respect to the diagonalization of a
Hamiltonian, a 125-fold degeneracy has been reduced to
a single multiplet. In contrast, the multiplet structure
for SU(2)⊗4

SC is clearly weaker as it only includes SU(2)
symmetries. There the largest quantum numbers encoun-
tered in an NRG run with comparable number of kept
states includes S ≤ 6 in the spin sector, leading to an
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Figure 12. Weight diagrams of SU(3) multiplets generated in a typical NRG run for the symmetric 3-channel system
including SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel symmetries (Λ = 4, Etrunc = 7). The multiplet label (q1, q2), as defined in
Eq. (A34), is specified with each multiplet in the upper left corner of its panel. For a weight diagram of a specific IREP
(q1, q2), the corresponding z-labels (qz1, qz2) of SU(3) for each individual state within the multiplet are depicted as points in a
two-dimensional plot. In case of inner multiplicity, i.e. that several states within the same IREP share exactly the same z-labels,
these states are shown as an encircled group of smaller points. The dimension for every multiplet (number of points drawn
within a panel) is indicated to the lower right of each panel. The first panel [multiplet (0, 0)] represents the scalar representation
with multiplet dimension d = 1. Multiplet (1, 0) represents the defining three-dimensional representation [cf. Sec. A 4 c], and
(1, 1) the regular representation of dimension 8 equal to the dimension of SU(3), i.e. the number of its generators. The largest
multiplet encountered in given NRG run is the multiplet (4, 4) with an irreducible dimension of d = 125.
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Sp(6) multiplet dimension Sp(6) multiplet dimension

q d [cont’d]

(0 0 0) 1 (1 2 0) 350

(1 0 0) 6 (1 0 2) 378

(0 0 1) 14 (0 3 0) 385

(0 1 0) 14 (3 1 0) 448

(2 0 0) 21 (1 1 1) 512

(3 0 0) 56 (3 0 1) 525

(1 1 0) 64 (0 1 2) 594

(1 0 1) 70 (0 2 1) 616

(0 0 2) 84 (2 2 0) 924

(0 2 0) 90 (2 0 2) 1078

(0 1 1) 126 (1 3 0) 1344

(4 0 0) 126 (2 1 1) 1386

(2 1 0) 189 (1 2 1) 2205

(2 0 1) 216 (1 1 2) 2240

(0 0 3) 330

Table VIII. Sp(6) multiplets generated in a fully con-
verged NRG run for the symmetric 3-channel system using
SU(2)spin ⊗ Sp(6) (Λ = 4, Etrunc = 7). Multiplet (0, 0, 0)
represents the scalar representation of dimension 1, multi-
plet (1, 0, 0) the defining representation of dimension 6, and
multiplet (2, 0, 0) the regular representation of dimension 21
which is also equal to the number of generators for Sp(6).
The largest tensor-product decomposition was between the
product spaces of IREPs of dimension 14 and 512, yielding
a combined product space dimension of 7, 168. Run time of
the bare NRG run was about 2 hrs on a state-of-the-art 8-core
workstation with moderate memory requirements of . 4.5 G.

individual multiplet dimension of at most 13 [see also
Tbl. VII]. In the overall combination of the symmetries,
this implies that for comparable number of states, i.e.
for a comparable accuracy within the NRG, on average
about 50% more multiplets need to be kept within the
SU(2)⊗4

SC setting as compared to the case when SU(3) is
included [see Fig. 9 in the main text].

Finally, the individual weight diagrams in Fig. 12 show
well-known symmetries, such as a reflection symmetry
of each diagram around the vertical y-axes, or the re-
flection symmetry between the multiplets (q1, q2) and
(q2, q1) around the horizontal axis. These Weyl sym-
metries may be used to evaluate or encode CGC spaces
more efficiently.26 For the purpose of this paper, however,
these symmetries were not exploited, given also that the
pure numerical evaluation of the CGC spaces as outlined
earlier was already sufficiently fast.

b. Sp(6) symmetry

The complete set of Sp(6) symmetries generated in the
fully converged NRG run (using Λ = 4 and Etrunc = 7 as
used in the results in the main text), is listed in Tbl. VIII.
All multiplets had been generated within the first four

Wilson shells. The fact that the symmetry Sp(6) fully
incorporates non-abelian particle-hole and channel sym-
metry, manifests itself by observing that all eigenenergies
in the multiplet spaces are now strictly non-degenerate
throughout an entire NRG calculation. Huge degenera-
cies of several thousands can be split off in terms of tensor
products with Sp(6) multiplets.

