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Zusammenfassung (Summary in German)

Die quantitative Beschreibung korrelierter Elektronensysteme stellt nach wie vor eine der zentralen
Herausforderungen der theoretischen Festkörperphysik dar. Viele faszinierende Phänomene, etwa
die Hochtemperatursupraleitung oder die Ausbildung einer „Pseudogap“ in Kupraten und anderen
stark korrelierten Materialien, werden durch starke Elektron-Elektron-Wechselwirkungen getrie-
ben, sodass perturbative Methoden in vielen Bereichen versagen. Von besonderer Bedeutung sind
dabei dynamische Korrelationsfunktionen, die beschreiben, wie solche Systeme auf zeitabhängige
äußere Störungen reagieren, und die entscheidend für das Verständnis zahlreicher experimenteller
Messungen sind.

Diese Arbeit widmet sich der präzisen Berechnung dynamischer Antwortfunktionen in wechselwir-
kenden fermionischen Systemen. Die einleitenden Kapitel beleuchten zunächst die physikalische
Relevanz dieser Größen und geben einen Überblick über experimentelle Techniken zu ihrer
Messung. Ein besonderer Fokus liegt auf Vierpunktfunktionen, deren Beiträge zu dynamischen
Antwortfunktionen für eine qualitativ sowie vor allem quantitativ genaue Beschreibung unerläss-
lich sind.

Ein zentrales Thema der Arbeit ist die direkte Berechnung dieser Größen in reellen Frequenzen, im
Gegensatz zum häufiger verwendeten Zugang über imaginäre Frequenzen. Dieser Ansatz umgeht
das notorische Problem der analytischen Fortsetzung, das die Genauigkeit numerischer Studien
stark beeinträchtigen kann. Zu diesem Zweck wird der Keldysh-Formalismus verwendet, ange-
wandt hier auf Systeme im thermischen Gleichgewicht. In diesem Rahmen werden zwei zentrale
quantenfeldtheoretische Ansätze vorgestellt: die Parquet-Gleichungen, welche selbstkonsistente
Beziehungen für die Zweipunkt-Selbstenergie und den Vierpunktvertex auf Zwei-Teilchen-Niveau
liefern, sowie die funktionale Renormierungsgruppe (fRG), die eine Renormierungsgruppenper-
spektive auf der Ebene von Korrelationsfunktionen bietet.

Wir zeigen, dass die vollständige dreidimensionale Struktur des Vierpunktvertex in reellen Fre-
quenzen innerhalb dieses Formalismus kontrollierbar ist. Als konkretes Beispiel lösen wir die
Parquet- und fRG-Gleichungen für das Anderson Störstellenmodell („single-impurity Anderson
model“, SIAM) und beschreiben die zahlreichen technischen Herausforderungen, die dabei bewäl-
tigt werden mussten.

Im abschließenden Teil der Arbeit diskutieren wir Wege zur Erweiterung der vorgestellten
Methoden auf ausgedehnte, korrelierte Gittersysteme. Wir argumentieren, dass eine vielver-
sprechende Strategie in der Kombination der genannten diagrammatischen Methoden mit der
Dynamischen Mean-Field-Theorie (DMFT) liegt, wobei DMFT als nicht-perturbativer lokaler
Ausgangspunkt dient. Hierfür wird jedoch ein DMFT-Störstellenlöser benötigt, der sowohl Zwei-
als auch Vierpunktfunktionen berechnen kann. Die neu entwickelte Multipunkt-Erweiterung der
Numerischen Renormierungsgruppe (mpNRG) erfüllt diese Anforderung, wenngleich auf Vier-
punktniveau gewisse numerische Einschränkungen bestehen. Daher überprüfen wir die Konsistenz
der mpNRG-Ergebnisse umfassend, insbesondere die Erfüllung der Parquet-Gleichungen sowie
einer Ward-Identität, die wir erstmals in vollständiger Allgemeinheit im Keldysh-Formalismus
herleiten. Mit wenigen Ausnahmen erweisen sich diese Relationen als sehr gut erfüllt, was die
Eignung von mpNRG als DMFT-Löser für zukünftige diagrammatische Erweiterungen bestätigt.
Abschließend heben wir das Potenzial der Quantics Tensor Cross Interpolation (QTCI) Methode
hervor, mit deren Hilfe sich kompakte Darstellungen dynamischer Antwortfunktionen effizient
finden lassen. Diese Methode verspricht, den Rechenaufwand zukünftiger Berechnungen erheblich
zu reduzieren.



ii

Zusammenfassend etabliert diese Arbeit ein robustes Grundgerüst zur Berechnung dynami-
scher Antwortfunktionen in stark korrelierten Elektronensystemen in reellen Frequenzen. Die
vorgestellten quantenfeldtheoretischen Beispielrechnungen für das SIAM sowie die gründlichen
Konsistenzprüfungen der mpNRG-Methode legen eine solide Grundlage für zukünftige Erwei-
terungen auf korrelierte Gittersysteme, die durch Kompressionstechniken wie QTCI numerisch
realisierbar erscheinen.
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Summary (Summary in English)

The quantitative description of correlated electron systems remains one of the central challenges
in theoretical condensed matter physics. Many fascinating phenomena, such as high-temperature
superconductivity or the formation of a pseudogap in cuprates and other correlated materials, are
driven by strong electron-electron interactions, rendering perturbative techniques insufficient in
many regimes. Of particular importance are dynamical correlation functions, which characterize
how such systems respond to time-dependent external perturbations and are key to interpreting
a wide range of experimental observations.

This thesis is dedicated to accurately computing dynamic response functions in interacting
fermionic systems. The introductory chapters revisit the physical significance of these functions
and outline experimental techniques to probe them. Special emphasis is placed on four-point
functions, whose contributions to dynamic response functions are essential for both qualitative
and, in particular, quantitative accuracy.

The central theme of the thesis is the direct computation of these quantities in real frequencies,
as opposed to the more common imaginary-frequency approach. This choice circumvents the
notoriously ill-conditioned problem of analytic continuation plaguing the accuracy and reliability
of numerical studies. To this end, we adopt the real-frequency Keldysh formalism applied here
in thermal equilibrium. Within this framework, two main quantum field-theoretical approaches
are presented: the parquet equations, which describe self-consistent relations for the two-point
self-energy and four-point vertex at the two-particle level, and the functional renormalization
group (fRG), which offers a renormalization-group perspective at the level of correlation functions.
We demonstrate that the full three-dimensional real-frequency structure of the four-point vertex
can be accurately resolved in this formalism. As a concrete example, we solve the parquet and
fRG equations for the single-impurity Anderson model (SIAM) and provide a detailed account of
the numerous technical challenges encountered and overcome.

In the final part of the thesis, we discuss pathways toward extending these real-frequency methods
to spatially extended, correlated lattice systems. We argue that combining the above diagram-
matic approaches with dynamical mean-field theory (DMFT) offers a promising strategy, using
DMFT as a non-perturbative local starting point. However, this requires a DMFT impurity solver
capable of computing two- and four-point functions. The newly developed multipoint extension
to the numerical renormalization group (mpNRG) is a method for this purpose, though some
numerical limitations persist at the four-point level. We, therefore, perform extensive consistency
checks of mpNRG results, verifying the parquet equations and a Ward identity that we derive
in full generality within the Keldysh formalism for the first time. With only a few exceptions,
these relations are found to hold with high accuracy, validating the use of mpNRG in future
diagrammatic extensions of DMFT. Finally, we highlight the potential of the quantics tensor cross
interpolation (QTCI) method to find compressed representations of dynamic response functions
efficiently. This technique shows considerable promise in managing the computational demands
of future large-scale calculations.

In summary, this thesis establishes a robust framework for computing real-frequency response
functions in strongly correlated electron systems. Through proof-of-principle quantum field theory
calculations on the SIAM and thorough consistency checks of the mpNRG method, it lays a solid
foundation for future extensions to correlated lattice systems, which compression techniques such
as the QTCI promise to make computationally feasible.
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1 Dynamic response functions in many-body
physics

This thesis is dedicated to computations of dynamical correlation functions. To motivate
their importance, we begin by taking a step back and discussing how these functions arise
in condensed matter systems. We recap basic definitions and results of linear response
theory in Sec. 1.1, which naturally gives rise to the concept of dynamic response functions.
The coupling between a many-body system and its surroundings is primarily mediated by
electromagnetic forces, which can hence be used to probe solid-state system properties in
experiments. We review a few relevant experimental measurement techniques in Sec. 1.2,
from which we see that the related experimentally measurable quantities can be computed
from correlation functions between fermionic operators. We briefly introduce those in
Sec. 1.3, before dedicating the remaining parts of this thesis to their explicit computations.

As this chapter is not meant to be a self-contained textbook-style introduction to the
subject but rather meant to set the stage for the later parts of this thesis, we only
summarize the most important results and concepts and leave out formal derivations
and calculations. These can be found in standard textbooks, such as Refs. [Col15] and
[AS23], on which this chapter is based.

1.1 Linear response theory
To probe the properties of materials, most experimental techniques apply some pertur-
bation to the system. Such a perturbation could be a beam of laser light, a beam of
particles, or some other probe that couples to some degree of freedom of the system of
interest. See Sec. 1.2 for important examples. In a second step, the system’s response to
that perturbation is measured using an appropriate detector. Formally, a time-dependent
force term f(t) is coupled to an observable A (which we keep general at this stage) inside
the Hamiltonian like H = H0 − f(t)A(t). Here, H0 is the unperturbed Hamiltonian,
which we assume does not explicitly depend on time. From an expansion of the quantum-
mechanical time-evolution operator, one finds that the response of the system to linear
order in the force f is given as1

⟨A(t)⟩ = ⟨A⟩ +
ˆ ∞
−∞

dt′ χR(t − t′)f(t′) + O(f2) , (1.1)

where ⟨A⟩ is the expectation value of A in the thermal state of the unperturbed Hamilto-
nian H0.2 Formally, a thermal expectation value is defined as ⟨. . .⟩ = Tr {e−βH0 . . .}/Z
with the partition function Z = Tr {e−βH0} and inverse temperature β = 1/T , where
the trace runs over a complete set of basis states. Here and throughout this thesis, we

1 In principle, one can also consider the response of another observable A′ to the application of a force
that couples to the operator A. For this text, we will restrict ourselves to the most relevant special
case A′ = A.

2 Often, this expectation value is zero. For instance, in the case of a current that only begins to flow
once an external voltage is applied.
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use natural units, setting, in particular, ℏ, kB = 1. In Eq. (1.1), the (general) dynamical
susceptibility, also called retarded response function, is given by

χR(t − t′) = i⟨[A(t), A(t′)
]⟩θ(t − t′) , (1.2)

where again the expectation value ⟨...⟩ is meant with respect to a thermal state of the
unperturbed Hamiltonian H0. Importantly, χR(t − t′) is only nonzero for positive values
of t − t′, which means that the system only shows a response after it was perturbed. In
other words, the retarded response function is causal. Since we assumed that H0 does
not explicitly depend on time, all expectation values are time-translational invariant,
which lets us perform a Fourier transform of Eq. (1.1), leading to the response

⟨A(ω)⟩ = ⟨A⟩δ(ω) + χR(ω)f(ω) + O(f2) (1.3)

in frequency space. This expression is remarkable in several ways: First, it shows that
the dynamic response of the system in the observable A to an external perturbation is
determined by a dynamical correlation function (χR(ω)), which only depends on the
properties of the system itself. Second, a perturbation of a certain frequency ω triggers
a response at the same frequency: A maximum of ⟨A(ω)⟩ indicates a maximum of
the response function χR(ω), which in turn indicates that the system has an intrinsic
excitation at the frequency ω.3

In addition to the retarded response function, it is useful to define the correlation function

S(t − t′) = ⟨A(t)A(t′)⟩ − ⟨A⟩2 =
ˆ ∞
−∞

dω

2π
e−iω(t−t′)S(ω) , (1.4)

which describes the fluctuations of the observable A around its equilibrium value. A
major result in many-body physics states that this correlation function is related to the
retarded response function via

S(ω) = 2 [1 + nB(ω)] χ′′(ω) , (1.5)

where nB(ω) = (eβω − 1)−1 is the bosonic distribution function, and χ′′(ω) = Im χR(ω)
is the dissipative part of the susceptibility. Hence, Eq. (1.5) is known as the fluctuation-
dissipation theorem (FDT) [Kub57; Kub66; For18], encompassing both quantum and
thermal contributions.4 The FDT provides a deep relation between quantum and thermal
fluctuations around the equilibrium state and the response of a system to external forces.
As a side remark, we note that the dynamic susceptibility, which is defined on the real
frequency axis, can be extended to the complex plane employing the Kramers-Kronig
relation

χ(z ∈ C) =
ˆ

dω

π

1
ω − z

χ′′(ω) . (1.6)

3 Note that this follows directly from the assumption of a linear response. Strictly speaking, this is an
approximation, which is justified as long as the force f is sufficiently weak compared to the internal
correlations of the system. Often, this is a good approximation. There are, however, exceptions to
this, e.g., in laser spectroscopy, where the laser field can become so strong that it triggers a non-linear
response. We will not discuss this further.

4 Equation (1.5) is most easily derived from a spectral representation of the functions S(ω) and χR(ω).
We refer to Ref. [Col15] for details.
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It follows that from the correlation function in thermal equilibrium, utilizing the FDT,
Eq. (1.5), and the Kramers-Kronig relation, Eq. (1.6), the response function of the system
can be computed; a highly non-trivial result.

So far, we considered a general observable A, that a general force field couples to and
whose response will be measured. Actual experiments, which we will turn to next, use
specific observables to probe a system of interest. Below, we list a few common choices for
A and the corresponding response functions relevant in the context of electronic systems,
of interest in this thesis:

(i) The response of the spin density operator S(t, r) = c†α(t, r)
(

σ
2
)

αβ
cβ(t, r) is deter-

mined by the dynamic spin (or magnetic) susceptibility χm(ω). It can be measured
using inelastic neutron scattering, see Sec. 1.2.1. Here, σ is the vector of Pauli
matrices, and α and β label spin components. For an extended sample, S(t, r) not
only depends on time but has a spatial dependence, too.

(ii) Likewise, the response of the charge density operator ρ(t, r) = c†α(t, r)cα(t, r) is
given by the dynamic charge (or density) susceptibility χd(ω). It can be measured
using, e.g., inelastic electron scattering; see Sec. 1.2.2 for details.

(iii) Another highly relevant material property is the optical conductivity σ(ω), which is
related to the response of the current density operator j(t, r) = −i e

mc†α(t, r)
↔
∇cα(t, r),

where
↔
∇ = 1

2
(→∇ −

←
∇), and e and m are the electron charge and mass, respectively.

It is typically determined from reflectivity measurements; see Sec. 1.2.3 for details.
Spatially dependent current-current correlation functions will not be computed
in this thesis, which purely focuses on dynamic properties. However, since it is a
central goal for future research to generalize the computations laid out later in this
thesis to scenarios that include spatially dependent quantities, we briefly discuss
these here.

(iv) Experimentally, it is also possible to couple to the electron field operator c(t, r)
itself, which enables the measurement of the electronic spectral function. Such
measurements are most famously done using photoemission spectroscopy, see
Sec. 1.2.4. Since c(t, r) is a fermionic operator, the previous definitions of response
functions valid for bosonic operators A must be modified slightly to account for the
fermionic statistics. Fermionic response functions will be defined below in Sec. 1.3.

From the list above, two observations become apparent: First, using second quantization,
all operators listed can be expressed using fermionic field operators. Hence, the corre-
sponding response functions can be computed in a purely fermionic theory, which we will
restrict ourselves to for the remainder of this thesis. Second, the first three operators listed
above are expressed using two fermion operators each. The related response functions are
given in terms of four-point correlation functions in terms of fermionic operators. This
general feature highlights the importance of four-point functions in many-body physics,
which will also be the main focus of this work.

1.2 Experimental techniques
In the previous section, we argued that experimental measurements of responses of a
system of interest to an external perturbation are related to correlation functions. In the
following, we will make this relation more explicit for a small but important selection of
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commonly used measurement techniques. Here, we will focus on one specific type, namely,
spectroscopy or scattering experiments. The strategy behind all types of spectroscopy is
to first send a beam of particles (photons, neutrons, electrons, . . .) onto a sample, which
acts as a perturbation. In the spirit of the previous setup, these particles couple to some
microscopic variable A(t, r). In a second step, the flux of outgoing particles from the
sample, induced by the external perturbation, is measured with a detector. Ideally, the
energy and momentum transfers ω and q (compared to the incoming particle beam) are
resolved. Such a measurement gives the differential scattering cross section, which, as it
turns out, is proportional to the correlation function

d2σ

dΩdω
(ω, q) ∼

ˆ
dt d3r ⟨A(t, r)A(0)⟩ ei(ωt−q·r) = S(ω, q) . (1.7)

The combination of physical constants appropriate to the concrete setup gives the prefac-
tor in Eq. (1.7).

Spectroscopy experiments are, of course, not the only class of experiments performed
on condensed matter systems. Of great importance are also measurements of thermody-
namic quantities (specific heat, compressibility, . . .), which yield insights about universal
features. However, they do not give any dynamic properties, which is the focus of this
work, so we do not discuss them further.
Another widespread technique is the measurement of transport of some physical quantity
through a sample. Normally also induced by an external perturbation, linear response
theory often applies to this scenario. Indeed, the conductivity discussed below is a
transport coefficient, relating the system’s response in the form of a current to the
application of an external electric field.

In the following, we briefly discuss the setups of some of the most essential spectroscopy
experiments, which enable the measurement of the previously discussed dynamic response
functions.

1.2.1 Inelastic neutron scattering

In neutron scattering experiments, thermal neutrons are scattered by a sample probe
[Lov84; FMS09; Squ12]. Since the neutron is electrically neutral, it interacts only weakly
with the sample and can penetrate deep into its bulk. Indeed, it only couples through
its magnetic moment (i.e., its spin) to the magnetic fields inside the sample. Besides
contributions from the nuclear moments and the dipole field of the electron spins, this is
mostly due to the orbital part arising from the motion of unpaired electrons bound to
the atoms. Neutron scattering can, therefore, be used to probe the magnetic properties
of the atoms that make up the crystal; see Ref. [Ber+17] for a recent study. Concretely,
it measures the total neutron scattering amplitude (summation convention implied),

Stot(ω, q) =
(
δi,j − qiqj

q2

)
Si,j

spin(ω, q) . (1.8)

The dynamic spin-spin correlation function,

Si,j
spin(ω, q) =

ˆ
dt d3r ⟨Si(t, r)Sj(0)⟩ ei(ωt−q·r) , (1.9)

is also called the spin structure factor, where in an effective purely electronic theory,
the spin density operator reads S(t, r) = c†α(t, r)

(
σ
2
)

αβ
cβ(t, r) in second quantization.
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From this correlation function, the dynamical spin susceptibility can be inferred via the
FDT, which determines the magnetization M(ω, q) = χm(ω, q)B(ω, q) that arises when
a temporally and spatially variable magnetic field is applied.

1.2.2 Inelastic electron scattering

Directly measuring the dynamic charge or density susceptibility is difficult due to a lack of
experimental probes at low energies. Many experiments have measured the consequences
of phenomena like the formation of charge-density waves, such as an opening of the
associated gap in the spectral function, which is accompanied by a peak in the charge
susceptibility, without, however, measuring it directly. Commonly used inelastic X-ray
scattering (IXS) measurements are often dominated by phonons since the X-ray beam
couples to the electron density operator, dominated by valence electrons in real materials.
Neutral lattice modes hence easily dominate over the electronic excitations one would
want to measure. While valence excitations can, by now, be measured using resonant
inelastic X-ray scattering (RIXS) [Abb+99; Ame+11], which tunes the X-ray beam
energy to the absorption edge, only moderate energy resolutions ∼ 40 meV have been
achieved so far. Effectively, the actual quantity of interest is not the dynamic electron
density response but the charge response, to which the positively charged nuclei in solids
contribute as well. Only recently has it become possible to measure the actual charge
response at nonzero momentum with meV energy resolution using momentum-resolved
inelastic electron scattering [Vig+17]. In this study, a monochromatic beam of low-energy
electrons (with only 10 − 200 eV) was scattered from the surface of a material in an
ultrahigh vacuum, which allowed the measurement of finite-momentum charge excitations
in the high-temperature superconductor Bi2Sr2CaCu2O8+x. The experimental details
are beyond the scope of this work.

1.2.3 Reflectivity measurements

Measurements of the optical reflectivity coefficient r(ω) = (1 −
√

ϵ(ω))/(1 +
√

ϵ(ω)) allow
the determination of the the dielectric function ϵ(ω), which characterizes the polarization
properties of the material in response to an applied electromagnetic field. It is related to
the optical conductivity σ(ω) via

ϵ(ω) = 1 + i
σ(ω)

ω
, (1.10)

which itself is defined as the current response due to the application of an electric field,
j(ω) = σ(ω)E(ω). For isotropic samples, the optical conductivity is a diagonal matrix;
in general, it is a 3 × 3 tensor. In the former case, a given component of the optical
conductivity is computed as

σ(ω) = i

ω

(
ne2

m
− ⟨j(ω)j(−ω)⟩

)
, (1.11)

where e and m are the electron charge and mass, respectively, n is the electron density
and j labels the corresponding component of the current density operator j(t, r) =
−i e

mc†α(t, r)
↔
∇cα(t, r). The first term describes the short-time (high-frequency) response

due to the ballistic motion of the electrons in the electric field and, in the spirit of
semi-classical transport theory, could be called the “Drude” term. The second term
describes the slow relaxation of the current to the equilibrium state and is a short-hand



6

notation for

⟨j(ω)j(−ω)⟩ = i

ˆ ∞
0

dt d3r ⟨[j(t, r), j(0)]⟩ eiωt , (1.12)

and hence encapsulates all the effects due to thermal and quantum fluctuations.

1.2.4 Angular-resolved photoemission spectroscopy

Angular-resolved photoemission spectroscopy (ARPES) is slightly different from the
experiments discussed before since it uses the coupling of light to the electron field c(t, r)
directly. It targets a sample with incoming X-ray radiation that ejects core electrons
from the probe. ARPES then measures the spatially and energetically resolved intensity
of the outgoing electrons to determine the electron-electron correlation function,

I(ω, q) ∼
ˆ

dt d3r ⟨c†(t, r)c(0)⟩ ei(ωt−q·r) . (1.13)

Via a fermionic version of the FDT, which will be discussed later, this quantity is related
to the frequency- and momentum-resolved electron spectral function. This way, ARPES
can probe the full dispersion relation, i.e., the interacting band structure of a material of
interest such as cuprate superconductors studied in Ref. [DHS03].
Since X-ray radiation interacts much more strongly with matter than electrically neutral
neutrons, ARPES can only probe the sample’s surface. In addition, the momenta of the
spectral function perpendicular to the sample’s surface cannot be probed. Furthermore,
ARPES is unavailable when an external magnetic field is present since this would disturb
the X-ray beam. Nevertheless, it has been and still is a highly valuable tool used
to gain insights into the properties of correlated materials. One recent highlight is
the unprecedentedly accurate measurement of the spectral function of the correlated
material Sr2RuO4, which used improved techniques even to probe the bulk of the material
[Tam+19].

1.3 Fermionic response functions
For the remainder of this work, we will restrict ourselves to a purely electronic formulation
of the many-body problem in the solid state. In particular, we express all observables
of interest in terms of fermionic operators in second quantization, as exemplified at the
end of Sec. 1.1. Analogous to the response functions defined there, we now introduce the
corresponding fermionic response functions, which are customarily also called Green’s
functions.

Particularly important is the analogue of Eq. (1.2), which defines the retarded electron
Green’s function,

GR(t) = −i⟨{c(t), c†(0)}⟩ θ(t) =
ˆ

dν

2π
GR(ν) e−iνt . (1.14)

Note that in contrast to Eq. (1.2), there now appears an anti-commutator instead of a
commutator, and we have added a minus sign for later convenience. In addition, w.l.o.g.,
we have taken the second time argument to be t′ = 0 and named the frequency in
the Fourier transform ν instead of ω, as is customary for fermionic operators. Usually,
the Green’s function will have more dependencies, such as an additional momentum
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dependence or dependencies on spin or orbital indices. For ease of notation and because we
will primarily focus on the dynamical properties of correlation functions in the following,
we suppress those additional dependencies here. Again, an important observation is that
the retarded Green’s function is causal, since it is only finite for positive times t > 0.
Analogous to the Kramers-Kronig relation for dynamic susceptibilities, Eq. (1.6), the
electron Green’s function can also be extended to the complex plane,

G(z) =
ˆ

dν ′
A(ν ′)
z − ν ′

, (1.15)

with the spectral function A(ν) = −Im GR(ν)/π. The retarded function is recovered as

GR(ν) = G(ν + i0+) =
ˆ

dν ′
A(ν ′)

ν − ν ′ + i0+ . (1.16)

The retarded function has singularities slightly below the real axis, but is analytic in the
entire upper complex half plane. Using a spectral, i.e., “Lehmann–Källén” representation
of the Green’s function [Käl52; Leh54], one can show that the spectral function is the
Fourier transform of the expectation value of the anti-commutator,

⟨{c(t), c†(0)}⟩ =
ˆ

dν A(ν) e−iνt . (1.17)

Since {c, c†} = 1 at equal times, the spectral function is normalized,
ˆ

dν A(ν) = 1. (1.18)

Physically, this property ensures that the probability of finding an electron in any of all
possible states is conserved and equal to one.

In this thesis, we will go into much more detail on fermionic correlation functions. We will
introduce four-point correlation functions, which, as we have already seen, are instrumental
for the computation of dynamic response functions. Also, we will explicitly lay out how
those functions can be computed using quantum field theory methods. Before doing
that, however, we will quickly explain how these functions are traditionally calculated in
thermal equilibrium by briefly introducing the imaginary-frequency Matsubara formalism.
Lastly, we will sketch why this formalism can become problematic in practice, which
motivates the next chapter devoted to the direct computation of fermionic correlation
functions in real frequencies.

1.3.1 A (very) brief introduction to the Matsubara formalism

The classic imaginary-frequency approach to thermal quantum field theory goes back to
Bloch, who first noticed a link between inverse temperature and imaginary time [Blo32].
This idea was formalized by Matsubara [Mat55] and extended by Kubo, Martin, and
Schwinger [Kub57; MS59], who developed what is nowadays taught as the Matsubara
formalism to many-body physics in modern textbooks [AS23; Col15; NO19].

While the Matsubara formalism is the most popular framework for computing correlation
functions in many-body physics to this day, it is not the main focus of this work. The
main reason for this is the analytic continuation, see Sec. 1.3.2, of correlation functions
computed in imaginary frequencies to the real axis, which is required to obtain dynamical
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correlation functions. It turns out that this operation is numerically ill-conditioned. This
problem is the primary motivation to pursue an alternative approach that enables the
direct computation of those functions in real frequencies, which will be introduced in
the subsequent chapter. Still, we use the Matsubara formalism from time to time for
comparisons of numerical results for static quantities (i.e., dynamic response functions in
the limit ω → 0 or t → 0), which do not require analytic continuation. Also, later in this
thesis, we reprint a paper detailing a numerical code designed to compute Matsubara
functions. We, therefore, provide a brief introduction to the main ideas of the formalism
here.

In thermal equilibrium, the basic quantity of interest is the quantum partition function
Z = Tr {e−βH} with inverse temperature β = 1/T and the Hamiltonian H. The basic
insight underlying the Matsubara formalism is that the exponential factor is reminiscent
of the quantum-mechanical time-evolution operator, only in imaginary time. Making the
trace explicit by choosing an overcomplete basis of the fermionic analogue of coherent
states using Grassmann variables, the partition function is written as5

Z =
ˆ

dc̄ dc e−c̄c⟨−c|e−βĤ |c⟩ . (1.19)

Performing a Trotter-decomposition of the exponential and inserting an overcomplete
set of states at every imaginary time step, the partition function can be expressed as a
functional integral,

Z =
ˆ

D[c̄, c] e−S with the action S =
ˆ β

0
dτ {c̄(τ) ∂τ c(τ) + H[c̄, c]} . (1.20)

Here, τ = it is an imaginary time defined on the interval τ ∈ [0, β) and H[c̄, c] is the
normal-ordered Hamiltonian, in which all fermionic operators c and c† have been replaced
by the corresponding Grassmann variables c(τ) and c̄(τ), respectively. The Grassmann
variables are anti-periodic in this interval, c(β) = −c(0), which motivates a Fourier series
representation,

c(τ) = 1
β

∑
νn

cn e−iνnτ , (1.21)

with the discrete (fermionic) Matsubara frequencies

νn = (2n + 1)π
β

, n ∈ Z . (1.22)

Introducing proper source fields added to the partition function yields a generating
functional, which can be used to generate correlation functions through functional
differentiation. Evaluating these explicitly usually requires some approximation, such
as a perturbation expansion in the interaction term of the Hamiltonian and subsequent
evaluations of Gaussian functional integrals. Importantly, dynamic correlation functions,
such as the two-point Green’s function, are defined on a set of discrete points on the
imaginary frequency axis. This description is convenient in multiple ways: First, most
elementary analytical operations, such as summations over Matsubara frequencies, can
be carried out using complex analysis. Of course, advanced approximation methods such
as those discussed later in this thesis cannot be carried out analytically anymore; they

5 Again, for ease of notation, we suppress additional dependencies of the Grassmann variables.
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require numerical methods. However, their application is comparatively convenient in
the Matsubara formalism, too: All correlation functions only have to be computed on the
set of discrete Matsubara frequencies and contractions between electron fields that would,
for continuous variables, require numerical integrations, instead only require summations
over the discrete Matsubara frequencies.

1.3.2 The problem of analytic continuation

Computing a correlation function for those imaginary discrete Matsubara frequencies is,
however, only one step. To obtain a retarded dynamic Green’s function, according to
Eq. (1.16), one in addition has to perform an analytic continuation of the result to the
real, continuous frequency axis [BM61]. If a closed analytic expression for the Matsubara
Green’s function G(iνn) is available, this can easily be achieved by simply replacing
iνn → ν + i0+. However, this prescription only applies to two-point functions. Analytic
continuation of four-point functions, which, as we have seen, are ubiquitous in many-body
physics, is much more complicated. It was only figured out very recently how this can be
achieved in full generality [Ge+24].

Still, major problems can arise if there is no analytic expression, but only a numerical re-
sult for G(iνn). In this case, analytic continuation is a numerically ill-conditioned inverse
problem. That is because it is impossible to numerically compute the full Matsubara
correlator for all Matsubara frequencies. All computational methods only work with a
finite set of points on the imaginary axis, making it challenging to accurately reconstruct
the spectral function when trying to invert Eq. (1.15). Crucially, the integrand kernel
on the right-hand side of Eq. (1.15) for imaginary z along the Matsubara axis turns out
to have super-exponentially decreasing singular values. Consequently, given a Matsub-
ara Green’s function, there is an enormous number of plausible real-frequency spectral
functions that satisfy Eq. (1.15) within a given accuracy. Selecting the “correct” spectral
function is hence sensitive to even tiny potential noise, gaps, or errors in the numerical
data [Shi+17; Ots+17]. In addition, Matsubara Green’s functions often turn out to be
comparatively smooth, while the corresponding real-frequency spectral functions might
show a rich structure that is difficult to recover, especially at high frequencies. One
concrete example of such an issue will be seen in Ref. [P1]. This issue is particularly
problematic since there is no unique solution to the analytic continuation problem for
numerical data, and even small numerical inaccuracies can lead to large errors in the result.

To remedy this problem, a multitude of strategies based on stochastic methods [San98],
fitting techniques [JG96; HGL23; ZYG24; ZG24], interpolation methods [BG96; FYG21]
and even machine learning [Fou+20] have been developed over the years and progress on
the problem is being made to this day. Still, every method has limitations, such as noise
sensitivity, cutoff effects, or sometimes not preserving causality by producing negative
spectral weight [FYG21]. This fact reflects that none of the methods can rigorously
overcome the issue that the problem is mathematically ill-conditioned.

The analytic continuation problem, therefore, is one of the primary motivations for this
thesis, in which we lay out a strategy for computing real-frequency dynamical correlation
functions directly. This goal will be achieved using a more general thermal quantum field
theory formulation called the Keldysh formalism, which we will introduce next.
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2 Real-frequency quantum field theory
This chapter is the primary introduction to the formalism employed in this thesis.
After providing some historical context, we recap the main idea behind the Keldysh
formalism, which enables the direct computation of real-frequency correlation functions.
We introduce these in more formal detail, mainly focusing on the four-point correlation
function and the associated vertex, which is one of this thesis’ main objects of interest.
We discuss some of its properties before mentioning the main diagrammatic methods
employed in this work for its concrete computation: the parquet equations and the
functional renormalization group.

2.1 Time-dependent expectation values and the Keldysh
contour

The Keldysh formalism is a theoretical framework originally intended to study systems
out of equilibrium with quantum field theory. Building on earlier work by Schwinger,
Kadanoff, and Baym [Sch61; Kad18; BM61], it was invented by Keldysh [Kel64]. Since
then, it has become the main framework for studying the quantum dynamics of systems
out of equilibrium. However, it can be applied to systems in thermal equilibrium, too. In
this case, its main selling point lies in its formulation in real time (or frequency); hence,
no analytic continuation from imaginary to real frequencies is required. Therein lies its
use for the studies presented in this work.

As in the preceding chapter, we are interested in computing the time-dependence of the
expectation value of some observable A. In the most general setting, this is given by

⟨A⟩(t) = Tr {A(t)ρ(t)} . (2.1)

Here, the trace runs over some complete set of basis states and the time-dependent
density matrix ρ(t) = U(t, t0)ρ0U(t0, t) describes the state of the quantum system of
interest, where ρ0 ≡ ρ(t0) is the density matrix at some initial time t0. Furthermore, the
operator A(t) might be explicitly time-dependent. U(t, t0) is the quantum-mechanical
time evolution operator, which evolves a quantum state from t0 to t > t0. Conversely,
U(t0, t) evolves the state from t back to the initial time t0.1 The time evolution of the
density matrix is determined by the von Neumann equation,

∂tρ(t) = −i[H(t), ρ(t)] , (2.2)

1 When restricting ourselves to the case of thermal equilibrium and employing the adiabatic assumption,
we will later take the limit t0 → −∞, which will result in significant simplifications. For now, we keep
the initial time t0 general.
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where H(t) is the Hamiltonian of the system, which might also be explicitly time
dependent.2 Formally, the von Neumann equation is solved by

U(t, t0) = T exp
[
−i

ˆ t

t0

dt′H(t′)
]

, (2.3)

where T is the time-ordering operator, which places operators evaluated at later times to
the left of operators evaluated at earlier times. The time evolution of the density matrix
also requires the operator for backwards time evolution. The Hermitian conjugate gives
this backwards time evolution,

U(t0, t) = [U(t, t0)]† = T̃ exp
[
i

ˆ t

t0

dt′H(t′)
]

= T̃ exp
[
−i

ˆ t0

t
dt′H(t′)

]
, (2.4)

where T̃ now is the anti-time-ordering operator, which places operators evaluated at
earlier times to the left of operators evaluated at later times. Using the cyclicity of the
trace, the time-dependent expectation value, Eq. (2.1), is written as

⟨A⟩(t) = Tr {U(t0, t)A(t)U(t, t0)ρ0} . (2.5)

This expression has an intuitive physical interpretation: First, the system of interest is
prepared in some initial state ρ0 at time t0. Then, it is evolved forwards in time until the
time t, where the operator of interest A(t) is evaluated. Afterwards, it is evolved backwards
in time, until the initial time t0 again. Historically, the idea of using two time evolutions
to compute expectation values goes back to Schwinger [Sch61]. For later convenience, we
can extend the time evolution from t to ∞ and back to t, using the unitarity property
of the time evolution operator, U(t, t) = U(t, ∞)U(∞, t) = U(t, ∞)[U(t, ∞)]† = 1. This
property allows us to write

⟨A⟩(t) = Tr {U(t0, ∞)U(∞, t)A(t)U(t, t0)ρ0} (2.6a)
= Tr {U(t0, t)A(t)U(t, ∞)U(∞, t0)ρ0}. (2.6b)

We see that it makes no difference whether the operator A(t) is evaluated during the
forwards or the backwards time evolution.3 To simplify the notation, the two time
evolutions inside the trace motivate the contour-time-ordering operator, which formally
lets us write the expectation value as

⟨A⟩(t) = Tr
{

TC
(

exp
[
−i

ˆ
Ct0

dt′H(t′)
]

A(t)
)

ρ0

}
. (2.7)

Here, Ct0 denotes the Keldysh contour pictorially shown at the very left in Fig. 2.1,
which starts at initial time t0 and TC orders all following operators such that operators
evaluated on later parts of the contour are placed to the left of the others. Making the

2 We use the von Neumann equation, as it can be seen as the generalization of the Schrödinger equation
for the time evolution of pure quantum states. As we will later be primarily interested in systems
characterized by a mixed state (a thermal state, to be precise), we use a description with a density
matrix throughout.

3 This will be different when evaluating expectation values of operator products, see below.
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contour-time-ordering explicit, the integral inside the exponent reads
ˆ
Ct0

dt′H(t′) =
ˆ ∞

t0

dt′H−(t′) +
ˆ t0

∞
dt′H+(t′) =

ˆ ∞
t0

dt′H−(t′) −
ˆ ∞

t0

dt′H+(t′)

=
∑

j∈{−,+}
(−j)

ˆ ∞
t0

dt′Hj(t′) . (2.8)

Here, we introduced a contour index j ∈ {−, +} to label the contour branch onto which
the operator H is placed. This index is useful because each time now appears twice,
once on the contour’s forward and once on the backward branch. For Hamiltonians that
are local in time (meaning that they only depend on one time argument, if at all), the
distinction between the two branches is not essential since they evaluate to the same
expression on both branches. However, the distinction is important when evaluating
products of operators evaluated at different times: Along the − branch of the contour,
they are time-ordered; along the + branch of the contour, they are anti-time-ordered.
Explicitly, for a product of two (bosonic) operators A1 and A2, evaluated at times t1 and
t2 < t1, respectively, the contour-time-ordering operator acts as

TC Aj
1(t1)Aj

2(t2) =
{

A−1 (t1)A−2 (t2)
A+

2 (t2)A+
1 (t1) ,

(2.9)

depending on the contour index j. If the contour indices differ, the operator on the
backward contour (j = +) is placed to the left of the operator on the forward contour
(j = −). This prescription holds for bosonic observables A; note that the contour ordering
implies a minus sign if applied to fermionic operators when two are swapped. Important
examples for such operator products will appear later when we introduce electron Green’s
functions in this formalism.

So far, we have kept our discussion very general. It could be applied to a setting
where (i) the Hamiltonian is explicitly time dependent and (ii) the initial density matrix
ρ0 is arbitrary. Therein lies the power of the Keldysh formalism: It can be applied
in circumstances that arise, e.g., when describing non-equilibrium or explicitly time-
dependent phenomena. For the rest of this thesis, we will be more modest. We restrict
ourselves to the case of thermal equilibrium, where the Hamiltonian is time-independent
and the initial density matrix is just given by the thermal density matrix, ρ0

th.eq.= e−βH/Z
with the partition function Z = Tr {e−βH} and H is time independent. In this case,
Eq. (2.3) for the time evolution operator simplifies to U(t, t0) = e−i(t−t0)H . By simple
inspection, one notices that one can write e−βH = U(t0 − iβ, t0). Again, using the
cyclicity of the trace, the time-dependent expectation value, Eq. (2.5), is then written as

⟨A⟩(t) = 1
Z Tr {U(t0 − iβ, t0)U(t0, t) A(t) U(t, t0)} . (2.10)

This type of time evolution can be visualized by attaching another branch to the time
contour at the end of the contour Ct0 , along the imaginary axis in vertical direction from
t0 to t0 − iβ. Along this part of the contour, all operators (including the Hamiltonian) are
defined to be equal to the same operator evaluated at initial time t0: A(t0 − iτ) = A(t0) ≡
A. Here, τ is an imaginary time τ ≡ it ∈ [0, β). We could now compute expectation
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∞ t0

ρ0

−

+

thermal

equilibrium
∞ t0

−iβ

e−βH/Z
−

+

adiabatic

assumption
∞ −∞

e−βH0/Z0

−

+

Figure 2.1 Keldysh contours for three different settings. The one on the left corresponds to the
most general scenario, applicable in particular to non-equilibrium problems, in which an initial
state, described by the initial density matrix ρ0, is prepared at the initial time t0, followed by
the time evolution along the two branches of the contour. The second contour arises when the
initial density matrix is chosen to be the one of the canonical ensemble in thermal equilibrium.
The contribution to thermal expectation values from the density matrix can be treated as an
additional time evolution in imaginary time form 0 to −β. The third form arises in the case of
thermal equilibrium when, additionally, the adiabatic assumption can be employed. Then, the
thermal density matrix can be formally prepared from the non-interacting one by adiabatically
turning on the interactions, starting from negative infinite time.

values of operators on this part of the contour as

⟨A⟩(t0 − iτ) = 1
Z Tr {U(t0 − iβ, t0 − iτ) A(t0 − iτ) U(t0 − iτ, t0)}

= 1
Z Tr {e−(β−τ)HAe−τH} = 1

Z Tr {e−βHA} , (2.11)

where we used the cyclicity of the trace again in the last step. Equation (2.11) gives
nothing but the thermal expectation value of the operator A and is the basis of the
Matsubara formalism discussed before in Sec. 1.3.1. Since it is formulated entirely in
imaginary time (the real initial time t0 drops out), this brings along the problem of
analytic continuation, see Sec. 1.3.2.

Since we want to avoid that issue, we will stick with Eq. (2.10) for the time-dependent
expectation value. However, it is unclear from the start how one should deal with the
time evolution along the imaginary part of the contour. It turns out that this issue
is solved by utilizing the adiabatic assumption [BF28]: Assume that the system was
non-interacting at the very beginning of time (t → −∞) and that interactions were
switched on adiabatically to prepare the system in the initial interacting state at initial
time t0. In thermal equilibrium, this state is characterized by the thermal density matrix
w.r.t. the full Hamiltonian H. The word “adiabatically” means in this context that
the eigenstates of the non-interacting system directly evolve into the eigenstates of the
interacting system without any level crossings. As t0 drops out if H is not explicitly
time-dependent, we can let t0 → −∞. Then, we can replace the thermal density matrix
by the thermal density matrix w.r.t. the non-interacting Hamiltonian H0.4 That is
because the interaction vanishes on the vertical branch of the contour for t0 → −∞, since
H(−∞ − iτ) ≡ H(−∞) = H0, see above. Since the non-interacting density matrix only
includes quadratic terms of fermion operators, it can be used to apply Wick’s theorem
[Wic50]. In other words, this replacement now enables a conventional perturbation
expansion of the time evolution operator in the interacting part of the Hamiltonian,
which is the basis of diagrammatic quantum field theory calculations. A formal derivation

4 H0 now labels the quadratic part of the Hamiltonian, not the full interacting Hamiltonian without an
external perturbation as in Ch.1.
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of this result is provided in Sec. 2.2.3 of Ref. [Jak10]. Also, since we set t0 → −∞, all time
integrations naturally run across the entire real axis from −∞ to ∞, which is convenient
and enables easy Fourier transformations. Note, however, that the adiabatic assumption
is far from trivial, and there are many important examples of interesting physical systems
for which it does not hold. For example, systems that undergo quantum phase transitions
as the interaction increases or that form bound states violate the adiabatic assumption.
As the adiabatic assumption lies at the heart of any perturbation theory in the interaction,
this strongly limits the applicability of diagrammatic methods in general [And00].

2.2 Electron correlation functions in the Keldysh formalism
Next, we introduce the correlation functions in the Keldysh formalism of concrete interest
for this work. We will almost exclusively be concerned with electron Green’s functions
and higher-order, particularly four-point, correlation functions for the correlated electron
problem, as briefly introduced in Sec. 1.3. The main theoretical framework of this thesis
will be a quantum field theory description, for which we introduce some basic definitions
and notation in the following. We will closely follow the conventions in Ref. [Wal22] since
those were used in the publications reprinted later in this thesis.

The basic starting point for our field theory is the quantum partition function Z. In
a purely electronic (and thus fermionic) theory, the trace is made explicit using an
overcomplete set of fermionic Grassmann variables c and c̄. Z is then given in terms of a
functional integral,

Z =
ˆ

D[c, c] eiS[c,c] , (2.12)

with the action

S[c, c] = S0[c, c] + Sint[c, c] = c1′ [G−1
0 ]1′|1c1 + 1

4c1′c2′ [Γ0]1′2′|12c2c1 , (2.13)

which has a non-interacting (quadratic) and an interacting (quartic) part. The multi-
indices in Eq. (2.13) comprise all dependencies of the Grassmann variables, i.e., time,
Keldysh contour index, spin, and all other dependencies and quantum numbers there
might be. We use the Einstein summation convention, meaning all repeated indices are
summed or integrated. Contracting time and Keldysh indices thus means an integration
along the Keldysh contour as explicitly specified in Eq. (2.8).5 The first term of the action
includes the inverse bare propagator,

[G−1
0 ]1′|1 = δ1′|1i∂t1 − h1′|1 , (2.14)

which is given by two terms: a diagonal dynamical term and the single-particle Hamil-
tonian in the form of the non-interacting Hamiltonian matrix elements in terms of the
Grassmann variables, i.e., H0[c, c] = c1′h1′|1c1. The second term of the action is the inter-
acting part of the Hamiltonian, multiplied by a minus sign. It includes the bare vertex Γ0.
From this point forward, we will assume that the interaction is instantaneous, i.e., local in

5 This time, the Keldysh contour runs twice over the full real-time axis, however. See our discussion in
the last paragraph of Sec. 2.1.
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time.6 This assumption reflects the general view of the theory as an effective description
of electrons in condensed matter systems: Microscopically, the electron-electron inter-
action is, of course, mediated by three-point direct and exchange processes of photons
as described by quantum electrodynamics. In the effective description of interest here,
the photon fields have been integrated out, yielding only a quartic interaction of the
electrons. In a standard diagrammatic visualization, the usual Feynman diagrams are
thus replaced by the Hugenholtz notation [Hug57], which exclusively involves electron
fields,

[Γ0]1′2′|12 =
1′

2′

1

2
= − . (2.15)

Concretely, in the case of an instantaneous interaction, all time arguments and contour
indices have to be equal in the bare vertex for it to be non-vanishing. Also, Pauli’s
exclusion principle restricts the possible combinations of spin arguments because only
electrons with opposite spins can interact at the same point in space and time. Making
the dependence on Keldysh contour indices j, spin indices σ, and time indices t explicit,
where the indices q shall label all other indices there might be, the bare interaction then
reads [Jak10; Wal22]

[Γ0]j1′ j2′ |j1j2
σ1′ σ2′ |σ1σ2

(t1′ , t2′ |t1, t2; q1′ , q2′ |q1q2) = −j1δj1′ =j2′ =j1=j2δ(t1′ = t2′ = t1 = t2)

× (δσ1′ ,σ2δσ2′ ,σ1 − δσ1′ ,σ1δσ2′ ,σ2)[Γ0](q1′ , q2′ |q1q2) , (2.16)

where the minus sign in the second spin-delta term is due to the fermionic statistics of
electrons, leading to a sign change when two electrons are swapped.

We now define the correlation functions of interest from the functional integral and
introduce the customary diagrammatic notation. First, the bare propagator, whose
inverse defines the non-interacting part of the action, is given by

[G0]1|1′ = −i⟨TC c1c1′⟩0 = −i

Z0

ˆ
D[c, c] c1c1′eiS0[c,c] ≡ 1 1′

(2.17a)

with Z0 =
ˆ

D[c, c] eiS0[c,c] the non-interacting partition function , (2.17b)

i.e., the two-point Green’s function of the non-interacting theory. Eqs. (2.17) can easily be
verified from the action using the standard Gaussian integral for functional integrals with
Grassmann variables [NO19]. The functional integral automatically ensures time-ordering
along the Keldysh contour of the fields inside the expectation value. While the bare
Green’s function is known exactly, the two-point electron Green’s function of the full
interacting theory is of greater interest, which cannot be computed as easily. It is,

6 We also demand that it is local in space, although this will not be relevant to our discussion later,
focusing on zero-dimensional problems. Physically, the assumption of a spatially local bare interaction
of electrons is motivated by the fact that, due to the mobility of the conduction electrons in a metal,
the long-range Coulomb interactions are screened, such that electrons can be modeled to interact when
they meet on the same lattice site only. The relevance of non-local interactions in models of correlated
materials is the subject of very current research [Pad+25; Sch+25].
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analogously, defined as

G1|1′ = −i⟨TC c1c1′⟩ = −i

Z

ˆ
D[c, c] c1c1′eiS[c,c] ≡ 1 1′ , (2.18)

now using the full action S. One famous result of quantum field theory is the relation
between the bare and the full Green’s function called the Dyson equation [Dys49],
introducing the self-energy Σ,

G1|1′ = [G0]1|1′ + [G0]1|2′Σ2′|2G2|1′ = 1 1′
+ Σ

1 2′ 2 1′
(2.19a)

⇔ G−1
1′|1 = [G−1

0 ]1′|1 − Σ1′|1 . (2.19b)

It can be shown that, in terms of Hugenholtz diagrams, the self-energy is the sum of
amputated one-particle irreducible two-point diagrams [NO19]. As it comprises all effects
of the electron-electron interaction on the two-point level, it is one of the main quantities
of interest in many-body physics. It will show up many times in the following.

The four-point correlation function is similarly defined as

G
(4)
12|1′2′ = i⟨TC c1c2c2′c1′⟩ = G(4)

2′ 2

1 1′

. (2.20)

Employing its tree expansion [KBS10], the four-point function is decomposed into two
disconnected terms and one connected term,

iG
(4)
12|1′2′ = G1|1′G2|2′ − G1|2′G2|1′ + iG

(4)
c; 12|1′2′

=
2′ 2

1 1′

−
2′ 2

1 1′

+ i G
(4)
c

2′ 2

1 1′

, (2.21)

where the connected contribution is given in terms of the four-point vertex Γ,

G
(4)
c; 12|1′2′ = −G1|3′G2|4′Γ3′4′|34G3|1′G4|2′ = − Γ

2′ 2

1 1′

4 4′

3′ 3

. (2.22)

Thus, the vertex is the amputated part of the connected contribution to the four-point
electron Green’s function. As is the case for the self-energy, all diagrams contributing to
the vertex are one-particle irreducible. Referring back to the end of our discussion of
linear response theory in Sec. 1.1, we see that the four-point correlation function shows up
in dynamic response functions, particularly susceptibilities, that involve pairs of electron
fields. Using Eq. (2.21), there are thus contributions to the susceptibilities from pairs
of two-point functions, but also from the connected term that involves the four-point
vertex, Eq. (2.22). Therefore, the latter are sometimes called vertex corrections or vertex
contributions.
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2.2.1 Keldysh index structure and Keldysh rotation

After introducing the primary quantities of interest, we now focus on the structure of the
two-point and four-point functions regarding their dependence on Keldysh indices. Since a
general n-point function is given via an expectation value of a product of n fermion fields,
which can each be placed on either of the two branches of the Keldysh contour, it will have
2n Keldysh components in total. The resulting additional “Keldysh” index is already one
of the main complications of the Keldysh formalism compared to the Matsubara formalism.

Starting with the two-point Green’s function G, we explicitly write down all its four
Keldysh components. Making only their dependence on time arguments and Keldysh
indices explicit, we have

G−|+(t1|t2) = −i⟨TC c−(t1)c+(t2)⟩ = i⟨c(t2)c(t1)⟩ ≡ G<(t1, t2) (2.23a)
G+|−(t1|t2) = −i⟨TC c+(t1)c−(t2)⟩ = −i⟨c(t1)c(t2)⟩ ≡ G>(t1, t2) (2.23b)
G−|−(t1|t2) = −i⟨TC c−(t1)c−(t2)⟩ = G>(t1, t2)θ(t1 − t2) + G<(t1, t2)θ(t2 − t1) (2.23c)
G+|+(t1|t2) = −i⟨TC c+(t1)c+(t2)⟩ = G<(t1, t2)θ(t1 − t2) + G>(t1, t2)θ(t2 − t1) (2.23d)

where we defined the “greater” and “lesser” Green’s functions G> and G<, and made
the effect of the contour-time-ordering operator TC explicit. As can be confirmed easily
from those definitions, the components of the Green’s function are not independent.
Concretely, one component can be eliminated by making use of the equation

G−|+ + G+|− − G−|− − G+|+ = 0 . (2.24)

This redundancy motivates the Keldysh rotation [Kel64], defined as (summation conven-
tion implied)

Gα|α′ = Dα|jGj|j′(D−1)j′|α′
, (2.25)

with the matrix D and its inverse D−1 given by

D = 1√
2

(
1 −1
1 1

)
D−1 = 1√

2

(
1 1

−1 1

)
. (2.26)

Carrying out the transformation explicitly and employing Eq. (2.24), the Keldysh structure
of the Green’s function reads

(Gα|α′) =
(

0 GA

GR GK

)
, (2.27)

where the component G1|1 now vanishes by construction. Indeed, GR labels the physi-
cally important retarded component of G, which was already introduced in Eq. (1.14).
GA(t1, t2) = [GR(t2, t1)]∗ is the advanced component, which is related to the retarded com-
ponent by complex conjugation, and GK(t1, t2) = G>(t1, t2)+G<(t1, t2) = −[GK(t2, t1)]∗
is called the Keldysh component.
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The same transformation can be done for the self-energy Σ, whose Keldysh structure
reads

(Σα′|α) =
(

Σ1|1 Σ1|2

Σ2|1 Σ2|2

)
=
(

ΣK ΣR

ΣA 0

)
(2.28)

Compared to G, the Keldysh indices α′, α ∈ {1, 2} are interchanged, which is inferred
from the structure of the Dyson equation, Eq. (2.19a). Likewise, the vertex is transformed
into the Keldysh basis as

Γα1′ α2′ |α1α2 = Dα1′ |j1′ Dα2′ |j2′ Γj1′ j2′ |j1j2(D−1)j1|α1(D−1)j2|α2 . (2.29)

Evidently, Γ is a 24 = 16-component matrix in Keldysh space. As for Σ, the Keldysh
component that vanishes due to causality is the component where all Keldysh indices
are equal to 2, i.e. Γ22|22 = 0. Furthermore, the bare interaction simplifies since the
instantaneous interaction considered in this work is only finite if all contour indices are
equal, see Eq. (2.16). Explicitly, this means in Keldysh space that

[Γ0]α1′ α2′ |α1α2 =
{

Γ0/2 if α1′ + α2′ + α1 + α2 odd
0 otherwise .

(2.30)

In thermal equilibrium, the number of independent Keldysh components of all correlation
functions is reduced to a single one through the now fermionic version of the fluctuation
dissipation theorem, whose bosonic form was already given in Eq. (1.5). After performing
a Fourier transform, possible in the steady state of thermal equilibrium, the FDT for G
reads

GK(ν) = [1 − 2 nF (ν)][GR(ν) − GA(ν)] = 2i tanh
(

βν
2

)
Im GR(ν) , (2.31)

with the Fermi-Dirac distribution function nF (ν) = [eβν + 1]−1. The same equation
holds for the Keldysh components of Σ. As the bosonic version, this equation is best
proven using a spectral representation of G, which goes beyond the scope of this work
(see, for example, Ref. [Ge+24]). Similar, though much more involved equations relate
the Keldysh components of the vertex Γ in thermal equilibrium. They are also called
“Kubo-Martin-Schwinger” (KMS) relations [Kub57; MS59]. Since we do not employ
them in this work (the exception being one specific relation studied in the Appendix
of Ref. [P4]), we refrain from discussing them here. For general KMS relations, see
Refs. [WH02; JPS10; Ge+24].

Before closing this section, we comment on one subtlety regarding equal-time correlators,
which is relevant to parts of the first publication reprinted in this thesis, Ref. [P1]. The
definitions of G−|− and G+|+ in Eqs. (2.23) are ambiguous for the case t1 = t2 ≡ t, due to
the non-unique definition of the Heaviside function for equal times. Therefore, when both
Grassmann fields of the two-point function sit on the same point of the Keldysh contour,
one must impose a particular ordering. Commonly, one demands normal ordering of
the fields, meaning that all c fields must be placed to the left of the c fields, which
is required anyway for the construction of the functional integral, Eq. (2.12). Then,
G−|−(t, t) = G<(t, t) = G+|+(t, t). In that case, Eq. (2.24) is not valid, so the result of
the Keldysh rotation is different. For a detailed discussion of the consequences related
to our work, see App. E of Ref. [P1]. Mostly, this subtlety is irrelevant when doing a
Fourier transform to frequency space because the point t1 = t2 is of measure zero in time
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integrals. It only becomes important in the case of propagator loops that begin and end
at the same bare vertex because, due to its instantaneous nature, both Grassmann fields
are evaluated on the same point of the contour in this case. In frequency space, this
amounts to frequency integrals over only a single propagator.

2.2.2 Spin structure and SU(2) symmetry

After discussing the Keldysh index dependence of the two- and four-point correlation
functions, we now turn to their spin dependence. A priori, it is similar to the Keldysh
structure, since a general n-point function also has n spin indices, each of which can take
two values, either spin up or spin down, σi ∈ {↑, ↓}. An n-point correlation function
thus has 2n spin components. However, their spin structure strongly simplifies once
SU(2) spin symmetry is imposed, which is, e.g., valid when no external magnetic field
is applied.7 From this point on, and throughout this thesis, we will assume SU(2) spin
symmetry. As a first consequence, all correlation functions conserve the total spin. For
two-point functions, this means that they are diagonal in their spin arguments, e.g.,
Σσ1′ |σ1 ∼ δσ1′ ,σ1 . Furthermore, the two-point functions are invariant under global spin
flips, Σ↑|↑ = Σ↓|↓. In summary, there is hence just one independent spin component;
therefore, the spin index for two-point functions can be dropped entirely.

