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Subleading logarithmic behavior in the parquet formalism
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The Fermi-edge singularity in x-ray absorption spectra of metals is a paradigmatic case of a logarithmically
divergent perturbation series. Prior work has thoroughly analyzed the leading logarithmic terms. Here, we investi-
gate the perturbation theory beyond leading logarithms and formulate self-consistent equations to incorporate all
leading and next-to-leading logarithmic terms. This parquet solution of the Fermi-edge singularity goes beyond
the previous first-order parquet solution and sheds new light on the parquet formalism regarding logarithmic
behavior. We present numerical results in the Matsubara formalism and discuss the characteristic power laws.
We also show that, within the single-boson exchange framework, multi-boson exchange diagrams are needed
already at the leading logarithmic level.
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I. INTRODUCTION

Perturbative expansions are ubiquitous in theoretical
physics, and logarithmic divergences therein often lead to
power laws in observables. In the 1960s, several works
developed self-consistent methods to sum up the leading log-
arithmic terms from Feynman diagrams of all orders. Among
other systems, these techniques were successfully applied
to meson scattering [1], the Kondo model [2], the one-
dimensional interacting Fermi gas [3,4], and the Fermi-edge
singularity in x-ray absorption in metals [5,6]. These self-
consistent summations take into account two diagrammatic
channels, but exclude self-energy corrections. Following
Ref. [5], we refer to them as the first-order parquet approach.

Presently, the Hubbard model is one of the most studied
many-body problems of condensed matter physics [7,8]. To
capture the interplay of its competing fluctuations, another
type of self-consistent summation of diagrams was developed,
which we here call full parquet approach. It involves the self-
energy and the effective interactions in all three channels of
two-particle reducibility [9–12]. As the perturbative series of
the Hubbard model does not exhibit logarithmic divergences,
such a treatment was not motivated by logarithmic terms but
by the fulfillment of crossing symmetry and self-consistency
on the one- and two-particle level [12,13]. With increasing
computational power, the numerical solution of the parquet
equations has nowadays become a viable tool [14–20].
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In this work, we examine what the transition from the first-
order to the full parquet approach entails for logarithmically
divergent problems. To this end, we revisit the Fermi-edge sin-
gularity, which was recently revived as an inspiring workhorse
to better understand diagrammatic techniques [21–25]. Al-
though it can be solved in a one-particle scheme [26,27],
a precise analysis in perturbation theory remains challeng-
ing. It was shown that the leading logarithmic behavior can
be obtained using the one-loop functional renormalization
group [24,25], while the full summation of all parquet dia-
grams is only recovered in a multiloop expansion [23,28,29].

Remarkably, we find that a well-defined subset of di-
agrams from the full parquet solution offers a convenient
way to not only capture the leading logarithmic singularity,
but also the next-to-leading contributions. Hence, we close
the gap between the traditional summation of leading log-
arithms (first-order parquet) and the one- and two-particle
self-consistent summation (full parquet), giving new insights
into the structure of logarithmically divergent perturbation
theories. The power-law exponent of the particle-hole sus-
ceptibility obtained from our approach is closer to the exact
result than that obtained from previous diagrammatic analyses
respecting only the leading logarithmic contributions. Our
analysis beyond the leading logarithms is possible (despite
the concerns of Ref. [6]) as our numerical results include the
full dependence of individual diagrams beyond logarithmic
accuracy. Moreover, we briefly explain that the self-energy
diagrams needed to capture Anderson’s orthogonality catas-
trophe [30] go beyond the present approach.

Treating the full frequency dependence of the effective in-
teraction requires huge numerical effort. In recent years, there
were several attempts to make use of frequency asymptotics
to lower the numerical costs [31]. One of them is the decom-
position of the full interaction vertex into bosonic exchange

2469-9950/2025/111(8)/085151(27) 085151-1 Published by the American Physical Society

https://orcid.org/0000-0002-6951-7003
https://orcid.org/0000-0003-2776-269X
https://orcid.org/0000-0002-8655-0999
https://orcid.org/0000-0002-3108-6607
https://ror.org/05591te55
https://ror.org/01vekys64
https://ror.org/00sekdz59
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.111.085151&domain=pdf&date_stamp=2025-02-27
https://doi.org/10.1103/PhysRevB.111.085151
https://creativecommons.org/licenses/by/4.0/


GIEVERS, SCHMIDT, VON DELFT, AND KUGLER PHYSICAL REVIEW B 111, 085151 (2025)

FIG. 1. Illustration of the model defined by Eq. (1). The conduc-
tion band with quadratic dispersion relation and finite bandwidth 2ξ0

hosts electrons ĉ†
k, ĉk. The deep core level at energy εd hosts a single

electron d̂†, d̂ , which gets excited to the Fermi level by absorbing a
photon.

processes, the so-called single-boson exchange [32–43] as
well as the remaining and numerically most expensive multi-
boson exchange terms. We show that multi-boson exchange
terms are essential already at the leading logarithmic level;
neglecting them is thus not justified in the present case.

The rest of our paper is organized as follows. Section II
serves as a reminder of the model and the diagrammatic ap-
proach. In Sec. III, we discuss the lowest terms in perturbation
theory. In Sec. IV, we explain our self-consistent summation
scheme and show the corresponding numerical results. We
conclude in Sec. V.

II. MODEL AND METHOD

The model for the Fermi-edge singularity of x-ray absorp-
tion in metals was introduced in the late 1960s [5,6,26,44,45].
It is visualized in Fig. 1. A conduction band with quadratic
dispersion relation εk = k2/(2m) hosts electrons represented
by creation and annihilation operators ĉ†

k, ĉk. In addition, there
is a deep, localized core level at energy εd < 0, which hosts a
single d̂†, d̂ electron. Spin indices for the electrons are omitted
since the spin degeneracy only results in a doubled density of
states 1. An empty core level corresponds to the presence of a
core hole, with an effective attraction of strength U > 0 to the
conduction electrons. The Hamiltonian reads

Ĥ =
∑

k

εkĉ†
kĉk + εd d̂†d̂ − U

V

∑
k,k′

ĉ†
kĉ

k′ d̂ d̂†. (1)

We assume a finite bandwidth 2ξ0 of the conduction band and
set the chemical potential to half the bandwidth, i.e., μ = ξ0.
Absorption of a photon of frequency ω � −ξd = μ − εd ex-
cites the core electron to a state near the Fermi level. Due to
the sharp Fermi edge, a singularity arises in absorption and
emission spectra.

1This is justified since, as in the original model [26], we ignore
exchange processes, in which the deep hole and one conduction
electron reverse their spins.

We are interested in two quantities. First, we analyze the
particle-hole susceptibility,

X (t ) = −i
1

V

∑
k,k′

〈T d̂†(t )ĉk(t )ĉ†
k′ d̂〉, (2)

where T is the time-ordering operator. X (t ) is the response
function to the photo-excitation of a conduction-particle and
core-hole pair. Its imaginary part in frequency space cor-
responds to the x-ray transition rate [5,6,25]. Second, we
investigate the propagator of the d electron,

G(t ) = −i〈T d̂ (t )d̂†〉, (3)

which encodes single-particle excitations. The expectation
values in Eqs. (2) and (3) are taken with respect to the ground
state |�0〉. For large enough |ξd |, the ground state is given
by the occupied core level and the Fermi sea of conduction
electrons in the sense of Fermi-liquid theory. Consequently, at
zero temperature T = 0 (and more generally for T � |ξd |),
X (t ) is purely retarded while G(t ) is purely advanced, as
follows from the effect of the time-ordering operators T in
Eqs. (2)–(3). In Appendix A, we provide numerically exact
solutions of the two quantities using the functional determi-
nant approach [46–48].

The fact that G(t ) is purely advanced has important conse-
quences. It implies that there are no self-energy contributions
to the c electrons beyond the Hartree term. Since there is
precisely one local d level, this Hartree term reads U/V f (ξd ),
with the Fermi–Dirac distribution function f (ε) = 1/(1 +
eβε ), where β = 1/T . Now, bringing the Hamiltonian, Eq. (1),
into normal order, we get an additional term −U/V . This
term and the c-electron Hartree self-energy cancel exactly at
T = 0. We may thus suppress these ∼U single-particle terms
altogether, thereby effectively working with Hartree-dressed
propagators for the c electrons [24,25].

In Matsubara field theory, the expectation value 〈. . . 〉 =
1
Z tr(e−β(Ĥ−μN̂ ) . . . ) (with Z = tr e−β(Ĥ−μN̂ )) can be written as
a functional integral involving the action

S = − 1

β

∑
ν,k

c̄k,ν (iν − ξk)ck,ν − 1

β

∑
ν

d̄ν (iν − ξd )dν

+ U

V

1

β3

∑
ω,ν,ν ′,k,k′

d̄ν c̄k,ν ′+ωck′,ν+ωdν ′ . (4)

Here, ξk = εk − μ, ξd = εd − μ, and the fields depend on the
fermionic (bosonic) Matsubara frequencies ν (ω). Evidently,
only the c electron at the core hole, 1√

V

∑
k ck,ν , referred to as

the local c electron, interacts with the d hole. We may thus
integrate out all c electrons that are not located at the core
hole.

