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Two-particle calculations with quantics tensor trains: Solving the parquet equations
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We present an application of quantics tensor trains (QTTs) and tensor cross interpolation (TCI) to the solution
of a full set of self-consistent equations for multivariate functions, the so-called parquet equations. We show
that the steps needed to evaluate the equations (Bethe-Salpeter equations, parquet equation, and Schwinger-
Dyson equation) can be decomposed into basic operations on the QTT-TCI compressed objects. The repeated
application of these operations does not lead to a loss of accuracy beyond a specified tolerance and the iterative
scheme converges even for numerically demanding parameters. As examples, we take the Hubbard model in the
atomic limit and the single impurity Anderson model, where the basic objects in parquet equations, the two-
particle vertices, depend on three frequencies, but not on momenta. The results show that this approach is able
to overcome major computational bottlenecks of standard numerical methods. The applied methods allow for an
exponential increase of the number of grid points included in the calculations, and a corresponding exponential
reduction of the computational error, for a linear increase in computational cost.
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I. INTRODUCTION

The understanding of many important excitations of
electronic systems—magnons, excitons, or other composite
objects—requires understanding correlations at the two-
particle level. Two-particle quantities—correlation functions
or scattering amplitudes (vertices)—are inherently large ob-
jects, with multiple dependencies: If we consider scattering
of two particles, the amplitude will depend on the energies,
momenta, and spin orbitals of two incoming and two out-
going particles. The number of independent variables can be
reduced using conservation laws, but each independent spin-
orbital combination still depends on three momenta and three
frequencies. Numerical representation of these multivariate
functions on uniform grids is very expensive due to the third
power scaling of memory in the number of discrete momenta
or energies. On the other hand, large ranges are required to
faithfully represent complicated structures which the vertices
show in all their dependencies [1–3]. When the vertices are
themselves variables in diagrammatic equations, as is the case
in parquet equations [4–6], the required computation time be-
comes prohibitive [7]. Several solutions to this problem have
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been proposed so far, either based on partial reduction of the
number of frequency and/or momentum variables that need to
be treated on grids [8–12] or based on compact representation
of the frequency dependence in a suitable basis [13–16]. The
former still do not lead to true dimensional reduction of the
full parquet equation problem. The latter are very promising
and provide another path to dimensional reduction, alternative
to the one described in this paper. Recently, a wavelet-based
decomposition for efficiently compressing two-particle quan-
tities has also been proposed [17–19].

In this paper, we present a full computation of the self-
consistent solution of parquet equations in the quantics
tensor train (QTT) representation. This representation, based
on length or energy scale separation, leads to significant
dimensional reduction of the problem, removing memory bot-
tlenecks. The computational cost becomes logarithmic in grid
size and depends strongly only on the maximum bond dimen-
sion, which is small enough in many physics applications.
Hence, the overall computational cost is significantly reduced.

The QTT representation of multivariate functions has al-
ready been around for a decade or so [20–23], but it was only
recently applied to various fields of natural science such as
turbulence [24–28], plasma physics [29], quantum chemistry
[30], and quantum field theory of the many electron problem
[31]. For quantum field theories, the QTT representation pro-
vides a compact representation of the space-time dependence
of the correlation functions [31]. First many-body calcula-
tions of Feynman diagrams with the QTT representation in
imaginary time [32] and in nonequilibrium [33] already show
the potential of the method. A very favorable scaling of the
QTT representation with temperature has been conjectured
in Ref. [34]. In parallel, the tensor cross interpolation (TCI)
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method was applied to evaluations of diagrams in many-body
physics [35–38]. TCI can be combined with the quantics ten-
sor train representation to form QTT+TCI=QTCI, a powerful
approach with diverse applications [39].

To apply QTCI to parquet equations, we break down these
equations [Bethe-Salpeter equation (BSE), parquet equation,
and Schwinger–Dyson equation (SDE)] into basic operations
on QTTs, represented by matrix product operators (MPOs).
We use MPO-MPO contractions for matrix and elementwise
multiplications and construct a new MPO for affine transfor-
mations needed to perform channel transformations (variable
shifts) occurring in the parquet equation. Our approach scales
as O(D4

maxR), with maximum bond dimension of Dmax and
grid size 23R. The computational cost is only logarithmic in
grid size and the main bottleneck is shifted to the maxi-
mum bond dimension. We have verified this scaling in two
benchmark models: the Hubbard atom and the single impurity
Anderson model (SIAM). In both models, the two-particle
vertices are fully dynamical (dependent on three frequencies)
but local (independent of momentum). In both cases, we
empirically find that an overall accuracy <10−3 of the full
self-consistent solution can be achieved with a bond dimen-
sion up to 200 even for challenging parameters close to a
divergence line in the Hubbard atom.

This paper is organized as follows. In Sec. II, we introduce
the concrete Hamiltonians (Hubbard atom and single impu-
rity Anderson model) for which we will present the results.
Further, in Sec. III we first recall definitions of one- and two-
particle Green’s functions and vertices and set the notations
used in the paper. Then we provide in detail the full set of
parquet equations that we solve. Additional information on
the equations and notations is also provided in Appendix A. In
Sec. IV, we introduce quantics tensor trains, the tensor cross
interpolation method, and matrix product operators. These
techniques are used to construct efficient implementations of
the parquet equations in Sec. V and Appendixes B and C.
We also provide results for the compression of the vertices
and scaling of the bond dimension for each of the operations
needed to complete one loop of parquet equations in Sec. V.
More details and additional plots can be found in Appendixes
D and E. Next, in Sec. VI, we show results for the full self-
consistent iterative scheme and its technical limitations (with
details also in Appendix F). In the last section, Sec. VII, we
conclude and provide an outlook.

II. MODELS

In the current paper, we focus on the solution of equa-
tions for two-particle vertices in the (Matsubara) frequency
space. Although, in general, the vertices are also dependent
on momentum and orbital degrees of freedom, we limit our-
selves to simple models for which the vertices depend only
on frequency but not on momentum. We present results for
two benchmark models: the Hubbard atom, where exact ana-
lytical expressions for the vertex functions are known [40],
and the single impurity Anderson model [41], where high-
quality numerical data is available [3]. The treatment of the
frequency dependence of vertices presented in this paper can
be directly extended to models with additional orbital and

momentum dependencies. The possibility of such extensions
will be discussed in Appendix G.

A. Hubbard atom

The Hubbard atom is an extreme simplification of the
Hubbard model in which the hopping amplitudes of the elec-
trons between sites are put to zero. Although this is a drastic
change, the Hubbard atom represents many of the features of
the strong-coupling limit of the Hubbard model [40]. With-
out hopping, each atom is independent and described by the
following Hamiltonian:

Ĥ = Un̂↑n̂↓ − μ(n̂↑ + n̂↓), (1)

with n̂σ = ĉ†
σ ĉσ and the fermionic annihilation (creation) op-

erator ĉ(†)
σ that annihilates (creates) an electron with spin σ .

The on-site Coulomb repulsion between two electrons is given
by U and the chemical potential is set to μ = U

2 (half filling).
The only other energy scale beside U in this model is the
temperature T , which we define in the same units as U , setting
kB ≡ 1 and h̄ ≡ 1.

B. Single-impurity Anderson model

In the SIAM, the interacting atom is not isolated, but
coupled to a bath of non-interacting electrons. The SIAM
Hamiltonian is [41]

Ĥ =
∑
kσ

εkĉ†
k,σ

ĉk,σ
+

∑
kσ

(Vkĉ†
k,σ

d̂σ + V ∗
k d̂†

σ ĉk,σ
)

+ Un̂d,↑n̂d,↓ + εd (n̂d,↑ + n̂d,↓), (2)

where the impurity is described by the fermionic annihilation
(creation) operators d̂ (†)

σ , the number operator n̂d,σ = d̂†
σ d̂σ ,

the impurity one-particle energy level εd and the on-site re-
pulsion U . The bath is described by the kinetic term ĉ(†)

k,σ
with

one-particle energies εk. The hybridization between the impu-
rity and the bath is given by Vk. The bath parameters jointly
determine the frequency-dependent hybridization function:

�(ν) =
∑

k

|Vk|2
iν − εk

. (3)

In this paper, we use the following hybridization function:

�(ν) = − iV 2

D
arctan

(
D

ν

)
, (4)

which corresponds to a flat density of states of the bath elec-
trons ρ(ε) = θ (D − |ε|)/(2D) with bandwidth D and Vk = V .
We will present results for V = 2, D = 10, and half filling,
i.e., with εd = −U/2.

III. PARQUET EQUATIONS

The parquet equations are a set of exact relations be-
tween different classes of two-particle vertices and between
the self-energy and the full two-particle vertex [4,5]. A good
introduction to the formalism is provided in Ref. [6]. Here we
only recall the equations, using the notations of Refs. [1,42–
44]. Before we introduce the equations themselves, we first
recapitulate some definitions to set the notations.
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A. One-particle quantities

The one-particle Green’s function in the Matsubara fre-
quency space Gσ (ν) is defined as the Fourier transform of the
(imaginary-time ordered) two-point correlation function:

Gσ (ν) = −
∫ β

0
dτeiντ 〈Tτ ĉσ (τ )ĉ†

σ (0)〉, (5)

with τ denoting the imaginary time, β ≡ 1/T the inverse
temperature, and ν = (2n + 1)π/β, n ∈ Z denoting the (dis-
crete) fermionic Matsubara frequencies. Through the Dyson
equation, we further define the self-energy �σ (ν),

Gσ (ν) = 1

G−1
0,σ (ν) − �σ (ν)

, (6)

where G0,σ (ν) is the Green’s function of the noninteracting
system:

G0,σ (ν) = 1

iν + U
2 − �(ν)

, (7)

where we have set the following model-dependent parameters
to values corresponding to half filling: For the Hubbard atom,
�(ν) vanishes, and the chemical potential is μ = U/2. For the
single-impurity Anderson model, we set the chemical poten-
tial to μ = 0 and the one-particle energy level to εd = −U/2.

B. Two-particle quantities

The two-particle Green’s function in Matsubara frequen-
cies is the Fourier transform of the (imaginary time ordered)
four-point correlator:

Gν1ν2ν3
σ1...σ4

=
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3 eiν1τ1+iν2τ2+iν3τ3

× 〈Tτ ĉσ1 (τ1)ĉ†
σ2

(τ2)ĉσ3 (τ3)ĉ†
σ4

(0)〉. (8)

In the above definition of the Fourier transform, the two-
particle Green’s function is dependent on three fermionic
Matsubara frequencies ν1, ν2, ν3. In the context of Bethe-
Salpeter equations (defined below in Sec. III C), it is more
convenient to parametrize two-particle quantities as a function
of two fermionic frequencies ν, ν ′ and one bosonic Mat-
subara frequency ω = 2nπ

β
, n ∈ Z. There are three important

conventions of this parametrization: the particle-hole (ph)
channel notation, where ω = ν1 + ν2; the particle-particle
(pp) channel notation, where ω = ν1 + ν3; and the transversal
particle-hole (ph) channel notation, where ω = ν2 + ν3. In the
parquet approach, it is necessary to transform between these
conventions using the so-called channel transformations out-
lined in Appendix A. The reason, as we will see in Sec. III D,
is that the parquet equation mixes vertex functions that are
represented in different frequency channel parametrizations.