For four-point functions, spin conservation due to SU(2) symmetry implies Γσ1′ σ2′ |σ1σ2 ∼
δσ1′ +σ2′ ,σ1+σ2 . As shown explicitly in Refs. [RVT12; Roh13], the non-zero spin components
of the vertex are

Γσσ|σσ ≡ Γ↑↓ ; Γσσ|σσ ≡ Γ↑↓ ; Γσσ|σσ ≡ Γ↑↑ , (2.32)

where a bar over a spin index indicates its inversion (↑ =↓ and vice versa). The notation
in Eq. (2.32) signals that invariance under global spin flips was already exploited. Fur-
thermore, SU(2) spin symmetry leads to another relation between the three components,

Γ↑↑ = Γ↑↓ + Γ↑↓ , (2.33)

which leaves only two independent spin components.8

2.2.3 Further symmetries

Before closing this section, we comment that the vertex has numerous other symmetries
that could be exploited in a numerical treatment. Among those is, in particular, crossing
symmetry, which is a direct manifestation of the fermionic statistics of electrons. Accord-
ing to crossing symmetry, pairs of external fermionic indices can be swapped, yielding a
minus sign but leaving the vertex otherwise unchanged,

Γ1′2′|12 = −Γ2′1′|12 = −Γ1′2′|21 = +Γ2′1′|21 . (2.34)

7 In the sense of Sec. 1.1, this means that the undisturbed Hamiltonian should not include a magnetic field
term. An external magnetic field can still be applied as an external perturbation to probe the magnetic
susceptibility of the system. Remember that linear response determines this from the properties of the
undisturbed system!

8 The number of independent spin components can be further reduced to just one also for the vertex
using crossing symmetry Γ1′2′|12 = −Γ1′2′|21 (see next subsection) to relate Γ↑↓ and Γ↑↓ [Roh13].
This relation is more intricate in practice, as it swaps different Keldysh components and two-particle
channels when employing the parquet decomposition, which will be introduced in the next section.
This relation is not used in this work.
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Furthermore, ingoing at outgoing fermion lines can be interchanged by complex conjuga-
tion,

Γ1′2′|12 = (−1)1+α1′ +α2′ +α1+α2
[
Γ12|1′2′

]∗
, (2.35)

which yields a minus sign depending on the combination of Keldysh indices. For details
on the derivation of these symmetries and their concrete application, see Refs. [Jak10;
JPS10; Wal22].
In addition to crossing symmetry and complex conjugation, which can be applied generally,
the vertex might have even more symmetries depending on the physical problem of interest.
For systems in thermal equilibrium, there is, in particular, time-translation invariance,
which directly translates into frequency conservation after a Fourier transform of the
time dependencies of the vertex. Time-translation invariance hence eliminates one of the
four frequencies of the vertex and enables flexible and efficient parametrizations of the
remaining three frequencies of the vertex, which will be discussed in the next section.
Furthermore, time-reversal symmetry and/or particle-hole symmetry lead to symmetries
in the frequency domain. These will not be discussed here; for details on this subject, see
Ref. [Ge25].

2.3 Diagrammatic methods
In the previous section, we introduced the self-energy Σ and the vertex Γ, the primary
quantities of interest in a quantum field theory treatment of correlated electronic systems,
and discussed their generic properties in the Keldysh formalism. In this section, we
summarize two (related) frameworks that can be used to compute these functions, namely
the parquet formalism and the functional renormalization group in a vertex expansion. At
their core, both frameworks provide exact relations for the quantities involved; however,
some approximation always has to be employed to apply them in practice. Still, they
stand out from other commonly used quantum field theory methods, because (i) they
take contributions from all orders of perturbation theory in Γ0 into account and (ii) they
are both unbiased in the three two-particle channels of the vertex (see below), hence not
singling out any kind of two-particle quantum fluctuation. The latter property is of great
importance in modern condensed matter physics since, in many models of interest, such
as the Hubbard model, different kinds of fluctuations compete on very similar energy
scales, such that an unbiased treatment of them is paramount.

2.3.1 Parquet formalism

The parquet formalism is a framework for organizing the diagrammatic contributions
to the four-point vertex Γ. It was developed in the mid-20th century [LAK54; DM64b;
DM64a] and was soon applied to various problems in both high-energy physics [DST57]
and solid-state physics [Abr65; NGR69; RGN69]. In the early 1990s, it was further
formalized and used for the first time in numerical studies of condensed matter systems
[BSW89; BW91]. In its modern formulation [Bic04], the starting point of the parquet
formalism is the parquet decomposition of the two-particle vertex Γ, which classifies
all connected, one-particle irreducible, and amputated four-point diagrams concerning
their two-particle reducibility. A diagram is two-particle reducible (2PR) if it can be
disconnected by cutting a pair of internal propagators. It turns out that there are three
distinct types of two-particle reducible diagrams, depending on the orientation of the
internal propagators to be cut: There exist three so-called two-particle channels a (for
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“antiparallel”, sometimes called ph for “particle-hole-crossed”), p (for “parallel”, sometimes
called pp for “particle-particle”) and t (for “transversal antiparallel”, sometimes called
ph for “particle-hole”). These three channels are mutually exclusive, meaning that any
diagram that is 2PR in one channel cannot be 2PR in any of the other channels. All
2PR diagrams are thus part of one of the three 2PR vertices γr∈{a,p,t}. In addition, there
exist diagrams that are not 2PR in any of the three channels. These diagrams are thus
called two-particle irreducible (2PI) and are part of the 2PI vertex R. The parquet
decomposition of the vertex Γ thus reads

Γ = R +
∑

r∈{a,p,t}
γr (2.36a)

= R + γa + γp + γt (2.36b)

=
1′

2′

1

2
+

✂

+ 1
2

✂
−

✂

+ O[(Γ0)3] , (2.36c)

where we show the first diagrammatic contributions in perturbation theory in Eq. (2.36c)
and indicate two-particle reducibility of the three two-particle channels.

At the heart of the parquet formalism lies a set of self-consistent equations for the
self-energy Σ and the three two-particle reducible vertices γr. The latter are called
Bethe–Salpeter equations (BSEs) [SB51],

γr = Ir ◦ Πr ◦ Γ = Γ ◦ Πr ◦ Ir . (2.37)

Here, Ir = Γ − γr labels the two-particle irreducible vertices in channel r. Πr is the
so-called “bubble”; a pair of propagators used to connect two vertices in channel r, and
the symbol ◦ is a shorthand notation for contractions over all quantum numbers and
time or frequency integrations. The BSEs are symmetric under the exchange Γ ↔ Ir on
the right-hand side. Diagrammatically, the BSEs are depicted as

γa = Ia Γ = Γ Ia , (2.38a)

γp = 1
2

Ip Γ = 1
2 Γ Ip , (2.38b)

γt = −

It

Γ

= −
Γ

It

, (2.38c)

where we made the channel-specific numerical prefactors explicit. These are absorbed in
the definitions of the propagator pairs Πr. An explicit parametrization of these equations
in the KF can be found in App. C of Ref. [P1].
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In addition to the BSEs, the parquet formalism provides a relation between the vertex
and the self-energy. This is an equation of motion called Schwinger–Dyson equation
(SDE) [Dys49; Sch51],

Σ = −
[
Γ0 + 1

2Γ0 ◦ Πa ◦ Γ
]

· G . (2.39)

Here, the symbol · denotes the contraction of a four-point object with a single propagator.
Note that the second term can be parametrized in terms of any of the three two-particle
channels, the only differences being the prefactors (see, e.g., App. C of Ref. [P1]). Here, we
chose the a channel parametrization exemplarily. Diagrammatically, the SDE is depicted
as

Σ = − − 1
2 Γ . (2.40)

Since the BSEs involve only full Green’s functions G, into which Σ enters via the Dyson
equation, Eq. (2.19a), the SDE and the three BSEs, together called the parquet equations,
provide exact self-consistent relations for both the self-energy Σ and the 2PR vertices γr.
For a formal derivation of these equations, see, e.g. , Refs. [Kug19; Eck+23]. However,
they cannot be solved without external input since the parquet formalism does not
provide an equation for the 2PI vertex R. In practice, some expression for R must be
provided to close the parquet equations and enable their self-consistent solution. At
this point, some approximation typically has to be made since finding the exact result
for R is usually impossible. The simplest possible approximation is called the parquet
approximation (PA) and uses only the very first contribution to R in perturbation theory,
which is the bare vertex,

R = + + + . . .
PA≈ . (2.41)

The next term contributing to R is of fourth order in perturbation theory. Hence, the
PA can be justified if the bare coupling is small. However, it fails beyond intermediate
coupling strengths for the same reason. While the PA is employed in two publications
reprinted in this thesis [P1; P2], in the last one, Ref. [P4], we go beyond the PA and
investigate the parquet equations at large interaction.

2.3.2 Frequency structure of the vertex

After introducing the parquet decomposition of the vertex, we now provide details
on one of the technically most important parts regarding practical calculations: the
parametrization of the vertex in frequency space. Since we are, in the context of this
work, only interested in the steady state of thermal equilibrium, after a Fourier transform,
all correlation functions satisfy (real) frequency conservation. Hence, three instead of
four frequencies are sufficient for a complete parametrization for the vertex. It turns out
that different choices for these three frequencies are preferential in practice, depending
on the two-particle channel in question. For each of those, a bosonic transfer frequency
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ωr and two fermionic frequencies νr and ν ′r are used9:

Γ

ν2 ν2′

ν1′ ν1

= R

ν2 ν2′

ν1′ ν1

+ γa

νa+ ωa

2 ν′
a+ ωa

2

νa− ωa

2 ν′
a− ωa

2

+ γp

ωp

2 −ν′
p

ωp

2 −νp

ωp

2 +νp
ωp

2 +ν′
p

+ γt

νt+ ωt

2 νt− ωt

2

ν′
t+ ωt

2 ν′
t− ωt

2

(2.42)

The definitions of the frequency sets {ωr, νr, ν ′r} can be inferred from Eq. (2.42). They are
explicitly written down in App. A of Ref. [Wal22], together with the linear transformations
between the three parametrizations. The main practical advantages of the channel-
dependent frequency parametrization are that (i) the structures of the vertices are centered
around ωr = 0 due to the symmetric parametrization and that (ii) the contributions to
the 2PR vertices can be decomposed further into asymptotic classes, depending on their
asymptotic behavior in the limit of large frequencies.

2.3.3 Asymptotic classes

The decomposition of each of the three two-particle channels into four asymptotic classes,
respectively, was introduced in Ref. [Wen+20]. It uses the fact that the instantaneous bare
vertex Γ0 is frequency independent. Consequently, diagrams in which external fermion
propagator lines meet at the same bare vertex do not depend on all three frequencies
when using the channel-dependent frequency parametrization. Hence, their numerical
parametrization is simplified significantly. Also, those diagrams yield a finite contribution
in the limit, in which the frequencies they do not depend on are taken to infinity. Hence
the name “asymptotic classes”. Concretely, in each two-particle channel r, one defines

(i) the K1,r class, where both pairs of external fermion lines meet at the same bare
vertex, respectively. In the frequency parametrization native to channel r, these
diagrams only depend on the bosonic transfer frequency ωr. They can hence be
extracted from γr by taking the limit of both fermionic frequencies to infinity,

K1,r(ωr) = lim
νr→∞

lim
ν′

r→∞
γr(ωr, νr, ν ′r) r=a= K1,aνa ν′

a

ωa

, (2.43a)

(ii) the K2,r class, where the right pair of external fermion lines meets at the same bare
vertex, but the left external lines attach to different bare vertices. Those diagrams
do not depend on the fermionic frequency νr′ and can hence be extracted by taking
the limit νr′ → ∞ and subtracting the K1,r class,

K2,r(ωr, νr) = lim
ν′

r→∞
γr(ωr, νr, ν ′r) − K1,r(ωr) r=a= K2,aνa ν′

a

ωa

, (2.43b)

(iii) the K2′,r class, which is similar to the K2,r class, the difference being that the role
of the left and right pair of external fermion lines is interchanged. Hence, it does

9 The nomenclature of “bosonic” and “fermionic” frequencies is due to the Matsubara formalism, which
distinguishes between even (“bosonic”) and odd (“fermionic”) Matsubara frequencies. For real-frequency
calculations, there is no practical difference between these two types.
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not depend on the fermionic frequency νr and can be extracted as

K2′,r(ωr, ν ′r) = lim
νr→∞

γr(ωr, νr, ν ′r) − K1,r(ωr) r=a= K2′,aνa ν′
a

ωa

, (2.43c)

(iv) and the K3,r class, which consists of all diagrams in channel r that genuinely
depend on all three frequencies independently. It can thus easily be extracted by
subtracting the other three diagrammatic classes from the reducible vertex,

K3,r(ωr, νr, ν ′r) = γr(ωr, νr, ν ′r) − K1,r(ωr) − K2,r(ωr, νr) − K2′,r(ωr, ν ′r)

r=a= K3,aνa ν′
a

ωa

. (2.43d)

To fully exploit the simplifications the asymptotic decomposition entails, the BSEs,
Eq. (2.37), can likewise be formulated for the individual asymptotic contributions [Gie+22].
For a detailed numerical study of those, see in particular Ref. [P4].

2.3.4 Functional renormalization group

The functional renormalization group (fRG) [KBS10; Met+12; Dup+21] is a general quan-
tum field theoretical framework inspired by the traditional “Wilsonian” renormalization
group (RG) [Wil75; Sha94]. There, high-energy fluctuations are successively integrated
out to identify the relevant parameters in a corresponding low-energy (i.e., large length
scale) effective theory. The fRG generalizes this concept to correlation functions, starting
from an exact functional flow equation for the generating functional, called the “Wetterich
equation” [Wet93]. A subsequent “vertex expansion” of the Wetterich equation yields an
infinite hierarchy of flow equations for 1PI vertices [Mor94], which is the starting point of
the following discussion. Mathematically, the flow equations are a set of coupled ordinary
differential equations, which describe the evolution of the 1PI vertices with respect to a
flow parameter Λ. In the Wilsonian sense, Λ would represent an energy scale, such as
an energy of momentum cutoff, to be incrementally lowered throughout the RG flow.
It turns out, however, that the fRG is more general in that regard, in that Λ could, in
principle, represent any single-particle parameter of the theory. In this sense, the fRG
can be used to interpolate between two points in an abstract “theory space”. In practice,
an fRG flow is started at some initial value Λi of the flow parameter, at which the theory
is under control, in the sense that the self-energy and vertex are known, at least to a
good enough approximation. The flow equations are then integrated up to a final value
Λf ,

Σf =
ˆ Λf

Λi

dΛ Σ̇Λ Γf =
ˆ Λf

Λi

dΛ Γ̇Λ , (2.44)

which should represent the actual theory of interest.
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The first two fRG flow equations of the hierarchy for a fermionic theory with a quartic
interaction read

Σ̇ = −Γ · S = − Γ , (2.45a)

Γ̇ =
∑

r∈{a,p,t}
Γ ◦ Π̇S

r ◦ Γ + Γ(6) · S

= Γ Γ + 1
2 Γ Γ −

Γ

Γ

+ Γ(6) ,

(2.45b)

and can be compactly represented diagrammatically. Here, S = ∂ΛG|Σ=const. is called
the single scale propagator.10 The crossed out “bubble terms” are a shorthand notation
for the sum of two terms, Π̇S

r = (GS + SG)r, parametrized in the corresponding channel
r. One notable feature of the fRG compared to many other diagrammatic methods in
many-body theory is that it is unbiased in the three two-particle channels a, p, and t since
all three of them are included equitably inside the flow equations. It can hence be used
to compare the magnitude of quantum fluctuations in the three channels without singling
out any of them from the beginning as, e.g., done in the “random phase approximation”
(RPA), which sums a ladder series in a given channel [NO19]. However, the flow equation
for the n-point vertex requires the (n + 2)-point vertex as an input to the right-hand side.
In practice, this turns out to be problematic since the six-point vertex Γ(6), required in
the flow equation for the four-point vertex, is a high-dimensional object that depends
on six arguments (or at least five, if energy-momentum conservation can be exploited).
In most cases, this makes the six-point vertex numerically intractable. For this reason,
in most concrete applications of the vertex expansion of fRG, the contribution from
Γ(6) is neglected altogether. Due to the diagrammatic structure of the flow equation,
this is called the “one-loop” truncation of the fRG flow hierarchy. This truncation
can be argued to be justified in the weak interaction regime, since there is no bare
contribution to Γ(6), but it only starts at third order in the bare four-point interaction.
However, as has been argued at length in Refs. [KD18c; KD18b; KD18a; Kug19], this
truncation introduces several issues: First, the one-loop truncation cannot be expected
to be quantitatively reliable beyond weak interaction, since this assumption was used to
neglect the contribution from the six-point vertex in the first place. Second, while still
being unbiased in the three two-particle channels a, p, and t, the one-loop truncation
places a bias on ladder diagrams. As a consequence, it predicts ordering tendencies too
strongly, ultimately leading to a violation of the Mermin–Wagner theorem [MW66; Kat09;
MH12]. Third, the flow equation for the four-point vertex Γ ceases to be a total derivative
with respect to the flow parameter Λ when the contribution from the six-point vertex
is neglected. Consequently, the solution of the flow equation depends on the regulator
that was chosen, i.e. on the “path” that was taken through the abstract “theory space”

10 So-called because in a regulator scheme with a sharp cutoff, S becomes a delta function in frequency
space, singling out a particular energy scale.
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during the integration of the differential equation, Eq. (2.44). This regulator dependence
is unphysical since the choice of regulator is arbitrary and seriously limits the predictive
power of fRG in the one-loop truncation. We will see an explicit example of this regulator
dependence later in Ref. [P1].

As laid out in Refs. [KD18c; KD18b; KD18a; Kug19], all of the before-mentioned shortcom-
ings of the one-loop truncation in fRG can be improved or even cured by iteratively adding
higher loop-order contributions to the flow equations. Formally, these contributions can
be organized as

Γ̇ =
∑

r∈{a,p,t}
γ̇r ; γ̇r =

∞∑
ℓ=1

γ̇(ℓ)
r , (2.46)

where the flow equations at any given loop order ℓ depend on the vertices at lower loop
orders. Concretely, these multiloop flow-equations for the 2PR vertices read

γ̇(1)
r = Γ ◦ Π̇r ◦ Γ r=a= Γ Γ , (2.47a)

γ̇(2)
r = γ̇

(1)
r ◦ Πr ◦ Γ + Γ ◦ Πr ◦ γ̇

(1)
r

r=a= γ̇
(1)
ā Γ

γ̇
(2)
a,L

+ Γ γ̇
(1)
ā

γ̇
(2)
a,R

,

(2.47b)

γ̇(ℓ>2)
a = γ̇

(ℓ−1)
r ◦ Πr ◦ Γ + Γ ◦ Πr ◦ γ̇

(ℓ−2)
r ◦ Πr ◦ Γ + Γ ◦ Πr ◦ γ̇

(ℓ−1)
r

r=a= γ̇
(ℓ−1)
ā Γ

γ̇
(ℓ>2)
a,L

+ Γ γ̇
(ℓ−2)
ā Γ

γ̇
(ℓ>2)
a,C

+ Γ γ̇
(ℓ−1)
ā

γ̇
(ℓ>2)
a,R

,

(2.47c)

In these equations, the single-scale propagator S has been replaced by the full derivative
of the propagator,11 ∂ΛG = S + GΣ̇G. Starting at third loop order, the flow equations
for the self-energy Σ also has to be modified,

Σ̇ = −
Γ

− γ̇t̄,C

︸ ︷︷ ︸
Σ̇t̄

−
Γ

Σ̇t̄

︸ ︷︷ ︸
Σ̇t

. (2.48)

11 It was already proposed in Ref. [Kat04] to replace S by ∂ΛG. This replacement was argued to improve
the fulfillment of Ward identities, which we will discuss later in the thesis, in fRG. It has since been
commonly adopted and called “Katanin substitution”.
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Notably, the multiloop flow equation for the vertex feeds into the multiloop flow equation
for self-energy and vice versa. Starting at the third loop order, a self-consistent treatment
of the flow equations is required, which is not the case in the one-loop truncation.

It can be shown that, if converged in the number of loop orders ℓ, the multiloop hierarchy
of fRG flow equations adds precisely the 2PR contributions from the six-point vertex
required to reinstate the property of the flow equation for the four-point vertex being a full
derivative. This way, the one-loop truncation’s unphysical property of regulator depen-
dence is cured. Indeed, a converged solution of the multiloop flow exactly yields a solution
of the self-consistent parquet equations, which is inherently independent of any regulator.
It was shown in Ref. [KD18a] that the multiloop flow equations can even be derived by
introducing a regulator into the parquet equations via the bare propagator G0 → GΛ

0
and taking the derivative w.r.t. Λ. Self-consistently solving the parquet equations is,
therefore, equivalent to solving the multiloop flow equations. Furthermore, the bias on
ladder diagrams of the one-loop truncation is cured, such that the multiloop fRG (mfRG)
satisfies the Mermin-Wagner theorem. Still, as the mfRG uses the parquet decomposition
of the vertex and does not provide a flow equation for its 2PI part R, some expression
for R has to be supplied, or an approximation has to be made. The PA is the easiest
choice, rendering the mfRG accurate only in the weak interaction regime. However, since
the PA for Γ is exact up to (not including) fourth order in the bare interaction Γ0, this
is still an improvement over the one-loop truncation, which is exact only up to third order.

By now, the mfRG has been applied to various problems in the field of correlated many-
body systems such as electronic systems like the Anderson impurity model [Cha+22],
the 2D Hubbard model [Tag+19; Fra+22], or quantum spin systems [Tho+20; Kie+22;
Rit+22]. However, these studies used mfRG in either the finite- or zero-temperature
Matsubara formalism. Building upon work already started in Ref. [Wal22], mfRG cal-
culations are now also possible in the KF. While results from mfRG are not included
in Ref. [P1], the codebase presented in Ref. [P2] can perform mfRG calculations for the
Anderson impurity model using various regulators.

However, it is unclear whether there are circumstances in which solving the mfRG flow
equations is numerically preferential over directly solving the parquet equations in the
Keldysh formalism. This assertion was one of the main motivations for developing
the framework since solving ordinary differential equations in general is numerically
easier than solving self-consistent equations. In mfRG, however, requiring convergence
in the loop order ℓ may necessitate a large number of calculations at each step, and
the iterations of the flow equations for the self-energy and the vertex starting at ℓ = 3
re-introduces a self-consistency to be satisfied, which is not present in the one-loop fRG.
While this is already an issue for mfRG calculations in the Matsubara formalism, in
the Keldysh formalism, it seems that on top of that, the contributions to the vertex
flow acquire increasingly sharp structures in higher loop orders; see the appendix of
Ref. [Ge25]. Such sharp structures require ever denser frequency grids, far beyond what is
needed to resolve the full vertex. It has therefore been concluded that there currently is
no practical advantage of the mfRG flow equations over the parquet equations themselves.

This point marks the end of our introduction to real-frequency quantum field theory in the
Keldysh formalism. In the following, we reprint two publications in which these methods
are applied. The first one, Ref. [P1], performs extensive fRG and parquet computations on
the single-impurity Anderson model, benchmarking these methods against the numerical
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renormalization group later introduced in Secs. 3.1 and 3.2. In the second publication,
Ref. [P2], many technical details regarding the implementation of the codebase written
to perform these calculations are presented, including a detailed discussion of the mfRG
algorithm.
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A major challenge in the field of correlated electrons is the computation of dynamical correlation functions.
For comparisons with experiment, one is interested in their real-frequency dependence. This is difficult to
compute because imaginary-frequency data from the Matsubara formalism require analytic continuation, a
numerically ill-posed problem. Here, we apply quantum field theory to the single-impurity Anderson model
using the Keldysh instead of the Matsubara formalism with direct access to the self-energy and dynamical
susceptibilities on the real-frequency axis. We present results from the functional renormalization group (fRG)
at the one-loop level and from solving the self-consistent parquet equations in the parquet approximation. In
contrast with previous Keldysh fRG works, we employ a parametrization of the four-point vertex which captures
its full dependence on three real-frequency arguments. We compare our results to benchmark data obtained
with the numerical renormalization group and to second-order perturbation theory. We find that capturing
the full frequency dependence of the four-point vertex significantly improves the fRG results compared with
previous implementations, and that solving the parquet equations yields the best agreement with the numerical
renormalization group benchmark data but is only feasible up to moderate interaction strengths. Our methodical
advances pave the way for treating more complicated models in the future.

DOI: 10.1103/PhysRevB.109.115128

I. INTRODUCTION

Strongly correlated electrons are of central interest in
condensed-matter physics and a prime application for quan-
tum field theory (QFT). Two current frontiers in this context
are (i) dealing with two-particle correlations on top of the
familiar one-particle correlations, and (ii) obtaining real-
frequency information relevant to experiments, as opposed
to imaginary-frequency information popular in theoretical
analyses. Indeed, much attention has recently been devoted
to the two-particle—or four-point (4p)—vertex of correlated
systems, e.g., regarding efficient representations [1–7] or
the divergences of two-particle irreducible vertices [8–22].
Moreover, new algorithms have emerged, such as diagram-
matic Monte Carlo for real-frequency 2p functions (one
frequency argument) working with analytic Matsubara sum-
mation [23–29] or real-time integration [30–33], as well
as numerical renormalization group (NRG) computations
of real-frequency 4p functions (three frequency arguments)
[34,35].

Here, we combine aspects (i) and (ii) and study real-
frequency two-particle correlations in a QFT framework
within the Keldysh formalism (KF) [36–38]. We employ
two related methods: functional renormalization group (fRG)
flows at one-loop level [39] and solutions of the self-consistent
parquet equations [40]. These approaches are promising
candidates for real-frequency diagrammatic extensions [41] of

*These authors contributed equally to this work.

dynamical mean-field theory [42], where the self-consistently
determined impurity model is solved with NRG [43]. In prac-
tice, this means using the NRG 4p vertex [34,35] as input for
fRG [44,45] or the parquet equations [46,47]. Fully exploiting
this nonperturbative input requires taking the full frequency
dependence of the 4p vertex into account. The present work is
a proof-of-principle study showing that it is indeed possible to
track the three-dimensional real-frequency dependence of the
4p vertex with fRG and parquet methods.

To demonstrate our capability of handling 4p vertices
in real frequencies, we choose the well-known [48] single-
impurity Anderson model (AM) [49] as a test case. Its 4p
vertex depends only on frequency and spin arguments, orbital
or momentum degrees of freedom are not involved. Moreover,
we can benchmark our results against numerically exact data
obtained with NRG [43].

On a historical note, we mention some early pioneer-
ing works on the AM where multipoint functions depending
on multiple real frequencies were computed using various
diagrammatic methods [50–53]. Anders and Grewe [50,51]
computed the finite-temperature impurity density of states and
spin-fluctuation spectra up to order O(1/N2) in a large-N ex-
pansion using a resummation that included skeleton diagrams
of the crossing variety up to infinite order. This approach
involved the analytic continuation of 2p and 3p functions
from imaginary to real frequencies. Kroha, Wölfle, and Costi
[52,53] studied the AM in the strong-coupling limit using
a slave-boson treatment of local fermions and a conserving
T -matrix approximation. They computed the auxiliary
(pseudofermion and slave boson) spectral functions in the

2469-9950/2024/109(11)/115128(24) 115128-1 ©2024 American Physical Society
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Kondo regime. Their approach involved the analytic continua-
tion of T matrices (4p objects depending on three frequencies)
from imaginary to real frequencies. This was possible due to
two simplifications arising in their approach. First, the Bethe–
Salpeter equations for the T matrices were simplified via
ladder approximations that neglect interchannel feedback but
are sufficient to capture the leading and subleading infrared
singularities. Second, the auxiliary propagators involve pro-
jection factors that cause their contributions to vanish along
the branch cuts encountered during the analytic continuation
of the T matrices. As a result, only integrations along branch
cuts of the conduction-electron propagators contribute to the
auxiliary-particle self-energies. In particular, only one of the
fifteen Keldysh components of the T matrices were involved
in these computations.

In the present paper, we consider a more general setting.
We compute the full 4p (impurity-electron) vertex, which
requires a treatment of the complete Keldysh structure. Fur-
thermore, the diagrammatic methods considered here—the
fRG and the parquet equations—treat all three channels of
two-particle fluctuations (density, magnetic, pairing) in an
equitable manner, fully including interchannel feedback. The
latter causes severe technical complications: each channel
has its own frequency parametrization; hence, interchannel
feedback involves interpolations between different frequency
parametrizations, which in turn demand great care when
working with discrete frequency grids. One of our goals is
to develop numerical strategies for conquering these com-
plications in a general, robust manner, as a first step toward
studying more complicated models in future work.

Keldysh fRG flows with dynamic 2p and 4p functions
were pioneered by Jakobs and collaborators [54–56] and
subsequently used in Refs. [57–59]. In all of these works,
the dependence of the 4p vertex on three frequencies was
approximated by a sum of three functions, each depending
on only one (bosonic) frequency. Here, we present Keldysh
one-loop fRG flows with the full, three-dimensional frequency
dependence of the vertex, finding remarkable improvement
compared with previous implementations [54,55]. We also
solve the parquet equations in the parquet approximation
(PA) in this setting, yielding results closest to NRG in the
regime where the parquet self-consistency iteration converges.
This regime corresponds rather accurately to the condition
u < 1, where u = U/(π�) is the dimensionless coupling
constant that controls the (convergent bare) zero-temperature
perturbation series [60]. For completeness, we also discuss
second-order perturbation theory (PT2). Although the PT2
self-energy in the particle-hole symmetric AM (sAM) yields
strikingly good results (for known reasons, see Sec. II E), the
susceptibilities or the results in the asymmetric AM (aAM)
clearly show the benefits of the infinite diagrammatic resum-
mations provided by fRG and the PA.

A conceptual equivalence between truncated fRG flows
and solutions of the parquet equations has been established via
the multiloop fRG [61–63]. For the AM treated in imaginary
frequencies, this equivalence was analyzed numerically in
Ref. [64], and multiloop convergence was demonstrated up
to moderate interaction strengths. We refrain from presenting
a similar study in real frequencies here, leaving that for future
work.

The rest of the paper is organized as follows: In Sec. II,
we give a minimal introduction to the KF (Sec. II A) and
summarize the methodical background for fRG and the PA
(Secs. II B and II C). The AM is briefly introduced in Sec. II D,
followed by a concise description of our benchmark meth-
ods for this model (Sec. II E). In Sec. III, we present our
results, beginning with dynamical correlation functions com-
puted directly on the real-frequency axis (Sec. III A). We
then turn to various static properties in Sec. III B and check
the fulfillment of zero-temperature identities between them
(Sec. III C). The frequency-dependent two-particle vertex is
shown in Sec. III D. We conclude in Sec. IV and give a brief
outlook on possibilities for future work.

Nine Appendixes are devoted to technical matters.
Appendix A summarizes our parametrization of the 4p vertex
and its symmetry relations. Appendix B shows the frequency
dependence of all vertex components, as obtained in the PA.
The fully parametrized parquet and fRG flow equations are
stated in Appendix C, and Appendix D discusses a channel-
adapted evaluation of the Schwinger–Dyson equation for the
self-energy in the PA. Appendix E deals with a known equal-
time subtlety in the KF, relevant for computing, e.g., the
Hartree self-energy in the aAM. In Appendix F, we give a
concise definition of all diagrammatic contributions to PT2.
We provide more details on the actual fRG and PA implemen-
tation in Appendix G and comment on the numerical costs in
Appendix H. Finally, Appendix I scrutinizes the fRG static
magnetic susceptibility at u � 1 for different settings of the
frequency resolution.

II. BACKGROUND

A. Keldysh formalism

The Keldysh formalism [36–38] is a suitable framework
for studying systems out of equilibrium, as well as systems
in thermal equilibrium if aiming for a finite-temperature real-
frequency description. An extensive introduction can be found
in Ref. [65]; more compact introductions in the context of
fRG are also given in related Ph.D. theses [54,57,66,67]. Here,
we only give a short summary of the concepts needed in this
paper.

Consider a (potentially time-dependent) Hamiltonian H (t )
and a density matrix known at time t0, ρ0 = ρ(t0). The expec-
tation value of an operator Ô at time t reads

〈Ô(t )〉 = Tr
[
T̃ e−i

∫ t0
t dt ′H (t ′ )ÔT e−i

∫ t
t0

dt ′H (t ′ )
ρ0

]
. (1)

Here, T is the time-ordering operator, and T̃ denotes antitime
ordering. In the KF, one rewrites Eq. (1) as

=
Ô

t t0time

−

+

〈Ô(t)〉 = Tr TC e−i
t0
t dt′H+(t′) Ô e

−i t
t0

dt′H−(t′)
ρ0

(2)

The Hamiltonian, and all operators in it, acquire an addi-
tional contour index c = ∓, indicating whether they sit on the
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forward (−) or backward (+) branch of the Keldysh double-
time contour. The contour-ordering operator TC puts all
operators on the backward branch left of those on the forward
branch, and antitime orders (time orders) them on the back-
ward (forward) branch.

In the above equation, Ô, inserted at time t , can be placed
on either branch. However, if Ô is a product of multiple
operators, they also come with contour indices to ensure the
correct ordering. It follows that an n-point correlator generi-
cally has 2n Keldysh components. For example, the two-point
correlator in terms of the creation (ψ†) and the annihilation
operator (ψ) reads

Gc|c′
(t, t ′) = −i〈TCψc(t )ψ†c′

(t ′)〉. (3)

Resolving the contour indices c, c′ yields the matrix

Gc|c′ =
(

G−|− G−|+

G+|− G+|+

)
=

(
GT G<

G> GT̃

)
. (4)

Using the redundancy G< + G> − GT − GT̃ = 0, which
holds as long as t �= t ′ (see Appendix E for the case t = t ′),
the Keldysh structure of G can be simplified. The Keldysh
rotation invokes the Keldysh indices k = 1 and 2, where

ψ1 = 1√
2

(ψ− − ψ+), ψ2 = 1√
2

(ψ− + ψ+), (5)

and equivalently for ψ†. We can thus define a basis transfor-
mation matrix D via ψk = Dkcψc:

D = 1√
2

(
1 −1
1 1

)
, D−1 = 1√

2

(
1 1

−1 1

)
. (6)

Rotating G as Gk|k′ = DkcGc|c′
(D−1)c′k′

yields

Gk|k′ =
(

G1|1 G1|2

G2|1 G2|2

)
=

(
0 GA

GR GK

)
, (7)

where G1|1 = 0 follows from the redundancy mentioned
above. We find the retarded propagator

GR(t1, t2) = −i�(t1 − t2)〈{c(t1), c†(t2)}〉, (8)

where {·, ·} denotes the anticommutator, and its advanced
counterpart GA(t1, t2) = [GR(t2, t1)]∗, as well as the Keldysh
propagator GK (t1, t2) = −[GK (t2, t1)]∗ [54].

For a time-independent problem, we have G(t1, t2) =
G(t1 − t2) and frequency conservation with

G(ν) =
∫

dteiνt G(t ), G(t ) =
∫

dν

2π
e−iνt G(ν). (9)

In the following, we consider thermal equilibrium at tempera-
ture T and chemical potential μ, set to zero. Then, the density
matrix is ρ0 = e−H/T /Z (with kB = 1 and Z = Tr e−H/T ),
and the Keldysh components of G fulfill the fluctuation-
dissipation theorem (FDT) [54,65]

GK (ν) = 2i tanh
(

ν
2T

)
ImGR(ν). (10)

B. Diagrammatic framework

The one-particle propagator can be expressed through the
bare propagator G0 and the self-energy � via the Dyson

equation. Using multi-indices 1, 1′, etc., we have

(11)

where the internal arguments 2, 2′ are summed over. This
equation is solved by G = (G−1

0 − �)−1. The self-energy has
a Keldysh structure similar to Eq. (7),

�k′
1|k1 =

(
�1|1 �1|2

�2|1 �2|2

)
=

(
�K �R

�A 0

)
, (12)

and �K (ν) = 2i tanh( ν
2T )Im�R(ν), cf. Eq. (10).

The two-particle (or four-point) correlation function G(4)

can be expressed through the four-point vertex 	,

(13)

where the internal arguments (3, 3′, 4, 4′) are again summed
over. From G(4), one obtains susceptibilities by contracting
pairs of external legs (see Appendix C for details).

The bare vertex, as the full vertex, is fully antisymmetric in
its indices. Thus, a purely local and instantaneous interaction
is of the type

(	0)σ ′
1σ

′
2|σ1σ2

(t ′
1, t ′

2|t1, t2)

= −Uδ(t ′
1 = t ′

2 = t1 = t2)δσ1,σ̄
′
2
(δσ ′

1,σ2δσ ′
2,σ1 − δσ ′

1,σ1δσ ′
2,σ2 ),

(14)

with U > 0 for a repulsive interaction. This corresponds to a
Hugenholtz diagram (single dot) [68]

(15)

As the bare vertex is part of either H+ or H− in Eq. (2), all
its contour indices must be equal [54],

(	0)1′2′|12 = −c1δc′
1=c′

2=c1=c2 (	0)σ ′
1σ

′
2|σ1σ2

(t ′
1, t ′

2|t1, t2). (16)

It acquires a minus sign when moved from the forward (c1 =
−) to the backward (c1 = +) branch of the Keldysh contour.
After Keldysh rotation, one obtains

(	0)k′
1k′

2|k1k2

σ ′
1σ

′
2|σ1σ2

=
{

1
2 (	0)σ ′

1σ
′
2|σ1σ2

,
∑

i ki odd

0, else,
(17)

where
∑

i ki is short for k′
1 + k′

2 + k1 + k2.
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C. Many-body approaches

So far, we defined the basic objects of interest, namely,
one- and two-particle correlation functions in the KF, encap-
sulated in the self-energy � and the 4p vertex 	,

(18)

One can derive a diagrammatic perturbation series for each of
them. However, to extend our description from weak to inter-
mediate coupling, we want to resum infinitely many diagrams.
We use two strategies achieving this: fRG [39,69] and the PA
[40]. We summarize both schemes in turn and then comment
on their relation.

In fRG, one introduces a scale parameter � into the bare
propagator G0, such that the theory is solvable at an initial
value � = �i, while the original problem is recovered at a
final value � = � f (i.e., G

� f

0 = G0). Here, we choose G�i
0

very small, so that ��i and 	�i can be obtained by perturba-
tion theory or by iterating the parquet equations (see below)
until convergence. The final results �� f = � and 	� f = 	

are obtained by solving a set of flow equations. In fact, the
fRG provides an infinite hierarchy of flow equations, which
is in principle exact but must be truncated in practice. The
flow equations for �̇ = ∂�� and 	̇ = ∂�	 in diagrammatic
notation are

(19a)

(19b)

The propagator with a dash is the single-scale propaga-
tor S = ∂�G|�=const; propagator pairs with a dash indicate
�̇S = SG + GS. We adopt the one-loop fRG scheme where
the truncation consists of 	(6) ≈ 0. As is commonly done, we
then employ the so-called Katanin substitution [70] where �̇S

is replaced by �̇ = ĠG + GĠ.

The parquet formalism consists of solving a self-consistent
set of equations on the one- and two-particle level. It involves
the Schwinger–Dyson equation (SDE)

(20a)

where the first term is the Hartree self-energy �H, as well as
the Bethe–Salpeter equations (BSEs)

(20b)

(20c)

(20d)

Here, γr is the two-particle reducible vertex in a given channel
r ∈ {a, p, t}, while Ir = 	 − γr is the corresponding two-
particle irreducible vertex. The parquet equation

	 = R + γa + γp + γt (20e)

gives the full vertex in terms of the two-particle reducible
vertices as well as the fully irreducible vertex R. The set
of equations (20) is exact. However, R in Eq. (20e) is not
determined by an integral equation itself and serves as an
input, for which an approximation must be used in practice.
The PA is the simplest such approximation:

R = 	0 + O[(	0)4] ≈ 	0. (21)

Thus, the set of equations (20) closes and can be solved by
standard means.

The truncated (one-loop) fRG flow and the PA are closely
related but differ in details. An equivalence between them
is established by the multiloop fRG [61–63] (see also
Refs. [64,71–76]): By incorporating additional terms into the
flow equations, which simulate part of the intractable six-
point vertex in the fRG hierarchy of flow equations, the scale
derivative of the self-energy and vertex is completed to a
total derivative of diagrams, which are precisely the diagrams
contained in the PA. Hence, if multiloop convergence can
be achieved, the regulator dependence of the truncated fRG
flow is eliminated, and one obtains results equivalent to the
PA. Here, we restrict ourselves to one-loop fRG flows. Our
numerical explorations with multiloop fRG for the AM in the
KF have so far shown that the additional terms are numerically
less well behaved, requiring a prohibitively high numerical
resolution. This task is therefore left for future work, where
compression techniques such as the new quantics tensor cross
interpolation scheme [7,33,77] could be used to keep the
needed numerical resources manageable.
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D. Single-impurity Anderson model

The formalism introduced above is completely general
and can be applied, e.g., to lattice or impurity models alike.
Comparing Keldysh to Matsubara approaches, the spatial or
momentum degrees of freedom of lattice models are treated
similarly in both cases. By contrast, the temporal or frequency
dynamics are naturally very different. In impurity models, the
frequency dynamics are isolated, saving the cost of including
momentum variables. Hence, we consider in this paper the
AM [49] in thermal equilibrium. Its physical behavior is well
understood [48], and NRG [43] can be used to obtain highly
accurate real-frequency benchmark data.

The model is defined by the Hamiltonian

H =
∑
εσ

εc†
εσ cεσ + (εd + h)n↑ + (εd − h)n↓ + Un↑n↓

+
∑
εσ

(Vεd†
σ cεσ + H.c.), (22)

with spinful bath electrons, created by c†
εσ , and a local level

(d†
σ ). The latter has an on-site energy εd and Coulomb repul-

sion U acting on nσ = d†
σ dσ . Although we consider h = 0, we

include the magnetic field in Eq. (22) for a simple definition of
the magnetic susceptibility. The bath electrons are integrated
out, yielding the frequency-dependent retarded hybridization
function −Im�R(ν) = ∑

ε π |Vε |2δ(ν − ε). We consider a flat
hybridization in the wide-band limit, �R

ν = −i�, so that the
bare impurity propagator reads

GR
0 (ν) = 1

ν − εd + i�
. (23)

We use the dimensionless parameter u = U/(π�) for the in-
teraction strength on the impurity in units of the hybridization
strength to the bath. We focus on two choices of the on-site
energy: one with particle-hole symmetry, εd = −U/2, and
one without, εd = 0. We refer to these as the symmetric AM
(sAM) and asymmetric AM (aAM), respectively.

For the sAM, �H = U/2 is conveniently absorbed into the
bare propagator,

GR
0 → GR

H = 1

ν − εd + i� − �H
= 1

ν + i�
. (24)

For perturbative calculations in the aAM (as in PT2 or to
initialize the parquet iterations), we also replace G0 by GH

(see Appendix E for details).
For the fRG treatment, we use the hybridization flow [54],

where � acts as the flow parameter and is decreased from a
very large value to the actual value of interest. This is con-
venient because every point of the flow describes a physical
system, at the given values of �, U , T . In other words, the
fRG flow provides a complete parameter sweep in �, while
the other parameters (U , T ) remain fixed. Then, the fRG
single-scale propagator is

SR(ν) = ∂�GR(ν)|�=const = −i[GR(ν)]2. (25)

In the limit � → ∞, the values of 	 and � are [54]

	|�=∞ = 	0, �R|�=∞ = �H = U 〈nσ 〉. (26)

Note that while all vertex diagrams of second order or higher
vanish as � → ∞, the first-order contribution of �R/A (the
Hartree term �H) is finite. As discussed in Appendix E, �H is
given by an integral over G<, which gives a finite value U 〈nσ 〉
even in the limit � → ∞. In practice, we start the flow at a
large but finite value of �, and use the self-consistent solution
of the parquet equations as the initial conditions for � and 	,
as they can be easily obtained for sufficiently large �.

E. Benchmark methods

As a real-frequency benchmark method, we use NRG in
a state-of-the-art implementation based on the QSpace ten-
sor library [78–80]. We employ a discretization parameter
of � = 2, average over nz = 6 shifts of the logarithmic dis-
cretization grid [81], and keep up to 5000 SU(2) multiplets
during the iterative diagonalization. Dynamical correlators are
obtained via the full density-matrix NRG [82,83], using adap-
tive broadening [84,85] and a symmetric improved estimator
for the self-energy [86]. We also extract zero-temperature
quasiparticle parameters from the NRG low-energy spec-
trum [87–93]. Dividing the quasiparticle interaction Ũ by the
square of the quasiparticle weight Z2 yields the 4p vertex at
vanishing frequencies 	↑↓(0). Thereby, we obtain 	↑↓(0) =
−Ũ/Z2 at T = 0 very efficiently and accurately. For a finite-
temperature estimate, we divide Ũ by the finite-temperature Z
deduced from the dynamic self-energy as opposed to the zero-
temperature Z following from the low-energy spectrum. We
also compute the dynamical 4p vertex in the Keldysh formal-
ism, exploiting the recent advances described in Refs. [34,35].

For completeness, we also compare our results to PT2.
Perturbation theory of the AM is known to work well when
expanding around the nonmagnetic Hartree–Fock solution
[60,94–97]. PT2 famously and fortuitously (cf. the iterated
perturbation theory in the DMFT context [42]) gives very
good results for the self-energy of the sAM, where εd =
−U/2 and �H cancel exactly. The reason is that �PT2 is
correct in the limits u→0 and u→∞. In the latter case,
the spectrum − 1

π
ImGR consists of two discrete peaks, and,

in the sAM, the resulting expression for �R = 1/GR
0 − 1/GR

is (U/2)2/(ν + i0+), coinciding with PT2. One may further
note that corrections to �PT2 start at order u4, as only even
powers contribute to the expansion of � for the sAM, and
that the expansion converges very quickly (see Figs. 3.6 and
3.7 in Ref. [95]). Additionally, the high-frequency asymptote
limν→∞ ν(�R − �H) is fully captured by PT2, as the general
expression U 2〈nσ 〉(1 − 〈nσ 〉) reduces to (U/2)2 (with 〈nσ 〉 =
1/2 in the sAM), i.e., the second-order result.

For the aAM, �H must first be determined in a self-
consistent way. This is crucial because 〈nσ 〉 is not well
approximated by a few orders in u [recall the Friedel sum
rule at T = 0 [98], 〈nσ 〉 = 1

2 − 1
π

arctan{[εd + �(0)]/�}].
The self-consistent Hartree propagator fulfills the Friedel sum
rule at T = 0, but the resulting 〈nσ 〉 for given εd is of course
not exact. When using PT2, we compute quantities of interest,
such as �PT2, using the Hartree propagator (see Appendix F
for details). However, in contrast with the sAM, �PT2 is not
exact at u→∞ (cf. Ref. [99]), odd powers in u contribute to
�, and the high-frequency asymptote of �PT2, involving 〈nσ 〉,
is not reproduced exactly.
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Finally, we also compare our fRG and PA results to
“K1SF calculations” mimicking the previous state of the art
in Keldysh fRG. References [54,55,58] used a scheme where
the full vertex is decomposed into the three channels [cf.
Eq. (20e)] and, for each two-particle reducible vertex γr , only
the dependence on the bosonic transfer frequency is retained
[see Eq. (76) in Ref. [55]]:

	 ≈ 	0 +
∑

r=a,p,t

γr (ωr ). (27)

Note that, within Matsubara fRG, Ref. [100] compared
this simplification (called “Appr. 1” therein) to the full
parametrization. When inserting the vertex parametrized ac-
cording to Eq. (27) into the self-energy flow (19a), no further
approximations are needed. However, when inserting the
vertex on the right of the vertex flow equation (19b), the
interchannel contributions are approximated by their static
values [in thermal equilibrium with μ = 0, see Eq. (83) in
Ref. [55]]:

	|RHS(γr ) ≈ 	0 + γr (ωr ) +
∑
r′ �=r

γr′ (ωr′ )|ωr′ =0. (28)

With this approximation the only frequency dependence of the
integrands lies in the propagator pair. By contrast, an exact
decomposition of each γr has the form [2]

γr (ωr, νr, ν
′
r ) = K1r (ωr ) + K2r (ωr, νr )

+ K2′r (ωr, ν
′
r ) + K3r (ωr, νr, ν

′
r ). (29)

(The frequency arguments ωr , νr , ν ′
r are defined in

Appendix A, Fig. 12.) Thus, the above approximation
can be understood by retaining only the K1r contributions
while ensuring a static feedback (SF) between the differ-
ent channels—hence the abbreviation K1SF. Within K1SF,
there are different ways of treating the feedback from the
self-energy. Previous works found better results at T = 0
by inserting only the static rather than full dynamic � into
the propagator [56]. We confirm this finding at T = 0 but
observed that the static � feedback has problems at T �= 0,
failing, e.g., the requirement Im� < 0. Instead, we obtained
much better results (particularly fulfilling Im� < 0) by using
the full dynamic � feedback together with the Katanin substi-
tution [70].

F. Note on the numerical implementation

Compared with the more common Matsubara formalism
(MF), the KF entails notable differences in the numerical
implementation that we summarize here (see Appendix G
for details). Most importantly, while finite-temperature Mat-
subara computations employ a discrete set of (imaginary)
frequencies, Keldysh functions depend on continuous (real)
frequencies. Furthermore, the Keldysh index structure in-
creases the number of components of the correlators (to be
computed and stored) by a factor of 4 and 16 for 2p and
4p objects, respectively. Hence, working in the KF requires
considerably higher effort in terms of implementational com-
plexity and numerical resources.

To minimize systematic numerical errors, a faithful
representation of the vertex functions is essential. The de-

composition (29) of the reducible vertices [2] is beneficial
for capturing the high-frequency asymptotics. Indeed, the
lower-dimensional asymptotic functions, K1 and K2(′) , allow
for a good resolution at comparably low numerical cost. A
good resolution of the continuous Keldysh functions further
necessitates a suitable choice of sampling points. We use a fre-
quency grid with high resolution at small frequencies, where
the vertices show sharp features, and fewer points at higher
frequencies. In fRG with the hybridization flow, the frequency
grids also have to be rescaled to account for changes scaling
with �; for fully adaptive grids (which were not required in
this work, cf. Appendix G) see also Refs. [73,74,76].

Continuous-frequency computations also require efficient
integration routines. We use an adaptive quadrature routine
to capture the essential features of sharply peaked functions
(cf. Appendix G). The additional numerical costs due to the
Keldysh index structure can be mitigated by vectorization,
i.e., by exploiting the matrix structure of the summation
over Keldysh components. Storing all Keldysh components
contiguously in memory allows for efficient access to matrix-
valued vertex data, which can be combined to matrix-valued
integrands via linear algebra operations. (Note that vectoriza-
tion over Keldysh components requires a quadrature routine
that accepts matrix-valued integrands.) Symmetries are used
to reduce the data points that are computed directly, and most
resulting symmetry relations are compatible with vectoriza-
tion over Keldysh indices (see Appendix A).

Lastly, the fRG and the parquet solver generally have the
advantage that computations can be parallelized efficiently
over all combinations of external arguments. We use OMP and
MPI libraries to parallelize execution across multiple CPUs
and compute nodes.

III. RESULTS

In the results, we focus on retarded correlation functions
like GR, �R, and χR. For brevity, we denote the real and
imaginary parts of, say, GR by G′ and G′′, respectively, i.e.,
GR = G′ + iG′′. Since the fRG flow varies � at fixed U and T ,
we consider a temperature of T/U = 0.01. Most plots show
results both for the sAM (εd = −U/2) and aAM (εd = 0).
Recall that u = U/(π�).

A. Dynamical correlation functions

As a first quantity that is directly measurable in ex-
periment, we show in Fig. 1 the spectral function Ã(ν)≡
π�A(ν) = −�G′′(ν). The absorbed factor of π� ensures
Ã(0) = 1 for the sAM and T →0. We consider three values
of u ∈ {0.75, 1, 1.5}, referred to as “small,” “intermediate,”
and “large” in the following (although truly large interactions
in the AM rather are u � 2 [60]). There are no PA results
for large u, as we could not converge the real-frequency self-
consistent parquet solver there.

At small u, the curves produced by all methods are almost
indistinguishable. Small but noticeable deviations occur for
the aAM at intermediate u, and pronounced deviations are
found at large u. At u = 1.5 in the sAM, only the methods ex-
act in the u→∞ limit (cf. Sec. II E), NRG and PT2, produce
notable Hubbard bands centered at ν = ±U/2, while fRG also
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FIG. 1. Spectral functions Ã(ν ) ≡ π�A(ν ) for three interaction
values u in the symmetric AM (sAM, left) and the asymmetric AM
(aAM, right). Deviations between the methods appear with increas-
ing u. Here and in all subsequent figures, we consider a temperature
of fixed T/U = 0.01. At u = 1.5 in the sAM, the onset of Hubbard
bands centered at ν = ±U/2 is only captured by NRG and (for
reasons explained in Sec. II E) PT2. At this interaction strength,
fRG underestimates the quasiparticle peak, and we were unable to
converge the PA results.

underestimates the height of the quasiparticle peak. Neverthe-
less, one may come to the conclusion that all methods agree to
a reasonable degree of accuracy. Note, although, that at small
u, where � is small, GR = 1/([GR

0 ]−1 − �R) and thus also
A(ν) are dominated by the bare propagator. As all nontrivial
features of

A(ν) = 1

π

� − �′′(ν)

[ν − εd − �′(ν)]2 + [� − �′′(ν)]2

come from �, we can gain more insight by looking at �

directly.
In Fig. 2, we plot the negative imaginary part of the

retarded self-energy −�′′(ν) in units of the hybridization
strength �. This quantity is strictly non-negative [86], which
is a useful and nontrivial consistency check for all our meth-
ods. Here, deviations between the methods are visible at each
value of u. At small u, the results mostly agree, albeit better for
the sAM than for the aAM. At small and intermediate u in the
aAM, the PA matches NRG most closely and also captures the
peak position correctly, in contrast with fRG, K1SF, and PT2.
Strikingly, though, for intermediate u in the sAM (which is
the more strongly correlated setting with lower quasiparticle
weight Z , see Fig. 7), the PA shows considerable deviations
from NRG: �′′ has a “deformation” in that its maxima are
misplaced outward. We performed a separate PA calculation
in the MF to confirm that the corresponding MF result per-

FIG. 2. Imaginary part of the retarded self-energy, organized as
in Fig. 1. The limitations of PT2 in the aAM are clearly exposed. The
PA results are closest to NRG at u = 0.75 for both sAM and aAM,
and at u = 1 for the aAM (this corresponds to the regime of not too
strong correlation, Z � 0.8, see Fig. 7). Artifacts appear at u = 1 in
the sAM (where Z ≈ 0.65, see Fig. 7). Throughout, the fRG results
with full frequency dependence match NRG better than those in the
K1SF simplification.

fectly matches the “trivial” analytic continuation from KF
to MF, − 1

π

∫
dν ′ �′′(ν ′ )

iν−ν ′ , see Fig. 3. Hence, we conclude that
the Keldysh self-energy did not acquire artifacts during the
real-frequency self-consistent parquet iteration. Instead, the
deformations are a deficiency of the PA solution at u = 1,

FIG. 3. Imaginary part of the Matsubara self-energy in NRG and
the PA. The PA results stem from an independent solver imple-
mented in the MF and from the “trivial” analytic continuation of �′′

obtained in the KF. The qualitative difference between NRG and PA
observed in the real-frequency results of Fig. 2 at u = 1 can hardly
be guessed from these imaginary-frequency results.
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FIG. 4. Hartree self-energy �H = U 〈nσ 〉 in the aAM. PT2 cor-
responds to self-consistent solutions of the Hartree term. Only fRG
and PA agree well with NRG.

which are obvious in our Keldysh results, but could not have
been guessed from the more benign Matsubara self-energy
(Fig. 3).

We also observe from Fig. 2 that the PT2 results become
much worse as soon as one leaves the special case of particle-
hole symmetry (see Sec. II E). The results from fRG with
full frequency dependence are better than those from K1SF,
showing that the frequency dependence of � is only generated
correctly if the dependence of the 4p vertex on its three fre-
quencies is kept [39]. In fact, for large u in the aAM, the K1SF
result becomes negative (with values on the order of 10−5)
at around ν/� � ±2, thus failing the previously mentioned
consistency check.

The inadequacies of a constant vertex manifest themselves
even in the constant Hartree part of the self-energy, �H =
U 〈nσ 〉, shown in Fig. 4. The fRG and PA calculations produce
the NRG value almost exactly, but the K1SF curve starts to
deviate early. We attribute this to the fact that diagrammatic
contributions beyond the K1 level are neglected, introducing
an error of O(U 3) into the flow of �, including �H, see
Eq. (E5). The PT2 curve shows the converged values obtained
from self-consistent evaluations of the Hartree diagram (see
Appendix E), which enters the Hartree propagator used in all
PT2 computations. The self-consistency is likely the reason
why PT2 performs better than K1SF (which does not obey
such a self-consistency) for small and intermediate u.

Apart from Ã and �, other dynamical quantities of interest
are susceptibilities. In the diagrammatic methods, these are
derived directly from the 4p vertex (see Appendix C). We
consider the imaginary part of the retarded magnetic and den-
sity dynamical susceptibilities χ̃m/d(ω)≡π�χm/d(ω), paying
special attention to the peak position and height. The peak
position of χ̃m shown in Fig. 5 is proportional to the Kondo
temperature and decreases with increasing u in the sAM. All
methods apart from K1SF produce good results at small u with
only minor deviations from NRG. The deviations are smallest
in PA from small to intermediate u, until the PA results are no
longer available at large u. fRG produces reasonable curves
but, at large u, under- or overestimates the peak in the sAM
and aAM, respectively. K1SF does not produce sensible re-
sults for any u considered, while PT2 performs well for the
aAM but yields worse results than fRG in the sAM.

The density susceptibility shown in Fig. 6 is centered at
larger frequencies and has smaller magnitude than its mag-
netic counterpart. Indeed, while χ̃m and χ̃d are equal at u = 0,
increasing interaction values discriminate between spin fluc-

tuations (enhanced) and charge fluctuations (reduced). Here,
fRG and the PA both produce acceptable results. However, the
PA data at intermediate u and in the sAM show a deformation
around ω/� � 5, reminiscent of the deformation in �′′ (cf.
Fig. 2). The K1SF curve for χ̃d (as for χ̃m) is not sensible,
this time lying far above (rather than below) the NRG curve.
PT2 for χd, differently from χm, is unreliable, yielding a
qualitatively wrong double-peak structure.

In summary, we find that the PA results generically repro-
duce the NRG benchmark best, but are available only up to
intermediate u. Our new fRG computations with the full fre-
quency dependence of the vertex drastically improve upon the
K1SF results in almost every case, but become quantitatively
off with increasing u.

