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We study dynamical scaling associated with a Kondo-breakdown quantum-critical point (KB QCP) of
the periodic Anderson model, treated by two-site cellular dynamical mean-field theory (2CDMFT). In the
quantum-critical region, the dynamical staggered-spin susceptibility exhibits w/T scaling. We propose a
scaling ansatz that describes this behavior and reveals Planckian dissipation for the longest-lived
excitations. The current susceptibility follows the same scaling, leading to strange-metal behavior for
the optical conductivity and resistivity. Importantly, this behavior is driven by strong short-ranged vertex
contributions, not single-particle decay. This suggests that the KB QCP described by 2CDMFT is a novel
intrinsic (i.e., disorder-free) strange-metal fixed point. Our results for the optical conductivity match
experimental observations on YbRh,Si, and CeColns.

DOI: 10.1103/PhysRevLett.134.106501

Introduction—Strange metals [1-5], an enigmatic
state of matter found in many strongly correlated materials
[6-27], still defy a clear and unified understanding. Their
phenomenology, including a low-temperature (210 mK in
YbRh,Si, [28]) T-linear resistivity [9], an ~T In T specific
heat and w/T scaling [8,24,26,29-32], is incompatible with
normal Fermi liquids [33]. Despite the ubiquity of strange
metals, many basic questions remain unsettled [1], in
particular, whether intrinsic strange metals, i.e., ones with-
out disorder, exist [34,35].

Current attempts at explaining strange-metal phenomena
often employ the marginal Fermi liquid (MFL) hypothesis
[36], where electrons acquire a linear-in-7 scattering rate
due to scattering by a critical bosonic mode. However, it
has recently been shown within the Yukawa-Sachdev-Ye-
Kitaev (YSYK) approach that interaction disorder is
required to also achieve a linear-in-7 transport scattering
rate [37,38]; i.e., the MFL strange metal is not intrinsic. The
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same goes for MFL strange metals arising in single-site
dynamical mean-field theory (DMFT) approaches [39],
where single-electron and transport scattering rates
coincide due to nonconserved momentum at the interaction
vertex [40,41]. It is questionable whether the MFL
approach can be reconciled with studies of disorder in
cuprates [42], the fact that many strange metals are very
clean [28,43] and with Hall angle measurements in strange
metals [1,16,44-50].

In this Letter, we present a novel approach to intrinsic
strange metals where phenomena like w/T scaling and a
linear-in-7" resistivity arise from collective short-ranged
fluctuations. The single-electron scattering rate does not
play a direct role, in stark contrast to MFL approaches. We
focus on heavy-fermion (HF) metals, where strange-metal
behavior routinely emerges in the quantum-critical region
of so-called Kondo breakdown (KB) quantum-critical
points (QCPs) [51-56]. Previous studies have obtained
interesting scaling behavior in the vicinity of a KB QCP
[38,51,57-60], but apart from the MFL-based YSYK
approach of Ref. [38], none of these studies explain the
intriguing optical properties of HF strange metals.

We study the quantum-critical region of a KB QCP
in the periodic Anderson model (PAM) described as a
continuous orbital-selective Mott transition [56,61-64] via
two-site cellular DMFT (2CDMFT) [41,65]. 2CDMFT
maps the PAM to a self-consistent two-impurity Anderson
model [56,61-64]. In a long companion paper [56], we
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used the numerical renormalization group (NRG) [66-71]
as an impurity solver for 2CDMFT to identify a novel,
2CDMFT-stabilized KB QCP (by contrast, the Jones—
Varma QCP is unstable [72-88]). We find w/T scaling
for several susceptibilities and strange-metal behavior for
the optical conductivity and resistivity. Importantly, this
behavior arises from dominant vertex contributions rather
than single-particle decay.

Model and methods—We consider the PAM on a three-
dimensional cubic lattice, involving an itinerant ¢ band and
a localized f band described by the Hamiltonian

Hoaw = ) _(er = )fkofa + UY_fisf ki fiy

ko
+ VZ(CL;fkrf + HC) + Z(eL'k - /")cltacko--
ko ko

(1)

Here, f}_[cf ] creates a spin-of|c] electron with momen-
tum k, and ey = —2t), . cos(k,) is the c-electron
dispersion. We set the c-electron hopping ¢t = 1/6 as an
energy unit (half bandwidth = 1) and fix the f-orbital level
€y = —5.5, the interaction strength U = 10, and the chemi-
cal potential 4 = 0.2, as chosen in prior 2CDMFT studies
[56,63,64]. The (T, V) phase diagram studied in detail in
Ref. [56] (shown also in Ref. [89], Sec. S-I) is characterized
by two V-dependent energy scales Ty and Twg: The FL
scale Tgp, below which FL behavior emerges, decreases
toward and vanishes at the KB QCP at V. = 0.4575(25).
This gives rise to a quantum-critical region between the
scales Tg, < Tnpr, Where we found non-Fermi liquid
(NFL) behavior with strange-metal properties, such as a
TInT specific heat [56].