In the following, we assume a constant local density of
states of the conduction electrons

ρ(ε) = 1

V

∑
k

δ(ε − εk) = ρ 
(2ξ0 − ε)
(ε). (5)

This holds in two dimension, and in three dimensions, it is an
approximation motivated by the dominance of effects near the
Fermi level. We can hence rescale the local c electrons by

√
ρ
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to avoid trivial factors of ρ. Thereby, we obtain the action

S = − 1

β

∑
ν

c̄νg−1
ν cν − 1

β

∑
ν

d̄ν (iν − ξd )dν

+ u
1

β3

∑
ω,ν,ν ′

c̄ν ′+ωcν+ωd̄νdν ′ (6)

with the dimensionless interaction u = ρ U and the dimen-
sionless local c propagator gν = − 1

ρV

∑
k〈ck,ν c̄k,ν〉. At half

filling, μ = ξ0, the latter is given by

gν =
∫ 2ξ0

0

dε

iν − ε + ξ0
= −2i arctan

ξ0

ν
= gsm

ν . (7)

We refer to this as the smooth propagator. Previous diagram-
matic works [5,6,21,23–25,28] approximated it by

gsh
ν = −iπ sgn(ν)
(ξ0 − |ν|), (8)

its sharp form. This expression is convenient for analytical
calculations of the power law around ω � |ξd |. However, it is
problematic for self-consistent numerical computations, as it
violates basic properties, such as the ∼1/(iν) decay for large
|ν|. Indeed, for our calculations beyond logarithmic accuracy,
it is crucial to use gsm instead of gsh. Note that we also obtain
a dimensionless susceptibility in terms of the rescaled local c
fields,

χ (ω) = X (ω)/ρ. (9)

Seminal works from the 1960s showed that χ and G ex-
hibit characteristic power laws close to the threshold ω0 (cf.
Eq. (66) in Ref. [26] and Refs. [5,6,30,44]):

χ (ω + i0+) � 1

αX

[
1 −

(
ω + i0+ − ω0

−ξ0

)−αX
]
, (10a)

G(ν − i0+) � 1

ν − i0+ + ω0

(
ν − i0+ + ω0

ξ0

)αG

. (10b)

Here, the power law of χ characterizes the x-ray edge singu-
larity, while that of G is related to Anderson’s orthogonality
catastrophe. Note that Eqs. (10) are given in real frequencies,
in contrast to all the other expressions in this paper. The
power-law exponents αX = 2δ/π − (δ/π )2 and αG = (δ/π )2

depend on the s-wave scattering phase shift δ evaluated at
the Fermi surface. For the present model [cf. Eq. (5)], this
is related to the interaction strength via δ = arctan(πu). We
have verified the power laws in Eqs. (10) with our numeri-
cally exact data using the functional determinant approach (cf.
Appendix A).

The threshold frequency ω0 depends sensitively on how the
UV cutoff ξ0 is implemented in the model [5,6]. As discussed
later, our diagrammatic analysis allows for computing ω0

independently from all other quantities (cf. Sec. III E and Ap-
pendix A 2). For now, we set ω0 to its bare value ω0 → −ξd .
In the final results, −ξd can be replaced by ω0.

Expanding the power-law expressions, Eqs. (10), in u
reveals the logarithmic divergences. For small u, we can ap-
proximate δ/π = u + O(u3) (cf. Appendix B). The resulting

form for χ in imaginary frequencies is

χ (iω) � 1

2u − u2

[
1 −

(
iω + ξd

−ξ0

)−2u+u2]

≡ 1

2u − u2

[
1 − e(−2u+u2 )L

]
= L − uL2 + u2[ 2

3 L3 + 1
2 L2] − u3[ 1

3 L4 + 2
3 L3]

+ u4
[

2
15 L5 + 1

2 L4 + 1
6 L3

] + O(u5). (11)

Here, we introduced the logarithmic factor

L(ω) = ln
iω + ξd

−ξ0
. (12)

Taking only the highest power of L in each order of u yields
the leading logarithmic result, where 2u − u2 is replaced by
2u (cf. Eq. (42) in Ref. [5] and Eq. (57) in Ref. [6]).

Analogously, G in imaginary frequencies has an expansion
in terms of L̄(ν) = L(−ν) = ln[(iν − ξd )/ξ0]:

G(iν) � 1

iν − ξd

(
iν − ξd

ξ0

)u2

≡ 1

iν − ξd
eu2L̄

= 1

iν − ξd

[
1 + u2L̄ + 1

2 u4L̄2 + O(u6)
]
. (13)

In this work, we will show that a suitable summation of
parquet diagrams not only contains the leading logarithmic
result of χ , but also the second-highest power of L at each
order of u in Eq. (11). Taking into account even lower powers
of L would require diagrams beyond the parquet approxima-
tion. Differently from χ , the expansion of G, Eq. (13), is in
terms of u2L̄. So, with higher orders of u, the difference in
the powers of u and of L̄ increases. Hence, a perturbative
analysis of G (and thus the overlap related to Anderson’s
orthogonality catastrophe [30]) would require going beyond
leading/subleading logarithms and beyond the parquet ap-
proximation (cf. Appendix E).

Numerical parameters

For all our plots, we fix the dimensionless interaction
strength to u = 0.28, if not stated otherwise. The analytical re-
sults are presented for T = 0, where 1

β

∑
ν → ∫ ∞

−∞
dν
2π

≡ ∫
ν
.

There, we mostly use gsh
ν , Eq. (8), as we focus on the behavior

near the threshold, |iω + ξd | � ξ0. The numerical results are
obtained for a finite temperature T/ξ0 = 0.002 and a discrete
grid of Matsubara frequencies. For numerically determined
perturbative results, we compare both propagator choices gν

in Eqs. (7) and (8). Details of the implementation are given in
Appendix G.

The remaining parameter is the excitation energy ξd . Phys-
ically, one imagines εd < 0 and ξd � −T , so that f (ξd ) � 1,
corresponding to an occupied core level. In our diagrammatic
approach, we have already used f (ξd ) � 1 by canceling the
term U/V from normal-ordering with the c-electron Hartree
self-energy equal to U/V f (ξd ). Consequently, there are no
more c Hartree diagrams (involving a closed d line) in the ex-
pansion, and the d-level occupation is never actually probed.
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Instead, there is a single d line threading through all dia-
grams of χ (iω), and one may choose to keep the external
frequency argument paired with ξd , e.g., in the form iω + ξd

(cf. Sec. III E). As a result, ξd can be shifted to any (negative)
value [24,25].

Here, we use ξd/ξ0 = −0.01. The reason is that, in the
Matsubara formalism, ξd broadens the characteristic features
of the correlation functions χ and G, and, to reduce the effects
of such a broadening, we use small |ξd | � ξ0. Additionally,
this corresponds to larger values of ln(−ξd/ξ0), which is
beneficial to clearly separate logarithmic terms of different
powers at small frequencies in the perturbative expansions,
Eqs. (11)–(13). However, we keep |ξd | > πT so that features
below ξd (the lowest nonthermal energy scale) are resolved by
the Matsubara grid. After analytical continuation, the param-
eter ξd eventually only shifts the threshold frequency ω0 and
is irrelevant for the analysis of the power-law behavior.

III. PERTURBATION THEORY

To get an intuition about typical diagrammatic contribu-
tions to the infrared divergence to subleading accuracy, we
analyze Feynman diagrams at low orders. We start with the
well-known leading logarithmic terms in the particle-hole
susceptibility. Next, we discuss subleading terms in the self-
energy and the vertex. Finally, we consider a multi-boson
exchange diagram and present a rule to generally assess the
logarithmic behavior in the present model. The logarithmic
behavior of the diagrams in Secs. III A–III C was already dis-
cussed in Refs. [5,6]. We here extend their analysis by giving
numerical results along with some exact analytical results
[Eqs. (16) and (21)] as well as a general rule for extracting
the logarithmic behavior.

A. Leading logarithmic diagrams

Utilizing a similar notation and diagrammatic representa-
tion as in Refs. [23,28,29,43], the particle-hole susceptibility
is given by

(14)

Here, � refers to the full four-point vertex. By energy
conversation, it depends on only three frequencies (cf. Ap-
pendix C). The index a in �a signifies that its frequencies
are parametrized with respect to the a channel (a stands for
antiparallel and p, used below, for parallel). The bubbles
�r

ω,ν are products of Green’s functions,

�a
ω,ν = Gν−ωgν, �p

ω,ν = Gν−ωg−ν = −�a
ω,ν, (15)

having used g−ν = −gν in the last step. Diagrammatically, G
is represented by a dashed line and g by a solid line. The vertex
� is denoted by a gray circle, its lowest-order contribution
�(1) = −u by a black dot (cf. Fig. 2).

FIG. 2. Diagrammatic representation of the d propagator G and
the c propagator g as well as the bare vertex �(1) = −u and the full
vertex �.

The lowest-order term of the susceptibility χ (0) is an inte-
grated a bubble:

(16)

The first expression is the exact result [cf. Eq. (D8)] with gsm,
Eq. (7). The second gives the logarithmic behavior, Eq. (12),
near the threshold (indicated by the symbol “�”), which is
also obtained with gsh (cf. Eqs. (D10)–(D12) and Refs. [5,22–
25,44]). Indeed, the approximation is justified for |iω + ξd | �
ξ0, which, after analytic continuation iω → ω + i0+, cor-
responds to frequencies close to the absorption threshold
−ξd = |ξd |.