B. Static properties

We now turn to static quantities, obtained from � and 	

by setting all frequency arguments to zero. Although these
can also be obtained using the imaginary-frequency MF (see
Ref. [100] for an early MF fRG treatment of the AM), they
serve as important consistency checks for our Keldysh compu-
tations. The zero-frequency fermion objects can be used for an
effective low-energy description, and, by rescaling, converted
to quasiparticle parameters as in Hewson’s renormalized per-
turbation theory [101]. For the AM in the wide-band limit
at T = 0, the static fermionic quantities can also be deduced
from the static susceptibilities. We hence consider the static
magnetic and charge susceptibilities as well, before analyzing
the zero-temperature identities in the next section.

By virtue of the � flow, see Sec. II D, a single fRG com-
putation suffices to obtain the entire dependence of, e.g., Z (u)
(at fixed T/U ). By contrast, the PA requires separate compu-
tations for every value of u, resulting in a significantly bigger
numerical effort. The top row of Fig. 7 shows the quasiparticle
weight

Z = (
1 − ∂ν�

′∣∣
ν=0

)−1
, (30)

as extracted from the slope at ν = 0 of the real part of the
retarded self-energy, �′. In all cases, the PA reproduces the
NRG benchmark best, but is again only available up to u � 1.
The fRG curve follows NRG for small u but starts to deviate
already at intermediate u. K1SF performs very well in the
sAM, but deviates from NRG in the aAM earlier than fRG.
Since PT2 reproduces the NRG full self-energy very well for
the sAM (cf. Fig. 2), the same applies to Z . In the aAM, PT2
also produces reasonable results for Z , in contrast with �′′(ν)
in Fig. 2.

The second row of Fig. 7 displays the scattering rate
−�′′(0) on a logarithmic scale. In the sAM, all methods
agree reasonably well up to intermediate u. Beyond that, fRG
significantly overestimates −�′′(0) (cf. Fig. 2). In the aAM,
the fRG results are slightly better. The PA yields the best
agreement with NRG, except for u � 1 in the aAM where
numerical artifacts appear. K1SF shows large deviations early
on, matching the observations in Fig. 2. PT2 reproduces NRG
almost exactly, even though this is not the case for �′′(ν)
(Fig. 2) in the aAM.

The last row of Fig. 7 shows the effective interaction.
The PA accurately reproduces the NRG results. In strik-
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FIG. 5. Imaginary part of the dynamical magnetic susceptibility,
χ̃m(ω)≡π�χm(ω). At small to intermediate u, all methods (except
K1SF) produce good results, while PA matches NRG best. Toward
large u, fRG does not capture the peak correctly. PT2 performs well
for the aAM but not the sAM; K1SF is off in all cases.

ing contrast, fRG overestimates the effective interaction very
strongly. (This can also be seen in Fig. 11 below, third
row, columns four to six, where the frequency-dependent
vertex is plotted.) PT2 and K1SF yield only very weak
renormalizations of the bare vertex (none at all in PT2 in
the sAM).

Figure 8 shows the static magnetic and density susceptibil-
ities,

χm = 1
4∂h〈ñ↑ − ñ↓〉|h=0, χd = 1

4∂εd 〈ñ↑ + ñ↓〉, (31)

where ñσ = nσ − 〈nσ 〉. Again, the PA results, where available,
reproduce the NRG benchmark best. The fRG results are
reasonable up to intermediate u for χ̃ ′

m/d(0) = π�χm/d. A
comparison with the results obtained by an independent MF
computation (dashed lines in Fig. 8) reveals that the KF data
at the largest u values is not fully converged in the size of
the frequency grid (see Appendix I for details). As for the
dynamical susceptibilities, K1SF does not produce sensible
results at all. PT2 gives fairly good results, in particular for
χ̃ ′

m in the aAM (see also Fig. 5), but χ̃ ′
d in the sAM quickly

deviates from NRG rather strongly (as it did in Fig. 6).
In summary, for all the static properties shown in Figs. 7

and 8, the PA results agree very well with NRG for all u for
which the parquet solver converged, i.e., up to u � 1. By con-
trast, fRG results begin to deviate from NRG somewhat earlier
than PA, sometimes even much earlier. This difference is most
striking for the effective interaction in the bottom panels of
Figs. 7, where the performance of fRG is surprisingly (even
shockingly) poor.

This comparatively poor performance of fRG may be due
in part to the well-known fact that one-loop fRG results de-

FIG. 6. Imaginary part of the dynamical density susceptibility,
χ̃d(ω)≡π�χd(ω). Both fRG and the PA produce good results. The
artifact in the PA solution at u = 1 in the sAM observed in Fig. 2 is
also seen here, while it was not apparent in Fig. 5. Neither PT2 nor
K1SF produce sensible results for χ̃d.

pend on the choice of the fRG regulator. Figure 9 illustrates
this in the present context by comparing our KF results with
independent calculations in the MF. For the latter, we used

FIG. 7. Static fermionic properties as a function of u: quasipar-
ticle weight Z , scattering rate −�′′(0) on a logarithmic scale, and
effective interaction (k = 12|22) in units of the bare interaction.
Overall, the PA (available for u � 1) matches NRG best, except for
�′′(0) at u � 1 in the aAM. All other methods agree reasonably
well (except for Z and �′′(0) in the aAM in K1SF). Strikingly, fRG
strongly overestimates the effective interaction.
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FIG. 8. Static susceptibilities as a function of u. fRG yields
sensible results until χ̃ ′

m has a maximum at u ≈ 1.3. PA data are
available only for u � 1, but show excellent agreement with NRG
there. Results from K1SF and PT2 (for χ̃d) are rather bad.

three different regulators, called � flow (same as for our KF
computations), U flow, and ω flow. [See Eqs. (3) and (4) in
Ref. [64] for definitions of the U and ω flow. The ω and U
flows require many more separate computations than the �

flow, since the former two hold T/� fixed (the ω flow also
T/U ), while the latter holds T/U fixed.] From Fig. 9, we note
three salient points. First, the MF and KF results for the �

flow match. This is expected for numerically converged calcu-
lations and serves as a useful consistency check. Second, the
U flow deviates from the NRG benchmark very early. Third,
the best MF result is obtained from the ω flow (similarly as
observed in Ref. [64]). Regrettably, though, this advantage of
the MF ω flow is not relevant for the KF: there, the ω flow
would violate causality [54] and hence cannot be used. This,
and the poor performance of the U flow, is the reason why we
chose the � flow for all our KF computations.

FIG. 9. Effective interaction (k=12|22) of the sAM in units of
the bare interaction, including fRG results in the MF obtained with
three different regulators. The MF result in the � flow perfectly
matches its KF counterpart. The U flow performs considerably
worse, as it quickly deviates from NRG. By far the best result is
obtained using the ω flow, which can however not be used in the KF
(see the main text for details). In the MF, we approximate vanishing
frequencies by averaging over the lowest Matsubara frequencies,
γr (0) ≈ 1

4

∑
ν,ν′=±πT γr (0, ν, ν ′).

C. Zero-temperature identities

As an internal consistency check for each method, we
consider four Fermi-liquid identities. These hold T = 0 and,
more generally, at T � TK, where TK is the Kondo tem-
perature. We deduce TK as TK = 1/[4χ ′

m(0)]|T =0 [see, e.g.,
Eq. (20) in Ref. [102]] from zero-temperature NRG calcula-
tions. The resulting values for u∈{0.75, 1, 1.5} are TK/U ∈
{0.31, 0.18, 0.07} for the sAM and TK/U ∈{0.58, 0.45, 0.32}
for the aAM. Note that the Kondo regime of the sAM corre-
sponds to u � 2 [101].

First, for a constant hybridization function in the wide-
band limit, we have the following two “Yamada–Yosida
(YY) identities” generalized to arbitrary εd [see Eq. (6.1) in
Ref. [95] and Eq. (7) in Ref. [97], Eqs. (24)–(25) in Ref. [101],
or Eqs. (4.30)–(4.33) in Ref. [103]]:

Z−1 = [χm(0) + χd(0)]/ρ(0), (32a)

−ρ(0)	↑↓(0) = [χm(0) − χd(0)]/ρ(0). (32b)

Here, ρ(0)≡A(0)|T =0 is the spectral function evaluated at
ν = 0 and T = 0,

ρ(0) = 1

π

�

[εd + �′(0)]2 + �2

= 1

π�

{
1 for εd = −U/2

1
1+[�′(0)/�]2 for εd = 0.

(33)

Next, 	↑↓(0) is the full Matsubara 4p vertex evaluated at van-
ishing frequencies (in the zero-temperature limit). The minus
sign in Eq. (32b) stems from our convention of identifying,
e.g., the bare Matsubara vertex 	0,↑↓ with −U . The analytic
continuation of �p functions between Matsubara and retarded
Keldysh components involves a factor 2�/2−1 [see Eq. (69) in
Ref. [34]]. Hence,

	↑↓(0) = 2	k
↑↓(0),

k ∈ {(12|22), (21|22), (22|12), (22|21)}. (34)

Another identity derived by YY [see Eqs. (13)–(15) and
(18) in Ref. [97], Eqs. (31) and (34) in Ref. [101], or Eq. (4.37)
in Ref. [103]] implies

−�′′(ν) = 1
2πρ(0)3[	↑↓(0)]2(ν2 + π2T 2) (35)

for |ν|, T � TK. We check this relation by fitting �′′ ∝
(ν2 + π2T 2). Finally, the Korringa–Shiba (KS) identity [see
Eq. (1.4) in Ref. [104]] reads

lim
ω→0

χ ′′
m(ω)/ω = 2π [χ ′

m(0)]2. (36)

To check the fulfillment of these identities, we analyze
the relative difference 2(LHS − RHS)/(LHS + RHS) [LHS
(RHS) = left- (right-) hand side] of Eqs. (32a), (32b), (35),
(36), referred to as YY1, YY2, YY3, KS, respectively. These
zero-temperature identities of the AM only hold if T � TK.
As we keep T/U = 0.01 constant, the temperatures increase
with u, and T � TK is no longer fulfilled for u � 1 in the
sAM. Accordingly, there, the identities are violated even in
NRG.

As can be seen in Fig. 10, the PA fulfills most identities
very well (below 8% throughout), but is again available only
up to u � 1. The fRG results obey YY1 up to u � 1, but show
clear deviations in all other identities, setting in already for
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FIG. 10. Relative difference between the left- and right-hand
sides of the four zero-temperature identities as a function of u.
All calculations have finite T/U = 0.01; thus, even NRG violates
the identities if T � TK is no longer fulfilled. Apart from NRG,
the PA shows the smallest violations of these identities (below 8%
throughout), but is only available for u � 1. The fRG data fulfill YY1
relatively well, but show clear deviations otherwise, setting in already
for very small values of u. For YY2, e.g., the deviations become
significant already at u � 0.25. PT2 obeys the identities (except
KS) in the sAM but not the aAM. K1SF shows major deviations
throughout.

very small values of u. Except for the KS relation in the fourth
row, PT2 mostly fulfills the identities for the sAM but less so
for the aAM, while K1SF shows major deviations, even for
small u.

D. Frequency dependence of the 4p vertex

Finally, we show fRG and PA results for the frequency
dependence of the 4p vertex in the sAM and compare them
to corresponding results from NRG. We restrict ourselves
to a fully retarded Keldysh component [34] and show both
the same-spin (↑↑) and the opposite-spin (↑↓) components.
We plot the vertex in the two-dimensional frequency plane
(ωt = 0, νt = ν, ν ′

t = ν ′) in the natural parametrization of the
t channel for zero transfer frequency. Physically, this corre-
sponds to the effective interaction of two electrons on the
impurity with equal or opposite spins, respectively, and en-
ergies ν, ν ′ without energy transfer [69]. The NRG 4p results
are computed with the scheme introduced in Refs. [34,35],
utilizing the symmetric improved estimator of Ref. [105].

In Fig. 11, we compare results from fRG, the PA, and NRG
for two values of the interaction u ∈ {0.5, 1}. We observe good

qualitative agreement throughout, as all methods capture all
nontrivial features. At u = 1, however, we observe a qualita-
tive discrepancy in the data: Re	↑↓ is strictly positive in fRG
and slightly negative in NRG (bottom part, top row, first panel
from the right in Fig. 11). The PA result reaches even larger
negative values and retains them for a large range of ν values.
This strong negative signal appears to be an artifact of the PA;
it would likely be canceled by additional contributions missed
in the PA.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have shown that real-frequency QFT cal-
culations with full frequency resolution of the 4p vertex are
feasible. We chose the AM for a proof-of-principle study and
employed one-loop fRG flows and solutions of the parquet
equations in the PA, benchmarked against NRG. We com-
pared dynamical correlation functions as well as characteristic
static quantities and performed a detailed numerical check of
zero-temperature identities. We found that keeping the full
frequency dependence of the 4p vertex in fRG strongly im-
proves the accuracy compared with previous implementations
using functions with at most one-dimensional frequency de-
pendencies. Note that the present study is performed at finite
temperature, T/U = 0.01, in contrast with previous work on
spectral functions at T = 0 [55].

The numerical challenges imposed by the fully
parametrized real-frequency 4p vertex were overcome
via a suitably adapted frequency grid, vectorization over the
Keldysh matrix structure, and a parallelized evaluation of the
fRG or parquet equations (see Appendix G). We employed
frequency grids with up to 1253 data points, and our most
expensive calculation consumed about 25 000 CPU hours for
a single data point in the PA.

The PA results could be converged only for u = U/(π�) in
the range u � 1, but there gave the best agreement with NRG
(except at the boundary of the accessible u range). The PA also
gave very good results for the effective interaction. However,
by looking at 	k

↑↓ in a frequency range around the origin, it
appears that the mechanism by which the PA achieves low
values of |	k

↑↓(0)| (compared with, say, fRG) is different from
that of NRG, as the PA data have a spuriously large regime of
strongly negative values in Re	k

↑↓.
The fRG calculations in the present context were compara-

tively economical, since a single run with the “� flow” yields
an entire parameter sweep in �. The flow could be followed
to large values of u, well beyond 1, i.e., far beyond the regime
where we could converge the PA. However, for u � 0.5 these
one-loop fRG results are significantly less accurate than the
PA (as compared with NRG). Strikingly, fRG strongly over-
estimates the effective interaction 	k

↑↓(0) by factors of three
to four for u in the range 1 to 1.5. We compared the Keldysh to
Matsubara fRG data obtained using three different regulators,
and we found that, for u > 0.5, the latter strongly depend on
the choice of regulator: For the � flow, the Matsubara results
agree with the Keldysh results, while performing better than
the U flow but worse than the ω flow. Regrettably, the ω flow
is not available in the KF, where it violates causality. It would
hence be worthwhile to find Keldysh fRG regulators akin to
the ω flow but compatible with the KF requirements regarding
causality and FDTs [54].
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FIG. 11. Fully retarded (k = 12|22) Keldysh component of the full vertex, [	k
σσ ′ (ωt = 0, νt = ν, ν ′

t = ν ′) − 	k
0,σσ ′ ]/	k

0↑↓, for u = 0.5 (top
panel) and u = 1 (bottom), computed using fRG, PA, and NRG (following Refs. [34,35]). We observe very good agreement for u = 0.5, which,
qualitatively, mostly persists for higher interaction. However, Re	↑↓ at u = 1 and low frequencies differs significantly between the methods:
it is strictly positive in fRG, slightly negative in NRG, but much more strongly negative up to fairly large values of ν in the PA. Generally, the
PA shows more complicated features than NRG for larger u, despite being numerically converged, indicating the breakdown of the PA.

The regulator dependence in fRG can be eliminated in the
multiloop fRG framework, yielding results equivalent to the
PA upon convergence in the number of loops [61–63]. This
has been demonstrated numerically in imaginary frequencies
for the AM [64] (and in Refs. [71,72] for the Hubbard model).
Yet, using a multiloop extension of our Keldysh fRG code, we
found the computation of multiloop contributions consider-
ably harder for Keldysh vertices than for Matsubara vertices.
The reason seems to be that, for real-frequency Keldysh ver-
tices, the higher-loop contributions for increasing u show a
considerably more complicated frequency structure than the
original fRG vertex itself (similarly to how the PA vertex has
more structure than its fRG counterpart in the bottom panel
of Fig. 11). A more detailed analysis along these lines is,
however, left for future work.

Our work paves the way for many follow-up studies.
For instance, one can exploit the power of the KF to study
nonequilibrium phenomena, and the AM with a finite bias
voltage is tractable with only minor increase in the numerical
costs [55,106]. Furthermore, we here considered moderate
interaction strengths u � 1.5 because it is known that fRG
and the PA are unable to access the nonperturbative regime
of the AM [20,64] or, e.g., the Hubbard model [72,107]. An
important future direction is, therefore, to use these methods

in a more indirect manner, as real-frequency diagrammatic
extensions [41] of dynamical mean-field theory [42]. The first,
established building block for this is the nonperturbative input,
namely, 2p and 4p vertices, from NRG [34,35]. The present
work presents another building block: real-frequency QFT
with full frequency resolution of the 4p vertex. An important
next step will be to use our diagrammatic framework to study
the consistency of the NRG results for the 2p and 4p vertices,
e.g., by checking whether they fulfill the SDE. The final build-
ing block will then be to include momentum degrees of free-
dom in real-frequency QFT approaches built on top of NRG.

Keeping track of the momentum dependence will lead to
a major increase in numerical complexity. This can be ad-
dressed using economical implementations and compression
algorithms such as truncated-unity approaches [108–111] or
the new quantics tensor cross interpolation scheme [7,33,77].
The latter can be used to obtain highly compressed tensor
network representations of multidimensional functions, po-
tentially leading to exponential reductions in computational
costs. First investigations have shown that the objects encoun-
tered in diagrammatic many-body approaches may indeed
have strongly compressible quantics representations [7].

All raw data required to reproduce the plots as well as the
full data analysis and the plotting scripts are available online
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[112]. A separate publication of the fully documented source
code used to generate the raw data is in preparation.
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APPENDIX A: THE TWO-PARTICLE VERTEX

In compact notation, we denote the vertex by 	1′2′|12 where
each leg carries a multi-index i = (ki, σi, νi ) with Keldysh
index ki, spin σi, and fermionic frequency νi. Generic sym-
metries of the full Keldysh vertex are derived in Ref. [56]
and other symmetries (such as spin or particle-hole symmetry)
are given in Ref. [113]. In the following, we recap these
symmetries and detail the parametrization in our implementa-
tion. First, we work with Keldysh indices rather than contour
indices. In this basis, the 11 · · · 1 (22 · · · 2) component of a
multipoint correlator (vertex) vanishes [56]. This simplifies,
e.g., the Dyson equation, GR = [(GR

0 )−1 − �R]−1 and implies
	22|22 = 0. Furthermore, crossing symmetry gives

	1′2′|12 = −	2′1′ |12 = −	1′2′|21 = 	2′1′|21, (A1)

and complex conjugation

	1′2′|12 = (−1)1+∑
i ki	∗

12|1′2′ . (A2)

Thermal equilibrium entails (generalized) fluctuation-
dissipation relations between different Keldysh components.
However, we choose to vectorize the code over Keldysh
components and thus do not use these relations (see
Appendix G for details on the vectorization). For a
comprehensive list of multipoint fluctuation-dissipation
relations, we refer to Refs. [56,114,115]. They are very well
fulfilled (percent level) by our numerical results.

In the absence of a magnetic field, spin conservation and
the invariance under a global spin flip reduce the number of
independent spin components. The remaining components are
related by the SU(2) relation [113]

	σσ |σσ = 	σσ̄ |σ σ̄ + 	σσ̄ |σ̄ σ , (A3)

where ↑̄ =↓ and vice versa. Hence, the spin dependence of
the vertex can be parametrized by

	σ ′
1σ

′
2|σ1σ2 = 	↑↓δσ ′

1,σ1δσ ′
2,σ2 + 	↑↓δσ ′

1,σ2δσ ′
2,σ1 . (A4)

The components on the right-hand side are related by crossing
symmetry. It thus suffices to compute a single one of them. At
particle-hole symmetry, we further have

	1′2′|12(ν ′
1, ν

′
2|ν1, ν2) = 	12|1′2′ (−ν1,−ν2| − ν ′

1,−ν ′
2)

(A2)= (−1)1+∑
i ki	1′2′|12(−ν ′

1,−ν ′
2| − ν1,−ν2)∗, (A5)

with the multi-indices i = (ki, σi ), reducing the number of
independent frequency components even more.

By frequency conservation, ν ′
1 + ν ′

2 = ν1 + ν2, the vertex
depends on only three independent frequencies. These are
chosen differently for each two-particle reducible vertex γr

(see Fig. 12), with the bosonic transfer frequency ωr and
the fermionic frequencies νr and ν ′

r . The vertices γr have
nontrivial asymptotics in the limits ν (′)

r →∞. One can de-
compose the reducible vertex γr in asymptotic classes, see
Eq. (29) [2]. Since the bare interaction is frequency indepen-
dent, the asymptotic classes Kir can be identified with certain
diagrams that are reducible in channel r [2,73]. Connecting
two external legs to the same bare interaction vertex reduces
the dependence by one external frequency argument. K1r (ωr )
consists of all diagrams where the two external legs carrying
frequency νr connect to the same bare vertex and the external
legs carrying ν ′

r connect to another one. Hence, K1r only
depends on ωr . K2r (ωr, νr ) consists of all diagrams where
the ν ′

r legs connect to the same bare vertex while each of the
other two legs connect to different bare vertices. K2′r (ωr, ν

′
r )

is analogous to K2r with the roles of νr and ν ′
r interchanged.

For K3r (ωr, νr, ν
′
r ) all external legs connect to different bare

vertices. The bare vertices simplify not only the dependence
of K1, K2, and K2′ on frequencies but also on Keldysh indices.
If a bare vertex connects to two external legs, flipping their
Keldysh indices, 1̄ = 2 (2̄ = 1), leaves the function invariant,
see Eq. (17). This gives, e.g.,

Kk1′ k2′ |k1k2

1p = Kk̄1′ k̄2′ |k1k2

1p = Kk1′ k2′ |k̄1 k̄2

1p

= Kk̄1′ k̄2′ |k̄1 k̄2

1p , (A6a)

Kk1′ k2′ |k1k2

2p,σ1′ σ2′ |σ1σ2
= Kk1′ k2′ |k̄1 k̄2

2p,σ1′ σ2′ |σ1σ2
. (A6b)

Note that the diagrammatic channels a and t flip under
crossing symmetry, i.e., γa,1′2′|12 = −γt,1′2′|21, while channel
p is crossing symmetric itself. The symmetry relations in
Eqs. (A1)–(A5) are formulated for full vertices. They can
be adapted to the asymptotic classes Kir by inserting the
decomposition on both sides of each relation and taking the
appropriate limits ν (′)

r →∞. For instance, K↑↓,2′ p is related to
K↑↓,2p by

Kk1′ k2′ |k1k2

↑↓,2′ p (ωp, ν
′
p)

(A2)= (−1)1+∑
i ki Kk1k2|k1′ k2′

↑↓,2p (ωp, ν
′
p). (A7)

For a formulation of the parquet and fRG equations in terms
of asymptotic classes, we refer to Ref. [2] and to Eqs. (75) in
Ref. [75].

As we vectorize over Keldysh indices, we explicitly keep
track of all Keldysh components. The symmetry relations
are then used to reduce the spin and frequency components
[Eqs. (A1), (A2), and (A5) for 	↑↓]. To implement these
symmetries for the K3r class, it is convenient to express the
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FIG. 12. We show the frequency conventions for the two-particle reducible vertices γr with r = a, p, t . Symmetric parametrizations with
± ω

2 ensure that vertex structures are centered around the frequency axis. The irreducible vertex R is shown in bosonic frequencies for
completeness.

relations in terms of the three bosonic frequencies [100],
giving

	
k1′ k2′ |k1k2

↑↓;ωa,ωp,ωt

(A2)= [
	

k1k2|k1′ k2′
↑↓; ωa,ωp,−ωt

]∗
(−1)1+∑

i ki ,

(A1)= 	
k2′ k1′ |k2k1

↑↓; −ωa,ωp,−ωt

(A5)= [
	

k1′ k2′ |k1k2

↑↓; −ωa,−ωp,−ωt

]∗
(−1)1+∑

i ki ,

(A8)

such that the sign of the bosonic frequencies define sectors
that are related by symmetry.

APPENDIX B: FREQUENCY DEPENDENCE
OF VERTEX COMPONENTS

Figures 13 and 14 show plots for the frequency dependence
of the asymptotic classes K2 and K3 for each of the three
two-particle channels r ∈{a, p, t}, computed in the PA for
u = 0.5 and u = 1, respectively. We use the natural frequency
parametrization for each channel r and set the bosonic transfer
frequency ωr = 0 in the plots for K3. The figures instructively
show what types of nontrivial structures emerge during such
calculations. In particular, one can clearly see that the fre-
quency resolution needs to be very high throughout to resolve
all sharp features (many occurring on scales much smaller
than �). Moreover, the weak-coupling results may serve as
benchmarks for future computations of Keldysh vertices using
other methods, such as NRG or QMC.

APPENDIX C: FULLY PARAMETRIZED EQUATIONS

We can write the parquet equations (20) and one-loop fRG
flow equations (19) entirely in terms of two functions, bubbles
and loops. A bubble Br in channel r = a, p, t combines two
vertices via a propagator pair

�34|3′4′
a,ωaνa

= G3|3′
νa−ωa/2G4|4′

νa+ωa/2, (C1a)

�34|3′4′
p,ωpνp

= G3|3′
ωp/2+νp

G4|4′
ωp/2−νp

, (C1b)

�
43|3′4′
t,ωt νt

= G3|3′
νt −ωt /2G4|4′

νt +ωt /2, (C1c)

where we use the natural frequency parametrization for
each channel (see Fig. 15) and superscripts indicate Keldysh
indices (34|3′4′) = (k3k4|k3′k4′ ). In the following, we give ex-
plicit formulas for the ↑↓-spin component of bubble diagrams
that combine vertices V and W :

Ba[V,W ]1′2′|12
↑↓,ωaνaν ′

a
=

∫
ν̃

V 1′4′|32
↑↓,ωaνa ν̃

�
34|3′4′
a,ωa ν̃

W 3′2′|14
↑↓,ωa ν̃ν ′

a
, (C2a)

Bp[V,W ]1′2′|12
↑↓,ωpνpν ′

p
=

∫
ν̃

V 1′2′|34
↑↓,ωpνpν̃

�
34|3′4′
p,ωpν̃

W 3′4′|12
↑↓,ωpν̃ν ′

p
, (C2b)

with
∫
ν̃

= ∫ ∞
−∞ dν̃/2π i (the internal spin sum and crossing

symmetry in Bp cancel the prefactor of 1/2), and

Bt [V,W ]1′2′|12
↑↓,ωt νt ν

′
t

= −
∫

ν̃

�
43|3′4′
t,ωt ν̃

[
V 4′2′|32

↑↓,ωt ,νt ,ν̃
W 1′3′|14

↑↑,ωt ν̃ν ′
t
+ V 4′2′|32

↑↑,ωt νt ν̃
W 1′3′ |14

↑↓,ωt ν̃ν ′
t

]
,

(C2c)

where the ↑↑-spin component is obtained via Eq. (A4).
For the loop, we parametrize the vertex in the t-channel

convention with ωt = 0 and write

L[	, G]1′|1
ν = −

∫
ν̃

G2|2′
νt

[	↑↓ + 	↑↑]1′2′ |12
0νt ν

. (C3)

Using the loop L and bubbles Br , the parquet equations (20)
read

γr = Br[Ir, 	], (C4a)

� = L[	0, G] + 1
2 L[Ba[	0, 	], G]. (C4b)

In the SDE, the internal spin sum can be performed, can-
celing the factor of 1/2 in Eq. (C4b) by crossing symmetry to
give

�
1′|1
SDEν

= −
∫

νt

G2|2′
νt

[
	0,↑↓ + Ba[	0, 	]1′2′|12

↑↓,0νt ν

]
. (C5)

The one-loop fRG flow equations [cf. Eq. (19)] are

�̇ = L(	, S), γ̇r = Ḃr (	,	), (C6)

where the dot on Ḃr denotes a differentiated propagator pair,
∂��r = ĠG + GĠ, including the Katanin substitution S →
Ġ = S + G�̇G [70].

Susceptibilities are obtained from G(4), Eq. (13), by con-
tracting pairs of external legs and subtracting the disconnected
parts [116,117]. For the spin-↑↓ and spin-↑↑ components, we
get

χ
12|1′2′
a,σσ ′,ωa

=
∫

ν

�12|1′2′
a,ωaν

+
∫

ν

∫
ν ′

�14|1′4′
a,ωaν

	
34|3′4′
σσ ′,ωaνν ′�

32|3′2′
a,ωaν ′ ,

(C7a)

χ
12|1′2′
p,σσ ′,ωp

=
∫

ν

�12|1′2′
p,ωpν

(1 − δσ,σ ′ )

+
∫

ν

∫
ν ′

�12|3′4′
p,ωpν

	
34|3′4′
σσ ′,ωpνν ′�

34|1′2′
p,ωpν ′ , (C7b)

χ
12|1′2′
t,σσ ′,ωt

= −
∫

ν

�
12|1′2′
t,ωt ν

δσ,σ ′

+
∫

ν

∫
ν ′

�
12|3′4′
t,ωt ν

	
34|3′4′
σσ ′,ωt νν ′�

34|1′2′
t,ωt ν ′ . (C7c)
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FIG. 13. Real (left) and imaginary (right) parts of K2 (top) and K3 (bottom) vertex components in the PA for u = 0.5. The three rows of
each subfigure show results for the three two-particle channels r ∈ {a, p, t}. The columns show all independent Keldysh components. Natural
frequency parametrizations were used and for K3 the bosonic transfer frequency ωr was set to zero. Consequently, some components of ReK3

vanish.

From these functions, we obtain physical susceptibilities
as χd/m = χt,↑↑ ± χt,↑↓, or after exploiting spin and crossing
symmetry, Eqs. (A1) and (A3),

χ
12|1′2′
d = 2χ

12|1′2′
t,↑↓ − χ

21|1′2′
a,↑↓ , (C8a)

χ12|1′2′
m = −χ

21|1′2′
a,↑↓ . (C8b)

These functions have the Keldysh structure of 4p functions.
To identify the retarded susceptibilities χR(ω) in terms of 2p
functions [analogous to the propagator, Eq. (7)], we use the
bare three-leg Hedin vertex λ

(k1k2 )k3
0 [118] where the Keldysh

indices k1, k2 belong to χ12|1′2′
and k3 to χR. In terms of

contour indices, it reads λ
(c1c2 )c3
0 = −c1δc1=c2=c3 ; in Keldysh

indices, the nonzero components are

λ
(kk)2
0 = 1√

2
= λ

(kk̄)1
0 . (C9)

Hence, two (un-)equal fermionic Keldysh indices translate to
a “2” (“1”) for the bosonic line. We thus identify

χR
r = χ2|1

r = 2χ11|12
r , r = a, p, t . (C10)

In the parquet formalism, it was shown that the suscep-
tibilities χr (r ∈{a, p, t}) are related to asymptotic functions
via [2]

(K1a)1′2′ |12 = −(	0)1′4′|32(χa)34|3′4′ (	0)3′2′|14, (C11a)(
K1p

)
1′2′ |12 = −(	0)1′2′|34

(
χp

)
34|3′4′ (	0)3′4′|12, (C11b)

(K1t )1′2′ |12 = −(	0)4′2′ |42(χt )34|3′4′ (	0)1′3′|13. (C11c)

For the retarded spin-↑↓-component, we have

KR
1r↑↓ = −U 2χR

r↑↓. (C12)

Although one-loop fRG does not fulfill the BSEs (20b)–(20d),
Eq. (C12) can still be used as an estimate for susceptibili-
ties. In the present context, these are often called “flowing”
susceptibilities, while Eq. (C7) defines the “postprocessed”
susceptibilities. The PA, fRG, and K1SF results for χm and
χd shown in the main text were computed using Eqs. (C11).

APPENDIX D: CHANNEL-ADAPTED
SCHWINGER–DYSON EQUATION

In the parquet formalism, the frequency dependence of the
self-energy �(ν) enters via the second term in the SDE (20a).
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FIG. 14. Same vertex components as in Fig. 13, computed in the PA for u = 1.

FIG. 15. Diagrammatic representation of the bubble functions in
Eq. (C2).

In the following, we discuss three options for the numerical
evaluation of this diagram.

First, using the parquet decomposition [Eq. (20e)], the
second term of the SDE can be written in terms of bubbles
Br and loop L as (see Fig. 16) [72,107]

�SDE1 = L(Ba(	0, 	0), G) +
∑

r

L(Br (	0, γr ), G). (D1)

Here and below, a loop, L, acting on a t bubble, Bt , contracts
the two right legs, as opposed to the two top legs for all other
vertex types (cf. Fig. 16).

FIG. 16. Rewriting of the SDE, where crossing symmetry was
used for the γt part. The red line indicates which propagator enters
the loop L in Eq. (D1).
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FIG. 17. Imaginary part of the retarded self-energy at ν = 0,
computed with the parquet solver and different versions of the SDE,
shown as a function of NK3 (u = 0.1/π , T/U = 0.01). The dashed
line is the NRG result. For low NK3 , SDE2 and SDE3 give the wrong
sign. With increasing resolution, all results approach the correct
value.

Second, the SDE in Eq. (20a), without further manipula-
tion, reads

�SDE2 = L(Br (	0, 	), G), r ∈ {a, p, t}, (D2)

where the channel r can be freely chosen. Third, using
Br (	0, γr ) = K1r + K2′r [2], the SDE equivalently reads

�SDE3 = L(K1r + K2′r, G). (D3)

Even though the above versions of the SDE are analytically
equivalent, they vary in numerical accuracy and cost. Eval-
uating �SDE3 is cheaper than the others since it skips the
computation of bubbles Br . However, we found that Eq. (D1)
is most accurate, since the γr are inserted into bubbles Br of
the same channel r. Using the natural frequency parametriza-
tion for the reducible vertices γr (ωr, νr, ν

′
r ), �SDE1 also has

the benefit that one only needs to interpolate along the νr

direction.
To illustrate this point, we consider a third-order contribu-

tion to the self-energy:

L(Bt (	0, K1t ), G) = L(Ba(	0, K1t ), G), (D4)

(D5)

Inserting K1t into Ba as done on the right results in diagrams
that belong to the asymptotic class K2′a. However, on the left,
K1t is inserted into Bt , resulting in diagrams belonging to K1t .
The latter can be treated with higher resolution and thus lead
to better results for �, see Fig. 17. Note that the question how
to best parametrize the SDE also arises in the context of the
truncated-unity formalism for momentum-dependent models,
where this choice was found to affect the quality of the results
even more strongly due to the additional approximation from
the truncation of the form-factor expansion [72,107].

APPENDIX E: EQUAL-TIME CORRELATORS
AND HARTREE SELF-ENERGY

Parts of the following discussion can be found in previous
works, see Refs. [54,59,66]. We reiterate some of the points
made there and extend on them to the context of this work.

The definitions of G+|+ and G−|−, Eqs. (3) and (4), are
ambiguous at t1 = t2 because �(t1 − t2 = 0) is not uniquely
defined. If two operators ψ,ψ† are placed at the same point
on the Keldysh contour, it is a priori not clear how to order
them. The ambiguity is resolved by demanding that ψ† be
put left of ψ (“normal ordering”), which implies G−|−(t, t ) =
G<(t, t ) = G+|+(t, t ). Then, G< + G> − GT − GT̃ = 0 does
actually not hold, and care is due with Keldysh-rotated quan-
tities. Since the point t1 = t2 is of zero measure in time
integrals, which occur when computing diagrams in frequency
space, this subtlety is irrelevant for most practical purposes.
However, there is one important exception of equal-time na-
ture, namely, diagrams with loops that begin and end at the
same bare vertex. With an instantaneous bare interaction, both
incoming and outgoing legs have the same time argument,
so that these diagrams involve the frequency-integrated (i.e.,
equal-time) propagator.

The equal-time propagator determines the Hartree self-
energy of the AM (e.g., in PT2 calculations),

(E1)

Recall that, for the sAM (εd = −U/2), the Hartree term is
constant, �H = U/2, and can be absorbed into the bare prop-
agator GR

0 → GR
H, see Eq. (24). Subsequently, GR

H is used
for all computations involving bare propagators. In analogy,
in the aAM, the bare propagator is replaced by the Hartree
propagator, too. However, here, �H is not constant and must
be computed self-consistently (using, e.g., a simple bracketing
algorithm), as it enters both sides of Eq. (E1). Now, a naive
computation of the retarded component of this diagram after
the Keldysh rotation (and in the frequency domain) would
yield

(E2)

This is, however, incorrect since G1|1(t |t ) �= 0 after Keldysh
rotation. The correct result can be found by staying in the
contour basis, using that, at equal times, only �

−|−
H (t, t ) =

−�
+|+
H (t, t ) is nonzero. Keldysh rotation yields �R

H(t, t ) =
�

−|−
H (t, t ), for which one has

(E3)

To compute Eq. (E3) in thermal equilibrium, one can relate
G< to GR using the inverse Keldysh rotation and the FDT
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[Eq. (10)]:

G<(ν) = 1
2 [−GR(ν) + GA(ν) + GK (ν)]

= −2inF (ν)ImGR(ν), (E4)

with the Fermi function nF (ν) = 1/(1 + eν/T ). This discus-
sion of �H also applies to the PA via the first term of the SDE
(20a) (the second vanishes for |ν| → ∞).

In fRG, �H is generally renormalized throughout the flow,
according to Eq. (19a) for �̇. In the limit |ν| → ∞, relevant
for extracting the Hartree contribution, only those diagrams
survive for which the in- and outgoing lines are attached to
the same bare vertex:

(E5)

In practice, the Hartree contribution �̇H is not computed sepa-
rately but is part of the full self-energy flow. There, equal-time
propagators are single-scale propagators, occurring in the fol-
lowing contributions:

(E6)

However, in the context of this work, it turns out that these
specific equal-time loops can be computed from just the
Keldysh-component of the single-scale propagator, as in the
naive calculation Eq. (E2). The reason is that, in the hy-
bridization flow, the retarded component of the single-scale
propagator asymptotically scales as ≈1/ν2 for ν → ±∞, see
Eq. (25). Using the FDT in the forms of Eqs. (E4) and (10),
we can write

SK (ν) = 2i[1 − 2nF (ν)]ImSR(ν)

= 2iImSR(ν) + 2S<(ν). (E7)

When computing
∫

dνSK (ν), one can apply Cauchy’s theorem
to the first term, using its asymptotic behavior (see above).
Closing the integration contour by an infinite semicircle in
the upper half plane, avoiding the pole in the lower half
plane, gives zero. Hence, in the hybridization flow, we have∫

dνSK (ν) = 2
∫

dνS<(ν), and the subtlety discussed previ-
ously is irrelevant. Note that this argument may not apply to
other regulators, where S has a different expression.

APPENDIX F: DIAGRAMMATIC DEFINITION
OF SECOND-ORDER PERTURBATION THEORY

Following the previous discussion, the Hartree term in PT2
is determined self-consistently. The resulting Hartree propa-

gator GH then fulfills the Dyson equation

(F1)

In these and the following diagrams, the Hartree propagator
GH is represented by a black line, whereas the light gray line
denotes the bare propagator G0. The dynamical part of the
self-energy is computed from the first nontrivial term of the
SDE, using GH,

(F2)

The vertex in PT2 is given by the three diagrams

(F3)

again evaluated with GH in the internal lines. Susceptibilities
are then computed from this vertex via the standard formula;
for χa, e.g., (again using GH throughout)

(F4)

To obtain exactly the second-order contribution to the suscep-
tibility, one insertion of the dynamical part of the self-energy
into each line of the bubble term is required, which gives rise
to the second and third diagrams shown.

We checked that, in the sAM at sufficiently low tempera-
tures, our numerical PT2 solution matches the analytic T = 0
results of Ref. [95] [Eqs. (3.14) and (3.6)–(3.8) therein]

Z = 1 − (
3 − 1

4π2)u2, (F5a)

−�′′(ν)/� = 1
2 u2(ν2 + π2T 2)/�2, |ν|, T � �, (F5b)

χ̃m/d = 1
2

[
1 ± u + (

3 − 1
4π2

)
u2

]
. (F5c)

APPENDIX G: IMPLEMENTATION DETAILS

Below, we describe our choices for the implementation
of the parquet and fRG solver, the sampling of continuous
functions, and the performance-critical quadrature routine. In
the process, we also discuss the numerical accuracy of our
results.

The evaluation of bubble diagrams, Eq. (C2), is a major
bottleneck in our methods. However, computations for dif-
ferent external arguments can be distributed efficiently over
multiple threads and compute nodes. It also proved ben-
eficial to vectorize the sum over internal Keldysh indices
by reordering and combining Keldysh indices ki to Keldysh
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FIG. 18. Nonlinear frequency grid {ω j}N
j=1 obtained via a trans-

formation fA(�), Eq. (G2), from an auxiliary linear grid {� j}N
j=1

of size N .

multi-indices (km, kn)

	k1′ ,k2′ ,k1,k2 �→
⎧⎨
⎩

	(k1′ ,k2 ),(k2′ ,k1 ) for a channel
	(k1′ ,k2′ ),(k1,k2 ) for p channel
	(k2′ ,k2 ),(k1′ ,k1 ) for t channel,

(G1)

turning the Keldysh sum into an ordinary matrix product
(which is optimized in common linear algebra libraries).
This preprocessing step enables us to efficiently fetch matrix-
valued integrands and to perform sums over Keldysh indices
and spins in an optimized manner. It requires all Keldysh
components to be present in the data, and, therefore, all of
them are included in our computations. Consequently, FDTs
could not be exploited to gain performance benefits as they
merely relate different Keldysh components.

For the integrals over internal frequencies in Eqs. (C2)
and (C3), we implemented an adaptive quadrature algorithm
which picks sampling points based on a local error estimate
and tolerance (εrel = 10−5). With various vertex components,
the evaluation of a vertex at a certain frequency is rather
expensive. Therefore, we choose a quadrature algorithm that
reuses the previous function evaluations when it refines the
quadrature value on a subinterval (4-point Gauss–Lobatto rule
with 7-point Kronrod extension) [119]. Due to fine structures
in the integrands, we found a higher-order quadrature rule to
be beneficial for the convergence of the routine. To help the
algorithm find the structure in the integrand, we subdivide the
integration interval at the expected positions of structure in
the vertices or the propagators. Quadrature of the integrand’s
tails at high frequency is performed numerically by means
of a suitable substitution of the integration variable [120].
For matrix-valued integrands, we use the sup norm ‖ · ‖∞ to
compute the error estimate for the quadrature.

Since Keldysh functions depend on continuous frequen-
cies, a reliable and efficient representation is vital. We choose
a nonuniform set of sampling points and obtain function val-
ues by (multi-)linear interpolation. The overall behavior of
our functions is known: The self-energy and the asymptotic
functions Kir can have sharp structures at smaller frequencies
while, at large frequencies, they decay to a constant value with
an approximate ω−k with k ∈ N. To capture this behavior, we
map an equidistant grid of an auxiliary variable � ∈ [−1, 1]

FIG. 19. Illustration of the resolution of vertex data for a slice
through ReK11|12

3a and ImK11|12
3a . The left panels show the data on

the equidistant auxiliary grid, the right panels show the data on
real frequencies. Many sampling points are placed around the center
where structures are peaked, while the tails are treated with very few
points. Here, we also see an artifact due to our choice of the grid
function (G2): since the grid function has a discontinuity at second
order, we see a saddle point in the bottom left panel even though the
function is linear there. The good resolution of the central peak in the
real part comes at the cost of a saddle point in the imaginary part.

to a nonuniform one via the function

ω = fA(�) = A�|�|√
1 − �2

, (G2)

with constant A > 0, see Figs. 18 and 19. The resulting sam-
pling points are dense around ω = 0. At large frequencies, the
function fA(�) captures a 1/ω2 decay effectively for |�| � 1.
Furthermore, the structures in the AM scale approximately
with the hybridization �. Therefore, we choose the frequency-
grid parameter A as multiples of � and ωmax = 100A. With a
fixed maximal frequency ωmax, the variable A determines the
interval [−�max,�max] used to construct the frequency grid
via Eq. (G2). Our choices for A are given in Table I.

It is also possible to adapt the frequency-grid parameter
A automatically. Interpolating the vertex linearly, we can ap-
proximate the error by the maximal curvature in the space
of the linearly sampled auxiliary variable �. Hence, we can
use the curvature as an error function to optimize the param-
eter A in Eq. (G2). The direction-dependent curvature of a
multivariate function f is encoded in the Hessian, Hi j =
∂i∂ j f (x). We can efficiently compute a scalar measure for the
curvature via the Frobenius norm of the Hessian, giving

‖H‖2
F =

∑
i, j

|Hi, j |2 = TrH2 =
∑

i

|λi|2, (G3)

where λi are the eigenvalues of H . An approximation of the
partial derivatives can be obtained with the finite differences
method. However, for the studied parameter regime of the
AM, we found (using Brent’s method [121] as the minimizer)
that optimizing the grid parameters A did not make a big dif-
ference compared with a simple rescaling according to Table I.

TABLE I. Frequency-grid parameter A for Eq. (G2).

� K1 K2,ω K2,ν K3,ω K3,ν

A/� 10 5 15 20 10 10
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FIG. 20. Convergence with respect to frequency resolution for
the static susceptibilities as in Fig. 8 from parquet solvers in the KF
and the MF for u = 0.75 (a setting where K2 and K3 are relevant). The
numbers of frequency points for K1 and K2 are chosen proportional to
NK3 . In the MF, we used NK3 = 33, 49, 73, 129, 257, 513, 701, 801,
in the KF NK3 = 33, 51, 75, 125. The KF and MF results agree very
well; the shaded region marks 0.1% deviation.

To verify convergence in the number of sampling points, we
compared the static susceptibilities between implementations
in the KF and the MF and found agreement up to 1‰, see
Fig. 20.

To solve the fRG equations (19) we employ a Runge–
Kutta solver with adaptive step size control (Cash–Carp).
The step size is chosen according to an error estimate and
tolerance (here: relative error εrel = 10−6). Furthermore, we
reparametrize the flow parameter �(t ) = fA=5(t ) to provide
a good first guess for the step sizes, using the same function
fA(t ) as for frequencies ω, Eq. (G2), with A = 5. It provides
large steps for high � and small steps for small � for equidis-
tant t . As initial condition of ��i and 	�i at large �i, we use
the converged parquet solution. As discussed in Sec. III, the
PA gives good results in the perturbative regime.

To solve the self-consistent parquet equations fPA in
Eqs. (20), which constitute a fixed-point equation for the
state � = (�,	), i.e., � = fPA(�), we perform fixed-point
iterations until the result meets a tolerance criterion, here
‖� − fPA(�)‖∞ < 10−6‖�‖∞. For intermediate to higher
u � 1, it proves beneficial to stabilize the algorithm with a
partial update scheme, i.e.,

� ← (1 − m)� + m fPA(� ), (G4)

with mixing factor 0 < m � 1 (here typically m = 0.5). For
faster convergence in the vicinity of the fixed point, we use
Anderson acceleration [122,123].

APPENDIX H: NUMERICAL COSTS

The numerically most complex objects in all calculations
are the K3 components of the two-particle reducible vertices,
as they depend on three continuous frequency arguments
independently. The numerical cost of a parquet or fRG com-
putation is therefore O(N3

K3
), where NK3 is the number of grid

points per frequency used for K3. This applies to memory (as
all this data has to be stored) and to computation time (as
BSEs or fRG flow equations are evaluated for all external

TABLE II. Number of frequency points for different diagram-
matic classes and methods. We use the same number of points for �

as for K1. In most PA computations, NK3 = 51, except for the largest
values of u, which required NK3 = 101 for converging the parquet
solver.

NK1 NK2 NK3

fRG 401 201 101
PA 401 201 51–101
PT2 801 0 0
K1SF 401 0 0

arguments). We give in Table II the number of frequency
points used for each diagrammatic class. The self-energy was
resolved on a grid with the same number of points as the K1

class.
The numerical cost is further determined by the accu-

racy (or the convergence criteria) chosen for the iterative
parquet solver or the Runge–Kutta solver in fRG flow (see
Appendix G). Finally, the accuracy of the integrator also af-
fects the numerical cost strongly (see again Appendix G). Our
most costly computations were 150 iterations of the parquet
solver with NK3 = 101 (required for convergence in the region
u � 1). On the KCS cluster at the Leibniz-Rechenzentrum der
Bayerischen Akademie der Wissenschaften (LRZ), equipped
with chips of the type Intel� Xeon� Gold 6130 CPU @ 2.10
GHz capable of hyperthreading, one such computation took
about two days on 32 nodes, running 32 threads each.

APPENDIX I: CONVERGENCE OF χ̃m(0)

Figure 21 shows the static magnetic susceptibility of the
sAM obtained with fRG, zooming into the regime u � 1
(where deviations between MF and KF results become notice-
able) and scrutinizing convergence with respect to frequency
resolution. Compared with Fig. 8, there is an additional KF
(MF) line with higher (lower) resolution, as determined by
the number of frequency points used to resolve the K3 class,
NK3 (cf. Fig. 20). The MF result appears converged in NK3 ,
whereas the KF result is slightly improved by increasing NK3 .
The improvement is minor, however, and does not justify the
additional numerical cost: The computation for NK3 = 125
consumed roughly 30 000 CPU h, while the computation for
NK3 = 101 took only half that time. Nevertheless, one should
keep in mind that these computations yield a full parameter
sweep in u and are thus more economical than individual PA

FIG. 21. Static magnetic susceptibility of the sAM obtained with
fRG. Compared with Fig. 8, there is an additional KF (MF) line with
higher (lower) resolution. The MF result appears converged in NK3 ;
the KF result is slightly improved by increasing NK3 from 101 to 125.
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computations. Further analysis, including line plots through
all vertex components and asymptotic classes, is provided in
the dataset attached to this paper. This analysis shows that the

resolution of fine structures in some Keldysh components of
the K3 class could still be improved using even higher values
of NK3 .
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2.5 Technical aspects of real-frequency calculations
Numerical quantum field theory calculations in real frequencies are technically demand-
ing, particularly when computing the four-point vertex. While this was mentioned at
several points before and in Ref. [P1], that paper focused more on the results of those
calculations and their implications for further development of the methodology. Building
on a significant amount of preliminary work already done and presented in Refs. [Agu20;
Wal22], it was therefore deemed worthwhile to write another paper that focuses more
on the technical aspects of the calculations done for Ref. [P1], focusing primarily on the
parts that are required for real-frequency calculations.

Among those are, first and foremost, the challenges that relate to the continuous instead
of discrete frequency dependence of all functions involved. Numerically, the continuous
frequency axes have to be discretized by choosing an appropriate frequency grid. This
step requires fine tuning already, as a tradeoff between accuracy and performance has
to be made very carefully: On the one hand, the frequency grid must be chosen such
that all features of the vertex are resolved correctly, which can be tricky, since the vertex
can have sharply peaked structures, especially at low temperature. On the other hand,
one cannot afford an arbitrary resolution of the frequency grid since the numerical effort
quickly becomes overwhelming as it roughly scales with the third power of the number of
frequency grid points (in thermal equilibrium, the vertex has three frequency arguments).
Furthermore, contractions over frequency arguments, ubiquitous in the parquet and
(m)fRG equations, amount to integrations instead of summations over discrete Matsubara
frequencies. These integrations require efficient interpolation routines to read out the ver-
tex at arbitrary frequency values and a performant but still accurate integration algorithm.

While the above points on continuous frequency dependencies are also relevant to com-
putations in the Matsubara formalism at zero temperature (indeed, similar issues have
been discussed, e.g., in Ref. [Rit+22]), another challenge arises in the Keldysh formalism
due to the additional index structure from the Keldysh indices of all functions. For the
vertex, this concretely means that one has to keep track of its 16 Keldysh components.
While symmetries can be used to relate many Keldysh components of the vertex, it
was found that it is preferential to instead exploit the matrix structure of the Keldysh
index dependence of the vertex by vectorizing all computations across the Keldysh indices.

A crucial issue in all parquet and (m)fRG calculations is that at each step, the right-hand
sides of the equations have to be evaluated for every possible combination of exter-
nal arguments of the functions on the left-hand side. Especially for the vertex, this
necessitates a vast number of individual calculations at each step. Fortunately, these
calculations are all independent, provided each calculation has access to the objects
required on the right-hand side. The computations can hence be easily parallelized
across multiple threads on a single compute node and across multiple nodes (the latter
resulting in an overhead in memory since all required objects have to be copied to every
node). The parallelization enables using a high-performance computing cluster for the
numerics, which turned out to be crucial to the success of the calculations, since espe-
cially the required number of frequency grid points could not have been afforded otherwise.

In addition to all these technical issues, writing the code for parquet and (m)fRG calcu-
lations and properly structuring the resulting comprehensive codebase is a formidable
challenge. Building on past experiences and countless discussions with many like-minded
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peers, Ref. [P2] lays out how the resulting codebase is structured and which possible
pitfalls one should look out for if setting up a new code.

Lastly, Ref. [P2] explains in detail how to implement the mfRG algorithm and provides
the code that does so. This part was missing in Ref. [P1], showing only results from the
one-loop fRG.
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ABSTRACT

We provide a detailed exposition of our computational framework designed for the accurate calculation of real-frequency dynamical correla-
tion functions of the single-impurity Anderson model in the regime of weak to intermediate coupling. Using quantum field theory within the
Keldysh formalism to directly access the self-energy and dynamical susceptibilities in real frequencies, as detailed in our recent publication
[Ge et al., Phys. Rev. B 109, 115128 (2024)], the primary computational challenge is the full three-dimensional real-frequency dependence
of the four-point vertex. Our codebase provides a fully MPI+OpenMP parallelized implementation of the functional renormalization group
(fRG) and the self-consistent parquet equations within the parquet approximation. It leverages vectorization to handle the additional com-
plexity imposed by the Keldysh formalism, using optimized data structures and highly performant integration routines. Going beyond the
results shown in the previous publication, the code includes functionality to perform fRG calculations in the multiloop framework, up to
arbitrary loop order, including self-consistent self-energy iterations. Moreover, implementations of various regulators, such as hybridization,
interaction, frequency, and temperature, are supplied.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0221340

I. INTRODUCTION

In the study of strongly correlated electrons, dynamical cor-
relation functions are quantities of major interest, as they provide
insights into the collective behavior and emergent phenomena
arising from electronic interactions. Capturing the effects of
two-particle (or four-point) correlations is one of the current major
frontiers in the field. Their dynamical properties are inherently
difficult to compute, as they involve three independent frequency
arguments.

While most previous works on this subject focused on
four-point functions in imaginary frequencies in the Matsubara

formalism2,3 (MaF), obtaining real-frequency information is cru-
cial for direct comparisons to experiments. The extraction of
real-frequency data from the results of a calculation in the MaF
is, in principle, possible via analytic continuation.4 However,
it is hard to do so reliably in practice, as the conditions
for the procedure outlined in Ref. 4 are not met by finite
amounts of numerical data. This renders analytic continuation
an ill-defined problem, despite numerous attempts.5–7 Further-
more, it had not been worked out in full detail until very
recently8 how analytic continuation of four-point functions could
be achieved even under the assumption of analytically available
results.
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Pioneering attempts to directly compute real-frequency
dynamical four-point correlation functions using simplified
approaches made use of diagrammatic ladder approximations9,10

or were restricted to a simplified frequency dependence.11–13 The
first fully unbiased treatment of the fluctuations contributing to
the four-point vertex was achieved only a few years ago using
a multipoint extension of the numerical renormalization group
(NRG).14,15

Even more recently, we presented a similarly unbiased treat-
ment of the four-point vertex of the single-impurity Anderson
model using a QFT framework within the Keldysh formalism
(KF), employing two related diagrammatic methods: the functional
renormalization group (fRG) and the self-consistent parquet equa-
tions in the parquet approximation.1 While we focused on the
conceptual aspects and discussed the performance of the methods
in great detail in the previous publication, here we wish to provide
a detailed exposition of the computational framework for the
numerical calculations of self-energies and vertex functions. In
addition to what was shown in Ref. 1, the code discussed in this
paper is capable of performing fRG calculations in the multiloop
framework up to an arbitrary loop order, which connects the fRG
to the parquet formalism.16–18

This paper aims to serve as a reference for future extensions or
revisions of the code. The codebase discussed here was developed
by several people over the course of multiple years, during which
some goals and priorities changed and the code had to be adapted
accordingly. This paper will document how the code works and what
was learned during its development.

Some general design choices made during development
resulted in convenient features of the code and are recommended
for future projects. In the following, we briefly discuss the most
important features:

a. Modularity. Every main building block of the code and each
functionality is implemented individually, using classes and func-
tions that serve one purpose only. As a consequence, a developer can
keep an overview of the functionality. It is also comparatively easy to
reuse existing features and combine them into new functionality. For
example, for both the computation of the Schwinger–Dyson equa-
tion during parquet computations and the evaluation of the flow
equation for the self-energy during the solution of an mfRG flow,
the same classes for vertices, propagators, self-energies, and the same
function for contracting a loop are used, as described in Secs. II C
and II D. In addition, modularity enables unit-testing of each
functionality, something too often ignored during research software
development. Modularity is probably the most important feature
that should be prioritized in developing any research software.

b. Flexibility. A modular design makes the code flexible, too.
Some additional choices were made to improve its flexibility even
further. Most importantly, the code enables computations in three
different formalisms: the finite-temperature Matsubara formalism
(MaF), the zero-temperature Matsubara formalism, and the Keldysh
formalism (KF), which works at any temperature and generalizes to
systems out of thermal equilibrium. Consequently, some function-
ality had to be implemented multiple times, such as contractions,
which require summations over discrete Matsubara frequencies
in the finite-temperature MaF but integrations over continuous
frequencies in the zero-temperature MaF and the KF. Additionally,

in the KF, all quantities are complex-valued, whereas they are
real-valued in the MaF for particle–hole symmetry. Template
parameters were introduced to enable the same functions to work
with objects of different types. Despite the resulting additional com-
plexity, this conveniently enables computations in each of these
three formalisms in the same codebase, still using much of the same
functionality.

c. Performance. Computing dynamical correlation functions is
a computationally demanding task, especially for four-point func-
tions that depend on three frequency arguments. Depending on
the desired resolution, this requires both excessive memory to store
these functions during computations and central processing unit
(CPU) power to perform computations for each combination of
arguments. Concerning the latter, using optimized data structures
for efficient readouts of data as well as an efficient but still precise
algorithm for integrating over frequencies (the numerical bottle-
neck) improved matters significantly. In addition, using a compiled
programming language is basically a must, and keeping track of
constant variables and member functions helps the compiler
optimize the code.

d. Scalability. Apart from the simplest calculations, most dia-
grammatic calculations would not be feasible without paralleliza-
tion. This is because practically all calculations in parquet formalism,
or mfRG, require computations for all possible combinations of
external arguments of the correlation functions. As those are inde-
pendent from each other, it is possible and advisable to parallelize
the demanding computations of bubbles and loops (see Sec. II D)
in the external arguments. Using the OpenMP and MPI interfaces,
this can easily be achieved for parallelization across different threads
on the same node and across multiple nodes, respectively (for more
details, see Sec. II G 1). As long as the memory requirements are
met, the performance of the code scales almost perfectly with the
computational resources.