In this work, we study dynamical scaling and
optical properties in the quantum-critical region. We fix V =
0.46 >V, [96] and tune T. At V = 0.46, Ty /Tr. > 10%;
i.e., the NFL region extends over more than three decades,
which allows us to study scaling. As in Ref. [56], we enforce
U(1) charge and SU(2) spin symmetries (using the QSpace
tensor library [97-99]), thereby excluding the possibility of
symmetry breaking order by hand. We do not find tendencies
toward symmetry breaking (divergent susceptibilities) for the
parameters studied here.

Dynamical scaling—As a result of incomplete screening
in the NFL region, many dynamical susceptibilities

1A Bl(@) = i / T el (A, BT)(2)

0

exhibit plateaus in their spectra y”(w) at Tg, < @ < Tnpr
and T = 0; cf. Ref. [56], Fig. 4. We use the shorthand
X[Al(w) = y[A, Al() and y(w) = y'(®) —iry"(w). An
example of a susceptibility governed by incomplete screen-
ing is y[X*|(w, T), where X** = S — 55 is the staggered

f-electron spin on a two-site cluster. It exhibits w/T
scaling, as demonstrated in Fig. 1.

The T-dependent spectra y” (@, T') and the corresponding
real parts y'(w,T) are shown in Figs. 1(a) and 1(b),
respectively. As T is decreased from around Typ to
Tr, the aforementioned plateau in y”(w,T) emerges
between T < @ < Tngp, crossing over to « @ behavior
for w < T. For T < Tgy, the spectrum becomes 7 inde-
pendent. In the (imaginary) time domain, the plateau in
" implies SYK-like slow 1/7 dynamics; see Fig. S1
of Ref. [89].

¥ (w,T) is related to y"(w,T) via a Kramers-Kronig
relation. It thus shows a logarithmic [100] @ dependence
for max(7T,Tg) <@ < Tnp. and is constant for
@ < max(T,Tg ). As a result, y'(0,T) [inset of Fig. 1]
has a «InT dependence for T < T < Tnp, and is
constant for T < Tgp, where X* fluctuations are screened.

Figure 1(c) shows " (w,T) vs w/T. In the NFL region
(T, < T < Tynp, |®| < Tnpr), the spectra all collapse
onto a single curve. This demonstrates dynamical scaling
in the sense that 7%" (0w, T) = X" (w/T) with « = 0. The
real part [Fig. 1(d)] also shows w/T scaling.

Scaling function and Planckian dissipation—In the NFL
region (Tg <T < Txpu, || < Tnpr), the spectra of
dynamical susceptibilities showing plateaus (e.g., y[X*?])
can be fitted with a phenomenological ansatz for @ > 0:
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FIG. 1. Dynamical susceptibility y[X*?](w, T). (a) Spectral part
and (b) corresponding real part for 13 choices of T (marked by
ticks on the color bar). (c),(d) Scaling collapse of spectral and real
parts. Black dashed lines show the universal scaling functions
X"(w/T) and X' (w/T), respectively [cf. Eq. (4)]. Inset: /(0,T)
(orange) and X{(T/Tng) + ¢ [black dashed; cf. Eq. (4)]. The
constant shift ¢ accounts for spectral weight at || > Tyg.. Gray
areas indicate fitting uncertainties [89].
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< 0 follows from antisymmetry of 7", and the real part 7’
is determined through a Kramers-Kronig relation. y, a, b,
and v are determined by fits to our spectra in the NFL
region [89]. We find a~10"!, b~1, and v=~0; y,
determines the plateau value. (These parameters are V
independent within our fitting accuracy.) When Eq. (3) is
evaluated for |@|, T < Tng one finds the scaling form

(L) () e(s).

