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We give a complete classification of fully symmetric as well as chiral Z2 quantum spin liquids on the
pyrochlore lattice using a projective symmetry group analysis of Schwinger boson mean-field states. We find 50
independent Ansätze, including the 12 fully symmetric nearest-neighbor Z2 spin liquids that have been classified
by Liu et al. [Phys. Rev. B 100, 075125 (2019)]. For each class, we specify the most general symmetry-allowed
mean-field Hamiltonian. Additionally, we test the properties of a subset of the spin-liquid Ansätze by solving
the mean-field equations for the spin-1/2 XXZ model near the antiferromagnetic Heisenberg point. We find four
chiral spin liquids that break the screw symmetry of the lattice modulo time-reversal symmetry. These states
have a different symmetry from the previously studied monopole flux state, and their unique characteristic is a
π

3 flux enclosed by every rhombus of the lattice.
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I. INTRODUCTION

Quantum spin liquids are phases of frustrated magnets
that do not exhibit long-range magnetic order down to zero
temperature and cannot be classified based on Landau’s the-
ory of spontaneous symmetry breaking. In contrast to trivial
paramagnetic phases, they exhibit topological order [1] with
long-range entanglement and excitations that carry fractional
quantum numbers and can have anyonic exchange statistics
[2].

A promising platform to study such exotic forms of quan-
tum magnetism are materials where the interplay between
electronic correlations and strong spin-orbit coupling gives
rise to spin-orbital moments interacting via frustrated ex-
change interactions [3,4]. The 3d rare-earth pyrochlore mag-
nets are an interesting family of frustrated quantum magnets in
this class. They have the structure R2M2O7, with R a trivalent
rare-earth ion and M a nonmagnetic tetravalent transition-
metal ion. The former are arranged on a pyrochlore lattice,
which consists of corner-sharing tetrahedra. For a subclass
of these materials, the strong spin-orbit coupling together
with the crystal field splitting of the 4 f orbitals leads to a
j = 1/2 doublet [4]. The small effective spin and the geomet-
rically frustrated pyrochlore lattice enhance spin fluctuations
and suppress magnetic ordering in these systems. Promi-
nent examples include Yb2Ti2O7 and Tb2Ti2O7, which show
interesting paramagnetic behavior down to very low tem-
peratures and potentially realize an exotic quantum spin-ice
phase [5–9], where the spin dynamics is strongly constrained,
following the “two in, two out” ice rule on each tetrahe-
dron. Their low-energy properties are described by compact
U(1) gauge theories, which feature magnetic monopole exci-
tations [10]. While the microscopic details of these materials
are rather complex, their low-energy physics is governed by

effective spin-1/2 moments, coupled by various symmetry-
allowed exchange interactions. Minimal models exhibit
dominant Heisenberg interactions, often with an easy-axis
exchange anisotropy [10].

In this work, we study the spin-1/2 nearest-neighbor XXZ
Hamiltonian on the pyrochlore lattice as a minimal model
for the description of the above-mentioned quantum spin-ice
phases. Since quantitatively reliable numerical methods to
study frustrated quantum magnets in three dimensions for
large system sizes are not available, several properties of its
phase diagram are still under debate.

So far, most of the attention has been focused on the quan-
tum spin-ice phase in the vicinity of the classical Ising limit,
where antiferromagnetic easy-axis interactions dominate and
transverse exchange interactions are small. Recent studies
also found a nematic spin liquid for strong antiferromagnetic
transverse exchange interactions, which breaks the U(1) spin
rotation symmetry of the XXZ Hamiltonian in the easy-plane,
as well as the C3 rotation symmetry of the pyrochlore lattice
[11,12]. The nature of the ground state in the vicinity of the
SU(2) symmetric Heisenberg point is still unclear, however.
Various possible ground states have been suggested, including
dimer-ordered [13–18] and symmetric [19,20] and symmetry-
broken [21] spin-liquid states, as well as chiral spin-liquid
states [22,23], which break time-reversal symmetry.

In this work, we use a projective symmetry group (PSG)
approach together with a Schwinger boson representation of
the spin operators to provide a complete classification of sym-
metric as well as chiral Z2 spin-liquid states on the pyrochlore
lattice. Here, chiral Z2 spin liquids are gapped spin liquids that
break time-reversal symmetry. Moreover, lattice symmetries
can be broken up to a time-reversal transformation. For the
PSG construction of chiral spin-liquid states, we follow the
work of Messio et al. [24]. As a byproduct we recover the fully
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FIG. 1. (a) A unit cell of the pyrochlore lattice. Nearest-neighbor
sites are connected by bonds. Blue bonds (main tetrahedron) are
within a unit cell, and red bonds (inverse tetrahedron) are between
neighboring unit cells. (b) The local spin basis of the inverse tetrahe-
dron (A1). (c) The enlarged unit cell consisting of eight tetrahedra.

symmetric Z2 spin liquids previously classified by Liu et al.
[25]. To characterize the newly constructed chiral Ansätze, we
use Schwinger boson mean-field theory (SBMFT) and solve
the mean-field equations to compare their ground-state ener-
gies. Furthermore, we calculate static spin structure factors to
characterize spin correlations in these states.

The outline of the paper is as follows: In Sec. II we intro-
duce the local XXZ model and develop a general mean-field
decoupling in terms of bond operators within SBMFT. In
Sec. III we use PSG to systematically classify symmetric and
chiral mean-field Ansätze. The detailed calculations can be
found in Appendixes D and E. After choosing reasonable An-
sätze (Sec. IV), we diagonalize the Hamiltonian and calculate
free energies in Sec. V. In Sec. VI we calculate static spin
structure factors. Finally, we discuss our results in Sec. VII.

II. MODEL AND METHODS

A. Pyrochlore lattice

The lattice is spanned by the fcc-basis vectors a1 =
1
2 (0, 1, 1), a2 = 1

2 (1, 0, 1), a3 = 1
2 (1, 1, 0), and it has four

sublattices (see Fig. 1). We will include the zero vector as
a fourth lattice vector for later convenience: a0 = (0, 0, 0).
Also, for easier use of symmetries, we introduce the sublattice
coordinates:

rμ = (r1, r2, r3)μ := r1a1 + r2a2 + r3a3 + 1
2 aμ

= 1
2 (r2 + r3, r1 + r2, r1 + r3) + 1

2 aμ. (1)

We will refer to the tetrahedra spanned by {rμ : μ =
0, 1, 2, 3} and {rμ − aμ : μ = 0, 1, 2, 3} as the main and in-
verse tetrahedron, respectively, and label them with r. The
spin operators in the local basis are defined as

Ŝrμ
= (Ŝx, Ŝy, Ŝz )μ = Ŝx

rμ
sx
μ + Ŝy

rμ
sy
μ + Ŝz

rμ
sz
μ. (2)

The local basis vectors sγ
μ are defined in Appendix A. The

space group of the lattice is Fd 3̄m (No. 227), which we will
later refer to as χ . It is generated by the translations T1, T2, T3

along the lattice vectors, a sixfold rotoreflection C6 around
the sz

0 axis, and a screw operation S around the a3 axis [25].
The rotoreflection can be constructed by inversion I and C3

rotation around the sz
0 axis: C6 = C3I . We denote time-reversal

symmetry as T . In Appendix A we list how the sublattice
coordinates and local spin basis transform under symmetries
of the space group as well as the algebraic group relations.

B. Model and Schwinger-boson mean-field theory

The XXZ model is given by the following Hamiltonian:

H =
∑
〈i j〉

J⊥
(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

) + JzzŜ
z
i Ŝz

j, (3)

where Ŝγ
i is the γ ∈ {x, y, z} component of the spin-1/2 oper-

ator on lattice site i in the local basis, and the sums run over
nearest-neighbor bonds on the pyrochlore lattice. For Jzz = J⊥
the model reduces to the Heisenberg model in the local spin
basis, which is the Klein dual of the Heisenberg model in the
global spin basis [26]. This will later enable us to compare
results from both models.

We use the parametrization

Jzz = J cos (θ ), J⊥ = J sin (θ ), (4)

and set J =
√

J2
zz + J2

⊥ = 1. The spin operators can be repre-
sented in terms of Schwinger bosons

Ŝγ
i = 1

2 b̂†
i σ

γ b̂i, (5)

where b̂† = (b̂†
i,↑, b̂†

i,↓) are bosonic creation operators satisfy-
ing [bi,αb† j,β ] = δi jδα,β , and σγ are the Pauli matrices. The
Schwinger boson representation is invariant under U(1) gauge
transformations

G : b̂ j −→ eiφG[ j]b̂ j, (6)

with φG[ j] a lattice site-dependent phase. To ensure that the
operators in Eq. (5) obey the spin algebra, we have to constrain
the boson density per site to 2S ,

n̂i = b̂†
i b̂i = 2S. (7)

This projection can be achieved by adding a site-dependent
Lagrange multiplier

∑
i λi(n̂i − 2S ) [27] to the Hamiltonian.

At this point, it is possible to decouple the Hamiltonian
in terms of the hopping singlet B̂i j and triplet t̂ h,γ

i j as well as

pairing singlet Âi j and triplet t̂ p,γ
i j operators,

B̂i j = 1

2
b†

i b j, Âi j = 1

2
bi(iσ

2)b j,

t̂ h,γ
i j = i

2
b†

i σ
γ b j, t̂ p,γ

i j = − i

2
bi(σ

γ · iσ 2)b j, (8)
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with γ ∈ {x, y, z} by using the identities

ŜiŜ j = : B̂†
i j B̂i j : −Â†

i j Âi j, (9a)

Ŝγ
i Ŝγ

j = : B̂†
i j B̂i j : −t̂ p,γ †

i j t̂ p,γ
i j (9b)

= : t̂ h,γ †
i j t̂ h,γ

i j : −Â†
i j Âi j, (9c)

where : : denotes normal ordering. We arrive at a Hamiltonian
of the form

H =
∑
〈i, j〉

: ĥ†
i jJ

h
i j ĥi j : +p̂†

i jJ
p
i j p̂i j + Ci j +

∑
i

λi(n̂i − 2S ),

(10)

where ĥ†
i j = (B̂†

i j, t̂ h,x†
i j , t̂ h,y†

i j , t̂ h,z†
i j ) and p̂†

i j = (Â†
i j,

t̂ p,x†
i j , t̂ p,y†

i j , t̂ p,z†
i j ) are vectors of the hopping and pairing

operators. Jh
i j and J p

i j are the hopping and pairing coupling
matrices that depend on Ji j , and Ci j is a constant.

On an empty lattice |0〉 that satisfies b̂i,↑|0〉 = b̂i,↓|0〉 = 0
for all i, Â†

i j creates a spin singlet between sites i and j. t̂ p,γ †
i j

creates a spin triplet with direction γ between sites i and j.
The hopping operator B̂k j moves these singlets or triplets from
the sites i and j to sites i and k: B̂k j Â

†
i j |0〉 ∼ Â†

ik|0〉. Finally,
the triplet hopping operators also move the spin singlets and
triplets around while simultaneously changing their flavor. For
example, t̂ h,z

k j Â†
i j |0〉 ∼ t̂ p,z†

ik |0〉 or t̂ h,z
k j t̂ p,x†

i j |0〉 ∼ t̂ p,y†
ik |0〉.

Note that the decoupling is not unique, since for i �= j,

: B̂†
i j B̂i j : +Â†

i j Âi j =: t̂ h,γ †
i j t̂ h,γ

i j : +t̂ p,γ †
i j t̂ p,γ

i j = 1
4 n̂in̂ j = S2,

(11)

where in the last equality we explicitly used the boson density
constraint from Eq. (7). It is therefore possible to set either Jh

i j

or J p
i j to zero and only describe the system in terms of hopping

or pairing terms. However, once we apply the mean-field ap-
proximation, our choice of parametrization greatly affects our
results. A theory with J p

i j = 0 can only describe magnetically
ordered states, while a theory with Jh

i j = 0 has been shown
to lead to quantitatively worse results for ground-state energy
and the dynamical spin structure factor [28,29].

We therefore choose to keep both terms. Another operator
identity is

Â†
i j Âi j = −t̂ p,x†

i j t̂ p,x
i j − t̂ p,y†

i j t̂ p,y
i j − t̂ p,z†

i j t̂ p,z
i j + 2S2. (12)

We deal with this ambiguity by choosing parametrizations
that preserve the SU(2) symmetry at the Heisenberg point
explicitly (see Sec. IV).