At this point, we disclose that the present code also has a num-
ber of weaknesses that evolved over the course of development. If the
reader intends to set up a new codebase for the purpose discussed
here, we recommend considering the following points:

a. Too many preprocessor macros (“flags”). The code contains
far too many preprocessor macros, used to specify different para-
meters and settings before compilation (see Sec. II I). This not only
hampers readability but also increases the risk of errors, as it is never
possible to test the full functionality of the code because one would
have to compile and test all possible configurations independently.
With simple combinatorics, this quickly becomes an overwhelming
task. Using preprocessor macros is, however, useful for quick imple-
mentations of new functionality, which is why they accumulate over
time.

b. Too many overly complicated structures. The code contains
several classes that are way more complicated than they need to be,
such as the different vertex classes or the data buffer (see Secs. II C 1
and II G 8). When they were set up, the goal was to keep them as
general as possible, such that they could be used for all kinds of
models in all kinds of formalisms. For this purpose, templates are
used excessively as well. As a consequence, they are indeed flexible,
but they are cumbersome to use in any specific context, and their
implementations are difficult to grasp. In addition, the code takes a
long time to compile and link, which is inconvenient for everyday
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development. Ultimately, as a developer, one has to find the right
trade-off between flexibility and simplicity.

c. Too little use of existing implementations. Several textbook
algorithms, such as the Gauω-Lobatto routine for frequency integra-
tions or the Cash–Karp routine for solving ODEs (see Secs. II G 5
and III C 1), were implemented by hand. The reason for this was
the desire to comprehend and track the inner workings of the
algorithms at every point during a calculation. In hindsight, much
time and effort could have been saved if existing implementations of
these algorithms had been used as “black boxes.”

d. Language. C++ is a very versatile language that runs on
essentially any computer and can produce very fast code. However,
a codebase written in C++ requires a lot of work to write and main-
tain. Initially, C++ was chosen for performance reasons. By now,
however, there are established alternative programming languages
that are easier to use, less error-prone, and (almost) as fast, such as
Julia,19 Rust,20 or Mojo.21

e. Priorities. Driven by the desire to obtain data with maximal
resolution and precision, the top priority has always been perfor-
mance. While this is very typical for codes written by physicists, it is
not in line with the typical recommendation in software engineering,
which would prioritize correctness and maintainability over perfor-
mance.22 While we are confident that the code produces correct
results after extensive benchmarks,1 the code is not written in the
simplest way and is not easily readable and maintainable. While we
acknowledge that generating results quickly is deemed to be the most
important aspect of research at present, we advocate for reconsider-
ing the priorities during research software development for future
projects.

The rest of the paper is structured as follows: In Sec. I A,
we briefly introduce the single-impurity Anderson model (AM). In
Sec. I B, we briefly recapitulate the main concepts of diagrammatic
many-body theory. In Sec. I C, we comment on the complica-
tions that arise by performing computations in the very general
Keldysh formalism, which is the main selling point of the present
codebase.

In the second part of the paper, we give details on the code itself,
introducing the main objects in Sec. II C and explaining the main
functionality in Sec. II D. We list several options for postprocessing
the raw data obtained after a completed calculation in Sec. II E
and briefly explain how the data are organized in Sec. II F. Special
emphasis is placed on performance-critical aspects of the code in
Sec. II G. We comment on how the code is tested in Sec. II H. Finally,
we provide an overview of the most important options for parameter
choices that can be performed in Sec. II I, illustrating the versatility
of the codebase.

In the third main part of the paper, we elaborate on how three
different diagrammatic algorithms, perturbation theory, the parquet
equations, and the mfRG, are implemented. In particular, we list the
different flow schemes that are available in mfRG. Finally, Sec. IV
presents a conclusion.

Before the end of this introduction, a disclaimer is in order: This
paper does not mention every single class or function in the code
but focuses on the most important aspects and functionalities. In
addition, while the code enables computations in the KF and the
MaF at both finite and zero temperatures, we focus our specific
descriptions mainly on the KF functionality, as this is a unique
feature of our codebase.

A. Model
We consider the single-impurity Anderson model (AM) in

thermal equilibrium, one of the most studied models in all of con-
densed matter physics. Its physical behavior is well understood,
and numerically exact benchmark data for single-particle correlation
functions is available from NRG,23 as are exact analytical results for
static quantities at zero temperature from the Bethe ansatz.24,25 This
makes it an ideal candidate for studies focused on reliable method
development.

The AM is a minimal model for localized magnetic impurities
in metals introduced by Anderson to explain the physics behind the
Kondo effect.26 It is defined by the Hamiltonian

H =⩀
ωϵ

ωc†ωϵcωϵ +⩀
ϵ

ωdnϵ +Un↑n↢ +⩀
ωϵ
(Vωd†

ϵ cωϵ +H.c.), (1)

describing a local impurity d level with on-site energy ωd, hybridized
with spinful conduction electrons, created by c†ωϵ , of the metal
via a matrix element Vω. Hence, it qualifies as an open quantum
system. The electrons in the localized d state, where nϵ = d†

ϵ dϵ ,
interact according to the interaction strength U, whereas the c elec-
trons of the bath are non-interacting. The bath electrons are hence
formally integrated out, yielding the frequency-dependent retarded
hybridization function ⌐Im ϵR(ϑ) = ⊍ω ϖ⌜Vω⌜2δ(ϑ ⌐ ω). We consider
a flat hybridization in the wideband limit, ϵR(ϑ) = ⌐iϵ, so that the
bare impurity propagator reads GR

0 (ϑ) = (ϑ ⌐ ωd + iϵ)⌐1.
The code can treat all choices for the on-site energy ωd. For

the special choice ωd = ⌐U⌜2, the model has particle–hole symme-
try and is referred to as the symmetric Anderson model (sAM).
This setting simplifies the calculations somewhat. For instance, in
this case, the Hartree-term of the self-energy is constant ϑH = U⌜2
(see also Sec. III A 1). In addition, in the MaF, all quantities become
real-valued, whereas they are complex-valued otherwise. Hence, the
code supplies a parameter flag to make use of these properties
(see Sec. II I). For general ωd ≠ ⌐U⌜2, we speak of the asymmetric
Anderson model (aAM).

Some physical applications require an additional external
magnetic field h, described by an additional term h(n↑ ⌐ n↢) in
the Hamiltonian. At present, the codebase is, however, not appli-
cable in this setting, as this would break SU(2) symmetry, which
is heavily used and hard-coded into the codebase (see Sec. II G 3).
A generalization to h ≠ 0 is possible but would require major
effort.

While the present implementation is restricted to the AM, the
code in principle can also treat other models: all data structures pos-
sess an additional internal index suitable for encoding additional
dependencies and quantum numbers of more complicated models,
such as a momentum dependence or multiple orbitals. Indeed, the
first attempts to study the 2D Hubbard model had been started; how-
ever, the simplest KF perturbation theory calculations turned out to
be too demanding at the time. The corresponding functionality is,
therefore, not included in this release.

B. Diagrammatic many-body theory
The basic objects of interest in all our calculations are one- and

two-particle correlation functions. Their non-trivial contributions
due to interaction effects are contained in the self-energy ϑ and the
four-point vertex ϖ,

J. Chem. Phys. 161, 054118 (2024); doi: 10.1063/5.0221340 161, 054118-3

© Author(s) 2024

 28 January 2025 12:16:08



The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

(2)

The self-energy is used together with the bare propagator G0 to
express the one-particle propagator G via the Dyson equation

(3)

which is formally solved by G = 1⌜(G⌐1
0 ⌐ ϑ). The vertex is the

connected and amputated part of the two-particle correlation
function G(4),

(4)

from which physical susceptibilities can be obtained by contracting
pairs of external legs (see. Appendix C of Ref. 1 for details). The first-
order contribution to the vertex is given by the fully antisymmetric,
local, and instantaneous bare vertex, represented as a single dot,

(5)

in standard Hugenholtz notation. Using the bare vertex and the
bare propagator G0, diagrammatic perturbation series for both the
self-energy and the vertex can be derived, which will be the sub-
ject of Sec. III A. A perturbation series up to finite order in ϖ0 is,
however, only appropriate for weak coupling strengths. In order to
reach larger couplings, an infinite number of diagrams have to be
summed. This is the purpose of two related formalisms, the parquet
formalism and the multiloop functional renormalization group, to
be discussed in Secs. III B and III C, respectively. Both formalisms
employ the parquet decomposition to organize all diagrammatic
contributions to ϖ into one of four distinct categories: Two-particle
reducible diagrams in one of the three two-particle channels a, p,
and t, included in the three two-particle reducible vertices Ϛr∈ {a,p,t} or
two-particle irreducible diagrams, included in the fully irreducible
vertex R,

(6a)

(6b)

Any specific diagram is said to be two-particle reducible if it can be
disconnected by splitting a propagator pair. Otherwise, it is said to be
two-particle irreducible. The parquet decomposition is exact, as it in
essence just provides a classification of all diagrams that contribute
to ϖ. However, neither the parquet formalism nor the mfRG provide
equations for R. In practice, some approximation is required. The
simplest one is the parquet approximation (PA)

R = ϖ0 +O[(ϖ0)4] ≈ ϖ0, (7)

which approximates the fully irreducible vertex R by the bare vertex
ϖ0. As it introduces an error in the fourth order in perturbation
theory, it fails for large coupling strengths and is hence applicable
only up to intermediate couplings. The PA was applied throughout
in Ref. 1 and is the only one so far implemented in the codebase (see
Sec. II C 1 for a comment on other possibilities).

C. Keldysh formalism
The following section assumes familiarity with the KF and

describes challenges arising for computations with the KF rather
than the more widespread MaF (for a more extensive discussion of
the KF, see Refs. 27 and 28).

The KF29–31 works both out of equilibrium and in thermal
equilibrium at arbitrary temperature, in a real-frequency descrip-
tion. This is an advantage over the more popular MaF, which works
at imaginary (“Matsubara”) frequencies, requiring analytical con-
tinuation, a mathematically ill-defined problem if one works with
a finite amount of imperfect numerical data. Still, the KF is seldomly
used because practical calculations are more complicated for two
main reasons.

In the KF, all operators acquire an additional contour index,
which specifies whether they sit on the forward or backward branch
of the Keldysh double-time contour. It follows that the four-point
vertex, for example, has 24 = 16 different components. While some
of these components can be eliminated by causality or related
to other components by fluctuation–dissipation relations in ther-
mal equilibrium or symmetries, this additional index structure
complicates the implementation and the numerics.

In thermal equilibrium, energy conservation can be leveraged
by Fourier-transforming all correlation functions into frequency
space. In contrast to the MaF at finite temperatures, this dependence
is continuous. Hence, contractions over frequency arguments
require numerically more expensive integrations instead of
summations. The integrations become more costly at lower
temperatures as the frequency dependence of the correlation
functions becomes more sharply peaked. The four-point functions,
which depend on three continuous frequency arguments, are the
numerical bottleneck for which arbitrarily high resolutions are
out of reach due to both computation and memory demands.
Discretizing the frequency dependence in a clever way and using
adaptive integration routines is, therefore, key, as discussed in
Secs. II G 4 and II G 5.

Finally, the KF also allows for computations outside of thermal
equilibrium. However, the present discussion is restricted to thermal
equilibrium. Extending the code out of equilibrium is possible with
moderate effort.

II. THE CODE

In part II of the paper, we describe the main building blocks
of the code—the classes representing correlation functions and
other functions for combining them in diagrammatic computations.
Furthermore, we describe post-processing schemes and emphasize
aspects important for performance. More information on the
technical details of individual code pieces can be found in the doc-
umentation attached to the source code (see the code availability
statement at the end of this paper).
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A. Prerequisites
The code itself is written in C++1732 and is built using CMake,33

demanding at least version 3.10. It requires the GSL,34 boost,35

and Eigen336 libraries, as well as the HDF537 library for input and
output. For parallelization, the OpenMP38 and MPI39 interfaces are
used. Notably, we do not supply precompiled executables that could
be run directly, for several reasons: First, the code makes heavy use
of preprocessor flags that must be set before compilation and that are
in part used to specify the concrete problem at hand (see Sec. II I).
Second, special compilers for the particular architecture at hand
might be available, which could optimize the code during compila-
tion and linking, improving the performance. The user should hence
adapt the file CMakeLists.txt accordingly, such that the required
libraries are included and linked properly and all compiler settings
are as desired.

The technical documentation supplied with the code is gener-
ated automatically using the tools Doxygen,40 Sphinx,41 Breathe,42

and CMake.

B. Basic structure
The structure of the main part of the codebase is depicted in

Fig. 1. The main objects of interest are the SelfEnergy ϑ and the
four-point Vertex ϖ. Separate classes have been implemented for
both, discussed in detail below. Both classes use instances of the class
that defines suitably chosen FrequencyGrids, to be discussed in
Sec. II G 4, for discretizing the continuous frequency dependence. A
self-energy and a vertex always come together in any practical calcu-
lation, representing data for a step of an mfRG flow or an iteration
of the parquet solver. The self-energy and vertex classes are hence
combined in a State class Ψ = (ϑ, ϖ). The algorithms discussed
in Sec. III require computing bubble- and loop-type diagrams, the
main functionality of the codebase. As detailed in Sec. II D 1 below,
the bubble_function contracts two input vertices with a pair of
propagators in one of the three two-particle channels to yield a new
four-point vertex, which is stored as an instance of the Vertex class.
For example, contracting two vertices ϖ1 and ϖ2 in the a channel is
denoted as

(8)

see also Appendix C in Ref. 1 for a fully parametrized version.
The required propagator pair Ϛ belongs to a separate Bubble

FIG. 1. Schematic depiction of the main parts of the codebase.

class, ensuring the correct combination of propagators and their
parametrization. The propagators themselves are defined in the
Propagator class, which essentially implements the Dyson equa-
tion, Eq. (3), combining G0 and ϑ. The former contains all the system
parameters, including the regulator in mfRG; the latter encodes
the interaction effects. Both the Propagator and Bubble classes
can handle differentiated objects arising in mfRG (see Sec. III C).
Finally, the loop function is used to contract two external legs of a
four-point Vertex with a Propagator, yielding an instance of the
SelfEnergy class, for example,

(9)

These types of diagrams are required, e.g., for the mfRG flow equa-
tion of the self-energy or for the evaluation of the SDE after a
previous bubble diagram computation.

C. Correlation function classes
In the following, we discuss the main building blocks of the

code in more detail. We begin by outlining the self-energy and vertex
classes. In addition, there are two helper classes: the first represents
propagators, combining the bare propagator and the self-energy; the
second combines a pair of propagators as needed for bubble-type
diagrams.

1. The Vertex classes
In total, the code contains the four classes irreducible,

rvert, fullvert, and GeneralVertex to store different types of
four-point vertices.

The irreducible class contains the two-particle irreducible
part of the vertex, R. In the PA, its 16 Keldysh components are just
constants. It can easily be extended to hold nontrivial input data, for
example, in the context of diagrammatic extensions43 of dynamical
mean-field theory44 such as DϖA45 or DMF2RG.46

The rvert class stores the two-particle reducible vertices
Ϛr∈ {a,p,t}. Each of them is split up into their asymptotic classes,47 K1,
K2, and K3, where the K2⌐ class is inferred from K2 by crossing
symmetry. Being one-, two-, and three-dimensional objects, respec-
tively, each of those naturally has its own frequency grid. The rvert
supplies several methods to store and read out data, either directly
or interpolated. Conveniently, it can return all vertex parts where
external legs either do or do not meet at the same bare vertex
on the left or on the right-hand side by suitably combining the
K1, K2(⌐) , or K2(⌐) and K3 classes, respectively. This turned out to
be very handy for keeping track of contributions for the differ-
ent asymptotic classes during calculations. In addition, the rvert
class can track and, if desired, enforce symmetries in the Keldysh-,
spin-, and frequency domains (see Sec. II G 3 for details). For
debugging purposes, functionality not using symmetries is provided
as well.

The fullvertex class combines one instance of the
irreducible class and three instances of the rvert class, one for
each two-particle channel a, p, t. It can then return the value of the
full vertex, which is the sum of the four contributions for a given

J. Chem. Phys. 161, 054118 (2024); doi: 10.1063/5.0221340 161, 054118-5

© Author(s) 2024

 28 January 2025 12:16:08



The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Keldysh and spin component, interpolated at a given combination
of frequencies. As each individual rvert instance, it can collect all
those parts of the vertex where the external legs either do or do not
meet at the same bare vertex on the left or on the right-hand side and
includes functionality to exploit various symmetries. In addition, it
can compute the p-norm of each asymptotic contribution, which
is useful for debugging purposes and convergence criteria, e.g., in
parquet computations.

While instances of the fullvertex class hold the data of
the symmetry-reduced sector of a full vertex, certain diagrammatic
equations involve subsets of vertex diagrams. One example is the
r-channel-irreducible vertex used in the Bethe–Salpeter equations
outlined in Sec. III B. Such diagrams do not necessarily obey all the
symmetries of a full vertex, so they must be treated differently. These
asymmetric cases are, therefore, encoded in the GeneralVertex
class. It uses multiple instances of fullvertex, which together
cover the symmetry-reduced sector of the asymmetric vertex data.
Let us comment here that, while this approach is feasible, it turned
out to be inconvenient in practice, as one always has to make
sure that all sectors are covered, i.e., that all required fullvertex
instances are provided. This is a source of logical errors that can
sometimes be hard to find. In retrospect, it would have been better
to pay the increased cost in memory to store all vertex contribu-
tions in the same object, making the code easier to read and to
work with.

All vertex classes allow adding or subtracting two instances of
the respective classes or multiplying a number with a vertex instance.

Splitting up the vertex functionality into so many different
classes was made at the beginning of developing the code to provide
enough flexibility, in particular regarding symmetries and a possible
non-trivial input for the irreducible vertex. In hindsight, it turned
out that for the computations performed in Ref. 1, this structure
would not have been required in this generality.

2. The SelfEnergy class
The SelfEnergy class comes with a dataBuffer that stores

the discrete values of the retarded and Keldysh components of the
self-energy on a given frequency grid (see Secs. II G 4 and II G 8).
When instantiating an object of the SelfEnergy type, a given
frequency grid can either be supplied or a suitable one is generated
automatically based on the value of the regulator ϕ. In addition,
the asymptotic value of the retarded component of the self-energy
has to be set. Most of the time, this should be the Hartree value
ϑH, as the SelfEnergy inside the code is supposed to be used
only for the dynamical, i.e., frequency-dependent, contributions of
the self-energy, which excludes the constant Hartree value. For the
sAM, the Hartree value is constant, ϑH = U⌜2; in the asymmetric
case, it has to be computed self-consistently beforehand. This can
be performed inside the code using the HartreeSolver class (see
Sec. III A 1).

The SelfEnergy class provides a host of methods used
throughout the code. Most importantly, it can return the value of
the self-energy either directly at a given input on the frequency grid
(fast) or return an interpolated value at a given continuous frequency
(not so fast). It can also set the value of ϑ for a given input. In addi-
tion, one can compute the p-norm of ϑ and the relative deviation
to a different SelfEnergy instance using the maximum norm. This

is used to check convergence in parquet computations detailed in
Sec. III B.

Finally, multiple operators are defined for the SelfEnergy
class, which are used to add or subtract two SelfEnergy instances
or to multiply some number with a SelfEnergy instance.

3. The State class
Instances of the State class are the high-level objects that are

mainly used by the high-level algorithms discussed in Sec. III. The
State class combines a GeneralVertex and a SelfEnergy, which
together contain all non-trivial information that one might wish to
compute. In that sense, it suffices to completely specify the “state”
of the calculations. For the purpose of fRG calculations, the State
class also holds the value of the flow parameter ϕ.

As with the vertex classes and the SelfEnergy class, the State
class also comes with operators that can be used to add and subtract
states from one another and to multiply a number with a state.
Under the hood, these operators just invoke the corresponding
operators previously defined for the vertex and self-energy. Hence,
all high-level algorithms can manipulate instances of the State class
directly, e.g., by combining several iterations of the parquet solver in
a mixing scheme.

4. The Propagator class
The Propagator class is special in the sense that it stores

almost no data itself. Instead, it references instances of the
SelfEnergy class and combines the analytical form of the bare
propagator G0 with the self-energy via the Dyson equation,
G = 1⌜[(G0)⌐1 ⌐ ϑ]. To that end, it can return the value of a given
propagator at some point, interpolated on the frequency grid of the
referenced self-energy. This can be performed either directly for a
given Keldysh component at some continuous frequency or vector-
ized over all Keldysh components. As G0 depends on the formalism
used and in mfRG on the choice of the regulator, separate methods
for a variety of choices are provided. In addition, one can specify
whether the full propagator G shall be computed, or the single-scale
propagator S, the differentiated propagator including the Katanin
extension,48 or just the Katanin extension by itself (see Sec. III C).
Note that the Katanin extension requires the self-energy differen-
tiated with respect to the flow parameter ϕ; hence, the propagator
class references two SelfEnergy instances, one non-differentiated
and one differentiated.

5. The Bubble class
Finally, the Bubble class combines two propagators to yield a

bubble in one of the three two-particle channels a, p, and t, according
to Eqs. (C1a)–(C1c) in Ref. 1. For evaluating differentiated bubbles
in mfRG, one of the propagators can be chosen to be the single-
scale propagator S or the fully differentiated one Ġ. In that case,
the bubble already takes care of the product rule, giving (sym-
bolically) Ϛ̇ S = GS + SG or Ϛ̇ = GĠ + ĠG. Otherwise, it just yields
Ϛ = GG. The Bubble class provides functions for obtaining the
value of a bubble in a given channel at specified bosonic and
fermionic frequencies, either for one specific Keldysh compo-
nent directly or vectorized over the Keldysh structure. This class
simplifies bubble computations using the bubble_function (see
Sec. II D 1).
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D. Main functions for diagrammatic computations
Computing bubbles and loops involves contractions over quan-

tum numbers and Keldysh indices, including integrations over
frequencies for all possible combinations of external arguments, and
is by far the most costly part for the numerics. A clean and efficient
implementation of this functionality is, therefore, paramount and
should be of the highest priority when setting up a new code. In the
following, we provide technical details on this most important part
of the code.

1. The bubble_function
The bubble_function implements Eqs. (C2a)–(C2c) from

Ref. 1. It takes references to three vertices as arguments, one to
store the result of the computation and two others to be connected
by a Bubble object. This Bubble object can either be supplied
as well or is initialized by an overload of the bubble_function,
which in addition requires the two propagators that shall be used
for the Bubble. The main work is then performed by an instance
of the class BubbleFunctionCalculator, which performs the
bubble contractions for each diagrammatic class separately. This is
performed for every possible combination of external arguments,
i.e., Keldysh indices and frequencies. At this point, the calculations
are parallelized as outlined in Sec. II G 1. For each set of argu-
ments, an Integrand object is instantiated, which puts together
the two vertices and the bubble and performs the contraction over
Keldysh indices if the flag SWITCH_SUM_N_INTEGRAL is set to 1. The
Integrand class provides an operator that reads out the integrand
at a given frequency. It is called by the integrator, invoked subse-
quently, and described in detail in Sec. II G 5. The results of all the
frequency integrations are finally collected and added to the vertex
object that was given as the first argument to the bubble_function.
The choice not to output a completely new vertex but instead to add
the result to an existing vertex has historical reasons to save memory.
This increased the risk of logical errors during high-level algorithm
implementations, though, and in hindsight, the bubble_function
should better have been designed to output a completely new vertex
object.

2. The loop function
The loop function implements Eq. (C3) from Ref. 1 and is

structured similarly to the bubble_function. It takes a reference
to self-energy for storing the result as well as references to a ver-
tex and a propagator as arguments for the loop. For each external
fermionic frequency, in which the computation is parallelized again,
it invokes the integrator to perform a frequency integration using the
IntegrandSE class. For the aAM, the asymptotic value of the just
computed self-energy is extracted from the Hartree- and the K1,t and
K2⌐ ,t terms after the calculation. For the sAM, the asymptotic value
of the self-energy is a known constant.

E. Postprocessing
The code provides a host of postprocessing functions. These

are not required for the actual calculations themselves but are
useful to extract additional information from their results, either
as consistency checks or to infer derived quantities for later
analysis.

1. Causality check for the self-energy
By causality, the imaginary part of the retarded component

of the self-energy is strictly non-positive;49 Im ϑR(ϑ) ≤ 0 for all fre-
quencies ϑ ∈ R. A violation of this condition not only constitutes an
unphysical result but often leads to numerical instabilities. The code,
therefore, provides the function check_SE_causality that checks
this condition for a supplied instance of SelfEnergy. Typically, this
function is invoked after each ODE step during an mfRG calculation
or after each iteration of the parquet solver.

2. Fluctuation dissipation relations
In thermal equilibrium at temperature T, one has

a fluctuation–dissipation relation (FDR)11,27 between the
retarded and the Keldysh components of the propagator,
GK(ϑ) = 2i tanh ( ϑ

2T ) Im GR(ϑ), and the self-energy, ϑK(ϑ)= 2i tanh ( ϑ
2T ) Im ϑR(ϑ). This relation can be used to infer the

Keldysh components of the self-energy from the retarded compo-
nent or vice versa; hence, it would in principle suffice to compute
only one of the components. However, in the vectorized form of the
code, both components of the self-energy are computed anyway.
The FDR can hence be used as an internal consistency check,
provided by the function check_FDTs_selfenergy. It computes
ϑK from ϑR via the FDR and compares it to the independently
computed Keldysh-component of the self-energy by computing the
2-norm of the difference.

As an additional consistency check, the fulfillment of
fluctuation–dissipation relations for the K1 classes, reading

Im KR
1 (ϕ) = ⌐ i

2
tanh⌝ ϕ

2T
⌝KK

1 (ϕ), (10)

can be examined. One may also want to check generalized FDRs for
three-point and four-point contributions of the vertex.50

3. Kramers–Kronig relation
For functions f(ϕ) that are analytic in the upper half plane, like

retarded single-particle correlation functions, the Kramers–Kronig
transform relates the real and imaginary parts via

Re f (ϕ) = 1
ϖ
⋛⊍ ∞

⌐∞ dϕ⋊ Im f (ϕ⋊)
ϕ⋊ ⌐ ϕ

, (11)

where ⋛ denotes the Cauchy principal value. Inside the code, the
function check_Kramers_Kronig can be used to test how well this
generic analytic property is fulfilled.

4. Sum rule for the spectral function
The fermionic spectral function A(ϑ) = ⌐Im GR(ϑ)⌜ϖ must

obey the sum rule

⊍ ∞
⌐∞ dϑ A(ϑ) = 1. (12)

The function sum_rule_spectrum implements this integral as a
consistency check.
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5. Susceptibilities
Susceptibilities, which are of significant physical relevance,

are derived from the vertex by contracting pairs of external legs.
Diagrammatically, the formula for the a-channel susceptibility reads

(13)

and similarly for the susceptibilities in the p and t channel.
The fully parametrized equations are provided in Eq. (C7)
of Ref. 1. Linear combinations of these diagrammatic sus-
ceptibilities yield the physical susceptibilities [see Eq. (C8) of
Ref. 1]. The code computes susceptibilities using the func-
tion compute_postprocessed_susceptibilities, which can
be invoked after a completed calculation using the name of the file
that stores the results. It iterates through all layers that correspond
to ODE steps or parquet iterations (see Sec. II F), evaluates Eq. (C7)
using the vertex and self-energy for each, and stores the results as a
new dataset in the same file.

It was found in Ref. 47 that for converged parquet computa-
tions, susceptibilities can more easily be extracted directly from the
K1 class. As discussed in Refs. 1 and 51, one can also choose to com-
pute susceptibilities that way during fRG computations, even though
the two schemes are inequivalent if multiloop convergence is not
reached. The two different schemes of computing susceptibilities can
then be used to gauge the quality of the truncation.

6. Vertex slices
Finally, the function save_slices_through_fullvertex

can be used to read out two-dimensional “slices” of the full
vertex. It takes the filename corresponding to the results of a fin-
ished calculation as an argument, iterates through all layers, and
saves a two-dimensional cut of all Keldysh components of the full
vertex in the t-channel parametrization for zero transfer frequency(ϕt = 0, ϑt , ϑ⋊t) for a given spin component. While this function does
not perform any non-trivial calculations, it is useful for visual-
ization purposes. If desired, the function can be straightforwardly
adapted to store vertex slices at finite transfer frequencies, enabling
full scans through the three-dimensional structure of the four-point
vertex.

F. I/O
We use the HDF5 file format37 for input and output pur-

poses throughout. To organize the data for output, the contents of
a state are split into different datasets that correspond, e.g., to all the
asymptotic classes of the vertex in each channel, the self-energy, the
frequency grids, and the most important parameters of the calcula-
tion. The output file is then organized on a high level in terms of
“ϕ layers,” the idea being that each layer enables access to a differ-
ent state stored in the same file. Thereby, a single file contains, e.g.,
the results of a full mfRG flow, where each “ϕ layer” corresponds
to a different value of the regulator. Alternatively, this structure
can be used to store the results of all iterations needed for solving
the parquet equations. Of course, one can equally well use just a
single layer to store the end result of a computation, such as a
converged solution of the parquet equations or the result of a PT2
computation.

The function write_state_to_hdf creates a new file with
a fixed number of layers and saves an initial state into the first
layer. Additional states generated during subsequent computations
can be added to the same file (but into a different layer to be
specified) using the function add_state_to_hdf. In effect, these
functions are wrappers of a host of additional functions that are
able to store various data structures, such as scalars, vectors, or even
Eigen-matrices, in an HDF file.

When using parallelization, as detailed in Sec. II G 1, one has to
ensure that only one single process writes data into the output file.
Collisions, where multiple processes simultaneously try to write to
the same location in memory, will cause the program to crash.

It is possible to read data from an existing HDF file to gener-
ate a new state for subsequent computations. For this purpose, the
function read_state_from_hdf reads a state from a specified layer
of a provided HDF file. One can thus do checkpointing: If all steps
of an mfRG flow or all iterations of the parquet solver are stored
separately, a computation that was interrupted can be continued
from the last step stored. This design feature is useful for large
computations that have to be split over several separate jobs or
in the case of a hardware error causing a job to crash. Setting up
checkpointing functionality is, therefore, strongly recommended.

G. Performance
In the following, we discuss parts of the code of special

importance for performance. Of course, there is always a trade-
off between accuracy and performance, as, e.g., an arbitrary high
frequency resolution quickly becomes prohibitive. Nevertheless,
efficient implementations are necessary for challenging compu-
tations.52 For the precision-focused calculations for which this
codebase was developed, these parts are, therefore, of utmost
importance.

1. MPI+OpenMP parallelization
As mentioned in the beginning, mfRG and parquet compu-

tations can be heavily parallelized since the correlation functions
are (repeatedly) evaluated independently for every possible combi-
nation of external arguments. Parallelization is especially advisable
for computing bubbles of two four-point vertices, as outlined in
Sec. II D 1. We use the OpenMP interface for parallelization across
multiple threads on a single node and the MPI interface for paral-
lelization across multiple nodes. While OpenMP parallelization works
with shared memory, meaning that all threads have access to the
same data on the node that they are running on, one has to be careful
with MPI parallelization working on distributed memory. Processes
that run on different nodes to compute, say, a four-point vertex for
different sets of external arguments cannot write their results into
the same instance of a four-point vertex. Hence, we introduce addi-
tional buffers distributed across the nodes. After the computation
of, say, a four-point vertex is finished, these buffers are collected,
and their contents are put together to yield the full result. While
this scheme is initially somewhat cumbersome to set up, it pays
off tremendously, as the code’s performance scales well with the
computational resources, including multiple nodes. This is because,
first, computations for different external arguments are independent
from each other, so there is minimal communication between the
nodes. Second, the number of external arguments required for
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precision-focused calculations is large, so individual threads have
little downtime waiting for other threads to finish. For example, the
most expensive calculations in Ref. 1 involved 125 points along each
of the three frequency axes, which were parallelized across 32 nodes
running 32 threads each. Provided enough CPU power, the resolu-
tion could, in principle, be increased further but is ultimately limited
by memory.

2. Vectorization
As outlined in Sec. I C, KF calculations require computing

2n Keldysh components of n-point functions. These components
can be arranged into a matrix, yielding, e.g., a 4 × 4 matrix for the
four-point vertex. This structure can be exploited for summing over
Keldysh indices by using vectorization and the data structures of the
Eigen library,36 significantly improving performance. This works
because all Keldysh components are stored in contiguous sections of
memory. Of course, the other parts of the code have to be able to use
these data structures properly, which is why all functions that enable,
e.g., access to the correlation functions (see Sec. II C) have two
versions: one that can handle matrix-valued data when vectorization
is used, and another used otherwise.

When using vectorization, all Keldysh components have to be
stored explicitly. As a consequence, identities that relate different
Keldysh components, such as certain symmetries or FDRs, cannot be
used to reduce the numerical effort. Although maximal exploitation
of symmetries initially was one of our main objectives, we later found
that vectorization over Keldysh components is preferential despite
the larger memory costs.

In the finite-T MaF, we use vectorization to represent the
Matsubara frequency dependence of all correlation functions. This
leads to massive speedups when performing Matsubara sums as
matrix-multiplications.

3. Symmetries
Many symmetries for reducing the number of data points to

be computed directly can still be used together with vectorization
over Keldysh indices. These include crossing symmetry of the vertex,
which relates a vertex to itself with one pair of external fermionic
legs exchanged; complex conjugation of the vertex; SU(2) symmetry
in the absence of a magnetic field (which, in combination with cross-
ing symmetry, reduces the number of independent spin components
to 1); and frequency symmetries in the presence of particle–hole
symmetry. For explicit details on these symmetries, see Appendix
A in Ref. 1.

Since frequency integrations are the most costly part of the
computations, symmetry operations are not used for evaluating
integrands on the fly. Instead, they are used to reduce the num-
ber of vertex components to be computed. Since the vectorized
version of the code performs sums over Keldysh indices by matrix
multiplication, the result of the integration contains all Keldysh
components. Hence, we use the symmetry relations to reduce the
other arguments, i.e., spin and frequency. Information about the
symmetry-reduced components is encoded in symmetry tables.
These contain entries for every channel, asymptotic class, spin com-
ponent, and frequency sector and indicate whether a data point
belongs to the symmetry-reduced sector or, otherwise, how to
retrieve a value via symmetry relations.

4. Frequency grids
For numerical calculations, the continuous frequency depen-

dence of correlation functions in the KF (and in the MaF at
T = 0) must be discretized. Since these functions can become sharply
peaked around certain frequencies, especially at lower temperatures,
but simultaneously decay only slowly asymptotically (typically ∼1⌜ϑ2

or even ∼1⌜ϑ for some components), finding a suitable discretization
that resolves all sharp structures but still captures the asymptotic
decay is hard. Since the sharp features mostly occur at smaller
frequencies (measured relative to the hybridization ϵ), we use a fre-
quency grid that provides high resolution at small frequencies and
fewer points at high frequencies. To achieve this, an equidistant
grid of an auxiliary variable ↼ ∈ [⌐1, 1] is mapped to frequencies
according to ϑ(↼) = A↼⌜↼⌜⌜⌝1 ⌐↼2. The parameter A > 0 can be
suitably chosen automatically or by hand for all quantities, as further
explained in Appendix G of Ref. 1. However, we do not recom-
mend optimizing A automatically, as this can become expensive and
unreliable in the presence of numerical artifacts.

The frequency grid is implemented in the FrequencyGrid
class. It specifies the grid parameters such as the number of grid
points or the scale factor A, and can access both continuous frequen-
cies ϑ and auxiliary variables ↼ corresponding to a given discrete
index. Crucially, this also works the other way around, yielding the
discrete index that corresponds to the frequency closest to a given
continuous frequency. This is needed for interpolations, discussed
in Sec. II G 7.

An instance of the FrequencyGrid class is instantiated in
every instance of one of the correlation function classes to param-
eterize their respective frequency dependencies. The vertex classes
naturally require up to three instances of the FrequencyGrid
each.

The frequency grids are rescaled during mfRG flow calcula-
tions, which use the hybridization flow scheme (see Sec. III C). The
FrequencyGrid class provides all the functionality required for that
purpose.

As a side note, two alternative frequency grids have been imple-
mented. One is a hybrid grid, which consists of a quadratic part
at small frequencies, a linear part at intermediate frequencies, and
a rational part at large frequencies. The other uses polar coordi-
nates to parametrize the two-dimensional frequency dependence of
three-point functions, i.e., the K2 and K2⌐ classes. Which grid is to be
used is controlled by the GRID flag (see Sec. II I). In our experience,
the non-linear grid explained at the beginning of this section is the
most useful if the scale parameters A are chosen suitably.

5. Frequency integration
The following passage is taken almost verbatim from the Ph.D.

thesis of E. Walter.28

Computing numerical integrals with high accuracy is a cru-
cial ingredient for obtaining correct results in the context of the
diagrammatic calculations discussed here. At the same time, the
integrator is also critical for the performance of the computa-
tion, since evaluating integrals constitutes the computationally most
expensive part of the code. For these reasons, we use an adaptive
integration routine that automatically determines where to evaluate
the integrand within the integration domain. Regions with sharp fea-
tures require many evaluation points in order to get high accuracy,
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while in regions where the integrand is smooth, fewer evaluations
suffice, which increases the performance of the computation. Such
an adaptive integrator is really indispensable for the problem at
hand. Non-adaptive routines like a simple trapezoidal or Simpson
rule on an equidistant grid often lead to systematically wrong
results.

We use n-point integration rules that approximate integrals of
the kind ∫ b

a F(x) dx ≈ ⊍n
j=1 F(x j)w j with nodes xj and correspond-

ing weights wj. The integrator we use and which is implemented in
the Adapt class in the code is an adaptive 4-point Gauss–Lobatto
routine with a 7-point Kronrod extension and a 13-point Kronrod
extension as an error estimate, as detailed in Ref. 53. The ben-
efit of Gauss–Lobatto rules, compared to, e.g., the widely used
Gauss–Kronrod rules, is that the nodes include the endpoints of
the integration domain. This allows us to subdivide the domain at
the nodes of the integration rule and reuse points that have been
computed previously, which is preferential in terms of performance.
Similarly, the Kronrod extensions of a Gauss–Lobatto rule reuse
all points from a corresponding lower-point rule and simply add
additional points, which effectively allows us to get two different
rules from one set of evaluation points.

The nodes xj of the 4-point Gauss–Lobatto rule with 7-point
and 13-point Kronrod extensions are distributed as shown in Fig. 2.
There, the lower row indicates the values of the nodes for integra-
tion boundaries a = ⌐1, b = 1 (for other values of a, b, the values
have to be rescaled correspondingly). The four-point Gauss–Lobatto
rule (GL4) and four-point Gauss–Lobatto with seven-point Kronrod
extension (GLK7) use the following points:

GL4(x0, x6) = ⩀
j∈{0,2,4,6}F(xj)wj , (14a)

GLK7(x0, x6) = 6⩀
j=0

F(xj)wj . (14b)

The smaller marks between the nodes x0, . . . , x6 in the graphical
representation above indicate the additional 6 points that are
added in the 13-point Kronrod extension (GLK13), which are
only known numerically (these and the weights wj are found in
Ref. 53).

The recursive algorithm of the integrator then works as shown
in Fig. 3. Note that the error estimate Is is determined only once
for the full integral and then reused for each subinterval in order
to avoid infinite recursions in subintervals. A typical recommended
value for the relative accuracy is ω = 10⌐5, which is set by the global
variable integrator_tol (see Table II).

FIG. 2. Distribution of the nodes xj of the 4-point Gauss–Lobatto rule with 7-point
and 13-point Kronrod extensions. The lower row indicates the values of the nodes
for integration boundaries a = ⌐1, b = 1.

FIG. 3. Schematic illustration of the integration algorithm: an adaptive 4-point
Gauss–Lobatto routine with a 7-point Kronrod extension and a 13-point Kronrod
extension as an error estimate.

6. Asymptotic corrections to frequency integrals
In Sec. II G 5, it was explained how frequency integrations over

a finite interval [a, b] are performed. Since diagrammatic calcula-
tions require integrations over the full frequency axis (or summa-
tions over an infinite set of discrete Matsubara frequencies for the
finite-T MaF), the contributions to the integral resulting from the
high-frequency asymptotics of the integrands have to be treated as
well. This is particularly relevant for slowly decaying integrands,
which occur often, as the correlation functions arising in the present
context typically only decay as ∼1⌜ϑ or ∼1⌜ϑ2.

In the KF and the zero-T MaF, involving continuous frequency
integrations, a naïve treatment turned out to be sufficient: Since
the frequency axes are discretized non-uniformly, as described in
Sec. II G 4, the largest discrete frequency grid point is always so
large that the high-frequency tails can be treated via quadrature,
ignoring the minuscule contributions of even larger frequencies. For
finite-T MaF computations, which involve infinite sums, the code
provides two options for the treatment of high-frequency tails in
the integrand: (i) The tails can be treated via quadrature by approx-
imating the sum with an integral and then following the same logic
as in the KF. (ii) For bubble computations, the lowest order con-
tribution from the bare bubble, which is known analytically, can
be used. This is justified by the fact that in the high-frequency
asymptotic limit, the non-trivial contributions due to interactions
encoded in the self-energy have decayed, and only the bare contri-
bution is responsible for the asymptotic behavior. The first or second
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option is chosen with the ANALYTIC_TAILS parameter flag (see also
Sec. II I).

7. Interpolation routines
Whenever the value of a correlation function at some

continuous frequency argument is required, in particular during
frequency integrations, the data stored on discrete frequency grids
has to be interpolated. In addition, the diagrammatic algorithms dis-
cussed here have feedback between the three two-particle channels,
which all have their own channel-dependent parametrizations. This
necessitates accurate interpolations between different frequency
parametrizations; otherwise, errors accumulate over the course of a
computation.

To handle the interpolation of multidimensional correla-
tion functions, we implemented multilinear interpolation and
cubic spline interpolation using cubic Hermite splines. While
spline interpolation is robust against minor inaccuracies of the
data points and offers faster convergence in the number of
frequency points for smooth functions, multilinear interpolation
is generally faster numerically. Having tried out both options,
we prefer linear interpolation, as spline interpolation only really
becomes useful for better precision if the function is already well
resolved.

Regarding linear interpolation, the code offers options: One
can either interpolate on the grid of frequencies ϑ or on the grid of
auxiliary frequencies ↼, which are equidistantly spaced on the inter-
val [⌐1, 1] (see Sec. II G 4). We found the latter option to be more
accurate. The global parameter INTERPOLATION specifies which
type of interpolation shall be used (see also Sec. II I).

8. Data structures
The central low-level data structure used for storing and

retrieving numerical data inside the code is the dataBuffer class.
It was devised with the two main intentions of efficiency and
flexibility in mind (see also our discussion of the main design
choices for the codebase in the introduction, Sec. I). On the one
hand, it should enable building integrands that return scalar- or
vector-valued entries as efficiently as possible, particularly avoiding
conditional (“if-else”) statements during runtime, as these prevent
optimizations such as loop-vectorization or function inlining. On
the other hand, it should be useable in all parts of the codebase, e.g.,
for both calculations with interpolations on continuous frequency
grids and for finite-T MaF calculations, which only require indexing
of discrete data points.

The dataBuffer class is structured as follows. It builds
upon the dataContainerBase class, which is used to represent
multi-dimensional tensors, allowing scalar and vector-valued access
to contiguous elements. The DataContainer class then inher-
its dataContainerBase, adding frequency information. It con-
tains a multi-dimensional frequency grid (see Sec. II G 4) to
parameterize all its associated frequency arguments and provides
functions to analyze the resolution of frequency grids. Inheriting
the DataContainer class, the Interpolator classes then imple-
ment the different interpolation routines outlined in Sec. II G 7.
Multilinear cubic spline interpolations require pre-computation and
storage of interpolation coefficients, whereas linear interpolations
happen on the fly. Finally, the dataBuffer class inherits both the

Interpolator and the DataContainer classes and can be used
in actual computation. In addition, it can update and optimize grid
parameters as required.

9. Template arguments
Another performance-critical aspect of the codebase is its heavy

use of templates. In particular, the propagation of template argu-
ments as specified by preprocessor flags enables the determination
of the required diagrammatic combinations for any given computa-
tion at compile time. Selecting and combining the necessary vertex
contributions this way, e.g., for contributions to specific asymptotic
classes, enables further optimization by the compiler. However, the
ubiquity of template arguments comes at the expense of readability
in many places.

H. Tests
The code includes a large number (178 as of writing) of self-

explanatory unit tests that run checks on the low-level parts of the
codebase. They are implemented using the popular Catch2 library54

and are invoked from a separate C++ source file, unit_tests.cpp,
which should be built separately from the main source file. From
inside this file, more involved and expensive tests can be started if
desired. These include detailed tests of the ODE solver or pertur-
bation theory, which are too expensive to be part of the unit test
suite. Finally, the code includes functionality to produce reference
data that can be used later to compare the results of a calcula-
tion after changes to the code have been made. We have found it
immensely useful to include many unit tests in the codebase, as they
can tell almost immediately if a single technical part of the code
has broken. Moreover, having a way to compare the results of very
involved computations that involve large parts of the codebase at
once is useful to catch logical errors. We wholeheartedly recommend
both.

I. Parameters
Before any individual calculation can be started, a number of

parameters have to be set. As the code provides a large degree of
flexibility, the number of possible parameter choices is large. Most
of these parameters are set inside the corresponding header files
before compilation. The reason for this is that, depending on these
choices, often different functionality of the code is invoked, depend-
ing, e.g., on the choice of formalism. This is achieved by defining
preprocessor macros accordingly, which makes the correspond-
ing functionality accessible. As discussed previously in too many
preprocessor macros (“flags”), while this approach was useful for
implementing new functionality quickly, in the long run, it turned
out to be problematic with regard to the readability and maintain-
ability of the code. Table I provides a list (albeit incomplete) of the
most important preprocessor flags used in the code with a short
description of each.

In addition, global parameters have to be set, which specify
settings like the resolution of the frequency grid, convergence
criteria, or start- and end-points of an mfRG flow. Table II provides
a non-exhaustive list of those.

Finally, it should be mentioned that once the code has been
compiled and the resulting executable is to be called, it requires
three run-time arguments: The first one invokes an mfRG run if it
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TABLE I. Incomplete list of the most important preprocessor macros to be set before compilation.

Macro name Possible values Description

ADAPTIVE_GRID ⋊ ⋊ ⋊ If defined, use the optimization routine to find the best scale factor A of the
frequency grid; if undefined, just rescale the grid. Warning: Can be expensive
and unreliable in the presence of numerical artifacts

ANALYTIC_TAILS 0, 1 0 for false; 1 for true. If true, the analytic expression for the bare bubble is
used to treat the high-frequency asymptotics during bubble computations in
the finite-T MaF

BARE_SE_FEEDBACK ⋊ ⋊ ⋊ If defined, only bare selfenergy is used. It only makes sense if
STATIC_FEEDBACK is defined. Useful for benchmarks with previous Keldysh
fRG schemes

CONTOUR_BASIS 0, 1 0 for false, 1 for true: If true, no Keldysh rotation is performed, and the
contour basis is used instead to parameterize the Keldysh components of
all correlation functions. It is useful for comparisons with results that use
this convention. Not as well tested and, therefore, not recommended for
production runs

DEBUG_SYMMETRIES 0, 1 0 for false; 1 for true. Performs computations without the use of symmetries,
if true. Useful for debugging purposes

GRID 0, 1, 2 Controls which frequency grid is to be used. 0 for the non-linear grid, 1
for the hybrid grid, and 2 for the polar grid. Recommendation: 0. See also
Sec. II G 4

KATANIN ⋊ ⋊ ⋊ If defined, the Katanin extension is used during fRG computations
KELDYSH_FORMALISM Determines whether calculations shall be performed in the Keldysh or

Matsubara formalism. 0 for Matsubara formalism (MaF); 1 for Keldysh
formalism (KF)

MAX_DIAG_CLASS 1, 2, 3 Defines the diagrammatic classes that will be considered: 1 for only K1,
2 for K1 and K2, and 3 for the full dependencies. Useful for debugging
purposes and for computations in second-order perturbation theory, or if
STATIC_FEEDBACK is defined, when only K1 is required

NDEBUG ⋊ ⋊ ⋊ If defined, assert functions are switched off. Recommended setting for
production runs

PARTICLE_HOLE_SYMM 0, 1 0 for false; 1 for true. If true, particle–hole symmetry is assumed
PT2_FLOW ⋊ ⋊ ⋊ If defined, only compute the flow equations up to O(U2). Only makes sense

for pure K1 calculations. It is useful as a consistency check together with
independent PT2 calculations

REG 2, 3, 4, 5 Specifies the mfRG flow regulator to be used. 2: ϵ-flow, 3: ϕ-flow, 4: U-flow,
5: T-flow. For details, see Sec. III C 2

REPARAMETRIZE_FLOWGRID ⋊ ⋊ ⋊ If defined, the flow parameter is reparametrized according to Sec. III C 1.
Only recommended for the ϵ-flow

SBE_DECOMPOSITION 0, 1 0 for false; 1 for true. If true, the SBE decomposition is used to parameterize
the vertex and the flow equations. Only implemented in the MaF!

SELF_ENERGY_FLOW_CORRECTIONS 0, 1 0 for false; 1 for true. If true, corrections to the flow equations for the vertex
from the self-energy, starting at ω = 3, are included

STATIC_FEEDBACK ⋊ ⋊ ⋊ If defined, use static K1 inter-channel feedback as performed in 11. Only
makes sense for pure K1 calculations

SWITCH_SUM_N_INTEGRAL 0, 1 0 for false; 1 for true. If true, the sum over internal Keldysh indices is
performed before the frequency integration. Recommended setting: 1

USE_ANDERSON_ACCELERATION 0, 1 0 for false; 1 for true. If true, Anderson acceleration is used to converge
parquet iterations and self-energy iterations in mfRG faster

USE_MPI ⋊ ⋊ ⋊ If defined, MPI is used for parallelization across multiple nodes
USE_SBEb_MFRG_EQS 0, 1 Determines which version of the SBE approximation shall be used. 0 for

SBEa, 1 for SBEb. Only implemented in the MaF!
VECTORIZED_INTEGRATION 0, 1 0 for false; 1 for true. If true, integrals are performed with vector-valued

integrands. For Keldysh, vectorization over Keldysh indices. For Matsubara
at finite T, vectorization over the Matsubara sum

ZERO_TEMP 0, 1 0 for false; 1 for true. If true, temperature T = 0 is assumed
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TABLE II. Incomplete list of global parameters to be set before compilation.

Parameter name Type Description

converged_tol double Tolerance for loop convergence in mfRG
COUNT int Used to set the number of frequency points in the MaF. For details,

see the definitions in the file frequency_parameters.hpp
Delta_factor_K1 int Scale factor for the frequency grid of the K1 vertex class
Delta_factor_SE int Scale factor for the frequency grid of the self-energy
Delta_factor_K2_w int Scale factor for the frequency grid of the bosonic frequency of the

K2 and K2⋊ vertex classes
Delta_factor_K2_v int Scale factor for the frequency grid of the fermionic frequency of the

K2 and K2⋊ vertex classes
Delta_factor_K3_w int Scale factor for the frequency grid of the bosonic frequency of the

K3 vertex class
Delta_factor_K3_v int Scale factor for the frequency grid of the fermionic frequencies of

the K3 vertex class
EQUILIBRIUM bool If true, use equilibrium FDRs for propagators
glb_mu double Chemical potential – w.l.o.g. ALWAYS set to 0.0 for the AM!
integrator_tol double Integrator tolerance
inter_tol double Tolerance for closeness to grid points when interpolating
INTERPOLATION linear, linear_on_aux, cubic Interpolation method to be used. linear: linear interpolation on

the frequency grid. linear_on_aux: linear interpolation on the
grid for the auxiliary frequency ↼. cubic: Interpolation with cubic
splines (warning: expensive!)

Lambda_ini double Initial value of the regulator ϕ for an mfRG flow
Lambda_fin double Final value of the regulator ϕ for an mfRG flow
Lambda_scale double Scale of the log substitution, relevant in the hybridization flow
dLambda_initial double Initial step size for ODE solvers with adaptive step size control
nBOS int Number of bosonic frequency points for the K1 vertex class
nFER int Number of fermionic frequency points for the self-energy
nBOS2 int Number of bosonic frequency points for the K2 and K2⌐ vertex

classes
nFER2 int Number of fermionic frequency points for the K2 and K2⌐ vertex

classes
nBOS3 int Number of bosonic frequency points for the K3 vertex class
nFER3 int Number of fermionic frequency points for the K3 vertex class
U_NRG std::vector<double> Vector with the values of U in units of ϵ that an mfRG flow should

cover. Serve as checkpoints for the flow. It is useful for bench-
marking purposes if data from other methods at precise parameter
points are available

VERBOSE bool If true, detailed information about all computational steps is writ-
ten into the log file. Recommended setting for production runs:
false

nmax_Selfenergy_iterations int Maximal number of self-energy iterations to be performed during
an mfRG flow for ω ≥ 3. Default value: 10

tol_selfenergy_correction_abs double Absolute tolerance for self-energy iterations in mfRG. Default
value: 10⌐9

tol_selfenergy_correction_rel double Relative tolerance for self-energy iterations in mfRG. Default
value: 10⌐5

is a positive integer, specifying the maximal number of loop orders
calculated during the mfRG flow. Alternatively, if it is set to 0 or⌐1, a parquet or PT2 calculation is started, respectively. The second
is a positive integer and specifies the number of nodes to be
utilized. The third runtime argument defines the temperature for the

calculation and was introduced to easily enable parameter sweeps
without having to recompile the code every time. Note that its value
is irrelevant for calculations that have the flag ZERO_TEMP set to 1
or if an mfRG run is performed with the flag REG set to 5, which
employs the temperature flow.
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III. ALGORITHMS

In the third main part of the paper, we finally describe three
diagrammatic algorithms that have been implemented. These are
second-order perturbation theory (PT), a self-consistent solution
of the parquet equations, and the flow equations provided by the
multiloop functional renormalization group (mfRG). For all three
methods, we first give some theoretical background before describ-
ing schematically how the algorithms are implemented and what
functions are being used.

A. Perturbation theory
The simplest computations that can be performed with the

code are perturbation theory calculations. While these are easy to
implement in the second order, going to higher orders involves an
increasing number of diagrams, which can in principle be evalu-
ated separately. This is, however, not always straightforward, e.g.,
if symmetries are to be exploited: individual diagrams of the pertur-
bation series do not all have the same symmetries as a full vertex,
such that symmetry-related diagrams have to be provided, which
can become tedious. Alternatively, the flag DEBUG_SYMMETRIES can
be set to 1, see Sec. II I, in which case the code does not attempt
to exploit symmetries. As higher-order perturbation theory has
so far only been performed for testing purposes and consistency
checks (see, e.g., Chap. 7 in Ref. 28), we refrain from going into
further detail here. Instead, we focus just on the second-order
case and on Hartree–Fock theory for the self-energy relevant to
the aAM.

1. Hartree–Fock
As elaborated in Ref. 1, it is helpful to replace the bare prop-

agator G0 by the Hartree-propagator GH, which is shifted by the
Hartree-term of the self-energy,

GR
0 → GR

H = 1
ϑ ⌐ ωd + iϵ ⌐ ϑR

H
. (15)

For the sAM, this is almost trivial, as the retarded component of the
Hartree term reads ϑR

H = U⌜2, which simply yields GR
H = (ϑ + iϵ)⌐1.

For the aAM, on the other hand, the Hartree-term can be computed
self-consistently.

For this purpose, the class Hartree_Solver provides
the function compute_Hartree_term_bracketing. It computes
ϑR

H via

ϑR
H = U ⊍ dϑ⋊

2ϖi
G<H(ϑ⋊), (16)

where in thermal equilibrium, the relation G<(ϑ)= ⌐2i nF(ϑ)Im GR(ϑ) is used with the Fermi function nF(ϑ)= 1⌜(1 + eϑ/T). As ϑR
H enters both sides of Eq. (16), this calculation is

performed self-consistently using a simple bracketing algorithm.
In addition, the Hartree_Solver class provides the func-

tion compute_Hartree_term_oneshot, which evaluates Eq. (16)
just once, given a provided self-energy for GR(ϑ). This function is
invoked in the context of parquet iterations and evaluations of mfRG
flow equations to update the Hartree term of the aAM.

FIG. 4. Schematic depiction of the function sopt_state.

Finally, the Hartree_solver class provides function-
ality to check the fulfillment of the Friedel sum rule55⌝nϵ⌝ = 1

2⌐ 1
ϖ arctan [(ωd + ϑ(0))⌜ϵ], which the self-consistent

Hartree term fulfills at T = 0.

2. Second order perturbation theory (PT2)
The self-energy and vertex in second-order perturbation the-

ory are computed via the function sopt_state, which works as
depicted in Fig. 4. It first initializes a bare state (see Sec. II C 3),
given the system parameters and the current value of the regulator
ϕ. For the aAM, this already includes a self-consistent calculation
of the Hartree term (see Sec. III A 1). Then, it invokes the func-
tion selfEnergyInSOPT, which computes the single diagram for
the dynamical part of the self-energy in PT2 by first computing
a bare bubble in the a-channel using the bubble_function (see
Sec. II D 1), with two bare vertices, and then closing the loop
over that bare bubble with the Hartree-propagator using the loop
function (see Sec. II D 2).

Thereafter, the vertex is computed using the function
vertexInSOPT, which simply invokes the bubble_function three
times, once for each of the three two-particle channels a, p, and t,
using two bare vertices, adding each result to the vertex.

In total, this procedure yields all diagrams for the dynamical
part of the self-energy and the vertex in PT2, using the Hartree-
propagator GH. For the precise diagrammatic definition of PT2, see
Appendix F in Ref. 1.

