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Abstract

The Luttinger’s theorem [1, 2], a fundamental principle in con-
densed matter physics, establishes a link between the electron count
and the size of the Fermi surface. While this theorem is crucial for
understanding electronic behavior in solid-state materials, its appli-
cation presents distinctive challenges, especially in one-dimensional
systems [3–6]. This thesis focuses on the one-dimensional Kondo
lattice model (1D KLM), a system that continuously reveals new
and sometimes contradictory phenomena through theoretical and
numerical investigations, eluding full comprehension [7–12].

The numerical analyses offer fresh insights into the behavior
of the Fermi wave vector within the 1D KLM. The thesis employs
Density Matrix Renormalization Group (DMRG) as computational
method to unravel these complexities. Through the dissection of
correlations into spin and charge sectors, the work sheds light on
how the Fermi wave vector and oscillates evolve with changing
parameters: the conduction electron density nc and the Kondo
coupling strength J .

We analyze correlation functions, illustrating short-range oscil-
lations with small Fermi wave vectors rapidly decay. By contrast,
long-range correlations display distinct behaviors, a significant find-
ing is the validation of a non-trivial transient phase within the 1D
KLM phase diagram, where multiple wave vectors coexist. The
charge density oscillation validates key parameters, including the
Luttinger parameter Kρ, with a notable inflexion point signalling
the transient phases in charge sector and the transition in spin
sector.

In the end of thesis, we highlight several potential avenues for
future research.
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Chapter 1
Introduction

In the realm of condensed matter physics, understanding the intricate behavior
of electrons in strongly correlated systems stands as a central challenge. These
systems, where electron-electron interactions wield profound influence, give
rise to phenomena that often defy conventional comprehension. Unraveling
these enigmas is pivotal in modern condensed matter physics, and efficient
computational methods are paramount.

The Luttinger’s Theorem [1, 2], a cornerstone of condensed matter physics,
links electron count to the Fermi surface’s extent. It dictates that, the volume
enclosed by the Fermi surface of a system of interacting fermions at zero
temperature is independent of the strength of the interaction.

The Luttinger’s theorem is most commonly applied to three-dimensional
systems. In lower-dimensional systems and strong correlated systems, it may
not hold due to the enhanced role of correlations and interactions [13–15].

In some regions of the phase diagram of two or three-dimensional Kondo
lattice systems, the behavior is believed to belong to the Fermi liquid phase [16].
In the case of the one-dimensional Kondo lattice model (1D KLM), the Fermi
liquid theory is not guaranteed to hold. The prevalence of strong interactions
gives rise to distinctive phenomena, notably the emergence of Tomonaga-
Luttinger liquid behavior [10].

In 1997, A proof for the Luttinger’s Theorem in a 1D system was proposed
by Blagoev and Bedell. However, this proof was limited to a simplified model
with a linearized dispersion relation, and it neglects the umklapp and backward
scattering processes [3].

In the same year, Yamanaka, Oshikawa, and Affleck applied the Lieb-
Schultz-Mattis theorem, originally formulated for spin chains, to the 1D Kondo-
Heisenberg lattice model with certain symmetries. This model incorporates
the Kondo coupling JK and a direct coupling JH between localized spins [6].
Through this approach, they demonstrated that the ground state of this model
corresponds to a large Fermi momentum k∗F ∝ n + 1, where n is the density
of conduction electrons, with any JK 6= 0, with or without JH .
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1. Introduction

In 2000, a non-perturbative confirmation of Luttinger’s theorem exists for
Kondo lattice models in arbitrary dimensions, as long as they can be described
as Fermi liquids [4].

In 2004, Pivovarov and Si demonstrated that a continuous transition from
small to large Fermi momentum can occur in one-dimensional Kondo lattice
models away from half-filling, particularly with nearest-neighbor (NN) and
next-nearest-neighbor (NNN) interactions of local spins [5].

It is showed by Heath and Bedell in 2020, that the applicability of Lut-
tinger’s theorem in a D−dimensional system is directly dependent on the
existence of a (D − 1)−dimensional manifold of gapless chiral excitations at
the Fermi level, regardless of whether the system exhibits Luttinger or Fermi
surfaces [17].

In numerical perspective, several numerical studies of 1D KLM have high-
lighted the existence of the large Fermi momentum [9–11]. However, there
remains some controversy regarding the presence of small or large Fermi mo-
mentum. Some numerical results suggest the existence of a small Fermi mo-
mentum kF ∝ n in regions of small JK [7, 8, 12].

Despite numerous analytical and numerical investigations into the Lut-
tinger’s theorem within the context of the 1D KLM, new and often contra-
dictory phenomena continue to emerge. Our understanding remains far from
complete.

Chapter. 2 delves into the 1D KLM, providing a comprehensive description.
The model’s intricacies arise from the interplay between itinerant conduction
electrons and localized spins, resulting in diverse interaction patterns. This
competition engenders a rich array of ground states and phenomena, as de-
tailed in the phase diagram of the 1D KLM. The Luttinger’s Theorem and
its implications in the realm of 1D KLM form a pivotal component of this
chapter.

Chapter. 3 delves into our computational tools, beginning with a primer
on tensor networks. We provide a concise guide to the Density Matrix Renor-
malization Group (DMRG) method, a foundational technique in our project.
Additionally, we introduce the controlled bond expansion DMRG, an efficient
variant that plays a central role in our endeavors.

In Chapter 4, we present our numerical investigations, meticulously revisit
the behaviors of the Fermi wave vector, parsing correlations into spin and
charge sectors. The findings compellingly illustrate the evolution of the Fermi
wave vector and its associated oscillations as parameters undergo changes. Of
particular significance is the evolution as an evidence for the existence of a
non-trivial transient phase within the 1D KLM phase diagram, where multiple
wave vectors coexist.
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Chapter 2
1D Kondo Lattice Model

The Kondo model, also known as the Kondo impurity model, explains the
behavior of a single magnetic impurity or localized magnetic moment, which
interacts antiferromagnetically with conduction electrons in a solid. These
localized magnetic moments originate from atoms or ions with unpaired elec-
trons, creating local magnetic moments [18]. The Kondo effect arises from this
interaction, causing the screening and quenching of the magnetic moments
by conduction electrons at low temperatures and displaying a minimum in
electrical resistance [19]

In the 1970s, the discovery of heavy-electron compounds in rare earth and
actinide metals prompted proposals by Mott [20] and Doniach [16], suggesting
that these systems could be effectively described using a Kondo lattice model.
Heavy-electron systems feature ions with f−electrons, such as Ce ions with
4f−electrons or U and Np ions with 5f−electrons [18]. In the Kondo lattice
model, a vast array of local magnetic moments from the f−electrons interacts
antiferromagnetically with a conduction electron reservoir, which includes
delocalized electrons referred to as c−electrons. The strength of this interaction
is typically denoted as J .

The Hamiltonian for the SU(2)-symmetric Kondo lattice model is:

Ĥ = −t
∑
〈i,j〉,s

(ĉ†i,sĉj,s + h.c) + J
∑
i

Ŝfi · Ŝ
c
i (2.1)

Here, the notation 〈i, j〉 denotes that we are considering nearest-neighbor
hopping of conduction electrons, and t > 0 represents the hopping energy am-
plitude. The operators ĉ†i,s and ĉi,s are responsible for creating and annihilating
conduction electrons with spin s at site i, respectively.

The conduction electron spin operator is defined as Ŝci = 1
2
∑
ss′ ĉ

†
i,sσss′ ĉi,s′,

σ = (σx σy σz) represents the Pauli matrices. The local f -spin operators
of f -electrons at site i are represented by Ŝfi , and they are often associated
with the localized magnetic moments, The parameter J > 0 indicates an
antiferromagnetic on-site coupling.
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2. 1D Kondo Lattice Model
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Ŝ
c

i

Figure 2.1: The sketch of the one-dimensional Kondo lattice model, it involves
a scenario where conduction electrons navigate through a lattice, concurrently
engaging in interactions with local spins.

2.1 The Competition between the Kondo effect and
the RKKY interaction

The Kondo Effect
The strength of the coupling in the Kondo model, denoted as J , reflects the
tendency of localized magnetic moments and conduction electrons to form
singlets, when J > 0. At low temperatures, these conduction electrons tend
to screen the localized moments by forming Kondo singlets, giving rise to the
Kondo effect [21].

Numerous methodologies have been developed to tackle the Kondo problem.
One notable technique is the Poor Man’s Scaling, a perturbative renormaliza-
tion method introduced by Philip Anderson in 1970 [22].

This practical approach provides an indication of the Kondo temperature
TK , a characteristic energy scale at which the Kondo effect becomes significant
and observable. The effective coupling between spin and energy band Jeff
diverges with the decreasing temperature, and this method breaks down as
Jeff →∞, which is so called strong coupling limit, here the Kondo singlet is
formed and the localized moment is screened. Below the Kondo temperature,
the resistivity of the material typically exhibits a logarithmic increase with
decreasing temperature, which is a hallmark of the Kondo effect.

The Kondo temperature is given by:

TK ∝ De
− 1
ρ0J (2.2)

where D is the half-bandwidth of the conduction electrons’ energy band, and
ρ0 is the density of state (DoS) of conduction elections at the Fermi level.

A solution of the Kondo problem was achieved by Kenneth Wilson in 1975
through the application of the numerical renormalization group method [23].
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2.1. The Competition between the Kondo effect and the RKKY interaction

In heavy-electron systems featuring a lattice of local moments, the Kondo
effect exhibits coherence. In a single impurity, a Kondo singlet scatters elec-
trons without conserving momentum, resulting in a significant increase in
resistivity at low temperatures. However, within a lattice possessing transla-
tional symmetry, this elastic scattering now conserves momentum, leading to
coherent scattering off the Kondo singlets. In the simplest heavy-fermion met-
als, this phenomenon leads to a notable reduction in resistivity at temperatures
below the Kondo temperature [24].

The RKKY Interaction
Amidst the intricate interplay between localized magnetic moments and itiner-
ant conduction electrons, a consequential phenomenon emerges known as the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [25].

When a localized moment influences the spins of nearby conduction elec-
trons, these electrons orient themselves in particular directions, giving rise to
what is known as Friedel oscillations in the spin density [24]. This phenomenon
can be quantified as

〈M(i)〉 = −Jχ(i− j)〈Sfj 〉 (2.3)

where χ represents the non-local susceptibility of the lattice system.

χ(x) =
∫

q
χ(q)eiq·x (2.4)

χ(q) = 2
∫

k

f(εk)− f(εk+q)
εk+q − εk

(2.5)

here f(εk) is the Fermi function, εk is the energy at momentum k. This
spin alignment extends its influence to neighboring localized moments. As a
collective outcome, a compelling stabilization effect materializes—a proclivity
for the localized moments to assume antiparallel orientations. This intricate
response culminates in a substantial decrease in the system’s overall energy:

ĤRKKY = JRKKYχ(i− j)Sfi · S
f
j = −J2χ(i− j)Sfi · S

f
j (2.6)

In Fermi liquid, due to the shape edge of Fermi surface, Friedel oscillations
slowly decays with power law and q = 2kF oscillation [24] :

JRKKY(r) ∼ −J2ρ0
cos(2kF r)
|kF r|

3 (2.7)

where ρ0 is the conduction electron density of states at Fermi energy level
and r = |i−j| is the distance of the two impurities. So the approximate energy
scale of the RKKY interactions is

ERKKY ∝ J
2ρ0 (2.8)
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2. 1D Kondo Lattice Model

Figure 2.2: Doniach Phase Diagram from Ref. [16, 26]. When the ERKKY �
TK , the system adopts an AFM state. Conversely, when TK � ERKKY , the
system embraces a dense Kondo lattice ground state (Fermi Liquid Phase).
(Jρ)∗ is the quantum critical point.

The Competition between two interactions
Mott and Doniach [16] pointed out that there are two energy scales in the
Kondo lattice: the Kondo temperature TK , (Eq. (2.2)) and the RKKY energy
scale ERKKY (Eq. (2.8)).

For small Jρ, ERKKY � TK , thermal fluctuations disrupt the formation of
Kondo singlets, compelling the system to adopt an antiferromagnetic ground
state

In an intermediate parameter range, a delicate equilibrium materializes,
characterized by a subtle interplay between the RKKY interaction, which
promotes magnetic ordering, and the Kondo effect, which leans toward the
screening of localized moments. This competition between these interactions
can give rise to quantum criticality. Within this regime, the system expe-
riences a continuous phase transition that oscillates between magnetic and
non-magnetic phases [16].

In the regime where Jρ takes on large values, the Kondo effect becomes
the dominant force, giving rise to the formation of Kondo singlets and the
emergence of non-magnetic behavior. Consequently, the system’s resistivity
follows a logarithmic increase as temperature decreases. This particular phase
in the Kondo lattice model is heavy Fermi liquid regime. In this phase, each
lattice site resonantly scatters electrons. Importantly, Bloch’s theorem ensures
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2.1. The Competition between the Kondo effect and the RKKY interaction

that this resonant elastic scattering at every site generates a renormalized
f−band, which possesses a width on the order of ∼ TK . The scattering at each
site acts coherently, setting it apart from the behavior of the Kondo impurity
model. As a result, as the heavy-electron metal forms at low temperatures, its
resistivity decreases, eventually approaching zero [24].

7



2. 1D Kondo Lattice Model

2.2 Localized Spin Order in 1D KLM
As discussed in Section 2.1, the competition between the Kondo effect and the
RKKY interaction plays a crucial role in determining the magnetic behavior
of itinerant electrons and localized spins within the Kondo lattice model. This
interplay significantly influences the arrangement of phases observed in the
model’s phase diagram.

The Doniach phase diagram, Fig. 2.2, which evolves based on the system’s
response to varying Kondo coupling Jρ, encompasses a range of distinct phases,
including antiferromagnetic and heavy Fermi liquid phases. These phases
emerge as a result of the complex competition and cooperation between the
Kondo effect and the RKKY interaction.

However, when considering a one-dimensional scenario, the interplay be-
tween these two interactions can result in distinct behaviors.

The ground-state phase diagram in this context reveals three distinct
phases: the ferromagnetic metallic phase and the paramagnetic metallic phase
(characterized as the Heavy Tomonaga-Luttinger Liquid) at partial conduction
band filling, and the insulating Kondo spin-liquid phase at half-filling [27].

HTLL

nc

J/t

Insulating
Kondo
spin
liquid

FM 1
FM 2

0

1

2

3

0.25 0.50 0.75 1.00

Figure 2.3: Schematic phase diagram of the 1D KLM from Ref. [28], nc
is the conduction electron density, J/t is the Kondo coupling over hopping
energy. FM1 and FM2 denote the ferromagnetic states, and HTLL denotes
the Luttinger liquid states. The two vertical lines [nc = 0.8, 0.7 6 J 6 2.3] and
[nc = 0.56, 0.3 6 J 6 1.7] denote the parameters chosen for this project. The
boundaries of FM2-phase and HTLL-phase at nc = 0.8 are around J = 1.5
and J = 2.

In situations where the conduction-band filling is incommensurate, the
emergence of a ferromagnetic phase can be attributed to the phenomenon
known as the double exchange interaction.
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2.2. Localized Spin Order in 1D KLM

The concept of double exchange was originally introduced by Zener [29]
as an explanation for ferromagnetic (FM) ordering observed in mixed-valency
manganites. The fundamental condition for a system to exhibit double ex-
change ordering is that the number of electrons must be fewer than the number
of localized spins (N > Nc), and the presence of non-vanishing electron hop-
ping is essential.

Considering the case of infinitely strong coupling (J =∞), each electron
forms a perfect localized spin singlet (or triplet for J < 0) with the localized
spin at the same site. The remaining unpaired localized spins (N−Nc) remain
free. Upon activating conduction electron hopping, electrons gain energy by
moving to unoccupied sites. This energy gain arises from both the screening
of unpaired localized spins and an increase in kinetic energy.

Electrons with specific spin orientations tend to maintain this orientation
as they hop, a phenomenon referred to as coherent hopping. This behavior
promotes the alignment of the localized spins with the spins of the hopping
electrons [30, 31].

This alignment mechanism is termed "double-exchange" and is propelled by
both the kinetic energy of conduction electrons and the diagonal component of
the on-site interaction between electrons and localized spins. Double-exchange
consistently results in ferromagnetic behavior and becomes more pronounced
at stronger couplings.