To treat the parametrized Hamiltonian (10), we make
two standard approximations. First, we consider only a site-
independent Lagrange multiplier λi = λ. This results in the
boson density constraint (7) being fulfilled only on average.
Second, we apply a mean-field approximation:

ĥ†
i jJ

h
i j ĥi j ≈ ĥ†

i jJ
h
i jhi j + h†

i jJ
h
i j ĥi j − h†

i jJ
h
i jhi j, (13a)

p̂†
i jJ

p
i j p̂i j ≈ p̂†

i jJ
p
i jpi j + p†

i jJ
p
i j p̂i j − p†

i jJ
p
i jpi j, (13b)

where

h†
i j = 〈ĥ†

i j〉 = (
B∗

i j, t h,x∗
i j , t h,y∗

i j , t h,z∗
i j

)
, (14a)

p†
i j = 〈p̂†

i j〉 = (
A∗

i j, t p,x∗
i j , t p,y∗

i j , t p,z∗
i j

)
. (14b)

This leaves us with a Hamiltonian that is quadratic in boson
operators,

H =
∑
〈i, j〉

b̂†
i uh

i j b̂ j + b̂†
i up

i j b̂
†
j + H.c. + f (hi j, pi j )

+ λ
∑

i

(b̂†
i b̂i − 2S ). (15)

Here, f is given by

f (hi j, pi j ) = −h†
i jJ

h
i jhi j − p†

i jJ
p
i jpi j + Ci j, (16)

where Ci j is constant while uh
i j and up

i j are complex 2 × 2
matrices defined by

uh
i j = 1

2

3∑
m=0

i1−δm,0
(
h†

i jJ
h
i j

)m
σ m

≡ ah
i jσ

0 + i
(
bh

i jσ
1 + ch

i jσ
2 + dh

i jσ
3
)

≡ (
ah

i j, bh
i j, ch

i j, dh
i j

)
, (17a)

up
i j = 1

2

3∑
m=0

i1−δm,0
(
J p

i jpi j
)m

σ m(iσ 2)

≡ ap
i j iσ

2 + i
(
bp

i jσ
1 + cp

i jσ
2 + d p

i jσ
3
)
(iσ 2)

≡ (
ap

i j, bp
i j, cp

i j, d p
i j

)
. (17b)

This notation is adapted from Liu et al. [25] and is par-
ticularly helpful, since ah

i j and ap
i j transform as scalars

while (bh
i j, ch

i j, dh
i j ) and (bp

i j, cp
i j, d p

i j ) transform as SO(3) vec-
tors. The parameters ah

i j, . . . , dh
i j are functions of the mean

fields hi j and the coupling matrix Jh
i j and appear as pref-

actors to the operators B̂i j, . . . , t̂ h,z
i j in the Hamiltonian.

Similarly, the parameters ap
i j, . . . , d p

i j are functions of the
mean fields pi j and the coupling matrix J p

i j and appear

as prefactors to the operators Âi j, . . . , t̂ p,z
i j in the Hamilto-

nian. When exchanging i ↔ j, the matrices uh
ji, up

ji transform
like uh

ji = (uh
i j )

† and up
ji = (up

i j )
T and the parameters trans-

form like (ah
ji, bh

ji, ch
ji, dh

ji ) = (ah∗
i j ,−bh∗

i j ,−ch∗
i j ,−dh∗

i j ) and
(ap

ji, bp
ji, cp

ji, d p
ji ) = (−ap

i j, bp
i j, cp

i j, d p
i j ). The set of matrices uh

i j

and up
i j or rather the set of expectation values hi j and pi j are

known as the mean-field Ansatz.
The Hamiltonian (15) is the most general nearest-neighbor

mean-field Hamiltonian. To investigate spin-liquid states in
the XXZ model, we have to choose a mean-field decoupling
of the model Hamiltonian (3) that fixes Jh

i j , J p
i j , and Ci j and an

Ansatz that fixes hi j and pi j .
Once an Ansatz is chosen, the mean-field Hamiltonian (15)

can be diagonalized by a Bogoliubov transform, a ground state
can be constructed, and the values of hi j and pi j have to be
solved self-consistently:

hi j = 〈ĥi j〉, pi j = 〈p̂i j〉, 2S = 1

N

∑
i

〈n̂i〉. (18)
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III. MEAN-FIELD ANSÄTZE

Motivated by the chiral spin-liquid states found by Bur-
nell et al. [22] and Kim et al. [23] using a fermionic parton
construction, we consider general chiral Ansätze that fulfill
all lattice symmetries modulo time reversal. We classify all
possible Ansätze with the PSG method introduced by Wen
[1] for fermionic partons and later generalized by Wang and
Vishvanath to Schwinger bosons [27] to symmetric spin liq-
uids. In particular, we follow the strategy from Messio et al.
[24], who generalized the bosonic PSG to chiral Ansätze
where time-reversal symmetry and lattice symmetries modulo
time reversal are broken. Due to the U(1) gauge symmetry
of the Schwinger boson representation (5), the mean-field
Ansatz does not have to be strictly symmetric under all lattice
symmetries O but can in general be symmetric under the
gauge-enriched lattice symmetries Õ:

Õ = GOO : b̂i −→ eiφO[O(i)]U †
Ob̂O(i). (19)

The set of gauge-inequivalent phases φO[i] are defined by the
algebraic PSG. The gauge transformations G1 are elements
of the so-called invariant gauge group (IGG). Since the py-
rochlore lattice is not bipartite and we are interested in Ansätze
with both hopping and pairing terms, we have to consider an
IGG of Z2 [27]. Before classifying the chiral Ansätze, it is
useful to first revisit the fully symmetric Ansätze classified by
Liu et al. [25].

A. Symmetric Ansätze

Fully symmetric Ansätze can be constructed by fix-
ing uh

0001
= (ah, bh, ch, dh) and up

0001
= (ap, bp, cp, d p) on the

bond 00 −→ 01 and then mapping them onto all other bonds by
symmetry operations:

uh
O(i j) = UOuh

i jU
†
Oe−i(φO[O(i)]−φO[O( j)]), (20a)

up
O(i j) = UOuh

i jU
T
O e−i(φO[O( j)]+φO[O(i)]). (20b)

UO are the SU(2) matrices associated with the symmetry op-
erations O (Appendix C). The algebraic PSG has been solved
by Liu et al. [25]. They found 16 different Z2 PSG equivalent
classes defined by the phases

φT1 [rμ] = 0, (21a)

φT2 [rμ] = n1πr1, (21b)

φT3 [rμ] = n1π (r1 + r2), (21c)

φT [rμ] = 0, (21d)

φC6
[rμ] = δμ,1,2,3(nST1 − n1)π − r1δμ,2,3n1π

− r2nC6T1
π − r3δμ,2n1π

− n1π (r1r2 + r1r3), (21e)

φS[rμ] =
(

(−)δμ,1,2,3
(nST1 − n1)

2
+ δμ,2nC6S

)
π

+ r1π (n1δμ,1,2 − nST1 )

+ r2π (n1δμ,2 − nST1 ) + r3πn1δμ,1,2

− n1π

2
(r1 + r2)(r1 + r2 + 1), (21f)

TABLE I. All independent nonzero nearest-neighbor mean-field
parameters for the 16 different Z2 PSG equivalence classes in
the local spin basis. Fields are fixed on bond 00 −→ 01. All other
nearest-neighbor parameters are constrained to be zero. The table is
translated from Liu et al. (Ref. [25], Table II) by using Eq. (23).

n1-(nC6SnSC6
nC6

) NN

n1-(00nC6
) bh, dh

n1-(01nC6
) bh, dh, ap

n1-(10nC6
) ah, cp

n1-(11nC6
) ah, bp, d p

where n1, nST1 , nC6S, nC6
are all Z2 parameters that are either

0 or 1. The Ansätze will be labeled by n1π − (nC6SnST1 nC6
).

When n1 = 1, translation symmetry is realized projectively
and the unit cell is enlarged. Depending on the PSG equiv-
alence class, the Ansatz forces some of the mean-field
parameters such ah, bh, ch, dh, ap, bp, cp, d p to be zero. Liu
et al. [25] give a table of all independent nonzero parameters
in the global spin basis. We are, however, interested in the
local basis. We transform their solution to the local spin basis
by (

ah
l , bh

l , ch
l , dh

l

)h = U0
(
ah

g, bh
g, ch

g, dh
g

)h
U †

1 , (22)

where the subscripts l and g are for “local” and “global,”
respectively. The matrices Uμ are the SU(2) matrices cor-
responding to the transformation from global to local spin
basis on sublattice μ. They are specified in Appendix C.
Equation (22) gives us explicitly

al = −bg, (23a)

bl = 1√
6

(−2ag + cg − dg), (23b)

cl = 1√
2

(cg + dg), (23c)

dl = 1√
3

(ag + cg − dg). (23d)

Based on Eq. (23), we can translate their solution into Table I.
It lists all independent nonzero nearest-neighbor parameters.
We use the parameters n1-(nC6SnSC6

nC6
) to label the states,

while Liu et al. use n1-(nC6SnST1 nC6
), where nSC6

= n1 +
nST1 + nC6

. The four classes n1-(00nC6
) have an accidental

IGG of U(1) at the nearest-neighbor level, since they do not
allow any nonzero nearest-neighbor pairing fields. Therefore,
one can construct 12 different fully symmetric Z2 spin-liquid
Ansätze at the nearest-neighbor level.

B. Chiral Ansätze

Chiral spin liquids break time-reversal symmetry and some
lattice symmetries modulo a global spin flip (action of time-
reversal symmetry) [24]. In the classical limit S −→ ∞ they
correspond to noncoplanar spin states [i.e., they have nonzero
scalar spin chirality 〈Ŝi · (Ŝ j × Ŝk )〉 �= 0]. To construct a chiral
Ansatz, we start by defining a parity εO for each symmetry
operator O ∈ χ in the lattice space group χ = Fd 3̄m. εO = 1
when an Ansatz respects the symmetry, and it is εO = −1
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when it only respects the Ansatz modulo a time reversal.
Let us define the subgroup χe of all lattice symmetries that
necessarily have even parity εO = 1 and the set of opera-
tors with undetermined parity as χo = (χ − χe). χe contains
at least all squares of symmetry operators T 2

1 , T 2
2 , T 2

3 , S2,

C6
2 = I2C2

3 = C−1
3 since their parities are εO = (±1)2 = 1.

We can translate the algebraic group relations [Eq. (B3)] into
equations for the parity to find more generators of χe. The
nontrivial equations are

εS2εT3 = 1, (24a)

εC3εTi = εTi+1εC3 . (24b)

Equation (24a) shows that T3 has even parity. Therefore,
Eq. (24b) implies that this is also true for T1 and T2. The
parities of C6 and S stay undetermined. This concludes the
analysis following Messio et al. [24]. We are, however, still
missing one generator of χe. In general, once generators of
even and undetermined parity are found by inspecting the
generators of the full symmetry group χ , we also have to
consider operators of the form O−1

o OeOo, where Oo ∈ χo and
Oe ∈ χe. This can be repeated until no new generators of χe

are found. With this approach, we can construct the symme-
try operator C′

3 := ISC3IS = S−1C3S, which has even parity
εC′

3
= ε2

Sε
2
I εC3 = 1. C′

3 is a 2π
3 rotation about the sz

3 axis on the
inverse tetrahedron. Since C′

3 cannot be written as a product
of the operators {T1, T2, T3,C3}, we have to add it to the set of
generators. IC3I = C3 gives no new generator, and therefore
χe is generated by {T1, T2, T3,C3,C′

3} while C6, S ∈ χo. The
algebraic relations of χe are

TiTi+1T −1
i T −1

i+1 = 1, (25a)

C3
3 = 1, (25b)

C′3
3 = 1, (25c)

(C3C
′
3)2 = 1, (25d)

C3TiC
−1
3 T −1

i+1 = 1, (25e)

C′
3T1(C′

3)−1T1T −1
2 = 1, (25f)

C′
3T2(C′

3)−1T1 = 1, (25g)

C′
3T3(C′

3)−1T1T −1
3 = 1, (25h)

where i = i + 3. The chiral algebraic PSG is then defined as
the algebraic PSG of χe. We solve the chiral algebraic PSG in
Appendix D. The phases are given by

φT1 [rμ] = 0, (26a)

φT2 [rμ] = n1πr1, (26b)

φT3 [rμ] = n1π (r1 + r2), (26c)

φC3 [rμ] = 2πξ

3
δμ,0 + n1π (r1r2 + r1r3), (26d)

φC′
3
[rμ] = −2πξ

3
δμ,3

+(2πξ

3
+ nC3C′

3
+ nC′

3T2

)
(−δμ,0 + δμ,2)π

+ r1πnC′
3T2 + r3π

r3 − 1

2
n1 + n1πr1r2

+ r2π

(
r2 − 1

2
n1 + nC′

3T2

)
, (26e)

where ξ ∈ {−1, 0, 1}, n1, nC3C′
3
, nC′

3T2 ∈ {0, 1}. n1 once again
determines the size of the unit cell.