B. Parquet equations
The parquet formalism56 provides a self-consistent set of equa-

tions for the self-energy ϑ and the three two-particle reducible ver-
tices Ϛr with r ∈ {a, p, t}. The latter are given by the Bethe–Salpeter
equations (BSEs)

(17a)

(17b)
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FIG. 5. Schematic depiction of the parquet_solver function.

(17c)

where Ir = ϖ ⌐ Ϛr is the two-particle irreducible vertex in channel r.
The self-energy is given by the Schwinger–Dyson equation (SDE),

(18)

which includes the Hartree term discussed in Sec. III A 1. Together,
these equations close once the fully irreducible vertex R is provided,
for example, by employing the PA, as discussed in Sec. I B.

In practice, these equations are solved iteratively. The code pro-
vides functions to evaluate the right-hand sides of the BSEs and
the SDE, called compute_BSE and compute_SDE. Schematically,
the parquet solver works as depicted in Fig. 5. Inside the code,
a parquet computation is started by the function run_parquet.
It first initializes a state using PT2, as detailed in Sec. III A 2,
before the parquet_solver function is called. Internally, the
parquet_solver calls parquet_iteration, which evaluates the
BSEs and the SDE, given a provided input state, and combines them
into an output state. The corresponding functions compute_BSE
and compute_SDE use the machinery described in Secs. II C and II D
to evaluate Eqs. (17) and (18). In practice, symmetrizing Eq. (17),
i.e., computing the sum of the right-hand side as is and with Ir and ϖ
interchanged and dividing by two, has proven beneficial for stability.

In addition, we found it helpful to combine all three ways to evaluate
the SDE, Eq. (18) (see Appendix D in Ref. 1).

The parquet_solver can either proceed directly from one
iteration to the next, or it can combine multiple results from pre-
vious iterations using mixing schemes to improve convergence. For
example, one can combine the two most recent iterations with a mix-
ing factor as outlined in Eq. (G4) of Ref. 1. One may start with a
mixing factor of around 0.5, which can be reduced automatically if
the convergence properties of the calculation are poor. In addition,
one can use Anderson acceleration57,58 to combine multiple previ-
ous iterations for a prediction of the next iteration. We have found
that this leads to faster convergence in the vicinity of the solution
but does not extend the parameter range where convergence can be
reached.

The parquet solver can also be used for calculations in the ran-
dom phase approximation (RPA). Switching off the BSEs in two of
the three two-particle channels readily yields the RPA-ladder in the
other channel.

C. mfRG
In fRG,59 the self-energy and vertex are interpolated between

the initial and final values of a single-particle parameter ϕ intro-
duced into the bare propagator G0. The initial value ϕ = ϕi should
be chosen such that the theory is solvable at that point; in practice,
it typically suffices that very good approximations of ϑϕi and ϖϕi can
be obtained by PT2 or by converging the parquet equations. The fRG
then provides a set of differential “flow” equations in ϕ for ϑϕ and
ϖϕ, which yield the final results ϑϕ f and ϖϕ f at the actual point of
interest ϕ = ϕ f . In the multiloop fRG framework, these flow equa-
tions are derived from the parquet equations by differentiation with
respect to the flow parameter ϕ, as detailed in Ref. 18. This yields an
infinite set of contributions of increasing “loop order” ω,

ϖ̇ = ⩀
r∈{a,p,t} Ϛ̇r , (19a)

Ϛ̇r = ∞⩀
ω=1

Ϛ̇(l)r , (19b)

where a dot represents a derivative with respect to ϕ. Diagrammati-
cally, the ω-loop contributions in the a channel read

(20a)

(20b)

(20c)
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and analogously in the other two channels p and t. Here,
Ϛ(ω)r̄ = ⊍r⌐≠r̄ Ϛ(ω)r⌐ , and Eq. (20c) applies for all higher loop orders
ω + 2 ≥ 3. The double-dashed bubble in Eq. (20) corresponds to
a sum of two terms, Ϛ̇ = ĠG +GĠ, where Ġ = S +Gϑ̇G with the
single-scale propagator S = εϕG⌜ϑ=const. and the Katanin substitu-
tion.48

The multiloop flow equation for the self-energy reads

(21a)

(21b)

with Ϛ̇t̄,C = ⊍ω (Ϛ̇(ω)a,C + Ϛ̇(ω)p,C ), where the single-dashed line denotes
the single-scale propagator S from above.

Historically, fRG flow equations have been derived from a
generating functional, yielding an exact hierarchy of flow equations
which couple n-point vertices of increasing order.60 As the six-point
vertex, which contributes to the flow equation of ϖ, see Eq. (19) in
Ref. 1, is inaccessible numerically, its contribution is often neglected
completely, resulting in the so-called “one-loop” flow equations.
This, however, results in an unphysical dependence of the final result
of the flow on the choice of regulator (as the flow equations no longer
constitute total derivatives) and also introduces a bias toward ladder
diagrams.16,61

The multiloop framework builds upon the one-loop scheme
by iteratively adding precisely those two-particle reducible dia-
grammatic contributions to the flow equations that are required to
reinstate total derivatives with respect to ϕ and thereby reproduce
the solution of the parquet equations. In that sense, it provides an
alternative scheme for solving the parquet iterations via differen-
tial equations. From a computational standpoint, the mfRG flow
equations introduce a complication compared to the one-loop flow
equations, in that the right-hand sides of the flow equations for both
ϖ and ϑ involve the differentiated self-energy and vertex. In order to
still be able to use standard algorithms for ordinary differential equa-
tions, a scheme was outlined in Ref. 16 to include those differentiated
quantities iteratively. Starting from the one-loop term Eq. (21a) to
evaluate the flow Eq. (20) for ϖ, these are then iterated with the
multiloop corrections (21b) at every step of the flow until conver-
gence is reached. The number of iterations required for convergence
at this point can again be reduced using Anderson acceleration, as
described in Sec. III B.

From the code, an mfRG-flow computation can be started with
the function n_loop_flow, which requires only the string for the
name of the output file and a set of parameters. It is overloaded
to enable checkpointing, i.e., it is possible to continue a previ-
ously started computation from a given iteration. This is particularly
useful for demanding jobs that take a long time, and it is highly
recommended to any user.

FIG. 6. Schematic depiction of the function n_loop_flow.

The function n_loop_flow works as shown in Fig. 6. It first
initializes a state using PT2 with the function sopt_state, see
Sec. III A 2, and then uses this result as a seed for a full parquet
computation at the initial value of the regulator ϕi with the
parquet_solver function, see Sec. III B. This provides a suitable
starting point for the following mfRG calculation.

The ode_solver function carries out the actual calcula-
tion of solving the mfRG flow. It uses an instance of the
rhs_n_loop_flow_t class, which provides a wrapper to the
function rhs_n_loop_flow, which in turn evaluates the right-
hand side of the flow equations given an input state at a
given value of ϕ. This is performed iteratively by loop order
according to flow Eq. (20), including self-consistent iterations for
the self-energy starting at the three-loop level, as outlined ear-
lier. The function rhs_n_loop_flow is structured as shown in
Fig. 7. Starting from the self-energy and vertex from the previ-
ous step of the ODE-solver, it evaluates the right-hand sides of
the flow equations by first computing the one-loop term of the
flow equation for the self-energy, Eq. (21a), with the function
selfEnergyOneLoopFlow. The result is then used to evaluate the
one-loop term of the flow equation for the two-particle reducible
vertices Ϛ̇r and Eq. (20), involving a fully differentiated bubble.
Then, the one-loop result is used to evaluate the two-loop con-
tribution, Eq. (20b), which consists of two terms: one where the
differentiated one-loop contribution Ϛ̇(1)r is used as the left part
of a bubble contraction with the full vertex, and one where it
is used on the right side. These two terms are computed using
the functions calculate_dGammaL and calculate_dGammaR,
respectively. Next, the three-loop contribution is computed,
which involves both the one-loop and the two-loop results
[see Eq. (20c)]. Again, the functions calculate_dGammaL and
calculate_dGammaR are invoked, and in addition, the function
calculate_dGammaC is invoked to compute the “center term”
involving two bubble contractions of Ϛ̇(1)r with the full vertex, once
to the left and once to the right. As the structure of the flow
equations does not change from this point on, this part is iterated
until the maximally desired loop number n (which is given as a
runtime parameter; see Sec. II I) is reached. The resulting cen-
ter terms of the a and p channels are then used to evaluate the
multiloop corrections to the self-energy, according to Eq. (21b).
This updates the differentiated bubble used in the computation
of the one-loop terms Ϛ̇(1)r , such that the whole process is finally
iterated from that point on until convergence is reached, as deter-
mined by the parameters tol_selfenergy_correction_abs and
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FIG. 7. Structure of the function rhs_n_loop_flow, including multiloop itera-
tions up to loop order ω = n and self-consistent self-energy iterations due to the
multiloop corrections.

tol_selfenergy_correction_rel (see Sec. II I). All functions
invoked by rhs_n_loop_flow, of course, make heavy use of the
main functionality outlined in Sec. II D.

As a side note, it is possible to parameterize the vertex using the
single-boson exchange (SBE) decomposition62–67 and to rewrite the
mfRG flow equations in this language, as outlined in Ref. 68. This is
achieved by setting the flag SBE_DECOMPOSITION to 1. Two versions
of the SBE approximation can be used, known as “SBEa” and “SBEb”
in the literature.69 Which version is to be used is controlled by the
flag USE_SBEb_MFRG_EQS (see Sec. II I). This functionality is, so far,
only implemented in the MaF. We, therefore, refrain from providing
further details here.

In the final two parts of this section, we discuss the ODE-solver
and the different flow schemes.

1. Details on the ODE-solver
To solve the mfRG flow equations accurately, a Cash–Karp

routine70 is implemented, which constitutes a fourth-order
Runge–Kutta solver with adaptive step size control. An adaptive
step-size control is crucial for obtaining accurate results and is
hereby strongly recommended for solving fRG flow equations
precisely. For a good first guess of the step size in the ϵ-flow
(see Sec. III C 2 a), the flow parameter is reparametrized as ϕ(t)= 5t⌜t⌜⌜⌝1 ⌐ t2. For equidistant t, this parametrization provides
large steps for large ϕ and small steps for small ϕ. This is sensible in
the context of the ϵ-flow, where ϕ is gradually reduced to enter ever
more challenging parameter regimes.

2. Flow schemes
In fRG, one chooses a regulator introduced into the bare prop-

agator G0 → Gϕ
0 , i.e., the flow scheme. While the solution of a

truncated set of fRG flow equations will depend on this choice,
a converged multiloop flow will not, as it reproduces the self-
consistent solution of the parquet equations. It is generally advisable
to choose the most convenient flow scheme for the problem at hand.
In particular, the fRG flow can be used to compute a full parameter
sweep in one go by choosing a physical parameter as the regulator.
Compared to direct solutions of the parquet equations, which have
to be computed individually at every point in parameter space, this
makes mfRG computations more economical, provided they can be
quickly converged in the loop order. In the following, we outline the
flow schemes that have been implemented and can be used by set-
ting the REG flag and the Lambda_ini and Lambda_fin parameters
accordingly (see Tables I and II).

a. ϵ-flow. The hybridization flow11 uses ϵ as the flow para-
meter, starting at a very large value and decreasing ϵ to a smaller
value, keeping the other parameters U and T fixed. The hybridiza-
tion flow thus performs a parameter sweep in U⌜ϵ for fixed T⌜U.
The Keldysh fRG single-scale propagator reads

SR(ϑ) = εϵ GR(ϑ)⌞ϑ=const. = ⌐i[GR(ϑ)]2.

In practice, we start the fRG flow from a solution of the par-
quet equations at large ϵ (small U⌜ϵ), where that solution can
be easily obtained. For historical reasons, the hybridization flow is
implemented as

GR
ϕ(ϑ) = 1

ϑ ⌐ ωd + i(ϖ +ϕ)⌜2 ⌐ ϑR
ϕ(ϑ) , (22)

inside the code, where ϖ is fixed to some arbitrary value and ϕ is used
to fix the hybridization ϵ = (ϖ +ϕ)⌜2. Note that keeping T⌜U fixed
during the ϵ-flow is a somewhat unconventional choice, as in most
works on the AM, the scale T⌜ϵ is kept constant. As explained in
Ref. 28, keeping T⌜ϵ fixed during the ϵ-flow would lead to addi-
tional sharply peaked terms in the single-scale propagator and has
hence not been pursued yet.

b. U-flow. An alternative to the ϵ-flow is the following flow
scheme, first introduced in Ref. 71,

GR
ϕ(ϑ) = ϕ

ϑ ⌐ ωd + iϵ ⌐ϕ ϑR
ϕ(ϑ) , (23)

starting at ϕi = 0 (or very small, in practice) and flowing toward
ϕ f = 1. The corresponding single-scale propagator then reads

SR(ϑ) = εϕ GR(ϑ)⌞ϑ=const. = ϑ ⌐ ωd + iϵ[ϑ ⌐ ωd + iϵ ⌐ϕ ϑR
ϕ(ϑ)]2 . (24)

This flow scheme is called interaction- or U-flow because increasing
ϕ effectively amounts to increasing U. This can be shown by a simple
rescaling argument: A bare diagram for ϑ (or ϖ) at order n has n fac-
tors of U and 2n ⌐ 1 (or 2n ⌐ 2) factors of G0,ϕ, each contributing
one factor of ϕ. The same scaling behavior in ϕ can be achieved
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without a ϕ-dependent G0 by multiplying U with ϕ2 and dividing
out an extra ϕ (or ϕ2). It hence holds that

ϑϕ(U) = ϑ(ϕ2U)⌜ϕ, (25a)

ϖϕ(U) = ϖ(ϕ2U)⌜ϕ2. (25b)

Note that at zero temperature, the two flow schemes discussed so far
should be equivalent: For T = 0, the only energy scales of the AM
in the wideband limit are U and ϵ, so there is only one external
parameter U⌜ϵ and it does not matter whether U is increased or
ϵ is decreased.

Historically, the U-flow has not been very popular, as it does
not regulate IR divergences.59 Nevertheless, it can be used for the
AM. In Ref. 1, we found that, for a truncated 1-loop Keldysh fRG
flow at finite T, this scheme produces inferior results compared to
the ϵ-flow when benchmarked against numerically exact NRG data.
Still, the U-flow has the nice property that it keeps T⌜ϵ fixed.

c. T-flow. Using temperature as the fRG flow parameter has
been popular in the past when performing fRG computations in the
MaF.72,73 It has been argued that temperature cannot be used for
this purpose in Keldysh fRG computations,11 the reason being that
a truncated fRG flow does not preserve fluctuation–dissipation rela-
tions (FDRs). However, solutions to the parquet equations do fulfill
the FDRs. If the FDRs are not used explicitly during mfRG calcula-
tions (as this would mix FDRs at different temperatures and hence
introduce an inconsistency), it should also be possible to obtain these
solutions by converging an mfRG flow. Instead of the standard FDR,
which relates GK and GR, in this scheme, the general expression for
the Keldysh component of the propagator should be used, which
reads28

GK(ϑ) = GR(ϑ)⌞ϑK(ϑ) ⌐ 2iϵ tanh⌝ ϑ
2T
⌝⌞GA(ϑ). (26)

The Keldysh component of the single-scale propagator is then

SK(ϑ) = εTGK(ϑ)⌞ϑ=const. = iϵϑ
T2 cosh2⌞ ϑ

2T ⌞ ⌜G
R(ϑ)⌜2. (27)

Note that its retarded component is zero; SR(ϑ) = 0, as GR(ϑ) does
not depend explicitly on T. While preliminary numerical results
suggest that this scheme indeed performs well, a systematic study
of the temperature flow in Keldysh fRG is left for future work. So
far, at the time of writing, the temperature flow described earlier can
only be used in the KF; corresponding regulators in the MaF, as in
Refs. 72 and 73, have not been implemented.

d. ϑ-flow. Using a frequency regulator of the form G0,ϕ(iϑ)= G0(iϑ)↽ϕ(iϑ) with ↽ϕ(iϑ) = ϑ2⌜(ϑ2 +ϕ2) has been a popular
choice in the literature for (m)fRG calculations in the Matsubara
formalism.74,75 However, in this form, the frequency regulator can-
not be used in the Keldysh formalism, as the analytical continuation
of ↽ϕ(iϑ) gives ↽R

ϕ(ϑ) = ϑ2⌜(ϑ2 ⌐ϕ2 + 2⌜ϑ⌜i0+) with a branch cut

for ϑ < 0. One can, however, change the form of the regulator to
↽ϕ(iϑ) = ⌜ϑ⌜⌜(⌜ϑ⌜ +ϕ), for which the retarded counterpart reads

↽R
ϕ(ϑ) = ϑ

ϑ + iϕ
, (28)

which is a well-behaved function. This choice is implemented as

GR
ϕ(ϑ) = ↽R

ϕ(ϑ)
ϑ ⌐ ωd + iϵ ⌐↽R

ϕ(ϑ)ϑR
ϕ(ϑ) . (29)

The corresponding single-scale propagator then reads

SR(ϑ) = ⌐ i
ϑ

[↽R
ϕ(ϑ)]2(ϑ ⌐ ωd + iϵ)[ϑ ⌐ ωd + iϵ ⌐↽R

ϕ(ϑ)ϑR
ϕ(ϑ)]2 . (30)

With this choice, all causality relations and FDRs are satisfied. How-
ever, this regulator has two drawbacks compared to the other flow
schemes: First, it does not produce a parameter sweep, as ϕ does not
directly correspond to a physical parameter. Second, computations
become ever more challenging for smaller ϕ: Even if all correla-
tion functions are reasonably smooth in frequency space for ϕ = 0,
for small but finite ϕ, they exhibit sharp features. While this is not
an issue for finite-temperature Matsubara calculations, where only
sums over discrete Matsubara frequencies are performed, it turns
out to be a major inconvenience in the Keldysh context.

IV. CONCLUSION

In this paper, we outline the structure and design of our C++
codebase for diagrammatic calculations of the AM in the Keldysh
formalism. We explained the building blocks for representing real-
frequency correlation functions and the central routines used to
compute them. We elaborated on all performance-critical aspects,
allowing one to handle the three-dimensional frequency dependence
of the four-point vertex, and summarized the implementation of the
parquet and mfRG equations. By discussing the most convenient
features of the codebase—modularity, flexibility, performance, and
scalability—but also some of its design flaws in detail, we hope to
provide guidance and inspiration to others who plan to write code
for similar purposes.

Our codebase forms the basis for numerous future projects
involving the dynamical correlation functions of electronic many-
body systems. Since the AM is very well understood, we want to gen-
eralize our treatment to more complicated models with unexplored
physics, like lattice models, possibly including multiple bands. The
main problem in that regard is the numerical complexity. In addi-
tion to their real-frequency Keldysh structure, all functions would
acquire momentum dependencies and orbital indices. Parametriz-
ing those naively appears prohibitively costly. Fortunately, the new
quantics tensor cross interpolation (QTCI) scheme76–78 is cur-
rently being developed, which can be used to obtain highly com-
pressed tensor network representations of correlation functions and
promises exponential reductions in computational costs. It remains
to be seen how efficiently the Keldysh four-point vertex can be com-
pressed using this method. If it turned out to be highly compressible,
one could combine the diagrammatic approaches outlined here with
non-perturbative results from dynamical mean-field theory to access
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truly strongly correlated parameter regimes (see related works79–81

in the MaF). In particular, computing non-local real-frequency
dynamical vertex corrections beyond DMFT for observables like
optical conductivities with high precision is a formidable long-term
goal.

Another possible future direction relates to nonequilibrium
phenomena, for example, the influence of the full four-point vertex
on observables like differential conductivities.12,82 Nonequilibrium
physics has been the most popular application of the KF in the past,
and the AM with a finite bias voltage is tractable with only a minor
increase in both the numerical costs and the implementation effort.

In order to leverage ongoing efforts in the QTCI framework,
an interface to the corresponding Julia package83 would be required.
Given that, in recent years, multiple Julia codes have been developed
to perform calculations of two-particle correlation functions,84–87 it
would be natural to switch to that language in the future, especially
since it allows much simpler structures and, in general, performs
almost as well as C++.
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2.7 Digression: Imaginary-frequency QFT in the single
boson exchange formalism

Even though the Keldysh formalism provides direct access to real-frequency dynamic
correlation functions, traditionally, most thermal quantum field theory calculations have
been performed in the widespread Matsubara formalism. As introduced in Sec. 1.3.1,
there are good practical reasons, from the convenient analytical structure of Matsubara
functions to their easier numerical treatment compared to Keldysh functions. Still, the
analytic continuation problem (see Sec. 1.3.2) is a major issue for numerical calculations
of dynamic correlation functions. However, static quantities, i.e., dynamic functions
in the limit ω → 0, do not require analytic continuation, since the real and imaginary
axis of the complex frequency plane intersect at this point. Static quantities thus pro-
vide an ideal test case to benchmark a code written in the Keldysh formalism in the
zero-frequency limit. For this reason, the codebase presented in Ref. [P2] was extended
early on to enable calculations in both the finite temperature and the zero temperature
Matsubara formalism. Indeed, corresponding comparisons of static quantities produced
by calculations in the Matsubara and Keldysh formalisms were shown in Ref. [P1].

In addition, the Matsubara version of the code could provide a benchmark for the library
MatsubaraFunctions.jl, developed by our close collaborator Dominik Kiese [P3].
This software library, written in the Julia programming language, implements optimized
data structures to parametrize the discrete Matsubara frequency grids required for general
n-point Green’s functions in the Matsubara formalism. Furthermore, it provides tested,
optimized, and even parallelized implementations of the most commonly used operations
performed on Matsubara functions, such as frequency summations, extrapolations of
Matsubara sums, and even analytic continuation using Padé approximants. Being set
up in a very general way, its purpose is to provide a convenient and user-friendly way
to numerically define and work with correlation functions in the Matsubara formalism
without having to implement the appropriate data types and basic operations over and
over again for every new code.

To test the implementation of MatsubaraFunctions.jl, a solution of the parquet
equations for the self-energy and vertex, decomposed in terms of the single boson exchange
formalism (SBE), was computed using a code written with the MatsubaraFunctions.jl
library and, independently, with our code written in C++ [P2]. The SBE formalism
[Kri19; KV19; KVC19], which we will briefly introduce in the following, is an alternative
to the parquet decomposition of the vertex and the subsequent decomposition of its
2PR parts into asymptotic classes, see Secs. 2.3.1 and 2.3.3. Its starting point is the
observation that any diagram contributing to the vertex can be classified in terms of
its interaction reduciblity instead of its two-particle reducibility. Any diagram that is
2PR in channel r ∈ {a, p, t} is also called interaction reducible in channel r if it can be
disconnected by removing a bare vertex Γ0 attached to a bubble in channel r (i.e. an
object of the type Πr). All interaction reducible diagrams in channel r are collected into
the object ∇r. These are called single-boson exchange diagrams since the bare vertex Γ0
linking the two parts of the diagram that would be disconnected if removed mediates a
single bosonic transfer frequency. Of course, the 2PR vertices γr also include diagrams
that do not have this property. Those are hence called multi-boson diagrams in channel r
and abbreviated as Mr, such that one can write γr = ∇r − Γ0 + Mr (the bare interaction
Γ0 is included in ∇r but not in γr). Avoiding over-counting of the bare interaction, the
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full vertex Γ is then decomposed as

Γ = φUirr +
∑

r

∇r − 2Γ0 , (2.49)

where φUirr = R − Γ0 +∑
r Mr is the part of Γ that is interaction irreducible in all three

channels r. In the spirit of the parquet decomposition, which allows a classification of
all contributing diagrams in terms of two-particle reducibility in each channel r, the
vertex can now also be written in a decomposition of interaction reducible and interaction
irreducible terms in each channel, Γ = Ir + γr = Tr + ∇r. Here, Tr = Ir − Γ0 + Mr

comprises all interaction irreducible terms in channel r.
Of course, using the above definitions, the parquet equations can be decomposed into inter-
action reducible and interaction irreducible parts, too. For this, we refer to Refs. [Gie+22;
P3]. More important at this point is the observation that the single-boson exchange
terms ∇r can be decomposed even further, writing

∇r = λr • ηr • λr , (2.50)

with the (in frequency space) three-point Hedin vertices [Hed65]

λr = 1r + Tr ◦ Πr ◦ 1r (2.51a)
λr = 1r + 1r ◦ Πr ◦ Tr , (2.51b)

and the screened interaction ηr, which is interaction reducible in channel r and, crucially,
depends only on a single bosonic transfer frequency. In the preceding equations, the bullet
point • denotes contractions over all variables except frequency. For details, especially
on how to compute the screened interaction, which is given via a Dyson equation, we
refer to Ref. [Gie+22].

The parquet equations can be expressed entirely in terms of SBE objects and hence can
be used to determine them self-consistently. The SBE decomposition can be argued
to be favorable compared to the parquet decomposition for multiple reasons: First, if
the two-particle fluctuations are captured to a large degree by the screened interactions
ηr, an accurate numerical description is possible since these objects depend on one
frequency only. Second, the SBE formalism enables an approximation beyond the parquet
approximation, called the SBE approximation. It amounts to setting R ≈ Γ0 (as in the
PA) and neglecting all multi-boson contributions, Mr = 0. Through the decomposition of
the SBE terms, Eq. (2.50), it can be seen that all remaining objects in this approximation
depend on at most two frequencies. This property is again numerically preferential since
no genuine four-point objects depending on three independent frequencies, which are
hardest to compute in practice, appear anymore. However, the range of applicability
of the SBE approximation is still being debated. For example, in a recent study on
the X-ray edge problem, it was shown that multi-boson terms already contribute to
the leading logarithmic behavior of the dynamic particle-hole susceptibility [Gie+25],
rendering the SBE approximation unjustified.

Still, the SBE formalism has by now become popular and has been employed in various
recent parquet [KLR20; Kri+20; KKH21; Kie+24] and fRG schemes [Bon+22; Fra+22;
Gie+22; Pat+25].
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Abstract

The Matsubara Green’s function formalism stands as a powerful technique for com-
puting the thermodynamic characteristics of interacting quantum many-particle sys-
tems at finite temperatures. In this manuscript, our focus centers on introducing
MatsubaraFunctions.jl, a Julia library that implements data structures for general-
ized n-point Green’s functions on Matsubara frequency grids. The package’s architecture
prioritizes user-friendliness without compromising the development of efficient solvers
for quantum field theories in equilibrium. Following a comprehensive introduction of
the fundamental types, we delve into a thorough examination of key facets of the inter-
face. This encompasses avenues for accessing Green’s functions, techniques for extrap-
olation and interpolation, as well as the incorporation of symmetries and a variety of
parallelization strategies. Examples of increasing complexity serve to demonstrate the
practical utility of the library, supplemented by discussions on strategies for sidestepping
impediments to optimal performance.
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1 Motivation

In condensed matter physics, strongly correlated electrons emerge as paradigmatic examples
of quantum many-body systems that defy a description in terms of simple band theory, due to
their strong interactions with each other and with the atomic lattice. Their study has led to
a cascade of discoveries, ranging from high-temperature superconductivity in copper oxides
(cuprates) [1, 2] to the Mott metal-insulator transition in various condensed matter systems
such as, e.g., transition metal oxides or transition metal chalcogenides [3–5] and the emer-
gence of quantum spin liquids in frustrated magnets [6,7], to name but a few.

The study of correlated electron systems is equally exciting and challenging, not only be-
cause the construction of accurate theoretical models requires the consideration of many dif-
ferent degrees of freedom, such as spin, charge, and orbital degrees of freedom, as well as
disorder and frustration, but also because of the scarcity of exactly solvable reference Hamil-
tonians. The single-band Hubbard model in more than one dimension, for example, has re-
mained at the forefront of computational condensed matter physics for decades, although it
in many respects can be regarded as the simplest incarnation of a realistic correlated electron
system [8,9]. It is therefore not surprising that a plethora of different numerical methods have
been developed to deal with these models [10].

However, no single algorithm is capable of accurately describing all aspects of these com-
plex systems: each algorithm has its strengths and weaknesses, and the choice of algo-
rithm usually depends on the specific problem under investigation. For example, some al-
gorithms, such as exact diagonalization (ED) [11–13] or the density matrix renormalization
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group (DMRG) [14, 15] are better suited for studying ground-state properties, while others
(quantum Monte Carlo (QMC) simulations [16–19], functional renormalization group (fRG)
calculations [20–22], ...) perform better when one is interested in dynamic properties such as
transport or response functions.

Another popular method, dynamical mean-field theory (DMFT) has been immensely suc-
cessful; in particular it correctly predicts the Mott transition in the Hubbard model [23]. By
approximating the electron self-energy to be local, it however disregards non-local correlation
effects, leading to a violation of the Mermin-Wagner theorem [24, 25] as well as a failure to
predict the pseudo-gap in the Hubbard model [10]. Non-local (e.g. cluster [26–29] or dia-
grammatic [30]) extensions of DMFT improve on that front, but are computationally much
more expensive. Ultimately, the choice of algorithm is guided by the computational resources
available and the trade-off between accuracy and efficiency, as well as by physical insights into
which approximations may be justified more than others.

A common motif of many of these algorithms is that they rely on the computation of n-
particle Green’s functions, where usually n= 1, 2. Roughly speaking, these functions describe
correlations within the physical system of interest, such as its response to an external perturba-
tion. In thermal equilibrium, Green’s functions are usually defined as imaginary-time-ordered
correlation functions, which allows the use of techniques and concepts from statistical me-
chanics, such as the partition function and free energy. In Fourier space, the corresponding
frequencies take on discrete and complex values. This Matsubara formalism is widely used
to study strongly correlated electron systems, where it provides a powerful tool for calculat-
ing thermodynamic quantities, such as the specific heat and magnetic susceptibility, as well as
dynamical properties, such as the electron self-energy and optical conductivity [31,32].

In this manuscript, we present MatsubaraFunctions.jl, a software package written
in Julia [33] that implements containers for Green’s functions in thermal equilibrium. More
specifically, it provides a convenient interface for quickly prototyping algorithms involving
multivariable Green’s functions of the form Gi1...in(ω1, ...,ωm), with lattice/orbital indices ik
(k = 1, ..., n) and Matsubara frequenciesωl (l = 1, ..., m). In an attempt to mitigate monilithic
code design and superfluous code reproduction, our goal is to promote a common interface
between algorithms where these types of functions make up the basic building blocks. We
implement this interface in Julia, since some more recently developed methods, such as the
pseudofermion [34–41] and pseudo-Majorana fRG [42–45], seem to have been implemented
in Julia as the preferred programming language. In the spirit of similar software efforts, such as
the TRIQS library for C++ [46], this package therefore aims to provide a common foundation
for these and related codes in Julia that is fast enough to facilitate large-scale computations
on high-performance computing architectures [47], while remaining flexible and easy to use.

2 Equilibrium Green’s functions

In this section, we give a brief introduction to equilibrium Green’s functions and their proper-
ties. In its most general form, an imaginary time, n-particle Green’s function G(n) is defined
as the correlator [48]

G(n)i1...i2n
(τ1, ...,τ2n) = 〈T̂ c†

i1
(τ1)ci2

(τ2)...c
†
i2n−1
(τ2n−1)ci2n

(τ2n)〉 , (1)

where T̂ is the imaginary-time-ordering operator and 〈Ô〉 = 1
Z Tr(e−βĤÔ) denotes the ther-

mal expectation value of an operator Ô with respect to the Hamiltonian Ĥ at temperature
T = 1/β . Note that natural units are used throughout, in particular we set kB ≡ 1. Here, c(†)

are fermionic or bosonic creation and annihilation operators and Z = Tr(e−βĤ) is the partition
function. The indices ik represent additional degrees of freedom such as lattice site, spin and

3



SciPost Phys. Codebases 24 (2024)

orbital index. In order for the right-hand side in Eq. (1) to be well defined, it is necessary
to restrict the τ arguments to an interval of length β , as can be seen, for example, from a
spectral (Lehmann) representation of the expectation value [48]. Furthermore, the cyclicity
of the trace implies that the field variables are anti-periodic in β for fermions, or periodic in
β for bosons, respectively. This allows us to define their Fourier series expansion

ci(τ) =
1
β

∑
νk

ci,k e−iνkτ , c̄i(τ) =
1
β

∑
νk

c̄i,k eiνkτ , (2)

ci,k =

∫ β

0

dτ ci(τ) e
iνkτ , c̄i,k =

∫ β

0

dτ c̄i(τ) e
−iνkτ , (3)

where νk =
π
β

¨
2k+ 1 ,

2k ,
with k ∈ Z are the fermionic or bosonic Matsubara frequencies.1

These definitions carry over to the n-particle Green’s function G(n), giving

G(n)i1...i2n
(τ1, ...,τ2n) =

1
β

∑
ν1

eiν1τ1 ... 1
β

∑
ν2n

e−iν2nτ2n G(n)i1...i2n
(ν1, ...,ν2n) , (4)

G(n)i1...i2n
(ν1, ...,ν2n) =

∫ β

0

dτ1 e−iν1τ1 ...

∫ β

0

dτ2n eiν2nτ2n G(n)i1...i2n
(τ1, ...,τ2n) . (5)

3 Code structure

MatsubaraFunctions.jl is an open-source project distributed via Github [49] and licensed
under the MIT license. Using Julia’s built-in package manager, the code can be easily installed
using

1 $ julia
2 julia> ]
3 pkg> add https://github.com/dominikkiese/MatsubaraFunctions.jl

from the terminal. Here, ] activates the package manager from the Julia REPL, where add
downloads the code and its dependencies. The following is an overview of the functionality
of the package, starting with a discussion of its basic types and how to use them. A full
documentation of the package is available from the github repository.

3.1 Basic types

The package evolves around three concrete Julia types: MatsubaraFrequency,
MatsubaraGrid and MatsubaraFunction. A Matsubara frequency can be either fermionic
or bosonic, that is, νk =

π
β (2k + 1) or νk =

2π
β k. For a given temperature T = 1/β and

Matsubara index k they can be constructed using

1 v = MatsubaraFrequency(T, k, Fermion)
2 w = MatsubaraFrequency(T, k, Boson)

Basic arithmetic operations on these objects include addition, subtraction and sign reversal,
each of which creates a new MatsubaraFrequency instance.

1This way, eiβνk = −1 for fermions and eiβνk = +1 for bosons such that anti-periodicity or periodicity, respec-
tively, of ci(τ) are ensured.
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1 v1 = v + v # type(v1) = :Boson
2 v2 = w - v # type(v2) = :Fermion
3 v3 = -v # type(v3) = :Fermion

MatsubaraGrids are implemented as sorted collections of uniformly (and symmetrically)
spaced Matsubara frequencies. To construct them, users need only specify the temperature,
number of positive frequencies, and the particle type.

1 T = 1.0
2 N = 128
3 g1 = MatsubaraGrid(T, N, Fermion) # total no. frequencies is 2N
4 g2 = MatsubaraGrid(T, N, Boson) # total no. frequencies is 2N - 1

Note that the bosonic Matsubara frequency at zero is included in the positive frequency count.
Grid instances are iterable

1 for v in g1
2 println(value(v))
3 println(index(v))
4 end

and can be evaluated using either a MatsubaraFrequency or Float64 as input.

1 idx = rand(eachindex(g1))
2 @assert g1(g1[idx]) == idx
3 @assert g1(value(g1[idx])) == idx

Here, we first select a random linear index idx and then evaluate g1 using either the corre-
sponding Matsubara frequency g1[idx] or its value. In the former case, g1(g1[idx]) returns
the corresponding linear index of the frequency in the grid, whereas g1(value(g1[idx]))
finds the linear index of the closest mesh point.2 The package supports storage of grid instances
in H5 file format.

1 using HDF5
2 file = h5open("save_g1.h5", "w")
3 save_matsubara_grid!(file, "g1", g1)
4 g1p = load_matsubara_grid(file, "g1")
5 close(file)

Finally, a MatsubaraFunction is a collection of Matsubara grids with an associated tensor
structure Gi1...in for each point (ν1, ...,νm) in the Cartesian product of the grids. The indices
ik could, for example, represent lattice sites or orbitals. To construct a MatsubaraFunction
users need to provide a tuple of MatsubaraGrid objects, as well as the dimension of each ik.

1 T = 1.0
2 N = 128
3 g = MatsubaraGrid(T, N, Fermion)
4

5 # 1D grid, rank 1 tensor with index dimension 1 (scalar valued)
6 f1_complex = MatsubaraFunction(g, 1)
7 f1_real = MatsubaraFunction(g, 1, Float64)
8

9 # 1D grid, rank 1 tensor with index dimension 5 (vector valued)

2In both cases the argument must be in bounds, otherwise an exception is thrown.
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10 f2_complex = MatsubaraFunction(g, 5)
11 f2_real = MatsubaraFunction(g, 5, Float64)
12

13 # 1D grid, rank 2 tensor with index dimension 5 (matrix valued)
14 f3_complex = MatsubaraFunction(g, (5, 5))
15 f3_real = MatsubaraFunction(g, (5, 5), Float64)
16

17 # 2D grid, rank 2 tensor with index dimension 5 (matrix valued)
18 f4_complex = MatsubaraFunction((g, g), (5, 5))
19 f4_real = MatsubaraFunction((g, g), (5, 5), Float64)

In addition, a floating point type can be passed to the constructor, which fixes the data type
for the underlying multidimensional array.3 Similar to the grids, MatsubaraFunctions can
be conveniently stored in H5 format.

1 using HDF5
2 file = h5open("save_f1_complex.h5", "w")
3 save_matsubara_function!(file, "f1_complex", f1_complex)
4 f1p = load_matsubara_function(file, "f1_complex")
5 close(file)

3.2 Accessing and assigning Green’s function data

The library provides two possible ways to access the data of a MatsubaraFunction, using
either the bracket ([]) or parenthesis (()) operator. While the notion of the former is that
of a Base.getindex, the latter evaluates the MatsubaraFunction for the given arguments
in such a way that its behavior is well-defined even for out-of-bounds access. The bracket
can be used with a set of MatsubaraFrequency instances and tensor indices ik, as well as
with Cartesian indices for the underlying data array. It returns the value of the data exactly
for the given input arguments, throwing an exception if they are not in bounds. In addition,
the bracket can be used to assign values to a MatsubaraFunction as shown in the following
example.

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)
6

7 for v in g
8 # if there is only one index of dimension 1, it does not need
9 # to be specified, i.e. f[v] can be used instead of f[v, 1]

10 # (also works for the '()' operator)
11 f[v] = 1.0 / (im * value(v) - y)
12 end
13

14 # access MatsubaraFunction data
15 v = g[rand(eachindex(g))]
16 println(f[v]) # fast data access, throws error if v is out of bounds

When f is evaluated using Matsubara frequencies within its grid, it returns the same result
as if a bracket was used. However, if the frequencies are replaced by Float64 values, a
multilinear interpolation within the Cartesian product of the grids is performed. If the fre-
quency / float arguments are out of bounds, MatsubaraFunctions falls back to extrapola-
tion. The extrapolation algorithm distinguishes between one-dimensional and multidimen-
sional frequency grids. In the 1D case, an algebraic decay is fitted to the high-frequency tail of

3By default, ComplexF64 is used.
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the MatsubaraFunction, which is then evaluated for the given arguments. The functional
form of the asymptote is currently restricted to f (ν) = α0 +

α1
ν +

α2
ν2 (with α0,α1,α2 ∈ C),4

which is motivated by the linear or quadratic decay that physical Green’s functions typically
exhibit. For multidimensional grids, a constant extrapolation is performed from the boundary.
Different modes of evaluation are illustrated in an example below.

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)
6

7 for v in g
8 f[v] = 1.0 / (im * value(v) - y)
9 end

10

11 # access MatsubaraFunction data
12 v = g[rand(eachindex(g))]
13 println(f(v)) # fast data access, defined even if v is out of bounds
14 println(f(value(v))) # slow data access, uses interpolation
15

16 # polynomial extrapolation in 1D, constant term set to 0 (the default)
17 vp = MatsubaraFrequency(T, 256, Fermion)
18 println(f(vp; extrp = ComplexF64(0.0)))

3.3 Extrapolation of Matsubara sums

A common task when working with equilibrium Green’s functions is the calculation of Matsub-
ara sums 1

β

∑
ν f (ν), where we have omitted additional indices of f for brevity. However, typi-

cal Green’s functions decay rather slowly (algebraically) for large frequencies, which presents a
technical difficulty for the accurate numerical calculation of their Matsubara sums: they may
require some regulator function to control the convergence5 (difficult to implement) and a
large number of frequencies to sum over (expensive). In contrast, there exist analytical results
for simple functional forms of f even in cases where a straightforward numerical summation
fails. MatsubaraFunctions provides the sum_me function, which can be used to calculate
sums over complex-valued f (ν), if f (z) (with z ∈ C) decays to zero for large |z| and is repre-
sentable by a Laurent series in an elongated annulus about the imaginary axis (see App. A for
details). An example for its use is shown below. Note that this feature is experimental and its
API as well as the underlying algorithm might change in future versions.

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)
6

7 for v in g
8 f[v] = 1.0 / (im * value(v) - y)
9 end

10

11 # evaluate the series and compare to analytic result
12 rho(x, T) = 1.0 / (exp(x / T) + 1.0)
13 println(abs(sum_me(f) - (rho(+y, T) - 1.0)))

4Note that α0 has to be provided by the user.
5For example, a factor eiν0± might be necessary in cases where f decays linearly in ν.
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3.4 Padé approximants

Although the Matsubara formalism provides a powerful tool for the calculation of thermody-
namic quantities, it lacks the ability to directly determine, for example, dynamic response func-
tions or transport properties associated with real-frequency Green’s functions, which facilitate
comparison with experiments. There have been recent advances in the use of real-frequency
quantum field theory [50–53], yet the calculation of dynamic real-frequency Green’s functions
remains a technically challenging endeavor. In many applications, therefore, one resorts to
calculations on the imaginary axis and then performs an analytic continuation in the complex
upper half-plane to determine observables on the real-frequency axis. The analytic continu-
ation problem is ill-conditioned, because there may be significantly different real-frequency
functions describing the same set of complex-frequency data within finite precision. Never-
theless, there has been remarkable progress in the development of numerical techniques such
as the maximum entropy method [54–56] or stochastic analytical continuation [57,58]. These
methods are particularly useful when dealing with stochastic noise induced by Monte Carlo
random sampling. A corresponding implementation in Julia is, for example, provided by the
ACFlow toolkit [59]. On the other hand, if the input data are known with a high degree of
accuracy (as in the fRG and related approaches), analytic continuation using Padé approxi-
mants is a valid alternative. Here, one first fits a rational function to the complex frequency
data which is then used as a proxy for the Green’s function in the upper half-plane. If the
function of interest has simple poles this procedure can already provide fairly accurate results,
see e.g. Ref. [60]. In MatsubaraFunctions we implement the fast algorithm described in the
appendix of Ref. [61], which computes an N -point Padé approximant for a given set of data
points {(x i , yi)|i = 1, ..., N}. A simple example of its use is shown below. Note that it might
be necessary to use higher precision floating-point arithmetic to cope with rounding errors in
the continued fraction representation used for calculating the Padé approximant.

1 # some dummy function
2 as = ntuple(x -> rand(BigFloat), 4)
3 f(x) = as[1] / (1.0 + as[2] * x / (1.0 + as[3] * x / (1.0 + as[4] * x)))
4

5 # generate sample and compute Pade approximant
6 xdata = Vector{BigFloat}(0.01 : 0.01 : 1.0)
7 ydata = f.(xdata)
8 PA = PadeApprox(xdata, ydata)
9

10 @assert length(coeffs(PA)) == 5
11 @assert PA.(xdata) ≈ ydata

3.5 Automated symmetry reduction

In many cases, the numerical effort of computing functions in the Matsubara domain can be
drastically reduced by the use of symmetries. For one-particle fermionic Green’s functions
Gi1 i2(ν), for example, complex conjugation implies that Gi1 i2(ν) = G∗i2 i1

(−ν), relating positive
and negative Matsubara frequencies. Our package provides an automated way to compute the
set of irreducible MatsubaraFunction components,6 given a list of one or more symmetries
as is illustrated in the following example

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)

6These are all elements of the underlying data array which cannot be mapped to each other by symmetries.
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6

7 for v in g
8 f[v] = 1.0 / (im * value(v) - y)
9 end

10

11 # complex conjugation acting on Green's function
12 function conj(
13 w :: Tuple{MatsubaraFrequency},
14 x :: Tuple{Int64}
15 ) :: Tuple{Tuple{MatsubaraFrequency}, Tuple{Int64}, MatsubaraOperation}
16

17 return (-w[1],), (x[1],), MatsubaraOperation(sgn = false, con = true)
18 end
19

20 # compute the symmetry group
21 SG = MatsubaraSymmetryGroup([MatsubaraSymmetry{1, 1}(conj)], f)
22

23 # obtain another Green's function by symmetrization
24 function init(
25 w :: Tuple{MatsubaraFrequency},
26 x :: Tuple{Int64}
27 ) :: ComplexF64
28

29 return f[w, x...]
30 end
31

32 InitFunc = MatsubaraInitFunction{1, 1, ComplexF64}(init)
33 h = MatsubaraFunction(g, 1)
34 SG(h, InitFunc)
35 @assert h == f

Here, one first constructs an instance of type MatsubaraSymmetry by passing a function that
maps the input arguments of f to new arguments extended by a MatsubaraOperation. The
latter specifies whether the evaluation of f on the mapped arguments should be provided with
an additional sign or complex conjugation. Next, the irreducible array elements are computed
and an object of type MatsubaraSymmetryGroup7 is constructed from a vector of symmetries
provided by the user. Here, the length of the vector is one (we only considered complex con-
jugation), but the generalization to multiple symmetries is straightforward (see Ref. [62] for
more examples). A MatsubaraSymmetryGroup can be called with a MatsubaraFunction
and an initialization function.8 This call will evaluate the MatsubaraInitFunction for all
irreducible elements of the symmetry group of f, writing the result into the data array of h. Fi-
nally, all symmetry equivalent elements are determined without additional calls to the (costly)
initialization function. Symmetry groups can be stored in H5 format as shown below.

1 using HDF5
2 file = h5open("save_SG.h5", "w")
3 save_matsubara_symmetry_group!(file, "SG", SG)
4 SGp = load_matsubara_symmetry_group(file, "SG")
5 close(file)

3.6 Running in parallel

To simplify code parallelization when using MatsubaraFunctions.jl, the package has some
preliminary MPI support based on the MPI.jl wrapper and illustrated in an example below.

1 using MatsubaraFunctions
2 using MPI

7A MatsubaraSymmetryGroup contains all groups of symmetry equivalent elements and the operations
needed to map them to each other.

8A MatsubaraInitFunction takes a tuple of Matsubara frequencies and tensor indices and returns a floating
point type.
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3

4 MPI.Init()
5 mpi_info()
6 mpi_println("I print on main.")
7 ismain = mpi_ismain() # ismain = true if rank is 0
8

9 y = 0.5
10 T = 1.0
11 N = 128
12 g = MatsubaraGrid(T, N, Fermion)
13 f = MatsubaraFunction(g, 1)
14

15 for v in g
16 f[v] = 1.0 / (im * value(v) - y)
17 end
18

19 # simple loop parallelization for UnitRange
20 for vidx in mpi_split(1 : length(g))
21 println("My rank is $(mpi_rank()): $(vidx)")
22 end
23

24 # simple (+) allreduce
25 mpi_allreduce!(f)

Calls of MatsubaraSymmetryGroup with an initialization function have an opt-in switch
(mode) to enable parallel evaluation of the MatsubaraInitFunction (by default
mode = :serial). If mode = :polyester, shared memory multithreading as provided
by the Polyester Julia package [63] is used.9 This mode is recommended for initialization
functions that are cheap to evaluate and are unlikely to benefit from Threads.@threads
due to the overhead from invoking the Julia scheduler. For more expensive functions,
users can choose between mode = :threads, which simply uses Threads.@threads, and
mode = :hybrid. The latter combines both MPI and native Julia threads and can therefore
be used to run calculations on multiple compute nodes.

3.7 Performance note

By default, types in MatsubaraFunctions.jl perform intrinsic consistency checks when
they are invoked. For example, when computing the linear index of a MatsubaraFrequency
in a MatsubaraGrid, we make sure that the particle types and temperatures match between
the two. While this ensures a robust modus operandi, it unfortunately impacts performance,
especially for larger projects. To deal with this issue, we have implemented a simple switch,
MatsubaraFunctions.sanity_checks(), which, when turned off10 disables @assert ex-
pressions. It is not recommended to touch this switch until an application has been thoroughly
tested, as it leads to wrong results on improper use. For the MBE solver discussed in Sec. 4.3.2,
we found runtime improvements of up to 10% when the consistency checks were disabled.

4 Examples

4.1 Hartree-Fock calculation in the atomic limit

As a first example of the use of MatsubaraFunctions.jl we consider the calculation of the
one-particle Green’s function G using the Hartree-Fock (HF) approximation in the atomic limit
of the Hubbard model, i.e., we consider the Hamiltonian

Ĥ = Un̂↑n̂↓ −µ(n̂↑ + n̂↓) , (6)

9Here, the batchsize argument can be used to control the number of threads involved.
10MatsubaraFunctions.sanity_checks() = false.
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where U denotes the Hubbard interaction and n̂σ are the density operators for spin up and
down. In the following, we fix the chemical potential to µ= 0, i.e., we consider the system in
the strongly hole-doped regime.

The Hartree-Fock theory [64–66] is a widespread method in condensed matter physics
used to describe, e.g., electronic structures and properties of materials [67,68]. It is a mean-
field approximation as it treats the electrons in a solid as independent particles being subject
to an effective background field due to all the other particles.

In an interacting many-body system, the bare Green’s function G0 has to be dressed by
self-energy insertions, here denoted by Σ, in order to obtain G, which is summarized in the
Dyson equation

G = G0[1−Σ G0]
−1 = G0 +G0ΣG0 +G0ΣG0ΣG0 + . . . , (7)

where G0, G and Σ in general are matrix-valued. In HF theory one only considers the lowest
order term contributing to the self-energy, which is linear in the interaction potential. For the
spin-rotation invariant single-site system at hand, Σ = Σσ = Σ and the HF approximation for
the self-energy reads

Σ(ν)≈ U
β

∑
ν′

G(ν′)eiν′0+ = Un , (8)

where n is the density per spin. The Dyson equation then takes the simple form

G(ν)≈ [G−1
0 (ν)− Un]−1 . (9)

Below, we demonstrate how to set up and solve Eqs. (8) & (9) self-consistently for the density
n using Anderson acceleration [69, 70] as provided by the NLsolve Julia package [71] in
conjunction with MatsubaraFunctions.jl.

1 using MatsubaraFunctions
2 using NLsolve
3

4 const T = 0.3 # temperature
5 const U = 0.9 # interaction
6 const N = 1000 # no. frequencies
7

8 # initialize Green's function container
9 g = MatsubaraGrid(T, N, Fermion)

10 G = MatsubaraFunction(g, 1)
11

12 for v in g
13 G[v] = 1.0 / (im * value(v))
14 end
15

16 # set up fixed-point equation for NLsolve
17 function fixed_point!(F, n, G)
18

19 # calculate G
20 for v in grids(G, 1)
21 G[v] = 1.0 / (im * value(v) - U * n[1])
22 end
23

24 # calculate the residue
25 F[1] = density(G) - n[1]
26

27 return nothing
28 end
29

30 res = nlsolve((F, n) -> fixed_point!(F, n, G), [density(G)], method = :anderson)
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Figure 1: Exemplary Hartree-Fock results. (a) Comparison of the bare Green’s
function G0 with the HF result GHF for T/U = 1

3 . (b) Hartree-Fock density n as a
function of temperature.

Here, we first build the MatsubaraFunction container for G and initialize it to G0(ν) =
1
iν .

This container is then passed to the fixed-point equation using an anonymous function, which
mutates G on each call to incorporate the latest estimate of n.11 Fig. 1 shows exemplary results
for the full Green’s function and HF density. As can be seen from Fig. 1(b) the latter deviates
from its bare value n0 =

1
2 when the temperature is decreased and approaches n= 0 for T → 0,

as expected.

4.2 GW calculation in the atomic limit

In this section, we extend our Hartree-Fock code to include bubble corrections12 in the calcula-
tion of the self-energy. The resulting equations, commonly known as the GW approximation,
allow us to exemplify the use of more advanced library features, such as extrapolation of
the single-particle Green’s function and the implementation of symmetries. Therefore, they
present a good starting point for the more involved application discussed in Sec. 4.3.1.

The GW approximation is a widely used method in condensed matter physics and quan-
tum chemistry for calculating electronic properties of materials [72–74]. In addition to the
Hartree term ΣH = Un, which considers only the bare interaction, the mutual screening of
the Coulomb interaction between electrons is partially taken into account. For spin-rotation
invariant systems it is common practice to decouple these screened interactions η13 into a
density (or charge) component ηD and a magnetic (or spin) component ηM (see App. B), such
that

Σ(ν)≈ Un
2 − 1

β

∑
ν′

G(ν′)
�1

4η
D(ν− ν′) + 3

4η
M (ν− ν′)� , (10)

for the atomic limit Hamiltonian. The η are computed by summing a series of bubble diagrams
in the particle-hole channel, i.e.,

ηD/M (Ω) =
±U

1∓ U P(Ω)
, (11)

where the polarization bubble P is given by

P(Ω) = 1
β

∑
ν

G(Ω+ ν)G(ν) . (12)

A diagrammatic representation of these relations is shown in Fig. 2. Finally, the set of equations
is closed by computing G from the Dyson equation. Since the Green’s function transforms as

11Here, we make use of the density function, which calculates the Fourier transform f (τ → 0−) given a
complex-valued input function f (ν).

12That is, Feynman diagrams formed by a closed loop of two single-particle Green’s functions.
13Here, we denote the screened interactions by η instead of W to avoid conflicting notation with the code

examples in Sec. 4.3.2.
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Figure 2: Diagrammatic representation of spin-conserving GW equations in the
atomic limit. Wavy lines denote the screened interactions in the density (red) and
magnetic (blue) channel. They are obtained by dressing the respective bare interac-
tions with a series of bubble diagrams P(Ω), as illustrated in the second and third
line from the top.

G∗(ν) = G(−ν) under complex conjugation [48], we also have that

P(−Ω) = 1
β

∑
ν

G(−Ω+ ν)G(ν) = 1
β

∑
ν

G(−Ω− ν)G(−ν) = 1
β

∑
ν

G∗(Ω+ ν)G∗(ν)

= P∗(Ω) , (13)

and likewise Σ∗(ν) = Σ(−ν). Thus, the numerical effort for evaluating Eqs. (10) and (12)
can be reduced by a factor of two using a MatsubaraSymmetryGroup object. To structure
the GW code, we first write a solver class which takes care of the proper initialization of the
necessary MatsubaraFunction instances.

1 using MatsubaraFunctions
2 using HDF5
3

4 conj(w, x) = (-w[1],), (x[1],), MatsubaraOperation(sgn = false, con = true)
5

6 struct GWsolver
7 T :: Float64
8 U :: Float64
9 N :: Int64

10 G :: MatsubaraFunction{1, 1, 2, ComplexF64}
11 Sigma :: MatsubaraFunction{1, 1, 2, ComplexF64}
12 P :: MatsubaraFunction{1, 1, 2, ComplexF64}
13 η_D :: MatsubaraFunction{1, 1, 2, ComplexF64}
14 η_M :: MatsubaraFunction{1, 1, 2, ComplexF64}
15 SGf :: MatsubaraSymmetryGroup
16 SGb :: MatsubaraSymmetryGroup
17

18 function GWsolver(T, U, N)
19

20 # fermionic containers
21 gf = MatsubaraGrid(T, N, Fermion)
22 G = MatsubaraFunction(gf, 1)
23 Sigma = MatsubaraFunction(gf, 1)
24

25 # bosonic containers
26 gb = MatsubaraGrid(T, N, Boson)
27 P = MatsubaraFunction(gb, 1)
28 η_D = MatsubaraFunction(gb, 1)
29 η_M = MatsubaraFunction(gb, 1)
30

31 # symmetry groups
32 SGf = MatsubaraSymmetryGroup([MatsubaraSymmetry{1, 1}(conj)], G)
33 SGb = MatsubaraSymmetryGroup([MatsubaraSymmetry{1, 1}(conj)], P)
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34

35 return new(T, U, N, G, Sigma, P, η_D, η_M, SGf, SGb)
36 end
37 end

As a second step, we implement the self-consistent equations, which we solve using Anderson
acceleration. Note that we have rewritten the GW equation for the self-energy as

Σ(ν)≈ Un− 1
β

∑
ν′

G(ν′)
�1

4η
D(ν− ν′) + 3

4η
M (ν− ν′) + U

2

�
, (14)

which is beneficial since the product of G with the constant contributions to ηD/M simply shifts
the real part of the self-energy by Un

2 such that Σ= ΣH +O(U2).

1 function fixed_point!(F, x, S)
2

3 # update Sigma
4 unflatten!(S.Sigma, x)
5

6 # calculate G
7 for v in grids(S.G, 1)
8 S.G[v] = 1.0 / (im * value(v) - S.Sigma[v])
9 end

10

11 sum_grid = MatsubaraGrid(S.T, 4 * S.N, Fermion)
12

13 # calculate P using symmetries
14 function calc_P(wtpl, xtpl)
15

16 P = 0.0
17

18 for v in sum_grid
19 P += S.G(v + wtpl[1]) * S.G(v)
20 end
21

22 return S.T * P
23 end
24

25 S.SGb(S.P, MatsubaraInitFunction{1, 1, ComplexF64}(calc_P))
26

27 # calculate η_D and η_M
28 for w in S.P.grids[1]
29 S.η_D[w] = +S.U / (1.0 - S.U * S.P[w])
30 S.η_M[w] = -S.U / (1.0 + S.U * S.P[w])
31 end
32

33 # calculate Sigma using symmetries
34 function calc_Sigma(wtpl, xtpl)
35

36 Sigma = S.U * density(S.G)
37

38 for v in sum_grid
39 Sigma -= S.T * S.G(v) * (
40 0.25 * S.η_D(wtpl[1] - v; extrp = ComplexF64(+S.U)) +
41 0.75 * S.η_M(wtpl[1] - v; extrp = ComplexF64(-S.U)) +
42 0.50 * S.U)
43 end
44

45 return Sigma
46 end
47

48 S.SGf(S.Sigma, MatsubaraInitFunction{1, 1, ComplexF64}(calc_Sigma))
49

50 # calculate the residue
51 flatten!(S.Sigma, F)
52 F .-= x
53
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54 return nothing
55 end
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Figure 3: Exemplary GW results. (a) The complex-valued self-energy ΣGW with its
real part offset by the Hartree shift ΣH = UnGW for T/U = 1

3 . (b) GW and Hartree-
Fock densities as a function of U/T .