In this paper, we use the SU(2) symmetry of the discussed
models, which allows us, together with spin conservation,
to reduce the number of spin components that need to be
computed to the following: Gσσσ ′σ ′ , which we will denote
by Gσσ ′ , and Gσ (−σ )(−σ )σ , which can be shown to be equal
to Gσσ − Gσ (−σ ). Furthermore, since Gσσ ′ = G(−σ )(−σ ′ ), we
only need to compute G↑↑ and G↑↓. We will proceed in a
similar manner for the vertex F (see below). From here on,

we will also drop the spin index from the one-particle objects
G0, G, and �, since G↑ = G↓.

The full two-particle vertex F is the connected part of the
two-particle Green’s function with “amputated legs.” In the
particle-hole channel, it is related to the two-particle Green’s
function through

Gνν ′ω
σσ ′ = G(ν)G(ν ′)δω0 − G(ν)G(ν + ω)δνν ′δσσ ′

− G(ν)G(ν + ω)F νν ′ω
σσ ′ G(ν ′)G(ν ′ + ω). (9)

Apart from channels stemming from different frequency
parametrizations (ph, pp, and ph), it is convenient to in-
troduce also linear combinations of spin components. The
following spin combinations will be used for vertices in the
ph frequency channel:

Fd = F↑↑ + F↑↓,

Fm = F↑↑ − F↑↓, (10)

which physically correspond to the density (d) and magnetic
(m) spin components.

The same vertex F can be represented in the particle-
particle channel frequency parametrization: F pp (see Ap-
pendix A for details). In the pp channel, the convenient spin
combinations are the following:

Fs = F pp
↑↑ − F pp

↑↓ , Ft = F pp
↑↑ , (11)

physically corresponding to the singlet (s) and triplet (t) spin
components. In the following, we will predominantly use the
spin-component notation, i.e., d/m/s/t , assuming that the d
or m spin components are always in the ph frequency channel
notation and the s or t spin components are always in the pp
frequency channel notation.

As we will see later (in Sec. III C), in the above four spin
combinations the Bethe-Salpeter equations decouple in the
spin variable.

C. Bethe-Salpeter equations

The full vertex F contains all diagrams irrespective of their
two-particle reducibility. The Bethe-Salpeter equations relate
the full two-particle vertex to sets of two-particle irreducible
diagrams. This is analogous to Dyson’s equation (6), however,
in the two-particle case the notion of irreducibility is not
unique. Instead of one Dyson equation, we have independent
BSEs in particle-hole and particle-particle channels. In the
ph channel, we have the equations for density and magnetic
components:

F νν ′ω
d = �νν ′ω

d − 1

β2

∑
ν1ν2

�
νν1ω
d χ

ν1ν2ω
0,ph F ν2ν

′ω
d , (12a)

F νν ′ω
m = �νν ′ω

m − 1

β2

∑
ν1ν2

�νν1ω
m χ

ν1ν2ω
0,ph F ν2ν

′ω
m ; (12b)

in the pp channel, we have the equations for the singlet and
triplet components:

F νν ′ω
s = �νν ′ω

s + 1

β2

∑
ν1ν2

F νν1ω
s χ

ν1ν2ω
0,pp �ν2ν

′ω
s , (12c)

F νν ′ω
t = �νν ′ω

t − 1

β2

∑
ν1ν2

F νν1ω
t χ

ν1ν2ω
0,pp �ν2ν

′ω
t . (12d)
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The above equations define four irreducible vertices �r ,
r = d/m/s/t that are irreducible in either the ph channel (r =
d/m) or pp channel (r = s/t). We define vertices reducible in
these channels simply as

�νν ′ω
d/m = F νν ′ω

d/m − �νν ′ω
d/m , (13a)

�νν ′ω
s/t = F νν ′ω

s/t − �νν ′ω
s/t . (13b)

The χ0’s are products of two one-particle Green’s functions
and are defined as follows:

χνν ′ω
0,ph = −βG(ν)G(ν + ω)δνν ′ , (14a)

χνν ′ω
0,pp = −β

2
G(ν)G(−ν − ω)δνν ′ . (14b)

The pair propagators (also called bare generalized suscepti-
bilities) χ0’s are diagonal in ν, ν ′, which means that the sum in
Eqs. (12) runs over only one fermionic Matsubara frequency
index. For convenience of actual numerical evaluations, we,
however, keep the double fermionic frequency dependence in
χ0’s.

Due to convenient parametrization of the frequency depen-
dence of the vertices, i.e., the ph channel for d/m and pp
channel for s/t , the BSEs (12) are diagonal both in the bosonic
frequency ω and in the spin components d/m/s/t .

D. Parquet equation

Through Eqs. (12) and (13), we defined reducible vertices
�d/m and �s/t in ph and pp channels, respectively. These ver-
tices correspond to different physical processes that happen
in the ph and pp scattering channels and are generated by
the BSEs (12). The parquet equation mixes these processes,
allowing for balance between contributions generated by all
of the BSEs (12). In a simplified way, the parquet equation can
be represented as the following sum of terms:

F = � + �ph + �ph + �pp, (15)

where �ph denotes contributions coming from �d or �m,
�ph contributions coming from �d/m, but in the ph frequency
parametrization, and �pp contributions from �s or �t (more
details can be found in Appendix A or in Ref. [6]). The first
summand, �, contains so-called fully two-particle irreducible
diagrams, i.e., contributions which cannot be generated by the
two-particle BSEs.

Since in the BSEs the reducible vertices �r are in different
frequency channel parametrizations, to sum the contributions
we have to transform them into a common parametrization.
The explicit form of the parquet equation for Fd is then the
following [42]:

F νν ′ω
d = �νν ′ω

d + �νν ′ω
d − 1

2�
ν(ν+ω)(ν ′−ν)
d

− 3
2�ν(ν+ω)(ν ′−ν)

m + 1
2�νν ′(−ω−ν−ν ′ )

s

+ 3
2�

νν ′(−ω−ν−ν ′ )
t , (16)

where �d is the density component of the fully irreducible
vertex. �d cannot be obtained from the BSEs and has to be
provided from outside the parquet scheme. In the examples
presented in Sec. VI, we either use the exact expression (it
is known for the Hubbard atom) or we use a weak coupling

FIG. 1. Iterative parquet scheme.

approximation for it. Equation (15) can be used to generate
equations analogous to Eq. (16) for Fm, Fs, and Ft . We provide
them explicitly in Appendix A.

E. Schwinger-Dyson equation

The last equation that belongs to the set of parquet equa-
tions is the SDE that relates the two-particle vertex F to the
self-energy

�(ν) = Un

2
− U

β2

∑
ν ′ω

F νν ′ω
↑↓ G(ν ′)G(ν ′ + ω)G(ν + ω),

(17)

where n is the average particle density and F νν ′ω
↑↓ = 1

2 (F νν ′ω
d −

F νν ′ω
m ) [follows from Eq. (10)].

F. Iterative parquet scheme

Assuming we know the fully irreducible vertex � (or
have a good approximation for it), the parquet equation (15)
together with the BSEs (12) and the SDE (17), as well as
the Dyson equation (6), applied iteratively, will generate all
the vertices for the model given by the Hamiltonian and G0:
{Fd/m, Fs/t , �d/m, �s/t , �d/m, �s/t } as well as the self-energy
� and the Green’s function G. The iterations are repeated until
the difference between consecutive values falls below a given
tolerance.

The input quantity that does not change in the iterations,
namely, the fully irreducible vertex �, is known exactly (even
analytically [40]) for the Hubbard atom and we use this exact
expression. For the SIAM, we use the so-called parquet ap-
proximation which sets � equal to the bare interaction U (it is
the lowest order diagram in �, the next order appearing in the
diagrammatic expansion of � is U 4). Explicitly written out in
spin components, the parquet approximation reads

�d = U, �m = −U, �s = 2U, �t = 0. (18)

In Fig. 1, we show how the actual iterated loop is imple-
mented in this paper. In the first cycle of the iteration, we
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either set �r = �r, Fd = U, Fm = −U, Fs = 2U, Ft = �t or
use previous results for smaller values of βU . After initializa-
tion, the BSEs (12) are evaluated and the reducible vertices
�r are obtained. Then, from the parquet equation (16) (for
all channels), the new F is computed and the irreducible
vertices �r are updated from (13). From the new F , the
self-energy � can be obtained from SDE (17) and the one-
particle Green’s function from (6). The self-energy update
does not have to happen in each iteration—depending on the
value of U , it might be faster to update it every five or ten
iterations. With updated F , �r , and G, the cycle consisting of
the nine equations is repeated until convergence is reached.
In this paper, to keep things simple, we limit convergence
acceleration to a linear mixing update to the reducible vertex,
�n+1 = α�′

n + (1 − α)�n with mixing parameter α, where
�n is the reducible vertex in iteration n and �′

n is the result of
applying a single cycle to �n.

We conclude this section with some comments on con-
vergence issues. First, the iterative parquet scheme is not
guaranteed to converge. Second, there are cases where the
iterative scheme leads to a false solution. This is the case,
e.g., for the Hubbard atom for large βU beyond the first
divergence of the irreducible vertex [45]. In this paper, we
do not address such cases and focus on examples and pa-
rameter regimes where the parquet scheme should converge
to the physical solution. Nevertheless, convergence can also
be influenced by other factors. The first numerical solution
for the Hubbard model on a 4 × 4 cluster [7] showed the diffi-
culty of achieving convergence, particularly when the crossing
symmetry (see Appendix A) was not obeyed. An important
factor in improving stability of the iterative scheme turned
out to be the inclusion of vertex asymptotics, i.e., a prediction
for values of the vertex that fall beyond the frequency range
used, either by introducing so-called kernels [8,10,44,46] or
by removing the asymptotic parts of vertices altogether in the
single-boson exchange reformulation [3,12]. In this paper, we
do not use asymptotics and do not suffer from convergence
problems mainly because we are able to use very large grids.
In the future, it might be important to include asymptotic, as
in Refs. [8,10,44,46] or [3,12], to improve stability but also to
avoid some technical issues that are addressed in Appendix F.

IV. QUANTICS TENSOR TRAINS

Numerical solution of the iterative parquet scheme in-
troduced in the previous section suffers from the curse of
dimensionality: the vertex functions have multiple frequency
(and in general also momentum) arguments. Discretizing
these multivariate functions on naive grids requires a number
of grid points that grows exponentially with the number of
function arguments, which therefore becomes very expensive
already for a moderate number of grid points in each argu-
ment. The solution to this problem that we propose is (i)
to represent each variable through a set of binary numbers
(hence quantics) corresponding to different length and energy
scales and (ii) to factorize the dependence on each argument
at each length and energy scale into a tensor train (TT), also
known as a matrix product state (MPS). If the problem has
some kind of scale separation, the resulting QTT is expected
to have a small maximum bond dimension. Since this is the

FIG. 2. Quantics representation and quantics tensor train of a
univariate function.

case in many physical problems, such an approach is poten-
tially very powerful. It has already been shown to reduce
computational costs significantly in several applications with
high-dimensional functions [20,21,31,39,47].