The next step is to find all compatible Ansätze. Since ele-
ments of χe cannot map between main and inverse tetrahedra
but rather from one bond on one main tetrahedron to every
other bond on any main tetrahedron, we have two independent
bonds: one on a main and one on an inverse tetrahedron.
We choose the bonds 01 (00 −→ 01) and I01 (00 −→ 01 − a1).
We label the mean-field parameters (at

1, bt
1, ct

1, dt
1) on bond

01 and (at
2, bt

2, ct
2, dt

2) on bond I01 with t ∈ {h, p}. With
Eqs. (20) the mean-field parameters of all other bonds can be
calculated. The chiral Ansätze can break T , I , and S while
satisfying T I and T S. Therefore, the mean-field parame-

ters are complex numbers in general: ah
i −→ ah

i e
iφah

i , . . . , ap
i −→

ap
i e

−iφa
p
i , . . ., where ah

i , . . . , ap
i , . . . ∈ R. The different sign

convention of the phases comes from the fact that ah depends
on h∗

i j while ap depends on pi j . First we find all possible
Ansätze that respect the PSG of χe by mapping the bonds 01
and I01 onto themselves with S−1C3SC3 (note that this also
flips the bond). For the 01 bond, this results in(

ah
1, bh

1, ch
1, dh

1

) = ( − ah∗
1 , bh∗

1 , ch∗
1 , dh∗

1

)
e
−iπ ( 4ξ

3 +nC3C′
3
+nC′

3T2
)
,

(27)(
ap

1, bp
1, cp

1, d p
1

) = (
ap

1,−bp
1,−cp

1,−d p
1

)
e

iπ (nC3C′
3
+nC′

3T2
)
. (28)

For the I01 bond, this results in(
ah

2, bh
2, ch

2, dh
2

) = ( − ah∗
2 , bh∗

2 , ch∗
2 , dh∗

2

)
e
−iπ ( 4πξ

3 +nC3C′
3

)
, (29)(

ap
2, bp

2, cp
2, d p

2

) = (
ap

2,−bp
2,−cp

2,−d p
2

)
e

iπnC3C′
3 . (30)

Table II lists all allowed nearest-neighbor mean-field parame-
ters for Ansätze respecting the symmetries of χe.

To get to all chiral Ansätze, we have to impose rotoreflec-
tion and screw symmetry modulo time reversal. Therefore,
we have to fix the moduli of the mean-field parameters on
the bonds 01 and I01 to be the same such that ah

1 = ah
2 =

ah, . . . , ap
1 = ap

2 = ap, . . . . Notice that for nC′
3T2 = 1 this is

not possible for the pairing fields. Therefore, such Ansätze ei-
ther break C6 and S as well as T C6 and T S or have no pairing
field and therefore an accidental IGG of U(1). Either way, they
correspond to Ansätze that we do not want to consider, and we
set nC′

3T2 = 0 in the rest of this work. This means that ap cannot
appear in an Ansatz together with bp, cp, d p.

All further restrictions to the Ansätze can be found by
transformation of expectation values of gauge-invariant loop
operators [24]. For example, B̂i j B̂ jkB̂ki or Âi j B̂ jkÂ†

ki. These
are analogous to the Wilson loop operators in gauge theory.
The loop operators are directly related to products of spin
operators and therefore have a straightforward physical inter-
pretation. For example, the triple product of the spins at sites
i, j, k can be written using two of these loops:

Ŝi · (Ŝ j × Ŝk ) = −2i : (B̂i j B̂ jkB̂ki − B̂†
i j B̂

†
jkB̂†

ki ) : (31)

= 2i : (Âi j Â
†
jk B̂ki − Â†

i j Â jkB̂†
ki ) : . (32)
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TABLE II. All independent nonzero nearest-neighbor mean-field
parameters for the different PSG equivalence classes that respect the
symmetries of χe in the local spin basis. Parameters with index 1
and 2 are fixed on bond 00 −→ 01 and 00 −→ 01 − a1, respectively. All
parameters not mentioned in the table are forced to be 0. The An-
sätze are labeled by the parameters ξ ∈ {−1, 0, 1}, n1, nC3C′

3
, nC′

3T2
∈

{0, 1}.

n1 − (nC3C′
3
nC′

3T2
ξ ) NN

n1 − (00ξ ) ah
1, bh

1, ch
1, dh

1 , ap
1

ah
2, bh

2, ch
2, dh

2 , ap
2

n1 − (10ξ ) ah
1, bh

1, ch
1, dh

1 , bp
1, cp

1 , d p
1

ah
2, bh

2, ch
2, dh

2 , bp
2, cp

2 , d p
2

n1 − (01ξ ) ah
1, bh

1, ch
1, dh

1 , bp
1, cp

1 , d p
1

ah
2, bh

2, ch
2, dh

2 , ap
2

n1 − (11ξ ) ah
1, bh

1, ch
1, dh

1 , ap
1

ah
2, bh

2, ch
2, dh

2 , bp
2, cp

2 , d p
2

Constraints:

Re[ah
1e

i π
2 ( 4ξ

3 +nC3C′
3
+nC′

3T2
)
] = 0, Re[ah

2e
i π

2 ( 4ξ
3 +nC3C′

3
)
] = 0,

Im[bh
1e

i π
2 ( 4ξ

3 +nC3C′
3
+nC′

3T2
)
] = 0, Im[bh

2e
i π

2 ( 4ξ
3 +nC3C′

3
)
] = 0,

Im[ch
1e

i π
2 ( 4ξ

3 +nC3C′
3
+nC′

3T2
)
] = 0, Im[ch

2e
i π

2 ( 4ξ
3 +nC3C′

3
)
] = 0,

Im[dh
1 e

i π
2 ( 4ξ

3 +nC3C′
3
+nC′

3T2
)
] = 0, Im[dh

2 e
i π

2 ( 4ξ
3 +nC3C′

3
)
] = 0.

In SBMFT, the expectation values of loop operators can
be written as products of the mean fields: 〈B̂i j B̂ jkB̂ki〉 ≈
Bi jBi jBki. Using Eq. (31), we can directly see that Ansätze that
respect time-reversal symmetry, i.e., where the mean fields are
real, do not give rise to noncoplanar spin configurations.

The complex argument of the loops, called fluxes, boils
down to a sum of complex arguments of the mean-field pa-

rameters, e.g.,

arg(〈B̂i j B̂ jkB̂ki〉) = arg(Bi j ) + arg(B jk ) + arg(Bki ). (33)

Under the action of an operator Oo ∈ χo, Eq. (33) transforms
like

Ooarg(〈B̂i j B̂ jkB̂ki〉) = εOo

[
arg

(
BOo(i j)

)
+ arg

(
BOo( jk)

) + arg
(
BOo(ki)

)]
. (34)

The flux is invariant under Oo if εOo = 1 and the flux
changes its sign if εOo = −1. We can write down equa-
tions like Eq. (34) for all independent fluxes on the lattice
and then solve for the phases arg(Bi j ) = φBi j depending on
the parities of all elements in χ0. We choose to study the flux
transformations under action of inversion I = C6

3
and mirror

symmetry � = IS since the resulting phase equations have
a particularly nice form. The calculations are performed in
Appendix E. The solutions are presented in Table III.

The Ansätze can be grouped into four groups correspond-
ing to the parity of their underlying symmetries (ε�, εI ).
The 12 Ansätze with (ε�, εI ) = (1, 1) exactly reduce to
the 12 fully symmetric Ansätze that were characterized by
Liu et al. [25] once we impose time-reversal symmetry,
which constrains ch = 0. Comparison with the fully sym-
metric classification sheds light on why (1, εI )-n1-(1, p1)-(0)
support two families of Ansätze, one with nonzero cp and
one with nonzero bp and d p. Imposing � symmetry causes
(1, εI )-n1-(1, p1)-(0) to fractionalize into two new classes la-
beled by the Z2 parameter nSC6

. The fractionalized Ansätze
then fulfill the symmetry (�̃)2 = (−1)nSC6 . The same happens
for (1, εI )-n1-(0, p1)-(0). However, the corresponding Ansatz
families do not allow any nearest-neighbor pairing fields and
therefore do not correspond to nearest-neighbor Z2 spin liq-
uids in the same way as for the fully symmetric equivalence
classes n1-(00nC6

).

TABLE III. All independent nonzero nearest-neighbor mean-field parameters for all nearest-neighbor Z2 chiral PSG equivalence classes in
the local spin basis. Parameters with index 1 and 2 are fixed on bond 00 −→ 01 and 00 −→ 01 − a1, respectively. All nearest-neighbor parameters
not mentioned in the list are forced to be 0. The Ansätze are labeled by the PSG parameters ξ ∈ {−1, 0, 1}, n1, nC3C′

3
, p1 ∈ {0, 1}, and the

parities εI , ε� ∈ {−1, 1}.

(ε�, εI )-n1-(nC3C′
3
, p1)-(ξ ) NN Constraints:

(1, 1)-n1-(1, p1)-(0)y ah, ch, cp φah
1

= 0, φch
1

= π

2

(1, 1)-n1-(1, p1)-(0)xz ah, ch, bp, d p φah = 0, φch
1

= π

2

(1, 1)-n1-(0, p1)-(0) bh, dh, ap φbh
1

= φdh
1

= 0
(1, −1)-n1-(1, 0)-(0)y ah, ch, cp φah

1
= 0, φch

1
= π

2

(1, −1)-n1-(1, 0)-(0)xz ah, ch, bp, d p φah
1

= 0, φch
1

= π

2

(1, −1)-n1-(0, 0)-(0) bh, dh, ap φbh
1

= φdh
1

= 0

(−1, 1)-n1-(0, p1)-(ξ ) ah, bh, dh, ap φah
1

= π

2 + 2ξπ

3 , φbh
1

= φdh
1

= 2ξπ

3

(−1, 1)-n1-(1, p1)-(ξ ) ah, bh, dh, bp, cp, d p φah
1

= 2ξπ

3 , φbh
1

= φdh
1

= π

2 + 2ξπ

3 , φbp
1

= φd p
1

= φcp
1
− π

2

(−1, −1)-n1-(0, p1)-(0) ah, bh, dh, ap φah
1

= π

2 , φbh
1

= φdh
1

= 0
(−1, −1)-n1-(1, p1)-(0) ah, bh, dh, bp, cp, d p φah

1
= 0, φbh

1
= φdh

1
= π

2 , φbp
1

= φd p
1

= φcp
1
− π

2

General constraints:
φah

2
= εIφah

1
+ n1π φap

2
= εIφap

1
+ p1π

φbh
2

= εIφbh
1
+ n1π φbp

2
= εIφbp

1
+ p1π

φch
2

= εIφch
1
+ n1π φcp

2
= εIφcp

1
+ p1π

φdh
2

= εIφdh
1

+ n1π φd p
2

= εIφd p
1

+ p1π
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For εI = 1, we can identify the Z2 parameter p1 + n1

with nC6
by comparing with the fully symmetric Ansätze.

The Ansätze then fulfill (Ĩ )2 = (−1)p1+n1 . The Ansätze with
(ε�, εI ) = (−1,−1) fractionalize similarly upon imposing
screw symmetry S = I�. Only the Ansätze with (ε�, εI ) =
(1,−1) do not fractionalize in states labeled by p1. Instead,
they allow for continuously variable phases φap

1
, φbp

1
, φcp

1
, φd p

1
.