Here, we make use of the flatten! and unflatten! functions which allow us to parse
MatsubaraFunction data into a one dimensional array.14 The fixed-point can now easily be
computed with, for example,

1 const T = 0.3 # temperature
2 const U = 0.9 # interaction
3 const N = 1000 # no. frequencies
4

5 S = GWsolver(T, U, N)
6 init = zeros(ComplexF64, length(S.Sigma))
7 res = nlsolve((F, x) -> fixed_point!(F, x, S), init, method = :anderson, m = 8, beta =

0.5, show_trace = true),→

In Fig. 3 we show exemplary results for the self-energy and density obtained in GW . In con-
trast to the Hartree-Fock calculations in the previous section, Σ is now a frequency-dependent
quantity, whose real part asymptotically approaches UnGW . As can be seen from Fig. 3(b),
these GW densities agree quantitatively with the HF result for weak interactions U/T ≲ 1

2 ,
but yield larger densities for higher values of U as expected when the local interaction is par-
tially screened.

4.3 Multiboson exchange solver for the single impurity Anderson model

Note: Readers who are not interested in the formal discussion presented below should feel
free to skip this section and proceed directly to Section 5 on future directions.

In the following, we extend upon the previous computations for the Hubbard atom by
coupling the single electronic level to a bath of non-interacting electrons. Specifically, we con-
sider the single-impurity Anderson model, a minimal model for localized magnetic impurities
in metals introduced by P.W. Anderson to explain the physics behind the Kondo effect [75]. It
is defined by the Hamiltonian

H =
∑
σ

εdd†
σdσ + Und,↑nd,↓ +

∑
k,σ

�
Vkd†

σck,σ + V ∗k c†
k,σdσ
�
+
∑
k,σ

εk,σc†
k,σck,σ , (15)

describing an impurity d level εd, hybridized with conduction electrons of the metal via
a matrix element Vk. The electrons in the localized d state, where nd,σ = d†

σdσ, in-
teract according to the interaction strength U , whereas the c electrons of the bath are

14We also export flatten which will allocate a new 1D array from the MatsubaraFunction.
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non-interacting. Following [76], in a path-integral formulation for the partition function

Z =
∫ ∏

σD
�
d̄σ
�
D (dσ)D
�
c̄k,σ

�
D
�
ck,σ

�
e−S with the action S =

∫ β
0 L(τ)dτ, the Lagrangian

for the model is given by

L(τ) =
∑
σ

d̄σ(τ) (∂τ + εd) dσ(τ) +
∑
k,σ

c̄k,σ(τ) (∂τ + εk) ck,σ(τ)

+ Un↑(τ)n↓(τ) +
∑
k,σ

Vk

�
d̄σ(τ)ck,σ(τ) + c̄k,σ(τ)dσ(τ)

�
, (16)

where nσ(τ) = d̄σ(τ)dσ(τ). Integrating over the only quadratically occurring Grassmann
variables for the bath electrons, one formally obtains Z =

∫ ∏
σD
�
d̄σ
�
D (dσ)e−Sred with the

reduced action given by

Sred =

∫ β

0

dτ

∫ β

0

dτ′
∑
σ

d̄σ(τ)
�−G(0)σ
�
τ−τ′��−1

dσ
�
τ′
�
+ U

∫ β

0

dτn↑(τ)n↓(τ) . (17)

Switching to Matsubara frequencies as described in section 2, the non-interacting Green’s func-
tion for the localized d electrons reads

G(0)σ (νn) =
1

iνn − εd +∆(νn)
. (18)

Following [77] we choose an isotropic hybridization strength Vk ≡ V and a flat density of
states with bandwidth 2D for the bath electrons, leading to the hybridization function15

∆(νn) = i V 2

D arctan D
νn

. In the following, we set V = 2, measure energy in units of V/2= 1 and
set the half bandwidth to D = 10. In the context of this work, we focus on the particle-hole
symmetric model, setting εd = −U/2. Then, the Hartree term of the self-energy, ΣH = U/2 is
conveniently absorbed into the bare propagator,

G(0)σ (νn)→ GH
σ(νn) =

1
iνn − εd +∆(νn)−ΣH

=
1

iνn +∆(νn)
. (19)

Consequently, the Hartree propagator is used instead of the bare propagator throughout.

4.3.1 Single boson exchange decomposition of the parquet equations

Following [78], we now reiterate the single-boson exchange (SBE) decomposition of the four-
point vertex and, subsequently, of the parquet equations. The starting point for the SBE de-
composition, which was originally developed in [79–84], is the unambiguous classification of
vertex diagrams according to their U-reducibility in each channel. In order to introduce this
concept in the context of the parquet equations, we first have to discuss the similar concept of
two-particle reducibility, which provides the basis for the parquet decomposition of the vertex,

Γ = Λ2PI + γa + γp + γt . (20)

This decomposition states that all diagrams which contribute to the two-particle vertex Γ can be
classified as being part of one of four disjoint contributions: γr with r ∈ {a, p, t} collects those
diagrams which are two-particle reducible (2PR) in channel r, i.e., they can be disconnected
by cutting a pair of propagator lines, which can either be aligned in an antiparallel (a), parallel
(p) or transverse antiparallel (t) way. All remaining diagrams, which are not 2PR in either
of the three channels, contribute to Λ2PI, the fully two-particle irreducible (2PI) vertex. One
can equally well decompose Γ w.r.t. its two-particle reducibility in one of the three channels,

15Note that we use a different sign convention for the hybridization function compared to [77].
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Figure 4: Illustration of U-reducibility in the three two-particle channels a, p and t. The Figure is
analogous to Fig. 4 of [79] and adapted from [77]. �1 and �2 can be any vertex diagram or the unit vertex.

antiparallel (a), parallel (p) or transverse antiparallel (t) way. All remaining diagrams, which
are not 2PR in either of the three channels, contribute to ⇤2PI, the fully two-particle irreducible
(2PI) vertex. One can equally well decompose � w.r.t. its two-particle reducibility in one of
the three channels, � = Ir + �r, which defines Ir = ⇤2PI +

P
r0 6=r �r0 , collecting all diagrams

that are 2PI in channel r. The Bethe-Salpeter equations (BSEs) then relate the reducible
diagrams to the irreducible ones,

�r = Ir �⇧r � � = � �⇧r � Ir. (21)

This short-hand notation introduces the ⇧r bubble, i.e., the propagator pair connecting the
two vertices, see [77] for their precise channel-dependent definition, as well as for the connec-
tor symbol �, which channel-dependently denotes summation over internal frequencies and
quantum numbers. The self-energy ⌃, which enters the propagator via the Dyson equation
G = G0 + G0⌃G, is provided by the Schwinger-Dyson equation (SDE),

⌃ = � (U + U �⇧p � �) · G = �
�
U + 1

2U �⇧a � �
�

· G , (22)

where U is the bare interaction and the symbol · denotes the contraction of two vertex
legs with a propagator. Together, equations (20), (21) and (22) are known as the parquet
equations [84, 85] and can be solved self-consistently, if the 2PI vertex ⇤2PI is provided [86–
89]. Unfortunately, ⇤2PI is the most complicated object, as its contributions contain nested
contractions over internal arguments. Often, the parquet approximation (PA) is therefore
employed, which truncates ⇤2PI beyond the bare interaction U . In the context of the SBE
decomposition relevant to this work, U -reducibility is an alternative criterion to the concept
of two-particle reducibility for the classification of vertex diagrams. A diagram that is 2PR
in channel r is also said to be U -reducible in channel r if it can be disconnected by removing
one bare vertex that is attached to a ⇧r bubble, as illustrated in Fig. 4. Furthermore, the
bare vertex U is defined to be U -reducible in all three channels. The U -reducible diagrams
in channel r are in the following denoted rr and are said to describe single-boson exchange
processes, as the linking bare interaction U , which would disconnect the diagram if cut,
mediates just a single bosonic transfer frequency. The diagrams which are 2PR in channel
r but not U -reducible in channel r are called multi-boson exchange diagrams and denoted
Mr. With these classifications, the two-particle reducible vertices can be written as �r =
rr�U +Mr, making sure to exclude U , which is contained in rr but not in �r. The parquet
decomposition (20) yields in this language,

� = 'U irr +
P

rrr � 2U, 'U irr = ⇤2PI � U +
P

rMr , (23)
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Figure 4: Illustration of U-reducibility in the three two-particle channels a, p
and t . The Figure is analogous to Fig. 4 of [80] and adapted from [78]. Γ1 and Γ2
can be any vertex diagram or the unit vertex.

Γ = Ir +γr , which defines Ir = Λ2PI+
∑

r ′ ̸=r γr ′ , collecting all diagrams that are 2PI in channel
r. The Bethe-Salpeter equations (BSEs) then relate the reducible diagrams to the irreducible
ones,

γr = Ir ◦Πr ◦ Γ = Γ ◦Πr ◦ Ir . (21)

This short-hand notation introduces the Πr bubble, i.e., the propagator pair connecting the
two vertices, see [78] for their precise channel-dependent definition, as well as for the connec-
tor symbol ◦, which channel-dependently denotes summation over internal frequencies and
quantum numbers. The self-energy Σ, which enters the propagator via the Dyson equation
G = G0 + G0ΣG, is provided by the Schwinger-Dyson equation (SDE),

Σ= − �U + U ◦Πp ◦ Γ
� · G = − �U + 1

2 U ◦Πa ◦ Γ
� · G , (22)

where U is the bare interaction and the symbol · denotes the contraction of two vertex legs
with a propagator. Together, equations (20), (21) and (22) are known as the parquet equa-
tions [85, 86] and can be solved self-consistently, if the 2PI vertex Λ2PI is provided [87–90].
Unfortunately, Λ2PI is the most complicated object, as its contributions contain nested contrac-
tions over internal arguments. Often, the parquet approximation (PA) is therefore employed,
which truncates Λ2PI beyond the bare interaction U . In the context of the SBE decomposition
relevant to this work, U-reducibility is an alternative criterion to the concept of two-particle
reducibility for the classification of vertex diagrams. A diagram that is 2PR in channel r is
also said to be U-reducible in channel r if it can be disconnected by removing one bare vertex
that is attached to a Πr bubble, as illustrated in Fig. 4. Furthermore, the bare vertex U is
defined to be U-reducible in all three channels. The U-reducible diagrams in channel r are
in the following denoted ∇r and are said to describe single-boson exchange processes, as the
linking bare interaction U , which would disconnect the diagram if cut, mediates just a single
bosonic transfer frequency. The diagrams which are 2PR in channel r but not U-reducible in
channel r are called multi-boson exchange diagrams and denoted Mr . With these classifica-
tions, the two-particle reducible vertices can be written as γr =∇r − U +Mr , making sure to
exclude U , which is contained in ∇r but not in γr . The parquet decomposition (20) yields in
this language,

Γ = ϕU irr +
∑

r∇r − 2U , ϕU irr = Λ2PI − U +
∑

r Mr , (23)

where ϕU irr is the fully U-irreducible part of Γ . For a diagrammatic illustration of the
first equation, see Fig. 8 in [78]. The channel-dependent decomposition of the vertex
Γ = Ir + γr =∇r + Tr can also be split into U-reducible and U-irreducible parts in channel r,
defining the U-irreducible remainder Tr = Ir −U +Mr in channel r. Inserting all these defini-
tions into the BSEs (21) and separating U-reducible and U-irreducible contributions gives the
two sets of equations,
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∇r − U = Ir ◦Πr ◦∇r + U ◦Πr ◦ Tr =∇r ◦Πr ◦ Ir + Tr ◦Πr ◦ U , (24)

Mr = (Ir − U) ◦Πr ◦ Tr = Tr ◦Πr ◦ (Ir − U) , (25)

for each channel r. From equation (24) one can derive (see [78] for details) that the single-
boson exchange terms can be written as ∇r = λ̄r • ηr • λr , where λ̄r ,λr denote the Hedin
vertices [72] and ηr the screened interaction in channel r. The former are related to the
U-irreducible vertex in channel r via λ̄r = 1r + Tr ◦ Πr ◦ 1r = 1r + 1r ◦ Πr ◦ Tr and can
be understood as U-irreducible, amputated parts of three-point functions, as they depend on
only two frequencies. In contrast to the GW approximation discussed in Sec. 4.2, the screened
interaction ηr is now defined in terms of a Dyson equation, ηr = U+U •Pr •ηr = U+ηr •Pr •U ,
with the polarization Pr = λr ◦ Πr ◦ 1r = 1r ◦ Πr ◦ λ̄r dressed by vertex corrections. In the
previous expressions, the connector • denotes an internal summation similar to ◦, the only
difference being that summation over frequencies is excluded. The corresponding unit vertex
is denoted 1r .

Lastly, one can rewrite the SDE in terms of the screened interaction and the Hedin vertex
in channel r which yields, for example, −Σ= (ηp •λp) ·G = (λ̄p •ηp) ·G if one chooses r = p.

In summary, the SBE-equations to be solved read

ηr = U + U • Pr •ηr = U +ηr • Pr • U , (26a)

Pr = λr ◦Πr ◦ 1r = 1r ◦Πr ◦ λ̄r , (26b)

λ̄r = 1r + Tr ◦Πr ◦ 1r , (26c)

λr = 1r + 1r ◦Πr ◦ Tr , (26d)

Tr = Γ − λ̄r •ηr •λr , (26e)

Γ = ϕU irr +
∑

r λ̄r •ηr •λr − 2U , (26f)

ϕU irr = Λ2PI − U +
∑

r Mr , (26g)

Mr = (Tr−Mr) ◦Πr ◦ Tr = Tr ◦Πr ◦ (Tr−Mr) , (26h)

−Σ= (ηp •λp) · G = (λ̄p •ηp) · G . (26i)

As before, they require only the fully two-particle irreducible vertex Λ2PI as an input. No-
tably, if one employs the so-called SBE approximation [80], which amounts to setting Λ2PI = U
as in the parquet approximation and neglecting multi-boson exchange contributions Mr = 0,
all objects involved depend on at most two frequencies. This scheme is therefore numerically
favorable compared to the PA if the SBE approximation can be justified [91] . In the context
of this paper, we do not employ the SBE approximation, but include multi-boson exchange
(MBE) contributions.

4.3.2 Implementation in MatsubaraFunctions.jl

In this section, we present the implementation of the PA in its MBE formulation using
MatsubaraFunctions.jl. In doing so, we build upon the code structure developed in
Sec. 4.2, i.e. we first define a solver class for which we later implement the self-consistent
equations, as well as an interface to solve for the fixed point using Anderson acceleration,
see Fig. 5. In order to keep the discussion concise, we refrain from showing all of the code
and, instead, focus on computational bottlenecks and point out tricks to circumvent them. For
completeness, however, we also make the entire code available via an open-source repository
on Github, see Ref. [62] and provide additional implementation details in App. B.
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flattenx0 = (S)
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max. no. iterations 
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unflatten!(S, x)
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λr(G, Tr, SG[λr])

Mr(G, Tr, Mr, SG[Mr])

Pr(G, λr)

ηr(Pr, ηr)

Σ(G, ηr, λr)

flatten  - xF = (S)

MBE loop

NLsolve

|F | < tol

Save to HDF5

solve!

solver object S

Figure 5: Structure of the MBE code. First, an instance S of type MBEsolver is
constructed by passing the SIAM parameters T , U , V and D and the sizes for the
Matsubara grids. The self-energy Σ is initialized using second order perturbation
theory (PT2), while all other MatsubaraFunctions are set to their bare values. In
an optional step, MatsubaraSymmetryGroups for λr and Mr (here denoted by SG)
can be precomputed. Next, the solve! function is used to find the fixed-point of
the MBE equations using Anderson acceleration. To interface with NLsolve, the
fields Σ, ηr , λr and Mr of S (which are sufficient to determine all other involved
quantities) are flattened into a single one-dimensional array. After convergence, S is
finally written to disk in H5 file format.

Extending the GWsolver from Sec. 4.2 to the MBEsolver needed here is a straightforward
endeavor, since we just have to add containers and symmetry groups for the Hedin and multi-
boson vertices. Furthermore, we extend the solver to include buffers which store the result
of evaluating Eqs. (26c), (26d) and (26h), such that repetitive allocations of the multidimen-
sional data arrays for λr and Mr are avoided. Note that, due to the symmetries of the SIAM
studied here, it suffices to include either λr or λ̄r , since λr = λ̄r . In addition, all containers
can be implemented as real-valued.16

1 function calc_T(
2 w :: MatsubaraFrequency,
3 v :: MatsubaraFrequency,
4 vp :: MatsubaraFrequency,
5 η_S :: MatsubaraFunction{1, 1, 2, Float64},
6 λ_S :: MatsubaraFunction{2, 1, 3, Float64},
7 η_D :: MatsubaraFunction{1, 1, 2, Float64},
8 λ_D :: MatsubaraFunction{2, 1, 3, Float64},
9 η_M :: MatsubaraFunction{1, 1, 2, Float64},

10 λ_M :: MatsubaraFunction{2, 1, 3, Float64},
11 M_S :: MatsubaraFunction{3, 1, 4, Float64},
12 M_T :: MatsubaraFunction{3, 1, 4, Float64},
13 M_D :: MatsubaraFunction{3, 1, 4, Float64},
14 M_M :: MatsubaraFunction{3, 1, 4, Float64},
15 U :: Float64,
16 :: Type{ch_D}
17 ) :: Float64
18

19 # bare contribution
20 T = -2.0 * U
21

22 # SBE contributions
23 w1 = w + v + vp
24 η1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(η_D, 1))
25 λ1_idx1 = MatsubaraFunctions.grid_index_extrp(w1, grids(λ_D, 1))
26 λ1_idx2 = MatsubaraFunctions.grid_index_extrp(vp, grids(λ_D, 2))

16The Green’s function G and the self-energy Σ are purely imaginary, such that G = −iG̃ and Σ = −iΣ̃. After
plugging this factorization into Eqs. (26a)-(26i), all factors of i are cancelled out such that the resulting equations
are entirely real.
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27 λ1_idx3 = MatsubaraFunctions.grid_index_extrp( v, grids(λ_D, 2))
28

29 w2 = vp - v
30 v2 = w + v
31 η2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(η_D, 1))
32 λ2_idx1 = MatsubaraFunctions.grid_index_extrp(w2, grids(λ_D, 1))
33 λ2_idx2 = MatsubaraFunctions.grid_index_extrp(v2, grids(λ_D, 2))
34

35 T += +0.5 * λ_S[λ1_idx1, λ1_idx2, 1] * η_S[η1_idx, 1] * λ_S[λ1_idx1, λ1_idx3, 1]
36 T += -0.5 * λ_D[λ2_idx1, λ1_idx3, 1] * η_D[η2_idx, 1] * λ_D[λ2_idx1, λ2_idx2, 1]
37 T += -1.5 * λ_M[λ2_idx1, λ1_idx3, 1] * η_M[η2_idx, 1] * λ_M[λ2_idx1, λ2_idx2, 1]
38

39 # MBE contributions
40 w_idx = MatsubaraFunctions.grid_index_extrp( w, grids(M_S, 1))
41 v_idx = MatsubaraFunctions.grid_index_extrp( v, grids(M_S, 2))
42 vp_idx = MatsubaraFunctions.grid_index_extrp(vp, grids(M_S, 2))
43

44 w1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(M_S, 1))
45 w2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(M_S, 1))
46 v2_idx = MatsubaraFunctions.grid_index_extrp(v2, grids(M_S, 2))
47

48 T += M_D[w_idx, v_idx, vp_idx, 1]
49 T += +0.5 * M_S[w1_idx, v_idx, vp_idx, 1]
50 T += +1.5 * M_T[w1_idx, v_idx, vp_idx, 1]
51 T += -0.5 * M_D[w2_idx, v_idx, v2_idx, 1]
52 T += -1.5 * M_M[w2_idx, v_idx, v2_idx, 1]
53

54 return T
55 end

Profiling the MBE code reveals that most of the time is spent calculating the irreducible vertices
Tr , which are needed to compute both λr and Mr . In the former case, two legs of Tr are
closed with a propagator bubble, while in the latter case, Tr enters both to the left and to
the right of the respective (Bethe-Salpeter-like) equation. When optimizing the code, it is
therefore crucial to find an efficient way to evaluate Eq. (26e). In the example above, an
exemplary implementation of Tr in the density channel is shown. Here, we make use of the
grid_index_extrp function, which given a Matsubara frequency and a grid g finds the
linear index of the frequency in g or, if it is out of bounds, determines the bound of g that
is closest. This function is normally used internally to perform constant extrapolation for
MatsubaraFunction objects with grid dimension greater than one.17 Here, however, it can
be used to precompute multiple linear indices at once, allowing us to exclusively use the []
operator and thus avoid unnecessary boundary checks. Note that we could have used tailfits
for the screened interactions ηr but opt to utilize constant extrapolation instead.18

Furthermore, when Tr is inserted into the equations for the Hedin and multiboson vertices,
it is summed up along one fermionic axis. Therefore, some frequencies, e.g. w1 = w + v +
vp in line 23 of the code snippet above, will assume the same value for many different external
arguments. Hence, to circumvent repeated (but superfluous) grid_index_extrp calls, it is
beneficial to precompute Tr on a finite grid, which needs to be large enough to maintain the
desired accuracy. To this end, we add buffers for the irreducible vertices to our solver class,
such that we can compute e.g. the density T D and magnetic contributions T M inplace and in
parallel, as shown in the example below.

1 function calc_T_ph!(
2 T_D :: MatsubaraFunction{3, 1, 4, Float64},
3 T_M :: MatsubaraFunction{3, 1, 4, Float64},
4 η_S :: MatsubaraFunction{1, 1, 2, Float64},
5 λ_S :: MatsubaraFunction{2, 1, 3, Float64},

17Therefore it is not exported into the global namespace.
18Since ηr depends only on one frequency argument, it can be stored on a rather large grid, such that its asymp-

totic behavior is well-captured even without polynomial extrapolation.
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6 η_D :: MatsubaraFunction{1, 1, 2, Float64},
7 λ_D :: MatsubaraFunction{2, 1, 3, Float64},
8 η_M :: MatsubaraFunction{1, 1, 2, Float64},
9 λ_M :: MatsubaraFunction{2, 1, 3, Float64},

10 M_S :: MatsubaraFunction{3, 1, 4, Float64},
11 M_T :: MatsubaraFunction{3, 1, 4, Float64},
12 M_D :: MatsubaraFunction{3, 1, 4, Float64},
13 M_M :: MatsubaraFunction{3, 1, 4, Float64},
14 U :: Float64
15 ) :: Nothing
16

17 Threads.@threads for vp in grids(T_D, 3)
18 λ1_idx2 = MatsubaraFunctions.grid_index_extrp(vp, grids(λ_D, 2))
19 vp_idx = MatsubaraFunctions.grid_index_extrp(vp, grids(M_S, 2))
20

21 for v in grids(T_D, 2)
22 w2 = vp - v
23 λ1_idx3 = MatsubaraFunctions.grid_index_extrp( v, grids(λ_D, 2))
24 η2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(η_D, 1))
25 λ2_idx1 = MatsubaraFunctions.grid_index_extrp(w2, grids(λ_D, 1))
26 v_idx = MatsubaraFunctions.grid_index_extrp( v, grids(M_S, 2))
27 w2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(M_S, 1))
28

29 for w in grids(T_D, 1)
30 w1 = w + v + vp
31 v2 = w + v
32 η1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(η_D, 1))
33 λ1_idx1 = MatsubaraFunctions.grid_index_extrp(w1, grids(λ_D, 1))
34 λ2_idx2 = MatsubaraFunctions.grid_index_extrp(v2, grids(λ_D, 2))
35 w_idx = MatsubaraFunctions.grid_index_extrp( w, grids(M_S, 1))
36 w1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(M_S, 1))
37 v2_idx = MatsubaraFunctions.grid_index_extrp(v2, grids(M_S, 2))
38

39 # compute SBE vertices
40 p1 = λ_S[λ1_idx1, λ1_idx2, 1] * η_S[η1_idx, 1] * λ_S[λ1_idx1, λ1_idx3, 1]
41 p2 = λ_D[λ2_idx1, λ1_idx3, 1] * η_D[η2_idx, 1] * λ_D[λ2_idx1, λ2_idx2, 1]
42 p3 = λ_M[λ2_idx1, λ1_idx3, 1] * η_M[η2_idx, 1] * λ_M[λ2_idx1, λ2_idx2, 1]
43

44 # compute MBE vertices
45 m1 = M_S[w1_idx, v_idx, vp_idx, 1]
46 m2 = M_T[w1_idx, v_idx, vp_idx, 1]
47 m3 = M_D[w2_idx, v_idx, v2_idx, 1]
48 m4 = M_M[w2_idx, v_idx, v2_idx, 1]
49

50 T_D[w, v, vp] = -2.0 * U + M_D[w_idx, v_idx, vp_idx, 1] + 0.5 * (p1 + m1 -
p2 - m3) + 1.5 * (m2 - p3 - m4),→

51 T_M[w, v, vp] = +2.0 * U + M_M[w_idx, v_idx, vp_idx, 1] - 0.5 * (p1 + m1 +
p2 + m3) + 0.5 * (m2 + p3 + m4),→

52 end
53 end
54 end
55

56 return nothing
57 end

Here, we also make use of the fact that many frequency arguments (and their respective linear
indices) are shared between different channels, which speeds up the calculation of T even
further. The implementation of, say, Eq. (26h) is now rather straightforward. M D, for example,
can be computed as shown below.

1 function calc_M!(
2 M :: MatsubaraFunction{3, 1, 4, Float64},
3 Pi :: MatsubaraFunction{2, 1, 3, Float64},
4 T :: MatsubaraFunction{3, 1, 4, Float64},
5 M_D :: MatsubaraFunction{3, 1, 4, Float64},
6 SG :: MatsubaraSymmetryGroup,
7 :: Type{ch_D}
8 ) :: Nothing
9
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10 # model the diagram
11 function f(wtpl, xtpl)
12

13 w, v, vp = wtpl
14 val = 0.0
15 v1, v2 = grids(Pi, 2)(grids(T, 3)[1]), grids(Pi, 2)(grids(T, 3)[end])
16 Pi_slice = view(Pi, w, v1 : v2)
17 M_D_slice = view(M_D, w, v, :)
18 T_L_slice = view(T, w, v, :)
19 T_R_slice = view(T, w, vp, :)
20

21 vl = grids(T, 3)(grids(M_D, 3)[1])
22 vr = grids(T, 3)(grids(M_D, 3)[end])
23

24 for i in 1 : vl - 1
25 val -= (T_L_slice[i] - M_D_slice[1]) * Pi_slice[i] * T_R_slice[i]
26 end
27

28 for i in vl : vr
29 val -= (T_L_slice[i] - M_D_slice[i - vl + 1]) * Pi_slice[i] * T_R_slice[i]
30 end
31

32 for i in vr + 1 : length(T_L_slice)
33 val -= (T_L_slice[i] - M_D_slice[vr - vl + 1]) * Pi_slice[i] * T_R_slice[i]
34 end
35

36 return temperature(M) * val
37 end
38

39 # compute multiboson vertex
40 SG(M, MatsubaraInitFunction{3, 1, Float64}(f); mode = :hybrid)
41

42 return nothing
43 end

Here, we utilize the corresponding MatsubaraSymmetryGroup object with the hybrid MPI
+ Threads parallelization scheme. In addition, we make use of views for the bubble and
vertices to avoid repeated memory lookups in the Matsubara summation.

4.3.3 Benchmark results

In this section, we benchmark the presented implementation of the MBE parquet solver against
an independent implementation in C++. Our motivation for this comparison is twofold:
Firstly, we want to verify the overall correctness of both implementations and, secondly, we
want to test how robust the multiboson formalism is to implementation details. This regards,
for example, the treatment of correlation functions at the boundaries of their respective fre-
quency grids. While the Julia code relies on (polynomial or constant) extrapolation, the C++
code replaces correlators with their asymptotic value instead. Ideally, these details should be
irrelevant, except in the most difficult parameter regimes. Both codes used the physical pa-
rameters as stated after Eq. (18) and the frequency parameters according to Tab. 1. We begin
by examining the static properties of the model including the quasiparticle residue Z given by

Z−1 = 1− dIm[Σ(ω)]
dω

����
ω→0

, (27)

as well as the susceptibilities in the density (D) and magnetic (M) channels. The latter can be
obtained from the screened interactions analogous to Ref. [92], that is

χD/M =
ηD/M − U D/M

(U D/M )2
. (28)

The corresponding results are summarized in Fig. 6. Both codes are in quantitative agreement
and predict a strong enhancement of magnetic fluctuations at low temperatures. However, as
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Table 1: Frequency parameters for the benchmark results in Figs. 6-9. We show
the total number of frequencies used for the various Matsubara functions. Since
the boxes are symmetric around zero there is an even (odd) number of Matsubara
frequencies along fermionic (bosonic) directions.

total no. frequencies
G 4096
Σ 512
η 1023
λ 575 × 512
M 383 × 320 × 320

has been noted in Ref. [77], the characteristic signature for the formation of a local magnetic
moment at the impurity, a decrease of χD for temperatures T ≲ 2 (for the specific choice
of numerical parameters used here), is not captured by the parquet approximation. Instead,
χD increases monotonically over the entire range of temperatures considered and the system
remains in a metallic state with well-defined quasiparticles (i.e. 0< Z < 1).

Figure 7 shows a direct comparison of the MBE vertices and their evolution with decreasing
temperature within both codes. As can be seen from the middle column, showing the screened
interaction, Hedin and multiboson vertex in the magnetic channel, most of the long-lived
magnetic correlations are already captured by the screened interaction itself and thus by the
corresponding single-boson exchange diagrams. In contrast, low-energy scattering processes
mediated by multiple bosons seem to be less relevant, as indicated by a comparatively small
M M contribution. This picture is somewhat reversed in the other channels (left and right
column in Fig. 7). In the density channel, for example, the largest contribution originates
from short and also long-lived multiboson fluctuations, especially at low temperatures.

Figure 8 presents further results for M X as a function of its two fermionic frequencies ν and
ν′ (with fixed Ω = 0). Remarkably, the structure of these objects is dominated by cross-like
structures similar to those discussed in Ref. [92], which become more pronounced when T is
decreased. A comparison of the data obtained with both codes (shown in the second row of
Fig. 8), reveals that it is precisely these structures that seem difficult to capture in numerical
calculations, and where small differences in the implementation can have a significant effect.
However, the relative difference between the results from both codes is still small (≲ 0.01).

As a final benchmark of the codes, we have considered their respective serial and paral-
lel performance for a single evaluation of the parquet equations in SBE decomposition (see
Fig. 9). Surprisingly, the Julia code based on MatsubaraFunctions.jl outperforms the
C++ implementation by about a factor of four when run in production mode (i.e., with in-
ternal sanity checks disabled). We would like to note that this is most likely not due to a
fundamental performance advantage of Julia over C++, but simply the result of several op-
timizations (such as those presented in Sec. 4.3.2) that were more easy to implement using
MatsubaraFunctions.jl.
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Figure 6: Results for the quasi-particle residue Z and the density/magnetic sus-
ceptibility χD/M . The comparison shows good agreement between the two codes.
Note that we approximated the derivative in Eq. (27) by a fourth order finite differ-
ences method.

0

10−2

10−1

100

101

102

η
X

(ν
)
−
U
X

D M S

−0.4

−0.2

0.0

λ
X

(0
,ν

)
−

1

−25 0 25

ν/πT

−5

0

M
X

(0
,π
T
,ν

)

T = 0.2 T = 0.5 T = 2.0

−25 0 25

ν/πT

−25 0 25

ν/πT

C++ Julia

Figure 7: Benchmark of vertex quantities between the Julia and C++ code. We
show frequency slices through various SBE ingredients (top to bottom: screened in-
teractions, Hedin vertices, multiboson vertices) at different temperatures and chan-
nels. The comparison shows good agreement between both codes.
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Figure 8: Slice through multi-boson contributions MD, M M and MS. The upper
panels show the data for different temperatures, the lower panels the absolute devi-
ation between the Julia and the C++ implementation, respectively. For lower tem-
peratures the features in the data require the computation and storage of a larger
number of frequency points. The agreement of the data persists to the lowest tem-
perature shown in this paper.
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Figure 9: Performance benchmark between the Julia and C++ code. We show
the time taken for a single evaluation of the parquet equations in SBE decomposition.
Note that the runtimes have been normalized to the serial result of the C++ code.

5 Future directions

We have presented a first version of the MatsubaraFunctions.jl library and its basic func-
tionality. Although the library already offers many features, most notably an automated inter-
face for implementing and exploiting symmetries when working with Green’s functions (in-
cluding several options for parallel evaluation), as well as high performance for larger projects
(see Sec. 4.3.1 and the discussions therein), several generalizations of the interface and fur-
ther optimizations are currently under development. In addition, we will add more support
for generic grid types other than just Matsubara frequency grids. These could include, for
example, momentum space grids and support for continuous variables (such as real frequen-
cies). Note, however, that calculations in momentum or real space are already feasible with
the current state of the package, if a suitable mapping from, say, wavevectors to indices is
provided. Accuracy improvements for fitting high-frequency tails and more advanced extrap-
olation schemes for Matsubara sums are also in the works.

In the future, it will be very valuable to extend the ecosystem surrounding
MatsubaraFunctions.jl. For example, many state-of-the-art diagrammatic solvers rely on
the efficient evaluation of similar diagrams such as vertex-bubble-vertex contractions, which
are a common feature of Bethe-Salpeter-type equations. These operations could be developed
independently of the main library, providing even more quality-of-life options for the user.
Moreover, such a toolkit would allow for the swift deployment of different types of solvers,
including fRG solvers for quantum spin systems and self-consistent impurity solvers such as the
MBE code presented in Sec. 4.3.2, to name but a few. With many new and exciting correlated
materials becoming available, fast and flexible solvers are of utmost importance to facilitate
scientific progress, and we strongly believe that a package like MatsubaraFunctions.jl
could be a useful tool for their rapid development.
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A Extrapolation of Matsubara sums

Suppose we want to compute the fermionic Matsubara sum f (τ → 0+) = 1
β

∑
ν f (ν)e−iν0+ .

We assume that f (z) with z ∈ C has a Laurent series representation in an elongated annulus
about the imaginary axis which decays to zero for large |z|. If the poles and residues of f in the
complex plane are known, this problem can in principle be solved by rewriting the Matsubara
sum as a contour integral and applying Cauchy’s residue theorem after deforming the contour.
Unfortunately, these poles are usually unknown and we have to resort to numerical calculations
instead. There, however, we can only compute the sum over a finite (symmetric) grid of
Matsubara frequencies, which converges very slowly if at all.

To tackle this problem, let us assume that f is known on a grid with sufficiently large
maximum (minimum) frequency ±Ω, such that we can approximate

f (ν)≈
N∑

n=1

αn

(iν)n
, (A.1)

for |ν| > Ω. Neglecting the factor e−iν0+ for brevity, this allows us to split up the expression
for f (τ→ 0+) as

1
β

∑
ν

f (ν) =
1
β

∑
ν<−Ω

f (ν) +
1
β

∑
−Ω≤ν≤Ω

f (ν) +
1
β

∑
ν>Ω

f (ν)

≈ 1
β

∑
ν<−Ω

N∑
n=1

αn

(iν)n
+

1
β

∑
−Ω≤ν≤Ω

f (ν) +
1
β

∑
ν>Ω

N∑
n=1

αn

(iν)n
, (A.2)

where (A.1) was used to approximate the semi-infinite sums. In many cases, the dominant
asymptotic behavior of single-particle Green’s functions and one-dimensional slices through
higher-order vertex functions is already well captured by an algebraic decay (iν)−q with q = 1, 2.
Therefore, by truncating the asymptotic expansion at N = 2, we can rewrite the right-hand
side as

1
β

∑
ν

f (ν)≈ 1
β

∑
−Ω≤ν≤Ω

f (ν) +
2∑

n=1

�
1
β

∑
ν

αn

(iν)n
− 1
β

∑
−Ω≤ν≤Ω

αn

(iν)n

�
. (A.3)

The series in the bracket can be computed straightforwardly using Cauchy’s residue theorem
and we find

1
β

∑
ν

f (ν)e−iν0+ ≈ 1
β

∑
−Ω≤ν≤Ω

�
f (ν)− α2

(iν)2

�
− α1

2
− β α2

4
. (A.4)

Thus, if the coefficients αn are known (for example by fitting the high-frequency tails), this
formula can provide a quick and dirty approximation to the infinite Matsubara sum.
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B Implementation details for the MBE solver

In this section we provide additional information on the implementation of the MBE equations,
which were introduced on a general basis in Sec. 4.3.1 of the main text. As for any application
involving many-body Green’s functions, it is crucial to choose an appropriate parametrization
of the self-consistent equations that reflects the symmetries of the field theory under consider-
ation. Here, we deal with the implementation of SU(2) symmetry (spin rotation invariance)
as well as time translation invariance (energy conservation) for the MBE equations of the im-
purity model defined in Sec. 4.3.

B.1 SU(2) symmetry

Consider an SU(2) transformation U = eiεσ, where ε ∈ R3 andσ is the vector of Pauli matrices.
Under U , the fermionic creation and annihilation operators transform into

cs→ Uss′ cs′ , c†
s → c†

s′(U
†)s′s , (B.1)

where we have omitted all indices except the spin s = {↑,↓}. For SU(2) symmetric actions it
can be shown that single-particle Green’s functions G(1)ss′ are diagonal and also invariant under

spin flips, i.e. G(1)ss′ = G(1)δss′ [48]. Two-particle correlators G(2)s1′ s1s2′ s2
, on the other hand, can

be decomposed into two components G(2)|= and G(2)|×, which preserve the total spin between
incoming and outgoing particles

G(2)s1′ s1s2′ s2
= G(2)|=δs1′ s1

δs2′ s2
+ G(2)|×δs1′ s2

δs2′ s1
. (B.2)

Furthermore, the Bethe-Salpeter-like equations (24) can be diagonalized by introducing a sin-
glet (S) and a triplet (T ) component

G(2)|Sp = G(2)|=p − G(2)|×p ,

G(2)|Tp = G(2)|=p + G(2)|×p ,
(B.3)

in the p channel, and a density (D) and magnetic (M) contribution

G(2)|Dt = 2G(2)|=t + G(2)|×t ,

G(2)|Mt = G(2)|×t ,
(B.4)

in the t channel. Moreover, this change of basis has the advantage that physical response
functions can be obtained directly from the screened interaction in the respective channel. The
spin susceptibility χM , for example, is simply given by −U2χM = ηM + U for a local Hubbard
U . For this reason, the {S, T, D, M} basis is sometimes called the physical spin basis, whereas
the decomposition into parallel (=) and crossed terms (×) is known as the diagrammatic spin
basis [48]. In the implementation of the MBE solver, the former is used.

B.2 Time translation invariance

The interacting part of the impurity action from Sec. 4.3 is static, i.e. the bare interaction U
is τ-independent. Consequently, one and two-particle Green’s functions are invariant under
translations in imaginary time, which implies conservation of the total Matsubara frequency
between incoming and outgoing legs [48] and, thus,

G(1)(ν,ν′) = G(1)(ν)× βδν|ν′ ,
G(2)(ν1′ ,ν1,ν2′ ,ν2) = G(2)(ν1′ ,ν1,ν2′)× βδν1′+ν2′ |ν1+ν2

. (B.5)
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Figure 10: Mixed frequency conventions. In mixed notation, each 2PR channel is
described in terms of one bosonic argument Ω and two fermionic frequencies ν,ν′ as
opposed to the purely fermionic notation shown on the left.

Note that we have suppressed additional indices, such as spin, for brevity. For two-particle
quantities, it is convenient to adopt a mixed frequency convention for the 2PR channels, where,
instead of three fermionic arguments, one bosonic transfer frequency Ω and two fermionic
frequencies ν,ν′ are used. The convention used for the MBE solver is shown in Fig. 10.
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3 The numerical renormalization group and its
consistency with quantum field theory

The final chapter of this thesis will take a slightly different viewpoint than the other
sections. While the preceding chapters were devoted to the technical development, imple-
mentation, and application of quantum field theory methods to the many-body problem
in real frequencies, this part will be motivated by the goal of combining qualitatively
different approaches for the same purpose in the future.

Whereas the parquet formalism and the fRG discussed previously were explicitly only
applied to the local single-impurity Anderson model in this work, the true strength of
these quantum field theory methods lies in their applicability to systems in, in principle,
arbitrary spatial dimensions. However, practical calculations become ever more challeng-
ing due to the additional spatial degrees of freedom in higher dimensions, which must
be parametrized in addition to the frequency dependencies of the correlation functions
involved. For this reason, this thesis focused on the simple local impurity model, allowing
a detailed discussion of dynamical properties.
However, other, far more accurate and capable methods exist for treating local impurity
systems, chief among which is the numerical renormalization group (NRG) already used
as a benchmark in Ref. [P1]. While NRG can only be used to study systems with very few
sites, it is useful in the context of higher-dimensional systems, too, as the single-impurity
Anderson model naturally appears in the dynamical mean field theory (DMFT). As we
will discuss in more detail later, DMFT is a non-perturbative method for computing
dynamic correlation functions of lattice models. However, it approximates the self-energy
to be local and is thus incapable of resolving non-local quantum fluctuations. At this
point, QFT methods such as the parquet formalism or fRG are expected to provide a
way forward since those methods can, in principle, straightforwardly treat a non-local
self-energy. However, apart from the resulting technical challenges, the approximations
typically made in those methods (such as the PA) may lead to a breakdown in the
parameter regimes of interest to correlated materials, which are typically at intermediate
to large interaction.

For this reason, it has been proposed to combine the two methods, enabling further
progress. Concretely, one would use the non-perturbative but local DMFT to compute
a local vertex and self-energy, employing NRG to solve the associated impurity prob-
lem. In a second step, these would be used in a non-local (i.e., including momentum
dependence) parquet or fRG scheme to add the effect of non-local quantum fluctuations
self-consistently. How such schemes would work in practice will be further detailed in
the outlook (see Sec. 4.1).
Let us be clear that while such an approach has been demonstrated to be feasible in
the Matsubara formalism [VTM19; Bon+22], such a calculation in real frequencies is, at
present, technically out of reach. We will later comment on a promising technique to
enable such computations by compressing the functions involved (see Sec. 4.2).
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Furthermore, before such a calculation for a lattice model can be tackled, one should
make sure that, already on a local level, the two methods are consistent. In this case,
the exact relations the field theory formalism provides, such as the parquet equations,
must be satisfied to a reasonable degree by the vertex and self-energy from NRG. Since
NRG is not a field theory-based method and, as discussed later, comes with its own
numerical inaccuracies (for the vertex, at least), this cannot be taken for granted. In
particular, the functions produced by NRG have to be artificially broadened in order to
yield smooth curves. Numerical artifacts at this step might compromise the accuracy at
which integral equations, such as the parquet equations, which involve integrations over
the full frequency axis, are fulfilled.

A local version of the parquet equations and other relations is sufficient for such a consis-
tency check. Hence, the implementations presented and employed before in Refs. [P1;
P2] can be employed. In the final publication reprinted in this thesis, Ref. [P4], we
discuss precisely such a consistency check: Having performed NRG calculations for the
single-impurity Anderson model in two qualitatively different parameter regimes, the
resulting vertices and self-energies are scrutinized regarding their fulfillment of exact
equations from quantum field theory. One set of equations will be, of course, the parquet
equations. In addition, we will also discuss a Ward identity, relating self-energy and
vertex, which implies a local conservation law, that is violated in the PA. Still, as NRG
does not employ the PA, this equation should be satisfied, too, and we will indeed see
that NRG does so remarkably accurately.

Before going into the details of this study, we will set the stage by briefly introducing
the NRG, which was already used as a benchmark method in Ref. [P1], including its
recent extension to multipoint functions. Since the NRG method is tailored to solve the
single-impurity Anderson model, which already appeared throughout this thesis, we will
take this opportunity to provide some background about the model and the physics that
it captures. Finally, before reprinting the last publication included in this thesis, we will
quickly introduce Ward identities and discuss their relevance.

3.1 Single-impurity Anderson model
The single-impurity Anderson model (SIAM), introduced by P. W. Anderson [And61] (for
pedagogical introductions, see Refs. [Hew93; Del22]), describes a local quantum system
that consists of a single electronic level coupled to non-interacting electrons. The former
is a highly simplified description of a single impurity atom inside a metal, while the
latter form a bath that is used to model the conduction electrons. Historically, the
model’s main purpose was to explain how local magnetic moments can form at impurities
inside otherwise non-magnetic metals. It proved to be useful in deriving the Kondo
model [Kon64], which is the starting point for Kondo’s explanation of the resistance
minimum observed in metals at low temperatures [HBB34]. This resistance minimum
was one of the main puzzles in condensed matter physics at the time, since one would
expect electric resistance to decrease monotonically with decreasing temperature, since
phonons, the dominant source of electric resistance at finite temperature, should freeze
out. However, when magnetic impurities are present in the metal in question, it was
found that below a certain temperature (typically of a few K), electron scattering and
hence electric resistance would start to increase with decreasing temperature. The reason
for this, as found by Kondo, is that the coupling between the impurity and the bath
enables higher-order spin-flip scattering processes. According to his calculation, the
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Figure 3.1 Pictorial sketch of the single-impurity Anderson model (SIAM). It consists of a
single impurity site modeled by an electronic level representing d-shell electrons. The level can be
occupied by at most two electrons; this entails an interaction energy U . The impurity is coupled
by a hybridization term Vk to a “bath” of non-interacting c electrons with dispersion εk. In an
effective description for the d electrons, the hybridization with the bath leads to a finite width ∆
of the d level. Note that the sketch corresponds to a particle-hole asymmetric setting.

resulting electron scattering rate increases logarithmically with decreasing temperature.

While this result provided an accurate explanation for the occurrence of a resistance
minimum, it led, in turn, to a new issue since it predicts a logarithmically diverging
resistance in the limit T → 0, which is not observed in the experiments. Instead, the
resistance should flatten and approach a constant value. This issue became known as
the Kondo problem and was eventually solved by Wilson, who introduced the NRG for
this purpose [Wil75]. According to his explanation, the local moments at the impurity
sites are screened by the conduction electrons of the bath at low temperatures, together
forming a non-magnetic bound state, called a spin singlet. Hence, no spin-flip scattering
events can occur once the singlet has formed. This phenomenon is called the Kondo effect
and happens around a characteristic energy scale TK, called the Kondo temperature,
which is hence the binding energy of the singlet. The electrons still scatter off the impuri-
ties (which is why the resistance stays finite), but they do not flip their spin in the process.

As was apparent from Kondo’s work already, the Kondo effect cannot be described
with diagrammatic perturbation theory alone. This observation is unsurprising since
forming a bound state such as the Kondo spin singlet violates the adiabatic assumption
[And00]. Additionally, it turns out that, starting from the SIAM, not even the starting
point of Kondo’s considerations, a model of localized magnetic moments [Kon64], can be
reproduced in the PA. As was shown explicitly in Ref. [Cha+21], charge fluctuations, as
quantified by the static charge susceptibility, are not suppressed to a sufficient degree to
predict the formation of local moments. This is because local moments come alongside
irreducible vertex divergences [Sch+13; Gun+16; Cha+18; Spr+20; Eßl+24], which are
a formal artifact of the parquet decomposition. Since the parquet and fRG methods
employed here both use the parquet decomposition, the physics of the Kondo effect hence
cannot be reproduced by these methods alone.
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Still, the SIAM is of interest here for mainly three reasons: First, it can be solved by
NRG, which we will provide details on in Sec 3.2, thus providing an ideal benchmark
for other methods as seen in Ref. [P1]. Second, it is a local model, meaning that all
quantities involved do not depend on site indices or momenta, making their numerical
computations easier. Third, the SIAM appears in DMFT and is hence routinely solved
in studies of correlated materials.

The Hamiltonian of the SIAM is given by

H =
∑
k,σ

εkc†k,σck,σ +
∑

σ

ϵdnσ + Un↑n↓ +
∑
k,σ

(Vkd†σck,σ + H.c.) . (3.1)

Its first term describes a band of non-interacting spinful c electrons and an energy
dispersion εk, where k labels a continuous momentum. The next two terms describe
the impurity site, which consists of a single (“d”) level at energy ϵd, where nσ = d†σdσ.
Occupying this level by two electrons (which, according to Pauli’s exclusion principle,
have to have opposite spin) costs a repulsive interaction energy U . The final part of the
Hamiltonian describes the coupling, or hybridization, of the d level and the electron bath,
letting the electrons tunnel between them with a hopping amplitude Vk. A sketch of the
SIAM is given in Fig. 3.1. It also shows the effect of the hybridization term, which results
in a finite width ∆ of the d level. This result is derived by formally integrating out the c
electrons in a path integral description, which is possible since they are non-interacting
and hence appear at most quadratically in H. This prescription leads to another quadratic
term for the d electrons in the form of a hybridization function,

∆R(ν) =
∑

k

|Vk|2
ν − εk + i0+ =

ˆ
dϵ

ρ(ϵ)
ν − ϵ + i0+ , (3.2)

with the density of states ρ(ϵ) = ∑
k |Vk|2 δ(ϵ − εk). Choosing the tunneling amplitude

between the d level and the bath to be constant and real, Vk = V ∗k ≡ V and choosing a
box-shaped density of states with half-bandwith D, ρ(ϵ) = V 2

2D θ(D−|ϵ|), the hybridization
function becomes

∆R(ν) = ∆
π

ln
∣∣∣∣ν + D

ν − D

∣∣∣∣− i∆ θ(D − |ν|) , (3.3)

with the hybridization parameter ∆ = πV 2

2D . In the wide-band limit D → ∞, in particular
employed in Ref. [P1], the real part of ∆R(ν), which behaves as O( ν

D ), asymptotically van-
ishes and the hybridization function becomes imaginary and constant, ∆R(ν) D→∞−→ −i∆.

The physically relevant local moment regime of the SIAM, where the impurity is on
average occupied by a single electron (with either spin-up or spin-down; hence the
impurity hosts a magnetic moment), occurs when the parameters are chosen such that
the energies of the empty and double-occupied states lie (far) above the single-occupied
level. The latter have energy ϵd; the former have energy 0 and 2ϵd + U , respectively.
When accounting for the broadening of the level due to the hybridization, the respective
differences should be larger than ∆ for a local moment to form. This leads to the
requirements ϵd < −∆ and ϵd + U > ∆. In the special case of particle-hole symmetry,
where ϵd = −U/2, both requirements imply that U/∆

!
> 2.
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Figure 3.2 Schematic depiction of the NRG algorithm. In the first step, ρ(ϵ) is discretized
logarithmically such that the resulting discrete spectrum becomes dense around the chemical
potential. In a second step, the resulting discrete Hamiltonian is tridiagonalized to yield the
Wilson chain, with exponentially decaying on-site energies and connecting tunneling amplitudes
ϵn, tn ∼ Λ−n/2. The final step is an iterative diagonalization procedure, during which only the
lowest-lying energy states of each shell are further resolved.

As a final side note, we mention that two landmark studies in the 1980s managed to solve
the SIAM at zero temperature using the Bethe ansatz [Bet31], providing exact analytical
formulas for static observables [TW83; AFL83]. In particular, there exists an analytic
expression for the Kondo temperature TK, which is customarily defined via the static
magnetic susceptibility at zero temperature [Hal78a; Hal78b; BHP98; Mor+15; Fil+18],

TK = 1
4χm(0) ≃

√
U∆

2 exp
[
−πU

8∆ + π∆
2U

+
(

ϵd + U

2

)
π√

2U∆

]
. (3.4)

3.2 Numerical renormalization group
The numerical renormalization group (NRG) is a non-perturbative computational method
for resolving all energy scales of quantum impurity models, all the way down to ex-
ponentially low energy scales as they appear in the Kondo problem, see, for example,
Eq. (3.4). It was invented in 1975 by Wilson for this purpose [Wil75] and soon applied to
the single-impurity Anderson model [KWW80] as well. After the invention of DMFT
in the early 1990s [GK92; Jar92; Geo+96], NRG was applied as an impurity solver in
this context, too [BHP98]. In recent years, it has been generalized such that it can
be applied to multiorbital models as well [PB05; Sta+15; Sta+19; Den+19; Kug+19;
Kug+20; Sta+21; KK22; KKK24].

The general strategy of NRG consists of three main steps, depicted and summarized
in Fig. 3.2: First, the continuous density of states defining the hybridization function
is discretized logarithmically. The resulting grid, determined by the Wilson parame-
ter Λ > 1 (Λ = 1 would correspond to the original, continuous case), becomes dense
around ϵ = 0, i.e., the electron chemical potential. Second, by tridiagonalizing the
resulting discrete Hamiltonian, the system is mapped onto a semi-infinite chain, called a
Wilson chain, which consists of the impurity at the first site followed by discrete bath
sites, with exponentially decaying on-site energies and connecting tunneling amplitudes
ϵn, tn ∼ Λ−n/2 along the chain. Hence, different energy scales are represented by different
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sections of the Wilson chain. This energy scale separation becomes essential in the third
step: The impurity Hamiltonian (with the bath represented by the Wilson chain) is
diagonalized iteratively by adding one site after another. Crucially, only the Nkeep states
with the lowest energy are retained during that iterative procedure. The other ones
are being discarded, which limits the numerical effort required. Discarding high-energy
states is justified because of the energy scale separation along the Wilson chain: Since
the coupling to site n + 1 is exponentially smaller than to site n, only the lowest-lying
energy states of site n influence the low-energy spectrum of the chain for which site
n + 1 has been added. High-energy states on site n can hence safely be neglected. To
be precise, this does not mean that they are discarded altogether, but that they are not
resolved further during the iterative diagonalization procedure. Indeed, those states are
used in the full-density-matrix NRG [WD07; PPA06] to construct a complete basis of
approximate eigenstates, from which static and dynamic correlators can be computed
using their respective Lehmann representations [AS05]. This formulation was employed
for computing all two-point NRG quantities presented in the publications reprinted in
this thesis, using a state-of-the-art implementation based on the QSpace tensor library
[Wei12a; Wei12b; Wei20]. In addition, further, more recent technical developments,
such as adaptive broadening of discrete spectral data [LW16; LDW17] and an improved
estimator for the self-energy [Kug22] were exploited as well.

For the benchmarks of real-frequency quantum field theory methods presented in Ref. [P1],
not only the two-point self-energy as computed by NRG was required but the four-point
vertex of the SIAM as well. Furthermore, access to a local vertex is crucial to a future
diagrammatic extension of DMFT. Computations of multipoint functions with NRG
have become possible only recently [KLD21; LKD21; Lih+24] and constitute a significant
further development of the NRG method. Here, we will reproduce only the basic ideas of
the method; the details are beyond the scope of this thesis.

At the heart of multipoint NRG calculations lies a powerful, general spectral representation
of n-point correlation functions. As detailed at length in Refs. [KLD21; Ge+24; Hal24],
in a stationary state (such as in thermal equilibrium, for example), a general n-point
function, i.e., an expectation value of a product of n operators, can be written in frequency
space as

G(ω1, . . . , ωn) = 2πδ(ω1 + . . . + ωn)
∑

p

(±1)p

ˆ
dn−1ω′p K(ωp − ω′p) S[Op](ω′p) . (3.5)

The boldface symbols in Eq. (3.5) denote permutations of the frequencies or operators
involved, labeled by the index p; for details, we refer to the works cited above. The
main ingredients of Eq. (3.5) are the functions K(ωp − ω′p) and S[Op](ω′p). The former
is merely a convolution kernel, known analytically. It does not depend on the system
in question, but only on the formalism one is working in. For example, in the Keldysh
formalism, the fully retarded convolution kernel, which combines η − 1 anti time ordering
and n − η time ordering factors, is given by the Fourier transform of

K [η](tp) =
η−1∏
i=1

[iθ(tp(i+1) − tp(i))]
n−1∏
i=η

[−iθ(tp(i) − tp(i+1))] . (3.6)

All Keldysh components of the kernel can be expressed through the fully retarded kernel,
see Ref. [KLD21] for details. By contrast, in the Matsubara formalism, where there is
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only imaginary time ordering, the kernel function instead reads

K(τ p) =
n−1∏
i=1

[−θ(τp(i) − τp(i+1))] . (3.7)

The other main ingredient to Eq. (3.5) are the functions S[Op](ω′p). Those are called
partial spectral functions and contain the actual physical information about the system.
In the time domain, they are given by the plain expectation values of the corresponding
operator products,

S[O](t1, . . . , tn) = ⟨O1(t1) · · · On(tn)⟩ , (3.8)

without any further time-ordering imposed. The partial spectral functions naturally
have a Lehmann representation in terms of the eigenstates and eigenenergies of the
Hamiltonian. For this reason, NRG is perfectly suited for computing them since the
NRG algorithm yields a complete (if approximate) set of eigenstates, as explained before.

While the main ideas behind computations of multipoint functions with NRG are simple,
computing such functions in practice turns out to be rather complicated. Being far
beyond the scope of this work, the details can be found in Ref. [LKD21]. At this point, we
only mention one further crucial issue: The multipoint NRG algorithm enables computing
n-point correlation functions, particularly the four-point function. For this work, however,
not the four-point correlator G(4), but the four-point vertex Γ is required. As detailed in
Sec. (2.2), G(4) needs to be amputated (i.e., four external two-point propagators G have
to be removed) to extract the vertex Γ. Doing so naively by simply dividing G(4) by four
propagators G is non-surprisingly numerically unstable, especially in the high-frequency
limit. For this reason, an alternative technique called symmetric improved estimators
was developed in Ref. [Lih+24], with which Γ can be extracted from G(4) using only
element-wise additions and multiplications of the correlation functions involved with
auxiliary correlators. Furthermore, this method is symmetric with respect to all time or
frequency arguments of the vertex. Also, it does not mix non-interacting and interacting
correlators, making it numerically more stable than previous approaches. A similar
method had been developed previously for extracting the self-energy without directly
employing the Dyson equation [Kug22]. The original derivations for those improved
estimators for the self-energy [Kug22] and four-point vertex [Lih+24] used equations
of motion to relate the correlators involved to each other. Very recently, a compact
derivation using functional integrals has been found, which easily generalizes to arbitrary
n-point vertices [SDS25].