Figure 3(a) shows the frequency dependence of χ (0),
Eq. (16). The result from the smooth propagator gsm is the
exact result at u = 0 and is seen to obey Re χ (0) < 0. As
expected, the numerical data obtained from gsm at finite tem-
perature (blue dots) lie on top of the analytical exact result

FIG. 3. (a) Zeroth-order diagram χ (0) �L, Eq. (16), (b) second-
order ladder diagram χ

(2)
lad �u2L3, Eq. (18), and (c) second-order

cross diagram χ
(2)
× �− 1

3 u2L3, Eq. (19), comparing numerical results
with smooth gsm (blue dots) and sharp gsh (gray dots) to the analytical
logarithmic form (green, dashed) and the exact result (light blue,
solid).
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at T = 0 (light blue line). Furthermore, we note that (i)
the numerical result with the sharp propagator gsh, Eq. (8),
(gray dots) yields artifacts around ω � ±ξ0 and violates
Re χ (0) < 0; (ii) the (approximate) analytical result L(ω) vio-
lates Re χ (0) < 0 as well as lim|ω|→0 χ (0) → 0.

The simplest diagrams of the vertex � are ladder diagrams,
which are products of χ (0). We consider ladder diagrams in
the antiparallel (γ a) and parallel (γ p) channels, built from the
antiparallel (�a) and parallel (�p) bubble, respectively. Their
nth-order contributions are (the external legs are amputated):

(17a)

(17b)

The ladder diagrams of χ have two more integrated bubbles,
and their logarithmic behavior is thus

(18)

Figure 3(b) shows the frequency dependence of the second-
order ladder diagram χ

(2)
lad , Eq. (18). Similarly as in Fig. 3(a),

one notices artifacts at ω � ξ0 in the numerical solution
with gsh as well as spurious high-frequency behavior in this
solution and the analytical result. While the full susceptibil-
ity obeys Re χ < 0, for a single diagrammatic contribution,
Re χ

(2)
lad < 0 need not hold.

The so-called crossed diagram is the first nonladder di-
agram which contributes to the leading logarithm of the
susceptibility. It is obtained by integrating [γ p](2) with two
a bubbles (see Appendix D 1 for details):

(19)

Figure 3(c) shows the numerical result for χ
(2)
× (ω). The op-

posite sign compared to χ (0) and χ
(2)
lad shows that the crossed

diagram counteracts the growth of the full result.
Generally, susceptibility diagrams proportional to unLn+1

are referred to as leading log. Summing up only ladder
diagrams yields the random phase approximation (RPA), re-
sulting in an unphysical bound state [44]. It was shown that,
for a complete summation of leading-log diagrams, one has to
take into account the interplay between the a and p channels.

This is referred to as the first-order parquet approach [5,6]
because it takes only the highest power of logarithms in each
order of the power-law expansion, Eq. (11). In a more general
perturbative treatment, diagrams proportional to lower orders
of L show up, i.e., unLn+1−p with n + 1 > p > 0. In this work,
we will go beyond Ref. [5] by including all diagrams with
p = 1, which we denote as subleading log.

B. Self-energy

To include subleading-log contributions, we next consider
the impact of the d-electron self-energy [6], which was ne-
glected in most previous diagrammatic analyses [5,21–25,44].
The d Hartree self-energy shifts the threshold frequency by
uξ0 [cf. Eq. (D19)]. The second-order diagram �(2) is the
first to exhibit (subleading) logarithmic behavior. Its general
expression,

(20)

is evaluated to (cf. Appendix D 2):

1

u2
�(2)

ν = iν̃ ln
iν̃

iν̃ + ξ0
+ (iν̃ + 2ξ0) ln

iν̃ + 2ξ0

iν̃ + ξ0
(21a)

� iν̃ ln
iν̃

ξ0
+ 2ξ0 ln 2, (21b)

where iν̃ = iν − ξd . The first summand gives the logarithmic
behavior (iν − ξd )L(−ν) that contributes to the shape of the
x-ray edge singularity and was given in previous studies (cf.
line after Eq. (13) in Ref. [6]). The second, proportional to ξ0

is constant and thus merely shifts the threshold frequency, just
like the Hartree term uξ0 mentioned before.

As discussed in Sec. II A, we want to exclude shifts of
the threshold frequency since they blur the singular frequency
dependence. The easiest way to do so is to generally subtract
the zero-frequency part [6]. In the Matsubara formalism, this
amounts to replacing �ν by

��ν = �ν − Re �ν=0, (22)

as Im �ν is antisymmetric and thus vanishes at zero fre-
quency. (In practice, we approximate Re �ν=0 by Re �ν=πT .)
However, the (imaginary-frequency) logarithmic terms of the
self-energy also have a finite contribution at ν = 0, which we
do not want to subtract. Indeed, the first term in Eq. (21b) eval-
uates to −ξd L(0) at zero frequency. If the latter contribution
to the shift is added back, we obtain

��̃ν = ��ν − u2ξd L(0). (23)

Figure 4(a) shows our numerical results for the self-energy.
The finite-T results using gsm [blue dots in Fig. 4(a)] lie on
top of the T = 0 exact result, Eq. (21a) [light blue line in
Fig. 4(a)]. We see that using gsh, Eq. (8), violates causality,
i.e., leads to Im �(2) > 0 for ν > 0 [gray dots in Fig. 4(a)],
whereas the result from gsm, Eq. (7), naturally obeys this prop-
erty [blue dots in Fig. 4(a)]. At low frequencies, the results
from gsm agree well with the analytic logarithmic behavior
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FIG. 4. (a) Second-order self-energy � (2) � u2iν̃L̄, Eq. (20),
where the zero-frequency value is subtracted, i.e., ��(2)

ν = � (2)
ν −

Re �
(2)
ν=0 [cf. Eq. (22)]. (b) The corresponding susceptibility χ

(2)
� �

1
2 u2L2, Eq. (24). Here, we only use the numerical results computed
with the smooth propagator gsm, first with the self-energy difference
�� (2)

ν (blue dots) and then with ��̃ (2), Eq. (23), including the
logarithmic part at ν = 0 (red dots). (c) Third-order diagram χ

(3)
γ t �

1
3 u3L3, Eq. (25), originating from the t-reducible vertex [γ t ](3).

u2(iν − ξd )L(−ν) (green), which however bends over to un-
physical results with Im �(2) > 0 already for ν/ξ0 � 0.5.

One directly sees that the corresponding second-order term
of the d propagator G(2) = G(0)�(2)G(0) = u2L(−ν)/(iν −
ξd ) matches the perturbative series, Eq. (13). To find the
corresponding subleading-log term for χ , we insert G(2) into
the integrated bubble, Eq. (16):

(24)

The same logarithmic term appears in the perturbative series
of the power law, Eq. (11), which was evaluated at the bare
threshold frequency ω0 = −ξd . Hence, the logarithmic term
u2(iν − ξd )L(−ν) of �(2), Eq. (20), does indeed not change
the threshold frequency [while the full expression, Eq. (21),
does].

The numerical results for χ
(2)
� are first computed with

��(2), Eq. (22) [blue dots in Fig. 4(b)]. To minimize the
effect of the threshold shift when computing χ

(2)
� , we use

��̃(2), Eq. (23), which adds back the logarithmic contribution
−u2ξdL(0). Primarily, this brings the imaginary part of the
data closer to the analytical result [red dots in Fig. 4(b)].

This strategy to compensate shifts of the threshold is further
discussed in Sec. III E.

At third order, there are two diagrams contributing to the
self-energy, which cancel each other as [γ a

lad](3)
ω = [γ p

lad](3)
−ω

[cf. Eq. (D27)]. This observation matches with the exact
power law of the d propagator, which only scales with u2 [cf.
Eq. (13)].

C. t-reducible diagram

Generally, there is a third type of two-particle reducibility,
namely in the transversal channel (or short t channel). Its first
contribution occurs at third order and reads (cf. Eq. (15) in
Ref. [6] and Appendix D 3 for details)

(25)

The expression in terms of the self-energy �(2) is exact and
does not depend on the form of g. Indeed, it is a perturbative
implementation of the U (1) Ward identity (cf. Appendix D 4).
Evidently, the logarithmic behavior of the self-energy and the
t-reducible diagram are related [6]. Note that, to save space
and to emphasize the advanced property of the d electron by
a straight dashed line, we refrain from drawing the bubble of
two d propagators vertically, which originally motivates the
term transversal [23,29,43].

The resulting third-order term for χ is (see Appendix D 3
for details):

(26)

Figure 4(c) shows that our numerical data are close to this
subleading-log behavior. Together with the two terms of third
order coming from �(2),

(27)

we hence arrive at the correct subleading-log contribution to
third order, namely − 2

3 u3L3 [cf. Eq. (11)].

D. Multi-boson exchange diagram

Multi-boson exchange (MBE) diagrams are two-particle
reducible in a specific channel, i.e., their diagrams fall apart
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FIG. 5. Susceptibility contribution from the MBE diagram
[Ma](4). We compare the results computed with gsm (blue dots) and
gsh (gray dots) to the analytically determined logarithmic behavior
2
15 u4L5, Eq. (29) (green, dashed).

when cutting two propagator lines. However, they are not U
reducible, which means that their diagrams do not fall apart
by removing one dot of a bare vertex [43]. Numerically, they
are the most expensive objects to compute as they inherently
depend on three frequency arguments. Thus computational
resources can be saved if their impact on physical quantities
is low compared to other diagrams.