IV. CHOOSING ANSÄTZE

Now that we have characterized all symmetric and chiral
mean-field Ansätze, we have to choose meaningful Ansätze as
well as a suitable mean-field decoupling for the XXZ Hamilto-
nian (3). As mentioned previously, the mean-field decouplings
are ambiguous. We choose them in a way that preserves the
SU(2) spin rotation symmetry at the Heisenberg point:

H =
∑
〈i j〉

J⊥
(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

) + JzzŜ
z
i Ŝz

j

=
∑
〈i j〉

J⊥ + Jzz

2
ŜiŜj + �J

2
Ŝz

i Ŝz
j − �J

2

(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

)

=
∑
〈i j〉

J⊥ + Jzz

2
: B̂†

i j B̂i j : −J⊥Â†
i j Âi j

− �J

2

(
: t̂ h,x†

i j t̂ h,x
i j : + : t̂ h,y†

i j t̂ h,y
i j : − : t̂ h,z†

i j t̂ h,z
i j :

)
+

∑
i

λi(b
†
iαbiα − 2S). (35)

The mean-field decoupling is then defined by

Jh
i j = 1

2

⎛
⎜⎝

Jzz + J⊥
J⊥ − Jzz

J⊥ − Jzz

Jzz − J⊥

⎞
⎟⎠,

(36a)

J p
i j =

⎛
⎜⎝

−J⊥
0

0
0

⎞
⎟⎠, (36b)

Ci j = 0. (36c)

This particular decoupling allows the resulting spin-liquid
state to break the U(1) spin rotation symmetry by acquiring
different expectation values for t h,x and t h,y. This choice is
motivated by findings of Benton et al. [11], where a transition
from a U(1) symmetric to a nematic state is observed at the
Heisenberg point.

In the following sections, we solve the mean-field
equations for the Ansätze (1, 1)-n1-(0, p1)-(0) and
(−1, εI )-n1-(0, p1)-(ξ ). We choose them because they can
include SU(2) symmetric pairing fields Ai j that capture the
relevant physics at the antiferromagnetic Heisenberg point.

Ansätze (1, 1)-n1-(0, p1)-(0) are fully symmetric. There-
fore, they fulfill all lattice symmetries and correspond to
coplanar spin liquids.

Ansätze (−1,−1)-n1-(0, p1)-(0) are chiral and they break
T , I , and � but preserve T I and T �. Therefore, they also
respect screw symmetry. Every SU(2)-symmetric triangular

flux operator has an expectation value of ±π
2 . Therefore,

they have the same symmetry and flux structure as the
monopole flux and the ( π

2 , π ) state considered by Burnell
et al. [22]. For B = 0, the Ansätze reduce to the fully sym-
metric (1, 1)-n1-(0, p1)-(0).

Ansätze (−1, 1)-n1-(0, p1)-(0) are chiral and they break T
and � while preserving I and T �. Therefore, they also break
S modulo time reversal. Every SU(2)-symmetric triangular
flux has a value of π

2 . Therefore, they have a similar flux
structure to the monopole-antimonopole flux state [ π

2 ,−π
2 , 0]

considered by Kim et al. [23]. For B = 0, the Ansätze reduce
to the fully symmetric (1, 1)-n1-(0, p1)-(0).

Ansätze (−1, εI )-n1-(0, p1)-(ξ �= 0) are chiral and they
have the same symmetries as (−1, 1)-n1-(0, p1)-(0). Their
characteristic property is that the expectation value of every
rhombus flux operator has a value of ξ π

3 . This leads to the
identity [24]

S〈(Ŝ0 − Ŝ3) · (Ŝ1 × Ŝ2) + (Ŝ2 − Ŝ1) · (Ŝ3 × Ŝ0)〉

= 8A4 sin

(
ξ
π

3

)
, (37)

which implies nonzero scalar spin chirality also in the case
B = 0. The Ansätze for ξ = 1 and −1 can be mapped onto
each other by the action of T .

V. CALCULATION OF THE FREE ENERGY

Now that a mean-field decoupling and Ansätze are chosen,
we can apply the Fourier transform

brμ
=

√
NSL

N

∑
k

bk,μe−ikrμ (38)

to the Hamiltonian in Eq. (15) and bring it to the form

H = 1

2

∑
k

�̂
†
kH(k)�̂k + 3N f (h, p) − Nλ(2S + 1), (39)

where N is the number of atoms on the lattice, and H(k) has
the form

H(k) =
(

Hh(k) H p(k)
[H p(k)]† [Hh(−k)]T

)
+ λ14NSL . (40)

For (n1 = 1) n1 = 0, �̂k is a (64-) 16-component
spinor, and (NSL = 16) NSL = 4 is the number of sublat-
tices in the (enlarged) unit cell: �̂k = (ψ̂k, ψ̂

†
−k ) with ψ̂k =

(b̂k,1, b̂k,2, . . . , b̂k,NSL ). The explicit form of Hh and H p is
given in Appendix F. The Hamiltonian (39) can be diagonal-
ized by a Bogoliubov transform [30]. We therefore introduce
Bogoliubov transformation matrices V (k) such that

ψ̂k = V (k)�̂k, (41)

V (k)†τ 3V (k) = τ 3, (42)

V (k)†H(k)V (k) = �(k). (43)

Here �̂k = (γ̂k,1, . . . , γ̂k,2NSL , γ̂
†
−k,1, . . . γ̂

†
−k,2NSL

) is the Bo-
goliubov spinor, τ 3 = σ 3 ⊗ 12NSL , and �(k) is a diagonal
matrix where the first 2NSL entries ωi(k) (i ∈ {1, 2NSL})
and the last 2NSL entries are ωi(−k). They are the positive

125122-7



SCHNEIDER, HALIMEH, AND PUNK PHYSICAL REVIEW B 105, 125122 (2022)

TABLE IV. Self-consistent mean-field parameters. The values with an asterisk are determined self-consistently in the gapped spin-liquid
phase for the physical spin value of S = 0.5. All other values are set by symmetry of the particular Ansatz. “c” labels states that are condensed
at S = 0.5, i.e., they are magnetically ordered.

Ansatz A B t h,x t h,y t h,z 2λ/J⊥

( 1, 1)-0-(0, 0)-(0) 0.3901∗ 0 0∗ 0 0∗ 1.3593∗

( 1, 1)-0-(0, 1)-(0) 0.3931∗ 0 0∗ 0 0∗ 1.3880∗

( 1, 1)-1-(0, 0)-(0) 0.3895∗ 0 0∗ 0 0∗ 1.3466∗

( 1, 1)-1-(0, 1)-(0) 0.3933∗ 0 0∗ 0 0∗ 1.3910∗

(−1, −1) − 0 − (0, 0)-(0) 0.3901∗ 0∗ 0∗ 0 0∗ 1.3593∗

(−1, −1) − 0 − (0, 1)-(0) 0.3931∗ 0∗ 0∗ 0 0∗ 1.3880∗

(−1, −1) − 1 − (0, 0)-(0) 0.3895∗ 0∗ 0∗ 0 0∗ 1.3466∗

(−1, −1) − 1 − (0, 1)-(0) 0.3933∗ 0∗ 0∗ 0 0∗ 1.3910∗

(−1, 1)-0-(0, 0)-(0) 0.3901∗ 0∗ 0∗ 0 0∗ 1.3593∗

(−1, 1)-0-(0, 1)-(0) 0.3931∗ 0∗ 0∗ 0 0∗ 1.3880∗

(−1, 1)-1-(0, 0)-(0) 0.3895∗ 0∗ 0∗ 0 0∗ 1.3466∗

(−1, 1)-1-(0, 1)-(0) 0.3933∗ 0∗ 0∗ 0 0∗ 1.3910∗

(−1, 1)-0-(0, 0)-(±1) c c c c c c
(−1, 1)-0-(0, 1)-(±1) c c c c c c
(−1, 1)-1-(0, 0)-(±1) 0.4246∗ −0.1676∗ 0∗ 0 0∗ 1.3710∗

(−1, 1)-1-(0, 1)-(±1) 0.4265∗ −0.1684∗ 0∗ 0 0∗ 1.3538∗

and negative eigenvalues of the matrix τ 3H(k), respectively
[30]. Equation (42) ensures that the new bosonic operators
γ̂k,i preserve the bosonic commutation relations [γ̂k,iγ̂k′, j] =
0, [γ̂k,iγ̂

†
k′, j] = δi, jδk,k′ . Thus, we can write (39) as

H (k) =
∑

k

2NSL∑
i

ωi(k)γ̂ †
k,iγ̂k,i + 1

2

∑
k

2NSL∑
i

ωi(k)

+ 3N f (h, p) − Nλ(2S + 1). (44a)

The mean-field free energy per site is thus given by

fMF = 1

2VolB.Z.NSL

∫
B.Z.

dk3
2NSL∑

i

ωi(k)

+ 3 f (h, p) − λ(2S + 1). (45)

where we exchanged the sum by an integral in the thermody-
namic limit

∑
k −→ N

VolB.Z.NSL

∫
B.Z. dk3.

This reduces to

fMF = 3h†Jhh + 3p†Jpp + 3C, (46)

after solving the self-consistency equations.
As a final step, we find the correct values of the mean field

by solving the self-consistency equations (18). The solutions
are listed in Table IV.

Within numerical accuracy, the only bond operators that
acquire a nonzero expectation value are the SU(2) symmetric
Â and B̂. Therefore, all considered Ansätze reduce to SU(2)
symmetric states or are in a condensed phase at S = 0.5.
The Ansätze (1, 1)-n1-(0, p1)-(0) and (−1, εI )-n1-(0, p1)-(0)
describe the same four fully symmetric spin liquids as the
fully symmetric Ansätze (1, 1)-n1-(0, p1)-(0) since for them
B = 0. Only the saddle points of (−1, 1)-1-(0, 1)-(±1) and
(−1, 1)-1-(0, 0)-(±1) are chiral spin liquids. The resulting six
distinct spin-liquid states can solely be described by the fluxes
that are enclosed by the Â operators on the hexagonal, bow tie,
and rhombus loops: (φ�, φ��, φ�) = (p1, p1 + n1, 1 + 2ξ

3 )π .

We have found the SU(2) symmetry to be stable even
beyond the Heisenberg point. We have explicitly checked this
for coupling angles θ ∈ [0, π

2 ]. The normalized free energies
of the spin-liquid states can be found in Table V. The main
dependence of the free energy on θ comes from J⊥. While
the nonchiral state (π, 0, π ) has the lowest free energy in the
present decoupling [Eq. (36)], choosing a decoupling based
on ŜiŜ j = −2Â†

i j Âi j + S2 for all considered Ansätze results
in (π, 0,±π

3 ) being the lowest energy state [31]. Therefore,
inferences about the possible ground state have to be made
with care.

Also note that we have chosen a decoupling of the XXZ
Hamiltonian in Eqs. (36), which is expected to capture the rel-
evant physics in the vicinity of the antiferromagnetic Heisen-
berg point and selected corresponding Ansätze. However,
other mean-field decouplings and Ansätze with a focus on the
vicinity of the classical Ising limit J⊥ = 0 or the easy-plane
limit Jzz = 0 can lead to stable non-SU(2)-symmetric spin
liquids. Indeed, in a preliminary study of the fully symmetric
Ansätze we have found the Ansätze (1, 1)-n1-(1, p1)-(0)xz to
have nonzero t p,z in the vicinity of the Ising point. Here,
the Ansatz (1,1)-0-(1, 1)-(0)xz has the lowest energy. Ansätze
(1, 1)-n1-(1, p1)-(0)xz and (1, 1)-n1-(1, p1)-(0)y have nonzero
expectation values t p,x and t p,y in the vicinity of the easy-plane

TABLE V. Values of the A fields and the normalized free energy
per site fMF/J⊥ of the six spin liquid states.

(φ�, φ��, φ�) A B fMF/J⊥

(0, 0, π ) 0.3901 0 −0.4565
(π, π, π ) 0.3931 0 −0.4635
(0, π, π ) 0.3895 0 −0.4551
(π, 0, π ) 0.3933 0 −0.4641
(0, π,± π

3 ) 0.4246 −0.1676 −0.4564
(π, 0, ± π

3 ) 0.4265 −0.1684 −0.4607
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limit, respectively. At this point, Ansätze (1,1)-0-(1, 0)-(0)xz

and (1,1)-0-(1, 0)-(0)y have the lowest energy. These break
the U(1) spin rotation symmetry in accordance with the ne-
matic spin liquids found by Benton et al. [11]. However,
contrary to the nematic states of Benton et al., they preserve
the C3 lattice symmetry by construction. The energies of these
spin liquids at the mean-field level are highly dependent on the
choices of the mean-field decouplings. Therefore, the ambigu-
ity of choosing non-SU(2)-symmetric mean-field decouplings
described in Sec. II B prevents an appropriate comparison of
mean-field energies from different mean-field decouplings. A
generalization of the large-N Sp(N ) approach [32] together
with arguments from the symplectic N approach [29] to non-
SU(2)-symmetric Hamiltonians might shed some light on this
issue.