3.3 Ward identities
Before closing this section, we briefly introduce Ward identities in quantum field theory,
which were not discussed previously but are of importance for the final publication
included in this thesis. We give no extensive formal introduction (explicit formulas can
be found in Ref. [P4]) but only recap some background here.

Ward identities are exact relations between correlation functions of different orders. The
first Ward identity ever derived was used to ensure that the ultraviolet divergence of
quantum electrodynamics cancels in all orders of perturbation theory [War50; Tak57].
Since then, Ward identities have become a standard concept in quantum field theory,
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including many-body physics. Generally, Ward identities arise from local microscopic
continuity equations for observables, which directly result from local (gauge) symmetries
of the action and correlation functions or, equivalently, the generating functional. As such,
Ward identities manifest such symmetries on the level of correlation functions. An explicit
derivation in this spirit is provided in Ref. [P4], concretely for the U(1) Ward identity,
which reflects the continuity equation for the local density operator. This Ward identity
has been studied extensively in the past; however, previous papers either investigated this
identity in the Matsubara formalism [Kat04; Kop+10; Haf+14; Kri+17; Kri18; Cha+22]
or considered a one-dimensional limit in the real-frequency Keldysh formalism [Hey+17;
Wal22]. In Ref. [P4], we provide for the first time an explicit derivation of the whole,
two-dimensional U(1) Ward identity in the Keldysh formalism.

For studies of correlated electrons, Ward identities are essential for several reasons: First,
as they relate correlation functions of different orders to each other, they can serve as
a consistency check for methods used for computing these. Therefore, the U(1) Ward
identity was studied in Ref. [P4]: NRG can by now be used to calculate the two-point
self-energy and the four-point vertex, which are related via the (first-order) U(1) Ward
identity. However, NRG itself makes no use of the Ward identity. Hence, it can be
used to judge the accuracy of the final result of the NRG calculation. Second, the
Ward identity might offer a way to improve approximation schemes used in quantum
field theory, such as the PA, in the future. It is well known that the PA, while being
designed to fulfill crossing symmetry of the vertex (as imposed by the Pauli principle),
violates general conservation laws and, consequently, also Ward identities [Smi92; JKP17;
KD18a]. By contrast, other methods, derived from approximations of the Luttinger–
Ward functional [Bay62], also called “conserving approaches”, fulfill Ward identities
by construction. However, these approximations, in turn, violate crossing symmetry.
While not rigorously proven, it is believed that only the exact solution of the many-body
problem can fulfill both conservation laws and crossing symmetry [STB04]. Still, on the
level of individual low-order Ward identities, such as the one between the self-energy and
the vertex studied in Ref. [P4], the PA might be improved upon in the future, e.g., by
replacing the Schwinger–Dyson equation (2.40) with the Ward identity for computing
the self-energy. While the Schwinger–Dyson equation could be violated, such an altered
parquet scheme would guarantee fulfillment of the associated local continuity equation
on the two-point and four-point levels. Investigating this further is a possible future
research direction, especially in the context of non-equilibrium calculations in the Keldysh
formalism, where the fulfillment of conservation laws is essential.
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Recently, it has become possible to compute real-frequency four-point correlation functions of quantum im-
purity models using a multipoint extension of the numerical renormalization group (mpNRG). In this work, we
perform several numerical consistency checks of the output of mpNRG by investigating exact relations between
two- and four-point functions. This includes the Bethe–Salpeter equations and the Schwinger–Dyson equation
from the parquet formalism, which we evaluate in two formally identical but numerically nonequivalent ways.
We also study the first-order U(1) Ward identity between the vertex and the self-energy, which we derive for the
first time in full generality in the real-frequency Keldysh formalism. We generally find good agreement of all
relations, often up to a few percent, both at weak and at strong interaction.

I. INTRODUCTION

A promising route toward computing dynamical correlation
functions of realistic models for correlated electronic systems
lies in combining different numerical methods. One example
is the idea of using the non-perturbative but local dynamical
mean-field theory (DMFT) [1] as a correlated starting point
for subsequent diagrammatic calculations [2]. Recent me-
thodical advancements in the Keldysh formalism (KF) even
put real-frequency dynamical correlation functions directly
comparable to experiments within reach [3–7].

A suitable impurity solver for this purpose is the numer-
ical renormalization group (NRG) [8]. In its recent multi-
point extension (mpNRG) [3, 4], it can provide both the self-
energy and the four-point (4p) vertex of a self-consistently de-
termined DMFT impurity model. These may then be used as
a starting point for nonlocal diagrammatic extensions [2], for
example in the form of the dynamical vertex approximation
(DΓA) [9, 10] using the parquet formalism [11] or (closely re-
lated [12–14]) the functional renormalization group [15, 16].
However, for this to be a reliable strategy, the results from
mpNRG must be of sufficient quality, which a priori cannot
be taken for granted due to numerical restrictions.

NRG computations converged in all numerical parameters
produce numerically exact results for two-point (2p) quanti-
ties such as the self-energy in the low-energy regime. How-
ever, there is a danger of overbroadening at large energies due
to the logarithmic bath discretization in NRG. This may raise
doubts as to how well exact relations involving integrations
over all frequencies are fulfilled. Furthermore, even though
the accuracy of the mpNRG 4p vertex has recently been drasti-
cally improved using the symmetric estimator technique [17],
numerical restrictions such as a relatively small number of
kept states and a correspondingly large discretization parame-
ter still hold. It is, therefore, of interest to test to what extent
the correlation functions produced by mpNRG fulfill exact re-
lations that arise in a quantum field theory (QFT) description
of the many-electron problem. In addition, the fulfillment of

such relations can serve as a guide for future developments of
mpNRG.

In this paper, we study a host of exact relations between
real-frequency correlation functions. We perform our calcu-
lations for the single-impurity Anderson model [18], which
arises in DMFT and which NRG is tailored to solve. Along
with the basics of the formalism and all employed methods,
the model is introduced in Sec. II. We consider two different
datasets from (mp)NRG: one at weak and one at strong in-
teraction. In Sec. III, we first discuss the fulfillment of the
Bethe–Salpeter equations (BSEs) and the Schwinger–Dyson
equation (SDE) from the parquet formalism. Then, we con-
sider the Ward identity (WI) arising from the local U(1) gauge
invariance of the theory. For the first time, we derive it in full
generality in the KF and check its fulfillment in mpNRG. We
find that both the parquet equations and the WI are fulfilled
rather well, in many components up to a few percent, and
comment on larger discrepancies wherever they occur. Fi-
nally, we conclude in Sec. IV and provide details on techni-
calities in the Appendices A–G.

II. FORMALISM

Our main objects of interest are real-frequency dynamical
2p and 4p correlation functions in the KF. Their non-trivial
contributions which arise from electron-electron interactions
are encapsulated in the self-energy Σ and the 4p vertex Γ,

Σ = Σ , Γ = Γ . (1)

The self-energy enters the Dyson equation,

G = =
G0

+ Σ
G0 G

, (2)

determining the one-particle propagator G, where G0 is the
non-interacting (“bare”) propagator. From the retarded com-
ponent of the propagator, the experimentally measurable spec-
tral function is deduced as A(ν) =−ImGR(ν)/π . The vertex
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2

determines the two-particle correlation function G(4),

G(4) = − + Γ , (3)

which yields physical susceptibilities upon contracting pairs
of external legs. An explicit form of the equations shown here
only diagrammatically is provided in App. F 1.

A. The (multipoint) numerical renormalization group

The NRG is a computational technique to resolve all en-
ergy scales of quantum impurity systems in a non-perturbative
fashion. Its main idea consists of logarithmically discretiz-
ing the energy spectrum of the conduction electrons and iter-
atively diagonalizing the resulting Hamiltonian. To this end,
the discretized Hamiltonian is transformed into a semi-infinite
chain with exponentially decreasing hopping amplitudes. This
chain Hamiltonian is then solved iteratively by adding one en-
ergy shell at a time and diagonalizing the effective Hamilto-
nian at each step. By systematically keeping only the low-
energy states while discarding the high-energy states from
each shell, the numerical effort remains manageable. Impor-
tantly, the discarded states from each shell can be gathered
into a complete set of approximate energy eigenstates [19].

Afterward, (multipoint) correlation functions can be com-
puted by convolving analytically known kernel functions with
a set of so-called partial spectral functions (PSFs). The latter
are obtained from their respective Lehmann representations,
using the eigenenergies and (discarded) eigenstates obtained
from NRG.

Originally invented by Wilson to solve the Kondo problem
[20], the NRG was soon applied to the single-impurity Ander-
son model [21]. Later, NRG was also used as a DMFT impu-
rity solver, first in the single-orbital context [22] and then also
for multiorbital models [23–33] and most recently in two-site
cellular DMFT studies [34, 35]. The recent extension of NRG
to multipoint correlation functions (mpNRG) [3, 4, 17] now
enables its application to vertex-based extensions of DMFT.
This work is meant to be a preliminary step toward that goal.

Details on the NRG implementations employed in this work
and the numerical parameters chosen can be found in App. B.
In the following, it is self-explanatory whether the “standard”
NRG or its multipoint extension is employed to compute 2p
or higher-point functions, respectively. We will therefore not
distinguish between the two in the main text.

B. Single-impurity Anderson model

The Hamiltonian of the single-impurity Anderson model
[18] is

H = ∑
εσ

εc†
εσ cεσ +∑

σ
εdnσ +Un↑n↓+∑

εσ
(Vε d†

σ cεσ +H.c.),

(4)

where the impurity site is described by a local d level with on-
site energy εd . The d level hybridizes with spinful conduction

electrons, created by c†
εσ , via matrix elements Vε . Electrons on

the impurity site, where nσ =d†
σ dσ , interact with interaction

strength U . The non-interacting c electrons occur quadrat-
ically in the functional integral and can be integrated out,
yielding a frequency-dependent retarded hybridization func-
tion ∆R(ν) as an additional quadratic term for the d electrons.

We choose the hybridization function as

∆R(ν) =
∆
π

ln
∣∣∣∣
ν +D
ν−D

∣∣∣∣− i∆θ(D−|ν |), (5)

with a box-shaped imaginary part of half-bandwidth D and
strength ∆. In the often-employed wide-band limit, its real
part can be neglected and the hybridization function reduces
to a constant, ∆R(ν) D→∞−→ −i∆.

C. Parquet formalism

The parquet formalism [11, 36–38] provides exact self-
consistent equations for the vertex and the self-energy. Its
starting point is the parquet decomposition, which classifies
all diagrammatic contributions to the vertex w.r.t. their two-
particle reducibility,

Γ = R+ ∑
r∈{a,p,t}

γr . (6)

Any diagram that contributes to Γ is either two-particle re-
ducible in one of the three two-particle channels a, p, or t
(and thus included in the two-particle reducible vertices γr),
or it is two-particle irreducible in all three channels and thus
part of the fully two-particle irreducible vertex R. The parquet
formalism provides self-consistent relations for the reducible
vertices γr in the form of the BSEs,

γr = Ir ◦Πr ◦Γ = Γ◦Πr ◦ Ir . (7)

Here, Ir = Γ− γr, Πr denotes a pair of propagators used to
connect two vertices, and the symbol ◦ is a short-hand no-
tation for contractions over all quantum numbers as well as
frequency integrations.

In addition, self-energy and vertex are related by the SDE,

Σ =−
[
Γ0 +

1
2 Γ0 ◦Πr ◦Γ

]
·G . (8)

Here, the second term can be parametrized w.r.t. either of the
three two-particle channels, and the symbol · is used to denote
the contraction with a single propagator in Eq. (8). Together,
the BSEs and the SDE are known as the parquet equations.
They are exact relations, which however require the input of
the fully irreducible vertex R. In a purely diagrammatic treat-
ment, approximations are employed at this stage, the most
common being the parquet approximation R≃ Γ0, which only
considers the first-order contribution to R from the bare vertex
Γ0. As this neglects higher-order irreducible diagrams, which
start at the fourth order in Γ0, the parquet approximation is
only justified for weak to intermediate interaction strengths.
In this work, the parquet approximation is not employed, as
the NRG provides the full vertex non-perturbatively, including
its irreducible part.
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D. Asymptotic vertex classes

For efficiently treating the reducible vertices γr, they are
decomposed into asymptotic classes as introduced in Ref. 39.
This decomposition captures the high-frequency asymptotic
behavior of the vertices by separating its diagrammatic con-
tributions into so-called asymptotic classes in each channel
r ∈ {a, p, t}. These asymptotic classes do or do not depend
on one or both the fermionic frequencies in the natural fre-
quency parametrization of the respective two-particle chan-
nel, γr(ωr,νr,ν ′r) = K1,r(ωr) + K2,r(ωr,νr) + K2′,r(ωr,ν ′r) +
K3,r(ωr,νr,ν ′r). Diagrams that belong to classes that do not
depend on a given frequency will thus give a finite contribu-
tion to the vertex in the high-frequency limit. In their remain-
ing arguments, however, they ultimately decay. Formally, the
asymptotic classes can be defined as

K1,r(ωr) = lim
νr→∞

lim
ν ′r→∞

γr(ωr,νr,ν ′r) (9a)

K2,r(ωr,νr) = lim
ν ′r→∞

γr(ωr,νr,ν ′r)−K1,r(ωr) (9b)

K2′,r(ωr,ν ′r) = lim
νr→∞

γr(ωr,νr,ν ′r)−K1,r(ωr) (9c)

K3,r(ωr,νr,ν ′r) = γr(ωr,νr,ν ′r)−K1,r(ωr)

−K2,r(ωr,νr)−K2′,r(ωr,ν ′r) , (9d)

in each channel r. They can be visualized graphically as

γa(ωa,νa,ν ′a) = γa

νa+
ωa
2 ν ′a+

ωa
2

νa− ωa
2 ν ′a− ωa

2

= K1,aνa ν ′a

ωa

+ K2,aνa ν ′a

ωa

+ K2′,aνa ν ′a

ωa

+ K3,aνa ν ′a

ωa

(10)

for the a channel, and correspondingly for the p- and t chan-
nels. Note that the symmetric estimator technique in NRG
provides the K1,r, K2,r and K2′,r classes in each channel r sep-
arately, but not so for K3. Instead, it only gives the sum of
the irreducible vertex R and all three K3,r classes, obtained by
subtracting the asymptotic contributions from the full vertex.
That object is used to define the “vertex core”,

Γcore = Γ− [Γ0 + ∑
r∈{a,p,t}

(K1,r +K2,r +K2′,r)] (11a)

= R−Γ0 + ∑
r∈{a,p,t}

K3,r , (11b)

which thus contains all diagrams that genuinely depend on
three frequencies and decay in every direction.

As a side note, the vertex can alternatively be parametrized
using the single-boson exchange (SBE) decomposition [40–

45], which classifies the diagrams according to their interac-
tion reducibility instead of their two-particle reducibility. This
formalism naturally exploits the asymptotic behavior of indi-
vidual classes of diagrams as well. In fact, asymptotic classes
can be related to SBE objects and vice-versa [46]. We will not
employ the SBE decomposition in this work.

E. Keldysh formalism

The KF [47–49] is an alternative to the widespread Mat-
subara formalism (MF) and is applicable both in and out of
thermal equilibrium. In this work, we use it exclusively for
equilibrium computations. There, its main advantage over the
MF lies in the fact that it enables computing dynamical cor-
relation functions in real time or frequency, whereas the MF
gives an imaginary frequency description. Obtaining experi-
mentally measurable observables such as the spectral function
in the MF thus requires analytical continuation, a numerically
ill-conditioned problem.

Working in the KF entails significant practical complica-
tions. For instance, since each operator has a contour index,
the 4p vertex has 24 = 16 Keldysh components. Next, unlike
in the finite-temperature MF, KF objects have a continuous
frequency dependence, which must be discretized in numeri-
cal treatments. This is especially challenging for 4p functions
that depend on three independent frequencies (in equilibrium)
and limits the accuracy of the computations if done naively.
Also, in bubble or loop contractions of diagrams, integrations
over frequencies have to be performed instead of simple sum-
mations over Matsubara frequencies, which again is numeri-
cally much more demanding.

For computing correlation functions with mpNRG, most of
these complications become relevant only in later stages of the
calculations. As explained in detail in Ref. 3, the actual NRG
algorithm is agnostic of the formalism. From the approximate
eigenenergies and eigenstates of the impurity model with a
discretized bath, one obtains a set of PSFs. These, in turn, can
be used to compute correlation functions in any formalism,
be it the MF, the zero-temperature formalism, or the KF. To
this end, the PSFs are convoluted with a set of formalism-
dependent kernel functions; for the KF, the Keldysh index
structure enters via the Keldysh kernels. Only at this step,
namely the convolutions, does it become necessary to spec-
ify a discretized frequency grid, which can be chosen arbi-
trarily in principle. Numerically, the convolution of the PSFs
with the kernel functions is easy to perform. Since the PSFs
consist of delta peaks, the frequency integrals reduce to sim-
ple sums. Beyond that point, no frequency integrations are
necessary within mpNRG. In this work, they enter at a later
stage, when the output of mpNRG is used to evaluate the par-
quet equations or the U(1) WI. Moreover, the vertex is re-
lated to the 4p correlator through the amputation of external
legs. Naively, this requires divisions of the 4p correlator by 2p
propagators, which can become numerically unstable. Using
the recently developed symmetric improved estimators [17],
the vertex can be computed using only element-wise multipli-
cations and additions.
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III. RESULTS

We consider two separate parameter sets throughout. One
is at weak interaction, u = U/(π∆) = 0.5, and T/U = 0.01
(T/∆ ≈ 0.16) in the wide-band limit, where ∆R(ν)→ −i∆,
corresponding to one of the datasets studied in Ref. 6. For this
parameter set, the PA is justified and a self-consistent solution
of the parquet equations can easily be obtained. The other
one is at strong interaction, at a much lower temperature and
for a finite bandwidth, U/∆ = 5 (u ≈ 1.59), T/∆ = 0.0025
and D/∆ = 25, corresponding to one of the datasets studied
in Ref. 17. Here, the PA is not justified anymore and a self-
consistent solution of the parquet equations in the PA with the
methods employed in Ref. 6 is out of reach in the KF. Us-
ing the standard formula [50] for the Kondo temperature at

particle-hole symmetry, TK ≃
√

U∆
2 exp

(
−πU

8∆ + π∆
2U

)
, one ob-

tains TK/∆ ≈ 1.3 and TK/∆ ≈ 0.30 for the weak- and strong-
interaction parameter sets, respectively.

For each parameter set, we performed a “standard” NRG
calculation for the self-energy and a multipoint NRG calcu-
lation for the vertex. The NRG parameters of these calcula-
tions are summarized in App. B. The self-energy and vertex
obtained this way were then used to evaluate all equations of
interest here, utilizing the KELDYSHQFT codebase [51].

All NRG vertex data was generated on a logarithmic
frequency grid, ν/∆ ∈ {−102, . . . ,−10−2,0,10−2, . . . ,102},
with 30 points per decade, i.e. 241 points per frequency axis.
The vertex was computed in the t channel parametrization ac-
cording to the conventions of Ref. 17. This data had to be
transferred to the conventions of Ref. 5 (see App. C for de-
tails), during which not only the frequency parametrizations
were adapted, but also the data was interpolated onto the non-
linear grids introduced in [5, 6] and implemented in [7, 51].
The transferred data was subsequently used to evaluate all
equations relevant to this work.

All one-dimensional functions of interest here are either
symmetric or antisymmetric in frequency. We hence restrict
their plots to positive frequencies using semi-logarithmic
axes. For comparing two dynamical quantities a(ν) and b(ν),
we use their maximal relative difference, which we define as

δ max
rel (a,b)≡max

ν
|a(ν)−b(ν)|/max

ν
|b(ν)| . (12)

We normalize w.r.t. the maximal absolute value of b across
the whole real-frequency axis to avoid an overemphasis on
deviations in regions where the functions a and b are small.

The results in the main text are shown for a single Keldysh
component, since the other components follow from (gen-
eralized) fluctuation-dissipation relations (FDRs) in thermal
equilibrium. In the case of 2p functions, we focus on the re-
tarded component. For the self-energy, the other non-trivial
“Keldysh” component obeys the standard fermionic FDR,

ΣK(ν) = 2i tanh( ν
2T ) ImΣR(ν) . (13)

As explained in detail in Ref. 5, for the K1,r classes (corre-
sponding to bosonic 2p functions), symmetries and causality
reduce the number of naively 16 Keldysh components to only

two. These are related via the standard bosonic FDR,

KK
1,r(ωr) = 2i coth

( ωr
2T

)
ImKR

1,r(ωr) , (14)

where the “retarded” R component refers to the 11|21 com-
ponent, and the “Keldysh” K component refers to the 11|22
component for the t channel or the 12|12 component for the a
and p channel, respectively.

For 2p functions, we compute only the retarded components
with NRG and deduce the Keldysh component, if needed, di-
rectly from the FDRs. Generalized FDRs that relate different
Keldysh components of the full three-dimensional vertex in
thermal equilibrium have been derived in [52–54]. On the
4p level, these were already studied in Ref. 17 (see Fig. 19
therein), so we refrain from repeating such an analysis here.
We only comment on the generalized FDR for one special
Keldysh component of the K2 class in App. A, for which the
BSE studied in Sec. III A is violated comparatively strongly.

A. Bethe–Salpeter equations

We begin by testing the fulfillment of the BSEs, considered
separately for K1 and K2. Since NRG does not provide the
individual K3 classes but only the vertex core, the BSEs for
the K3 classes cannot be verified explicitly. Indeed, while a
full parquet decomposition of the vertex in the MF proceeds
by (matrix-) inversion of the BSEs, this has not yet been done
in the KF, where the frequency dependence of all functions is
continuous. Therefore, it is not possible at this point to study
the BSEs for the full γrs in the KF.

The BSEs for K1 follow from the limit νr,ν ′r→∞ of Eq. (7),

K1,r = Γ0 ◦Πr ◦ (Γ0 +K1,r +K2,r) (15a)

= (Γ0 +K1,r +K2′,r)◦Πr ◦Γ0 , (15b)

or, diagrammatically,

K1,a = Γ0 +K1,a +K2,a

= Γ0 +K1,a +K2′,a (16)

in the a channel and likewise in the p and t channels. We ver-
ified that it makes no difference numerically if K2,r or K2′,r is
used in the BSEs. Figure 1 shows the fulfillment of the BSEs
for KR

1,r,↑↓, the retarded Keldysh component of the ↑↓ spin
component in all three two-particle channels. All other spin
components are related via crossing and SU(2) spin symme-
try. We show both the real and imaginary parts even though,
for these retarded functions, they are connected by Kramers–
Kronig relations. Indeed, NRG exploits the Kramers–Kronig
relations, fulfilling them by construction. However, the im-
plementation of the BSEs does not enforce them explicitly but
evaluates real and imaginary parts separately.
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FIG. 1. Retarded Keldysh component and ↑↓ spin component of the K1,r vertex classes in the three two-particle channels r ∈ {a, p, t}. We
compare the result of NRG (black dashed lines) and the result after one evaluation of the BSEs according to Eq. (15a) (green lines), using
K1,r and K2,r as well as the self-energy inside Πr from NRG, using symmetric estimators for all quantities [17, 55]. In this and all following
plots, results for two separate data sets are shown: the top panels are at “weak interaction”, for which u = U/(π∆) = 0.5 and T/U = 0.01
(T/∆ ≈ 0.16) in the wide-band limit D→ ∞, the bottom panels at “strong interaction” U/∆ = 5,T/∆ = 0.0025, D/∆ = 25. All quantities
shown here are symmetric or anti-symmetric in frequency, thus the plots are restricted to positive frequencies. Real- and imaginary parts are
related by Kramers–Kronig relations, which are enforced in NRG but not in the implementation of the BSEs. Other spin components follow
from crossing symmetry. The only other non-trivial Keldysh component is related via the fluctuation-dissipation theorem, Eq. (14). We observe
excellent agreement up to a few percent, particularly for the dominating a channel. Especially at strong interaction, the slight deviations in the
p channel are negligible, as K1,p is smaller by about one order of magnitude compared to the other channels.

For both parameter sets we observe excellent fulfillment of
the BSEs for K1 up to a few percent. The agreement is partic-
ularly good for the a channel that dominates already at weak
interaction and more so at strong interaction. Since the a chan-
nel is related to the t channel by crossing symmetry, it is no
surprise that the agreement of the BSE in the t channel is ex-
cellent as well. Only in the p channel do the deviations reach
about 18% for the strong-interaction dataset. In particular, the
peak in the imaginary part, which lies at larger frequencies
compared to the other channels, is not reproduced perfectly.
This is to be expected as NRG becomes less accurate at larger
frequencies. Still, since K1,p is smaller compared to the other
two channels by about one order of magnitude at strong inter-
action, these deviations are arguably negligible.

Taking the limit νr′ → ∞ of Eq. (7) gives the BSEs for the
sum of K1 and K2 in channel r,

K1,r +K2,r = lim
ν ′r→∞

Γ◦Πr ◦ Ir = Γ◦Πr ◦Γ0 . (17)

To obtain K2, K1 hence has to be subtracted, which diagram-
matically gives

K2,a = Γ − K1,a (18)

in the a channel, and likewise in the p and t channels. Simi-
larly, taking the limit νr → ∞ yields the BSEs for K2′ . As K2′

and K2 are related by crossing symmetry, we found equiva-
lent results in both cases up to numerical errors. In Fig. 2, we
show a one-dimensional slice of the fulfillment of the BSEs
for K2,r w.r.t. ωr at νr = 0 for the 11|12 Keldysh component
in channels a, t and 12|11 in the p channel. We chose these
Keldysh components to avoid situations where the data van-
ish identically. Of course, K2 depends on two frequencies

independently, and we show another one-dimensional slice
of the BSEs w.r.t. νr at ωr = 0 in Fig. 3. The K2 classes
have five Keldysh components that are not related by causality
and symmetries, which in thermal equilibrium, however, are
again related via (generalized) FDRs. We show the full two-
dimensional frequency dependence of all of them in Figs. 14,
15 and 16 in App. E.

For the one-dimensional cut through K2 at νr = 0 in Fig. 2,
we observe a generally good fulfillment of the BSEs, again up
to a few percent in the a and t channels. As for K1 discussed
previously, the strongest violations occur in the p channel.
Especially in the imaginary parts, the peaks become slightly
broader and higher after one evaluation of the BSE. As for
K1, these peaks lie at larger frequencies than for the a and
t channels. Since NRG is less accurate at large frequencies
due to the logarithmic bath discretization, such a discrepancy
is, therefore, unsurprising. Improving the NRG computations
in this regard requires a convergence analysis in the bath dis-
cretization parameter while retaining a sufficient number of
kept states. At present, this is one of the main bottlenecks and
out of reach for multipoint calculations.

The other one-dimensional cut through K2 in Fig. 3 for ωr =
0, shows a similar result. However, for strong interaction in
the a channel, the data is not entirely smooth. Still, the slightly
rugged structures can be argued to be negligible in practice.
They can be attributed to the conversions between different
frequency parametrizations, see App. C.

Looking closely at the two-dimensional plots for the K2
classes in App. E, one notices that some Keldysh components
fulfill the BSE less accurately than others. To highlight this
fact, we plot another one-dimensional slice of K2 at zero
bosonic frequency in Fig. 4, this time for the 11|22 compo-
nent in the a and t channels and the 12|12 component in the p
channel. We observe significant mismatches, especially in the
real parts, in all three channels. The different Keldysh compo-
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FIG. 2. Fulfillment of the BSE for the ↑↓ spin component of K2,r in all channels r at zero fermionic frequency, for the 11|12 Keldysh
component in channels a, t and the 12|11 Keldysh component in channel p. There generally is good agreement up to a few percent. The
strongest violations occur at the peak in the imaginary part of the p channel. As for K1, the peaks in the p channel lie at larger frequencies than
in the a and t channels. The slight violation of the BSE at those peaks reflects the fact that, due to the logarithmic bath discretization, NRG is
less accurate at large frequencies than at small frequencies.
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FIG. 3. Fulfillment of the BSE for K2,r as in Fig. 2, but at zero bosonic frequency. We observe that it is satisfied to a similar degree. The rugged
structures at small frequencies, particularly visible in the a channel at strong interaction, can be attributed to minor interpolation errors due to
different frequency parametrizations used in NRG and QFT.

nents of K2 are related by generalized FDRs. Since the BSE
is very well fulfilled for some components but less for oth-
ers, one could suspect that generalized FDRs are violated by
NRG. However, in App. A we exemplarily study the general-
ized FDR for the component shown in Fig. 4 and find that it
is very well fulfilled. In App. A, we also discuss a symmetry
relating K2,p and K2,t , observing that it is very well fulfilled,
too. We leave it for future work to identify the origin of the
discrepancy in the BSE for some Keldysh components of K2.
Problems with overbroadening of PSFs at very small bosonic
frequencies have previously been observed in mpNRG [56],
which might also account for the current inconsistencies.

We finally note that, for the strong-interaction dataset, the
magnitude of K2 is comparable to K1 shown before, whereas
at weaker interaction K2 is much smaller. This shows that the
strong-interaction parameters correspond to a regime in which
low-order perturbation theory cannot be applied anymore, and
evaluating the BSEs thus constitutes a highly non-trivial con-
sistency check of the quality of the NRG data.

B. Schwinger–Dyson equation

The first term of the SDE (8) for the self-energy is a con-
stant. The second term can be evaluated in multiple ways, and
we discuss three formally identical methods in the following.
First, one can view the full vertex as a single entity and con-
tract it with the bare vertex in any channel r, followed by a
loop contraction with G. Diagrammatically, this can be visu-
alized as

Σ =− − 1
2

Γ . (19)

Numerically, this is the least favorable way to evaluate the
SDE, as interpolations of K1,r′ ̸=r, K2(′),r′ ̸=r vertex components
and Γcore are required to compute the bubble contraction in
channel r, due to the different native frequency parametriza-
tions in the three channels. Inaccuracies from channel trans-
formations can be reduced by applying the parquet decompo-
sition to the vertex and contracting each reducible vertex γr
with the bare vertex in its native frequency parametrization,
closing the missing loop subsequently. We call this strategy
simply “SDE”, and it is depicted, e.g., in Fig. 16 of Ref. 6.
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FIG. 5. Real (left) and imaginary (right) parts of the dynamical part
of the retarded self-energy. Results for weak and strong interaction
are shown in the top and bottom panels, respectively. We compare
the results from (i) the “Hedint” version, Eq. (20), where a loop is
closed directly over the sum of K1,t and K2,t , (ii) the “SDE” version,
Eq. (19), where Γ is decomposed into K1, K2, and K2′ , contracted
with Γ0 in the respective channel, and the contribution from Γcore is
contracted in the t channel, and (iii) a “standard” 2p NRG calcula-
tion. The “Hedin” version better captures the peaks at finite frequen-
cies and is more accurate in the limit ν → 0 than the “SDE” version.

Using a vertex from NRG, this method can only be applied to
K1, K2, and K2′ in each channel, since the vertex core (includ-
ing K3) is treated as a single entity (which is here parametrized
in the t channel, as the original NRG vertex).

The third way to evaluate the SDE utilizes the BSEs. Con-
tracting the full vertex with the bare vertex in channel r yields
K1,r +K2,r in that channel (see, e.g., Eq. (18)). Assuming ful-
fillment of the BSEs, one can thus evaluate the SDE by closing
a loop over K1,r +K2,r directly, without a prior bubble con-
traction with the bare vertex. Since K1,r +K2,r is a three-point
object, we call this the “Hedinr” strategy [57], depending on
the channel r used. Diagrammatically, it can be depicted as

ΣHedina = K1,a +K2,a (20)
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FIG. 6. Same as in Fig. 5, but on a linear frequency scale to make
deviations in the high-energy peaks more apparent. Although not
entirely perfect, the “Hedin” strategy yields more accurate results at
strong interaction. This is easily understood since the “SDE” version
requires Γcore, which is more difficult to resolve numerically than K1
and K2 used in the “Hedin” version and becomes increasingly more
important at large interactions.

in the a channel, and similarly in the other channels. Here,
we will use the “Hedint” version to minimize numerical inter-
polation errors, as the NRG vertex is paragrametrized in the t
channel. Note that it makes no difference whether one uses the
sum of K1,r and K2,r or K2′,r, as both versions are related by
crossing symmetry. For a numerically exact result that fulfills
the BSEs exactly, all ways of evaluating the SDE should give
identical results. However, as seen previously, the NRG ver-
tices satisfy the BSEs only up to a few percent. Furthermore,
the vertex core only enters the “SDE” version, which, being
the only genuinely three-dimensional object, is more difficult
to resolve numerically than K1 and K2 used in the “Hedin”
version. Lastly, the “SDE” version requires one evaluation of
the BSEs for K1 +K2, as a contraction with the bare vertex
to be computed in the first step. This brings about additional
interpolation and integration errors.

Indeed, while both methods yield almost identical results
at weak interaction, we see at strong interaction in Figs. 5
and 6 that the “Hedin” way of evaluating the SDE reproduces
the NRG self-energy more accurately than the “SDE” strat-
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egy: Although not entirely perfect, its deviations from the
2p computation at the peaks of the real and imaginary parts
of the retarded component, most clearly shown in Fig. 6, are
smaller. Furthermore, both methods deviate slightly from the
2p result at very small frequencies. As shown in the insets
of Fig. 5, the asymptotic value of ImΣR in the limit ν → 0 is
more accurate for the “Hedin” result, at least for the strong-
interaction dataset. We conclude that the NRG vertex fulfills
the SDE well, especially if evaluated with the “Hedin” ver-
sion. Whether this observation carries over to lattice prob-
lems, where the self-energy has an additional momentum de-
pendence and cannot be computed with NRG alone, remains
to be studied. Indeed, the two strategies for evaluating the
SDE might require different ways of treating the momentum
dependence; see, e.g., a recent study using the SBE formalism
and a truncated-unity approach for the momenta [58].

C. U(1) Ward identity

Finally, we discuss the first-order U(1) Ward identity (WI),
which is an exact relation between the self-energy and the ver-
tex. It arises from a local U(1) gauge invariance of the action
and all correlation functions. This implies a local continuity
equation for the density operator [59]. For electronic mod-
els such as the Anderson or Hubbard models, the U(1) WI
has been extensively studied in the MF [59–63]. In the KF,
however, so far only its dependence on a single frequency ar-
gument for the special case of vanishing transfer frequency
was investigated [5, 64]. Here, we study a new, more gen-
eral “two-dimensional” version (depending on two indepen-
dent frequencies) of this WI in the KF. Using frequency con-
servation, spin conservation, and spin-flip symmetry (the lat-
ter two following from SU(2) spin symmetry), it reads

Σα1′ |α1(ν+)−Σα1′ |α1(ν−)

!
=∑
α2′α2α2̃

∫ dν̃
2πi

{
ω Gα2̃|α2′ (ν̃+)Γ

α2′α1′ |α2α1
D (ω,ν , ν̃)Gα2|α2̃(ν̃−)

+∑
α1̃

[
∆α 2̃|α1̃(ν̃+)Gα1̃|α2′ (ν̃+)Γ

α2′α1′ |α2α1
D (ω,ν , ν̃)Gα2|α2̃(ν̃−)

−Gα2̃|α2′ (ν̃+)Γ
α2′α1′ |α2α1
D (ω,ν , ν̃)Gα2|α1̃(ν̃−)∆α1̃|α 2̃(ν̃−)

]}
,

(21)

where ΓD = Γt,↑↑+Γt,↑↓ and we defined the short-hand no-
tation ν± = ν ± ω

2 (and, likewise, for ν̃). A bar over a
Keldysh index means that this index is flipped (1̄ = 2; 2̄ = 1).
We provide a detailed derivation of Eq. (21) in App. III C
and the appendices referenced therein. Let us note that
Eq. (21) is not restricted to thermal equilibrium but holds in
the non-equilibrium steady-state as well. For explicitly time-
dependent problems, the more general form, Eq. (F22), also
derived in App. III C, should be used. Let us also note that
there is no contribution to Eq. (21) to first order in the bare in-
teraction Γ0: For the self-energies on the LHS, the first-order
contribution comes simply from the constant Hartree term and

α1′
α1 1 2

1 −2i ImΣR(ν) −ΣK(ν)
2 ΣK(ν) 2i ImΣR(ν)

α1′
α1 1 2

1 2[ΣA(ω
2 )−ΣH] ΣK(ω

2 )

2 ΣK(ω
2 ) 2[ΣR(ω

2 )−ΣH]

TABLE I. Top: LHS of Eq. (21) for ω = 0. Bottom: LHS of Eq. (21)
for ν = 0 and particle-hole symmetry.

vanishes upon taking the difference. Consequently, the first-
order contribution to the RHS must vanish, too. This is easily
verified by replacing Γ→ Γ0 and G→G0 and performing the
integral (which can be done analytically). Therefore, the WI
provides a non-trivial consistency check for the higher-order
dynamical parts of Γ.

Note that another WI follows from SU(2) spin symmetry. It
is almost identical to Eq. (21), the only difference being that,
instead of ΓD, the ΓM = Γt,↑↑−Γt,↑↓ component is required on
the RHS. For more details on the SU(2) WI, see App. G 4.

We now restrict ourselves to α1′ = α1 = 2 and consider two
one-dimensional limits: First, as shown in App. G 6, in the
wide-band limit and for ω = 0, one recovers the special form
of the WI studied in Refs. 5 and 64,

−2ImΣR(ν) =
∆
iπ

∫
dν̃ GR(ν̃)GA(ν̃)

{
Γ12|21
↑↓+↑↑(ν̃ ,ν |ν , ν̃)

− tanh( ν̃
2T )

[
Γ12|22
↑↓+↑↑(ν̃ ,ν |ν , ν̃)−Γ22|21

↑↓+↑↑(ν̃ ,ν |ν , ν̃)
]}

.

(22)

Note that Σ could generally retain an additional anomalous
contribution coming from the RHS of Eq. (21) in the limit
ω → 0 if the vertex behaves like 1/ω . Since the vertex of the
Anderson impurity model is continuous and non-singular, we
neglect this part here.

Second, for the case of particle-hole symmetry, one ob-
tains another equation for the imaginary part of ΣR from
the other one-dimensional limit ν = 0: Using ΣR(ν)−ΣH =
−[ΣA(−ν)−ΣH] at particle-hole symmetry, its LHS becomes

ΣR(ω
2 )−ΣA(−ω

2 ) = 2[ΣR(ω
2 )−ΣH] . (23)

For completeness, we list all four Keldysh components of
the LHS of Eq. (21) for the special cases ω = 0 in the top part
of Tab. I and ν = 0 together with particle-hole symmetry in the
bottom part of Tab. I. Since all components are related either
via complex conjugation or via the FDR, Eq. (13), we focus
on only one component, α1′ = α1 = 2.

We first test the WI for ω = 0, which yields the imaginary
part of Σ, see Eq. (22) and Tab. I. In Fig. 7, we observe excel-
lent fulfillment of the WI, especially at weak interaction. Only
at strong interaction,−ImΣR reaches unphysical negative val-
ues at small frequencies, albeit of rather small magnitude. In
NRG, the correct sign of ImΣR is enforced by the symmetric
improved estimator [55].
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reaches unphysical negative values.

−0.05

0.00

0.05

u
=

0
.5

δmax
rel =3.0%

(Re ΣR − ΣH)/∆
NRG + WI

NRG

0.00

0.05

0.10

0.15

δmax
rel =9.7%

−Im ΣR/∆

10−2 100 102

ω/2∆

−0.5

0.0

0.5

u
≈

1
.6

δmax
rel =17.0%

10−3 10−1 101

ω/2∆

0.0

0.5

1.0

1.5

δmax
rel =32.1%

10−2 10−1

10−3

10−2 10−1

−10−4

10−1

FIG. 8. Fulfillment of the U(1) WI (23) valid at particle-hole sym-
metry at ν = 0 for α1′ = α1 = 2. The real and imaginary parts are
shown on the left and right, weak and strong interactions at the top
and bottom, respectively. We observe good fulfillment of the WI, es-
pecially at weak interaction. At strong interaction, the peaks of both
ReΣR and ImΣR are not reproduced very accurately by the WI, and
−ImΣR again shows unphysical negative values at small frequencies.

Next, we investigate the ν = 0 limit of the WI, which gives
both real and imaginary parts of Σ. Figure 8 shows good ful-
fillment of the WI throughout, especially at weak interaction.
At strong interaction, the peaks in both ReΣR and ImΣR are
captured less accurately and −ImΣR again becomes negative
at small frequencies. The inaccuracies in the peaks probably
stem from the first term on the RHS of Eq. (21), involving a
factor ω which might exacerbate the numerical inaccuracies
of the NRG vertex at large ω . By contrast, in the other one-
dimensional limit ω = 0, this term is zero.

The full two-dimensional frequency dependence of the gen-
eralized WI, one of the main results of this work, is plotted
in Fig. 9. There, we see once more that the qualitative ful-
fillment of the WI is excellent throughout. Quantitatively,
the largest deviations occur along the one-dimensional cuts
at ν = 0, shown already in Fig. 8.

IV. CONCLUSION

In this paper, we scrutinized the real-frequency 4p vertex
of the single-impurity Anderson model as computed by NRG.
We performed numerical consistency checks for the 2p self-
energy and the 4p vertex based on the parquet equations and
the generalized U(1) WI. The latter was derived, for the first
time, in full generality in the KF. We investigated two data
sets: One at weak interaction, where perturbative approaches
like the parquet approximation are justified, and one in a non-
perturbative regime at strong interaction. We generally found
good agreement throughout, often up to a few percent. Only
in a small number of cases did major discrepancies, worth ad-
dressing in the future, appear. Some underestimated peaks in
a few Keldysh components of K2 suggest that the multipoint
NRG calculations might not have been converged in all nu-
merical parameters.

We tested two numerically nonequivalent ways of evaluat-
ing the SDE for the self-energy and found that it is fulfilled
well both times, but especially using the “Hedin” strategy,
where the K1 and K2 classes of the vertex are used directly.
This is because the more naive evaluation of the SDE includes
the vertex core and requires an intermediate contraction with
a bare vertex, which introduces additional numerical errors.
In the final part of the paper, we observed that the generalized
WI is fulfilled well for both datasets. Only at strong interac-
tion, minor deviations appeared, particularly in the imaginary
part at small frequencies.

The very good fulfillment of the QFT equations studied in
this work in our view encourages the use of the NRG vertex
and self-energy as a starting point for a non-local diagram-
matic extension of DMFT for lattice problems. To this end,
several further steps need to be taken. First, the computation
of correlation functions such as the vertex from PSFs should
be significantly accelerated: Using quantics tensor cross inter-
polation (QTCI) [65–68], an exponentially fine resolution for
the vertex can be afforded at linear cost, provided the vertex
is compressible. Indeed, in a recent proof-of-principle study
in the MF, the parquet equations for the single-impurity An-
derson model were solved entirely in the QTCI framework
[69]. First numerical experiments indicate that the vertex is
compressible even in the KF, at least up to the percent level.
Furthermore, the computation of the vertex from PSFs can
be formulated and carried out entirely in the QTCI language,
thereby significantly reducing the required numerical costs.
An efficient implementation of this procedure is underway
[70]. Second, including additional momentum dependencies
of correlation functions in the KF has so far not been feasi-
ble due to the additional numerical cost and, especially, the
memory demand. Again, the QTCI framework promises a so-
lution to that problem, as it can be generalized to functions
that depend on arbitrarily many multidimensional variables.

Third, to enable calculations for experimentally studied
correlated materials, the formalism and numerical codes must
be generalized to multi-orbital models. Here, NRG quickly
encounters a fundamental barrier, as the numerical effort of
NRG computations for multi-orbital models increases expo-
nentially in the number of orbitals. At the time of this writ-
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FIG. 9. Generalized U(1) WI (21) for α1′ = α1 = 2, across its full two-dimensional real-frequency dependence for both weak and strong
interaction. The qualitative fulfillment of the WI is excellent throughout.

ing, standard NRG calculations are limited to four orbitals and
multipoint NRG is limited to at most two orbitals. One could
try using a different method than NRG for computing the lo-
cal self-energy and vertex. A promising candidate currently
being developed is a “tangent-space Krylov solver” [71], a
tensor-network technique that iteratively generates dynamical
contributions on top of a ground state produced by the den-
sity matrix renormalization group [72]. First numerical ex-
periments show that this approach can be straightforwardly
applied to multi-orbital models. Furthermore, it promises to
be more accurate than NRG at large frequencies, since it does
not rely on logarithmic discretization [73]. However, this ap-
proach has not yet been generalized to finite temperature and,
most importantly, to multipoint functions.

Regarding the WI, for future perturbative diagrammatic cal-
culations which employ, e.g., the parquet approximation, one
might think of replacing the SDE of the parquet formalism
with the WI. For instance, the one-dimensional special case,
Eq. (22), could be used to compute the imaginary part of the
retarded self-energy from the vertex. Using the Kramers–
Kronig relation and the FDR, all components of Σ follow from
that result. At the cost of possibly violating the SDE, the U(1)
local gauge invariance implying fulfillment of the local conti-
nuity equation for the density operator would then be granted
on the 2p and 4p level, which is not given in the standard par-
quet approximation with the SDE. Especially in the context of
non-equilibrium calculations in the KF, where charge conser-
vation is essential, this might prove useful.

DATA AND CODE AVAILABILITY

NRG computations were performed with the MuNRG
package [4, 74, 75] based on the QSpace tensor library [76–
79]. The latest version of QSpace is available [80], and a pub-
lic release of MuNRG is intended. The code used for the eval-
uation of the parquet equations and the WI is an extension of
the KELDYSHQFT package and can be found on GitHub, see

Ref. 51. The raw data, data analysis, and plotting scripts can
be found in Ref. 81.
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APPENDICES

In App. A, we comment on the surprisingly large violation
of the BSE for K2,p, observed in Fig. 3 at weak interaction.
The following appendices provide details on many technical
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FIG. 10. Both sides of Eq. (A8) for the NRG vertex and for the re-
sult after a single evaluation of the BSE at weak interaction, u = 0.5.
Like in Fig. 3, the BSE is clearly violated. However, the symmetry
relation (A8) is fulfilled very well by NRG and, by extension, also
for the NRG+BSE result. We conclude that the discrepancy is not
due to an inconsistency of the NRG vertex on the level of the sym-
metry, Eq. (A8). Instead, it seems that some Keldysh components of
the K2 vertex suffer from inaccuracies in NRG, given the numerical
settings summarized in App. B. This suspicion is supported by the
deviation of NRG from an independently obtained solution of the
parquet equations in the PA, shown as a black dotted line, which are
unexpectedly large at the weak interaction u = 0.5.

aspects: In App. B, we specify the numerical parameters cho-
sen for the self-energy and vertex computations with NRG.
In App. C, we summarize the differences between the con-
ventions used in the mpNRG and KELDYSHQFT codes and
explain how to convert the vertex from one convention to the
other. In App. D, we take a closer look at the BSE at very large
frequencies and show that inaccuracies due to the finite size of
the frequency grid are minimal. In App. E, we show the full
frequency dependence of all non-trivial Keldysh components
of K2 and their BSEs, which were omitted in the main text. In
App. F, we derive the generalized WI in the KF studied in the
main text. Finally, the subsections of App. G detail several, in
part lengthy calculations required for the preceding sections.

Appendix A: Comment on the violation of the BSE for K2

In Fig. 4, we observed a surprisingly large mismatch in the
height of the peak of the real part in all channels at weak
interaction. Here, we take a closer look at this discrepancy
and perform two more consistency checks: First, as derived in
Ref. 82, particle-hole symmetry and SU(2) spin symmetry can
be exploited to relate certain spin components of the 2PR ver-
tices in the p and t channels. Using the notation Γ↑↓|↑↓ ≡ Γ↑↓,
Γ↑↓|↓↑≡ Γ↑↓, Γ↑↑|↑↑≡ Γ↑↑, we define the commonly used “sin-
glet”, “triplet”, “magnetic” and “density” spin components as

S/T =↑↓ ∓↑↓ (A1a)
M/D =↑↑ ∓ ↑↓ (A1b)

By particle-hole, SU(2) spin and crossing symmetry, the full
vertex Γ fulfills the relation (see Eq. (2.135) in [82])

Γ↑↓1′2′|12 = Γ↑↑21′|12′ +Γ↑↓11′|22′ , (A2)

where the multi-indices comprise all vertex arguments except
spin. Combining Eqs. (A1) and Eq. (A2), one obtains

ΓS/T
1′2′|12 = ΓD/M

21′|12′ ±ΓD/M
11′|22′ , (A3)

where crossing symmetry was employed once. From
Eq. (A3), we can derive corresponding equations for the
asymptotic classes. Focusing on K2, where the large dis-
crepancy occurs in Fig. 4, we insert the native frequency
parametrization in the p channel [5],

(ν1′ ,ν2′ |ν1,ν2)p = (ω
2 +ν , ω

2 −ν |ω2 +ν ′, ω
2 −ν ′) , (A4)

which gives

ΓS/T
1′2′|12(

ω
2 +ν , ω

2 −ν |ω2 +ν ′, ω
2 −ν ′)

= ΓD/M
21′|12′(ν

′− ω
2 ,

ω
2 +ν |ω2 +ν ′,ν− ω

2 )

±ΓD/M
11′|22′(−ν ′− ω

2 ,
ω
2 +ν |ω2 −ν ′,ν− ω

2 ) . (A5)

Exchanging external legs from in- to outgoing or vice versa
leads to a sign flip in the corresponding frequency arguments.
This is due to our convention used for Fourier transforms, see
also App. G 3 below, and has been accounted for in Eq. (A5).
The remaining indices now only label Keldysh components.
Comparing to the native parametrization in the t channel [5],

(ν1′ ,ν2′ |ν1,ν2)t = (ν ′+ ω
2 ,ν− ω

2 |ν ′− ω
2 ,ν + ω

2 ) , (A6)

we can write Eq. (A5) as

ΓS/T
1′2′|12; p(ω,ν ,ν ′) = ΓD/M

21′|12′; t(−ω,ν ,ν ′)

±ΓD/M
11′|22′; t(−ω,ν ,−ν ′) , (A7)

where the additional subscript labels the native frequency
parametrization used. Taking the limit ν ′ → ∞ results in an
equation for K2. Focusing on the S spin component and the
12|12 Keldysh component (see Fig. 4) gives

K12|12
2,S (ωp,νp) = K21|12

2,D (−ωt ,νt)+K11|22
2,D (−ωt ,νt)

= 2K11|22
2,D (−ωt ,νt) , (A8)

where we used that the 21|12 and 11|22 Keldysh components
of K2,t are identical, since they are connected by parity, see
Eq. (4.48b) in Ref. 5.

Setting ωr = 0, we plot in Fig. 10 both sides of Eq. (A8) for
the NRG vertex and for the result after a single evaluation of
the BSE at weak interaction. As was the case in Fig. 4, there
is a significant mismatch between the two results. However,
Eq. (A8) is fulfilled very well for the NRG vertex. Since the
BSEs are symmetric by construction, the NRG+BSE result is
then symmetric as well, which is indeed confirmed in Fig. 10.
We conclude that the violation of the BSE is not inherent to
the p channel alone but that the NRG vertex is consistent on
the level of Eq. (A8). For comparison, in Fig. 10, we also plot
the result from a solution of the parquet equations in the PA,
independently obtained with our KELDYSHQFT code [51].
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Due to the small influence of the higher-order contributions
to the 2PI vertex R, neglected in the PA, at weak interaction
u = 0.5, one would expect good agreement between the PA
and NRG. However, while this is the case at small frequen-
cies, the peak for ν/∆ ≳ 1 does not match. It is hence no
surprise that the NRG result does not fulfill the BSE, since it
deviates from the PA result (which fulfills the BSE by con-
struction). Improving the NRG result requires numerically
more challenging parameter settings: Increasing the number
of frequency bins per decade or reducing the discretization
parameter would presumably give more accurate results (see
also App. B for details on the NRG parameters). Finding suit-
ably optimized parameter settings for NRG would go beyond
the scope of this paper and is left for future work.

Second, we exemplarily study the generalized FDR for
K12|12

2,S . It can be derived from Eq. (84) in Ref. [54] and reads

K12|12
2,S (ωp,νp) =

coth
(−ωp

2T

)[
[K21|11

2,S (ωp,νp)]
∗−K12|11

2,S (ωp,νp)
]

+ tanh
(

νp+ωp/2
2T

)[
[K21|11

2,S (ωp,νp)]
∗−K22|12

2,S (ωp,νp)
]
.

(A9)

Evaluating and comparing the LHS and the RHS of Eq. (A9)
for the NRG vertex and the NRG vertex after one evaluation
of the BSE at weak interaction yields Fig. 11. We see that
the FDR is fulfilled exceptionally well both times. Very mi-
nor inaccuracies occur in the NRG+BSE result, which can be
attributed to the finite numerical accuracy of the integrations
required for evaluating the BSE. Strictly speaking, the one-
dimensional cut at ωp = 0 had to be excluded in Fig. 11, due
to the diverging coth term on the RHS of Eq. (A9). There-
fore, we show an additional one-dimensional plot at ωp = 0
in Fig. 12, taking the limit properly: Using the short-hand no-
tation

[
[K21|11

2,S (ωp,νp)]
∗−K12|11

2,S (ωp,νp)
]
≡ K̃2(ωp), we em-

ploy L’Hôpital’s rule to approximate the first term on the RHS
of Eq. (A9) as

lim
ωp→0

coth
(−ωp

2T

)
K̃2(ωp)≈−2T K̃2(0+∆ωp)−K̃2(0−∆ωp)

2∆ωp
,

(A10)

where we approximated the derivative by a finite difference
(∆ωp is the step size of the frequency grid around ωp = 0).
This way, we obtain Fig. 12, where, for ωp = 0 too, the gener-
alized FDR is fulfilled very well. We conclude that the NRG
vertex is consistent on the level of the symmetries and the gen-
eralized FDR exemplarily checked in this section.

Appendix B: NRG computations

The NRG computations performed for this work are based
on the QSpace tensor library [76–80]. We employ the full
density-matrix NRG [83, 84], using adaptive broadening
[74, 75] for obtaining 2p dynamical correlators. The 4p ver-
tex was computed using the recent generalization of the NRG

Λ nz Nkeep Estep σLG γL α γ

Σ 2 6 5000 − − − 2 4
K1,K2 4 4 300/200 16 0.4 T − −
Γcore 4 4 300/200 8/16 0.4 T − −

TABLE II. NRG parameters for the self-energy and vertex calcula-
tions. If two values are specified, the first (second) one corresponds
to the setting for weak (strong) interaction.

method to multipoint functions [3, 4]. Symmetric improved
estimators were used both for the self-energy [55] and the ver-
tex [17]. To compute the vertex, the PSF produced by NRG
had to be convoluted with the appropriate kernel functions. In
order to do so on logarithmic grids with reasonable computa-
tional effort, we employed the following strategy (described in
more detail in Ref. [70]): The broadened Keldysh frequency
kernels were first precomputed on extremely fine, equidistant,
one-dimensional grids with a grid spacing of 100/215 ≈ 0.003
in units of the hybridization parameter ∆. The resulting kernel
functions were brought into matrix form and compressed us-
ing SVDs with a tolerance of 10−6. To obtain the vertex, these
compressed kernel matrices were contracted with the PSFs,
using trilinear interpolation from points on a cuboid surround-
ing the respective frequency points of the logarithmic grid.

We state the numerical parameters chosen for the NRG cal-
culations in Tab. II. Λ is the Wilson parameter used to logarith-
mically discretize the non-interacting bath. (The limit Λ↘ 1
would correspond to the original continuous bath.) Spectral
data are averaged over nz shifted versions of the logarithmic
discretization grid, following Žitko’s discretization scheme
[85, 86]. Nkeep specifies the maximal number of kept SU(2)
multiplets in each shell during the iterative diagonalization. In
principle, a convergence analysis in both nz and Nkeep would
be required to produce optimal results. While Nkeep = 5000
from experience is large enough to compute the self-energy
accurately, this is unfeasible numerically for the multi-point
vertex computations at this point.

Estep specifies the number of frequency bins per decade on
the logarithmic grid for the PSFs of the vertex. σLG and γL
are broadening parameters used for the log-Gaussian broad-
ening of the PSFs, see, e.g., see App. E.2 in Ref. 17. In con-
trast to Ref. 17, where σLG = 0.3 and γL = 0.5T were used for
the vertex at strong interaction, we chose the slightly larger
broadening employed already for weak interaction. The rea-
son is that we observed slight under-broadening of K2,r at
small frequencies with the broadening parameters of Ref. 17.
α and γ are similar broadening parameters used in the log-
Gaussian broadening for 2p NRG computations, as specified
in Eqs. (17b) and (21) of Ref. 74.

Appendix C: Conversions between mpNRG and QFT
conventions

To convert the Keldysh vertex from the conventions of
NRG, as, e.g., outlined in Ref. 17, to the conventions of the
KELDYSHQFT code [5–7], the following steps must be taken:
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FIG. 11. Fulfillment of the generalized FDR (A9) for K12|12
2,S (ωp,νp) at weak interaction from the NRG vertex (left) and after one evaluation

of the BSE (right). Both times, the FDR is fulfilled exceptionally well. The slight discrepancies across the anti-diagonal νp +ωp/2 = 0
are negligible interpolation errors where the second term in Eq. (A9) vanishes. In addition, very minor additional inaccuracies appear in the
NRG+BSE result. We attribute these to the finite numerical accuracy of the integrations required for evaluating the BSE.
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FIG. 12. Same as Fig. 11 for ωp → 0, evaluated as explained in
Eq. (A10). Also in this case, the generalized FDR is fulfilled very
well. The minor wiggles in the top right panel at small frequencies
probably stem from the finite difference used in Eq. (A10).