This principle of FM behavior serves as the foundational basis for the
rigorously established FM phase within the 1D Kondo lattice model by Sigrist
et al. [32, 33].

Utilizing bosonization techniques, the mechanisms governing the ordering
of localized spins in this context can be analytically unraveled [27, 34].

It is worth emphasizing that within the realm of the 1D Kondo lattice
model, the conduction band can be effectively treated using bosonization
techniques. However, the application of bosonization to localized spins is
not straightforward due to their absence of a Fermi velocity. In tackling the
treatment of localized spins, a direct strategy involves implementing a unitary
transformation. This transformation shifts the system into a state basis where
the spin degrees of freedom of conduction electrons are directly linked to the
localized spins. This approach facilitates an investigation into how the ordering
of electrons impacts the behavior of localized spins.

In the resulting effective Hamiltonian, a significant new term arises, rep-
resenting a nonperturbative effective interaction among the localized spins.
This term yields a length scale known as α, originating from bosonization, and
it signifies the minimum wavelength for density fluctuations complying with
bosonic commutation relations. The appearance of Kondo singlets is indirectly
inferred from the implications of this effective length scale.

The domains of localized spins exhibiting double-exchange ordering gradu-
ally disintegrate as the coupling to the conduction electrons weakens. In the
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2. 1D Kondo Lattice Model

regime of weak coupling strength J , the system transitions into a paramag-
netic metallic phase. This phase can be characterized as a RKKY-like liquid,
influenced by the RKKY interaction.

In 2019 and 2020, Tsvelik and Yevtushenko have developed a unified theory
specifically tailored for the 1D isotropic KLM, assuming a scenario with a small
Kondo coupling (|J | � EF ) [35, 36]. Their work has illuminated the governing
factors in the physics of the Kondo lattice, emphasizing the dominant role
of the RKKY indirect spin interaction while the Kondo physics becomes less
influential and all properties are determined by the patterns of spin ordering.

In their investigation, three distinct phases have been identified:
(1) Insulating Phase: This phase emerges at special commensurate band

fillings. In this phase, the spin configurations remain collinear;
(2) Spinful Interacting Metals (Collinear Metal Phase): These phases are

present in the vicinity of commensurate band fillings. Similar to the insulating
phase, the spin configurations are collinear. However, electron-spin interactions
can transform this phase into heavy Tomonaga-Luttinger liquids;

(3) Helical Metallic Phase with 4kF Charge-Density Wave: This phase
occurs at generic band fillings. In this intriguing phase, the local spins exhibit
slow spatial and temporal spirals. This leads to the formation of a local helical
gap.

Multiple numerical methods were employed in calculation of 1D KLM
phase diagram:

The quantum Monte Carlo method (1993, Troyer and Würtz) [37], the
exact diagonalization (1993, Tsunetsugu, Sigrist and Ueda) [38], the DMRG
and infinite size DMRG (1995,Moukouri and Caron, 1997, Caprara and Rosen-
gren) [39, 40] respectively verified the boundary of the first ferromagnetic
phase and the paramagnetic phase.

Importantly, it’s worth noting that the appearance of the second ferromag-
netic region in Fig. 2.3 is not predicted by the bosonization method.

The discovery of this second ferromagnetic region was made through the
application of the non-Abelian density matrix renormalization group method.
McCulloch, Juozapavicius, Rosengren, and Gulacsi employed this method to
directly measure the magnetization of the ground state, revealing the existence
of the second FM region in the 1D KLM phase diagram [8]. Their hypothesis
is grounded in the idea that, for a majority of dopings, this FM2 region serves
as a boundary between the domains of large and small Fermi momenta. This
hypothesis is based on the understanding that Fermi points are unlikely to
remain unchanged during a phase transition.

The FM2 region is numerically checked by further work and widely accepted
and quoted [7, 28, 41, 42].
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2.3. Luttinger’s Theorem in 1D KLM

2.3 Luttinger’s Theorem in 1D KLM
Luttinger’s theorem [1, 2] states that, the volume enclosed by a material’s
Fermi surface is directly proportional to the particle density. Even when
electron-electron interactions are considered, the size and shape of the Fermi
surface remain constant as long as the total electron density is conserved. The
Luttinger’s theorem is most commonly applied to Fermi liquid system. In
lower-dimensional systems and strong correlated systems, it may not hold due
to the enhanced role of correlations and interactions [13–15].

The Kondo lattice model can be seen as an extension of the periodic
Anderson model, achieved through the Schrieffer-Wolff transformation [43, 44]
with an extended Kondo limit:

εf ≡ −
U

2 , U →∞, V →∞ with V 2

U
→ const. (2.9)

εf is the localized electron energy, U is the on-site Coulomb repulsion and V
gives the hybridization of conduction electron and spin. In this transform can
obtain any finite Kondo coupling:

J ∼ O(V
2

U
) (2.10)

When U surpasses a certain threshold, the Fermi surface volume VFS will
extend from only include conduction electrons to encompass localized electrons
and their associated local spins [13, 45]:

2 V
S
FS

(2π)3 = ne → 2 V
L
FS

(2π)3 = ne + nspins (2.11)

The Fermi wave vector defines the boundary in momentum space that sepa-
rates occupied from unoccupied electron energy levels in a material’s electronic
band structure, crucial for a material’s electrical and thermal properties.

In strongly correlated electron systems, Fermi wave vectors offer insights
into correlation effects like the Mott transition [46]. Materials with Fermi sur-
face instabilities can exhibit unconventional behaviors, like high-temperature
superconductivity [47], making the accurate determination of Fermi wave vec-
tors vital for identifying and characterizing these unique material states.

Furthermore, the changes in the Fermi wave vector, known as Fermi surface
reconstruction, can unveil different electronic orders or phases like charge
density waves (CDW) or spin density waves (SDW) [48, 49]. This phenomenon,
often linked to unconventional quantum criticality, has been experimentally
observed in heavy Fermion compounds such as CeCu6−xAux and YbRh2Si2 [50,
51].

In certain regions of the phase diagram for two or three-dimensional Kondo
lattice systems, it is believed that the system’s behavior can be described by

11



2. 1D Kondo Lattice Model

the Fermi liquid phase [16] (see Fig. 2.2). By applying the real-space dynamical
mean-field theory to the Kondo lattice model on a square lattice, the existence
of metallic SDW and Fermi surface reconstruction has been demonstrated [52].

In the case of the one-dimensional Kondo lattice model (1D KLM), the
Fermi liquid theory is not guaranteed to hold. The prevalence of strong
interactions gives rise to distinctive phenomena, notably the emergence of
Tomonaga-Luttinger liquid behavior [10]. In contrast to the non-interacting-
quasiparticles found in Fermi liquids, collective excitations in Luttinger liquids
manifest as density waves, which exhibit an entirely different nature.

A proof of the Luttinger Theorem in a 1D system was proposed by Blagoev
and Bedell. However, it’s important to note that this proof was confined to a
simplified model with a linearized dispersion relation, and it did not consider
umklapp and backward scattering processes [3].

Furthermore, utilizing the bosonization method, it has been demonstrated
that the Kondo chain, when away from half-filling, exhibits a spin gap when an
additional direct Heisenberg coupling between localized spins is introduced [53].

In 1997, Yamanaka, Oshikawa, and Affleck applied the Lieb-Schultz-Mattis
theorem (LSM theorem) to the 1D Kondo-Heisenberg lattice model [6]. The
LSM theorem, originally developed for spin chains, establishes that a spin
system characterized by specific symmetries, including translation and spin
rotation symmetry, and having half-integer spin per unit cell, cannot have a
gapped symmetric ground state without the presence of fractionalized excita-
tions. [54].

In a chain of length L system with periodic boundary conditions, the
Hamiltonian is the Hamiltonian of KLM with additional Heisenberg interaction
term:

Ĥ = −t
∑
i,s

(ĉ†i,sĉi+1,s + h.c) + J
∑
i

Ŝfi · Ŝ
c
i + JH

∑
i

Ŝfi · Ŝ
f
i (2.12)

JH is the Heisenberg interaction between localized spins. There is at least one
low-energy state |ψ1〉 above the ground state |ψ0〉 with ∆E ∼ O(1/L) by LSM
theorem. Define a "twist" operator Û

Û± ≡ exp[2πi
∑
j

J

L
(n±,j ± Sf,zj )] (2.13)

where n is the conduction electron number per site and ± represents the
electron spin.

The "twist" operator satisfies Û±|ψ0〉 = |ψ1〉. When interaction terms
involve only the local density and are invariant under the transformation by
Û , and with the condition that the Hamiltonian is invariant under parity or
time reversal, 〈ψ1|Ĥ|ψ1〉 − 〈ψ0|Ĥ|ψ0〉 ∼ O(1/L).

This indicates that the energy difference becomes increasingly negligible
as the system size grows larger.
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2.3. Luttinger’s Theorem in 1D KLM

Then we can use a translation operator T̂ to prove |ψ1〉 is orthogonal to
|ψ0〉. The operator T̂ is related to the total crystal momentum P by T̂ = eiP

(set lattice space equal to 1) and commute to Ĥ according to the translation
invariant of system, which means |ψ0〉 is an eigenstate of T̂ .

We obtain the
Û−1T̂ Û = T̂ eπi(n±2m+1) (2.14)

where m is the magnetization per unit cell including both the conduction
electrons and the localized spin. It is easy to prove that |ψ1〉 is another
eigenstate of T̂ .

The Eq. (2.14) means that the low-energy state |ψ1〉 = Û±|ψ0〉 has crystal
momentum π(n ± 2m + 1) relative to ground state |ψ0〉. In particular, the
low-energy state has the momentum ±π(n+ 1) for zero magnetic field, which
consistent with large Fermi wave vector.

Their analysis revealed that the ground state of this model corresponds to a
large Fermi momentum k∗F ∝ n+1. This result holds true for any nonvanishing
Kondo coupling J , regardless whether the direct Heisenberg exchange JH is
present.

However, it’s important to note that this proof relies on certain assump-
tions, including system translational invariance and the conservation of total
particle number and parity or time reversal symmetry. Therefore, it may not
be valid in cases where conditions like charge density waves (CDW) are present,
as is the situation in this project.

In 2000, A non-perturbative confirmation of Luttinger’s theorem exists for
Kondo lattice models in arbitrary dimensions, as long as they can be described
as Fermi liquids [4].

In 2004, Pivovarov and Si demonstrated that a continuous transition from
small to large Fermi momentum can occur in 1D KLM away from half-filling,
particularly with nearest-neighbor (NN) and next-nearest-neighbor (NNN)
interactions of local spins [5].

It is showed by Heath and Bedell in 2020, that the applicability of Lut-
tinger’s theorem in a D−dimensional system is directly dependent on the
existence of a (D − 1)−dimensional manifold of gapless chiral excitations at
the Fermi level, regardless of whether the system exhibits Luttinger or Fermi
surfaces [17].

Several numerical studies have highlighted the existence of the large Fermi
momentum [9–11]. However, there remains some controversy regarding the
presence of small or large Fermi momentum. Some numerical results suggest
the existence of a small Fermi momentum kF ∝ n in regions of small J [7, 8,
12].

Another recent DMRG study in a variant of 1D KLM are done by Niko-
laenko and Zhang in 2023, the system includes a t−J model with onsite Kondo
coupling J and nearest neighbour Kondo interaction Jcs. In this paper, the
authors confirm the presence of a large Fermi wave vector in the case of a large
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2. 1D Kondo Lattice Model

Kondo coupling J , which corresponds to the expected conventional Luttinger
liquid phase. On the other hand, they observe a small Fermi wave vector
when the Kondo coupling J is negative, indicating the presence of a fractional
Luttinger liquid phase. Notably, this fractional Luttinger liquid phase becomes
unstable and undergoes a transition to a spin-gapped Luther-Emery liquid
phase when the Kondo coupling J is slightly positive [55].

While the models explored in the aforementioned paper may not be iden-
tical to the one under examination in our study, their findings offer valuable
insights that can enhance our understanding.

From a more superficial perspective, when the Kondo coupling is extremely
small, the system can be equated to a free electron gas. In this scenario, the
Fermi wave vector is naturally related only to the conduction electrons, yielding
kF ∝ nc. As the Kondo coupling approaches infinity, the conduction electrons
and the local spins form Kondo singlets. The density of unpaired localized
spins, which behave as free holes, is 1−nc, leading to the emergence of a large
Fermi wave vector. In between, the transition between small and large Fermi
wave vectors occurs, but the precise mechanisms behind this transition in the
original 1D KLM remain an open area of investigation.
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Chapter 3
Method: Density Matrix
Renormalization Group

Density Matrix Renormalization Group (DMRG) is a powerful numerical tech-
nique widely used in condensed matter physics and quantum chemistry to
investigate strongly correlated quantum systems. It was first introduced by
Steven R. White in 1992, primarily for one-dimensional lattice systems [56,
57].

DMRG is designed to efficiently determine the ground state and low-lying
excited states of complex quantum many-body systems. While it initially
gained prominence in one-dimensional systems like spin chains and quantum
wires, it has since been adapted for use in higher dimensions, making it a
versatile tool in the study of various quantum systems.

This technique has been also progressively expanded to investigate dynamic
properties [58], finite-temperature phenomena [59], and non-equilibrium time-
evolutions [60] over subsequent years.

DMRG stands as a potent numerical strategy designed to dissect strongly
correlated systems, particularly in one-dimensional contexts. Its effectiveness
in capturing extensive-range correlations and adeptly navigating entanglement
complexities has led to its application across a spectrum of systems, ranging
from spin chains to Hubbard models. Notably, DMRG has significantly in-
formed the analysis of the Kondo lattice model, as evidenced by the numerous
references in this paper.

In this study, DMRG is employed due to its efficiency in computing ground
states, correlations, and expectation values. It operates through an iterative
optimization of the quantum state representation using a variational approach,
retaining crucial information while discarding less pertinent details. This
iterative search mechanism enables the determination of the ground state for
a given Hamiltonian.

The basic concepts and notations of tensor network can be found in Ap-
pendix. A.
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3. Method: Density Matrix Renormalization Group

This chapter will start with the important concepts of tensor network: MPS
and MPO, provide a concise introduction to DMRG technique, followed by
an exploration of its more efficient variant we used in this project: Controlled
Bond Expansion DMRG [61].

3.1 The Important Concepts of Tensor Network

3.1.1 Matrix Product State
The Matrix Product State (MPS) is a tensor network representation primar-
ily employed to describe quantum states, especially in one-dimensional sys-
tems [62–64].

In the Matrix Product State (MPS) framework, a quantum state is encoded
as a series of tensors, with each tensor describing the correlations between
adjacent sites in the system.

Consider a quantum state denoted as |Ψ〉 residing in a one-dimensional
system with L sites, Each of these lattice sites accommodates a local state
space of dimension d. The quantum state can be expanded using the Fock
space basis |σ1〉, |σ2〉, . . . , |σL〉 as follows:

|ψ〉 =
∑

σ1,σ2,...,σL

Ψσ1σ2...σL |σ1〉|σ2〉 . . . |σL〉 (3.1)

The wave function Ψσ1σ2...σL can be conceived as a tensor of rank L. Tensor
network techniques are precisely the methodologies employed to construct and
analyze this tensor. The MPS involves breaking down the substantial tensor
into a product ensemble of rank-3 tensors, as follows:

Ψσ1σ2...σL =
∑

α,β,...,µ

Aσ1
α A

σ2
αβA

σ3
βγ . . . A

σL
µ (3.2)

To enhance clarity, we designate all unphysical bonds as lower indices.
However, representing such a lengthy mathematical formula isn’t practical

and lacks sufficient informativeness. Hence, we resort to the diagrammatic
notation from Ref. [65].

In diagram form, the aforementioned formula can be restated as depicted
in Fig. 3.1.

This construction creates an exact MPS representation of the wave function
without any approximation. However, it’s evident that the dimension of the
virtual bond at site i grows exponentially as di. To manage this, additional
strategies are required to limit the bond dimension. Our current approach
involves the Singular Value Decomposition (SVD), which has been extensively
used in data compression, as discussed in the Appendix (Sec. A.1).