For given model, the symmetry Sp(6) in fact also al-
lowed to reduce the rather coarse discretization of Λ = 4
in the NRG calculation underlying Tbl. VIII. For com-
parison, if Λ = 2 is used, instead, while keeping the same
Etrunc = 7, it turns out, the largest multiplet generated
is (2, 1, 2) of dimension 5720. The largest intermediate
product space to be decomposed into IREPs becomes as
large as 14×1386 = 19, 404. Having Λ = 2, this required
twice the Wilson chain length for the same range in en-
ergy scales, leading to an overall run time of the entire
NRG run of about 32 hrs with still reasonably manage-
able memory requirements of . 20 G.

As a rough general estimate, typical multiplet dimen-
sions, as they occurred in practice, scale like 10r where
r is the rank of the symmetry. For SU(2)spin, this im-
plies multiplets of dimension . 10, for the SU(4)channel

symmetry, indeed, one had multiplets of dimension of
. 100, while now for Sp(6), a symmetry of rank 3, one
easily reaches multiplet dimensions on the order of a few
1000 (cf. Tbl. VIII). Therefore with increasing rank of the
symmetry, the numerical effort strongly shifts from the
multiplet space to the CGC spaces. For sets of smaller
symmetries with rank r ≤ 2 this leads to a strong gain
in numerical efficiency, while the numerical overhead for
the CGC spaces remains negligible. Reaching symme-
tries of rank 3, such as Sp(6), the numerical effort within
the CGC spaces can now become comparable to or even
larger than the operations on the higher multiplet level.

Table VII summarizes the situation by comparing the
maximal multiplet spaces with the corresponding spar-
sity and memory requirements of the CGC spaces for the
first few A-tensors, when combining up to n = 4 sites
without truncation. As the internal multiplet dimensions
quickly grow for higher rank symmetries, nevertheless
only an ever smaller fraction of Clebsch-Gordan coeffi-
cients are non-zero. As seen from Tbl. VII, the sparsity
roughly grows exponentially with the rank of the symme-
try. Nevertheless, with the memory requirement of the
sparse CGC for Sp(6) comparable or even larger than
the storage of the reduced matrix elements on the higher
multiplet level (see last column in Tbl. VII), full storage
including also the zero CGC spaces would have extremely
inflated overall storage requirement. In this sense, here
sparse storage of CGC spaces becomes mandatory.

In order to distinguish numerical noise, i.e. negligible
CGC matrix elements, from actual matrix elements then,
this requires an accurate evaluation of the CGC matrix
elements. Double precision accuracy as compared to the
exact theoretical CGC coefficients was sufficient, in prac-
tice. In particular, this implies, that also the matrix ele-
ments of the generators for given IREPs of the symmetry
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are known essentially exactly at any step. In the iterative
approach, however, when new multiplets are generated
through tensor products with smaller entities, numeri-
cal error can easily pile up. In this case, the accuracy
of the matrix elements of the generators must be better
than double precision. For practical purposes, quad pre-
cision on matrix elements of the generators turned out
sufficient.

Finally, for example, with standard CGC spaces of

rank-3, the sparse storage of CGC spaces also requires
the generalization of standard sparse storage and sparse
operations to arbitrary rank tensors. All of these is
achieved, in general, by proper efficient permutations in
sparse index space which requires a fast sorting scheme,
together with reshaping of higher rank-objects to stan-
dard two-dimensional sparse objects with fused indices,
since this allows to employ fast routines for standard
sparse multiplication.
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