In this section, we introduce the definition of the QTT rep-
resentation, then present a method for efficient compression of
multivariate functions into a QTT, namely, the TCI. Finally,
we also introduce MPOs that are needed for computations
with the QTTs. These methods are valid for any multivariate
function and not specific to two-particle vertices.

In the remainder of the paper, the so-called grid parameter
R will be of central importance, where the three-dimensional
Matsubara frequency grid will consist of 23R grid points.
Hence, this parameter governs the (exponential) number of
points of the discretized grid and exponentially different
length scales in the system and thus determines the length
of the resulting QTT. This will become more clear in the
following sections.

A. Quantics tensor train representation

Before discussing the three-dimensional Matsubara fre-
quency case, let us introduce the QTT formalism for the
one-dimensional case for educational purposes. In the quan-
tics representation, a discrete function f (m) with m ∈
{0, . . . , M − 1} on a one-dimensional grid with M = 2R grid
points is instead seen as a 2 × 2 × ... × 2 (R times) tensor
Fσ1,...,σR (see Fig. 2), where each tensor index σ1, . . . , σR cor-
responds to a bit in a binary representation of m:

m = (σ1σ2 . . . σR)2 =
R∑

�=1

2R−�σ�, σ� ∈ {0, 1}, (19)

with the discussed grid parameter R. Now, each bit corre-
sponds to a distinct length scale of the system. The first bit
σ1 represents the coarsest length scale which splits the system
in halves, while the last bit σR reflects the finest length scale.
Hence, for continuous variables m defined on a specific inter-
val the grid parameter, R determines how exponentially dense
the grid gets, while for discrete variables like Matsubara fre-
quencies, R determines how exponentially large the grid gets.
In both cases, R specifies the (exponential) number of grid
points and a linear increase in R corresponds to an exponential
increase in the number of grid points.

This representation can be generalized to functions of
N > 1 variables by applying the binary representation to each
variable separately. For instance, a function f (x, y, z) of three
variables is represented as a tensor depending on 3R binary
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indices

Fx1,y1,z1,x2,y2,z2,...,xR,yR,zR

= f ((x1 . . . xR)2, (y1 . . . yR)2, (z1 . . . zR)2), (20)

and the L = 3R indices are relabeled σ1 = x1, σ2 = y1, σ3 =
z1, σ4 = x2, . . . , σL = zR. Note that indices belonging to dif-
ferent variables are interleaved, which leads to an index
ordering where all indices describing large length scales are
grouped to the left, and all indices describing small length
scales are grouped to the right. This tensor can then be fac-
torized into a TT, also known as a MPS, of the form

Fσ1,...,σL ≈
L∏

�=1

Mσ�

� = [M1]σ1
1α1

[M2]σ2
α1α2

· · · [ML]σL
αL−11, (21)

with implied summation over repeated indices. Each M� is
a three-leg tensor with local binary index σ� and virtual in-
dices α�−1, α�, and we define the bond dimension D� as the
number of values that index α� is summed over. Hence, M�

is a D�−1 × 2 × D� tensor. Generally, the bond dimensions
D� are truncated either at a fixed maximum bond dimension
Dmax or such that the factorization satisfies a specified error
tolerance ε. This truncated TT factorization can be performed
using singular value decomposition (SVD) or using the TCI
algorithm (see the next Sec. IV B).

Overcoming the curse of dimensionality now depends
on the maximum bond dimension Dmax = max�(D�), as the
tensors M have O(D2

maxR) elements. The bond dimension
required to reach a specified error tolerance ε is strongly
dependent on the structure of F . If F is not compressible, e.g.,
a random tensor, bond dimensions will grow exponentially
with L as Dmax ≈ 2L/2 and the factorization will thus not result
in an efficiency gain. Fortunately, many functions in physics
contain low-rank structures when factorized in their length
scales. The interleaved representation groups bits correspond-
ing to the same length scale, resulting in a highly compressed
representation with small Dmax [37,39].

B. Tensor cross interpolation

The TCI-based factorization is performed by sampling a
subset of the elements of the full tensor F . To be more specific,
the TCI algorithm takes as input a tensor F in the form of
a function returning the value Fσ1,...,σL at any given index
(σ1, . . . , σL ) [35,37,39]. The algorithm explores its structure
by sampling in a deterministic way and constructs a low-rank
approximation F̃ in the form of an MPS. The algorithm in-
creases the number of samples and the bond dimensions of the
MPS adaptively until the estimated error ε in the maximum
norm,

ε = ‖F − F̃‖∞
‖F‖∞

, (22)

is below a specified tolerance. Here, ‖ · ‖∞ denotes the maxi-
mum norm.

TCI is more efficient than the SVD-based factorization,
especially when the full tensor does not fit into the avail-
able memory [35,37,39]. SVD-based factorization requires
reading all elements of the tensor, leading to an exponential
growth of the computation time in R. In contrast, if the target

(a)

(b)

FIG. 3. (a) Decomposition of a tensor in MPO form. (b) Contrac-
tion of two MPOs A and B.

tensor or function is low rank, the computation time of the
TCI-based factorization is linear in R, leading to an expo-
nential speedup over the SVD [39]. We refer the reader to
Refs. [37,39] for more technical details, e.g., for information
on how the sampling points in the TCI algorithm are chosen.
In the following computations, TCI will only be used for
compressing the initial input vertices and functions. On a
more technical note, the crossinterpolate2 algorithm in
the TensorCrossInterpolation.jl library was used for
compressing the objects. More details on this specific algo-
rithm can be found in Sec. 8.3.1 in Ref. [37].

C. Matrix product operators

We use MPOs to perform operations on QTTs. As illus-
trated in Fig. 3(a), an MPO of length L has two physical legs
on each tensor. The MPO can be regarded as the factorization
of a full tensor of order 2L or as a linear operator acting on an
MPS of length L.

As we will see in later sections, many operations in QTT
can be implemented as the contraction of two MPOs, illus-
trated in Fig. 3(b). The exact contraction will result in an MPS
of large bond dimension DADB, where DA and DB are the
bond dimensions of the two input MPOs, respectively. Thus,
the bond dimension of the resulting MPO must be truncated
to some Dmax. The computational cost of a naive SVD-based
contraction followed by truncation scales O(D3

AD3
B).

In the present paper, we will deal with two distinct cases:
(a) DA = O(1)  DB (channel transformation) and (b) DA =
DB = Dmax (Bethe-Salpeter equation). For the former case (a),
the naive approach is efficient enough, with scaling O(D3

BL).
However, a more efficient scheme is necessary for case

(b). We use two algorithms: the fit algorithm fits new MPOs
to the MPO-MPO contraction [48], and the zip-up algorithm
combines contraction of core tensors with truncation of the
bond dimensions [49]. We typically combine these using the
zip-up algorithm to generate an initial guess for the fit algo-
rithm. If the resulting MPO is truncated to bond dimension
Dmax = DA = DB, the computational cost of both algorithms
scales as O(D4

maxL). We want to emphasize that in the cur-
rent implementation the combination of the two algorithms is
still SVD- and not TCI-based. Thus, TCI is only used in the
compression of the input functions and not in the MPO-MPO
contractions. However, in future work we plan on using TCI
for MPO-MPO contractions as well, since this is expected to
be computationally more efficient.
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FIG. 4. QTT representation for full vertex function.

V. PARQUET EQUATIONS IN QTT FORMAT

To evaluate the full set of parquet equations completely
within the QTT representation, we need to (i) represent
the vertex functions in the QTT form and (ii) decompose
Eqs. (12)–(17) into operations on QTTs. The latter can be
implemented in a straightforward way by employing funda-
mental operations described in the previous section, namely,
MPO-MPO contractions. In the following subsections, we
describe the quantics representation of vertex functions, check
their compressibility to QTTs, and discuss the implementation
of each step in solving the parquet equations. Two operations
are particularly important:

(1) Affine transformations that are represented by an MPO
with maximum bond dimension of O(1), needed in the par-
quet equation Eq. (16) for frequency channel transformations
of vertex functions (Sec. V B).

(2) Elementwise and matrix multiplications of two QTT
vertex objects for solving the BSEs (12) and SDE (17). In this
case, auxiliary MPOs are introduced substituting the MPSs
and then MPO-MPO contractions are applied (Sec. V D).

A. Quantics representation and compression of two-particle
vertex functions

In this paper, all functions represented in QTT format
are functions of bosonic and fermionic frequencies, which
are parameterized as ν = (2m − 2R + 1)π/β and ω = (2m −
2R)π/β, respectively. The discrete index m ∈ {0, . . . , 2R − 1}
is then decomposed into quantics bits as in Eq. (19), and bits
corresponding to different variables are then interleaved as
illustrated in Fig. 4.

The first step in using the QTT framework for solving
the parquet equations is to investigate the compressibility of
vertex functions in the above representation. We use the full
vertex in the density channel (Fd ) of the Hubbard atom for nu-
merical demonstration. The fermionic frequency dependence
of Fd at ω = 0 is shown for various temperatures in Fig. 5.
Note that in the Hubbard atom the results are not separately
dependent on temperature and U but only on their ratio βU ,
since there are no other energy scales [40]. Before we focus
on the scaling of bond dimension with temperature, let us
first look at the bond dimension along the QTT at βU = 1
for different grid sizes and tolerances set in TCI as shown
in Fig. 6. Moving inward from the first and last bonds, the
bond dimension grows exponentially as D� = min(2�, 2L−�),
which is the maximum bond dimension of an uncompressed
factorization and represents maximum entanglement between

FIG. 5. Absolute value of the full vertex in the density channel
Fd at ω = 0,U = 1 for the 16 innermost fermionic Matsubara fre-
quencies ν (′) = (2n(′) + 1)π/β for β = 1, 5, 10, 50.

these exponentially different length scales. In between, the
bond dimension then saturates at a maximum bond dimen-
sion Dmax, therefore indicating that the vertex structures are
indeed compressible. The maximum bond dimension Dmax is
between 80 and 400 and increases with decreasing tolerance
ε. Importantly, Dmax is nearly independent of the grid param-
eter R, an exponential increase in the number of grid points
[O(2R)] can be achieved for linear cost [O(R)] in runtime and
memory. These findings are consistent with earlier results on
the compressibility of vertices in Ref. [31].

For large temperatures, such as βU = 1 in the above
example, the dominating structures are the diagonal and an-
tidiagonal part of the vertex. For small temperatures, i.e.,
large βU , the antidiagonal vanishes and an additional cross

FIG. 6. Bond dimension D� at bond � for different tolerances
set in the TCI construction of the QTT of Fd in the interleaved
representation for β = U = 1. The different values of R correspond
to different grid sizes (23R grid points). The black line indicates the
exponentially growing bond dimension of the full rank QTT without
any truncation for R = 11.
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FIG. 7. Maximum bond dimension Dmax of the QTT of Fd for
different grid sizes and various tolerances set in the TCI construction
as a function of βU .

structure appears for one of the Matsubara frequencies equal
to ±π/β. The source and physical meaning of different struc-
tures in two-particle vertices have been discussed in Ref. [1].
For large βU , the vertex is large even in some places where
both Matsubara frequency arguments are large, as can be seen
in Fig. 5(d). All in all, the structure of Fd seems to be much
simpler at large temperatures than at small ones, which leads
us to expect an increase in bond dimension in QTT represen-
tation with increasing βU .