Consequently, the SVD operation can be sequentially executed from left
to right (or right to left), yielding tensors that are left-normalized (or right-
normalized), thereby ensuring that the bond dimensions remain within the
limit of D.
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3.1. The Important Concepts of Tensor Network

A A

σ1 σ2 σ3

α

Lσ

β γ µ

A A A A A

. . .

Figure 3.1: Matrix Product State (MPS) is a representation of many-body
wave functions, where each element of the tensor Ψ is obtained through a
sequence of matrix products.

The matrix products in tensor network have gauge freedom, which means
any matrix product can be expressed in infinitely many ways without changing
the product:

MM ′ = M(UU−1)M ′ = M̃M̃ ′ (3.3)

Gauge freedom can be exploited to reshape MPSs into particularly con-
venient, canonical forms: Left-canonical, right-canonical, site-canonical and
bond-canonical.

3.1.2 Matrix Product Operator
MPO representation:

Any operator for a Hilbert space of L sites can be expressed in the form:

Ô = |−→σ ′〉O
−→σ ′−→σ 〈
−→σ | (3.4)

Applying the same concept used for the MPS, operators can also be repre-
sented in a matrix product form:

Ô = |−→σ ′〉[W1]1σ
′
1

µσ1
[W2]µσ

′
1

νσ2
. . . [WL]λσ

′
L

1σL 〈
−→σ |

= |−→σ ′〉{
L∏
l=1

Wl}
−→σ ′−→σ 〈
−→σ |

(3.5)

This can be systematically achieved through a sequence of QR decomposition:
When singular values are not a concern, a matrix M ∈ mat(D,D′;C)

can undergo a "full QR decomposition" denoted as M = QR. In this setup,
Q ∈ mat(D,D;C) is a unitary matrix, and R ∈ mat(D,D′;C) is an upper
triangular matrix. It’s worth noting that Rαβ is zero when α > β.

In this context, each Wi takes the form of a rank-4 tensor. Interestingly, a
vast majority of significant physical operators (such as the Hamiltonian and its
constituents) can be precisely depicted as a matrix product operator (MPO)
featuring a modest dimension DW , which signifies the dimension of Wi. This
attribute renders the MPO framework exceptionally valuable for a wide range
of applications.
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3. Method: Density Matrix Renormalization Group

σ1

1 1µ

σ1

Repeating

QR decomposition

Figure 3.2: From operator to MPO, by applying QR decomposition iteratively.

Observables

MPOs proficiently encapsulate the inherent local interactions and correlations
of a specific operator. Each tensor within an MPO corresponds to a localized
operator that affects either an individual site or a neighboring pair of sites. By
leveraging the inherent multiplication and addition rules of MPOs, it becomes
possible to compute correlation observables, illustrated by expressions like
〈ψ|ÔiÔj |ψ〉.

Figure 3.3: The diagrammatic representation of Correlation function
〈ψ|ÔiÔj |ψ〉.

Construct the MPOs for 1D KLM

The Hamiltonian of the 1D Kondo lattice model as given in Eq. (2.1) can be ex-
pressed in the MPO representation through a straightforward construction [63]
and [66].
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3.1. The Important Concepts of Tensor Network

Ĥ = −t
∑
〈i,j〉,s

(ĉ†i,sĉj,s + h.c) + J
∑
i

Ŝfi · Ŝ
c
i

=
∑
−→σ ,−→σ ′

[Ŵ1Ŵ2 . . . ŴL]
−→σ ′−→σ |
−→σ 〉〈−→σ ′|

(3.6)

To ensure proper connectivity of the right operators, the matrices Ŵi need to
be constructed accordingly. This construction is particularly relevant for local
operators X̂i = J Ŝfi · Ŝ

c
i :

Ŵ1 =
(
X̂1 I

)
, Ŵi =

(
I 0
X̂i I

)
, ŴL =

(
I
X̂L

)
(3.7)

This readily leads to a tensor product of single local operators. Adding
the nearest neighbor interaction Âi

⊗
B̂i = −t(ĉ†i ĉi+1 + ĉiĉ

†
i+1), Âi and B̂i are

the local operators like X̂i, the total MPOs are given by:

Ŵ1 =
(
X̂1 Â1 I

)
, Ŵi =

 I 0 0
B̂i 0 0
X̂i Âi I

 , ŴL =

 I
B̂L
X̂L

 (3.8)

3.1.3 Symmetry
Symmetry stands as a cornerstone in physics, offering crucial indicators for
distinct quantum states and quantum phase transitions are often accompanied
by a switch of symmetries.

Symmetry’s consequences include the commutation of Hamiltonian H and
symmetry group generators Ti: [H,Ti] = 0, leading to a block-diagonal Hamil-
tonian structure. This structural simplification reduces computational load
by eliminating unnecessary zero elements. In tensor networks, the impact of
symmetries is profound. Symmetry’s existence implies tensor sparsity, facilitat-
ing compression for significant numerical efficiency gains. Employing diverse
symmetries also enables the exploration of symmetry-breaking phenomena.

This thesis delegates the task of symmetry tracking to the QSpace tensor
library [67]. This library offers an efficient framework for matrix product
state (MPS) computations, enabling the integration of discrete, abelian, and
non-Abelian symmetries.

19



3. Method: Density Matrix Renormalization Group

3.2 Density Matrix Renormalization Group
In this section we are going to give a detailed introduction of Density Matrix
Renormalization Group (DMRG) method [65].

Here we start with the on-site algorithm. The process begins by optimizing
the M -matrix on the initial site. Moving forward, we proceed to optimize
matrices on subsequent sites, iteratively reducing the energy of |Ψ〉 with each
refined M -matrix update.

E = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (3.9)

The optimization of |Ψ〉 can be formulated as a Lagrangian optimization
problem, we aim for minimizing 〈Ψ|Ĥ|Ψ〉 under the condition 〈Ψ|Ψ〉 = 1.

We find the Lagrange equation for site−l optimization to be

∂

∂M †l
[〈Ψ|Ĥ|Ψ〉 − λ〈Ψ |Ψ〉] = 0 (3.10)

where we can find a simple eigenvalue equation:

H
(1)
l ψ

(1)
l = λψ

(1)
l (3.11)

where ψ(1)
l = Ml with normalization [ψ(1)

l ]†ψ(1)
l = 1.

Solving Eq. (3.11) using an eigensolver will yield a new matrix M̃l along
with the corresponding eigenvalue λ, which approximates the ground state
energy. This new M̃l is then employed to update the MPS as Ml → M̃l.
Moving to the next site, the SVD is applied to M̃l to shift the orthogonality
center to site l + 1. This entire process is repeated for the subsequent site (as
shown in Fig. 3.4).

The optimization of the MPS can commence from an arbitrary state that
may be distant from the actual ground state initially. By iteratively optimizing
the MPS and performing sweeps back and forth, convergence is achieved when
the ground state energy remains unchanged with respect to a fixed bond
dimension D.

The matrix dimensions of H(1)
l are typically of the order D2d×D2d, which

can be large. Consequently, a numerical technique like the Lanczos iterative
solver, which targets the lowest eigenvalue of the system, is employed [68–71].

However, a potential challenge lies in the risk of encountering a local
minimum during the ground state search. This situation arises when an
eigenstate that is not the actual ground state is found.

An alternative strategy to evade local minima is provided by the two-site
DMRG technique [63, 72, 73], this method involves treating pairs of sites
concurrently, it naturally introduces bond expansion, although it entails sig-
nificantly greater computational demands. The computational cost of one-site
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3.2. Density Matrix Renormalization Group

Solve the eigenvalue equation

Shift the center

update the MPS

Solve the eigenvalue equation

update the MPS

Shift the center

Figure 3.4: The diagrammatic representation of DMRG process, iteratively
optimize the MPS to the ground state. The technical details can be seen in
Appendix. A.2.

DMRG is O(D3dw+D2d2w2), while the cost of two-site DMRG is substantially
higher: O(D3d3 +D3d2w).

As efforts to enhance the computational efficiency of DMRG ground state
search algorithms are of great value, alternative methods like density matrix
perturbation [74], the center matrix wave function formalism [66], and sub-
space expansion [75] have been proposed for 1-site DMRG procedures involving
symmetries. In 2023, an algorithm named "controlled bond expansion," intro-
duced by Andreas Gleis, Jheng-Wei Li, and Jan von Delft, has made significant
strides. This innovative approach achieves considerable energy reduction in
each iteration, ensuring two-site DMRG accuracy and sweep convergence. No-
tably, it achieves these improvements while maintaining a computational cost
equivalent to that of a one-site algorithm [61].
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3. Method: Density Matrix Renormalization Group

3.2.1 Controlled Bond Expansion DMRG
In the context of one-site optimization, the state’s representation follows the
form given in equation:

|Ψ〉 = |α〉|σl〉|β〉[Ml]ασlβ (3.12)
This representation is constrained to a variational space defined by the

outgoing state space |α〉|β〉. If the range of quantum numbers Qα and Qβ for
these spaces is too limited to accurately capture the ground state, one-site
DMRG lacks the capability to effectively expand them.

In contrast, the two-site DMRG approach does not encounter this prob-
lem. The action of the effective Hamiltonian between two sites allows for an
enlargement of the bond dimension. This addition encompasses the full range
of required quantum numbers on that bond. Thus, the two-site optimization
can introduce missing quantum numbers if necessary.

However, this advantage comes at the cost of increased complexity. The
effective two-site Hamiltonian has a dimension of D2d2 × D2d2, while the
effective one-site Hamiltonian is smaller with a dimension of D2d×D2d.

The Hilbert space of H(1)
l and H(2)

l

Here, we are adopting the diagrammatic conventions outlined in Ref. [76].
During the truncation process in DMRG, we introduce orthogonal complements
of the kept states (Al and Bl), referred to as the discarded states (Āl and B̄l).
The dimensions of Al and Bl are denoted as D, and their complements Āl and
B̄l have dimensions D̄. We also define the parent state (P):

AI
l = Al + Āl, B

I
l = Bl + B̄l, D + D̄ = Dd (3.13)

DdDdD D
=

D D D DD D DD
dd

⊕⊕ =
d dd

,

Figure 3.5: The diagrammatic representation of the kept states Al (left-
isometry) and Bl (right-isometry), discarded states Āl, B̄l, and the parent
states AI

l , BI
l . Taken from Ref. [61]

By comparing the terms in Fig. 3.6, it becomes evident that the first three
terms (KK, DK, KD) from the third line also appear in the first two lines.
However, the fourth term (DD) is unique to the third line and doesn’t appear
in the first two lines. This implies that the Hilbert space represented by DD
contains information that is not encompassed by one-site DMRG at sites l and
l + 1, but is explored by two-site DMRG.

The DD subspace should contain information that is orthogonal to the
relevant Hilbert spaces of one-site DMRG at sites l and l + 1. It’s important
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.⊕

⊕

⊕

⊕

⊕

,

,

Figure 3.6: The diagrammatic representation ofH1s
l ψ

1s
l , H1s

l+1ψ
1s
l+1 andH2s

l ψ
2s
l ,

notice that all the final MPS are in bond-canonical. Taken from Ref. [61]

to note that the dimension of the DD subspace is D̄2 = D2(d− 1)2, which is
significantly larger than any other subspace within one-site DMRG.

The crucial realization to eliminate the misleading term involves selecting
the appropriate subspace within DD, referred to as the "relevant DD". This
technique is known as "Shrewd selection."

The details of shrewd selection can be seen in Appendix. B, it is the first
step of the entire CBE-DMRG.

Here, the updated bond dimension becomesD+D̃, leading to the expanded
isometry Aexl = Al ⊕A

tr
l . In the context of a sweep progressing from right to

left, the second step involves updating the site: Cl+1 → Cex,il+1 . This update is
defined as Aexl Cex,il+1 = AlCl+1, ensuring the overall isometry of the entire MPS
remains consistent:

⊕ =
D DD D̃ D

d d d

�
exA�A �

trÃ
=

D
d +1�

+1�
exC +1�C

)D̃+D(

Figure 3.7: The diagrammatic representation of Al and Cl+1 expansion. Taken
from Ref. [61]

Additionally, an expanded one-site Hamiltonian is constructed within a
variational space of dimension D(D + D̃)d:

In the third step, we solve the equation (H1s,ex
l+1 − E)Cexl+1 just as in the

standard DMRG procedure. However, with the crucial information of H2s
l

available, we are empowered to shift the center from site l + 1 back to site l
through truncation. This results in the bond dimension reverting to D, and it
signifies the commencement of the subsequent bond expansion.

The discarded weight ξ can serve as a measure of error, providing insights
into the quality of the approximation.
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=

Figure 3.8: The diagrammatic representation of expanded Hamiltonian. Taken
from Ref. [61]

Each step in this process incurs a maximum cost equivalent to that of
one-site DMRG, O(D3dw). Furthermore, the Controlled Bond Expansion
(CBE) DMRG method effectively captures the most pertinent contributions
originating from H2s

l .
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Chapter 4
Numerical Results

4.1 Correlation Function of 1D KLM
In one dimension, it’s well-established that various interacting metallic systems,
including the Hubbard model and the t− J model, fall under the universality
class of Tomonaga-Luttinger liquids (TLL), and the Kondo lattice model also
belongs to this class [10].

In Tomonaga-Luttinger liquids, electron density oscillations in response to
a local perturbation play a crucial role in understanding the electronic states of
a system. The response to an impurity potential is a well-known phenomenon
called Friedel oscillations. Similarly, magnetic impurities induce spin density
oscillations. The period of these oscillations is determined by the diameter
of the Fermi surface, which, in one-dimensional systems, is referred to as the
Fermi wave vector [11].

In the half-spin TL liquids, there are gapless charge and spin excitations.
These can be characterized by certain parameters.

For the charge excitations, the key parameter is the Luttinger parameter,
denoted as Kρ. The Spin excitations in the same system are also characterized
by a Luttinger parameter, but in this case, it is fixed by the SU(2) symmetry,
meaningKσ = 1. Due to the gapless nature of these excitations, the correlation
functions in TL liquid exhibit power-law decays, which are determined by the
Luttinger parameter for charge excitation, Kρ.

According to the bosonization method and other numerical studies [11][77],
the asymptotic expressions for the single-particle excitations and the spin-spin
correlation are as follows:

CGS(x) = 〈ĉ†i ĉj〉 = A1
cos(kFx)
|x|α

(4.1)

SGS(x) = 〈ŜiŜj〉 = 1
(πx)2 +B1

cos(2kFx) logβ(x)
|x|1+Kρ

(4.2)
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where 〈Ô〉 = 〈GS|Â|GS〉 and |GS〉 is the ground states of typical one-
dimensional heavy Fermion system; kF is the Fermi wave vector of system;
x = |i−j| ; α is an unknown coefficient; β arises from the logarithmic correction
for one-dimensional quantum system [78].

The charge density oscillation has a form like:

NGS(x) = 〈δn̂(x)〉 = 〈δ(ĉ†i ĉi)〉 ∼ C1
cos(2kFx)
|x|(1+Kρ)/2 + C2

cos(4kFx)
|x|2Kρ

(4.3)

here x represents the distance from the impurity. In the system considered
in this project, it signifies the distance from site i to the boundary of the
system.

In principle, we can extract the necessary properties such as the Fermi
wave vector kF , the Luttinger parameter Kρ, and the coefficients α and β from
the numerical results. However, it’s crucial to account for finite system size
effects, especially in specific calculations

Finite System Size and Bond Dimension Correction For a finite size system,
due to the boundaries, an exponential decay will appear in relative distance
x = |i− j| correlation with a finite value λ : e−

x
λ .

So as the practical numerical results, the single-particle excitation Eq. (4.1)
and the spin-spin correlation Eq. (4.2) becomes:

C(x) = 〈ĉ†i ĉj〉 = A1
cos(kFx)e−

x
λ

|x|α
(4.4)

S(x) = (〈ŜiŜj〉 = ( 1
(πx)2 +B1

cos(2kFx) logβ(x)
|x|1+Kρ

)e−
x
λ (4.5)

In numerical method point of view, the DMRG approximates the true ground
state of a MPS, the correlation length are expected λ→∞ when D →∞, or
equivalently when ξ → 0.