An explicit T dependence, due to the high-energy cutoff
TnpL, only enters via X((T/Tng) =~ 7' (0,T); otherwise,
7(w, T) only depends on the ratio /T (for more informa-
tion on the universal scaling functions X7}, X”, and X", see
Ref. [89]). In Figs. 1(c) and 1(d), we show that the scaling
function X" captures y[X*?] well in the NFL region (black
dashed lines).

The ansatz (3) is motivated by a fit of (X*¢(7)X*%) to a
superposition of coherent excitations with mean energy ae,
decay rate bT, and density of states (¢/T)* [89]. Since
b ~ 1, these coherent excitations have a decay rate y ~ T or
correspondingly a lifetime 7 ~ 1/T; i.e., the longest-lived
X** excitations have a Planckian lifetime.

Optical conductivity—Our 2CDMFT approximation
allows us to compute the local current susceptibility
x1j%(w, T) of the lattice model from the effective impurity

model. Here, j¢ = —ite Y (C} Citar = ClinoCis) is the
current operator in the a direction, with i and i + a nearest
neighbors on the lattice, chosen to also correspond to the
two sites of the self-consistent impurity model.

For optical experiments and electronic transport, the
uniform current susceptibility y[jq_o](w,T) is relevant,
where jg is the g-dependent current in the a direction
jé=(1/N) Y ,,e7'97 j¢. Assuming translation symmetry,
x[j§] can be expressed as a sum y[j¢] + yy[j] of local and
nonlocal parts, with zu[j] = (1/N) Y xljé. J¢] =
18] —x[j¢]. The computation of y,[j] would require
four-point correlators [101-103] for the self-consistent
two-impurity model, which currently exceeds our computa-
tional resources. Hence, we approximate it by its bubble
contribution y,5[j] = ¥sljg] —xs[j¢]. Thus, we use

xUe) = x1i¢] + xmslil = xslig) + xwlJ], (5)

where y,« [/¢] = x[j*] — x8[j¢] is the vertex contribution to
the local current susceptibility.

The uniform current spectrum determines the real part of
the optical conductivity o'(w,T) = (z/w)y"[j§l(®.T)
shown in Fig. 2(a). At T < T (blue and black), it features
a hybridization gap around @ ~ Tyg..®~' behavior for
Tp < @ < Tnp, and a Drude peak at low frequencies
below T . These features emerge as the temperature is
lowered from 7 > Tngr: The hybridization gap forms

T 1071 107 10°® Ty 107° 1077 1073
= 1 I 1 1 1 1 I I
104 <— Drude peak (a) 1074
/ —10

o - -op(w,10719) 106 /E_«\
5 10° N s 3
= \ N X W 10 3
S v N &~

T T

FIG. 2. (a) Real part of the optical conductivity ¢'(w, T); gray
dashed line, bubble contribution at 7 = 10~'°. (b) w/T scaling of
To'(w, T); black dashed line, the scaling function S’ of Eq. (6).
(c) The resistivity p(T). (d) The single-particle decay rate y,
quasiparticle (QP) weight Z, and QP decay rate y*.

around T =~ Typ. (red), the @~! feature emerges between
Tr, < T < Tnpr (yellow and green), and the Drude peak
finally emerges for 7 < T (blue and black).

The w™' feature in the NFL region is due to @/T scaling
of "[j¢] (Fig. S5 in Ref. [89]) similar to that of y"[X*¢].
Remarkably, y”[j¢], just as y”[X*¢], is well described by the
ansatz (3) (see Fig. S8 of Ref. [89]), implying w/T scaling
and Planckian dissipation of current fluctuations. In the
NFL region, Tg < T < Tngr, o (@, T) is therefore gov-
erned by a scaling function S’

T6'(,T) = (T/0)zX"(/T) = S'(0/T).  (6)

Figure 2(b) shows that T¢'(w, T) is indeed well described
by this scaling function (black dashed line). Similarly, we
find that To"(w,T) = S"(w/T), with §"(x) = X'(x)/x;
see Ref. [89], Secs. S-V, Fig. S10.

The scaling behavior (6) has two striking implications
for the NFL region Ty, < T < Tngpr: First, a scaling
collapse is achieved for T%’(w, T) with a = 1, an expo-
nent which was also found experimentally [24,26,32].
Second, the static conductivity o(T)=0'(0,T)=
§'(0)/T scales as 1/T, implying T-linear behavior for
the resistivity, p(T) = 1/6(T) o T. This is borne out in
Fig. 2(c): p(T) has a maximum around Tyg., Where
the hybridization gap forms, then decreases « 7 for
Tr. < T < Typ, before finally becoming o« T2 below T'g;..