Finally, note that interactions beyond nearest neighbors
could in principle stabilize the chiral saddle points of
(−1, εI )-n1-(0, p1)-(0).

VI. SPIN STRUCTURE FACTORS

To compare the mean-field states to experiment and other
numerical studies of the XXZ model, we calculate the spin-
spin correlations on a local and global basis. The spin-spin
correlations in the local spin basis are given by the tensor

Sα,β (q) = 1

3N

∑
l, j

eiq(ri−r j )〈Ŝα
l · Ŝβ

j 〉. (47)

This can be expressed in terms of the components of the
Bogoliubov transformation matrix V (k),

Sα,β (q) = 1

3N

∑
k

Tr(V †
12(k)�αV11(k − q)

× [V †
21(k − q)(�β )TV22(k)

+V †
11(k − q)�βV12(k)]), (48)

where

V (k) =
(

V11(k) V12(k)
V21(k) V22(k)

)
, �γ = 1NSL ⊗ σγ . (49)

Since all our spin-liquid states turned out to be SU(2)-
symmetric, the only independent nonzero component of
Sα,β (q) is Sz,z(q). We plot Sz,z along the [h, h, l] plane in
Fig. 2.

The spin-spin correlation in the local spin basis S̃α,β (q)
can be calculated by using Eq. (48) and replacing �γ −→
U�γU † with

U = 1 NSL
4

⊗

⎛
⎜⎝

U0

U1

U2

U3

⎞
⎟⎠. (50)

Uμ are the SU(2) matrices that rotate from the global to the
local basis (see Appendix C).

Neutron scattering experiments do not directly measure
components of S̃α,β (q) but instead measure the neutron scat-
tering amplitude [12]:

STOT(q) =
(

δα,β − qαqβ

|q|2
)
S̃α,β (q). (51)

−4π 0 4π

−4π

0

4π
i)

ii)

[h,h,0]

[0
,0

,l
]

(a) (0, 0, π) Sz,z

−4π 0 4π

−4π

0

4π

[h,h,0]

[0
,0

,l
]

(b) (π, π, π) Sz,z

−4π 0 4π

−4π

0

4π

[h,h,0]

[0
,0

,l
]

(c) (0, π, π) Sz,z

−4π 0 4π

−4π

0

4π

[h,h,0]

[0
,0

,l
]

(d) (π, 0, π) Sz,z

−4π 0 4π

−4π

0

4π

[h,h,0]

[0
,0

,l
]

(e) (0, π,±π
3
) Sz,z

−4π 0 4π

−4π

0

4π

[h,h,0]

[0
,0

,l
]

(f) (π, 0,±π
3
) Sz,z

0 0.2 0.4 0.6 0.8 1

FIG. 2. The normalized spin-spin correlation in local spin basis
Sz,z(q) plotted along the [h, h, l] plane. The spin-liquid states are
labeled by the fluxes of the Â operators on the hexagonal, bow tie,
and rhombus loops: (φ�, φ��, φ�) = (p1, p1 + n1, 1 + 2k

3 )π . The
dashed and solid white lines in (a) indicate the momentum cuts
presented in Fig. 3.

Following Fennell et al. [33], we calculate the neutron
scattering amplitude along the [h, h, l] plane and split the
total scattering amplitude STOT(q) into a spin-flip (SF)
channel,

SSF(q) = (P × q)α (P × q)β

|q|2 S̃α,β (q), (52)

and a no-spin-flip (NSF) channel,

SNSF(q) = PαPβ S̃α,β (q), (53)
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−2π −π 0 π 2π

0.6

0.8

1

[h,h,4π]
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,z

(i) Pinch Points at q = (0,0,4π)

(0, 0, π)
(π, π, π)
(0, π, π)
(π, 0, π)
(0, π,±π

3 )
(π, 0,±π

3 )

−2π −π 0 π 2π

1

1.2

1.4

[h-2π,h-2π,h+2π]

Sz
,z

(ii) Pinch Points at q = (−2π,−2π,2π)

(0, 0, π)
(π, π, π)
(0, π, π)
(π, 0, π)
(0, π,±π

3 )
(π, 0,±π

3 )

FIG. 3. Cut through the pinch points of the spin-spin correlation
Sz,z(q) in the local spin basis at (i) q = (0, 0, 4π ) as indicated by
the solid line in Fig. 2(a) and (ii) q = (−2π,−2π, +2π ) as indicated
by the dashed line in Fig. 2(a). For better comparability, the plots are
normalized such that the pinch points have a magnitude of 1.

where P = 1√
2
(1,−1, 0) is the polarization vector of the neu-

trons. In the [h, h, l] plane, they fulfill STOT(q) = SSF(q) +
SNSF(q). Experimentally splitting up measurements into the
polarization channels is advantageous since the pinch points
that are characteristic for the spin ice phase are only visible in
the SF channel. When measuring STOT(q), the contributions
from the NSF channel smear out the features [33].

A. Correlation results

The spin-spin correlations in the local spin basis can
be seen in Fig. 2. Their main features are the broadened
pinch points at q = (0, 0,±4π ), q = (±2π,±2π,±2π ), and
symmetry-related points. In the case of the classical Heisen-
berg model, these pinch points have been argued to be caused
by the ice-rule: The sum of all spins on every tetrahedron has
to vanish [34–36]. The quantum fluctuations break this ice
rule, which results in smeared-out pinch points [19,20,37–41].
For the Heisenberg model on the pyrochlore lattice, two types
of pinch points have previously been reported. The spin-spin
correlation either has a maximum [18,38] or a saddle point
at the pinch points [19,41]. Plots of the spin correlations in
the vicinity of the pinch points for the six spin-liquid states
considered here can be found in Fig. 3. For the (0, π, π ),
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−16π −8π 0 8π 16π
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(e) (0, π,±π
3
) STOT
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−8π

0
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16π

[h,h,0]

[0
,0

,l
]
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3
) STOT

0 0.2 0.4 0.6 0.8 1

FIG. 4. The normalized total neutron scattering amplitude
STOT(q) plotted along the [h, h, l] plane. The spin-liquid states are
labeled by the fluxes of the Â operators on the hexagonal, bow tie,
and rhombus loops: (φ�, φ��, φ�) = (p1, p1 + n1, 1 + 2k

3 )π .

(π, 0, π ), (π, 0,±π
3 ), and (0, π,±π

3 ) state, the Sz,z correlator
has a saddle point, while for the (0, 0, π ) and (π, π, π ) state,
the Sz,z correlator has a maximum at the pinch points.

For Sz,z the state (π, 0, π ) shows good qualitative agree-
ment with previous theoretical work using pseudo fermion
functional renormalization group (PFFRG) studies [20,41,42]
and exact diagonalization of small clusters [19] of the
Heisenberg and XXZ model. The state (0, 0, π ) shows good
qualitative agreement with a PFFRG result on the J1-J2 model
for antiferromagnetic J2 [20].

The results for STOT as well as the SF and NSF channel
can be seen in Figs. 4, 5, and 6, respectively. Our results
can be compared to the PFFRG results of Ritter [42] and
the classical Monte Carlo result of Taillefumier et al. [12].
We should emphasize that Ritter’s results are for a coupling
angle of θ = 20◦. The resulting PFFRG ground state only
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FIG. 5. The normalized spin-flip channel of the neutron scatter-
ing amplitude SSF(q) plotted along the [h, h, l] plane. The spin-liquid
states are labeled by the fluxes of the Â operators on the hexago-
nal, bow tie, and rhombus loops: (φ�, φ��, φ�) = (p1, p1 + n1, 1 +
2k
3 )π .

slightly breaks SU(2) symmetry, and the neutron scattering
amplitudes show the same features as the mean-field results
presented here. This observation matches with the stability of
the SU(2) symmetric mean-field states beyond the Heisenberg
point which we have found in our analysis.

Since most numerical methods rule out time-reversal
symmetry-breaking states by construction, we are not aware
of numerical data to compare our results for the chiral
(π, 0,±π

3 ), (0, π,±π
3 ) states.

VII. CONCLUSIONS

Using a PSG approach, we classified all fully symmetric
and chiral Z2 Schwinger boson mean-field Ansätze on the
pyrochlore lattice. We went beyond the formalism of Messio
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FIG. 6. The normalized no-spin-flip channel of the neutron scat-
tering amplitude SNSF(q) plotted along the [h, h, l] plane. The
spin-liquid states are labeled by the fluxes of the Â operators on the
hexagonal, bow tie, and rhombus loops: (φ�, φ��, φ�) = (p1, p1 +
n1, 1 + 2k

3 )π .

et al. [24] by including triplet fields into our chiral PSG analy-
sis. Furthermore, we computed the ground-state energy for 16
chiral and four fully symmetric Ansätze within a mean-field
approximation for the XXZ model near the Heisenberg point.
Remarkably, all of the Ansätze where bosonic spinons do not
condense reduce to six SU(2) symmetric spin-liquid states,
regardless of the coupling angle θ . The four states (0, 0, π ),
(π, π, π ), (0, π, π ), and (π, 0, π ) can be described by the
fully symmetric Ansätze previously characterized by Liu et al.
[25]. Depending on the decoupling, we identified two lowest-
energy states near the Heisenberg point: the fully symmetric
spin-liquid state (π, 0, π ) and the chiral spin-liquid state
(π, 0,±π

3 ). The former has previously been described by Liu
et al. [25] while the latter is new. Its characteristic feature is
a ±π

3 flux that is enclosed by the Âi j operators on rhombus
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loops of length four and differs from previously studied chiral
states featuring a flux of π/2 through triangular loops [22,23].
It breaks time-reversal symmetry T , mirror symmetry �, and
a screw symmetry S, while it is symmetric under T � and T S.

It is important to note, however, that our analysis of the
XXZ Heisenberg model is based on decoupling of the Hamil-
tonian, which is expected to work well only in the vicinity
of the SU(2) symmetric Heisenberg point. Since the form
of the decoupling is ambiguous, different decouplings will
favor non-SU(2)-symmetric spin liquids that might result in
different ground states in the vicinity of the classical Ising
limit θ = 0, as well as in the easy-plane limit θ = π/2, for
example. Indeed, within a preliminary analysis of the fully
symmetric Ansätze, we find a U(1) symmetric ground state
close to the classical limit and a U(1) symmetry-breaking
Ansatz as ground state close to the easy-plane limit, in accor-
dance with the results of Benton et al. [11].

Moreover, we computed spin-spin correlations as well as
neutron scattering amplitudes and compared them to pre-
viously published work. Our new chiral states (π, 0,±π

3 ),
(0, π,±π

3 ) may be further explored by calculating the dynam-
ical structure factor, where time-reversal symmetry breaking
can be explicitly seen. It might also be worthwhile to further
study the Ansätze (−1, 1)-0-(0, 0)-(1), (−1, 1)-0-(0, 1)-(1),
where the spinons condense and give rise to magnetic order.