And for the charge density oscillation Eq. (4.3), a standard conformal
transformation [77] for a finite chain of length N is:

N (x) = 〈δn̂(x)〉 ∼ C1
cos(2kFx)

(Nπ sin( x
N+1π))(1+Kρ)/2 + C2

cos(4kFx)
(Nπ sin( x

N+1π))2Kρ
(4.6)

The extrapolation checks for finite system size correction are in Appendix C,
and related coefficients λ will be omitted in this chapter for sake of brevity.
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4.2. Fermi Wave Vector Behaviors

4.2 Fermi Wave Vector Behaviors
The one-dimensional Kondo lattice model is examined using the CBD-DMRG
approach. We generate paramagnetic states, denoted as |PM〉, by varying two
key parameters: the conduction electron density nc and the Kondo couplings
J .

nc = 0.8, 0.7 6 J 6 2.3

nc = 0.56, 0.3 6 J 6 1.7

These parameters are depicted in Fig. 2.3.
It’s noteworthy that in the region [nc = 0.8, 1.5 / J / 2]1, we are situated

within the FM2 region. During this phase, we impose the constraint that the
total spin of the states are both equal to 0. However, it’s important to note
that these states are not the ground states.

As we mentioned in Sec. 3.1.2, the observables 〈ψ|ÔiÔj |ψ〉 can be computed
easily from MPS and MPOs.

For a N−site Kondo chain, the correlators of |PM〉 can be illustrated as
a N ×N matrix, e.g.:

ρ(i, j) = 〈ĉ†i ĉj〉 (4.7)

σ(i, j) = 〈ŜiŜj〉 (4.8)

Here 〈Ô〉 = 〈PM |Ô|PM〉, and 1D Kondo lattice system we have Ŝi = Ŝfi + Ŝci .
It is easy to find that the density oscillation is just the diagonal term of

matrix ρ(i, j):

N (x) = 〈δn̂(x)〉 = 〈n̂(x)− nc〉 = ρ(x, x)− nc (4.9)

Since we use open boundary conditions, translational invariance is lost.
ρ(i, j) and σ(i, j) depends on both i and j. For avoiding such boundary effect,
we averaged over all pairs of sites separated by the distance x = |i− j| from
ρ(i, j) and σ(i, j):

C(x) = 〈ρ(j + x, j)〉j (4.10)

S(x) = 〈σ(j + x, j)〉j (4.11)

j ∈ [1, N − x] and 〈·〉 means taking the mean value for all possible j.
In this project, kF = π

2nc denotes small Fermi wave vector and k∗F =
π
2 (nc + 1) represents large Fermi wave vector. The parameter we use in
calculations are:

For nc = 0.8,

kF = 0.4π, 2kF = 0.8π, (4.12)
k∗F = 0.9π, 2k∗F = 1.8π ∼ 0.2π. (4.13)

1Here we use / since the boundaries between F M2-phase and HT LL-phase are not
exactly solved.
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For nc = 0.56,

kF = 0.28π, 2kF = 0.56π, (4.14)
k∗F = 0.78π, 2k∗F = 1.56π ∼ 0.44π. (4.15)

To analyze numerically obtained correlation functions, we compare their
Fourier transform with fitting curves. The curves, as expected, should have
the properties of Eq. (4.1) and Eq. (4.2). Remarkably, from the numerically
results, the correlation functions in the momentum space can have peaks at
one-, two-, or even three wave vectors, the fitting has been done with the help
of Eq. (4.16) and Eq. (4.17) :

C(x) ∼ c(n)(x) =
∑
n

an
cos(k(c)

n x)
xαn

, n = 1, 2, 3 (4.16)

S(x) ∼ s(n)(x) = 1
(πx)2 +

∑
n

bn
cos(2k(s)

n x) logβn(x)
x1+Kρ

, n = 1, 2 (4.17)
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4.2. Fermi Wave Vector Behaviors

4.2.1 For nc = 0.8, N = 200
Short/Long Range Oscillation

Due to the different decay modes for the short/long range correlation behaviors
(exponential decay for short range and algebraic decay for long range), it makes
distinctions in Fourier transform: the Fourier transform results of C(x) are
almost the same when we choose x ∈ [1, N − 1] and x ∈ [1, N/10], but the
results for x ∈ [N/10, N − 1] are totally different in some Js.

Additionally, all correlation function results are displayed as absolute values
in logarithmic scale to enhance visibility and clarity.

Figure 4.1: The Fourier transform of C(x) with different part of x for N =
200, nc = 0.8, J = 1.3. In the left panel are C(x) with different range of x:
x ∈ [1, N − 1], x ∈ [1, N/10] (black) and x ∈ [N/10, N − 1] (green). In the
right panel are the related Fourier transform result of C(x) for each x-region.
Red and yellow dashed lines in the right columns correspond to the small, kF ,
and large, k∗F , Fermi vectors. The information of x ∈ [N/10, N − 1] is almost
covered by the oscillation of x ∈ [1, N/10] in Fourier transform results, since
their absolute values are in totally different order of magnitude.

From the Fourier transform results, we found that for small distance cor-
relation (x < 0.1N), the oscillation behaviors are always associated with kF .
And the long-range behaviors can be fitted by Eq. (4.16) and Eq. (4.17).

In spin sector, such short/long range oscillation separation also appears,
as it shows in Fig. 4.2.
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4. Numerical Results

Figure 4.2: The Fourier transform of S(x) with different part of x for N =
200, nc = 0.8, J = 1.3. In the left panel are S(x) with different range of x:
x ∈ [1, N − 1], x ∈ [1, N/10] (black) and x ∈ [N/10, N − 1] (green). In the
right panel are the related Fourier transform result of C(x) for each x-region.
Red and yellow dashed lines in the right columns correspond to the 2kF and
2k∗F . The same as in Fig. 4.1, the long range oscillation is covered by short
range oscillation in Fourier transform results.

A possible reason is, a correlation function of 1D KLM F(x) has two
components: short range oscillation FS(x) and long range oscillation FL(x).
FS(x) always has kF related oscillation, the amplitude is large in the

beginning but decays rapidly with x. For the FL(x), it oscillates with k, such
oscillation decays so slow that it can pronounce in large x.

FS(x) ∼ A1 cos(nkFx)e−
x
mS (4.18)

FL(x) ∼ A2
cos(nkx)
|x|mL

(4.19)

where n is an integer, k changes with J , A1 � A2, mS and mL are constants.
|FL(x)| � |FS(x)| in large x so that influence of FS(x) is negligible in long
range interaction.

In this project we focus on FL(x) part, since the most interesting large-
small Fermi wave vector transient happens here.
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4.2. Fermi Wave Vector Behaviors

Small/Large Fermi Wave Vector Transient

We mark the peaks in charge sector by k(c)
n , the peaks in spin sector by k(s)

n .
• J = 0.7, there is only one peak in both correlation function of charge

sector C(x) and spin sector S(x) which correspond to the small Fermi
wave vector, k(c)

1 = k
(s)
1 = kF . As shown in Fig. 4.3

J = 0.7

Figure 4.3: The correlation function C(x) (top, left) and S(x) (bottom, left),
and their Fourier transform results (right column) for J = 0.7. Blue solid
lines in the left column shows the absolute values of empirical data in log scale
derived from DMRG simulations while black dashed lines represent the out-
come of curve fitting obtained by using Equation (4.16) and (4.17), respectively.
Blue lines in the right columns are Fourier transforms of the corresponding cor-
relation functions. And the black dashed lines in the right column correspond
to the black dashed line in left column, represent the oscillation behaviors in
relative long range (x > 0.1N) and where the finite size effects are excluded
(exclude the points x ∼ N). Red and yellow dashed lines in the top of right
columns correspond to the small, kF , and large, k∗F , Fermi vectors while these
lines in spin sector denote the values of 2kF (red) and 2k∗F (yellow). This
result was obtained for the coupling constant: J = 0.7.
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4. Numerical Results

• 0.8 6 J 6 1, the second peak k(c)
2 = 0.8π appears in charge sector.

J = 1

Figure 4.4: The correlation function C(x) (top, left) and S(x) (bottom, left),
and their Fourier transform results (right column) for J = 1. Blue solid lines in
the left column shows the absolute values of empirical data in log scale derived
from DMRG simulations while black dashed lines represent the outcome of
curve fitting obtained by using Equation (4.16) and (4.17), respectively. Blue
lines in the right columns are Fourier transforms of the corresponding corre-
lation functions. And the black dashed lines in the right column correspond
to the black dashed line in left column, represent the oscillation behaviors in
relative long range (x > 0.1N) and where the finite size effects are excluded
(exclude the points x ∼ N). Red and yellow dashed lines in the top of right
columns correspond to the small, kF , and large, k∗F , Fermi vectors while these
lines in spin sector denote the values of 2kF (red) and 2k∗F (yellow).
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4.2. Fermi Wave Vector Behaviors

• 1.1 6 J 6 1.5, there are now three peaks in charge sector and two peaks
in spin sector. The dominant peak changed in spin sector from kF to k∗F
at J = 1.2

J = 1.2

Figure 4.5: The correlation function C(x) (top, left) and S(x) (bottom, left),
and their Fourier transform results (right column) for J = 1.2. Blue solid
lines in the left column shows the absolute values of empirical data in log scale
derived from DMRG simulations while black dashed lines represent the out-
come of curve fitting obtained by using Equation (4.16) and (4.17), respectively.
Blue lines in the right columns are Fourier transforms of the corresponding cor-
relation functions. And the black dashed lines in the right column correspond
to the black dashed line in left column, represent the oscillation behaviors in
relative long range (x > 0.1N) and where the finite size effects are excluded
(exclude the points x ∼ N). Red and yellow dashed lines in the top of right
columns correspond to the small, kF , and large, k∗F , Fermi vectors while these
lines in spin sector denote the values of 2kF (red) and 2k∗F (yellow).
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4. Numerical Results

• 2 6 J 6 2.3, only two peaks remain in C(x), one is at large Fermi wave
vector k(c)

2 ≈ k
∗
F , another one is far away from small Fermi wave vector

kF .
And there is only one peak in S(x), at large Fermi wave vector k∗F .

J = 2.3

Figure 4.6: The correlation function C(x) (top, left) and S(x) (bottom, left),
and their Fourier transform results (right column) for J = 2.3. Blue solid
lines in the left column shows the absolute values of empirical data in log scale
derived from DMRG simulations while black dashed lines represent the out-
come of curve fitting obtained by using Equation (4.16) and (4.17), respectively.
Blue lines in the right columns are Fourier transforms of the corresponding cor-
relation functions. And the black dashed lines in the right column correspond
to the black dashed line in left column, represent the oscillation behaviors in
relative long range (x > 0.1N) and where the finite size effects are excluded
(exclude the points x ∼ N). Red and yellow dashed lines in the top of right
columns correspond to the small, kF , and large, k∗F , Fermi vectors while these
lines in spin sector denote the values of 2kF (red) and 2k∗F (yellow).
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4.2. Fermi Wave Vector Behaviors

The long range oscillation behaviors of nc = 0.8 are summarized in Ta-
ble. 4.1.

C(x) S(x) k

J = 0.7 c(1)(x)
s(1)(x) k

(c)
1 = k

(s)
1 ≈ kF

0.8 6 J 6 1 c(2)(x) k
(c)
1 = k

(s)
1 ≈ kF , k

(c)
2 ≈ 0.8π

J = 1.1
c(3)(x) s(2)(x)

k
(c)
1 ≈ 0.5π, k(c)

2 ≈ 0.7π, k(c)
3 ≈ k

∗
F

k
(s)
1 ≈ 0.15π or 0.85π, k(s)

2 ≈ kF

1.2 6 J 6 1.5 k
(c)
1 ≈ 0.5π, k(c)

2 ≈ 0.7π, k(c)
3 ≈ k

∗
F

k
(s)
1 ≈ k∗F , k

(s)
2 ≈ 0.3π or 0.7π

2 6 J 6 2.3 c(2)(x) s(1)(x) k
(c)
1 ≈ 0.7π, k(c)

2 ≈ k
∗
F

k
(s)
1 ≈ k∗F

Table 4.1: Summary of results for nc = 0.8. In c(3)(x) region, a wave vector
k

(c)
2 appears, which is neither kF nor k∗F .

Additionally, the Fourier transform of both correlation functions are shown
in Fig. 4.7, we come across a crossover from the small- to large Fermi surface.
Various regimes in the charge and spin sector present.
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4. Numerical Results
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Figure 4.7: The schematic phase diagram for according to the long range
oscillations for C(x) and S(x) for nc = 0.8, 0.7 6 J 6 2.3.
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4.2. Fermi Wave Vector Behaviors

4.2.2 For nc = 0.56, N = 200
The same as what showed in Sec. 4.2.1, at nc = 0.56, the short/long range
oscillation separation also exists. In the similar way we analyze the S(x) and
C(x):

• 0.3 6 J 6 0.7, only one peak on C(x) and S(x), located in kF . k
(c)
1 =

k
(s)
1 ≈ kF

Figure 4.8: The correlation function C(x) (top, left) and S(x) (bottom, left),
and their Fourier transform results (right column) for J = 0.5. Blue solid
lines in the left column shows the absolute values of empirical data in log scale
derived from DMRG simulations while black dashed lines represent the out-
come of curve fitting obtained by using Equation (4.16) and (4.17), respectively.
Blue lines in the right columns are Fourier transforms of the corresponding cor-
relation functions. And the black dashed lines in the right column correspond
to the black dashed line in left column, represent the oscillation behaviors in
relative long range (x > 0.1N) and where the finite size effects are excluded
(exclude the points x ∼ N). Red and yellow dashed lines in the top of right
columns correspond to the small, kF , and large, k∗F , Fermi vectors while these
lines in spin sector denote the values of 2kF (red) and 2k∗F (yellow).
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4. Numerical Results

• J = 0.9, in charge sector the second peak around k∗F appears, in spin
sector, the form of s(x) remains the same, but the peak jumps to the
large Fermi wave vector.

Figure 4.9: The correlation function C(x) (top, left) and S(x) (bottom, left),
and their Fourier transform results (right column) for J = 0.9. Blue solid
lines in the left column shows the absolute values of empirical data in log scale
derived from DMRG simulations while black dashed lines represent the out-
come of curve fitting obtained by using Equation (4.16) and (4.17), respectively.
Blue lines in the right columns are Fourier transforms of the corresponding cor-
relation functions. And the black dashed lines in the right column correspond
to the black dashed line in left column, represent the oscillation behaviors in
relative long range (x > 0.1N) and where the finite size effects are excluded
(exclude the points x ∼ N). Red and yellow dashed lines in the top of right
columns correspond to the small, kF , and large, k∗F , Fermi vectors while these
lines in spin sector denote the values of 2kF (red) and 2k∗F (yellow).
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4.2. Fermi Wave Vector Behaviors

• 1 6 J 6 1.7, in C(x) the peak ratio A(k(c)
1 )

A(k(c)
2 )

keeps decreasing, and there is
no third peak in C(x) and no second peak in S(x) for all J at nc = 0.56.

Figure 4.10: The correlation function C(x) (top, left) and S(x) (bottom, left),
and their Fourier transform results (right column) for J = 1.7. Blue solid
lines in the left column shows the absolute values of empirical data in log scale
derived from DMRG simulations while black dashed lines represent the out-
come of curve fitting obtained by using Equation (4.16) and (4.17), respectively.
Blue lines in the right columns are Fourier transforms of the corresponding cor-
relation functions. And the black dashed lines in the right column correspond
to the black dashed line in left column, represent the oscillation behaviors in
relative long range (x > 0.1N) and where the finite size effects are excluded
(exclude the points x ∼ N). Red and yellow dashed lines in the top of right
columns correspond to the small, kF , and large, k∗F , Fermi vectors while these
lines in spin sector denote the values of 2kF (red) and 2k∗F (yellow).

The long range oscillation behaviors of nc = 0.56 are summarized in Ta-
ble. 4.2.