In Fig. 7, we show Dmax of the QTT representation of Fd for
various values of βU , different tolerances set in TCI, and var-
ious grid sizes. As expected from earlier considerations, the
maximum bond dimension is quite low at high temperatures
and steeply grows with βU until βU ≈ 5.1, where it reaches
a maximum. Thereafter, the bond dimension decreases again,
which does not conform with our expectations. The maximum
can be related to the first global divergence of the irreducible
vertex �d [40,50–54], which occurs at βU = 5.13715 and is
indicated by a dashed line in the plot. Although the irreducible
vertex �d diverges at this value of βU , there is no phase
transition connected with the divergence and Fd remains finite.
The presence of a maximum in Dmax precisely at the first
global divergence of �d is very interesting from two different
perspectives. First, we see that Dmax stops growing with βU
and, thus, calculations for temperatures ranging from very
low to very high are manageable within the QTT framework
in this case. Second, although the full vertex Fd does not
contain singularities, we see fingerprints of this first global
divergence of �d in the amount of length scale entanglement
in the system represented by the maximum bond dimension.
A deeper investigation of this behavior is left for future work.

The vertex functions in other channels show a similar
scaling behavior as Fd (not shown here), and hence it can
be concluded that vertex functions of the Hubbard atom are
nicely compressible with a maximum bond dimension of
around 100. Together with the logarithmic scaling in grid
size, this indicates that QTCI can indeed overcome memory

and computational bottlenecks when dealing with two-particle
vertices.

The Hubbard atom is quite an extreme limit of the Hubbard
model and one could think that the high compressibility is re-
lated to structures present in the vertices that are limited to this
atomic limit. However, this is not the case: Prominent struc-
tures in the frequency dependence of vertices are well-known
to be present in the SIAM (see Sec. VI below for an example),
as well as in the local approximation of the Hubbard model
(in dynamical mean-field theory) [42,52]. These structures
arise specifically from certain types of diagrams [42,52] and
also from insertions from one scattering channel to another
through the parquet equation (15). For models whose vertices
depend on momentum and/or orbital indices, the structures
may become more complicated. Nevertheless, their origin is
well understood and we expect the vertices to generically have
structures for a large range of parameters and models. As long
as these structures show some kind of scale separation, they
will be QTT compressible, hopefully with still manageable
bond dimensions.

B. Channel transformations

Each two-particle reducible vertex � is parameterized as a
function of two fermionic frequencies ν, ν ′ and one bosonic
frequency ω. Before performing the sum in the parquet equa-
tion (16), it is necessary to perform transformations such
as �νν ′ω

d → �
ν(ν+ω)(ν ′−ν)
d to translate between the frequency

parametrizations corresponding to different channels [6], as
discussed in Sec. III D and Appendix A. In QTT format,
transforming the function arguments is a nontrivial task, since
each argument is split into bits across different tensor indices.
Affine transformations such as the channel transformations
needed here can be expressed as MPOs with small bond
dimensions, as described in Appendix B. The QTT implemen-
tation of channel transformations is introduced explicitly in
Appendix C. As illustrated in Fig. 8(a), these MPOs are then
applied to vertex QTTs, followed by truncation of the QTT to
the specified bond dimension.

In this process, there are two distinct sources of error: the
finite frequency box and the QTT truncation. As an example,
Fig. 9(a) shows the absolute normalized error (||�Fpp|| :=
|Fpp,trafo − Fpp,exact|/||Fpp,exact||∞) of a transformation of the
full vertex F in the ph channel parametrization to the pp
channel parametrization (denoted as Fpp) in the ν, ν ′-plane. In
two triangular regions, the upper right and lower left corner,
errors are large due to the finite size of the frequency box,
and are not caused by the QTT compression. These points
correspond to grid points outside of the original frequency box
that were transformed into the box by the ph to pp transfor-
mation. The missing data there can be either replaced by zeros
(which corresponds to open boundary conditions of the affine
transformation; see Appendix B) or by values extrapolated
from another part of the frequency box (e.g., by using periodic
boundary conditions for the affine transformation, as in Ref.
55, footnote 14]). We checked that for the examples shown
in this paper, the average difference in error between the two
options is small. We used periodic boundary conditions for
all results presented in the paper. For the half-filled Hubbard
atom, this leads to better representation of missing values on

023087-8



TWO-PARTICLE CALCULATIONS WITH QUANTICS … PHYSICAL REVIEW RESEARCH 7, 023087 (2025)

(b) Bethe–Salpeter equation

(a) Channel transformation

1. 1.

2.

3.

4.

FIG. 8. QTT implementation of the Bethe-Salpeter equations as
tensor networks. (a) Channel transformation of a vertex in QTT form
(blue) using an affine transform MPO (orange). This is described in
more detail in Appendixes B and C. (b) The Bethe-Salpeter equa-
tions are evaluated from QTT vertices and are implemented using
multiple MPO-MPO contractions (see text). The contraction itself is
done in four steps: (1) Both QTTs to be contracted are converted
to MPOs. (2) The MPOs are contracted to a single MPO. (3) The
duplicate ω′′

� legs are removed. (4) The tensors with ν� and ν ′′ legs
are factorized between their local legs, reaching the original QTT
form.

the diagonal due to high symmetry of the full vertex in this
case. In general, the choice of boundary conditions can be
adapted to the problem at hand. Since the error can easily
be reduced and shifted to higher Matsubara frequencies by
increasing the size of the frequency box exponentially through
increasing R, we do not expect the choice of boundary condi-
tions to have significant effect on the error.

In the remaining diagonal region in between the two yellow
corners in Fig. 9(a), the error is entirely due to the tensor train
approximation. At a bond dimension of Dmax = 100, the error
is smaller than the error tolerance of ε = 10−5 everywhere,
meaning that the crossing symmetry is also fulfilled up to this
error.

Since this operation consists of a single MPO-MPS con-
traction, it is expected to scale as O(D3

maxL) = O(D3
maxR)

provided that the bond dimension is independent of R. We
verify this explicitly in Figs. 9(b) and 9(c). Compared to
increasing resolution, decreasing error tolerances and thus
increasing Dmax is more expensive.

C. Parquet equation

The parquet equation (15) with its frequency shifts as in
(16) can be solved entirely in QTT by first converting all the
vertex functions �,� to the required channel as described in

FIG. 9. (a) Absolute normalized error ||�Fpp|| := |Fpp,trafo −
Fpp,exact|/||Fpp,exact||∞ of the ph to pp channel transformation of F at
ω = 0 in the fermionic Matsubara frequency plane for a Dmax = 100
and R = 7, β = U = 1, ε = 10−8. (b), (c) Runtime of the ph to pp
channel transformation of F for various maximum bond dimensions
and grid size parameters R with β = U = 1. The dashed lines in-
dicate (b) the cubic runtime increase with Dmax and (c) the linear
increase by increasing R, which corresponds to an exponential in-
crease in the number of grid points.

the previous section, then performing their summation and
subtraction as shown in Ref. [37, Sec. 4.7]. The resultant
QTTs for F [and subsequently � obtained from (13)] are
then compressed to a maximum bond dimension Dmax in
O(D3

maxR) computation time. Hence, the parquet equation has
the same O(D3

maxR) computational cost as channel transfor-
mations. Further investigation of error and runtime scaling can
be found in Appendix D.

D. Bethe-Salpeter equation

The costliest part of the iterative parquet scheme are the
Bethe-Salpeter equations (12), where two infinite Matsubara
sums have to be performed. These can be implemented as a
sequence of matrix multiplications as (�χ0)F , where χ0 is
treated as a vertex object with two fermionic frequency axes
and one bosonic frequency axis. At each multiplication step,
we have to compute the product of two vertex functions A and
B as

Cνν ′′ω =
∑
ν ′

Aνν ′ωBν ′ν ′′ω. (23)

To express this summation as matrix multiplication, we intro-
duce dummy indices ω′ and ω′′, such that

Cνν ′′ω =
∑
ν ′ω′

Ãνω
ν ′ω′ B̃ν ′ω′

ν ′′ω′′
∣∣
ω=ω′′ , (24a)

Ãνω
ν ′ω′ := Aνν ′ωδω,ω′ , (24b)

B̃ν ′ω′
ν ′′ω′′ := Bν ′ν ′′ω′

δω′,ω′′ , (24c)

where |ω=ω′′ denotes the restriction of the result to ω = ω′′.
Note that Eq. (24a) has the structure of a matrix multiplica-
tion in the combined index (ν ′, ω′). Thus, this equation can
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FIG. 10. (a) Dependence on Dmax of the maximum absolute
normalized error ||��d ||∞ := ||�d,BSE − �d,exact||∞/||�d,exact||∞ of
the BSE with QTCI for the reducible vertex �d compared to the
exact values for various grid sizes, with U = β = 1 and ε = 10−10.
The dashed lines indicate the results from the dense grid calculation
without QTCI. (b), (c) Runtime of a single evaluation of the BSE for
�d for various maximum bond dimensions and grid size parameters
R with β = U = 1. The dashed lines indicate (b) the quartic runtime
increase with Dmax and (c) the linear increase by increasing R, which
corresponds to an exponential increase in the number of grid points.

be evaluated in QTT format through standard MPO-MPO
contraction, as illustrated in Fig. 8(b). For numerical com-
putations, and thus also for the QTT approach, the infinite
Matsubara sums have to be truncated. The number of Mat-
subara frequencies taken into account is governed by the
chosen Matsubara grid, containing 2R points in each direction.
Introducing dummy indices has a runtime and memory cost of
O(D2

maxR), which is much smaller than the cost of other steps
in the algorithm.

After each MPO-MPO contraction, the bond dimensions
are truncated to Dmax. If all MPOs are truncated to Dmax, the
computational cost of each contraction is expected to scale as
O(D4

maxR) as described in Sec. IV C, which is more expensive
than the channel transformation for large Dmax.

We now conduct numerical tests to verify the accuracy
of the operation and the scaling of the computational cost.
Figure 10(a) shows the dependence on Dmax of the max-
imum absolute normalized error (||��d ||∞ := ||�d,BSE −
�d,exact||∞/||�d,exact||∞) [cf. Eq. (22)] of the QTT implemen-
tation of the BSE in the density channel for various grid sizes.
The dashed lines indicate the results applying these matrix
multiplications for the full numerical data and without the
compressed QTTs. The error of these dense grid calculations
is due to the finite size of the grid and, thus, caused by the
truncated Matsubara sum. The results can be improved by
increasing the grid size.

For the dense grid calculations, the improved results come
at high cost since increasing the grid parameter R leads to an
exponential increase in memory and computational cost. By
contrast, when using QTTs the memory and computational

cost only increase linearly with R, which can be observed in
Fig. 10(c), where the linear dependence of the runtime of the
BSE on R is shown for different maximum bond dimensions.