To analyze the relevance of MBE diagrams, we analytically
check how the first multi-boson diagram [Ma](4), occurring at
fourth order,

(28)

affects χ . We find (see Appendix D 5 for details)

(29)

which is leading log. Figure 5 confirms this behavior in finite-
T numerical results. Hence, omitting MBE diagrams leads
to an incomplete summation of diagrams already at leading-
log order. We thus include MBE diagrams in the self-consist
schemes presented in Sec. IV. As seen there, neglecting
them changes the results drastically at intermediate values
of u.

E. Comment on the threshold frequency ω0

Since we have numerical access to the full frequency de-
pendence of individual diagrams, we can make a statement
about the position of the threshold frequency, in contrast to
previous diagrammatic analyses [5,6,21–25]. Generally, the
threshold frequency −ξd is shifted to a value ω0 which de-
pends on the interaction u. A large value of ω0 blurs the
characteristic features of imaginary-frequency data near ω =
0. For our numerical results presented in Sec. IV B, we thus
needed a strategy to compensate this effect, which is discussed
in the following.

As mentioned in Sec. II A, our treatment of the c Hartree
self-energy and the advanced property of the d propagator G
imply that there are no closed d loops in the diagrammatic

FIG. 6. Demonstration that the single dashed line of d propaga-
tors in diagrams implies that � = �(iν − ξd ) and χ = χ (iω + ξd ).
(a) Fourth-order diagram to � containing the t-reducible diagram
[γ t ](3). (b) Fourth-order diagram to χ containing the envelope di-
agram R(4)

� . The external frequencies ν and ω are contained in d
propagators, the frequencies ν1, . . . , ν5 are integrated over.

expansion. In other words, all nonvanishing diagrams must
contain a single line of d propagators. Hereby, it is always
possible to find a frequency parametrization such that the
external frequencies ω in χ and ν in � are only contained
in the d propagators. (For four-point vertices, the according
external frequencies are discussed in Appendix C.)

To demonstrate that this argument also holds for diagrams
which are neither a- nor p-reducible, we show a self-energy
diagram containing the third-order vertex [γ t ](3) and a sus-
ceptibility diagram containing the fourth-order two-particle
irreducible vertex R(4)

� in Fig. 6. Here, we explicitly write the
frequency arguments on every single propagator and conclude
that the susceptibility χ is a function of iω + ξd and the self-
energy � of iν − ξd . Thus, after analytical continuation to real
frequencies, the effect of different values of ξd can be recov-
ered by corresponding shifts of the external frequencies.2

The threshold frequency ω0 appears likewise in the power
laws of χ and G [cf. Eqs. (10)]. These forms demonstrate that,
near the threshold, χ is described by a function of iω − ω0 and
� by a function of iν + ω0, suggesting that ω0 merely renor-
malizes its noninteracting correspondent −ξd . The threshold
is fully determined by the self-energy as, after analytical con-
tinuation, i.e., iν → ν − i0+, the expression from the Dyson
equation 1/(iν − ξd − �ν ) becomes singular at ν = −ω0.

Our perturbative analysis shows that the self-energy con-
sists both of terms which do not affect the threshold-frequency
and terms which renormalize it. In second order [cf. Eq. (21)],
the logarithmic term u2(iν − ξd )L(−ν) does not change the
threshold, since it appears in the power law expansion with
an unrenormalized threshold ω0 = −ξd [cf. Eq. (13)], while
the term u2 2ξ0 ln 2, proportional to the UV cutoff ξ0, does [cf.
Eqs. (A19) and (B3)]. Without knowing the analytical results,
this separation of terms in the self-energy cannot be extended
straightforwardly to higher orders in perturbation theory.

Similar to the second-order term, we suspect that more
generally the dependence on the threshold frequency is mainly
governed by a constant shift in the self-energy. So, to leave
the threshold frequency unrenormalized in numerical com-

2In shifting ξd , we assume that no nonanalyticities of χ in iω + ξd

or of � in iν − ξd are crossed. Indeed, we have not detected such
nonanalyticities in the analytical expressions from perturbation the-
ory and our numerical data.
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FIG. 7. Step-wise procedure to deduce the logarithmic behavior
of diagrams, exemplified for (a) χ

(2)
� ∼ u2L2, Eq. (24), and (b) a

fourth-order two-particle irreducible diagram, R(4)
� ∼ u4L. We suc-

cessively integrate loops involving d and c lines; the lines being
integrated at a given step are marked green.

putations of more general diagrams, we subtract the value
Re �ν=0 from the numerically computed self-energy �ν [cf.
Eq. (22)]. (The smallest imaginary Matsubara frequency iπT
is the closest value to the real threshold frequency −ω0.) Still,
we have to recover those terms at ν = 0 that do not renor-
malize the threshold frequency. The only expression we know
analytically is that of second order, so we add −u2ξd L(0) [cf.
Eq. (23)], as done for χ

(2)
� [cf. red dots in Fig. 4(b)].

Although this strategy does not guarantee a full elim-
ination of the threshold renormalization in our numerical
computations, it does allow us to deduce reasonable values
for the threshold frequency from the numerically determined
subleading-log self-energy (cf. Appendix A 2, in particular
Fig. 14).

F. Logarithmic behavior in general diagrams

We show how to quickly deduce the leading power of the
logarithm L in the singular behavior of any diagram involving
d and c propagators (see also Appendix E of Ref. [6]). Close to
the threshold, the bare d propagator behaves as Gν ∼ 1/(iν),
while the local c propagator obeys gν ∼ sgn(ν) at small fre-
quencies [cf. Eq. (8)]. We estimate the leading logarithm by
successively integrating over closed loops.

Take, e.g., the susceptibility diagram χ
(2)
� , Eq. (24), shown

in Fig. 7(a). An integration over the inner dc bubble yields
a logarithm

∫
ν

sgn(ν)/(iν) ∼ ln iν. The subsequent integral,
involving the second c propagator, does not raise the power
of the logarithm,

∫
ν

sgn(ν) ln iν ∼ iν ln iν. The final integral,
involving two d propagators and one c propagator, in turn
raises its power,

∫
ν

sgn(ν) ln iν/(iν) ∼ ln2 iν. This matches
Eq. (24).

More generally, any integrated dc bubble yields a loga-
rithm,

∫
ν

sgn(ν)/(iν) ∼ ln iν [cf. Eq. (16)]. If every subse-
quent loops contains another d line, each integral increases the
power of the logarithm according to

∫
ν

sgn(ν) lnn iν/(iν) ∼
lnn+1 iν [cf. Eq. (D1)]. This is precisely what happens for
the leading-log diagrams. By contrast, if a loop at a later
stage does not contain a further d line, then the power of the

logarithm is not raised,
∫
ν

lnn iν ∼ iν lnn iν [cf. Eqs. (D2)–
(D3)]. Now, if the first loop in a vertex diagram has more
d lines than c lines, this does not generate logarithmic be-
havior, as

∫
ν

sgn(ν)/(iν)m ∼ 1/(iν)m−1. Such an imbalance
of dashed and solid lines within integration loops yields sub-
leading diagrams. Indeed, many more loops with c lines are
required until the power of the logarithm is raised. Since,∫
ν

sgn(ν) lnn iν/(iν)m ∼ lnn iν/(iν)m−1 [cf. Eqs. (D4)–(D5)],
the first (m − 1) subsequent integrals with c lines reduce
the power m that originates from the d propagators, before
further integrals can eventually raise the power n of the
logarithm.

This reasoning also applies to diagrams which are two-
particle irreducible in all three channel (totally irreducible
diagrams). These go beyond the full parquet approach. The
lowest-order vertex diagram of that type occurs at fourth or-
der and is often called envelope diagram R(4)

� (cf. Fig. 5 in
Ref. [6]). In Fig. 7(b), we show that its logarithmic behavior
can be estimated as u4L. With two more dc bubbles, the
corresponding susceptibility is χ

(4)
R�

= ∫
�aR(4)

� �a ∼ u4L3,
which has two powers of L less compared to the leading
logarithm χ

(n)
lead ∼ unLn+1 and is thus beyond our subleading

approximation χ
(n)
sub ∼ unLn. (Actually, there are two envelope

diagrams at fourth order, whose leading contributions cancel
by symmetry (cf. footnote 10 in Ref. [6]).) Further totally
irreducible diagrams like the fifth-order “sealed” envelope
diagram R(5)

� ∼ u5L ⇒ χ
(5)
� ∼ u5L3 have even fewer powers

of L.
The strategy presented above allows us to estimate the

logarithmic behavior, but of course does not yield the correct
prefactor and does not account for possible cancellations of
diagrams. Nevertheless, it is essential for the next step. To
obtain the power-law behavior of χ up to a certain accuracy,
one has to perform a self-consistent summation, which takes
into account all diagrams with the corresponding power of
logarithms. With the presented strategy, we can classify all
parts of the parquet formalism by their dominant logarithmic
behavior.