Compares with the results of nc = 0.8, there is no third peak in charge
sector and in the transient phase only exits the competition of kF and k∗F .
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4. Numerical Results

C(x) S(x) k

0.3 6 J 6 0.7 c(1)(x)
s(1)(x)

k
(c)
1 = k

(s)
1 ≈ kF

J = 0.9
c(2)(x) k

(c)
1 ≈ kF , k

(c)
2 = k

(s)
1 ≈ k∗F1 6 J 6 1.7

Table 4.2: Summary of results for nc = 0.56.
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Figure 4.11: The schematic phase diagram for according to the long range
oscillations for C(x) and S(x) for C(x) and S(x) for nc = 0.56, 0.3 6 J 6 1.7.
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4.3. Luttinger Parameter Kρ

4.3 Luttinger Parameter Kρ

Recalling the form of the charge density oscillation in Eq. (4.3):

NGS(x) = 〈δn̂(x)〉 = 〈δ(ĉ†i ĉi)〉 ∼ C1
cos(2kFx)
|x|(1+Kρ)/2 + C2

cos(4kFx)
|x|2Kρ

It’s important to note that it’s not possible to distinguish the peak at
4kF = 2πnc from the peak at 4k∗F = 2π(1 +nc). Moreover, from the numerical
results, it appears that C2 is significantly greater than C1. For these reasons,
using N (x) to determine the length of the Fermi wave vector is challenging.

However, through the curve-fitting process, it is still possible to extract the
Luttinger parameter Kρ from ρ(i, i) and compare the results obtained from
the curve fitting of S(x).

As the system is symmetric, only half of the chain is presented for all
|N (x)|.

Figure 4.12: The curve fitting results for N (x) are shown for three different
values of J : J = 2.3 (top), J = 2 (middle), and J = 1.5 (bottom) at nc = 0.8,
N = 200. The red stars represent the empirical data, while the blue points
indicate the results of the fitting.
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4. Numerical Results

At nc = 0.8 the curve-fitting results for N (x) show a clear dependency on
the coupling strength J . When J is relatively large, the fitting using Eq.(4.3)
closely aligns with the data.

However, as we decrease the value of J , an unexpected decay pattern starts
to emerge at the chain’s end, even though the middle part of the chain can
still be accurately described by Eq.(4.3).

Figure 4.13: The curve fitting results for N (x) are displayed for three different
values of J : J = 1 (top), J = 0.9 (middle), and J = 0.7 (bottom) at nc = 0.8,
N = 200. In these plots, the red stars represent the empirical data, while the
blue points depict the results of the fitting procedure. It’s evident that the
fitting results in the middle of the chain match well with the data. However,
as J decreases, particularly for J = 0.7, the fitting results at the end of the
chain gradually deviate from the data.

The presence of this unusual decay can also be illustrated using the Fourier
transform method. Similar to how we handled short and long-range oscillations
for C(x), we apply Fourier transforms to different segments of N (x):

(1)The full chain, where x ranges from 1 to N .
(2)The partial chain, where we exclude the chain’s ends, with x ranging

from 0.1N to 0.9N .
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4.3. Luttinger Parameter Kρ

For a large coupling strength J , as depicted in Fig. 4.14, the shapes of the
Fourier transform results for the full and partial chains are nearly identical.
This suggests that the oscillation behaviors in the middle and at the end of
the chain are universal and consistent.

Figure 4.14: In the left panel are the N (x) for J = 2.3 (top), J = 2, (middle)
and J = 1.5 (bottom) at nc = 0.8,N = 200. The blue solid line represents
the full chain, x ∈ [1, N ], the red dashed lines are the partial chain, x ∈
[0.1N, 0.9N ]. In the right panel are their Fourier transform results for each
J and the blue solid/red dashed lines depict the Fourier transform of the
full/partial chain, respectively.
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4. Numerical Results

As we decrease the value of J , as shown in Fig. 4.15, the shapes of the
Fourier transforms for the full chain and the chain with the ends excluded
become noticeably different. In the full chain Fourier transform, peaks appear
at k = 0.6π and k = 0.8π. To match this behavior, Kρ would have to be larger
than 1, which is an unphysical solution for a TL liquid.

Figure 4.15: In the left panel are the N (x) for J = 1 (top), J = 0.9 (middle)
and J = 0.7 (bottom) at nc = 0.8,N = 200. The blue solid line represents
the full chain, x ∈ [1, N ], the red dashed lines are the partial chain, x ∈
[0.1N, 0.9N ]. In the right panel are their Fourier transform results for each
J and the blue solid/red dashed lines depict the Fourier transform of the
full/partial chain, respectively.
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4.3. Luttinger Parameter Kρ

This unusual decay pattern, particularly evident with smaller coupling
strengths, seems to indicate that open boundary effects become more pro-
nounced in this regime. Furthermore, from Fig. 4.16, it’s apparent that this
effect persists even as the system size increases.

Figure 4.16: The Fourier transform results for the full chain at J = 0.7 and
nc = 0.8, with system sizes of N = 100 (blue curve), 200 (red curve), and 400
(orange curve), are presented in the figure. The vertical dashed lines represent
2k∗F (left), 4kF = 4k∗F (middle), and 2kF (right). As the system size increases,
the 4kF peak becomes more pronounced, while the strength of the boundary
decay remains consistent. This indicates that boundary effects persist and do
not diminish with increasing system size.
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4. Numerical Results

At nc = 0.56, the influence of boundary effects remains substantial, at low
values of the coupling strength J . The exact cause of the decay at k 6= 2kF (∗)
or 4kF (∗) still presents a puzzle.

Figure 4.17: The curve fitting results for N (x) are displayed for three different
values of J : J = 1.7 (top), J = 0.9 (middle), and J = 0.5 (bottom) at
nc = 0.56, N = 200. In these plots, the red stars represent the empirical data,
while the blue points depict the results of the fitting procedure. Similar decay
patterns as Fig. 4.14 are observed in the low J region.

Figure 4.18: The full/partial Chains and their Fourier transforms for J = 0.5
at nc = 0.56,N = 200.
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4.3. Luttinger Parameter Kρ

Kρ − J curve When extracting the value of Kρ from the curve-fitting re-
sults of N (x), the most effective approach is to exclude the chain ends to
avoid boundary effects. Additionally, cross-validating these results with the
curve-fitting of S(x) is advisable, as Kρ also significantly influences its decay
behavior.

Figure 4.19: The Kρ−J from the fitting results of N (x) (blue) and S(x) (red),
at nc = 0.8 and N = 200. J = 1.2 is also the point where kF ↔ k∗F happens.

Figure 4.20: The Kρ−J from the fitting results of N (x) (blue) and S(x) (red),
at nc = 0.56 and N = 200. Kρ decreased monotonically with decreasing J
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4. Numerical Results

4.4 Phenomenological Explanation Of Numerical
Results

The discussion in Section 2.3 highlights the complexity of the Fermi wave
vector in 1D KLM. In the large J limit, the Fermi wave vector is associated
with a large filled Fermi sea picture. However, as we move away from this
limit, the situation becomes less clear.

A possible resolution to this ambiguity is presented in the case where
|J | � EF . In this scenario, near commensurate band filling, a collinear metal
phase emerges. This metallic phase is characterized by its electronic behavior
being influenced by a spin configuration that is close to a collinear arrangement,
which is connected to the heavy Tomonaga-Luttinger liquid (HTLL) phase
through electron-spin interactions. At generic band fillings, a helical metal
phase characterized by a 4kF charge-density wave appears, and a local helical
gap becomes evident [35, 36].

Numerical investigations have also contributed to our understanding. For
instance, various numerical results have shown that in the small J region, a
small Fermi wave vector is observed [7, 8, 12]. It’s important to note that
there is no readily available analytical solution for the case where J is on the
order of the hopping amplitude t, and there have been no prior studies on the
transition from kF to k∗F in this context.

In reference to Gulácsi et al. (Ref. [79]), they divided the paramagnetic
phase into two distinct regions, which are separated by the FM2 region. The
upper part, characterized by larger J , is described as a weakly disordered
polaronic liquid with an assumed large Fermi wave vector. In contrast, the
lower part, associated with smaller J values, is labeled as a strongly disordered
conventional paramagnet with an assumed small Fermi wave vector.

In Ref. [8], the second FM region is noted to serve as a boundary distin-
guishing regions with large and small Fermi surfaces. However, the results
of this project indicate something intriguing. At nc = 0.8, as the value of
J decreases, the Fermi wave vector continues to include the local spin even
after crossing the FM2 region. Simultaneously, changes in the Fermi wave
vector are observed in regions with a smaller density of conduction electrons
(nc = 0.56) that do not cross the FM2 region. This suggests that the changes
in the Fermi wave vector are not solely dependent on the presence of the FM2
region and related phase transition, but are influenced by other factors.

An important factor that might be influencing these observations is the
presence of 4kF charge-density waves (CDW), which have been observed in
regions with both large and small Fermi wave vectors.

In the case of commensurate band filling, the CDW is associated with a
finite energy gap when the electron density nc = 0.75and J ∼ 1 [41]. Interest-
ingly, this is close to the transient point observed in our system.

To gain a deeper understanding, further investigation is needed, including
system size extrapolation, to determine whether the CDW arises due to the

48



4.4. Phenomenological Explanation Of Numerical Results

open boundary conditions or if it is an intrinsic property of the system at that
parameters.

Regarding the behavior of the Luttinger parameter Kρ in the TLL of the
1D Kondo lattice model, it has been observed to exhibit a monotonic decrease
as the coupling constant J decreases while keeping the electron density fixed,
as shown in Ref.[10, 28]. This decrease indicates a strong repulsive interaction
between electrons in the weak-coupling region.

However, in the calculations of this thesis, an unusual inflexion point in Kρ

is observed at J = 1.2, nc = 0.8. One possible explanation for this discrepancy
is related to the limit as J approaches zero: in this limit, the system should
ideally revert to a free 1D electron gas with kρ = 1. Therefore, the critical point
which identified at nc = 0.8 and J = 1.2 might represent such special case.
But the monotonic decrease of Kρ at nc = 0.56 need further investigation.

The theorem discussed in Ref. [6] predicts the presence of a large Fermi wave
vector in translation-invariant systems. However, the emergence of a CDW
can break translational symmetry, potentially challenging the applicability of
this theorem. Enlarging the system to infinity offers a way to mitigate CDW
effects and approach a more translation-invariant scenario. This approach
might make the theorem applicable and provide valuable insights into the
system’s behavior.

In analyzing single-particle excitation 〈ĉ†i ĉj〉, we encounter a interplay of
multiple oscillations, which presents a perplexing challenge. Within this region,
distinguishing the distinct influences of the Kondo effect, RKKY interaction,
and double exchange interaction becomes intricate. To shed light on these
intertwined factors, a potential strategy involves reducing the density of local
spins, thereby mitigating the impact of the RKKY interaction in this particular
domain. The hypothesis is that by modulating the transient region as we alter
parameters, a clearer and more discernible configuration may emerge.
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Chapter 5
Summary and outlook

Summary

In this thesis, we utilized Density Matrix Renormalization Group (DMRG)
to investigate the one-dimensional Kondo lattice model, harnessed the QS-
pace tensor library to control quantum numbers within specific sectors and
employed the controlled bond expansion DMRG method for efficient ground
state determination.

Our exploration of the phase diagram of the 1D Kondo lattice model has
unveiled many new and novel phenomena. We focused on two parameter sets:,
(1) nc = 0.8, 0.7 6 J 6 2.3, (2) nc = 0.56, 0.3 6 J 6 1.7, as shown in phase
diagram Fig. 2.3.

The Fermi wave vector change k∗F ∝ nc + 1↔ kF ∝ nc, is assumed to asso-
ciate with the PM −FM −PM transition in (1) in Ref. [8]. This assumption
is disproved by the numerical results of this thesis, by confirming that the
point the Fermi wave vector change Jc is actually lower than ferromagnetic
phase region.

We obtained the paramagnetic state |PM〉 for parameters (1) and (2), and
subsequently computed the correlation functions (a) 〈c†ici〉, (b) 〈c

†
icj〉 and (c)

〈SiSj〉. The curve fitting and Fourier transform techniques are employed to an-
alyze the decay and oscillations within these correlations, mutually validating
our results.

The short-range oscillations in correlations (|i− j| ≈ 1 ∼ 20), consistently
involve a small Fermi wave vector, regardless of J . These oscillations decay
rapidly. In contrast, long-range correlations exhibit distinct behaviors, serving
as the focal point for the physics explored in this thesis.

The correlation functions (b) and (c) are described by Eq. (4.16) and
Eq. (4.17), respectively. These equations differ from the general Luttinger
liquid solutions Eq. (4.1) and Eq. (4.2), which typically involve only a single
oscillation term with k = k∗F or k = kF . The results revealed, the coexistence
of several oscillation terms represented by n wave vectors k(c)

n and k(s)
n (n 6 3).
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5. Summary and outlook

Analyzing these results through Fourier transform, in the charge sector we
observe that at low J , a single peak is located at kF . As J increases, the single
peak transforms into a sequence of peaks in single-particle excitation (b). The
details are shown in Tab. 4.1 for parameters (1) and Tab. 4.2 for parameters
(2). An ambiguous transient phase region emerges between the domains of
large and small Fermi wave vectors, as graphical representations provided in
Fig.4.7 and Fig.4.11.

In the spin sector, a clear transition between large and small Fermi wave
vectors is evident in both parameter sets, contrasting with the charge sector.

The charge density oscillation (a) provides a means to validate the Kρ

obtained from the curve fitting of (c), as Kρ is crucial in both cases. The
comparison of these two fitting results is depicted in Fig. 4.19. Both results
indicate a kink at J = 1.2, nc = 0.8, which corresponds to the onset of the
ambiguous region in the charge sector and the transition between small and
large Fermi wave vectors in the spin sector.

Outlook

This thesis has laid the foundation for several intriguing research directions:
• Oshikawa’s Theorem [6] and Localized Spins: As mentioned in Sec. 2.3,

through the LSM theorem, a large Fermi surface in 1D KLM is promised
for system with certain symmetries. Expanding system size and ad-
dressing finite size effects or employing methods like variational uniform
matrix product states (VUMPS) [80] for infinite systems may clarify the
phenomena.

• Unexplained Peaks and Coexistence of kF and k∗F : Peaks not aligning
with kF or k∗F and the coexistence of these wave vectors pose intriguing
questions. To explore Fermi surface intricacies further, varying local spin
density as a potential avenue for investigation may offer insights into
how localized spins behave within the Kondo lattice model,

• Interpreting Coefficients α and β: Coefficients α and β remain enigmatic.
Understanding their physical meaning and their role in identifying phases
or transitions requires further theoretical work.

• Differences Between nc = 0.8 and nc = 0.56: While the outcomes for
these two conduction electron densities exhibit notable distinctions, their
universality is suggested by the phase diagram. Further calculations are
necessary to bridge the gap between these parameter sets and elucidate
how the crucial coefficients evolve.

• Boundary Effects: We’ve observed an unexpected decay in charge den-
sity oscillation at low J , primarily at the chain’s ends. This suggests
boundary effects, and the specific oscillation wave vectors need further
investigation.

• Long/Short Range Oscillation: The short-range oscillations with re-
spect to kF are system size-independent, as ensured by our methodology
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for averaging correlations, although these patterns bear resemblance to
boundary effects. They potentially represent an intrinsic property of
correlations. Further explanation and analytical analysis are required to
understand this phenomenon.

• Possible gap: The characteristic length of convergence, denoted as λ,
should ideally exceed the system size if the system is gapless under certain
parameters. However, based on the extrapolation results, it appears that
this condition is not met. Therefore, conducting an additional check for
energy could be valuable and may provide further insights.
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Appendix A
Appendix 1: Tensor Network

Basics and Notations

This section is largely quoted from the tensor network lecture notes from Prof.
Jan von Delft [65], aims to clarify the visual representation of tensors and
the process of tensor contraction, illustrate the basic idea of Matrix Product
States (MPS), Matrix Product Operator (MPO) and the process of Density
Matrix Renormalization Group (DMRG).

Tensor network methods often involve intricate manipulations of multidi-
mensional tensors. Representing these operations using traditional mathemat-
ical equations can lead to lengthy formulas crowded with numerous tensor
indices. Furthermore, the interpretation of certain two-dimensional tensor
expressions might become less clear when written linearly. To address this
challenge, similar to the use of Feynman diagrams in perturbation theories,
diagrammatic notations are adopted for tensor networks. These graphical
representations effectively alleviate the complexity of traditional equations,
providing a more intuitive approach for comprehending and working with
intricate tensor operations.

A.1 Tensor Network Basics

Tensor, Contraction and the Cost
Tensor network diagrams are typically composed of geometric shapes like circles
or rectangles, connected by lines. In these diagrams, each circle represents
a tensor, and the lines extending from the circle correspond to the tensor’s
indices. For instance, in Fig. A.1, examples of rank-1 tensor (vector), rank-2
tensor (matrix), and rank-3 tensor are illustrated.