(i) multiply the vertex by a global sign

(ii) swap the middle Keldysh indices (12|34)↔ (13|24)

(iii) swap K2,p↔ K2′,p

(iv) convert the frequency parametrization according to

[ωt ]
NRG =−ωt (C1a)

[νt ]
NRG = ν ′t +

ωt
2 (C1b)

[
ν ′t
]NRG

= νt +
ωt
2 . (C1c)

Using the conversions between the t-channel and the a- and
p-channel parametrizations as given in App. A of Ref. 5, we

101 102 103

ωp/2∆
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10−5

10−3

u
=

0
.5

−ImK
12|12
2,p,↑↓(ωp, 0)/U
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FIG. 13. One-dimensional slice through one component of K2,
cf. Fig. 2, on logarithmic axes. The dots indicate the frequency grid
points chosen in the KELDYSHQFT code used to evaluate the BSE,
onto which the NRG data was interpolated. The first vertical dashed
line marks the maximal frequency at which all NRG vertex com-
ponents required for evaluating the BSE were available. The second
dashed line marks the maximal frequency for which the shown vertex
component was computed by NRG. Starting at the first dashed line,
we see very minor deviations below 0.1% compared to the maximal
value of the vertex component shown.

further have

[ωt ]
NRG = ν ′a−νa = ν ′p−νp (C2a)

[νt ]
NRG = νa− ωa

2 = νp +
ωp
2 (C2b)

[
ν ′t
]NRG

= νa +
ωa
2 =−ν ′p +

ωp
2 . (C2c)

Appendix D: Fulfillment of the BSE at large frequencies

In this section, we show that the finite extent of the fre-
quency grid only minimally influences the fulfillment of the
BSE. Figure 13 shows a one-dimensional slice through one
component of K2, corresponding to one panel in Fig. 2, fo-
cusing on the region at very large frequencies. The black
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line shows the vertex component as computed by NRG, al-
ready interpolated onto the frequency grid chosen in the
KELDYSHQFT code. The green line shows the same compo-
nent after one evaluation of the BSE with the same code. Two
vertical dashed lines highlight special points on the frequency
axis: The one at ωp

2∆ = 100 marks the maximal frequency for
which the shown vertex component had been computed by
NRG. The other one at ωp

2∆ = 100
2
√

2
≈ 35 marks the maximal

frequency where all NRG vertex components needed for eval-
uating the BSE were available. It is smaller than the other
frequency due to the ω/2 shifts in the QFT parametrizations
and the rotations required when transforming between native
channel parametrizations, see App. C. We see that, up to this
point, the fulfillment of the BSE is close to perfect. After-
wards, small deviations appear, which is to be expected, since
not all components required on the RHS of the BSE are avail-
able anymore. However, the deviations are smaller than 0.1%,
compared to the height of the peak of the component shown,
cf. Fig. 2, and hence numerically negligible. Beyond the sec-
ond dashed line, no NRG data is available anymore.

Appendix E: Full frequency dependence of K2

In Sec. III A, we restricted the discussion of the fulfillment
of the BSEs for K2 to two one-dimensional slices through
a single Keldysh component. For completeness, we show
the full two-dimensional frequency dependence of all five
nonequivalent Keldysh components of K2 in Figs. 14, 15, and
16. We plot the vertex components as produced by NRG in the
first rows, the result after a single evaluation of the BSE (18)
in the second, and their absolute difference in the third. As
always, we show data for both weak and strong interaction,
whereas we restricted the frequency interval shown for strong
interaction to smaller frequencies than for weak interaction to
make the non-trivial structures of the vertex more clearly vis-
ible. In accordance with our discussion in Sec. III A, we ob-
serve good agreement of the BSE throughout. Notably, many
components show sharp structures around ωr = 0, which are
nevertheless extended along the νr direction, in particular in
the a and t channels, already at weak interaction. Resolving
these accurately poses a numerical challenge.

Appendix F: Derivation of the generalized U(1) Ward identity in
the KF

The goal of this section is to provide a self-contained
derivation of one of the main results of this work, namely
the general two-dimensional form of the U(1) WI in the KF,
Eq. (21). We start from textbook definitions of the basic quan-
tities involved and lay out all required calculations without
omitting technical details.

1. Setup and definitions

Our starting point is the partition function expressed using
a functional integral and the action, which contains a non-
interacting as well as an interacting term,

Z =
∫

D [d,d]eiS[d,d] (F1)

S[d,d] = S0[d,d]+Sint[d,d]

=
∫

C
dt
{∫

C
dt ′d

j1′
σ1′

(t ′)
[
G−1

0
] j1′ | j1

σ1′ |σ1
(t ′|t)d j1

σ1(t)

+ 1
4 d

j1′
σ1′

(t)d
j2′
σ2′

(t) [Γ0]
j1′ j2′ | j1 j2
σ1′σ2′ |σ1σ2

d j2
σ2(t)d

j1
σ1(t)

}

(F2)

[
G−1

0
] j1′ | j1

σ1′ |σ1
(t ′|t) = δC (t ′− t)δ j1′ , j1δσ1′ ,σ1 i∂t −h j1′ | j1

σ1′ |σ1
(t ′|t).

(F3)

Here, G−1
0 is the inverse bare propagator and h j1′ | j1

σ1′ |σ1
(t ′|t) the

single-particle Hamiltonian, which for the SIAM contains the
level shift and the hybridization function. In this expression,
repeated indices are meant to be summed over and time inte-
grations are performed over the Keldysh contour C , see, e.g.,
[5] for details. In the context of this work, the single-particle
term is diagonal in the spin indices, but we keep both indices
for now, to make the discussion general enough to still apply
to a model that, e.g., includes an external magnetic field.

To make the following computations more compact, we in-
troduce a multi-index notation, writing

S[d,d] =
∫

tt′
dt′ [G

−1
0 ]t′|tdt

+ 1
4 ∑

1′2′12

∫

C
dt d1′(t)d2′(t)[Γ0]1′2′|12d2(t)d1(t) (F4)

[G−1
0 ]t′|t = δ (t′− t)i∂t −ht′|t (F5)

where non-bold indices (1′,2′,1,2 in Eq. (F4)) comprise
Keldysh indices, spin indices and more general quantum num-
bers one might consider, and the bold indices combine the
non-bold indices with time indices.

Using this notation, correlation functions are defined as fol-
lows. The two-point (2p) and four-point (4p) functions read,

G1|1′ =−i⟨d1d1′⟩ (F6)

G(4)
12|1′2′ = i⟨d1d2d2′d1′⟩ , (F7)

where the bracket ⟨. . .⟩ denotes the standard functional inte-
gral

⟨. . .⟩= 1
Z

∫
D [d,d] (. . .)eiS[d,d] , (F8)

corresponding to expectation values of operators time-ordered
on the Keldysh contour C . The self-energy Σ is introduced via
the Dyson equation,

G1|1′ = [G0]1|1′ +
∫

2′2
[G0]1|2′Σ2′|2G2|1′ (F9)
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FIG. 14. Fulfillment of the BSE for the full frequency dependence of both the real and imaginary parts of K2 in the a channel. The first rows
show the vertex components as produced by NRG, the second the result after a single evaluation of the BSE (18) and the third their absolute
differences. Results for weak (strong) interaction are shown on the left (right). At weak interaction, we restrict the shown frequency intervals
to ±10∆. At strong interaction, we zoom into a smaller region of ±5∆ to highlight the increasingly sharp structures of the vertex. We observe
good agreement of the BSE throughout.

⇔ G−1
1′|1 = [G−1

0 ]1′|1−Σ1′|1, (F10)

and, after employing the tree expansion for the 4p function,

iG(4)
12|1′2′ = G1|1′G2|2′ −G1|2′G2|1′ + iG(4)

c;12|1′2′ , (F11)

the 4p vertex Γ is introduced via the connected part of the 4p
function,

G(4)
c;12|1′2′ =−

∫

3′4′34
G1|3′G2|4′Γ3′4′|34G3|1′G4|2′ .

(F12)

2. Equation of motion for the equal-time Green function

We consider the infinitesimal U(1) gauge transformation

d j
σ (t)−→ d j

σ (t)+iε j
σ (t)d

j
σ (t)︸ ︷︷ ︸

δd j
σ (t)

(F13a)

d
j′
σ ′(t

′)−→ d
j′
σ ′(t

′)−iε j′
σ ′(t

′)d
j′
σ ′(t

′)
︸ ︷︷ ︸

δd j′
σ ′ (t

′)

, (F13b)

or, written in multi-index notation,

dt −→ dt+ iεtdt ≡ dt+δdt (F14a)

dt′ −→ dt′ − iεt′dt′ ≡ dt′ +δdt′ . (F14b)

Here and from now on, repeated indices are not summed
over, unless indicated explicitly. Since this transformation is
supposed to be a symmetry of the theory to O(ε), we demand
invariance of Z as well as all correlation functions under this
transformation to O(ε). This generates an infinite set of con-
sistency relations between correlation functions.

As the U(1) transformation is non-anomalous, meaning that
the path integral measure is invariant under this transforma-
tion, we therefore require

0 !
= δZ =

∫
D [d,d]δS[d,d]eiS[d,d]. (F15)

Since Sint is trivially invariant, the only contribution comes
from the non-interacting part S0. We have

δS0[d,d] =
∫

tt′

{
δdt′ [G

−1
0 ]t′|tdt+dt′ [G

−1
0 ]t′|tδdt

}

=
∫

tt′

{
− iεt′dt′

[
δ (t′− t)i∂t −ht′|t

]
dt
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FIG. 15. Same as in Fig. 14 for the p channel.

+dt′
[
δ (t′− t)i∂t −ht′|t

]
iεtdt

}

=−
∫

t
dt(∂tεt)dt+

∫

tt′
dt′(iεt′ − iεt)ht′|tdt

=
∫

t
εt∂t(dtdt)+

∫

tt′
dt′(iεt′ − iεt)ht′|tdt

=
∫

t
εt
{

∂t(dtdt)+ i
∫

t̃
dtht|t̃dt̃− i

∫

t̃
d t̃ht̃|tdt

}
,

(F16)

where we applied the product rule and integrated by parts in
the second to last step. Since εt is an arbitrary function, using
this result in Eq. (F15), we get

0 !
= ∂t⟨dtdt⟩+ i

∫

1̃
(ht|1̃⟨dtd1̃⟩−h1̃|t⟨d1̃dt⟩), (F17)

where we performed a relabelling of all indices. Employ-
ing the definition of the 2p function in Eq. (F6), together with
the anticommutation property of the Grassmann variables, we
write this result as

i∂tGt|t =
∫

1̃

[
ht|1̃G1̃|t− (t↔ 1̃)

]
, (F18)

which is an equation of motion for the equal-time Green’s
function. This equation is trivially fulfilled if time-translation
invariance is assumed. We state it here primarily for later use.

3. First-order WI

The first-order WI is derived by requiring that the 2p func-
tion remain invariant under the U(1) transformation. Using
the definition, Eq. (F6), we have

0 !
= δG1|1′

=−i
∫

D [d,d]
{

δd1d1′ +d1δd1′

+ id1d1′δS[d,d]
}

eiS[d,d]

=−i
∫

D [d,d]
{
(iε1d1)d1′ +d1(−iε1′d1′)

+ id1d1′δS0[d,d]
}

eiS[d,d]

=
∫

D [d,d]d1d1′(ε1− ε1′ +δS0[d,d])eiS[d,d] . (F19)

Again, this must hold for arbitrary εt̃, so that, using Eq. (F16),

0 !
=

∫
D [d,d]d1d1′

{
δ (1− t̃)−δ (1′− t̃)+∂t̃(d t̃dt̃)

+ i
∫

t
(d t̃ht̃|tdt−dtht|t̃dt̃)

}
eiS[d,d]

=
[
δ (1− t̃)−δ (1′− t̃)

]
⟨d1d1′⟩+∂t̃⟨d1d1′d t̃dt̃⟩

+ i
∫

t

[
ht̃|t⟨d1d1′d t̃dt⟩− (t̃↔ t)

]
. (F20)
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FIG. 16. Same as in Figs. 14 and 15 for the t channel.

Using the definition of the 4p function, Eq. (F7), and relabel-
ing indices, we obtain

0 !
= [δ (1− t)−δ (1′− t)] iG1|1′

− i∂tG
(4)
1t|t1′ +

∫

1̃

[
ht|1̃G(4)

11̃|t1′ − (t↔ 1̃)
]
. (F21)

This is the first-order U(1) WI, expressed through real-time
arguments in the contour basis.

Next, we insert the tree expansion for the 4p func-
tion, Eq. (F11), into Eq. (F21) and use the Dyson equation,
Eq. (F10), as well as Eq. (F12) to express the U(1) WI in terms
of the self-energy Σ and the 4p vertex Γ. This gives

iΣs′|tδ (t−s)−δ (s′− t)iΣt|s
!
=

∫

1̃4′3

{ →[
G−1

0
]
t|1̃G1̃|4′Γs′4′|3sG3|t

−Gt|4′Γs′4′|3sG3|1̃
←[

G−1
0
]
1̃|t

}
. (F22)

The derivation of this result can be found in App. G 1.
Next, a Keldysh rotation is performed, and the open index t

is contracted, as detailed in App. G 2. We furthermore assume
time translation invariance and use a Fourier transform to fre-
quency space, see App. G 3. We also impose SU(2) spin sym-
metry, see App. G 4. With the short-hand notation ν± = ν± ω

2

(and, likewise, for ν̃), the resulting equation then reads

Σα1′ |α1(ν−)−Σα1′ |α1(ν+)

= ∑
α2′α2α2̃α1̃

∫

ν̃

dν̃
2πi

{
Gα2̃|α2′ (ν̃+)Γ

α2′α1′ |α2α1
D (ω,ν , ν̃)

×Gα2|α1̃(ν̃−)
[
G−1

0
]α1̃|α 2̃ (ν̃−)

−
[
G−1

0
]α 2̃|α1̃ (ν̃+)Gα1̃|α2′ (ν̃+)

×Γα2′α1′ |α2α1
D (ω,ν , ν̃)Gα2|α2̃(ν̃−)

}
,

(F23)

where we applied crossing symmetry in the first two argu-
ments of Γ and performed a relabeling of the Keldysh indices
compared to App. G 2. The U(1) WI for the self-energy has
been derived in the context of lattice problems in the MF be-
fore, see, e.g., App. A in Ref. 62 or Sec. E.1 in Ref. 59. Equa-
tion (F23) can be seen as a generalization of these results to
the KF. The simpler form of the WI in those works, however,
involves the 2PI vertex, which is at present not accessible with
NRG in the KF. We therefore use the form of Eq. (F23), which
involves only the full 4p vertex.

Finally, using the explicit form of the inverse bare propa-
gator for the single-impurity Anderson model without a mag-
netic field,

[G−1
0 ]α1′ |α1(ν) = δα1′ ,α1(ν− εd)−∆α1′ |α1(ν) , (F24)

see App. G 5 for details, we obtain Eq. (21) from the main text.
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Appendix G: Explicit calculations

Most of the calculations below follow standard text-book
strategies, which we formulate here in general notation,
adapted to our conventions.

1. Representation of Eq. (F21) in terms of Σ and Γ

Inserting the tree expansion for the 4p function, Eq. (F11),
into Eq. (F21) gives

0 !
= [δ (1− t)−δ (1′− t)] iG1|1′

−∂t
[
G1|tGt|1′

]
+G1|1′∂tGt|t

− i
∫

1̃

[
ht|1̃

(
G1|tG1̃|1′ −G1|1′G1̃|t

)
− (t↔ 1̃)

]

− i∂tG
(4)
c;1t|t1′ +

∫

1̃

[
ht|1̃G(4)

c;11̃|t1′ − (t↔ 1̃)
]

= [δ (1− t)−δ (1′− t)] iG1|1′

−∂t
[
G1|tGt|1′

]
− i

∫

1̃

[
ht|1̃G1|tG1̃|1′ − (t↔ 1̃)

]

− i∂tG
(4)
c;1t|t1′ +

∫

1̃

[
ht|1̃G(4)

c;11̃|t1′ − (t↔ 1̃)
]
. (G1)

In Eq. (G1), we used Eq. (F18) for i∂tGt|t, leading to a cancel-
lation of some terms. Now, we write the inverse bare Green’s
function, Eq. (F5), as

[
G−1

0
]
t̃|t = δ (t̃− t)i∂t −ht̃|t =−δ (t̃− t)i

←
∂t̃ −ht̃|t

⇒
∫

t̃

[
G−1

0
]
t̃|t = i∂t −

∫

t̃
ht̃|t =−i

←
∂t −

∫

t̃
ht̃|t, (G2)

and
[
G−1

0
]
t|t̃ = δ (t− t̃)i∂t̃ −ht|t̃ =−δ (t− t̃)i

←
∂t −ht|t̃

⇒
∫

t̃

[
G−1

0
]
t|t̃ = i∂t −

∫

t̃
ht|t̃ =−i

←
∂t −

∫

t̃
ht|t̃. (G3)

The second formulation arises from an integration by parts in
the non-interacting action, letting the time derivative act on
the barred Grassmann variable to the left of G−1

0 in Eq. (F4).
The arising boundary term vanishes due to the closed time
contour in the KF: As the time evolution returns to the same
(in this case thermal) density matrix it started from at the ini-
tial time t0, the Grassmann variables at the initial and final
times can differ by at most a phase. For the product dd, the
two phases cancel exactly. Therefore, the boundary term

∫

C
dt ∂t [d

j
(t)d j(t)] = d

+
(t0)d+(t0)−d

−
(t0)d−(t0) (G4)

vanishes. We can thus rewrite the disconnected part (second
line) of Eq. (G1) as

− i∂t
[
G1|tGt|1′

]
+

∫

1̃

[
ht|1̃G1|tG1̃|1′ − (t↔ 1̃)

]

=
[
−i∂tG1|t

]
Gt|1′ −

∫

1̃
h1̃|tG1|1̃Gt|1′

+G1|t
[
−i∂tGt|1′

]
+

∫

1̃
ht|1̃G1|tG1̃|1′

=

[
−iG1|t

←
∂t −

∫

1̃
G1|1̃h1̃|t

]
Gt|1′

+G1|t

[
−i∂tGt|1′ +

∫

1̃
ht|1̃G1̃|1′

]

=
∫

1̃

{
G1|1̃

←[
G−1

0
]
1̃|tGt|1′ −G1|t

→[
G−1

0
]
t|1̃G1̃|1′

}
. (G5)

Introducing the 4p vertex Γ via Eq. (F12), the 4p part (third
line) of Eq. (G1) is written as

− i∂tG
(4)
c;1t|t1′ +

∫

1̃

[
ht|1̃G(4)

c;11̃|t1′ − (t↔ 1̃)
]

=
∫

3′4′34

{
i∂t

[
G1|3′Gt|4′Γ3′4′|34G3|tG4|1′

]

−
∫

1̃

[
ht|1̃G1|3′G1̃|4′Γ3′4′|34G3|tG4|1′

−h1̃|tG1|3′Gt|4′Γ3′4′|34G3|1̃G4|1′
]}

=−
∫

3′4′34

{

G1|3′
[
−i∂tGt|4′ +

∫

1̃
ht|1̃G1̃|4′

]
Γ3′4′|34G3|tG4|1′

+G1|3′Gt|4′Γ3′4′|34

[
−iG3|t

←
∂t −

∫

1̃
G3|1̃h1̃|t

]
G4|1′

}

=
∫

3′4′34

∫

1̃

{
G1|3′

→[
G−1

0
]
t|1̃G1̃|4′Γ3′4′|34G3|tG4|1′

−G1|3′Gt|4′Γ3′4′|34G3|1̃
←[

G−1
0
]
1̃|tG4|1′

}
. (G6)

We thus obtain

0 !
= [δ (1− t)−δ (1′− t)] iG1|1′

+
∫

1̃

{
(−i)G1|1̃

←[
G−1

0
]
1̃|tGt|1′ + iG1|t

→[
G−1

0
]
t|1̃G1̃|1′

+
∫

3′4′34

(
G1|3′

→[
G−1

0
]
t|1̃G1̃|4′Γ3′4′|34G3|tG4|1′

−G1|3′Gt|4′Γ3′4′|34G3|1̃
←[

G−1
0
]
1̃|tG4|1′

)}
. (G7)

Inserting the Dyson equation, Eq. (F10), into the second
and third single-particle term and using that

∫
1̃ G−1

1|1̃G1̃|1′ =∫
1̃ G1|1̃G−1

1̃|1′ = δ (1−1′), we get
∫

1̃

{
G1|1̃

←[
G−1

0
]
1̃|tGt|1′ −G1|t

→[
G−1

0
]
t|1̃G1̃|1′

}

= δ (1− t)Gt|1′︸ ︷︷ ︸
δ (1−t)G1|1′

−G1|tδ (t−1′)
︸ ︷︷ ︸

G1|1′δ (t−1′)

+
∫

1̃

{
G1|1̃Σ1̃|tGt|1′ −G1|tΣt|1̃G1̃|1′

}
, (G8)

and hence, using the cancellation with the first term of
Eq. (G7),

0 !
=

∫

1̃

{
iG1|tΣt|1̃G1̃|1′ − iG1|1̃Σ1̃|tGt|1′
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+
∫

3′4′34

(
G1|3′

→[
G−1

0
]
t|1̃G1̃|4′Γ3′4′|34G3|tG4|1′

−G1|3′Gt|4′Γ3′4′|34G3|1̃
←[

G−1
0
]
1̃|tG4|1′

)}
. (G9)

Multiplying with
∫
1 G−1

s′|1 from the left and with
∫
1′ G−1

1′|s
from the right, we obtain

0 !
=

∫

1̃

{
iδ (s′− t)Σt|1̃δ (1̃−s)− iδ (s′− 1̃)Σ1̃|tδ (t−s)

+
∫

3′4′34

(
δ (s′−3′)

→[
G−1

0
]
t|1̃G1̃|4′Γ3′4′|34G3|tδ (4−s)

−δ (s′−3′)Gt|4′Γ3′4′|34G3|1̃
←[

G−1
0
]
1̃|tδ (4−s)

)}

= δ (s′− t)iΣt|s−δ (t−s)iΣs′|t

+
∫

1̃4′3

{ →[
G−1

0
]
t|1̃G1̃|4′Γs′4′|3sG3|t

−Gt|4′Γs′4′|3sG3|1̃
←[

G−1
0
]
1̃|t

}
, (G10)

which is Eq. (F22).

2. Keldysh rotation of Eq. (F22)

The Green’s functions in the Keldysh and contour bases are
related by the Keldysh rotation Gα|α ′ = Dα| jG j| j′(D−1) j′|α ′ ,
with the matrices

D =
1√
2

(
1 −1
1 1

)
; D−1 =

1√
2

(
1 1
−1 1

)
(G11)

(Gα|α ′) =
(

0 GA

GR GK

)
; (G j| j′) =

(
G−|− G−|+

G+|− G+|+

)
.

(G12)

The inverse transformation is G j| j′ = (D−1) j|α Gα|α ′Dα ′| j′

(summation convention implied). The same transformation
applies to the self-energy, whose Keldysh structure reads

(Σα ′|α) =
(

Σ1|1 Σ1|2

Σ2|1 Σ2|2

)
=

(
ΣK ΣR

ΣA 0

)
. (G13)

Likewise, for the vertex one has

Γ j1′ j2′ | j1 j2 = (D−1) j1′ |α1′ (D−1) j2′ |α2′Γα1′α2′ |α1α2Dα1| j1Dα2| j2 .
(G14)

To perform the Keldysh rotation of Eq. (F22), we proceed
as follows. First, to avoid a trivially vanishing result after con-
tracting the open multi-index t, we multiply the whole equa-
tion with the contour index − jt . We then contract t, leaving
out the integration over time for now, as that will follow later
when doing the Fourier transformation into frequency space.
Only focusing on the Keldysh index structure, this gives

(− js)Σ js′ | js − (− js′)Σ js′ | js (G15)

for the LHS of Eq. (F22). The Keldysh rotation is now per-
formed by multiplying with D from the left and with D−1

from the right. To compute the Keldysh rotation of − js′Σs′|s,
we write it as a matrix product, − js′Σs′|s = ∑s̃ σ s′|s̃

z Σs̃|s =

(σzΣc)s′|s, where σz is the third Pauli matrix and the super-
script c of Σ in the last expression indicates that it is given
in the contour basis. For the Keldysh basis, we use the su-
perscript k. Applying the Keldysh rotation and inserting an
identity gives

(DσzΣcD−1)α ′|α = (DσzD−1DΣcD−1)α ′|α = (σxΣk)α ′|α

= Σα ′|α . (G16)

Here, we used DσzD−1 = σx. This first Pauli matrix flips
the corresponding Keldysh index, which is what the bar over
the first Keldysh index denotes in the final expression. Con-
cretely, 1̄ = 2; 2̄ = 1. The other term, − jsΣs′|s = (Σcσz)

s′|s, is
transformed analogously and gives Σα ′|α . After the Keldysh
rotation, the LHS of Eq. (F22) thus reads Σαs′ |αs −Σαs′ |αs .

The right-hand side of the WI, Eq. (F22), is transformed
analogously. Again focusing only on the Keldysh index struc-
ture, after contracting t, the first term can be written as

∑
jt , j1̃, j4′ , j3

(− jt)[G−1
0 ] jt | j1̃G j1̃| j4′Γ js′ j4′ | j3 jsG j3| jt

= Tr
{

σz[G−1
0 ]cGcΓc; js′ | jsGc

}

= Tr
{

DσzD−1D[G−1
0 ]cD−1DGcD−1DΓc; js′ | jsD−1DGcD−1

}
,

(G17)

where we inserted identities and used the cyclicity of the trace.
Again using DσzD−1 = σx, which flips the corresponding
Keldysh index, and performing the Keldysh rotation for the
two remaining open indices in Γ, the first term of the RHS of
Eq. (F22) reads

∑
αt ,α1̃,α4′ ,α3

[G−1
0 ]αt |α1̃Gα1̃|α4′Γαs′α4′ |α3αsGα3|αt . (G18)

The second term is transformed analogously, such that the
Keldysh structure of the full WI, Eq. (F22), reads

Σαs′ |αs −Σαs′ |αs

= ∑
αt ,α1̃,α4′ ,α3

{
[G−1

0 ]αt |α1̃Gα1̃|α4′Γαs′α4′ |α3αsGα3|αt

−Gαt |α4′Γαs′α4′ |α3αsGα3|α1̃ [G−1
0 ]α1̃|αt

}
(G19)

after Keldysh rotation. In a final step, we apply crossing sym-
metry to the first two arguments of Γ for a favorable frequency
parametrization later on. This yields an additional minus sign
and swaps the first two Keldysh indices of the vertices, such
that the Keldysh structure of Eq. (F22) can be written as

Σαs′ |αs −Σαs′ |αs

= ∑
αt ,α1̃,α4′ ,α3

{
Gαt |α4′Γα4′αs′ |α3αs Gα3|α1̃ [G−1

0 ]α1̃|αt

− [G−1
0 ]αt |α1̃Gα1̃|α4′Γα4′αs′ |α3αsGα3|αt

}
(G20)
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3. Fourier transform of Eq. (F22)

We insert the Fourier transforms of all functions,
which read G(t1|t1′) =

∫
ν1ν1′

eiν1t1G(ν1|ν1′)e−iν1′ t1′ for

all 2p functions G, G−1
0 , and Σ and Γ(t1′t2′ |t1t2) =∫

ν1′ν2′ν1ν2
eiν1′ t1′ eiν2′ t2′Γ(ν1′ν2′ |ν1ν2)e−iν1t1e−iν2t2 for the

4p vertex. Here and from now on, we use the compact
notation

∫ dν
2πi =

∫
ν for frequency integrals. In this section, we

temporarily drop the Keldysh and spin indices of all functions
and purely focus on their time- and frequency-dependence.

We transform the whole Eq. (F22) with respect to ts and ts′
by applying

∫
ts′ ts

e−iν ′ts′ eiνts on both sides. We furthermore
divide the whole equation by i. For the LHS, we get

∫

ts′ ts
e−iν ′ts′ eiνts

{
δ (tt − ts)

∫

νs′νt

eiνs′ ts′ e−iνt tt Σ(νs′ |νt)

−δ (ts′ − tt)
∫

νt νs

eiνt tt e−iνstsΣ(νt |νs)
}

= eiνtt
∫

νs′νt

e−iνt tt Σ(νs′ |νt)
∫

ts′
ei(νs′−ν ′)ts′

− e−iν ′tt
∫

νt νs

eiνt tt Σ(νt |νs)
∫

ts
ei(ν−νs)ts

= eiνtt
∫

νt

e−iνt tt Σ(ν ′|νt)− e−iν ′tt
∫

νt

eiνt tt Σ(νt |ν)

= ei(ν−ν ′)tt
[
Σ(ν ′)−Σ(ν)

]
. (G21)

In the last step, we imposed time-translation invariance, which
entails frequency conservation, Σ(ν ′|ν)≡ Σ(ν)δ (ν ′−ν).

The transformation of the RHS is more tedious, but
straightforward, as proceeds analogously. It gives

ei(ν−ν ′)tt
∫

νt

{[
G−1

0
]
(νt)G(νt)Γ(ν ′,νt |ν ′−ν +νt ,ν)G(ν ′−ν +νt)−G(νt +ν−ν ′)Γ(ν ′,νt +ν−ν ′|νt ,ν)G(νt)

[
G−1

0
]
(νt)

}
.

(G22)

Here, we used energy conservation both for the 2p functions
and for the 4p vertex, for which we have Γ(ν1′ν2′ |ν1ν2) ≡
Γ(ν1′ ,ν2′ |ν1,ν2)δ (ν1′ +ν2′ −ν1−ν2). We now perform a fi-
nal Fourier transform with respect to tt , applying

∫
tt eiωtt to

the full equation with the transfer frequency ω . This yields
the delta function δ (ν − ν ′+ω), which allows us to replace
ν ′ = ν +ω by formally integrating over ν ′. The full WI in
frequency space thus reads

Σ(ν +ω)−Σ(ν)

=
∫

νt

{[
G−1

0
]
(νt)G(νt)Γ(ν +ω,νt |νt +ω,ν)G(νt +ω)

−G(νt −ω)Γ(ν +ω,νt −ω|νt ,ν)G(νt)
[
G−1

0
]
(νt)

}
.

(G23)

To make the frequency parametrizations of the vertices of both
terms on the RHS match, we now shift νt → νt +ω in the
second term and subsequently rename νt → ν̃ , which gives

Σ(ν +ω)−Σ(ν)

=
∫

ν̃

{[
G−1

0
]
(ν̃)G(ν̃)Γ(ν +ω, ν̃ |ν̃ +ω,ν)G(ν̃ +ω)

−G(ν̃)Γ(ν +ω, ν̃ |ν̃ +ω,ν)G(ν̃ +ω)
[
G−1

0
]
(ν̃ +ω)

}
.

(G24)

Finally, we shift the external fermionic frequency ν → ν −
ω/2 and the integration frequency ν̃ → ν̃ −ω/2 and subse-
quently flip ω →−ω to symmetrize the equation. Using the
short-hand notation ν± = ν ± ω

2 (and, likewise, for ν̃) again,
we arrive at

Σ(ν−)−Σ(ν+)

=
∫

ν̃

{[
G−1

0
]
(ν̃+)G(ν̃+)Γ(ν−, ν̃+|ν̃−,ν+)G(ν̃−)

−G(ν̃+)Γ(ν−, ν̃+|ν̃−,ν+)G(ν̃−)
[
G−1

0
]
(ν̃−)

}
.

(G25)

This way, the vertex is parametrized in the a channel conven-
tion as defined in App. A of Ref. 5. In a final step, we apply
crossing symmetry in the first two arguments of Γ:

Σ(ν−)−Σ(ν+)

=
∫

ν̃

{
G(ν̃+)Γ(ν̃+,ν−|ν̃−,ν+)G(ν̃−)

[
G−1

0
]
(ν̃−)

−
[
G−1

0
]
(ν̃+)G(ν̃+)Γ(ν̃+,ν−|ν̃−,ν+)G(ν̃−)

}
.

(G26)

At the expense of a minus sign, the vertex is then parametrized
in the t channel parametrization and we will susequently write
Γ(ν̃+,ν−|ν̃−,ν+) = Γt(ω,ν , ν̃).

4. Spin structure of Eq. (F22) in the case of SU(2) symmetry

After contracting the open index σt , the spin structure of
Eq. (F22) reads

LHSσ ′s|σs = ∑
σt ,σ1̃,σ4′ ,σ3

(
[G−1

0 ]σt |σ1̃
Gσ1̃|σ4′Γσs′σ4′ |σ3σsGσ3|σt

−Gσt |σ4′Γσs′σ4′ |σ3σsGσ3|σ1̃
[G−1

0 ]σ1̃|σt

)
, (G27)

where we abbreviated the left-hand side as

Σα1′ |α1
σs′ |σs

(ν− ω
2 )−Σα1′ |α1

σs′ |σs
(ν + ω

2 )≡ LHSσ ′s|σs . (G28)
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We now consider the case in which SU(2) symmetry holds.
This implies that all 2p functions are diagonal in their spin
arguments, e.g. Σσ1′ |σ1 ∼ δσ1′ ,σ1 . For the 4p vertex, we have
Γσ1′σ2′ |σ1σ2 ∼ δσ1′+σ2′ ,σ1+σ2 . Restricting ourselves to σs′ =
σs =↑, we have

LHS↑|↑ = ∑
σ

(
[G−1

0 ]σ |σ Gσ |σ Γ↑σ |σ↑Gσ |σ

−Gσ |σ Γ↑σ |σ↑Gσ |σ [G
−1
0 ]σ |σ

)
. (G29)

Using G↑|↑ = G↓|↓, we can suppress the spin-indices for the 2p
functions and write

LHS =
(
[G−1

0 ]GΓ↑↑+↑↓G−GΓ↑↑+↑↓G [G−1
0 ]

)
. (G30)

where we used the notation introduced in App. A, Γ↑↓|↑↓ ≡
Γ↑↓, Γ↑↓|↓↑ ≡ Γ↑↓, Γ↑↑|↑↑ ≡ Γ↑↑ and Γ↑↓+↑↑ = Γ↑↓+Γ↑↑. Again
applying crossing symmetry in the first two arguments of Γ
yields the ↑↑+ ↑↓= D spin component, so we write

LHS =
(

GΓD G [G−1
0 ]− [G−1

0 ]GΓD G
)
. (G31)

As mentioned in Sec. III C, in addition to U(1) symmetry, the
SU(2) symmetry of the action can be exploited as well to de-
rive another, almost identical, WI. Its derivation works in al-
most the same way, the only difference being that the genera-
tors of SU(2) transformations, i.e. the Pauli matrices, modify
the spin structure of the equation. As explained in Ref. [61],
the result is given by a slight modification of Eq. (G29),

LHS↑|↑ = ∑
σ

σ
(
[G−1

0 ]σ |σ Gσ |σ Γ↑σ |σ↑Gσ |σ

−Gσ |σ Γ↑σ |σ↑Gσ |σ [G
−1
0 ]σ |σ

)
, (G32)

where σ =↑→+1 and σ =↓→−1. Compared to Eq. (G29),
this only changes the sign with which the ↑↓ component en-
ters in Eq. (G30). Once again applying crossing symmetry to
parametrize the vertex in the t channel yields the ↑↑− ↑↓=M.
The rest of the WI is unchanged. In this work, we do not dis-
cuss the SU(2) WI further.

5. Fourier transform, Keldysh rotation, and explicit form of
G−1

0 for the single-impurity Anderson model

In this section, we compute the Fourier transform of the
inverse bare Green’s function G−1

0 and its Keldysh rotation
explicitly. As seen in Eqs. (G2) and (G3), we can write G−1

0
using derivatives acting either to the left or to the right. Both
versions must yield the same result for the Fourier transform,
which we will now show. Starting with the derivative acting
to the right, we compute

[G−1
0 ]1′|1(ν1′ |ν1) =

∫

t1′ t1
e−iν1′ t1′ [

→
G−1

0 ]1′|1(t1′ |t1)eiν1t1

=
∫

t1′ t1
e−iν1′ t1′

[
δ1′,1δC (t1′ − t1)i

→
∂ t1 −h1′|1(t1′ |t1)

]
eiν1t1

=
∫

t1′ t1
e−iν1′ t1′

[
δ1′,1δC (t1′ − t1)(−ν1)−h1′|1(t1′ |t1)

]
eiν1t1

= j1′δ1′,1ν1

∫

t1
ei(ν1−ν1′ )t1 −

∫

t1′ t1
e−iν1′ t1′h1′|1(t1′ |t1)eiν1t1

= j1′δ1′|,1ν1δ (ν1−ν1′)−h1′|1(ν1′ |ν1). (G33)

Likewise, using the derivative acting to the left, we obtain
∫

t1′ t1
e−iν1′ t1′

[
δ1′,1δC (t1′ − t1)(−ν1′)−h1′|1(t1′ |t1)

]
eiν1t1

= j1δ1′,1ν1δ (ν1−ν1′)−h1′|1(ν1′ |ν1), (G34)

which is the same result. Writing the first term in matrix form
([G−1

0 ]
j′| j
ν−part) =

(−ν 0
0 ν

)
, we perform a Keldysh rotation as in

Sec. G 2, multiplying with D−1 from the left and with D from
the right to obtain ([G−1

0 ]
α ′|α
ν−part) =

(0 ν
ν 0

)
, which is the expected

result. Using energy conservation, writing [G−1
0 ]1′|1(ν1′ |ν1) =

[G−1
0 ]1′|1(ν1)δ (ν1′ −ν1), we therefore have

[G−1
0 ]

α1′ |α1
σ1′ |σ1

(ν) = δα1′ ,α1δσ1′ ,σ1 ν−hα1′ |α1
σ1′ |σ1

(ν) . (G35)

For the single-impurity Anderson model without a magnetic
field, the single-particle Hamiltonian is given by the shift of
the impurity level plus the hybridization function,

hα1′ |α1
σ1′ |σ1

(ν) = δα1′ ,α1δσ1′ ,σ1 εd +∆α1′ |α1
σ1′ |σ1

(ν) . (G36)

6. Derivation of Heyder’s result for the special case ω = 0

We obtain the special case of the WI already studied in the
literature [5, 64] by taking α1′ = α1 = 2 and setting ω ≡ 0 in
Eq. (21). The LHS of Eq. (21) then becomes

Σ2|1(ν)−Σ1|2(ν) = ΣA(ν)−ΣR(ν) =−2i ImΣR(ν) .

Using that the frequency arguments of all 2p functions are
identical in this case, we focus only on the Keldysh structure
of −RHS of Eq. (21), which we write as the trace over matrix
products in Keldysh space,

Tr

{(
∆A 0
∆K ∆R

)(
0 GA

GR GK

)(
Γ1|1 Γ1|2

Γ2|1 0

)(
0 GA

GR GK

)

−
(

0 GA

GR GK

)(
Γ1|1 Γ1|2

Γ2|1 0

)(
0 GA

GR GK

)(
∆R ∆K

0 ∆A

)}
.

(G37)

The first term on the RHS of Eq. (21), being ∼ ω , obviously
vanishes. Here, we have already flipped the Keldysh index α2̃
of the hybridization functions and fixed the Keldysh indices
α1′ and α1 of Γ to 2, using that Γ22|22 = 0 by causality. Eval-
uating the matrix product and computing the trace gives

∆RGR(Γ1|1GA +Γ1|2GK)+(∆KGA +∆RGK)Γ2|1GA

− (GRΓ1|1 +GKΓ2|1)GA∆A−GRΓ1|2(GR∆K +GK∆A) .
(G38)
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Reshuffling terms and using the FDR GK = th(GR − GA)
and likewise for ∆K , where “th” is a short-hand notation for
tanh( ν

2T ) = 1−2nF(ν), several terms cancel and we obtain

GRGA(∆R−∆A)Γ1|1 + th
[
Γ1|2(GR∆AGA−GR∆RGA)

+Γ2|1(∆RGAGR−GA∆AGR)
]

= GRGA(∆R−∆A)
[
Γ1|1− th(Γ1|2−Γ2|1)

]
. (G39)

In the wide-band limit, where ∆R − ∆A = −2i∆, the whole
equation becomes

2ImΣR(ν) = 2i∆
∫

ν̃
GR(ν̃)GA(ν̃)

{
Γ21|12(ν , ν̃ |ν̃ ,ν)

− [1−2nF(ν̃)]
[
Γ21|22(ν , ν̃ |ν̃ ,ν)−Γ22|12(ν , ν̃ |ν̃ ,ν)

]}
,

(G40)

where we reinstated the frequency arguments. Multiplying the
whole equation with (−1) and using crossing symmetry for
the vertices twice, this becomes precisely Eq. (8.13) in Ref. 5.

Appendix H: Diagrammatic representation of the U(1) WI

In this section, we provide a compact diagrammatic rep-
resentation of the U(1) WI. This representation is useful to
motivate the result of the Keldysh rotation and of the Fourier
transform carried out explicitly in in App. G 2 and App. G 3.

Introducing the bare 3p “Hedin” vertex as

δ1′t1 = δ (1′− t)δ (t−1) = δ

1

1′

t , (H1)

where t labels a “bosonic” multi-index that is contracted,
Eq. (F22) can be written as

iΣs′|1δ1ts− iδs′t1Σ1|s = δ2t2′Γs′4′|3s×{[
G−1

0
]
2|1̃ G1̃|4′G3|2′ −G2|4′G3|1̃

[
G−1

0
]
1̃|2′

}
. (H2)

For ease of notation, repeated multi-indices are meant to be
contracted.

Introducing a diagrammatic notation for G−1
0 ,

[G−1
0 ]1′|1 = G−1

0
1′ 1

,

we can depict Eq. (H2) diagrammatically as

δ

s

t

Σ

s′

− δ

s′

t

Σ

s

= Γ δ t

G−1
0

s′

s

− Γ δ t

G−1
0s′

s

, (H3)

where touching diagram components mean a direct contrac-
tion between the two, without a connecting propagator.

In these expressions, the Keldysh rotation and the Fourier
transform are mere basis transformations to be carried out
consistently. After choosing a frequency convention and ac-
cordingly labeling the legs, the frequency arguments can be
read off from the diagrams. Hence, we merely need the
Keldysh and frequency structure of the bare Hedin vertex δ ,
which turns out to be very analogous to that of the bare inter-
action Γ0. First, in (H1) the delta functions that enforce equal
times simply become a delta function that frequency conser-
vation. Second, the Keldysh structure of δ is given by

δ α1′1α1 =

(
0 1
1 0

)
= σα1′α1

x , (H4a)

δ α1′2α1 =

(
1 0
0 1

)
= δα1′ ,α1 (H4b)

for αt = 1 and αt = 2, respectively. Equation (21) is obtained
for the choice αt = 1.
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4 Outlook
At the beginning of Ch. 3, we motivated our study of the output of NRG in Ref. [P4]
by the possibility of using NRG as an impurity solver for dynamical mean-field theory
(DMFT) calculations serving as a starting point for a subsequent nonlocal diagrammatic
extension. By combining the non-perturbative albeit local nature of DMFT with quantum
field theory in the form of, e.g., the parquet equations or fRG, which can be formulated
for nonlocal correlation functions, this idea in the long run promises to enable precise
studies of correlated materials in regimes where perturbative approximations such as the
PA break down.

In this chapter, we discuss these proposals in more detail. After summarizing the main
ideas behind DMFT, we list a few suggestions for nonlocal extensions in Sec. 4.1, focusing
on diagrammatic extensions. We discuss three methods concretely, which are based on
the parquet equations and fRG, respectively. The main issue all diagrammatic extensions
of DMFT share is that, due to the additional momentum dependencies, the functions
involved, especially the vertices, are challenging to resolve and compute numerically. In
the final section of this thesis, Sec. 4.2, we therefore discuss the main ideas behind the
quantics tensor cross interpolation technique, which currently is the most promising
candidate method for keeping the numerical resources required for such calculations in
check.

4.1 Diagrammatic extensions of dynamical mean field
theory

The dynamical mean-field theory is a widely used method in condensed matter physics
[Geo+96]. Historically, its first main achievement was the explanation of the metal-
to-insulator (“Mott”) transition in transition-metal oxides. By now, it has become a
standard tool for studying correlated materials, often in combination with other methods
such as density functional theory [Kot+06]. Motivated by previous work on perturbation
theory in large dimensions [MV89; GK92; Jar92], DMFT’s main approximation is to
neglect spatial fluctuations. Local quantum fluctuations are, however, fully taken into
account. Formally, DMFT approximates the self-energy to be local, i.e., momentum
independent,1

Σ(ν, k) ≡ Σ(ν) . (4.1)

This approximation is justified in high dimensions when the vicinity of a given lattice site
has little spatial structure and becomes exact in the limit of infinite dimensions or infinite
coordination number of the lattice. Additionally and crucially, DMFT is also exact in
two more vastly different limiting cases: First, for non-interacting systems (Γ0 = 0), the
self-energy vanishes identically, so Eq. (4.1) holds trivially. Second, in the atomic limit,
1 It is a common misconception that DMFT only yields local quantities. That is not true: For instance,

the two-point Green’s function G(ν, k) = [ν −εk −Σ(ν)]−1 is momentum dependent in DMFT. However,
the momentum dependence enters only through the bare dispersion εk and is not renormalized by the
self-energy.
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when the tunneling amplitudes between different lattice sites tij = 0 vanish, there are
no nonlocal contributions to the self-energy because the system can simply be described
as a collection of independent, uncoupled sites. DMFT’s property of being exact under
these three qualitatively different circumstances makes it widely applicable and a good
approximation in many cases.

The actual DMFT algorithm works as follows. Focusing on a single lattice site, the
influence from the neighboring sites is approximated as an electron bath without spatial
structure. This description readily yields an impurity model (see Sec. 3.1), with the effect
of the surrounding lattice captured by the frequency-dependent hybridization function
∆(ν), which becomes the dynamical mean field. Solving the resulting impurity model
yields a local self-energy Σ(ν). That is the hard part, since a many-body problem still
has to be solved and numerous “impurity solvers” have been used for this purpose, the
gold standard being NRG, see Sec. 3.2. Next, DMFT asserts that the resulting impurity
Green’s function corresponds to the local lattice Green’s function,2

1
ν − ϵd − ∆(ν) − Σ(ν)

!=
∑

k

1
ν − εk − Σ(ν) . (4.2)

Solving Eq. (4.2) for ∆(ν) defines a new impurity model to be solved. Hence, the previous
steps have to be iterated until convergence.

Despite its success, the DMFT approximation, describing only local correlations, is a se-
vere limitation in some cases. In particular, DMFT cannot predict momentum-dependent
many-body effects. One example is the opening of a pseudogap in the spectral function
of the Hubbard model or of cuprates [Kei+15], which opens only in parts of the Brillouin
zone. Also, DMFT violates the Mermin–Wagner theorem [MW66] because the long-range
quantum fluctuations, responsible for inhibiting long-range order at low temperatures,
are neglected. Furthermore, it can be shown using symmetry arguments that the vertex
corrections to the current-current correlation function and, by extension, to the optical
conductivity, see Sec. 1.2.3, vanish in single-site DMFT [Khu90; Geo+96].

For these reasons, there is a need for nonlocal extensions of DMFT. Most naturally, not
just a single site but a cluster of multiple sites is treated inside the DMFT algorithm. That
can be done in momentum space, which is called the “dynamical cluster approximation”
(DCA) [Het+98] or in real space, giving rise to “cellular DMFT” (CDMFT) [Kot+01;
LK00]. For a review of these cluster extensions of DMFT, see Ref. [Mai+05]. While the
cluster size controls the accuracy of the methods, it is also their main limitation since
treating large clusters is numerically costly due to the exponentially increasing dimension
of the underlying Hilbert space. Cluster extensions are, therefore, restricted to small
cluster sizes, limiting their ability to describe long-range correlation effects. Still, good
results can be obtained if the correlation length is comparatively small, such as in the
strong-coupling pseudogap phase of the Hubbard model [Sch+21; Mei+24].

The system size is no issue for the second class of nonlocal extensions of DMFT, namely
diagrammatic extensions [Roh+18], which typically can be used to compute nonlocal
correlation functions in the thermodynamic limit. In keeping with the topic of this thesis,

2 The chemical potentials can be absorbed in the impurity level shift ϵd and the lattice dispersion εk,
respectively.
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we will focus here on parquet and fRG-based schemes.3

In the parquet formalism, the simplest method for extending the local approximation
of the self-energy is the ladder dynamical vertex approximation (ladder DΓA) [TKH07;
HKT08; Kus06; Hel22]. Starting from the local self-energy Σ and a local 2PI vertex in a
given channel Ir from DMFT, the BSE in that channel, see Eq. (2.37), is evaluated to
yield a momentum-dependent vertex. As previously mentioned in Sec. 3.1, for certain
parameters, Ir can diverge, even in the absence of a physical phase transition. Such
irreducible vertex divergences are compensated by γr, so that the full Γ stays finite, and
are hence a formal artifact of the parquet decomposition. Conveniently, ladder DΓA
can be formulated in such a way that the irreducible vertex Ir does not have to be
used explicitly [Roh+18; Kug19]: Plugging the BSE into the parquet decomposition,
Eqs. (2.36), one can write

Γ = Ir + Ir ◦ Πr ◦ Γ ⇔ I−1
r = Γ−1 + Πr . (4.3)

Since I−1
r is approximated to be local, one can set

Γ−1 + Πr = Γimp,−1 + Πimp
r , (4.4)

with the momentum-dependent lattice quantities on the left and the local quantities
corresponding to the self-consistent DMFT impurity model on the right. Equation (4.4)
can be solved to yield

Γ = Γimp + Γimp ◦ (Πr − Πimp
r ) ◦ Γ , (4.5)

which can be evaluated without resorting to irreducible vertices. In the next step, the
SDE, Eq. (2.39), is evaluated, which yields a momentum-dependent self-energy. Iterating
this scheme until convergence results in self-consistently computed nonlocal contribu-
tions to Σ and Γ. However, since one specific two-particle channel r has to be picked
in Eq.(4.5), ladder DΓA does not correspond to a channel unbiased approach like the
parquet equations or the fRG.4

The most natural way of improving upon the restrictions of ladder DΓA is the full parquet
DΓA [TKH07; HKT08; Kus06; Hel22], which uses the full set of parquet equations, i.e.,
the BSEs in all three channels and the SDE. The only input required for those, see
Sec. 2.3.1, is the fully 2PI vertex R. Consequently, parquet DΓA approximates R to be
local and taken as input from DMFT, R ≡ Rimp. Apart from that, all other quantities in-
volved are fully momentum dependent. While being channel unbiased and self-consistent
on the two-particle level, this scheme poses several severe challenges: First, one needs
explicit access to Rimp, which is, at present, not possible with multipoint NRG in the
Keldysh formalism (see also Ref. [P4]). In the Matsubara formalism, the (local) BSEs can
be inverted to yield Rimp. However, irreducible vertex divergences may be present again,
manifest in Rimp. Second, at large interactions, Rimp can be sizeable, which may make it
hard to find a converged solution of the parquet equations, like we have seen in Ref. [P1].
Third, parametrizing the vertices requires vast numerical resources since all four-point

3 Numerous further proposals have been made involving dual fermions [RKL08], dual bosons [RKL12],
or the TRILEX approach [AP15], which all come with different limitations that go beyond the scope of
this text. For a review, see Ref. [Roh+18].

4 In particular, the full vertex only acquires a single momentum dependence through Eq. (4.5), not all
three.
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objects involved (except Rimp) depend on both three frequencies and three momenta
independently. Additionally, evaluating the parquet equations becomes resource-intensive
since this has to be done independently for all combinations of external arguments.

Regarding the last issues, major improvements are to be expected when employing
the newly developed quantics tensor cross interpolation technique (QTCI), introduced
below in Sec. 4.2, which can be used to find an efficient, compressed representation
of high-dimensional functions. Indeed, the parquet equations can be evaluated using
only functions in the QTCI representation, as demonstrated recently in the Matsubara
formalism [Roh+24]. Regarding the first two issues of parquet DΓA, a conceptually
elegant alternative is the proposal to use the fRG in combination with DMFT, called
DMF2RG [Tar+14; Wen+15; VTM19; Bon+22] to continuously interpolate between the
DMFT impurity problem and the lattice theory using a regulator Λ. This regulator is
introduced into the bare nonlocal propagator,

GΛ
0 (ν, k) = 1

ν − (1 − Λ)εk − Λ[∆(ν) + ϵd] , (4.6)

where Λ flows from 1 to 0 in the spirit of Eqs. (2.44). Since the fRG flow equations
only require the full vertex but no irreducible vertices on the RHS, see Eqs. (2.45), the
full vertex of the impurity model Γimp can be used as a starting point and irreducible
vertex divergences are no issue. However, a one-loop truncation would pose a severe
limitation, as exemplified in Ref. [P1] for local fRG, restricting the accuracy of DMF2RG.
Augmenting the one-loop fRG flow by the iterative multiloop flow equations, see Sec. 2.3.4,
should, in principle, yield a self-consistent and controlled result, reproducing the parquet
DΓA. However, the previously mentioned issues of multiloop fRG apply again: Starting
at third loop order, self-consistency between the flow equations for Σ and Γ is required,
complicating a numerical solution. Furthermore, in the Keldysh formalism, contributions
at higher loop orders may become increasingly sharply peaked [Ge25] and hence difficult to
resolve. Additionally, as in parquet DΓA, the four-point objects have to be parametrized
with three frequencies and three momenta, which is numerically overwhelming using
naive schemes. For this reason, in the final part of this thesis, we summarize the main
ideas behind the QTCI method, which is expected to help overcome this challenge.

4.2 Quantics tensor cross interpolation
The quantics tensor cross interpolation (QTCI) technique [Rit+24] combines two ideas
to find compressed representations of high-dimensional functions: The quantics repre-
sentation of multivariate functions and the tensor cross interpolation (TCI) method.
The quantics representation was developed in Refs. [Ose09; Kho11; Kho18] but was only
recently applied in the context of a quantum field theory description of the many-electron
problem [Shi+23]. Its main idea is a binary representation of each variable of the studied
functions. For simplicity, considering a one-dimensional function f(x), which depends
on the continuous variable (rescaled to the unit interval) x ∈ [0, 1), it is discretized on a
regular grid of 2L points,

x = σ1
21 + σ2

22 + . . .
σL
2L , (4.7)

where the discrete variables σi ∈ {0, 1} are called “quantics bits”. Accordingly, the
function f is henceforth represented using these discrete bits, f = f(σ1, σ2, . . . , σL), cor-
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responding to a 2L tensor. Each bit encodes the structure of the function f at a different
length scale: σ1 resolves the coarsest structure, and σL resolves the finest structure. The
number L of bits has to be chosen by hand, depending on the demands of the problem.
Crucially, adding a single further bit effectively doubles the resolution. At this point,
however, it also doubles the number of tensor components.

The quantics representation can be generalized straightforwardly to functions with multi-
ple variables, simply by using an independent binary representation for each. To preserve
the property of the first bits encoding the large-scale information and the later bits
encoding the small-scale structure, the bits should be grouped accordingly. There are
different strategies for doing this, the details of which go beyond the scope of this text
[YL22; Rit+24; Núñ+25].

A function represented through quantics bits can be formally “unfolded” as a tensor train
(TT) or matrix product state (MPS),

f(σ1, σ2, . . . , σL) = [M1]σ1
1α1 [M2]σ2

α1α2 · · · [ML]σL
αL−11 , (4.8)

where summation over the repeated virtual indices αi is implied. In the “worst case
scenario”, when f has full rank, the dimension of the virtual indices, also called bond
dimension, increases exponentially towards the middle of the TT. This scaling implies
that the memory required to store the TT increases exponentially with L. However, if f
does not have full rank, an approximate representation using a TT with a lower bond
dimension may still be accurate. Therein lies the power of this factorized representation:
A restriction of the maximal bond dimension χ can potentially lead to exponential savings
in the resources required for storing the TT. Obtaining a TT representation of a tensor
in the form of Eq. (4.8) requires a factorization algorithm. Traditionally, a singular value
decomposition (SVD) would be employed since it would yield the TT representation with
the smallest possible χ for a given accuracy. However, performing an SVD requires the
full tensor f to be stored in memory, which quickly becomes overwhelming.

At this point, the tensor cross interpolation (TCI) algorithm comes in [OT10; Ose11].
The TCI is a factorization method designed to construct a low-rank representation of
a given tensor without requiring the full tensor to be stored in memory. Instead, it
deterministically samples a subset of the tensor’s elements, adaptively increasing the
TT’s maximal bond dimension χ until the desired accuracy is achieved. In the field of
many-body physics, the TCI was first used to compute high-dimensional integrals as
occurring when evaluating high-order diagrams in quantum Monte Carlo calculations,
which requires efficiently sampling the highly complex integrands depending on many
variables [Núñ+22; Erp+23]. Especially since its application to functions represented in
the quantics representation [Rit+24] yielding quantics tensor trains (QTTs), the TCI has
been applied to numerous problems in the recent past [Roh+24; TSS25] and optimized
implementations of the TCI algorithm have been developed [Núñ+25]. Crucially, elemen-
tary operations such as additions, integrations, etc., can be performed on QTTs directly.
Hence, there is no need to ever deal with the full tensors; their QTT representations
suffice. Instead of the grid size, χ is now the crucial parameter in these algorithms, since
they typically scale with ∼ χ3 (Fourier transform) or ∼ χ4 (convolution, element-wise
multiplication, ...), but only linearly in L [Núñ+25]. Hence, these algorithms permit an
exponentially fine resolution at linear cost, provided χ is bounded, i.e., when the QTT
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has low rank.

That happens for functions represented as QTTs when the functions show independent
structures at different length scales. It turns out that this is the case for many functions
appearing in physics and beyond since most functions have some structure that can be
found and encoded with the TCI algorithm and are typically not dominated by random
noise, which would be incompressible. However, systematically predicting whether the
QTT representation of a given function has low rank is an active field of research [Lin24].
So far, QTCI-compressible functions have been found simply by trial and error. Crucially,
it seems that the electron correlation functions discussed in this thesis are compressible
by QTCI [TSS25; MSW24; Śro+24]. In particular, it was recently demonstrated in
Ref. [Roh+24] that the parquet equations for the Hubbard atom and the SIAM can
be solved entirely in the QTT language in the Matsubara formalism. In addition to
representing the Matsubara self-energy and vertices as QTTs, this required advanced
methods using matrix product operators to perform operations on QTTs and affine trans-
formations for switching frequency parametrizations. Extending these calculations to
real frequencies and including momentum dependencies is a formidable open problem. A
systematic study of the QTCI compressibility of the local Keldysh vertex of the SIAM, dis-
cussed at length in this thesis, is currently being done and will be published soon [Fra+25].

In conclusion, we have shown in this thesis that computing the full three-dimensional
real-frequency dependence of four-point correlation functions with quantum field theory
methods is feasible. We demonstrated this by solving the parquet and fRG flow equations
in the PA for the SIAM within the Keldysh formalism. Extending these methods to
correlated lattice systems will require combining them with the non-perturbative DMFT,
for which mpNRG can serve as an impurity solver. We confirmed the compatibility
of mpNRG with quantum field theory methods through explicit checks of the parquet
equations and the U(1) Ward identity using mpNRG output. When further complemented
by the QTCI framework, these developments set the stage for computing real-frequency
and momentum-resolved response functions of strongly correlated systems.
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