While Ansätze (−1, εI )-n1-(0, p1)-(0) have similar flux
structures to the chiral states considered by Burnell et al.
[22] and Kim et al. [23], the saddle points for these
states that we found in our mean-field analysis give rise to
fully symmetric spin liquids. Here, further neighbor inter-
actions might stabilize the chirality. Finally, in the present
study we have not solved the mean-field equation for the
Ansätze(1,−1)-n1-(0, 0)-(0), which allow a continuous flux
2φA1 that is enclosed by the Âi j operators on bow-tie loops. It
remains to be seen if their mean-field saddle points describe
nonchiral, fully symmetric states, or if φA1 acquires a nontriv-
ial value, giving rise to a different chiral spin liquid.
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APPENDIX A: LOCAL SPIN BASIS VECTORS

The local spin basis vectors first introduced in Eq. (2) are
[43]

sz
μ = 1√

3
(1, 1, 1) − 4√

3
aμ, sy

μ = sz
μ × sx

μ,

sx
0 = 1√

6
(−2, 1, 1), sx

1 = 1√
6

(−2,−1,−1),

sx
2 = 1√

6
(2, 1,−1), sx

3 = 1√
6

(2,−1, 1). (A1)

APPENDIX B: TRANSFORMATION OF SUBLATTICE
COORDINATES AND LOCAL SPIN BASIS

The space-group generators transform the different coordi-
nates as follows:

Tirμ = (r1 + δi,1, r2 + δi,2, r3 + δi,3)μ, (B1a)

C6rμ = −(r3 + δμ,3, r1 + δμ,1, r2 + δμ,2)
π123(μ), (B1b)

Srμ = (−r1 − δμ,1,−r2 − δμ,2

r1 + r2 + r3 + 1 − δμ,0)π03(μ), (B1c)

Irμ = (−r1 − δμ,1,−r2 − δμ,2,−r3 − δμ,3)μ, (B1d)

�rμ = (r1, r2,−r1 − r2 − r3)π03(μ), (B1e)

C3rμ = (r3, r1, r2)π123(μ), (B1f)

C′
3rμ = (1 − r1 − r2 − r3, r1, r3)π012(μ), (B1g)

T rμ = rμ, (B1h)

where π123(μ) and π03(μ) cyclically permute sites 1,2,3 and
0,3, respectively. The local spins transform like

TiSμ = (Sx, Sy, Sz )μ, (B2a)

C6Sμ =
(

− Sx

2
−

√
3Sy

2
,

√
3Sx

2
− Sy

2
, Sz

)
π123(μ)

, (B2b)

SSμ = −
(

− Sx

2
+

√
3Sy

2
,

√
3Sx

2
+ Sy

2
, Sz

)
π03(μ)

, (B2c)

ISμ = Sμ, (B2d)

T Sμ = (−Sx,−Sy,−Sz )μ. (B2e)

The symmetry-group generators fulfill the following alge-
braic group relations:

TiTi+1T −1
i T −1

i+1 = 1, (B3a)

C6
6 = 1, (B3b)

S2T −1
3 = 1, (B3c)

C6TiC6
−1

Ti+1 = 1, (B3d)

STiS
−1T −1

3 Ti = 1, i ∈ {1, 2}, (B3e)

ST3S−1T −1
3 = 1, (B3f)

(C6S)4 = 1, (B3g)

(C6
3
S)2 = 1, (B3h)

T 2 = −1, (B3i)

T OT −1O−1 = 1, (B3j)

where i = 1, 2, 3 and i + 3 = i. O is a placeholder for an
arbitrary space-group generator: O ∈ {T1, T2, T3,C6, S}.

APPENDIX C: SU(2) MATRICES

The SU(2) matrices UO associated with the symmetry op-
erations that appear in Eq. (20) are

UTi = σ0, (C1)
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UC6
= UC3 = e− i

2
2π
3 (0,0,1)σ , (C2)

US,μ = (−1)1−δμ,1 e− i
2

2π
2 ( −√

3
2 , 1

2 ,0)σ . (C3)

The matrix for the screw operation depends on which sublat-
tice it acts upon. Spins on sublattice 1 are rotated the other way
around than spins on sublattice 2. Spins on sublattices 0 and 3
are rotated and then projected onto the local spin basis of the
other sublattice. This results in an effective π rotation about
the ( −√

3
2 , 1

2 , 0) axis. The sign of the effective rotation can
be chosen freely, and different signs correspond to different
gauges. Here we chose the signs of rotation to be equal on
sublattice 0,2,3.

The SU(2) matrices Uμ that transform from global to local
basis on sublattice μ [see Eq. (22)] are given by

U0 =
⎛
⎝ 1√

3−√
3
ei 2π11

48
1√

3+√
3
ei 2π5

48

1√
3+√

3
ei 2π19

48
1√

3−√
3
e−i 2π11

48

⎞
⎠, (C4a)

U1 =
⎛
⎝ 1√

3+√
3
e−i 2π7

48
1√

3−√
3
e−i 2π

48

1√
3−√

3
e−i 2π23

48
1√

3+√
3
ei 2π7

48

⎞
⎠, (C4b)

U2 =
⎛
⎝ 1√

3+√
3
ei 2π5

48
1√

3−√
3
e−i 2π13

48

1√
3−√

3
e−i 2π11

48
1√

3+√
3
e−i 2π5

48

⎞
⎠, (C4c)

U3 =
⎛
⎝ 1√

3−√
3
e−i 2π

48
1√

3+√
3
ei 2π17

48

1√
3+√

3
ei 2π7

48
1√

3−√
3
ei 2π

48

⎞
⎠. (C4d)

APPENDIX D: SOLUTION OF THE CHIRAL ALGEBRAIC
PSG

The symmetry-enriched algebraic relations of χe are

(GTi Ti )(GTi+1 Ti+1)(GTi Ti )
−1(GTi+1 Ti+1)−1 ∈ Z2, (D1a)(

GC3C3
)3 ∈ Z2, (D1b)(

GC′
3
C′

3

)3 ∈ Z2, (D1c)(
GC3C3

)(
GC′

3
C′

3

)(
GC3C3

)(
GC′

3
C′

3

) ∈ Z2, (D1d)(
GC3C3

)(
GTi Ti

)(
GC3C3

)−1(
GTi+1 Ti+1

)−1 ∈ Z2, (D1e)(
GC′

3
C′

3

)(
GT1 T1

)(
GC′

3
C′

3

)−1(
GT2 T2

)−1(
GT1 T1

) ∈ Z2, (D1f)(
GC′

3
C′

3

)(
GT2 T2

)(
GC′

3
C′

3

)−1(
GT1 T1

) ∈ Z2, (D1g)(
GC′

3
C′

3

)(
GT3 T3

)(
GC′

3
C′

3

)−1(
GT3 T3

)−1(
GT1 T1

) ∈ Z2. (D1h)

These can be rewritten into the following phase equations:

φTi [rμ] + φTi+1

[
T −1

i (rμ)
] − φTi

[
T −1

i+1 (rμ)
] − φTi+1 [rμ] = πni, (D2a)

φC3 [rμ] + φC′
3

[
(C3)−1(rμ)

] + φC3 [(C3C
′
3)−1(rμ)] + φC′

3
[C′

3(rμ)] = πnC3,C′
3
, (D2b)

φC3 [rμ] + φC3

[
C−1

3 (rμ)
] + φC3

[
C−2

3 (rμ)
] = πnC3 , (D2c)

φC′
3
[rμ] + φC′

3
[(C′

3)−1(rμ)] + φC′
3
[(C′

3)−2(rμ)] = πnC′
3
, (D2d)

φC3 [rμ] + φTi

[
C−1

3 (rμ)
] − φC3

[
T −1

i+1 (rμ)
] − φTi+1 [rμ] = πnC3Ti , (D2e)

φC′
3
[rμ] + φT1 [(C′

3)−1(rμ)] − φC′
3

[
T −1

1 T2(rμ)
] − φT2

[
T −1

1 (rμ)
] + φT1 [T1(rμ)] = πnC′

3T1 , (D2f)

φC′
3
[rμ] + φT2 [(C′

3)−1(rμ)] − φC′
3

[
T −1

1 (rμ)
] + φT1 [T1(rμ)] = πnC′

3T2 , (D2g)

φC′
3
[rμ] + φT3 [(C′

3)−1(rμ)] − φC′
3

[
T −1

1 T3(rμ)
] − φT3

[
T −1

1 (rμ)
] + φT1 [T1(rμ)] = πnC′

3T3 , (D2h)

where nX ∈ {0, 1}.
Our goal is to find all phases φO[rμ] as functions of rμ and

nX . However, a general gauge transformation G [see Eq. (6)]
changes the phases given by the PSG phase equations like [25]

φO[rμ] −→ φG[rμ] + φO[rμ] − φG[O−1(rμ)]. (D3)

To ultimately get an unambiguous result, we have to fix the
gauge in the process of solving the phase equations. Since we
have four fcc sublattices, we have the freedom to choose 16
independent local gauges, 4 for every direction r1, r2, r3 and a
constant one for every sublattice μ = 0, 1, 2, 3:

G1 : φG1 [rμ] = nG1,μπr1, (D4a)

G2 : φG1 [rμ] = nG2,μπr2, (D4b)

G3 : φG1 [rμ] = nG3,μπr3, (D4c)

G4 : φG1 [rμ] = φμ. (D4d)

Due to IGG = Z2, we are also free to add a site-
independent Z2 phase to any of our five phases φO[rμ]
[27]. That makes 16 local gauge and 5 IGG choices in to-
tal. With the first 12 gauge choices [Eqs. (D4a)–(D4c)] we
can fix the phases associated with the translation operators
to φT1 [(r1, r2, r3)μ] = φT2 [(0, r2, r3)μ] = φT3 [(0, 0, r3)μ] = 0.
Note that this can only be satisfied for open boundary condi-
tions (Ref. [27], Appendix A).

Using this choice, Eq. (D2a) is solved by

φT1 [rμ] = 0, (D5)

φT2 [rμ] = n1πr1, (D6)

φT3 [rμ] = n3πr1 + n2πr2. (D7)
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Writing out Eq. (D2e), we get

φC3 [rμ] − φC3 [(r1, r2 + 1, r3)μ] (D8a)

= (nC3T1 + n1r1)π,

φC3 [rμ] − φC3 [(r1, r2, r3 + 1)μ]

= (nC3T2 + n3r1 + n2r2 + n1r2)π, (D8b)

φC3 [rμ] − φC3 [(r1 + 1, r2, r3)μ]

= (nC3T3 + n3r2 + n2r3)π. (D8c)

This is solved by

φC3 [rμ] = f1(r1, r3) − r2(nC3T1π + n1πr1), (D9a)

φC3 [rμ] = f2(r1, r2) (D9b)

−r3(nC3T2π + n3πr1 − n2πr2 − n1πr2),

φC3 [rμ] = f3(r2, r3) − r1(nC3T3π + n3πr2 − n2πr3), (D9c)

where fC3 (r1, r3) is some function of r1 and r3. Since
the function f1(r1, r3) in (D9a) cannot include any terms
that feature r2, it cannot include terms like r1r2n3π

that have to appear in φC3 [rμ] due to (D9c). To fulfill
Eqs. (D9a)–(D9c) we have to infer a relationship be-
tween n1, n2, n3. With n1 = n2 = n3 we have the following
solution:

φC3 [rμ] = φC3 [0μ] − n1π (r1r2 + r1r3)

− (r1nC3T3 + r2nC3T1 + r3nC3T2 )π. (D10)

Plugging Eq. (D10) into (D2c) gives

φC3 [rμ] + φT1 [(r2, r3, r1)π321(μ)] + φT1 [(r3, r1, r2)π123(μ)]

= φC3 [0μ] + φC3 [0π123(μ)] + φC3 [0π321(μ)] +
∑
i, j

rinC3Tj π

= nC3π, (D11)

which constrains
∑

j nC3Tj = 0. π123(μ) permutes μ in the
cycle (123).

Writing out Eqs. (D2f)–(D2h), we get

φC′
3
[rμ] − φC′

3
[(r1 − 1, r2 + 1, r3)μ] (D12a)

= nC′
3T1π + n1π (r1 + 1),

φC′
3
[rμ] − φC′

3
[(r1 − 1, r2, r3)μ] (D12b)

= nC′
3T2π + n1πr2,

φC′
3
[rμ] − φC′

3
[(r1 − 1, r2, r3 + 1)μ]

= nC′
3T3π + n1π (r2 + r3). (D12c)

From Eq. (D12b) we can infer that

φC′
3
[rμ] = fC′

3
(r2, r3) + n1πr1r2 + nC′

3T2πr1, (D13)

where fC′
3
(r2, r3) is some function of r2 and r3. Using this and

Eq. (D12c), we get

φC′
3
[rμ] = fC′

3
(r2) + n1πr1r2 + nC′

3T2πr1

+ r3π

(
r3 − 1

2
n1 + nC′

3T2 + nC′
3T3

)
. (D14)

Plugging this into Eq. (D12a) finally gives

φC′
3
[rμ] = φC′

3
[0μ] + r1πnC′

3T2 + n1πr1r2

+ r3π

(
r3 − 1

2
n1 + nC′

3T2 + nC′
3T3

)

+ r2π

(
r2 − 1

2
n1 + nC′

3T2 + nC′
3T1

)
. (D15)

Inserting Eq. (D15) into Eq. (D2d) gives

φC′
3
[0μ] + φC′

3
[0π021(μ)] + φC′

3
[0π120(μ)]

+r3π
(
nC′

3T1 + nC′
3T2 + nC′

3T3

)
= (

nC′
3
+ nC′

3T1 + n1
)
π,

which gives two constraints,

nC′
3T1 + nC′

3T2 + nC′
3T3 = 0, (D16)

φC′
3
[0μ] + φC′

3

[
0π021(μ)

] + φC′
3

[
0π120(μ)

]
= (nC′

3T1 + n1 + nC′
3
)π. (D17)

The last phase Eq. (D2b) is then

φC3 [0μ] + φC′
3
[0π132(μ)] + φC3 [0π(20)(13) (μ)] + φC′

3
[0π120(μ)]

= (nC3C′
3
+ nC′

3T2 + nC3T1 )π. (D18)

π(20)(13)(μ) permutes μ in the cycles (20) and (13). Since
Eqs. (D1b), (D1c), (D1e), and (D1f) have operators that ap-
pear an odd number of times, we can use our 5 IGG choices
of T1, T2, T3,C3,C′

3 to set nC′
3T1 = nC3T2 = nC3T3 = nC3 = 0 and

nC′
3
= n1. Using

∑
j nC3Tj = 0 also implies nC3T1 = 0.