Within tensor network diagrams, index positions on tensors are often
indicated by arrows. These arrows serve to distinguish different types of indices
and their positions. Specifically, incoming arrows usually signify contravariant
indices, while outgoing arrows indicate covariant indices.
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=
A

(a) Vector

=
A

(b) Matrix (c) Tensor

β β=
A

Figure A.1: The diagrammatic representation of vectors, matrices, and rank-3
tensors involves circles symbolizing tensors. Each external line, often referred
to as a "leg" or "bond", corresponds to an index of the tensor.

Graphically, tensor contraction is achieved by connecting lines in the tensor
network diagrams that correspond to the same index. This linking of lines
represents the mathematical operation of summation or contraction over those
indices.

= ==
β

Figure A.2: A contraction operation on index β is graphically depicted by
connecting the lines that represent this index, which signifies the contraction
between tensors. While indices are labeled in the diagram for clarity, they can
be omitted in practical applications, streamlining the visual representation.

A

A

BC

B

B

C AC

E

Figure A.3: Assuming uniform dimensions D for all legs, the total numerical
cost varies when contracting legs in different orders. The expense of con-
tracting µ first surpasses that of contracting δ first. In the upper approach,
AδγB

γα
µ Cµβδ → Aδγ(BC)γαβδ → Eαβ , the total cost is O(D5). In the lower ap-

proach, AδγBγα
µ Cµβδ → Bγα

µ (AC)µβγ → Eαβ the total cost is O(D4).
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A tensor network can involve multiple contraction operations, and the
sequence in which these contractions are performed doesn’t affect the final
results. However, the order of contractions does influence the computational
complexity of the algorithm. This complexity is visually evident from the
tensor diagrams. For example, in the contraction shown in Fig. A.2, the
computational effort can be roughly estimated as O(D[α]D[β]D[γ]), where
D[i] represents the dimension of index i.

Generally, the computational complexity is the product of the dimensions
of all lines in the diagram. However, depending on the diagram’s structure, the
actual computational cost might vary based on the order in which contractions
are performed.

Unitaries, Isometries and Decompositions
A square matrix U ∈ mat(D,D;C) is considered unitary if it satisfies the
condition

U †U = UU † = ID (A.1)

where ID is the identity matrix of size D. Unitary transformations denote
linear transformations that uphold the inner product and vector norm.

For rectangular matrices, let A ∈ mat(D,D′;C) with D > D′ be termed a
"left isometry" if

A†A = ID′ and AA
† 6= ID (A.2)

Correspondingly, consider a rectanglar matrix B ∈ mat(D,D′;C) with
D 6 D′ as a "right isometry" if

BB† = ID and B†B 6= ID′ (A.3)

In linear algebra, the concept of an isometry pertains to a linear transfor-
mation that maintains the length or norm of vectors. Within the framework
of tensor networks, an isometric tensor is characterized by having fewer out-
going legs compared to incoming legs. This arrangement ensures that the
tensor retains its capacity to preserve vector norms during contractions within
the tensor network. This property is particularly crucial in the context of
techniques like DMRG.

Furthermore, isometric tensors play a significant role in effectively repre-
senting quantum states and operators within tensor networks. They facilitate
the compression and truncation of tensor network descriptions while still cap-
turing essential characteristics of the quantum state or operator. This com-
pression becomes especially valuable when dealing with systems that possess
numerous degrees of freedom, as explicit tensor representations can quickly
become computationally unwieldy.

In the context of tensor networks, any matrix can be employed to con-
struct left or right isometric tensors through the process of singular value
decomposition.
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Figure A.4: The diagrammatic representation of unitary and left/right isome-
try matrix.

Consider a matrix M ∈ mat(D,D′;C), and let D̃ = min(D,D′), then any
such M has a singular value decomposition of the form:

M = USV † (A.4)

where U ∈ mat(D, D̃;C), U †U = ID̃; V
† ∈ mat(D̃,D′;C), V †V = ID̃.

D D

D D

=

=

D D=

′D

′D ′D ′D ′D

′D

:′D≤D

:′D≥D

M U S †V

Figure A.5: The diagrammatic representation of SVD for matrix M .

The singular value matrix S ∈ mat(D̃, D̃;C) takes on a diagonal structure,
consisting solely of non-negative diagonal elements. These elements constitute
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the Schmidt rank r, indicating the count of non-zero singular values. The
diagonal entries can be ordered in a descending fashion:

s1 ≥ s2 ≥ · · · ≥ sr > 0→ S = diag(s1, s2, . . . , sr, 0, . . . , 0) (A.5)

The number of zeros within the diagonal is D̃ − r.
SVD can be used to approximate a rank r matrix M by a rank r′(< r)

matrix M ′:

M = USV † →M ′ = US′V †

S = diag(s1, s2, . . . . . . , sr, 0, . . . , 0), num(0) = D̃ − r
→ S′ = diag(s1, s2, . . . , sr′ , 0, . . . . . . , 0), num(0) = D̃ − r′ (A.6)

D D

D D

=

D D=

′D

′D ′D ′D ′D

′D

:′D≤D

:′D≥D

M

D D= =

′D ′D

M

D D=

′D ′D

0 00

0 00

D

′D

=
D

′D

′M

′M

′r ′r ′r ′r

′r ′r ′r ′r

Figure A.6: The diagrammatic representation of SVD truncation process.

Applying Singular Value Decomposition (SVD) and truncation within the
DMRG framework provides a practical approach to efficiently handle complex
quantum states with significant entanglement. In doing so, DMRG preserves
the essential aspects of these states while discarding less impactful details.
This blending of techniques empowers DMRG as a versatile and powerful
methodology.

The success of DMRG largely relies on the methods chosen for executing
truncation, a subject which is elaborated in the Sec.3.2.
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Entanglement and the Area Law
Entanglement plays a critical role in the domain of tensor networks, especially
when it comes to capturing and representing complex quantum states. In the
context of quantum systems, entanglement signifies the non-classical correla-
tions that link different aspects of a composite system. In tensor networks,
measures of entanglement are used to assess the degree to which information
is shared among different tensors or sites within the network.

Tensor network methodologies, as demonstrated by DMRG, leverage the
concept of entanglement to effectively model and manipulate quantum states.
Excessive entanglement can make explicit representations of quantum states
computationally challenging. However, tensor networks provide a solution by
encapsulating the essential characteristics of these states while discarding less
significant details. Techniques based on entanglement-driven compression and
truncation enable a resource-efficient approximation of quantum states, while
still maintaining their essential features.

Moreover, entanglement provides valuable insights into the behavior and
properties of quantum systems. Its implications extend to phenomena such as
quantum phase transitions and criticality. The distribution of entanglement
across a system’s degrees of freedom can reveal crucial information about the
system’s fundamental state and excitations.

The ground state entanglement entropy follows an area law [81–83], which
is a fundamental concept in quantum physics. This law provides deep insights
into the entanglement organization within many-body systems.

For a pure quantum system in pure state |ψ〉, with density matrix ρ̂ =
|ψ〉〈ψ|, it can be devided into two parts: A/B, the Hilbert spaces of two
subsystems are:

HA = span{|−→σA〉} , HB = span{|−→σB〉} (A.7)

To obtain the reduced density matrix of A/B, we trace out B/A:

ρ̂A = TrB ρ̂ , ρ̂B = TrAρ̂ (A.8)

and the entanglement entropy of A/B is

SA = −TrAρ̂A log2 ρ̂A , SB = −TrB ρ̂B log2 ρ̂B (A.9)

Then the entanglement of two systems is described by the area law:

S = SA/B ∼ ∂V (A.10)

∂V is the boundary area of the subsystem.
The area law establishes that the entanglement entropy, which measures

quantum entanglement between different parts of a system, increases propor-
tionally to the boundary area of the analyzed region, rather than its volume. In
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other words, the entanglement entropy grows with the surface area surrounding
a subsystem, not its size.

This principle is pivotal within tensor network methods. Tensor networks
leverage the area law to accurately model and represent quantum states, partic-
ularly those with limited entanglement. Thus, when entanglement is confined
or displays low-dimensionality, tensor networks can offer precise approxima-
tions using fewer computational resources compared to alternative methods.
By prioritizing entanglement across boundaries, tensor networks maintain pre-
cision while minimizing parameters needed for a comprehensive quantum state
representation. This feature renders tensor networks, including Matrix Prod-
uct States (MPS) as used in DMRG, highly valuable for simulating intricate
quantum systems, notably in the domain of condensed matter physics.

Various Canonical MPS Forms
The matrix products in tensor network have gauge freedom, which means any
matrix product can be expressed in infinitely many ways without changing
the product:

MM ′ = M(UU−1)M ′ = M̃M̃ ′ (A.11)

Gauge freedom can be exploited to reshape MPSs into particularly convenient,
canonical forms.

The SVD process entails truncating the matrix S by retaining only the
largest D singular values. Subsequently, the truncated version of matrix U
is used as the updated form of A, and the truncated tensors S′ and V † are
contracted with the succeeding tensor.

Left-canonical MPS: All tensors are left normalized, denoted A,

|Ψα〉L = |−→σ 〉L[Aσ1
1 . . . A

σL
L ]1α (A.12)

A†A = I, and these states form an orthonormal set: in general, Vl ⊂ Hl,
l〈Ψα

′
|Ψα〉l = Iα

′

α .

Right-canonical MPS: All tensors are right normalized, denoted B,

|Φβ〉L = |−→σ 〉L[Bσ1
1 . . . B

σL
L ]1β (A.13)

BB† = I, and these states form an orthonormal set: in general, Vl ⊂ Hl,
l〈Φβ

′
|Φβ〉l = Iβ

′

β .
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= =

= =

Al AlAl+1 U S V †

S'S'

Al U S' V †

(a)

(b)

Al Al+1 U S V † Al+1 U S' V †Al+1

SVD

S'

Truncation

Figure A.7: The process involves truncating the MPS by applying SVD to a
specific tensor and discarding unnecessary singular values.

== ,
A

A†
I I

B

B†

(a)Left-normalized (b)Right-normalized

Figure A.8: Left-normalized and right-normalized tensor. Both of them are
constructed by SVD, where I represents the identity matrix. In the subsequent
diagram, triangles are employed to represent left/right normalized tensors.
And the circles are omitted.

Site-canonical MPS: The tensors are left-normalized to left of site l, and
right-normalized to right of site l.

|Ψ〉 = |−→σ 〉L[Aσ1
1 . . . A

σl−1
l−1 ]1α[Ml]ασlβ[Bσl+1

l+1 . . . B
σL
L ]1β

= |Ψα〉l−1|σl〉|Φβ〉l+1[Ml]ασlβ
(A.14)

The states |α, σl, β〉 := |Ψα〉l−1|σl〉|Φβ〉l+1 form an orthonormal set:
〈α′, σ′, β′|α, σ, β〉 = Iα

′

α Iσ
′

σ Iβ
′

β .
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A1 A2 A3 A4

Figure A.9: The diagrammatic representation of Left-canonical MPS.

Figure A.10: The diagrammatic representation of Right-canonical MPS.

1A A2 1

1

−

−

A +1

+1

B L1 BL−B
=:

+1

Figure A.11: The diagrammatic representation of Site-canonical MPS.

Bond-canonical MPS: The tensors are left-normalized from site 1 to site l,
and right-normalized from site l + 1 to site L.

|Ψ〉 = |−→σ 〉L[Aσ1
1 . . . A

σl
l ]1α[S]αβ[Bσl+1

l+1 . . . B
σL
L ]1β

=
∑
αβ

|Ψα〉l|Φβ〉l+1[S]αβ (A.15)

The matrix Sαβ can be chosen diagonal. The states |α, β〉 := |Ψα〉l|Φβ〉l+1

form an orthogonal set: 〈α′, β′|α, β〉 = Iα
′

α Iβ
′

β .

1A A2 A +1B L1 BL−B

=:

S

+1

Figure A.12: The diagrammatic representation of Bond-canonical MPS.

SVD enables the transformation of all these canonical forms into each
other.
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The operations of MPOs
Applying MPO to MPS: From a given equation

Ô|ψ〉 = |ψ′〉 (A.16)

we express the wave functions in MPS format

|ψ〉 = |−→σ 〉[
∏
l

Ml]
−→σ → |ψ′〉 = Ô|ψ〉 = |−→σ 〉[

∏
l

M̃l]
−→σ (A.17)

=

Figure A.13: The diagrammatic presentation of Ô|ψ〉 = |ψ′〉

Figure A.14: The diagrammatic representation of M̃l

with composite indices, α̃l = (α, µ), β̃l = (β, ν) of increasing bond dimen-
sion DM̃ = DM · w, w is the dimension of physical bond σ′.

During this process, application of MPO is usually followed by SVD and
trunction to lower the bond dimension.

Multiplication and Addition of MPOs : The multiplication of two MPOs
entails a particular procedure of combining their individual tensors. For in-
stance, start with two given MPOs, Ô1 and Ô2, which represent operators.
To perform the multiplication, we contract the tensors of one MPO with the
tensors of the other, while simultaneously considering the relevant physical
indices associated with the sites they act upon.
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Mathematically, the multiplication of two MPOs Ô1 and Ô2 can be written
as:

Ô = [Ô1]
−→
σ
′
−→
σ
′′ [Ô2]

−→
σ
′′
−→σ |
−→σ ′〉〈−→σ |

= {
L∏
l=1

[W1]l}
−→σ ′−→
σ
′′ {

L∏
l
′=1

[W2]l′}
−→σ ′′−→σ |
−→σ ′〉〈−→σ |

= {
L∏
l=1

W̃l}
−→σ ′−→σ |
−→σ ′〉〈−→σ | (A.18)

Here, Ô is the resulting MPO after multiplication, W1 and W2 are the
individual tensors from the original MPOs, and the summation runs over all
possible indices σ′′i :

[W̃l]µ
′
σ
′

ν
′
σ

= [[W1]l]µσ
′

νσ
′′ [[W2]l]µ̄σ

′′

ν̄σ (A.19)

with composite indices µ′ = (µ, µ̄), ν ′ = (ν, ν̄) of increasing dimension w =
w1 · w2, w1 and w2 are the dimension of physical bonds σ and σ′.

The addition of two MPOs follows a process analogous to multiplication.
The tensors from both MPOs are combined by adding the corresponding
tensors while maintaining the integrity of the physical indices. Mathematically,
the addition of two MPOs Ô1 and Ô2 can be expressed as:

Ô = ([Ô1]
−→
σ
′
−→σ + [Ô2]

−→σ−→
σ
′ )|−→σ

′〉〈−→σ |

= ({
L∏
l=1

[W1]l}
−→σ ′−→σ + {

L∏
l=1

[W2]l}
−→σ ′−→σ )|−→σ ′〉〈−→σ |

= [Tr
(

[W1]1 0
0 [W2]1

)(
[W1]2 0

0 [W2]2

)
. . .

(
[W1]L 0

0 [W2]L

)
]
−→σ ′−→σ |
−→σ ′〉〈−→σ |

(A.20)

Here, Ô is the resulting MPO after addition, and W1 and W2 are the
individual tensors from the original MPOs:

[W̃l]σ
′

σ =
(∏L

l=1[W1]l 0
0 ∏L

l=1[W2]l

)σ′
σ

(A.21)
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A.2 DMRG: Iterative ground state search

One Site DMRG
Assuming the site-canonical form MPS with orthogonality center at site l and
the Hamiltonian MPOs:

|Ψ〉 = |α〉|σl〉|β〉[Ml]ασlβ (A.22)

1A A2 1

1

−

−

A +1

+1

B L1 BL−B
=:

Figure A.15: The diagrammatic representation of original MPS Eq. (A.22).
Assuming that this MPS has been truncated, the maximum bond dimension
equals to D, the physical legs dimension is d.

Ĥ = |−→σ ′〉{
L∏
l=1

Wl}
−→σ ′−→σ 〈
−→σ | (A.23)

σ1

Figure A.16: The diagrammatic representation of original MPO Eq. (A.23).
The virtual bond dimension of MPO is w.