Moreover, it can be observed that the QTT BSE errors
converge to the box results. Interestingly, for larger grid sizes,
slightly larger Dmax are needed to reach the same error level
as in the case of smaller boxes. However, a maximum nor-
malized error <10−3 can be easily reached using QTTs for
a still reasonable bond dimension of 200. Without the use
of QTTs, this would correspond to calculations with objects
of 8 × 23×12 � 5.5 × 1011 bytes, for which multiple nodes
on a cluster would need to be occupied. With the current
SVD-based QTT matrix multiplication implementation the
BSE operation only takes about 400 seconds on a single 512
GB node (equipped with two AMD EPYC 7713 processors)
without parallelization. The bottleneck of performing the BSE
is, as expected, the quartic dependence on Dmax, which can
be observed in Fig. 10(b). Overall we numerically verified
O(RD4

max) computational cost for the BSE using QTTs. Since
the error of the result of the BSE is bound by the grid size,
QTTs provide an efficient way to overcome this bottleneck.

E. Schwinger-Dyson equation

Similarly to the BSE evaluation, two infinite Matsubara
sums have to be performed in the SDE in Eq. (17). Hence,
qualitatively similar scaling with Dmax and R to the BSE case
are expected. This is indeed the case. The results are presented
in Fig. 16 in Appendix E.

F. Initialization and update strategy

Let us briefly discuss how the iterative parquet calcula-
tions are performed in practice. We start by compressing
the initial inputs G0 and the exact fully irreducible ver-
tices �r with TCI, where in the Hubbard atom case the
exact �r is taken as input and in the SIAM case we make
use of the parquet approximation (�d = U,�m = −U,�s =
2U,�t = 0). We then set �r = �r, Fd = U, Fm = −U, Fs =
2U, Ft = �t , G = G0,�r = 0, where the QTT representation
for the input full vertices Fr = U can easily be obtained with
or without TCI since this can be represented by a QTT of
bond dimension one. Then, the right sides of the four BSEs
are computed using (SVD-based) the MPO-MPO contractions
that were discussed in Sec. IV C. The output of the BSEs is
then linearly mixed with the QTTs of the input �r , resulting
in updated QTT approximations of the reducible vertices �r .
These updated �r QTTs are then used as input in the parquet
equations; as output, the QTT representations of �r and Fr

are updated. As a last step, the QTT representation of the
self-energy is updated by solving the SDE in QTT format. The
updated QTT vertices and self-energy are then used as new
input in the next iteration step of the iterative parquet scheme.

VI. RESULTS OF SELF-CONSISTENT CALCULATIONS

With all the components from the previous section in place,
the parquet equations can now be iteratively solved within the
developed two-particle QTT framework for our two test cases:
the Hubbard model in the atomic limit and the single-impurity
Anderson model.
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FIG. 11. (a) Maximum absolute normalized error ||��d ||∞ :=
||�d,iterative-parquet − �d,exact||∞/||�d,exact||∞ of the iterative parquet
scheme with QTCI for the irreducible vertex �d compared to the
exact values for various grid sizes (23R grid points) in the case of
U = β = 1, plotted (a) as a function of Dmax after 30 iterations, and
as a function of iteration number for (b) Dmax = 100 and (c) Dmax =
200. Dashed lines indicate the results from the dense grid calcula-
tion without QTCI. (d) The maximum absolute normalized error of
�d , shown close to the first divergence, for β = 1.55,U = 2.3 and
Dmax = 100, up to a very large number of 2600 iterations.

A. Hubbard atom

The atomic limit of the Hubbard model gives rise to rich
two-particle correlations giving insight into strong-coupling
limit of the Hubbard model [1,40,51]. This atomic limit offers
considerable simplification, as the vertex functions are ana-
lytically known and become independent of momentum [40].
Therefore, the Hubbard atom serves as an ideal first test case
for exploring two-particle properties in strongly correlated
electron systems using the QTT framework.

Following the iterative parquet scheme outlined in Fig. 1,
we start from the exact fully irreducible vertices �r , set �r =
�r, Fd = U, Fm = −U, Fs = 2U, Ft = �t , G = G0, and use
TCI to efficiently compress the data into QTTs. We then iter-
ate the four BSEs, the parquet equation, and the SDE in QTT
format by means of the discussed MPO operations, which
leads to quick convergence of the results for β = U = 1.

Figure 11(a) shows the maximum absolute normalized er-
ror in �d compared to the exact result after 30 iterations of
the iterative parquet cycle with a set tolerance of 10−10 in
the initial TCI. We can now disentangle the two sources of
error—the finite size of the discrete frequency grid, corre-
sponding to the error in the respective dense grid calculations

indicated by dashed lines, and the QTT approximation. The
error due to the QTT approximation for a specified maximum
bond dimension can be identified as the difference between
the QTT and the dense grid results. Remarkably, the QTT
errors quickly converge toward the dense grid results, where
larger bond dimensions are needed to reach lower errors for
larger grids, e.g., in the case of R = 9 already with Dmax =
180, the error from the QTT approximation de facto van-
ishes, leading to the same result as the dense grid calculation.
However, the difference is that in the dense grid calculations
objects containing 23R � 1.34 × 108 data points need to be
stored, while the QTTs stored for these parameters consist
only of ∼8.5 × 105 elements leading to a compression ratio
of O(102), remarkably, without any loss of accuracy.

If we allow for a small loss of accuracy, even more impres-
sive compression ratios can be achieved, while at the same
time reaching very low errors. For instance, it can be observed
that already at a bond dimension of 100 maximum normalized
errors, <10−3 can be achieved. In the case of R = 11, this
corresponds to a compression ratio of O(104), leading only
to a tiny fraction of the required memory occupation in com-
parison to the dense grid calculations. Thus, we observe that
the outlined framework can be used to efficiently solve the
parquet equations in the compressed QTT format.

In Figs. 11(b) and 11(c), we show the maximum normal-
ized errors for various grid sizes with respect to the iteration.
At Dmax = 100, (b) the dense grid results (dashed lines) are
only up to R = 7 exactly reproduced, while the errors of larger
grid calculations level off below 10−3 in the vicinity of each
other. Furthermore, we see that for larger grids slightly larger
maximum bond dimensions are required to obtain the same
level of error. In comparison, at Dmax = 200 (c) the QTT
calculations converge toward the resulting dense grid errors
also up to R = 9.

Next, we show that computations can also be performed
for a more challenging case with the parameters β =
1.55,U = 2.3, which are chosen in the same way as in
Ref. [13]. This case is interesting since βU = 3.565 is very
close to the point, where the irreducible vertex in the density
channel diverges (βU ≈ 3.628) [45,56–60]. We show the re-
sults of these calculations in Fig. 11(d) for a maximum bond
dimension Dmax = 100, where the maximum normalized error
of �d is shown with respect to the iteration. Since the param-
eters are very close to the first divergence line, we use a small
mixing parameter α = 0.01, leading to convergence only after
2600 iterations. In accordance with (b), we observe that in
the case of R � 6 the error plateaus at decreasing levels for
increasing R, which is due to the increased box size reflect-
ing the results from the dense grid calculation. However, for
R � 7 the situation changes, where the leveled-off errors are
closer together. This means that the error is now governed by
the QTT approximation (i.e., by Dmax) and not by the finite
box size anymore. Still, it can be seen that already a maxi-
mum bond dimension of 100 is sufficient to reach absolute
normalized errors <10−3 for larger values of R, similar as in
(b).

The above analysis demonstrates that during BSE it-
erations, errors due to the QTT representation do not
accumulate—if they did, the solid lines in Figs. 11(b) and
11(c) would slope upward with increasing iteration number.
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FIG. 12. Runtime of a single iteration of the iterative parquet
scheme for various maximum bond dimensions and grid size pa-
rameters R in the case of β = U = 1. The dashed lines indicate
(a) the quartic runtime scaling with Dmax (governed by the BSEs)
and (b) linear increase with R.

Instead, the error saturates at a value governed by the max-
imum of the error due to the Matsubara sum truncation and
the initial QTT approximation. The accuracy of the results
can be improved systematically by increasing the maximum
bond dimension. In principle, this can also be done during
the course of the BSE iterations if these generate structures
of increasing complexity, but that was not necessary for the
calculations presented here.

Our calculations were performed on a single 512 GB node
on a cluster without parallelization, where in Fig. 12 the
runtime of a single iteration of the iterative parquet scheme is
shown. For the dense grid calculations, performing the same
iterative parquet cycle was possible only up to R = 9 due
to the exponentially increasing memory demand. In contrast,
using the QTT approach, calculations for R = 11 were easily
carried out on this single node without parallelization. This
demonstrates the advantage of QTTs, where memory occu-
pation and operations scale logarithmically with increasing
resolution [see Fig. 12(b)], in contrast to the rapid growth
in memory and computational costs encountered in standard
methods. This allows for efficient computation on large grids,
providing a significant advantage over dense grid implemen-
tations.

B. Single-impurity Anderson model

After solving the parquet equations for the simplified Hub-
bard atom case, we extend the QTT framework to the more
complex SIAM, where a Hubbard atomlike interacting site
is coupled to a bath of noninteracting electrons. Using the
parquet approximation in which the fully irreducible ver-
tex is approximated by the bare interaction (�d = U,�m =
−U,�s = 2U,�t = 0), we iteratively evaluate the four BSEs
(12), the parquet equation (15), and the SDE (17) with QTTs.
Starting from �r = �r, Fr = �r, G = G0, we decompose the
relevant functions into QTTs using TCI and then make use
of the discussed MPO operations to iteratively solve the par-
quet equations. To ensure full convergence, we perform 60
iterations with a linear mixing α = 0.4. The results presented
below were obtained for β = 10, U = 1, V = 2, D = 10, and
half filling, i.e., with εd = −U/2. For these parameters, the
SIAM is in the weakly correlated regime, where the par-
quet approximation still holds. We compare our results with
reference data obtained for the parquet approximation with
the state-of-the-art parquet equations implementation on large

FIG. 13. Irreducible vertex �d of the reference data (a) com-
pared to the iterative parquet approximation calculations for R =
13, Dmax = 200 (b) for β = 10,U = 1,V = 2, D = 10, ε = 10−6,
and a mixing of 0.4. (c), (d) The maximum normalized error of �d

(||��d ||∞ := ||�d,iterative−parquet − �d,ref ||∞/||�d,ref ||∞) with respect
to the reference data is shown (c) as a function of the maximum bond
dimension Dmax and (d) dependent on the iteration for Dmax = 200,
where dashed lines indicate the obtained errors from dense grid
calculations.

equidistant frequency grids of Ref. [3] using the single- and
multiboson exchange formulation [12].

Figure 13(b) shows the irreducible vertex �d at ω = 0 cal-
culated for R = 13 and a maximum bond dimension Dmax =
200, which is in good agreement with reference data in (a). In
(c), we show the maximum normalized error of �d obtained
from the QTT calculations in comparison to the reference data
depending on the maximum bond dimension for various grid
sizes. In agreement with the results for the Hubbard atom,
it can be observed that the errors of the QTT calculations
converge toward the results of the dense grid calculations,
which are indicated by dashed lines. Like in the Hubbard atom
case, we exactly reproduce the dense grid results at R = 9 and
Dmax = 180, leading to a O(102) compression ratio de facto
without any loss in accuracy due to the QTT approximation.
Moreover, since these calculations were performed up to R =
13, very large compression ratios of O(105) can be reached,
while obtaining a maximum normalized error <10−3. In (d),
the maximum normalized error with respect to the iteration for
Dmax = 200 can be observed. We show that for larger grids
more iterations are needed to converge due to approaching
smaller errors.