IV. SELF-CONSISTENT SUMMATION

In this section, we extend the self-consistent summation
of all leading-log diagrams of Ref. [5] (first-order parquet
approach) toward the full parquet approach, widely used to de-
scribe physics related to the Hubbard model [9–12]. We show
that, in this way, we can additionally include all subleading-
log diagrams in a systematic manner.

A. Parquet approach

In Sec. III, we introduced various quantities which appear
in a diagrammatic description of the model’s characteristic
power laws, Eqs. (10). The perturbative expansion of the
susceptibility χ , Eq. (14), involves terms scaling as χ (n) ∼
unLn+1−p, where p = 0 encompasses the leading-log terms,
while p = 1 accounts for the subleading-log ones [L is defined
in Eq. (12)]. The full four-point vertex � has an expan-
sion �(n) ∼ unLn−1−p and is decomposed into two-particle
reducible vertices γ r in the channels r = a, p, t and a totally
irreducible part R. (Note that what Refs. [5,6] call R corre-
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FIG. 8. Overview of the computed quantities and used self-consistency schemes: the parquet iteration (yellow box) involves the Bethe–
Salpeter equations (30) and (36). First, these are solved self-consistently (initialized using the gray box) without � and γ t and give the vertex
�lead to leading-log accuracy. This output is used to compute �, Eq. (32), and γ t , Eq. (34) (blue box). These results in turn serve as an input to
a second self-consistency loop, which yields � up to subleading-log accuracy.

sponds to γ t + R for us.) We argued that the lowest-order
contributions of γ a and γ p are leading log while those of γ t

are subleading log and those of R are subsubleading log. Fi-
nally, the self-energy � has an expansion �(n) ∼ uniν̃L̄n−1−p

and yields subleading-log contributions to χ . An overview
of how the different objects are computed self-consistently
is given in Fig. 8. Its details are explained throughout this
section.

All leading-log diagrams can be summed within a par-
quet approach containing only the a- and p-reducible vertices
γ r=a,p [5]. These fulfill Bethe–Salpeter equations involving
the full vertex � and the a- and p-irreducible vertices Ir=a,p.
Since no fully irreducible diagram contributes to the leading-
log behavior except for the bare vertex �(1) = −u, we set
R = −u (often called parquet approximation). The relevant
equations are (cf. yellow box in Fig. 8):

�r
ω,ν,ν ′ = −u + γ r

ω,ν,ν ′ + γ r̄
ω−ν−ν ′,−ν ′,−ν, (30a)

γ r
ω,ν,ν ′ =

∫
ν ′′

Ir
ω,ν,ν ′′�

r
ω,ν ′′�

r
ω,ν ′′,ν ′ , (30b)

Ir
ω,ν,ν ′ = �r

ω,ν,ν ′ − γ r
ω,ν,ν ′ , (30c)

(30d)

Here, we use the channel indices r = a, p and r̄ = p, a and
the bubbles �r

ω,ν , Eq. (15). The frequency arguments follow
from the parametrization of the vertex, Appendix C.

Equations (30) must be solved self-consistently. In this
process, one can apply the reasoning from Sec. III F to show
that two leading-log vertices �

(ni=1,2 )
lead ∼ uni Lni−1 in the Bethe–

Salpeter equation (30b) yield again a leading-log vertex:

∫
ν

�
(n1 )
lead�

r�
(n2 )
lead ∼

∫
ν

un1 Ln1−1 sgn(ν)

iν
un2 Ln2−1

∼ un1+n2 Ln1+n2−1 = �
(n1+n2 )
lead . (31)

In Sec. III, we showed that the self-energy � and the
t-reducible vertex γ t contribute to the subleading logarithm.
We calculate � from the Schwinger–Dyson equation. The
(d-electron) Hartree term uξ0 yields a frequency-independent
shift of the threshold frequency and is therefore irrelevant for
the power-law exponent. Beyond the Hartree term, we have
(cf. blue box in Fig. 8)

(32)

Reference [6] argued against using the Schwinger–Dyson
equation (32) as their analytic evaluation was limited to log-
arithmic accuracy of individual diagrams. By contrast, our
numerics produce the full frequency dependence of vertex
functions, allowing us to straightforwardly use Eq. (32).

Following Sec. III F, inserting a leading-log vertex �
(n)
lead ∼

unLn−1 into the Schwinger–Dyson equation (32) yields a
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subleading-log self-energy:∫
ν1,ν2

u�rg�(n)
lead ∼

∫
ν1,ν2

u
sgn(ν2)

iν2
sgn(ν1)unLn−1

∼
∫

ν

u sgn(ν)unLn ∼ un+1iνLn = �
(n+1)
sub .

(33)

Here, we first integrated over the dc bubble and then over
the last c propagator. It follows that self-energy corrections
yield subleading-log contributions to χ . Furthermore, insert-
ing � again into the d propagator or inserting a subleading-log
vertex �(n) ∼ unLn−2 into Eq. (32) would go beyond our ap-
proximation.

To include the t-reducible vertex γ t , we use the subleading-
log expression at third order, [γ t ](3) in Eq. (25), and replace
all bare vertices �(1) = −u by full vertices �. As we show in
Appendix F 2, this ansatz takes into account all subleading-log
contributions starting from the most general parquet approach.
The resulting expression for γ t (corresponding to Fig. 4(b) in
Ref. [6]) is (cf. blue box in Fig. 8):

(34)

If all vertices in Eq. (34) are leading log, i.e., �
(ni=1,2,3 )
lead ∼

uni Lni−1, integrating first over the loop including the c prop-
agators and then over the loop with the two d propagators
yields ∫

ν1,ν2

�
(n1 )
leadGG�

(n2 )
leadgg�(n3 )

lead

∼
∫

ν1

�
(n1 )
leadGG

∫
ν2

un2 Ln2−1sgn2(ν2)un3 Ln3−1

∼
∫

ν

un1 Ln1−1 1

(iν)2
un2+n3 iνLn2+n3−2

∼ un1+n2+n3 Ln1+n2+n3−2 = �
n1+n2+n3
sub , (35)

which is subleading log. Including the self-energy in the d
propagators or subleading-log vertices in Eq. (34) would go
beyond the subleading approximation. In the expansion of the
susceptibility Eq. (11), such terms would contribute similarly
as the totally irreducible diagrams R.

From the logarithmic behavior in Eqs. (33) and (35), we
conclude that the leading contributions to the self-energy
� ∼ uniν̃L̄n−1 and the t-reducible vertex γ t ∼ unLn−2 are
already fully recovered by inserting the leading-log vertex
�lead ∼ unLn−1 into Eqs. (32) and (34). Our strategy (depicted
in Fig. 8) is thus to first compute the leading-log vertex �

by iteratively solving Eqs. (30). In the next step, � and γ t

are determined from Eqs. (32) and (34). These then form an

input to a second iterative solution of the parquet equations,
but now the d lines are dressed through the Dyson equa-
tion Gν = (1/G(0)

ν − �ν )−1 and the full vertex � includes γ t

from Eq. (34):

�a
ω,ν,ν ′ = −u + γ a

ω,ν,ν ′ + γ
p
ω−ν−ν ′,−ν ′,−ν + γ t

ν−ν ′,ν,ν−ω, (36a)

�
p
ω,ν,ν ′ = −u + γ

p
ω,ν,ν ′ + γ a

ω−ν−ν ′,−ν ′,−ν + γ t
ν−ν ′,−ν ′,ν−ω.

(36b)

Thereby, Eqs. (36) replace Eq. (30a). Finally, with the inclu-
sion of � and γ t , we obtain γ a and γ p self-consistently up
to subleading-log order and may altogether compute χ up to
subleading-log order.

We note that further iterations over Eqs. (32) and (34)
would yield subsubleading-log diagrams, but not in a com-
plete and systematic manner since totally irreducible diagrams
like the envelope diagram [cf. Fig. 7(b)] would not be taken
into account. Moreover, also the t-reducible vertex from the
full parquet solution includes further subsubleading contribu-
tions, as discussed in Appendix F 2, which exceed the scope
of this work.

B. Numerical results

In this section, we present our numerical results obtained
from the self-consistency schemes discussed in Sec. IV A
and compare them to the analytical power law in Eq. (10a).
Although, strictly speaking, these power laws hold very close
to the threshold frequency and at T = 0, they adequately
describe the physical results in a much wider range (cf.
Appendix A and also Ref. [48]). In our numerical implemen-
tations, the frequency dependence of the vertex is handled
by a decomposition into single- and multi-boson exchange
vertices [32–43] using the recently developed Julia library
MatsubaraFunctions.jl [49]; further details are given in
Appendix G.

To start with, Fig. 9 shows how χ depends on imag-
inary frequencies at fixed u. We compare the result of
the leading-log scheme (blue dots), Eqs. (30), and the
subleading-log scheme (red dots), Eqs. (36), to the power
law (10a) with exponents αX = 2u (leading log, green), αX =
2u − u2 (subleading log, pink) and αX = 2δ/π − (δ/π )2 (ex-
act, light blue). The analytical power laws describe the
behavior at small frequencies, but of course do not capture the
correct large-frequency behavior, including limω→∞ χ (iω) =
0. For the present choice of parameters, the results from our
subleading-log parquet scheme are closest to the exact power
law (red dots match light blue curve) while those from the
leading-log parquet scheme are closest to the subleading-log
power law (blue dots lie near pink curve). However, this
strongly depends on the value of ξd , as elaborated below.