The w/T scaling and linear-in-T" resistivity in the NFL
region is completely dominated by the vertex contribution
to the current susceptibility yyy [/¢]| > |¥gli§]|- To visual-
ize this, we have included the bubble contribution of (@)
(gray dashed) at T = 107'° in Fig. 2(a). In the NFL region
(Tr, < |w| < TnpL), o is orders of magnitude smaller
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than ¢'(w) and, crucially, does not show w~! behavior.
Also, o3 (@, T) does not exhibit w/T scaling. However, it
contributes the Drude peak at |@|, T < Tg.

Next, we consider the single-particle decay rate y [104],
QP weight Z, and QP decay rate y*,

y=ImG;'(0). Z7'=0,ReGi(0). v'=2y (7)

shown in Fig. 2(d). Z and y* determine the weight and
width of the Lorenzian line shape in the single-particle
spectral function at kg, while y governs the bubble
contribution to the conductivity oy « 1/y. In the NFL
region, we find y xInT, ie., oy x1/InT <o’ x1/T.
Thus, the conductivity in the NFL region is not governed by
single-particle decay but by short-ranged collective current
fluctuations, in contrast to the MFL paradigm.

In the FL region, y, 7* « T2, and Z = const [Fig. 2(d)] as
expected, leading to a Drude peak of width « 77 and
p(T) < T?; ie., these features are due to long-lived
coherent QP carrying the current. Since we neglect non-
local vertex contributions which encode momentum con-
servation during small-momentum scattering [105], the
transport relaxation rate, and thus the T2 prefactor of
p(T), is set purely by the QP decay rate and is therefore
very likely overestimated.

Optical mass and transport scattering rate—To obtain
additional insights, we determined the transport scattering
rate 7! (w) and the optical mass m*(w) defined as
7™ (w) = Reo (o), m*(w) = —o 'Ime™" (@)  (8)
following Ref. [106], Eq. (1). Here, o(w) is the complex
optical conductivity, and we omitted constant prefactors to
focus on qualitative features.

Figure 3(a) shows our results for 77! (w), with 771(0) =
75! = p(T) « T for Tg, < T < Tpr For max(Tg, T) <
|o| < Tnpr, 7' (w) has a nontrivial @ and T dependence,
not following a simple power law with possible logarithmic
corrections. There, 6(w) does not fit a Drude form. Non-
Drude behavior is most clearly visible from o' (w,T)
[cf. Fig. 2(a)], which shows a @' dependence in the
NFL region, whereas a usual Drude peak would imply an
w~? dependence. Similar non-Drude behavior of the optical
conductivity has been observed in YbRh,Si, [24,26].

Remarkably, in the NFL region (Tg;, < T < Tnpp) at low
frequencies || < T, 7' (w) shows a quadratic frequency
dependence 77! (w) — 75! ~ ¢(T)w?; cf. Fig. 3(c). An o?
dependence of 77!(w) was also found in CeColns; cf.
Figs. 4(a) and 4(c) of Ref. [106] and its discussion.
However, whereas for an FL the prefactor ¢(7') does not
depend on the temperature, the @/T scaling of o(®w, T) in
the strange-metal region implies ¢(7T) ~ 1/T’; see Ref. [89],
Sec. S-V.

We emphasize that in our results, 7! (@) is not propor-
tional to —ImX(w) (without vertex contributions, a
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FIG. 3. Frequency dependence of (a) the transport scattering

rate 7' (w), (b) the effective mass m*(w), and (¢) 77! (w) — 75,
where 73! =771(0) =p. (d) Temperature dependence of
ol =5 /mg and mj = m*(0).

proportionality would be expected). In our 2CDMFT +
NRG approach to the PAM, —ImXZ(w) has a logarithmic
w and T dependence; cf. Figs. 11 and 12 of Ref. [56]. The w
and T dependence 7~! (w) discussed above differs from that,
again illustrating the importance of vertex contributions.