Finally, let us mention that the performed calculations for
R = 13 would correspond to dense grid calculations with
multiple objects of the size of 8 × 23×13 � 4.4 × 1012 bytes.
Instead of the necessity of engaging multiple nodes and mak-
ing use of parallelization for the dense grid calculations, using
the QTT framework it was possible to perform these cal-
culations on a single node without parallelization. Applying
this approach allowed us to obtain maximum normalized er-
rors <10−3, while using only a tiny fraction of the memory
required for the corresponding dense grid computations. This
shows the computational advantage of the QTT approach.
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C. Technical limitations

In our calculations, there are two main sources of error:
(1) the finite size of the discrete Matsubara frequency grid
and (2) the QTT approximation, which is governed by the
maximum bond dimension. The finite grid size determines
how accurately we can evaluate the BSEs and SDE, as it
controls the truncation of the infinite Matsubara sums. On the
other hand, the QTT approximation dictates how accurately
the data can be represented.

The combined QTT and TCI approach exhibits logarithmic
scaling in both memory and computational costs relative to
the grid size, enabling the potential to handle very large grids
(e.g., R = 20). While this is theoretically feasible, our explicit
calculations for the Hubbard atom show that for such large
values of R, the error increases significantly compared to the
smaller grid sizes used in this study. This issue is not inherent
to the method itself but arises due to the current imple-
mentation of MPO-MPO contractions, which relies on bond
dimension truncation via SVD. The SVD truncation suffers
from a loss of accuracy, such as round-off errors, because the
Frobenius norm of the vertex functions diverges at large R due
to a constant term in the frequency domain. This limitation
can be addressed in future work by switching to a CI-based
truncation approach [37]. For more details on this technical
aspect, we refer readers to Appendix F. Alternatively, the
vertex asymptotics can be explicitly removed from parquet
equations as in Ref. [12] or [10].

Finally, it is important to note that the maximum bond
dimension directly governs the accuracy of the QTT approx-
imation, as it reflects how compressible the data are. Large
bond dimensions can significantly increase computational
costs, making them the primary bottleneck for scaling up the
calculations.

VII. CONCLUSION AND OUTLOOK

This paper represents a large step forward in solving many-
body problems with quantum field theory methods in QTT
representations. The chosen example, the self-consistent so-
lution of parquet equations, is a challenging one, requiring
both efficiency in constructing the QTT representation of two-
particle vertices and in evaluation of matrix multiplications
and variable shifts within this representation. At the same
time, the parquet equations for the simplest model, the Hub-
bard atom, can be solved analytically, allowing for careful
benchmarking and assessment of the performance at each step
of the solution separately. In this paper, we have numerically
shown that the QTT representation of the vertex frequency
dependence is suitable for solving the parquet equations and
that, together with TCI, it leads to only logarithmic scaling
in the grid size and with fourth power in the maximum bond
dimension. For the two examples of Hubbard atom and SIAM,
we observed that the bond dimension of ∼100–200 is enough
to obtain the solution with high accuracy. For the case of
Hubbard atoms, we see a saturation (or even decrease) of the
bond dimension with increasing the inverse temperature β.
We also expect a saturation or only slow growth of the bond
dimension with β in more general cases, as conjectured in Ref.
[34].

The naïve iteration of the parquet equations is difficult to
converge in some regimes, cf. Sec. III F. While this prob-
lem is almost orthogonal to questions of representation and
compression of the vertices, QTTs offer potential synergies:
In particular, the greatly reduced size of QTT vertices may
enable a solver to keep a convergence history and use non-
linear mixing schemes, which have been shown to stabilize
convergence in Hartree-Fock [61] or quasi-Newton solvers,
which have been able to access previously hidden solutions in
self-consistent diagrammatic theories [62].

Although for explicit testing we have chosen models
having no other degrees of freedom than frequencies (no mo-
mentum or orbital dependence), the dissection of the parquet
equations solver into operations on QTTs—TCI compression
and MPO-MPO contractions—is general and the extension to
lattice models is straightforward. All results presented here
were obtained on a single core with 512 GB memory and
the grid sizes in each frequency variable were up to 220. This
high compressibility of the frequency dependence of vertex
functions can in the future be exploited (i) to solve parquet
equations for lattice systems with high momentum resolution
and orbital degrees of freedom needed to address material
properties (see Appendix G for a brief discussion of how to
deal with such additional degrees of freedom) and (ii) to apply
QTCI to other vertex-based methods, such as the functional
renormalization group (fRG) [63–65]; ladder extensions [42]
or fRG extensions [66] of dynamical mean-field theory (pos-
sibly using as input results for the local vertex obtained using
the numerical renormalization group [2,67,68]), embedded
multiboson exchange methods [69], or the Migdal-Eliashberg
theory in ab initio calculations [70,71].

On a more general note, two-particle objects are central
in many more applications involving interacting electrons:
In particular, the two-electron integrals [i j|kl] are central
to quantum chemistry, whereas the renormalized interaction
Wi jkl is one of the main ingredients of GW [72]. Neither of
these objects have the intricate three-frequency structure of
the vertex F , however, they do depend on four orbital (spatial)
indices. Handling this dependence is usually the main compu-
tational bottleneck in self-consistent field computations, even
with sophisticated mitigation techniques [73]. The present
paper offers a blueprint for applying QTTs to these methods
and is a promising topic for future study.
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APPENDIX A: PARQUET EQUATION AND FREQUENCY
CONVENTIONS

The parquet equation (15) gives the full vertex F as a
simple sum of the fully irreducible vertex � and vertices re-
ducible in the ph, pp, and ph channels. The reducible vertices,
however, are represented in their “channel native” frequency
parametrization. After applying the parametrization changes
and collecting the spin components, the final expressions are
linear combinations of different spin components and fre-
quency shifted arguments. For Fd , see Eq. (16), and for the
remaining three spin combinations we have

F νν ′ω
m = �νν ′ω

m + �νν ′ω
m − 1

2�
ν(ν+ω)(ν ′−ν)
d + 1

2�ν(ν+ω)(ν ′−ν)
m − 1

2�νν ′(−ω−ν−ν ′ )
s + 1

2�
νν ′(−ω−ν−ν ′ )
t , (A1a)

F νν ′ω
s = �νν ′ω

s + �νν ′ω
s + 1

2�
νν ′(−ω−ν−ν ′ )
d − 3

2�νν ′(−ω−ν−ν ′ )
m + 1

2�
ν(−ν ′−ω)(ν ′−ν)
d − 3

2�ν(−ν ′−ω)(ν ′−ν)
m , (A1b)

F νν ′ω
t = �νν ′ω

t + �νν ′ω
t + 1

2�
νν ′(−ω−ν−ν ′ )
d + 1

2�νν ′(−ω−ν−ν ′ )
m − 1

2�
ν(−ν ′−ω)(ν ′−ν)
d − 1

2�ν(−ν ′−ω)(ν ′−ν)
m . (A1c)

The origin of the need for frequency shifts lies in the inher-
ent incompatibility of the parquet equation viewpoint and the
BSE viewpoint. In the BSE, we choose the frequency and spin
parametrizations so we can eliminate at least one frequency
and spin sum. This optimal parametrization is, however, dif-
ferent for generating ph- and pp-reducible diagrams. In the
parquet equation, on the other hand, we need all vertices in the
same frequency parametrization, hence the need for frequency
channel transformations.

Additionally, we also need a transformation between ph
and ph representations to obtain �ph. This transformation
exploits the so-called crossing symmetry relation between the
ph and ph frequency channels.

1. Parquet picture

To have a closer look at where the frequency shifts orig-
inate, let us first extend the frequency dependence of each
vertex by including a fourth fermionic Matsubara frequency
ν4, i.e., a frequency related to the fourth time variable in
Eq. (8). It would multiply the time 0 in the exponent, so it
is obviously redundant and given by the energy conservation
ν1 + ν2 + ν3 + ν4 = 0. Let us reintroduce the four index no-
tations for the spin variable and use the following combined
notation (as in e.g. Ref. [6]):

F (1, 2, 3, 4) = Fσ1σ2σ3σ4 (ν1, ν2, ν3, ν4). (A2)

Then the parquet equation (15) is simply

F (1, 2, 3, 4) = �(1, 2, 3, 4) + �ph(1, 2, 3, 4)

+ �ph(1, 2, 3, 4) + �pp(1, 2, 3, 4). (A3)

In this notation, the crossing symmetry of the full vertex is
simply

F (1, 2, 3, 4) = −F (1, 4, 3, 2) = −F (3, 2, 1, 4) (A4)

and corresponds to exchanging variables of the two creation
(annihilation) operators in the expectation value in Eq. (8) (in
the language of diagrams one calls it exchanging two incom-
ing or two outgoing lines). One can show that the reducible

vertex in the pp channel is also crossing symmetric (and
hence also the irreducible since � = F − �). The crossing
symmetry transformation applied to the ph channel, however,
gives only the following relation:

�ph(1, 2, 3, 4) = −�ph(1, 4, 3, 2). (A5)

In the four frequency notations, the BSEs have the follow-
ing form:

F (1, 2, 3, 4) = �ph(1, 2, 3, 4) + �ph(1, 2, 3, 4), (A6a)

�ph(1, 2, 3, 4) = �ph(1, 2, 5, 6)G(6, 7)G(8, 5)F (7, 8, 3, 4),

F (1, 2, 3, 4) = �pp(1, 2, 3, 4) + �pp(1, 2, 3, 4),

�pp(1, 2, 3, 4) = 1
2�pp(1, 5, 3, 6)G(6, 7)G(5, 8)F (7, 2, 4, 8),

(A6b)

where the summation over repeated arguments (5,6,7, and 8)
is implied and we also used a two-frequency two-spin notation
for the one-particle Green’s function G(1, 2) = Gσ1σ2 (ν1, ν2).
This representation reveals the true difference between the ph
and pp BSEs—the Green’s functions connect the vertices dif-
ferently, i.e., different frequency arguments are summed over.
Practical evaluation of these equations, however, requires the
introduction of two different three-frequency (two fermionic,
one bosonic) parametrizations. These parametrizations are
sometimes called channel native.