In this context, our goal is to minimize the energy E of the state |Ψ〉 while
satisfying the constraint of unit normalization 〈Ψ |Ψ〉 = 1. The optimization
of |Ψ〉 can be formulated as a Lagrangian optimization problem:

min(〈Ψ|Ĥ|Ψ〉 − λ〈Ψ |Ψ〉) (A.24)

where λ acts as the Lagrange multiplier.
We find the Lagrange equation to be

∂

∂M †l
[〈Ψ|Ĥ|Ψ〉 − λ〈Ψ |Ψ〉] = 0 (A.25)

From such Langrangian equation which can be reshaped to a linear equation
system, we get the 1-site Schrödinger equation :

H
(1)
l ψ

(1)
l = λψ

(1)
l (A.26)
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Figure A.17: The diagrammatic representation of Langrangian optimization
of |Ψ〉 Eq. (A.24) .

Figure A.18: The diagrammatic representation of Langrangian equation
Eq. (A.25).

where ψ(1)
l = Ml with normalization [ψ(1)

l ]†ψ(1)
l = 1.

The tensor Ml can be conceptualized as a vector, labeled by the composite
index a′ = (α′σ′β′), while H(1)

l is considered as a matrix:

[H(1)
l ]a

′

a [Ml]a = λ[Ml]a
′

(A.27)

with normalization [M †l ]a[Ml]a = 1.

Figure A.19: The diagrammatic representation of one-site Hamiltonian.

Solving Eq. (A.27) using an eigensolver will yield a new matrix M̃l along
with the corresponding eigenvalue λ, which approximates the ground state
energy. This new M̃l is then employed to update the MPS as Ml → M̃l.
Moving to the next site, the SVD is applied to M̃l to shift the orthogonality
center to site l + 1. This entire process is repeated for the subsequent site.

The optimization of the MPS can commence from an arbitrary state that
may be distant from the actual ground state initially. By iteratively optimizing
the MPS and performing sweeps back and forth, convergence is achieved when
the ground state energy remains unchanged with respect to a fixed bond
dimension D.
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Solve the eigenvalue equation

Shift the center

update the MPS

Solve the eigenvalue equation

update the MPS

Shift the center

Figure A.20: The diagrammatic representation of DMRG process, iteratively
optimize the MPS to the ground state.

The matrix dimensions of H(1)
l are typically of the order D2d×D2d, which

can be large. Consequently, a numerical technique like the Lanczos iterative
solver [68–71], which targets the lowest eigenvalue of the system, is employed.
Ensuring an efficient implementation of the eigensolver is crucial due to its
frequent occurrence within a single ground state search: Number of solved
eigenequations = Sweeps × Sites.

Two Site DMRG
The MPS in site-canonical two-site basis is :

|Ψ〉 = |Ψα〉l−1|σl〉|σl+1〉|Φβ〉l+2[Ml]ασlγ [BL+1]βσl+1
γ (A.28)

The basic logic of two-site DMRG is exactly the same as one-site DMRG,
starts with the Langrangian optimization for two sites:

∂

∂B†l+1

∂

∂M †l
[〈Ψ|Ĥ|Ψ〉 − λ〈Ψ |Ψ〉] = 0 (A.29)
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1A 1

1

−

−

A
=:

+1B

+1 +

LB +1B

+1

Figure A.21: The diagrammatic representation of MPS for two-site DMRG
Eq. (A.28).

Figure A.22: The diagrammatic representation of Langrangian equation
Eq. (A.29).

Here we have 2-site Schrödinger equation

[H(2)
l ]a

′

a [ψ(2)
l ]a = λ[ψ(2)

l ]a
′

(A.30)

where a = (α, σ, σ̄, β), ψ(2)
l = MlBl+1.

Figure A.23: The diagrammatic representation of two-site Hamiltonian
Eq. (A.30).

Once again, we solve equation Eq. (A.30) to obtain the eigenstate ψ̃l
(2).

By performing a SVD on it (ψ̃l
(2) = USV †), we update Ml → Al = U and

Bl+1 → Ml+1 = SV †. This effectively shifts the orthogonality center to the
next site.

Subsequently, the process depicted in Fig. A.20 is reiterated to continue
the optimization. At this stage, the diagonal matrix S consists of D × d
singular values, which is notably larger than the virtual bond dimension D of
Ml and Bl+1. This expansion explores a broader state space, encompassing
more symmetry sectors. However, this expanded matrix can still be truncated
down to D to exclude less relevant states.
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Orthonormality The orthonormality and completeness properties of both the
kept and discarded states:

Figure B.1: The diagrammatic representation of the orthonormality and com-
pleteness of kpet and discarded states. Taken from Ref. [61]

The ultimate objective of the shrewd selection process is to obtain Ãtrl ,
which represents the truncated complement. This result is derived from the
orthogonal complement Āl. To achieve this goal, three essential cost functions
are introduced: C1, C2, and C3.

The core concept revolves around expanding the kept dimension of the
one-site isometry Al from D to D + D̃, where D̃ < D represents the image
dimension. This expansion is achieved by appropriately truncating the full
complement Āl (D̄ = D(d− 1)).

The purpose is to minimize C1. While SVD can lead to optimal truncation,
it comes with the computational cost of two-site DMRG, i.e., O(D̄3) = D3(d−
1)3 ∼ D3d3. However, a more cost-effective and efficient approach can be
employed, involving two steps:
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Figure B.2: The cost funtions of shrewd selection. Taken from Ref. [61]

(i) Preselection: Commence with Āl and truncate it to minimize the cost
function C2. This yields Âprl , termed the preselected complement, with a
dimension of D̂ = D.

(ii) Final selection: Further truncate Âprl to achieve the final result Ãtrl
with D̃ < D. This truncation aims to minimize the cost function C3.
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We will now delve into the specifics of step (i) and (ii).
In this phase, the initial truncation reduces the central MPS bond from D

to D′ within its environment, aiming to minimize the cost function C2. This
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truncation leads to a reduced bond dimension of D̄, resulting in D̂ = D′w for
the preselected complement Âprl . As illustrated in Fig. B.3, prior to step (a),
we first cut the MPO bond to alleviate numerical costs. This action divides
the diagram into two distinct parts: the Left tensor (L) without Λl, and the
Right tensor (R) including Λl.

(a) The initial SVD process serves to canonicalize the Right section of
the diagram, redistributing its weights onto the central MPS bond. This
transformation restructures the diagram as LR→ (LUS)V †, with the resulting
V † tensor having dimensions of D ×Ddw.

(b) Subsequently, a second SVD operation is applied to the LUS tensor,
implementing truncation to reduce the dimension of this bond. This process
yields the transformation LUS → (u′s′)v′†, where v′† has dimensions of D′×D,
with D′ = D/w.

(c) The third SVD step involves a reorganization of indices, effectively
combining the truncated MPS bond and the MPO bond to form a composite
bond of modified dimensions. This step is represented by the operation u′s′ →
Û ŜV̂ †, resulting in the total tensor u′s′ acting as a tensor with dimensions
Dd×D′w. Consequently, this produces the preselected complement Âprl = Û .

As we progress through steps (a), (b), and (c), the tensors V †, v′†, and V̂ †
function akin to filters, effectively sieving out the pertinent states that are of
interest. In this process, the bond dimension undergoes a series of changes:
from Ddw to D, then to D′ = D/w, and finally stabilizing at D̂ = D = D′w.
This sequence of transformations ensures that only the relevant states are
retained.

(d) The fourth SVD, accompanied by truncation, culminates in the pro-
duction of the final truncated complement, denoted as Ãtrl = Âprl ũ. This step
leads to a reduction in the bond dimension, transitioning from D̂ to D̃, where
D̃ is a value smaller than D.
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Appendix C
Appendix 3: Extrapolations and

Error Analysis

Extrapolation is a crucial technique in DMRG because it enables the accurate
estimation of physical properties without the need to simulate exceedingly
large systems or employ prohibitively high bond dimensions, which can be
computationally expensive. Various extrapolation methods, including linear,
quadratic, or more sophisticated fits, are employed depending on the specific
characteristics of the data.

Figure C.1: Error in |PM〉 state energy vs. discarded weight ξ for nc = 0.8
(left) and nc = 0.56 (right), N = 200.
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C. Appendix 3: Extrapolations and Error Analysis

Alongside obtaining extrapolated values, it is equally crucial to assess the
associated uncertainty or error in the results. This process often involves
a thorough analysis of data convergence and may require the application of
statistical methods to provide a reliable estimate of the uncertainties.

Extrapolations of λ
As discussed in Sec. 4.1, the finite size of the system introduces an exponential
decay into the correlations. As the bond dimension D increases, the discarded
weight ξ since because the MPS includes more states. The reciprocal of the
correlation length 1/λ should approach 0 in a gapless system. Conversely, if
1/λ does not reach 0 eventually, it suggests the presence of energy gaps in the
system.

Figure C.2: The extrapolation of λ−ξ is depicted here, derived from the curve-
fitting of C(x) (left) and S(x) (right), nc = 0.8. This extrapolation employs a
general model of the form y = axb + c, where a, b, and c are constants. Here,
we set c as λ0. In the case of J = 1.3 (middle), λ0 surpasses the system size N ,
indicating that in this parameter regime, the system is gapless. However, for
J = 0.7 (top) and J = 2.3 (bottom), λ0 is less than N , suggesting a potential
energy gap in these scenarios. Such energy gaps can be further checked by
increasing the system size, calculate the spin/charge excitation energy and see
if the ∆E − 1/N extrapolation goes to 0.
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Extrapolations of kF/k∗F

Figure C.3: The values of k(c)/k(s) (upper/lower) extracted from the curve
fitting results of C(x)/S(x) vs. discarded weight ξ are shown for two scenarios:
nc = 0.8 (left) and nc = 0.56 (right), both with a system size of N = 200.
Notably, the error bars associated with the fitting results are exceedingly small,
with values much less than 10−2. Consequently, these minuscule uncertainties
can be considered negligible, and the values of k(c) and k(s) remain essentially
constant as ξ decreases.
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C. Appendix 3: Extrapolations and Error Analysis

Extrapolations of α, β

Figure C.4: The extrapolations of α− ξ and β − ξ, at nc = 0.8. Both of them
employ the general model of the form y = axb + c, here we assign c as α0 and
β0.

78



Bibliography

[1] J. M. Luttinger, “Fermi surface and some simple equilibrium properties
of a system of interacting Fermions”, Phys. Rev. 119, 1153 (1960).

[2] J. M. Luttinger and J. C. Ward, “Ground-state energy of a Many-Fermion
system. ii”, Phys. Rev. 118, 1417 (1960).

[3] K. B. Blagoev and K. S. Bedell, “Luttinger theorem in one dimensional
metals”, Phys. Rev. Lett. 79, 1106 (1997).

[4] M. Oshikawa, “Topological approach to Luttinger’s theorem and the
Fermi surface of a Kondo lattice”, Phys. Rev. Lett. 84, 3370 (2000).

[5] E. Pivovarov and Q. Si, “Transitions from small to large Fermi momenta
in a one-dimensional Kondo lattice model”, Phys. Rev. B 69, 115104
(2004).

[6] M. Yamanaka, M. Oshikawa, and I. Affleck, “Nonperturbative approach
to Luttinger’s theorem in one dimension”, Phys. Rev. Lett. 79, 1110
(1997).

[7] S. A. Basylko, P. H. Lundow, and A. Rosengren, “One-dimensional Kondo
lattice model studied through numerical diagonalization”, Phys. Rev. B
77, 073103 (2008).

[8] I. P. McCulloch, A. Juozapavicius, A. Rosengren, and M. Gulacsi, “Lo-
calized spin ordering in Kondo lattice models”, Phys. Rev. B 65, 052410
(2002).

[9] S. Moukouri and L. G. Caron, “Fermi surface of the one-dimensional
Kondo-lattice model”, Phys. Rev. B 54, 12212 (1996).

[10] N. Shibata, A. Tsvelik, and K. Ueda, “One-dimensional Kondo lattice
model as a Tomonaga-Luttinger liquid”, Phys. Rev. B 56, 330 (1997).

[11] N. Shibata, K. Ueda, T. Nishino, and C. Ishii, “Friedel oscillations in the
one-dimensional Kondo lattice model”, Phys. Rev. B 54, 13495 (1996).

79

https://doi.org/10.1103/PhysRev.119.1153
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRevLett.79.1106
https://doi.org/10.1103/PhysRevLett.84.3370
https://doi.org/10.1103/PhysRevB.69.115104
https://doi.org/10.1103/PhysRevB.69.115104
https://doi.org/10.1103/PhysRevLett.79.1110
https://doi.org/10.1103/PhysRevLett.79.1110
https://doi.org/10.1103/PhysRevB.77.073103
https://doi.org/10.1103/PhysRevB.77.073103
https://doi.org/10.1103/PhysRevB.65.052410
https://doi.org/10.1103/PhysRevB.65.052410
https://doi.org/10.1103/PhysRevB.54.12212
https://doi.org/10.1103/PhysRevB.56.330
https://doi.org/10.1103/PhysRevB.54.13495


Bibliography

[12] J. C. Xavier, E. Novais, and E. Miranda, “Small Fermi surface in the
one-dimensional Kondo lattice model”, Phys. Rev. B 65, 214406 (2002).

[13] P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, “How do Fermi liquids
get heavy and die?”, Journal of Physics: Condensed Matter 13, R723
(2001).

[14] I. Osborne, T. Paiva, and N. Trivedi, “Broken Luttinger theorem in
the two-dimensional Fermi-Hubbard model”, Phys. Rev. B 104, 235122
(2021).

[15] W. O. Putikka, M. U. Luchini, and R. R. P. Singh, “Violation of Lut-
tinger’s theorem in the two-dimensional t-j model”, Phys. Rev. Lett. 81,
2966 (1998).

[16] S. Doniach, “The Kondo lattice and weak antiferromagnetism”, Physica
B+C 91, 231 (1977).

[17] J. T. Heath and K. S. Bedell, “Necessary and sufficient conditions for
the validity of Luttinger’s theorem”, New Journal of Physics 22, 063011
(2020).

[18] P. Fulde, “Introduction to the theory of heavy Fermions”, Journal of
Physics F: Metal Physics 18, 601 (1988).

[19] J. Kondo, “Resistance Minimum in Dilute Magnetic Alloys”, Progress of
Theoretical Physics 32, 37 (1964).

[20] N. F. Mott, “Rare-earth compounds with mixed valencies”, The Philo-
sophical Magazine: A Journal of Theoretical Experimental and Ap-
plied Physics 30, 403 (1974), eprint: https : / / doi . org / 10 . 1080 /
14786439808206566.

[21] K. Yosida, “Bound state due to the s-d exchange interaction”, Phys. Rev.
147, 223 (1966).

[22] P. W. Anderson, “A poor man’s derivation of scaling laws for the Kondo
problem”, Journal of Physics C: Solid State Physics 3, 2436 (1970).

[23] K. G. Wilson, “The renormalization group: critical phenomena and the
Kondo problem”, Rev. Mod. Phys. 47, 773 (1975).

[24] P. Coleman, “Heavy electrons”, Introduction to many-body physics (Cam-
bridge University Press, 2015), pp. 656–719.

[25] M. A. Ruderman and C. Kittel, “Indirect exchange coupling of nuclear
magnetic moments by conduction electrons”, Phys. Rev. 96, 99 (1954).

[26] S. Doniach, “Phase diagram for the Kondo lattice”, Valence instabilities
and related narrow-band phenomena, edited by R. D. Parks (Springer
US, Boston, MA, 1977), pp. 169–176.

[27] G. Honner and M. Gulácsi, “Ordering of localized moments in Kondo
lattice models”, Phys. Rev. B 58, 2662 (1998).