Figure 3(b) shows m*(w). In the NFL region
(Tgr < T < Tngr), m* (@) is strongly frequency dependent
around the NFL scale @ ~ 107> — 107 ~ T\yg., and then
saturates to an almost w- and T-independent value
m* (@) ~ m*(0) = m{. The weak w and 7 dependence of
m*(w) does not seem to follow a simple power law.
Interestingly, even though there are no well-defined QPs
in the strange-metal region, there nevertheless seems to be a
somewhat well-defined effective mass m;. We emphasize
though that in the NFL region, mj; ~ 5 x 10* ~ 10/ Tyg is
orders of magnitude smaller than in the FL region, where
m§~1.5x 10" ~ 1/Tg; cf. Fig. 3(d). The effective mass
in the NFL region is therefore decisively distinct from the
QP mass in the low-temperature FL region.

In Fig. 3(d), we show the temperature dependence of the
renormalized scattering rate 7~ = 75! /m;; (blue), together
with mj, (red). Deep in the NFL region, we find 7"~ ~ T,
since 75! ~ T and mj, = const. Interestingly, in the cross-
over region between T ~ Typ. and T ~ 107! Typ, 77!
deviates from the linear-in-7" behavior and is consistent
with FL-like 72 behavior.

A similar T? behavior was reported for CeColns in
Ref. [106], where this behavior was interpreted as evidence
for a hidden Fermi liquid. Our calculations suggest that the
T? behavior is rather a crossover behavior, and measure-
ments at lower temperatures are necessary for a definite
conclusion. Such measurements are presumably not pos-
sible in CeColns due to its relatively high 7. A promising
candidate material to clarify whether 7*~! ~ T or ~T? may
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FIG. 4. (a) Scattering rate 75! = p(T) for T < T for the
PAM. Green squares, data points; blue line, guide to the eye.
(b) 7o ! (green squares) and rescaled resistivity (blue line) for
CeColnjs close to its coherence temperature 7 = 40 K, adapted
from Fig. 4(b) of Ref. [106]. (c) Renormalized scattering rate 13‘1
(blue circles) and effective mass m;; (red squares) for the PAM.
(d) TO_] (blue circles) and my (red squares) for CeColns, adapted
from Fig. 4(d) of Ref. [106].

be YbRh,Si,. To emphasize the similarity between the
experimental data on CeColns and our results on the PAM
more visually, we show the resistivity p(7') of the PAM in
Fig. 4(a) on a linear scale in the crossover region, next to
the corresponding experimental data on CeColns [Fig. 4(b)],
adapted from Fig. 4(b) of Ref. [106]. In Figs. 4(c) and 4(d),
we further show the data for the renormalized scattering rate
and the effective mass for both the PAM and CeColns,
respectively [adapted from Fig. 4(d) of Ref. [106] for the
latter]. The experimental data on CeColns and our numerical
data on the PAM show remarkable qualitative agreement in
the crossover region: (i) The resistivity has a broad maximum
and turns to linear in 7, (ii) the renormalized scattering rate
7*~! o T2, and (iii) the effective mass m, increases with the
temperature in a remarkably similar fashion. An estimate of
the suitability of our model parameters for CeColns is
provided in Ref. [89]. A more detailed quantitative descrip-
tion of CeColns (or YbRh,Si,) will require a more realistic
future study, e.g., using LDA + DMFT + NRG.
Discussion and outlook—Our work provides a promising
route toward an intrinsic strange metal. However, we have
not yet achieved a full understanding of the current decay
mechanism. An inherent feature of (C)DMFT is that the
interaction vertex does not ensure conservation of crystal
momentum [40,41]. Therefore, electron-electron scattering
does not conserve crystal momentum, leading to current
decay. This mechanism usually manifests as a dominant
bubble contribution (in single-site DMFT, this is the only
contribution). A dominant bubble contribution is also key

to the YSYK approach [37] to strange metals. There, a
disordered Yukawa coupling leads to nonconserved
momentum in scattering processes. The result is an MFL
where strange-metal scaling arises in the bubble contribu-
tion, and interaction disorder is needed to avoid its
cancellation by the vertex contribution. By contrast, in
our 2CDMFT approach, the strange-metal scaling in the
NFL region arises entirely from the vertex contribution, and
not at all from the (much smaller) bubble contribution.
This strongly suggests that the current decay mechanism is
not due to the nonconservation of crystal momentum at the
interaction vertex. Our 2CDMFT approach also includes
crystal momentum conserving umklapp scattering
processes between momenta around k = (0,0,0) and
k = (z,z,z) which flip the current. We conjecture that
these cause our observed strange-metal scaling, but leave a
detailed analysis for future work.
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