2. Bethe–Salpeter picture and channel native description

Following Ref. [40], in this paper we use the following
frequency convention for the ph and pp channels:

ph :ν1 = −ν, pp :ν1 = −ν,

ν2 = ν + ω, ν2 = −(ν ′ + ω),

ν3 = −(ν ′ + ω), ν3 = ν + ω,

ν4 = ν ′. ν4 = ν ′. (A7)

Applying the above parametrizations to Eqs. (A6) and addi-
tionally introducing the d/m/s/t spin combinations leads to
Eqs. (12). Now, however, we need channel transformations
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(frequency shifts) to evaluate the parquet equation. We need F
both in the ph and pp notations for the d/m and s/t channels,
respectively. The channel transformations can be derived by
going back and forth from three frequency to four frequency
representations, e.g.,

Fpp(ν, ν ′, ω) = Fpp(−ν1, ν4, ν1 + ν2)

= Fph(−ν1, ν4,−ν2 − ν4)

= Fph(ν, ν ′,−ω − ν − ν ′), (A8)

from which we deduce

ph −→ pp,

(ν, ν ′, ω) −→ (ν, ν ′,−ω − ν − ν ′). (A9)

To use the crossing symmetry relation (A5), we also need the
ph to ph channel transformation. The crossing transformation
means exchanging either first and third or second and fourth
frequencies, so we can write

Fph(ν, ν ′, ω) = Fph(−ν1, ν4, ν1 + ν2)

= Fph(−ν1, ν2, ν1 + ν4)

= Fph(ν, ν + ω, ν ′ − ν), (A10)

from which we deduce

ph −→ ph,

(ν, ν ′, ω) −→ (ν, ν + ω, ν ′ − ν). (A11)

All channel transformations needed in Eqs. (16) and (A1)
are outlined in Appendix C, together with their numerical
implementation.

APPENDIX B: AFFINE TRANSFORMATIONS

An important subset of transformations on a QTT are coor-
dinate transformations, in particular, affine transformations. In
this Appendix, we show how to efficiently construct an MPO
(B6) for such a transformation.

Rather than striving for full generality, we limit our dis-
cussion to the type of affine transformations needed in this
paper: transformations between the native frequency repre-
sentations for the ph, pp, and ph channels. In practice, we
limit the range of Matsubara frequencies to a finite box. The
frequencies within that box can be enumerated by positive
integers. Upon transforming to another channel, some fre-
quencies will be mapped to lie outside the frequency box of
the new channel, causing missing information in the mapping.
Those frequency points then have to be dropped (open bound-
ary conditions) or periodically continued (periodic boundary
conditions). With open boundary conditions, the mapping will
generically become noninvertible. For the remaining frequen-
cies, the channel transformation maps one constrained set of
positive integers to another.

We formalize the above scenario as follows. Let x and y be
vectors with N components. An affine transformation is a map
x �→ y that can be represented as

y = Ax + b, (B1)

where A is an invertible N × N matrix. In the following,
we limit our description to the case relevant for channel

g

FIG. 14. Affine transform T (y, x) applied to function g(x) in
MPO form.

transforms, where all components of x, y, b, A are integers.
We further constrain ourselves to the case where A−1 has
integer components and the components of b are nonnegative.
Given a function g(y), we construct a new function f (x) by a
coordinate transformation:

f (x) := g(y(x)). (B2)

We call this type of transformation a passive affine transfor-
mation, where for a given x, we define the value of the new
function f (x) by picking the value of the old function g(x)
at the transformed point y. In practice, we limit x, y, and b
to a finite box S = {0, . . . , 2R − 1}N . Then, some x may be
transformed to a y outside the box, in which case the choice
of periodic or open boundary conditions becomes relevant.
With periodic boundary conditions, we interpret Eq. (B1)
as y ≡ Ax + b (mod 2R), where (mod 2R) is to be under-
stood componentwise. With open boundary conditions, we set
f (x) = 0 if y /∈ S. The transformation (B1) is not necessarily
invertible on S, even if it is invertible on ZN .

We can write Eq. (B2) as a tensor product

f (x) =
∑
y∈S

T (x, y)g(y), (B3)

with

T (x, y) :=
{

1 y = Ax + b
0 else. (B4)

In quantics representation, the tensor T can be factorized to
an MPO with small bond dimension, which allows cheap
transformation of functions given in QTT format through a
single MPO-MPS contraction. To construct this MPO, it is
useful to start with fused rather than interleaved indices, i.e.,
we only separate out the length scales of the vector, but not its
components:

x =
R∑

r=1

2R−rxr, (B5)

where xr is a vector of N bits corresponding to the current
scale, i.e., xr ∈ {0, 1}N . Thus, the legs xr of the corresponding
MPS are of dimension 2N rather than 2. We perform similar
decompositions for y and b. Consequentially, T is decom-
posed as

T (x, y) =
D1∑

α1=1

· · ·
DR−1∑

αR−1=1

[
T1

]x1y1

1α1

[
T2

]x2y2

α1α2
· · · [TR

]xRyR

αR−11, (B6)

where [Tr]xr yr
αr−1αr is the rth core tensor with virtual indices αr−1

and αr as well as local indices xr and yr . The corresponding
tensor network diagram is shown in Fig. 14. The indices are
bound by αr ∈ {1, . . . , Dr}, xr, yr ∈ {0, 1}N . Once the MPO is
constructed in this way, we can transform it to the interleaved
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representation by splitting the core tensors using a QR decom-
position.

For the explicit construction of the MPO, we first decom-
pose Eq. (B1) for the finest scale r = R:

2cR−1 + yR = AxR + bR, (B7)

where cR−1 is the carry, a vector of integers not confined to 0
and 1. Since all components of 2cR−1 are even, we find that
legal values of yR must satisfy

yR ≡ AxR + bR (mod 2), (B8a)

where (mod 2) is to be understood componentwise. Conse-
quently, the carry is obtained as

cR−1 = 1
2 (AxR + bR − yR). (B8b)

The carry cR−1 enters the calculation for the next scale
R − 1, so we have to communicate it to the previous core
tensor TR−1 via the bond. To do so, we first observe that
Eqs. (B8) uniquely determine yR and cR for each xR. We
collect all distinct values of the carry for all possible inputs
xR into a tuple (cR−1,1, . . . , cR−1,DR−1 ). The core tensor is then
given by

[TR]xRyR
α1 =

{
1 2cR−1,α + yR = AxR + bR

0 else.
(B9)

For all the other scales r, we must add the incoming carry
cr and must thus amend Eq. (B7) to

2cr−1 + yr = Axr + br + cr, (B10)

and Eqs. (B8) to

yr ≡ Axr + br + cr (mod 2), (B11a)

cr−1 = 1
2 (Axr + br + cr − yr ). (B11b)

We again collect all distinct outgoing carry values for all
possible xr and cr into (cr−1,α )α=1,...,Dr−1 , and obtain the core
tensor

[Tr]xr yr
αα′ =

{
1 2cr−1,α + yr = Axr + br + cr,α′

0 else.
(B12)

We iterate this procedure from r = R to 1, constructing
all MPO core tensors in a single backward sweep. Having
reached the first tensor, r = 1, we implement open boundary
conditions by demanding that c0 = 0 in Eq. (B12), such that

[T1]x1y1
1α′ =

{
1 y1 = Ax1 + b1 + c1,α′

0 else.
(B13)

Periodic boundary conditions are implemented by modifying
Eq. (B12) such that the leftmost carry c0 is discarded, such
that

[T1]x1y1
1α′ =

{
1 y1 ≡ Ax1 + b1 + c1,α′ (mod 2)

0 else.
(B14)

The bond dimension Dmax = maxr Dr of the tensors con-
structed in this way is likely optimal. This algorithm has
O(RD2

max22N ) runtime, which is optimal in the sense that
at least this amount of runtime and memory is necessary to
construct the tensors Tr . The algorithm can be generalized to
cases where A and b have entries in Q.

TABLE I. Nonzero elements of [Tr]
xr yr
αr−1αr (B6) constructed from

Eqs. (B7)–(B13) for the affine transform (B15) with open boundary
conditions.

r αr−1 cr−1 yr xr αr cr

R 1 (0, 0) (0, 0) (0, 0) 1 (0, 0)
1 (0, 0) (1, 1) (1, 0) 1 (0, 0)
2 (0,−1) (0, 1) (0, 1) 1 (0, 0)
1 (0, 0) (1, 0) (1, 1) 1 (0, 0)

R − 1 1 (0, 0) (0, 0) (0, 0) 1 (0, 0)
1 (0, 0) (1, 1) (1, 0) 1 (0, 0)
2 (0,−1) (0, 1) (0, 1) 1 (0, 0)
1 (0, 0) (1, 0) (1, 1) 1 (0, 0)
2 (0,−1) (0, 1) (0, 0) 2 (0,−1)
1 (0, 0) (1, 0) (1, 0) 2 (0,−1)
2 (0,−1) (0, 0) (0, 1) 2 (0,−1)
2 (0,−1) (1, 1) (1, 1) 2 (0,−1)

...
...

...
...

...
...

...

1 1 (0, 0) (0, 0) (0, 0) 1 (0, 0)
1 (0, 0) (1, 1) (1, 0) 1 (0, 0)
1 (0, 0) (1, 0) (1, 1) 1 (0, 0)
1 (0, 0) (1, 0) (1, 0) 2 (0,−1)

Let us walk through the algorithm for the example trans-
formation with N = 2 and open boundary conditions:

y =
(

1 0
1 −1

)
x +

(
0
0

)
. (B15)

The nonzero elements of the corresponding core tensors
(B6) are listed in Table I. For the case r = R, we sim-
ply apply the transformation (B8a) to each bit combination
xR ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. In the case xR = (0, 1),
Eq. (B8b) yields a carry of cR−1 = (0,−1), to which we
assign the bond index αR−1 = 2, otherwise it is (0,0), to which
we assign the index αR−1 = 1. The dimension of the corre-
sponding bond is thus DR−1 = 2 and the core tensor has the
four nonzero elements listed in rows 1–4 of Table I.

For r = R − 1, Eq. (B11) directs us to add the incoming
carry cr . Hence, we double the number of nonzero entries,
as we have to repeat the calculation for each of the two
outgoing carries of TR. We observe that the set of incoming
and outgoing carries is identical and assign the same bond
indices to them. The corresponding nonzero elements of TR−1

are then listed in rows 5–12 of Table I. Since the values of the
outgoing carries form the same set as those of the incoming
carries, all other core tensors Tr′ with 1 < r′ < R are equal
to TR−1. For r = 1, we impose open boundary conditions,
thereby restricting the outgoing carry of T1 to zero, as shown
in Eq. (B13). This cuts half of the elements and yields the
entries listed in rows 13–16 of Table I.