To get an overview on the results for different parameters
and obtained from the various self-consistent methods, we
present χ at zero Matsubara frequency as a function of u in
Fig. 10. Here, we compare again our numerical results with
the power law, Eq. (10a), including different exponents αX .
The power law with αX = δ/π − (δ/π )2 matches the numer-
ically exact results from the functional determinant approach,
when evaluated at ω0 + ξd (cf. Appendix A). We draw the
following conclusions from Fig. 10.
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FIG. 9. Frequency dependence of χ from self-consistent sum-
mations with gsm at u = 0.28, T/ξ0 = 0.002, and ξd/ξ0 = −0.01.
We compare numerical results from the leading-log scheme (blue
dots) and subleading-log scheme (red dots) to the analytical power
law (10a) with exponents αX = 2u (leading log, green), αX = 2u −
u2 (subleading log, pink), and αX = 2δ/π − (δ/π )2 (exact, light
blue).

Dropping multi-boson exchange diagrams, which is known
as the single-boson exchange approximation [41–43], clearly
fails already at intermediate values of the interaction (cf.
light green dots in Fig. 10). We anticipated that from our
perturbative analysis since multi-boson diagrams contribute
to leading-log diagrams and are therefore essential to obtain a
power law at all (cf. Sec. III D).

The leading-log parquet solution using the sharp c propa-
gator gsh, Eq. (8), (cf. purple dots in Fig. 10) bends down from
the leading-log power law (green) at intermediate values of
the interaction, similarly as in previous studies (see Fig. 4(c)
in Ref. [23]). This might originate from the artifacts around
|ω| � ξ0, encountered already in Sec. III.

Our main focus is on the results of the leading-log
[Eqs. (30), blue dots in Fig. 10] and subleading-log parquet
schemes [Eqs. (36), red dots], both using the exact propagator
gsm, Eq. (7). The results start to deviate from one another and
from the power-law curves with αX = 2u (green) and αX =
2u − u2 (pink), respectively, already at intermediate values of
u � 0.2. The results from the subleading-log parquet scheme
are systematically improved in powers of the logarithmic fac-
tor ln(−ξd/ξ0) [cf. Eq. (12)] in the region where the expansion
of the power law in u, Eq. (11), is valid.

FIG. 10. Interaction dependence of χ (iω = 0) from self-
consistent summations at T/ξ0 = 0.002 and different choices of
ξd/ξ0. We compare results from the leading-log scheme, Eqs. (30),
in the SBE approximation with gsm (light green dots) and including
MBE diagrams with gsm (blue dots) and gsh (purple dots), as well
as from the subleading scheme, Eqs. (32)–(36), with gsm including
MBE diagrams (red dots). The numerical results are compared to
the analytical power laws for leading-log αX = 2u (green, dashed),
subleading-log αX = 2u − u2 (pink, dashed), and exact exponent
αX = δ/π − (δ/π )2 (light blue, dashed).

The value of χ (iω = 0) is strongly affected by the pa-
rameter ξd/ξ0. At larger values of |ξd |/ξ0, where different
powers of the logarithm are hardly distinguishable, the re-
sults move down in magnitude [cf. Fig. 10(b)]. The resulting
apparent agreement between the self-consistent calculation
to leading- and subleading-log accuracy with the power-law
curves αX = 2u − u2 (pink) and αX = 2δ/π − (δ/π )2 (light
blue), respectively, is likely coincidental.

Smaller values of |ξd |/ξ0 [larger values of ln(−ξd/ξ0)]
yield a clearer separation between different powers of the
logarithm. For ξd/ξ0 = −0.005 [cf. Fig. 10(c)], the numer-
ical results come much closer to the expected behavior:
the leading-log parquet results (blue dots) follow the 2u
power law (green) and the subleading-log parquet (red dots)
results the 2u − u2 power law (pink) up to u ≈ 0.2. The
value ln(−ξd/ξ0) ≈ −5.3 is still relatively small. However,
reducing |ξd |/ξ0 further goes beyond our current numerical
limitations, since this would require lower T and thus more
frequencies to resolve the vertex functions. It also becomes
harder to converge the parquet equations at small |ξd |/ξ0 and
at large u (hence, we computed less data points in that regime).

Ideally, one would like to analyze the numerical re-
sults in real frequencies. To this end, we use analytical
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FIG. 11. Absorption spectrum −Im χ (ω + i0+) obtained by an-
alytical continuation of the imaginary-frequency data at T/ξ0 =
0.002, ξd/ξ0 = −0.01, and u = 0.28. We compare data from the
leading-log (blue) and subleading-log scheme (red) to the respective
analytical power laws. The upper plot has linear scales; here, the
vertical dash-dotted line marks the threshold frequency ω0 = −ξ0.
The lower plot has logarithmic scales and frequencies shifted by
ω0; here, the vertical line marks the lowest fermionic Matsubara
frequency πT to indicate where T cuts off the logarithmic behavior.
The inset shows the negative logarithmic derivative.

continuation via the recently developed minimal pole repre-
sentation [50,51]. Here, the susceptibilities are analytically
continued as sums over a small number of complex poles,
i.e., χ (z) = ∑

i Ai/(z − xi ), xi ∈ C, by use of Prony’s approx-
imation method. The results, shown in Fig. 11, agree with
the previous statements [cf. Figs. 9 and 10(a)]: for these
parameters (ξd/ξ0 = −0.01 and u = 0.28), the leading-log
(blue dots) and subleading-log (red dots) numerical results
are close to the curves of the analytical subleading-log (pink)
and exact (light blue) power laws, respectively. As one would
expect, the singularity at the threshold is cut off by T at
the corresponding energy scale πT [cf. Fig. 11(b)]. The
analytical continuation also confirms that correcting the self-
energy by �ν → ��̃ν , Eq. (23), does not lead to a detectable
renormalization of the threshold frequency ω0 = −ξd [cf.
Fig. 11(a)]. For a more rigorous analysis of the power law,
one can extract the power-law exponents from the logarithmic
derivative (see Appendix H for details). The result, shown in
the inset of Fig. 11(b), exhibits strong oscillations somewhat

centered around the subleading-log exponent α = 2u − u2

(dashed pink). We attribute the oscillations to the fact that the
analytically continued data stem from only a small number of
complex poles [50,51].

V. CONCLUSION

In this work, we elucidated a conceptual aspect of a
diagrammatic technique widely used in condensed-matter
physics and beyond, the parquet formalism. The parquet
formalism is well known for providing a way to sum all
leading-log diagrams in a logarithmically divergent perturba-
tion theory. On the example of the x-ray edge singularity, we
showed that the parquet formalism actually allows for cap-
turing all next-to-leading-log diagrams, too. To this end, one
extends the first-order parquet approach [5], which involves
only two two-particle channels and no self-energy, to the full
parquet approach [9], often used for Hubbard-like models,
involving all three two-particle channels and the self-energy
determined from the Schwinger–Dyson equation.

We first examined the problem at low orders in perturba-
tion theory. Thereby, we also provided exact results for the
bare particle-hole susceptibility and the second-order self-
energy, which to our knowledge had not been given before.
We illustrated the vertex and self-energy contributions and
formulated a general recipe for deducing the highest logarith-
mic power in a given diagram. This allowed us to formulate
a self-consistent scheme, within the full parquet approach
mentioned above, summing all leading- and subleading-log
diagrams.

For all our results, we presented numerical data obtained in
the finite-temperature Matsubara formalism. In doing so, we
use the exact expressions for the bare propagators and resolve
the full frequency dependence of any diagram, including four-
point vertices, thus going beyond logarithmic accuracy used
in previous works [5,6,21–25]. Our implementation exploits
the recently introduced single- and multi-boson exchange de-
composition, for which we showed that multi-boson exchange
diagrams contribute already at the leading-log level.

In future work, our code could be used to treat other
models with two distinct particle types. Examples are Fermi
polarons with heavy impurities [48,52,53] or Hubbard-like
models without SU(2) spin symmetry. It would be interesting
to lift the flat-band approximation of the d electron, which
however requires including momenta, significantly raising the
computational costs.

On the technical level, it would be desirable to numerically
resolve the power laws in an even cleaner fashion. One direc-
tion in this pursuit would be to lower the temperature T/ξ0 and
the excitation energy |ξd |/ξ0. In the current implementation,
using dense grids, this is not feasible since the memory scales
as (T/ξ0)−3. However, techniques for using sparse grids or
compression have recently been suggested [54–60]. Another
direction is to directly work in real frequencies, thus cir-
cumventing the analytical continuation. The model can be
numerically implemented using the zero-temperature formal-
ism [24]. Beyond that, recent work has shown the viability
of working in the Keldysh formalism with full frequency
resolution of four-point functions [61–65].
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APPENDIX A: FUNCTIONAL DETERMINANT APPROACH

In this Appendix, we discuss how we obtain numerically
exact results for the particle-hole susceptibility X (t ), Eq. (2),
and the d propagator G(t ), Eq. (3), using the functional deter-
minant approach [46–48].