As a last step, we find φC3 [0μ] and φC′
3
[0μ]. We have the

four constant sublattice gauge choices left [Eq. (D4d)]. By
fixing the IGG choices, Eqs. (D11) and (D17) are reduced to

3φC3 [00] = 0, (D19a)

φC3 [01] + φC3 [02] + φC3 [03] = 0, (D19b)

3φC′
3
[03] = 0, (D19c)

φC′
3
[01] + φC′

3
[02] + φC′

3
[00] = 0. (D19d)

The form of Eqs. (D19) is invariant under gauge trans-
formations. That is why we can fix the constant gauge on
sublattices 0,1,2,3 to set φC3 [02] = φC3 [03] = 0 as well as
φC′

3
[01] = 0. Equations (D19) and (D17) then also imply

φC3 [01] = 0 and φC′
3
[02] = −φC′

3
[00]. Equation (D18) then re-

duces to

φC3 [00] − φC′
3
[02] = (

nC′
3T2 + nC3C′

3

)
π, (D20)

φC′
3
[02] + φC′

3
[03] = (

nC′
3T2 + nC3C′

3

)
π. (D21)

Therefore, φC3 [00] = −φC′
3
[03] = 2πξ

3 , where ξ ∈ {−1, 0, 1}
and φC′

3
[02] = φC3 [00] + (nC′

3T2 + nC3C′
3
)π .

The final solution is then

φT1 [rμ] = 0, (D22a)

φT2 [rμ] = n1πr1, (D22b)

φT3 [rμ] = n1π (r1 + r2), (D22c)
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φC3 [rμ] = 2πξ

3
δμ,0 + n1π (r1r2 + r1r3), (D22d)

φC′
3
[rμ] = −2πξ

3
δμ,3 + r2π

(
r2 − 1

2
n1 + nC′

3T2

)

+r1πnC′
3T2 + r3π

r3 − 1

2
n1 + n1πr1r2

+
(

2πξ

3
+ nC3C′

3
+ nC′

3T2

)
(−δμ,0 + δμ2)π,

(D22e)

where ξ ∈ {−1, 0, 1} and n1, nC3C′
3
, nC′

3T2 ∈ {0, 1}.

APPENDIX E: CLASSIFICATION OF CHIRAL ANSÄTZE

We use the short notation B0μ0μ
= Bμν for bonds on the

main tetrahedron and BI (0μ )I (0μ ) = BIμν for bonds on the in-
verse tetrahedron.

As described by Messio et al. [24], we can classify all pos-
sible Ansätze by looking at the transformation of the minimal
set of linearly independent fluxes under elements in χo. All
elements of χo can be written as compositions of I , �, and
elements of χe. The elements of χe leave the fluxes invari-
ant, so we only have to consider the action of I , � on the
fluxes. It is equally valid to consider the actions of C6 and
S on the fluxes, but the calculations are a bit more involved.
Since C6 = IC3 and � = SC6

3
, their parities are related like

εI = εC6
and ε� = εC6

εS .
Fluxes are independent if they cannot be mapped onto each

other by symmetry operations in χe and cannot be created by
adding other independent fluxes. The number of independent
fluxes depends on the number of present mean-field parame-
ters as well.

To find out how many independent fluxes there are, we start
with how many independent loops of even and odd length
there are in the pyrochlore lattice independent of possible
bond variables.

(i) Trivial loop (loop size = 2): There are two independent
bonds, one on the main and one on the inverse tetrahedron.
The trivial loop is going back and forth along a bond.

(ii) Triangle (loop size = 3): There are eight triangles in the
pyrochlore unit cell. There are two sets of three triangles that
can be mapped onto each other by C3 which leaves us with
two triangle loops on the inverse and main tetrahedron. These
can be mapped onto each other by C′

3 rotation and translation.
In total, we therefore have two independent triangle loops.

(iii) Rhombus (loop size = 4): There are six rhombi in the
pyrochlore unit cell, three on each tetrahedron. All rhombi on
a tetrahedron can be mapped onto each other by C3, which
leaves us with two independent rhombi.

(iv) Bow tie (loop size = 6): There are 12 bow ties and
24 “bent” bow ties in the unit cells (0,0,0) and the three main
tetrahedra of the cells (0, 0,−1), (0,−1, 0), (−1, 0, 0): 9 per
two adjacent tetrahedra. By C3 mapping we can reduce the
number to 12: 3 in the tetrahedra of (0,0,0) and 9 in the tetra-
hedra of, e.g., (0,0,0) and (−1, 0, 0). We can further reduce
the number by realizing that if we add a rhombus to a bow
tie, we get a bent bow tie. This reduces the number of loops

FIG. 7. Transformations of the triangle, rhombus and bow-tie
loops under I and � symmetry. T0 labels the tetrahedra of the (0,0,0)
unit cell, T −1

3 labels the tetrahedra of the (0, 0, −1) unit cell.

to 12
6 = 2. These can finally be mapped onto each other by C′

3
rotation, which leaves one independent bow tie flux.

(v) Hexagon (loop size = 6): Four unit cells always enclose
a hexagon. There are four different hexagons that cannot be
mapped onto each other by translations. By C3 symmetry we
can reduce this to two, and by C′

3 symmetry to one indepen-
dent hexagon.

(vi) Bigger loops (loop size > 6): All loops with size larger
than 6 can be created by adding loops of smaller size and
therefore do not add to the linearly independent loops.

The trivial, triangle, and rhombus loops on the main tetra-
hedron can be mapped to the same loops on the inverse
tetrahedron by I . From the algebraic relations we can see that
�I = S2I�. So � and I commute modulo S−2 ∈ χe, which
leaves fluxes invariant. Therefore, transformation of trivial,
triangle, and rhombus fluxes on the main and inverse tetra-
hedra give the same constraints. We therefore only consider
them on the inverse tetrahedron.

Transformation of hexagonal loops gives the same con-
straints as the bow ties. We therefore do not consider the
hexagonal fluxes here explicitly. Figure 7 shows how all inde-
pendent loops transform under � and I . When we now specify
fluxes by adding bond operators, we can transform these loop
diagrams into equations. Fluxes can in principle consist of
one, two, or many different types of bond operators. For
example, arg(B12B23B31), arg(A12Bh,z

23 A∗
31), arg(B12t h,x

23 t h,z
31 ).

We only have to consider fluxes with one or two fields. Fluxes
with three or more fields can be constructed from these.
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TABLE VI. The signs that fields pick up when being transformed
under �. Note that singlet (s) and y′-triplet fields pick up the same
signs.

Bonds s x′ y′ z

01 −→ 31 − + − +
02 −→ 32 + − + −
03 −→ 30 + − + −
12 −→ 12 − + − +
23 −→ 20 + − + −
31 −→ 01 − + − +

Before we can start turning the diagrams into equations, we
have to define our bond fields. Since there are two independent
bonds, we have two independent phases for each field.

We fix these as B01 = Be−iφB1 , A01 = Ae−iφA1 (on the main
tetrahedron) and BI01 = Be−iφB2 , AI01 = Ae−iφA2 (on the in-
verse tetrahedron) and equivalently for t h,z

i j and t p,z
i j .

Transformation of x and y triplet operators is not as trivial
because symmetry operations change the direction. For exam-
ple,

C3(C3(t̂ x
01)) = C3

(
− 1

2
t̂ x
02 +

√
3

2
t̂ y
02

)
= −1

2
t̂ x
0,3 −

√
3

2
t̂ y
03,

(E1a)

C3(C3(t̂ y
01)) = C3

(
−

√
3

2
t̂ x
02 − 1

2
t̂ y
02

)
=

√
3

2
t̂ x
03 − 1

2
t̂ y
03.

(E1b)

We define new operators with easier transformation prop-
erties:

t̂ h,x′
03 := C3

(
t̂ h,x′
0,2

)
:= C3

(
C3(t̂ h,x′

0,1 )
)

:= C3
(
C3

(
t̂ h,x
0,1

))
, (E2a)

t h,x′
1,2 := C3

(
t̂ h,x′
3,1

)
:= C3

(
C3

(
t̂ h,x′
2,3

))
:= C3

(
C3

(
t̂ h,x
2,3

))
, (E2b)

and equivalently for the bonds on the inverse tetrahedron, the
pairing triplet operators, and the y-triplet fields. The oper-
ators t̂ h,x′

i j and t̂ h,y′
i j are linearly independent on every bond.

We fix their expectation values as t p,x′
01 = t p,xe

−iφt
p,x
1 , t p,x′

I01 =
t p,xe

−iφt
p,x
2 , t p,y′

01 = t p,ye
−iφt

p,y
1 , t p,y′

I01 = t p,ye
−iφt

p,y
2 , and equiva-

lently for the hopping triplet fields.
The operators transform as

B̂ ji = B̂†
i j, t̂ h,γ

ji = −(
t̂ h,γ
i j

)†
, Â ji = −Âi j, t̂ p,γ

ji = t̂ p,γ
i j .

(E3)

To keep calculations short, we use the superscript γ ∈
{x′, y′, z} to label the triplet operators. Also note that the triplet
x′ and z operators pick up an extra π phase when acted upon
by � compared to the singlet and triplet y operators. This is
not due to a gauge transformation added to the screw operation
but solely due to the spin rotation (see Table VI).

In the following subsections, we consider all one- and
two-operator fluxes and translate their transformation behav-
ior into constraints for the phases φOi . The solutions to the
equations can be found in Table III.

1. Fluxes with Bi j fields

Hopping operators can be written in gauge-invariant loops
of odd size. For Bi j fields, the only independent loops we have
to consider are the triangles [Fig. 7(a)],

arg(BI01BI12BI20). (E4)

If we use the transformation property B ji = B∗
i j [see Eq. (E3)]

we can turn Fig. 7(a) into equations for the phases:

φB2 + 4ξπ

3
+ n1π = εI

(
φB1 + 4ξπ

3

)
, (E5a)

φB2 + 4ξπ

3
= 3ε�φB2 . (E5b)

2. Fluxes with Ai j fields

Pairing operators can only be written in gauge-invariant
loops of even length, where A and A∗ alternate. Therefore, we
have to consider the rhombus and bow-tie loops of Figs. 7(b)
and 7(c),

arg(AI01A∗
I12AI23A∗

I30), (E6a)

arg(AI01A∗
I12AI20A∗

01A12A∗
20). (E6b)

The rhombus fluxes give constraints for the PSG parameter
ξ :

4ξπ

3
= εI

4ξπ

3
, (E7a)

4ξπ

3
= ε�

2ξπ

3
. (E7b)

Therefore, ξ �= 0 only if εI = −ε� = 1.
The bow-tie loops give constraints for the phases,(

φA1 − φA2

) = εI
(
φA2 − φA1

)
, (E8a)(

φA1 − φA2

) = ε�

(
φA1 − φA2

)
. (E8b)

3. Fluxes with th,γ

i j fields

As for the Bi j fields, we only have to consider triangle flux:

arg
(
t h,γ

I01 t h,γ

I12 t h,γ

I20

)
. (E9)

Using t h,γ

ji = −t h,γ ∗
i j , we get the phase equations

φt h,γ

2
+ 4ξπ

3
+ n1π = εI

(
φt h,γ

1
+ 4ξπ

3

)
, (E10a)

φt h,γ

2
+ 4ξπ

3
= 3ε�φt h,γ

2
+ δγ ,y′π. (E10b)

The term δγ ,y′π comes from the spin rotation part of �.