APPENDIX C: CHANNEL TRANSFORMATIONS

We describe how to implement channel transformations
using affine transformations in QTT, which is defined in
Eq. (B2).
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1. ph to pp transformation

We first describe a ph → pp channel transformation via
the ph channel:

ph −→ ph −→ pp,

(ν, ν ′, ω) −→ (ν, ν + ω, ν ′ − ν) −→ (ν, ν ′,−ω − ν − ν ′),
(C1)

where ν (′ ) = (2n(′ ) + 1)π/β and ω = 2mπ/β. The picture
corresponds to the following, e.g., for the full vertex:

Fpp(ν, ν ′, ω) = Fph(ν, ν ′,−ω − ν − ν ′), (C2a)

Fph(ν, ν ′, ω) = Fph(ν, ν + ω, ν ′ − ν), (C2b)

Fpp(ν, ν ′, ω) = Fph(ν,−ν ′ − ω, ν ′ − ν). (C2c)

In the following, we will denote the old variables in every
transformation step with a tilde. For the ph to ph transforma-
tion

Fph(ν, ν ′, ω) = Fph(ν, ν + ω, ν ′ − ν) = Fph(ν̃, ν̃ ′, ω̃), (C3)

we need the transformation matrix [expressing the old
(ν̃, ν̃ ′, ω̃) by the new variables (ν, ν ′, ω)]⎛

⎝ ν̃

ν̃ ′
ω̃

⎞
⎠ =

⎛
⎝ 1 0 0

1 0 1
−1 1 0

⎞
⎠

⎛
⎝ν

ν ′
ω

⎞
⎠, (C4)

with (ν̃, ν̃ ′, ω̃) = (ν, ν + ω, ν ′ − ν) and ν̃ (′ ) = (2ñ(′ ) +
1)π/β and ω̃ = 2m̃π/β. We also need to shift the indices such
that, for example, for n = 0 and m = 0 (ν + ω = π

β
= ν̃ ′), we

are at ñ′ = 0 again:

0 � a, b, c, ã, b̃, c̃ � N − 1,

n = a − N

2
, n′ = b − N

2
, m = c − N

2
, (C5)

ñ = ã − N

2
, ñ′ = b̃ − N

2
, m̃ = c̃ − N

2
, (C6)

with N = 2R. This leads to

ã = a, no shift,

b̃ = a + b − N

2
= n + m + N

2
, shift by

N

2

c̃ = −a + b + N

2
= −n + n′ + N

2
, shift by

N

2
. (C7)

Hence, we get the shift vector b = (0, N
2 , N

2 )T. For example,
at n = n′ we need ω = 0 and, thus, c̃ = N

2 , which is ensured
by the shift. This first transformation can be represented by an
MPO with Dmax = 9.

For the ph → pp transformation,

Fpp(ν, ν ′, ω) = Fph(ν,−ν ′ − ω, ν ′ − ν) = Fph(ν̃, ν̃ ′, ω̃),
(C8)

we need the transformation matrix⎛
⎝ ν̃

ν̃ ′
ω̃

⎞
⎠ =

⎛
⎝ 1 0 0

0 −1 −1
−1 1 0

⎞
⎠

⎛
⎝ν

ν ′
ω

⎞
⎠, (C9)

with (ν̃, ν̃ ′, ω̃) = (ν,−ν ′ − ω, ν ′ − ν). Using the same pro-
cedure as above, we get the shift vector b = (0, N

2 − 1, N
2 )T.

FIG. 15. (a) Absolute normalized error ||��d || := |�d,parquet −
�d,exact|/||�d,exact||∞ of the parquet equation with QTTs for �d com-
pared to the exact values at ω = 0 in the fermionic Matsubara
frequency plane for Dmax = 200, R = 7, β = U = 1, ε = 10−8. Run-
time of the parquet equation for �d for various maximum bond
dimensions and grid size parameters R with β = U = 1. The dashed
lines indicate (b) the cubic runtime increase with Dmax and (c) lin-
ear increase by increasing R, which corresponds to an exponential
increase in the number of grid points.

This affine transformation can be represented by an MPO with
Dmax = 15.

2. pp to ph transformation

Basically, we use the same procedure as above since the ph
to pp transformation is its own inverse.

pp −→ pp −→ ph,

(ν, ν ′, ω) −→ (ν, ν + ω, ν ′ − ν) −→ (ν, ν ′,−ω − ν − ν ′),
(C10)

The picture corresponds to the following, e.g., for the full
vertex:

Fph(ν, ν ′, ω) = Fpp(ν, ν ′,−ω − ν − ν ′), (C11a)

Fpp(ν, ν ′, ω) = Fpp(ν, ν + ω, ν ′ − ν), (C11b)

Fph(ν, ν ′, ω) = Fpp(ν,−ν ′ − ω, ν ′ − ν). (C11c)

The transformation matrices and shift factors and, hence,
the MPO representations are identical to the ph to pp trans-
formation.

APPENDIX D: PARQUET EQUATION IN QTT FORMAT

In the parquet equation (16) and (A1), the triangle-shaped
frequency box errors from frequency transformations add up
to a diamond-shaped error with larger errors in the corners.
This can be observed in Fig. 15, where a plot of the absolute
normalized error of the irreducible vertex in the density chan-
nel �d computed via Eq. (16) and (13) with QTCI compared
to the exact �d is shown at ω = 0.
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FIG. 16. Plot of the maximum absolute normalized error of the
SDE ||��||∞ := ||�d,SDE − �d,exact||∞/||�d,exact||∞ with QTTs for
the self-energy � compared to the exact values for various grid
sizes depending on the maximum bond dimension with U = β = 1.
The dashed lines indicate the results from the dense grid calculation
without QTTs.

The cubic dependence on Dmax is shown in Fig. 15(b),
which corresponds to the cubic scaling of the channel trans-
formations inside the parquet equations and, thus, constitutes
the bottleneck of the parquet equation. Linear scaling of the
runtime of the parquet equation with QTTs in R is shown in
Fig. 15(c). Again, we want to emphasize that exponentially
increasing the number of grid points comes only at linearly
increasing computational cost in the parquet equation.

APPENDIX E: SDE IN QTT FORMAT

In Fig. 16, we show the maximum absolute normalized
error of the self-energy � obtained by using QTTs in the
SDE. The dashed lines represent the errors of the dense grid
calculations, which are due to the finite size of the grid. A
qualitatively similar behavior to the BSE can be observed,
with the difference that already quite low bond dimensions
are sufficient for obtaining very low errors. This is caused by
the frequency dependence of the functions in the SDE, where
only the full vertex depends on three Matsubara frequencies.
At this point, we should emphasize the fact that exponentially
increasing the number of grid points by increasing the grid
parameter R exponentially reduces the error (exponential con-
vergence to the true solution), but only comes with linearly
increasing computational cost. In the case of R = 14, the
computation with a maximum bond dimension of 100 took
only around 100 seconds using QTTs on a single 512 GB node
on a cluster, while without the use of QTTs the calculation
would include computations with the numerical data of the
full vertex, which is the size of 8 × 23×14 � 3.5 × 1013 bytes.
This would only be possible by engaging a larger number of
nodes on a cluster, which emphasizes the strength of the QTCI
approach.

APPENDIX F: TECHNICAL LIMITATIONS

Theoretically, in the iterative parquet calculations with
QTCI, it should easily be possible to run calculations for much
larger grids, e.g., R = 20 (23×20 grid points), on a single 512
GB node on a cluster, without running into any memory or
computational time bottlenecks, because the computational
costs only depend linearly on R. This is still true, but there
is another limiting technical difficulty at the moment.

In the calculations, a specified maximum bond dimension
is set not only in the initial TCI but also in every QTT

FIG. 17. Absolute normalized error of the reconstructed Fd

compared to the exact data for the innermost 16 × 16 fermionic
Matsubara frequency grid at ω = 0, β = U = 1. (a), (b) The errors
after using TCI with a set tolerance of 10−10 and the maximum bond
dimensions set to 160 and 140, respectively. (c)–(f) The errors after
applying the SVD based truncation to the QTT with maximum bond
dimension 160 (a) with a set maximum bond dimension of 140. The
truncation error increases with larger values of the grid parameter R.

operation to avoid a blowing up of the bond dimensions
since this is the computational bottleneck. As was shown in
Sec. V A, for the initial TCI already bond dimensions slightly
above 100 are sufficient to reach maximum normalized errors
of 10−6 of the QTTs with respect to the exact data. However,
a problem emerges in the QTT operations, which are at the
moment SVD based and make use of the truncate func-
tion in ITensors.jl to compress the resulting QTTs back
to a certain maximum bond dimension. Furthermore, the fit
algorithm used for MPO-MPO contractions relies on the SVD
truncation internally [48]. The SVD truncation minimizes the
difference between an original MPS and an approximated one
in terms of the Frobenius norm. Because the Frobenius norm
of the vertex functions grows exponentially with R due to
a constant term, the SVD truncation is expected to fail at
large R; the Frobenius norm reaches c(2R)3 ≈ c × 3 × 1013

at R = 15 (c is the constant term).
Here, we have observed the truncation error to become

more significant the larger the value of the grid parameter R
is and even leads to wrong results around R = 15. In Fig. 17,
we show this behavior in case of the full vertex in the density
channel Fd . In Figs. 17(a) and 17(b), the absolute normalized
error is shown after applying TCI to evaluate a QTT for
Fd for different maximum bond dimensions. It can be seen
that the error in this center (16 × 16) fermionic Matsubara
frequency box is of O(10−15). Figures 17(c)–17(f) show the
errors after applying the SVD-based truncation to the QTT
with maximum bond dimension 160 down to a maximum
bond dimension of 140 for various grid sizes determined by
R. Although using TCI with a maximum bond dimension
of 140 [Fig. 17(b)] the QTT was able to reconstruct the
exact data with an absolute normalized error of O(10−15),
applying the SVD-based truncation significantly worsens the
results, leading to normalized errors between 10−9 and 10−5.
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Moreover, it can be seen that the error increases significantly
with increasing R. This is why in the case of the iterative
parquet solutions for the Hubbard atom, only results up to
R = 11 are shown, since the resulting maximum normalized
error does not improve anymore for larger grids due to the
truncation errors. This can also already seen in Fig. 11 for
R = 11, where the maximum normalized error at a maximum
bond dimension of 200 is only slightly lower than in the case
of R = 10. However, this should only be a problem of the
current implementation and first numerical tests indicate that
it is possible to overcome this limitation in the future, e.g., by
using CI-based truncation [37]. This is because the CI-based
truncation relies on the maximum norm and thus does not
suffer from the divergence of the Frobenius norm.

An alternative way to deal with the infinite Frobenius norm
is, as mentioned at the end of Sec. VI, to change into a
formalism with vertices with removed asymtotics and thus
finite Frobenius norm. The recent reformulation of parquet
equations into single- and multiboson exchange vertices pro-
vides such a solution [3,12]. Earlier approaches to parquet
equations have used the so-called kernel asymptotics [10,44].

APPENDIX G: MODEL EXTENSIONS

In future work, our goal will be to apply the QTT represen-
tation to two-particle calculations with orbital and momentum

degrees of freedom. Suppose that these are labeled by an ad-
ditional (composite) index, say i = 1, . . . , N , then the vertex
carries four such indices, Fi jkl , and has N4 components. The
memory costs for such computations depend on how QTTs
are used to parametrize the vertex.

For example, a naive approach would be to use a sep-
arate QTT to parametrize the frequency dependence of
Fi jkl (ν, ν ′, ω) for each index combination (i, j, k, l ). This
would require N4 different QTTs and N4 BSEs connecting
them all, etc. We estimate that with this approach, computa-
tions for N = 6, R = 10 and Dmax = 200 should be feasible
on a single 512 GB node.

However, such a naive approach would not exploit low-
rank structures that may arise if different vertex components
have similar frequency dependencies. In such a case, it could
be more efficient to use a single QTT to parametrize the
dependence of the vertex on its frequencies and all i indices.
To pursue such a strategy and optimize its efficiency, fur-
ther methodological developments will be required to address
some open questions: What is the best grouping and order of
quantics indices for a combined frequency and momentum
(orbital) representation? How can MPO-MPO contractions
(the current bottleneck) be performed more efficiently?
What are the best strategies for parallelizing the computa-
tions? These issues are currently being explored in ongoing
work.
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