1. Exact computation of the spectra

For large enough |εd |, the ground state is given by the
occupied core level, |1〉 = d̂†|0〉, and the Fermi sea of con-
duction electrons |FS〉 in the sense of Fermi-liquid theory,
i.e., |�0〉 = |1〉 ⊗ |FS〉 [25]. Generally, the core level is either
empty or occupied, so the full Hamiltonian, Eq. (1), can be
brought into a form Ĥ = |0〉〈0| ⊗ Ĥ1 + |1〉〈1| ⊗ (Ĥ0 + εd 1̂),
where Ĥ0 and Ĥ1 only act on the subspace of the conduction
electrons:

Ĥ0 =
∑

k

εkĉ†
kĉk, Ĥ1 =

∑
k,k′

(
εkδkk′ − U

V

)
ĉ†

kĉ
k′ . (A1)

Since these are quadratic, the system is exactly solvable. The
time evolution of the many-body state with an empty |0〉 or
occupied |1〉 core level is then determined by

e−i�̂t (|0〉 ⊗ |�〉) = |0〉 ⊗ e−i(Ĥ1−μN̂0 )t |�〉, (A2a)

e−i�̂t (|1〉 ⊗ |�〉) = e−i(εd −μ)t |1〉 ⊗ e−i(Ĥ0−μN̂0 )t |�〉. (A2b)

Here, we use the number operator of the conduction electrons
N̂0 = ∑

k ĉ†
kĉk and �̂ = Ĥ − μN̂ , with the total number oper-

ator N̂ = N̂0 + d̂†d̂ .
As mentioned in the main text, we use the ground state

|�0〉 = |1〉 ⊗ |FS〉 as reference state for the expectation value.
The time-ordering operator T generates two terms. In the
expressions for X (t ) and G(t ), however, only one remains
according to the occupancy of the d electron.

Inserting the time evolution d̂ (†)(t ) = ei�̂t d̂ (†)e−i�̂t into the
definition of G(t ), Eq. (3), yields

G(t ) = i 
(−t )(〈1| ⊗ 〈FS|)d̂†ei�̂t d̂e−i�̂t (|1〉 ⊗ |FS〉)

= i 
(−t )(〈0| ⊗ 〈FS|ei(Ĥ1−μN̂0 )t )

× (e−(iεd −μ)t |0〉 ⊗ e−i(Ĥ0−μN̂0 )t |FS〉), (A3)

which, after evaluating the effect of the d electron, gives

G(t ) = i
(−t )e−iξd t 〈FS|eiĤ1t e−iĤ0t |FS〉. (A4)

Note that the terms including the number operators N̂0

cancel each other by conservation of particle number, i.e.,
[Ĥ0,1, N̂0] = 0. With |FS〉〈FS| = e−β(Ĥ0−μN̂0 )/Z0, where Z0 =
tr e−β(Ĥ0−μN̂0 ), the expectation value is expressed as a trace:

G(t ) = i
(−t )e−i(εd −μ)t 1

Z0
tr
[
e−β(Ĥ0−μN̂0 )eiĤ1t e−iĤ0t

]
. (A5)

As the Hamiltonians are bilinear Ĥ0,1 = ∑
k,k′[ĥ0,1]kk′ ĉ†

kĉk′ ,
we use Klich’s formula [47,48] to express the many-particle
trace as a determinant over single-particle operators ĥ0,1:

tr
[
e−β(Ĥ0−μN̂0 )eiĤ1t e−iĤ0t

] = det
[
1̂ + e−β(ĥ0−μ)eiĥ1t e−iĥ0t

]
.

(A6)

Due to the fermionic properties, the Green’s function is finally
written in terms of the Fermi-Dirac distribution:

G(t ) = i
(−t )e−i(εd −μ)t det
[
1̂ − f (ĥ0) + f (ĥ0)eiĥ1t e−iĥ0t

]
.

(A7)

In frequency space, the expression for the advanced Green’s
function is obtained from fast Fourier transformation G(ν) =∫

t eiνt G(t ) after exact diagonalization of the single-particle
Hamiltonians [ĥ1]kk′ = εkδkk′ − U/V (for details, see Supple-
mental Material of Ref. [53]).

The susceptibility, Eq. (2), is computed in a similar fashion.
Due to the occupancy of the d electron, here only the retarded
term of the time ordering survives:

X (t ) = −i 
(t )
1

V

∑
k,k′

(〈1| ⊗ 〈FS|)ei�̂t d̂†e−i�̂t

× ei�̂t ĉke−i�̂t ĉ†
k′ d̂ (|1〉 ⊗ |FS〉), (A8)

which according to the time evolutions, Eq. (A2), yields

X (t ) = −i 
(t )
1

V

∑
k,k′

(〈0|ei(εd −μ)t ⊗ 〈FS|ei(Ĥ0−μN̂0 )t ĉk)

× (|0〉 ⊗ e−i(Ĥ1−μN̂0 )t ĉ†
k′ |FS〉). (A9)

Again, the d degree of freedom is evaluated straight-
forwardly. By particle-number conservation, we can write
e−iμN̂0t ĉkeiμN̂0t = eiμt ĉk, so the terms with the chemical po-
tentials cancel, and we get the following expression:

X (t ) = −i
(t )eiεd t 1

V

∑
k,k′

〈FS|eiĤ0t ĉke−iĤ1t ĉ†
k′ |FS〉. (A10)
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By using [Ĥ1, ĉk] = ∑
k′ [ĥ1]kk′ ĉk′ with the single-particle op-

erator ĥ1, we can write

ĉke−iĤ1t = e−iĤ1t
∑

k′
[e−iĥ1t ]kk′ ĉk′ . (A11)

The term including the single-particle operator ĥ1 can be
pulled out of the expectation value and the susceptibility
yields

X (t ) = −i
(t )eiεd t 1

V

∑
k,k′,k′′

[e−iĥ1t ]kk′′ 〈FS|eiĤ0t e−iĤ1t ĉk′′ ĉ†
k′ |FS〉.

(A12)

Applying the anticommutation relation ĉk′′ ĉ†
k′ = δk′k′′ − ĉ†

k′ ĉk′′

generates two terms. The first term is analogous to the d
propagator. In the second term,

〈FS|eiĤ0t e−iĤ1t ĉ†
k′ ĉk′′ |FS〉

= 1

Z0
tr
[
e−β(Ĥ0−μN̂0 )eiĤ0t e−iĤ1t ĉ†

k′ ĉk′′
]
, (A13)

the density operator can be treated as a derivative of a bilinear
operator:

ĉ†
k′ ĉk′′ = d

da
eaĉ†

k′ ĉk′′
∣∣∣∣
a=0

≡ d

da
ea

∑
q,q′ [Âk′k′′ ]qq′ ĉ†

q ĉq′
∣∣∣∣
a=0

. (A14)

Here, the single-particle operator Âk′k′′ just picks the mode
with the corresponding momenta. Consequently, Klich’s for-
mula is applicable:

〈FS|eiĤ0t e−iĤ1t ĉ†
k′ ĉk′′ |FS〉

= d

da
det

[
1̂ − f (ĥ0) + f (ĥ0)eiĥ0t e−iĥ1t eaÂk′k′′ ]∣∣∣∣

a=0

.

(A15)

Let us define B(t ) = 1̂ − f (ĥ0) + f (ĥ0)eiĥ0t e−iĥ1t . Using Ja-
cobi’s formula for the derivative of a determinant,

d

da
det A(a) = det A(a) tr

(
A−1(a)

dA(a)

da

)
, (A16)

yields

〈FS|eiĤ0t e−iĤ1t ĉ†
k′′ ĉk′ |FS〉

= det B(t ) tr
[
B−1(t ) f (ĥ0)eiĥ0t e−iĥ1t Âk′k′′

]
= det B(t )

[
B−1(t ) f (ĥ0)eiĥ0t e−iĥ1t

]
k′′k′ . (A17)

In the last line, we used the property of Âk′k′′ . It picks up
only one mode and thus gives only one matrix element in the
trace, i.e., tr(MAk′k′′ ) = Mk′′k′ . Combining everything, we get
the final form for the susceptibility, Eq. (A12):

X (t ) = −i
(t )eiεd t det B(t )

× 1

V

∑
k,k′′

[
e−iĥ1t (1̂ − B−1(t ) f (ĥ0)eiĥ0t e−iĥ1t )

]
kk′′

= −i
(t )eiεd t det B(t )

× 1

V

∑
k,k′′

[
e−iĥ1t B−1(t )(1̂ − f (ĥ0))

]
kk′′ . (A18)

FIG. 12. Results for the (a) the particle-hole susceptibility
χ (ω) = X (ω)/ρ and (b) the d propagator G(ν ) from the functional
determinant approach for T/ξ0 = 0.002, ξd = −0.02, nmax = 1000,
and different values of u (marked by different colors).

Also here, the retarded correspondent is obtained via Fourier
transformation X (ω) = ∫

t eiωt X (t ).
Equations (A7) and (A18) are computed by exact diagonal-

ization of the single-particle matrix [ĥ1]kk′ = εδkk′ − U/V . To
be more precise, we discretize the single-particle states with
noninteracting energies εn = 2ξ0n/nmax where the number of
states is given by nmax = �2ξ0ρV � [25]. This way, we simu-
late a constant density of states ρ for a finite volume V [cf.
Eq. (5)]. We observe convergence of our data with respect to
the finite size at high enough volumes, i.e., nmax � 1000.