4. Fluxes with t p,γ
i, j fields

Since t p are pairing fields, we have to consider the even
rhombi and bow-tie loops,

arg
(
t p,γ
I01 t p,γ ∗

I12 t p,γ
I23 t p,γ ∗

I30

)
, (E11a)

arg
(
t p,γ
I01 t p,γ ∗

I12 t p,γ
I20 t p,γ ∗

01 t p,γ
12 t p,γ ∗

20

)
. (E11b)
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The rhombus fluxes give the same constraints [ξ �= 0 only
if (εI , ε� ) = (1,−1)] as Eq. (E7). The bow-tie fluxes give(

φt p,γ
1

− φt p,γ
2

) = εI
(
φt p,γ

2
− φt p,γ

1

)
, (E12a)(

φt p,γ
1

− φt p,γ
2

) = ε�

(
φt p,γ

1
− φt p,γ

2

)
. (E12b)

5. Fluxes with Ai j and Bi j fields

We only have to consider triangle loops with one Bi j field,

arg(BI01A∗
I12AI20). (E13)

These give the constraints

φB2 + (1 + n1)π = εIφB1 + π, (E14a)

φB2 + π = ε�

(
φB2 + 2ξπ

3

)
. (E14b)

Using Eqs. (E5) and (E7), we can reduce this to

ε� = −1, (E15a)

2φB1 = π + 4ξπ

3
, (E15b)

φB2 = εIφB1 + πn1. (E15c)

6. Fluxes with Ai j and th,γ

i, j fields

We only have to consider the triangle loops with one t h,γ
i, j

field,

arg
(
t h,γ

I01 A∗
I12AI20

)
. (E16)

They give constraints

φt h,γ

2
+ (1 + n1)π = εIφt h,γ

1
+ π, (E17a)

φt h,γ

2
= ε�

(
φt h,γ

2
+ 2ξπ

3

)
+ δγ ,y′π. (E17b)

Using Eq. (E10), we can rewrite this as

δγ ,y′ = 0, (E18a)

2φt h,γ

2
= 4ξπ

3
, (E18b)

φt h,γ

2
= εIφt h,γ

1
+ n1π. (E18c)

Equation (E18a) says that there are no valid chiral Ansätze
with both Ai j and t h,y′

i j fields.

7. Fluxes with Ai j and t p,γ
i, j fields

As established in the main text, Ai j and t p,γ
i, j fields cannot

appear simultaneously in an Ansatz. Therefore, we do not have
to consider loops with both of these fields.

8. Fluxes with Bi j and t p,γ
i, j fields

Here we have to consider similar triangle loops as for Ai j

and Bi j fields,

arg
(
BI01t h,p∗

I12 t h,p
I20

)
. (E19)

These lead to the constraints

φB2 + n1π = εIφB1 , (E20a)

φB2 = ε�

(
φB2 + 2ξπ

3

)
. (E20b)

With Eq. (E5) these can be reduced to

2φB1 = 4ξπ

3
, (E21a)

φB1 = εIφB2 + n1π. (E21b)

9. Fluxes with Bi j and th,γ

i, j fields

For Bi j and t h,γ
i j fields, we only have to consider the trivial

flux,

arg
(
B01t h,γ

10

)
, (E22)

which gives the constraints(
φt h,γ

2
− φB2

) = εI
(
φt h,γ

1
− φB1

)
, (E23)

(1 − ε� )
(
φt h,γ

2
− φB2

) = π (1 − δγ ,y′ ). (E24)

10. Fluxes with t p,γ and th,γ ′
fields

We have to consider the triangle loop

arg
(
t h,γ ′
I01 t p,γ ∗

I12 t p,γ
I20

)
, (E25)

which give constraints

φ
t h,γ ′
2

+ n1π = εIφt h,γ ′
1

, (E26a)

φ
t h,γ ′
2

= ε�

(
φ

t h,γ ′
2

+ 2ξπ

3

)
+ π (1 − δγ ′,y′ ), (E26b)

which can be reduced with Eq. (E10) to

2φ
t h,γ ′
1

= π + 4ξπ

3
, (E27a)

φ
t h,γ ′
1

= εIφt h,γ ′
4

+ n1π. (E27b)

11. Fluxes with t p,γ and t p,γ ′
fields

We have to consider the trivial flux:

arg
(
t p,γ
I01 t p,γ ′∗

I10

)
, (E28)

which gives the constraints

φt p,γ
2

− φ
t p,γ ′
2

= εI
(
φt p,γ

1
− φ

t p,γ ′
1

)
, (E29a)

(1 − ε� )
(
φt p,γ

1
− φ

t p,γ ′
1

) = π (δγ ,y′ + δγ ′,y′ ). (E29b)

When ε� = 1, there are no solutions for γ �= γ ′ = y′.

12. Fluxes with th,γ and th,γ ′
fields

We have to consider the trivial flux

arg
(
t h,γ ′
I01 t h,γ

I10

)
, (E30)
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FIG. 8. The 16-site unit cell of the n1 = 1 Ansätze. The expec-
tation values of the bond operators are defined by the ut

μν matrices
given in Eq. (F6). The direction μ −→ ν is indicated by the arrow-
heads. On each dashed bond, the ut

μν matrices have to be multiplied
by an extra phase factor of exp(iπn1). For n1 = 0, the mean-field
Ansatz is fully described by the four-site unit cell without any dashed
lines. The dependence of the ut

μν matrices on the mean fields is
described in Eq. (17).

which gives the constraints(
φt h,γ

2
− φ

t h,γ ′
2

) = εI
(
φt h,γ

1
− φ

t h,γ ′
1

)
, (E31a)

(1 − ε� )
(
φt h,γ

2
− φ

t h,γ ′
2

) = π
(
δγ ,y′ + δγ ′,y′

)
. (E31b)

13. Solutions of phase equations

We organize the solutions to the phase equations in Ta-
ble III. We only list Z2 spin-liquid Ansätze with at least
one pairing field. Ansätze with only hopping fields can also
be derived by the phase equations. They are, however, be-
having like U(1) spin liquids and are thus subjected to the

Higgs mechanism. The phases of the mean-field parameters
φap

1
, φbp

1
, φcp

1
, φd p

1
have to be related to the phases of the mean

fields φA1 , φt p,x
1

, φt p,y
1

, φt p,z
1

like(
φap

1
, φbp

1
, φcp

1
, φd p

1

) = (
φA1 , φt p,x

1
, φt p,y

1
, φt p,z

1

)
, (E32)(

φap
2
, φbp

2
, φcp

2
, φd p

2

) = (
φA2 , φt p,x

2
, φt p,y

2
, φt p,z

2

)
, (E33)(

φah
1
, φbh

1
, φch

1
, φdh

1

) = (
φB1 , φt h,x

1
, φt h,y

1
, φt h,z

1

)
, (E34)(

φah
2
, φbh

2
, φch

2
, φdh

2

) = (
φB2 , φt h,x

2
, φt h,y

2
, φt h,z

2

)
(E35)

for the mean-field Hamiltonian to have the same symmetry as
the state that we want to construct.

APPENDIX F: HAMILTONIANS FOR n1 = 0 AND FOR
n1 = 1

We give the explicit form of the submatrices of Eq. (40) for
both n1 = 0 and 1 (see Fig. 8). To keep things compact, we
introduce the notation t ∈ {h, p},

uμν = ut
μνe

i
2 (aμ−aν )k = ut

0μ0ν
e

i
2 (aμ−aν )k, (F1)

uIμν = ut
Iμνe− i

2 (aμ−aν )k = ut
I (0μ )I (0ν )e

− i
2 (aμ−aν )k. (F2)

The submatrices fulfill Hh(k) = [Hh(k)]† and H p(k) =
[H p(−k)]T , so we only need to give the upper triangular part
to fully determine the whole matrices. For n1 = 0, Ht (k) are
8 × 8 matrices given by

Ht (k) =

⎛
⎜⎝

0 u01 + uI01 u02 + uI02 u03 + uI03

0 u12 + uI23 u13 + uI23

0 u23 + uI23

0

⎞
⎟⎠. (F3)

For n1 = 1, Ht (k) are 32 × 32 matrices:

Ht (k) =

⎛
⎜⎝

Ht
11(k) Ht

12(k) Ht
13(k) Ht

14(k)
Ht

22(k) Ht
23(k) Ht

24(k)
Ht

33(k) Ht
34(k)

Ht
44(k)

⎞
⎟⎠. (F4)

The unit cell consists of four main tetrahedra q ∈ {1, 2, 3, 4},
and the submatrices Ht

q1,q2
include all bonds between main

tetrahedron q1 and q2. They are given by

Ht
qq(k) =

⎛
⎜⎜⎝

0 u01 + uI01ein1π (δq,2+δq,3 ) u02 u03

0 u12 u13

0 u23

0

⎞
⎟⎟⎠, (F5)

Ht
12(k) =

⎛
⎜⎝

0 0 uI02 0
0 0 uI12 0

uI20 uI21ein1π 0 0
0 0 0 0

⎞
⎟⎠, Ht

13(k) =

⎛
⎜⎝

0 0 0 uI03

0 0 0 uI13

0 0 0 0
uI30 uI31ein1π 0 0

⎞
⎟⎠,

Ht
14(k) =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 uI23

0 0 uI32ein1π 0

⎞
⎟⎠, Ht

23(k) =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 uI23

0 0 uI32ein1π 0

⎞
⎟⎠,
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Ht
24(k) =

⎛
⎜⎝

0 0 0 uI03

0 0 0 uI13ein1π

0 0 0 0
uI30 uI31 0 0

⎞
⎟⎠, Ht

34(k) =

⎛
⎜⎜⎝

0 0 uI02ein1π 0
0 0 uI12 0

uI20ein1π uI21ein1π 0 0
0 0 0 0

⎞
⎟⎟⎠.

For the chiral PSG, the ut
i j matrices are given by

ut
01 = (

at
1, bt

1, ct
1, dt

1

)
, (F6a)

ut
02 =

(
at

1,−
1

2

(
bt

1 +
√

3ct
1

)
,

1

2

(√
3bt

1 − ct
1

)
, dt

1

)
e−i 2ξ

3 π , (F6b)

ut
03 =

(
at

1,−
1

2

(
bt

1 −
√

3ct
1

)
,−1

2

(√
3bt

1 + ct
1

)
, dt

1

)
e−i 4ξ

3 π , (F6c)

ut
12 =

(
at

1,−
1

2

(
bt

1 −
√

3ct
1

)
,−1

2

(√
3bt

1 + ct
1

)
, dt

1

)
e±t i

2ξ

3 πe
inC3C′

3
π
, (F6d)

ut
31 =

(
at

1,−
1

2

(
bt

1 +
√

3ct
1

)
,

1

2

(√
3bt

1 − ct
1

)
, dt

1

)
e±t i

2ξ

3 πe
inC3C′

3
π
, (F6e)

ut
23 = (

at
1, bt

1, ct
1, dt

1

)t
e±t i

2ξ

3 πe
inC3C′

3
π
, (F6f)

ut
I01 = (

at
2, bt

2, ct
2, dt

2

)
, (F6g)

ut
I02 =

(
at

2,−
1

2

(
bt

2 +
√

3ct
2

)
,

1

2

(√
3bt

2 − ct
2

)
, dt

2

)
e−i 2ξ

3 π , (F6h)

ut
I03 =

(
at

2,−
1

2

(
bt

2 −
√

3ct
2

)
,−1

2

(√
3bt

2 + ct
2

)
, dt

2

)
e−i 4ξ

3 π , (F6i)

ut
I12 =

(
at

2,−
1

2

(
bt

2 −
√

3ct
2

)
,−1

2

(√
3bt

2 + ct
2

)
, dt

2

)
e±t i

2ξ

3 πe
i(n1+nC3C′

3
)π

, (F6j)

ut
I31 =

(
at

2,−
1

2

(
bt

2 +
√

3ct
2

)
,

1

2

(√
3bt

2 − ct
2

)
, dt

2

)
e±t i

2ξ

3 πe
i(n1+nC3C′

3
)π

, (F6k)

ut
I23 = (

at
2, bt

2, ct
2, dt

2

)
e±t i

2ξ

3 πe
i(n1+nC3C′

3
)π

, (F6l)

where for t = h, ±h = + and for t = p, ±p = −.
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