80

https://doi.org/10.1103/PhysRevB.65.214406
https://doi.org/10.1088/0953-8984/13/35/202
https://doi.org/10.1088/0953-8984/13/35/202
https://doi.org/10.1103/PhysRevB.104.235122
https://doi.org/10.1103/PhysRevB.104.235122
https://doi.org/10.1103/PhysRevLett.81.2966
https://doi.org/10.1103/PhysRevLett.81.2966
https://doi.org/10.1016/0378-4363(77)90190-5
https://doi.org/10.1016/0378-4363(77)90190-5
https://doi.org/10.1088/1367-2630/ab890e
https://doi.org/10.1088/1367-2630/ab890e
https://doi.org/10.1088/0305-4608/18/4/004
https://doi.org/10.1088/0305-4608/18/4/004
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1080/14786439808206566
https://doi.org/10.1080/14786439808206566
https://doi.org/10.1080/14786439808206566
https://doi.org/10.1080/14786439808206566
https://doi.org/10.1080/14786439808206566
https://doi.org/10.1103/PhysRev.147.223
https://doi.org/10.1103/PhysRev.147.223
https://doi.org/10.1088/0022-3719/3/12/008
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1017/CBO9781139020916.019
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1007/978-1-4615-8816-0_15
https://doi.org/10.1007/978-1-4615-8816-0_15
https://doi.org/10.1103/PhysRevB.58.2662


Bibliography

[28] I. Khait, P. Azaria, C. Hubig, U. Schollwöck, and A. Auerbach, “Doped
Kondo chain, a heavy Luttinger liquid”, Proceedings of the National
Academy of Sciences 115, 5140 (2018), eprint: https://www.pnas.org/
doi/pdf/10.1073/pnas.1719374115.

[29] C. Zener, “Interaction between the d-shells in the transition metals. ii.
ferromagnetic compounds of manganese with perovskite structure”, Phys.
Rev. 82, 403 (1951).

[30] P. W. Anderson and H. Hasegawa, “Considerations on double exchange”,
Phys. Rev. 100, 675 (1955).

[31] J. Zang, H. Röder, A. R. Bishop, and S. A. Trugman, “Magnetic prop-
erties of the double-exchange model”, Journal of Physics: Condensed
Matter 9, L157 (1997).

[32] M. Sigrist, H. Tsunetsuga, and K. Ueda, “Rigorous results for the one-
electron Kondo-lattice model”, Phys. Rev. Lett. 67, 2211 (1991).

[33] M. Sigrist, H. Tsunetsugu, K. Ueda, and T. M. Rice, “Ferromagnetism in
the strong-coupling regime of the one-dimensional Kondo-lattice model”,
Phys. Rev. B 46, 13838 (1992).

[34] H. Tsunetsugu, M. Sigrist, and K. Ueda, “The ground-state phase dia-
gram of the one-dimensional Kondo lattice model”, Rev. Mod. Phys. 69,
809 (1997).

[35] A. M. Tsvelik and O. M. Yevtushenko, “Transport in magnetically doped
one-dimensional wires: can the helical protection emerge without the
global helicity?”, New Journal of Physics 22, 053013 (2020).

[36] A. M. Tsvelik and O. M. Yevtushenko, “Physics of arbitrarily doped
kondo lattices: from a commensurate insulator to a heavy luttinger liquid
and a protected helical metal”, Phys. Rev. B 100, 165110 (2019).

[37] M. Troyer and D. Würtz, “Ferromagnetism of the one-dimensional Kondo-
lattice model: a quantum Monte Carlo study”, Phys. Rev. B 47, 2886
(1993).

[38] H. Tsunetsugu, M. Sigrist, and K. Ueda, “Phase diagram of the one-
dimensional Kondo-lattice model”, Phys. Rev. B 47, 8345 (1993).

[39] S. Caprara and A. Rosengren, “Ground-state magnetic properties of the
Kondo lattice model at low electron densities”, Europhysics Letters 39,
55 (1997).

[40] S. Moukouri and L. G. Caron, “Ground-state properties of the one-
dimensional Kondo lattice at partial band filling”, Phys. Rev. B 52,
R15723 (1995).

[41] Y. Huang, D. N. Sheng, and C. S. Ting, “Charge density wave in a doped
Kondo chain”, Phys. Rev. B 99, 195109 (2019).

81

https://doi.org/10.1073/pnas.1719374115
https://doi.org/10.1073/pnas.1719374115
https://www.pnas.org/doi/pdf/10.1073/pnas.1719374115
https://www.pnas.org/doi/pdf/10.1073/pnas.1719374115
https://doi.org/10.1103/PhysRev.82.403
https://doi.org/10.1103/PhysRev.82.403
https://doi.org/10.1103/PhysRev.100.675
https://doi.org/10.1088/0953-8984/9/11/001
https://doi.org/10.1088/0953-8984/9/11/001
https://doi.org/10.1103/PhysRevLett.67.2211
https://doi.org/10.1103/PhysRevB.46.13838
https://doi.org/10.1103/RevModPhys.69.809
https://doi.org/10.1103/RevModPhys.69.809
https://doi.org/10.1088/1367-2630/ab82bb
https://doi.org/10.1103/PhysRevB.100.165110
https://doi.org/10.1103/PhysRevB.47.2886
https://doi.org/10.1103/PhysRevB.47.2886
https://doi.org/10.1103/PhysRevB.47.8345
https://doi.org/10.1209/epl/i1997-00313-4
https://doi.org/10.1209/epl/i1997-00313-4
https://doi.org/10.1103/PhysRevB.52.R15723
https://doi.org/10.1103/PhysRevB.52.R15723
https://doi.org/10.1103/PhysRevB.99.195109


Bibliography

[42] R. Peters and N. Kawakami, “Ferromagnetic state in the one-dimensional
Kondo lattice model”, Phys. Rev. B 86, 165107 (2012).

[43] J. R. Schrieffer and P. A. Wolff, “Relation between the anderson and
Kondo hamiltonians”, Phys. Rev. 149, 491 (1966).

[44] P. Sinjukow and W. Nolting, “Exact mapping of periodic anderson model
to kondo lattice model”, Phys. Rev. B 65, 212303 (2002).

[45] R. M. Martin, “Fermi-surface sum rule and its consequences for periodic
Kondo and mixed-valence systems”, Phys. Rev. Lett. 48, 362 (1982).

[46] M. Cyrot, “Theory of Mott transition: applications to transition metal
oxides”, Journal de Physique 33, 125 (1972).

[47] D. J. Scalapino, E. Loh, and J. E. Hirsch, “Fermi-surface instabilities
and superconducting d-wave pairing”, Phys. Rev. B 35, 6694 (1987).

[48] M. D. Johannes and I. I. Mazin, “Fermi surface nesting and the origin
of charge density waves in metals”, Phys. Rev. B 77, 165135 (2008).

[49] S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, “Spin density wave
order, topological order, and fermi surface reconstruction”, Phys. Rev.
B 94, 115147 (2016).

[50] S. Friedemann, T. Westerkamp, M. Brando, N. Oeschler, S. Wirth, P.
Gegenwart, C. Krellner, C. Geibel, and F. Steglich, “Detaching the anti-
ferromagnetic quantum critical point from the Fermi-surface reconstruc-
tion in YbRh2Si2”, Nature Physics, v.5, 465-469 (2009) 5, 10 .1038/
nphys1299 (2009).

[51] O. Stockert and F. Steglich, “Unconventional quantum criticality in
heavy-Fermion compounds”, Annual Review of Condensed Matter
Physics 2, 79 (2011), eprint: https : / / doi . org / 10 . 1146 / annurev -
conmatphys-062910-140546.

[52] R. Peters and N. Kawakami, “Large and small fermi-surface spin density
waves in the kondo lattice model”, Phys. Rev. B 92, 075103 (2015).

[53] A. E. Sikkema, I. Affleck, and S. R. White, “Spin gap in a doped kondo
chain”, Phys. Rev. Lett. 79, 929 (1997).

[54] E. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferro-
magnetic chain”, Annals of Physics 16, 407 (1961).

[55] A. Nikolaenko and Y.-H. Zhang, “Numerical signatures of ultra-local
criticality in a one dimensional Kondo lattice model”, https://doi.org/
10.48550/arXiv.2306.09402.

[56] S. R. White, “Density matrix formulation for quantum renormalization
groups”, Phys. Rev. Lett. 69, 2863 (1992).

[57] S. R. White, “Density-matrix algorithms for quantum renormalization
groups”, Phys. Rev. B 48, 10345 (1993).

82

https://doi.org/10.1103/PhysRevB.86.165107
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRevB.65.212303
https://doi.org/10.1103/PhysRevLett.48.362
https://doi.org/10.1103/PhysRevB.35.6694
https://doi.org/10.1103/PhysRevB.77.165135
https://doi.org/10.1103/PhysRevB.94.115147
https://doi.org/10.1103/PhysRevB.94.115147
https://doi.org/10.1038/nphys1299
https://doi.org/10.1038/nphys1299
https://doi.org/10.1038/nphys1299
https://doi.org/10.1038/nphys1299
https://doi.org/10.1146/annurev-conmatphys-062910-140546
https://doi.org/10.1146/annurev-conmatphys-062910-140546
https://doi.org/10.1146/annurev-conmatphys-062910-140546
https://doi.org/10.1146/annurev-conmatphys-062910-140546
https://doi.org/10.1103/PhysRevB.92.075103
https://doi.org/10.1103/PhysRevLett.79.929
https://doi.org/https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/ https://doi.org/10.48550/arXiv.2306.09402
https://doi.org/ https://doi.org/10.48550/arXiv.2306.09402
https://doi.org/ https://doi.org/10.48550/arXiv.2306.09402
https://doi.org/ https://doi.org/10.48550/arXiv.2306.09402
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345


Bibliography

[58] K. A. Hallberg, “Density-matrix algorithm for the calculation of dynam-
ical properties of low-dimensional systems”, Phys. Rev. B 52, R9827
(1995).

[59] X. Wang and T. Xiang, “Transfer-matrix density-matrix renormalization-
group theory for thermodynamics of one-dimensional quantum systems”,
Phys. Rev. B 56, 5061 (1997).

[60] G. Vidal, “Efficient classical simulation of slightly entangled quantum
computations”, Phys. Rev. Lett. 91, 147902 (2003).

[61] A. Gleis, J.-W. Li, and J. von Delft, “Controlled bond expansion for
density matrix renormalization group ground state search at single-site
costs”, Phys. Rev. Lett. 130, 246402 (2023).

[62] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, “Exact solution of
a 1d asymmetric exclusion model using a matrix formulation”, Journal
of Physics A: Mathematical and General 26, 1493 (1993).

[63] U. Schollwöck, “The density-matrix renormalization group in the age of
matrix product states”, Annals of Physics 326, January 2011 Special
Issue, 96 (2011).

[64] F. Verstraete, V. Murg, and J. Cirac, “Matrix product states, projected
entangled pair states, and variational renormalization group methods
for quantum spin systems”, Advances in Physics 57, 143 (2008), eprint:
https://doi.org/10.1080/14789940801912366.

[65] J. von Delft, "tensor network" lecture notes, 2023.
[66] I. P. McCulloch, “From density-matrix renormalization group to matrix

product states”, Journal of Statistical Mechanics: Theory and Experi-
ment 2007, P10014 (2007).

[67] A. Weichselbaum, “Non-abelian symmetries in tensor networks: a quan-
tum symmetry space approach”, Annals of Physics 327, 2972 (2012).

[68] E. Koch, “The Lanczos method”, The lda+dmft approach to strongly
correlated materials, forschungszentrum jülich, edited by E. Pavarini, E.
Koch, D. Vollhardt, and A. Lichtenstein (2011).

[69] C. Lanczos, “An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators”, Journal of research
of the National Bureau of Standards 45, 255 (1950).

[70] I. Ojalvo and M. Newman, “Vibration modes of large structures by an
automatic matrix-reduction method”, Aiaa Journal - AIAA J 8, 1234
(1970).

[71] C. Paige, “Computational variants of the Lanczos method for the eigen-
problem”, J. Inst. Maths Applics 10, 373 (1972).

[72] I. McCulloch, “Infinite size density matrix renormalization group, revis-
ited”, https://doi.org/10.48550/arXiv.0804.2509 (2008).

83

https://doi.org/10.1103/PhysRevB.52.R9827
https://doi.org/10.1103/PhysRevB.52.R9827
https://doi.org/10.1103/PhysRevB.56.5061
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.130.246402
https://doi.org/10.1088/0305-4470/26/7/011
https://doi.org/10.1088/0305-4470/26/7/011
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1088/1742-5468/2007/10/P10014
https://doi.org/10.1088/1742-5468/2007/10/P10014
https://doi.org/https://doi.org/10.1016/j.aop.2012.07.009
https://api.semanticscholar.org/CorpusID:478182
https://api.semanticscholar.org/CorpusID:478182
https://doi.org/10.2514/3.5878
https://doi.org/10.2514/3.5878
https://doi.org/https://doi.org/10.48550/arXiv.0804.2509
https://doi.org/https://doi.org/10.48550/arXiv.0804.2509


Bibliography

[73] H. Ueda, T. Nishino, and K. Kusakabe, “Two-site shift product wave
function renormalization group method applied to quantum systems”,
Journal of the Physical Society of Japan 77, 114002 (2008), eprint: https:
//doi.org/10.1143/JPSJ.77.114002.

[74] S. R. White, “Density matrix renormalization group algorithms with a
single center site”, Phys. Rev. B 72, 180403 (2005).

[75] C. Hubig, I. P. McCulloch, U. Schollwöck, and F. A. Wolf, “Strictly
single-site DMRG algorithm with subspace expansion”, Phys. Rev. B 91,
155115 (2015).

[76] A. Gleis, J.-W. Li, and J. von Delft, “Projector formalism for kept and
discarded spaces of matrix product states”, Phys. Rev. B 106, 195138
(2022).

[77] S. R. White, I. Affleck, and D. J. Scalapino, “Friedel oscillations and
charge density waves in chains and ladders”, Phys. Rev. B 65, 165122
(2002).

[78] T. Giamarchi and H. J. Schulz, “Correlation functions of one-dimensional
quantum systems”, Phys. Rev. B 39, 4620 (1989).

[79] M. Gulacsi, A. Bussmann-Holder, and A. R. Bishop, “Spin and lattice
effects in the Kondo lattice model”, Phys. Rev. B 71, 214415 (2005).

[80] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F. Verstraete, and
J. Haegeman, “Variational optimization algorithms for uniform matrix
product states”, Phys. Rev. B 97, 045145 (2018).

[81] J. I. Cirac, D. Pérez-Garcıa, N. Schuch, and F. Verstraete, “Matrix
product states and projected entangled pair states: concepts, symmetries,
theorems”, Rev. Mod. Phys. 93, 045003 (2021).

[82] J. Eisert, M. Cramer, and M. B. Plenio, “Colloquium: area laws for the
entanglement entropy”, Rev. Mod. Phys. 82, 277 (2010).

[83] M. B. Hastings, “An area law for one-dimensional quantum systems”,
Journal of Statistical Mechanics: Theory and Experiment 2007, P08024
(2007).

84

https://doi.org/10.1143/JPSJ.77.114002
https://doi.org/10.1143/JPSJ.77.114002
https://doi.org/10.1143/JPSJ.77.114002
https://doi.org/10.1103/PhysRevB.72.180403
https://doi.org/10.1103/PhysRevB.91.155115
https://doi.org/10.1103/PhysRevB.91.155115
https://doi.org/10.1103/PhysRevB.106.195138
https://doi.org/10.1103/PhysRevB.106.195138
https://doi.org/10.1103/PhysRevB.65.165122
https://doi.org/10.1103/PhysRevB.65.165122
https://doi.org/10.1103/PhysRevB.39.4620
https://doi.org/10.1103/PhysRevB.71.214415
https://doi.org/10.1103/PhysRevB.97.045145
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1088/1742-5468/2007/08/P08024


Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben.

München, 15. September 2023

Ming Huang

85


	Contents
	Introduction
	1D Kondo Lattice Model
	The Competition between the Kondo effect and the RKKY interaction
	Localized Spin Order in 1D KLM
	Luttinger's Theorem in 1D KLM

	Method: Density Matrix Renormalization Group
	The Important Concepts of Tensor Network
	Matrix Product State
	Matrix Product Operator
	Symmetry

	Density Matrix Renormalization Group
	Controlled Bond Expansion DMRG


	Numerical Results
	Correlation Function of 1D KLM
	Fermi Wave Vector Behaviors
	For nc = 0.8, N = 200
	For nc = 0.56, N = 200

	Luttinger Parameter K
	Phenomenological Explanation Of Numerical Results

	Summary and outlook
	Appendix 1: Tensor Network Basics and Notations
	Tensor Network Basics
	DMRG: Iterative ground state search

	Appendix 2: Shrewd Selection
	Appendix 3: Extrapolations and Error Analysis
	Selbständigkeitserklärung