The finite size, however, discretizes the energy spectrum
δε = 2ξ0/nmax, so we limit our Fourier integral up to time
scales tmax = π/δε � πρV . Furthermore, we broaden the
frequency-dependent data by applying an exponential decay
e±2t/tmax in the Fourier transform. Here + is used in the expo-
nent for the advanced Green’s function G(t ), Eq. (A7), and −
for the retarded susceptibility X (t ), Eq. (A18).

We present our numerically exact data from the functional
determinant approach in Fig. 12. The Fermi edge as well as
the corresponding power laws are visible in both quantities.
Note that the singularities are cut due to finite-size effects and
the regularization we implement in the Fourier transforms.
The additional peaks at negative frequencies in G for large
enough interactions u [cf. Fig. 12(b)] mark the additional
bound states [44]. Close to the threshold frequency ω0, we
can confirm that the analytical power-law behavior Eq. (10a)
is well described by the functional determinant approach (cf.
Fig. 13).

2. Numerical results of the threshold

From the positions corresponding to the x-ray edge singu-
larity in Im χ [cf. Fig. 12(a)] and the peak due to Anderson’s
orthogonality catastrophe in Im G [cf. Fig. 12(b)], we extract
the values for the threshold frequency ω0 (i.e., for χ the peaks
are located at ω0 and for G at −ω0). Figure 14 shows that the
data for ω0 obtained from χ and G lie on top (blue and light
blue data points).
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FIG. 13. Susceptibility from the functional determinant ap-
proach with parameters as in Fig. 12 compared to the analytical
power-law behavior Eq. (10a) (black dashed lines).

Furthermore, we compare these numerically exact data to
the values form the diagrammatic approaches. First of all, we
have the form in second-order perturbation theory,

ω0 = −ξd − uξ0 − u2 2ξ0 ln 2 + O(u3), (A19)

which describes the behavior quite accurately up to interme-
diate values u � 0.3 (cf. green dashed line in Fig. 14).

Moreover, Fig. 14 also serves as a check that our empiri-
cal strategy for an adjustment of the renormalized threshold
frequency in the parquet formalism (cf. Sec. III E) is quite
accurate. To this end, we determine values for the threshold
as

ω0 = −ξd − uξ0 − [�sub]iν=0 − u2ξd L(0). (A20)

Here, �sub is the imaginary-frequency self-energy obtained by
an insertion of the leading-log vertex �lead, Eqs. (30), into
the Schwinger–Dyson equation (32). The terms, which do
not affect the threshold frequency are hereby compensated

FIG. 14. Threshold frequencies ω0 obtained from the functional
determinant approach for χ (blue) and G (light blue) (cf. Fig. 12)
compared to the values obtained from second-order perturbation
theory, Eq. (A19), (green, dashed) and the subleading-log self-energy
�iν=0 at zero imaginary frequency (red squares) [cf. Eq. (A20)]. The
data are evaluated at T/ξ0 = 0.002 and ξd/ξ0 = −0.02.

perturbatively, by adding the second-order logarithmic term
−u2ξd L(0) [cf. Eq. (21)]. The data points extracted from
Eq. (A20) (red squares in Fig. 14) are closer to the actual val-
ues (blue) than the prediction from second-order perturbation
theory (green dashed line).

In a general treatment, the threshold frequency ω̃0 pre-
dicted by parquet results differs from the actual value ω0. To
compare the power-law behavior predicted by parquet data
with that predicted by the functional determinant approach,
we need to adjust the threshold frequencies accordingly.
Analytical continuation of parquet data to real frequen-
cies provides a behavior χR(ω) = χ (ω + i0+) ∼ (ω + i0+ −
ω̃0)−αX near the presumed threshold ω̃0 [cf. Eq. (10a)]. The
value at zero Matsubara frequency χparq(iω = 0) ∼ (−ω̃0)−αX

is approximately reproduced by the exact data at a shifted
frequency χR(ω = ω0 − ω̃0). Following this reasoning, the
data χparq(iω = 0) presented in Fig. 10 that are computed with
ω̃0 � −ξd (cf. Sec. III E) correspond to the values χFDA(ω =
ω0 + ξd ) in Fig. 12.

APPENDIX B: FURTHER POWER-LAW EXPANSIONS

For completeness, let us give the Taylor expansion of
Eqs. (10) using the full exponents depending on the phase shift
δ = arctan(πu):

χ (iω) = L − uL2 + u2
[

2
3 L3 + 1

2 L2
]

− u3
[

1
3 L4 + 2

3 L3 − 1
3π2L2

]
+ u4

[
2
15 L5 + 1

2 L4 + (
1
6 − 4

9π2
)
L3 − 1

3π2L2
]

+O(u5), (B1a)

G(iν) = 1

iν − ξd

[
1 + u2L̄ + u4

(
1
2 L̄2 − 2

3π2L̄
) + O(u6)

]
.

(B1b)

As 2δ/π − (δ/π )2 = 2u − u2 − 2π2u3/3 + O(u4), the
leading- and subleading-log terms in χ are not changed
compared to Eqs. (11). Only the subsubleading terms are
changed by the addends including π . Similarly, in the ex-
pansion of G, the highest power of logarithms at each order
remains unchanged compared to Eq. (13), since (δ/π )2 =
u2 − 2π2u4/3 + O(u6).

It is worth to mention that the power law for the self-energy
� is completely analogous to that of the Green’s function G.
Applying the Dyson equation to Eq. (10b) yields

�(ν − i0+) = (ν − i0+ + ω0)

[
1 −

(
ν − i0+ + ω0

ξ0

)−αG
]
.

(B2)

Let us come back to the subleading-log power law αX =
2u − u2. Strictly speaking, the threshold frequency in the ex-
act power law, Eq. (10a), also depends on the interaction, i.e.,
ω0 = ω0(u) = −ξd + O(u). This causes additional terms in
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the Taylor series of Eq. (11) (recall iω̃ = iω + ξd ):

χ (iω) = 1

2u − u2

[
1 −

(
iω − ω0(u)

−ξ0

)−2u+u2]

= L − u

[
L2 + ω′

0(0)

iω̃

]
+ u2

[
2
3 L3 + 1

2 L2
]

+ u2

[
2L

ω′
0(0)

iω̃
− 1

2

[ω′
0(0)]2

(iω̃)2
− 1

2

ω′′
0 (0)

iω̃

]
. (B3)

The terms involving ω′
0(0) = −ξ0 originate from the d

Hartree self-energy �H = uξ0, Eq. (D19). [(i) −u ω′
0(0)/(iω̃)

is generated by a bubble including one d Hartree term,
(ii) 2u2L ω′

0(0)/(iω̃) is generated by two connected bubbles
where one includes a d Hartree term, (iii) − 1

2 u2[ω′
0(0)]2/(iω̃)2

is generated by one bubble including two d Hartree terms.]
Further, ω′′

0 (0) comes from the frequency-independent part of
�(2), Eq. (21b), inserted into χ

(2)
� , Eq. (24). We thus identify

ω′′
0 (0) = −4ξ0 ln 2, which corresponds to Eq. (A19).

This interpretation is confirmed in the expansion of the
self-energy � = [G0]−1 − G−1 with G given by an extended
form of Eq. (13) (recall iν̃ = iν − ξd ):

�(iν) = 1

G0(iν)
− 1

G(iν)

= iν̃ − (iν + ω0(u))

(
iν + ω0(u)

ξ0

)−u2

= −u ω′
0(0) + u2

[
iν̃L̄ − 1

2ω′′
0 (0)

] + O(u3). (B4)

Clearly, the first term corresponds to the d Hartree self-energy,
Eq. (D19), and the second term coincides with �(2), Eq. (21b).

APPENDIX C: FREQUENCY PARAMETRIZATION
OF THE VERTEX

As a four-leg object, in general, the full vertex has four
entries each depending on a frequency and particle type (c
vs d). Our analysis in the main text is conducted exclusively
in one realization of particle types with four distinguishable
legs: one ingoing and outgoing d leg and one ingoing and
outgoing c leg. We denote the four entries of the four-point
vertex �1′2′|12 where 1′ refers to outgoing d , 2′ outgoing c, 1
ingoing d and 2 outgoing c. By energy conservation, � only
depends on three frequencies [43]. In this work, we use the
following conventions:

�a
ω,ν,ν ′ = �ν−ω,ν ′ |ν ′−ω,ν, (C1a)

�
p
ω,ν,ν ′ = �ν−ω,−ν|ν ′−ω,−ν ′ , (C1b)

�t
ω,ν,ν ′ = �ν ′,ν−ω|ν ′−ω,ν . (C1c)

These are illustrated in Fig. 15. Note that in contrast to γ r and
Ir , the channel index r in �r does not indicate any reducibility
property but just marks the channel taken for the frequency de-
pendence. Due to Eqs. (C1), the Bethe–Salpeter equations are
performed using the following summation/integration∫

ν ′′
�r

ω,ν,ν ′′�
r
ω,ν ′′ �̃

r
ω,ν ′′,ν ′ . (C2)

FIG. 15. Channel-specific frequency conventions of the four-
point vertices �.

If the vertices � or �̃ are replaced by r′-reducible vertices, one
has to transform the arguments from channel r to r′ according
to the parametrization Eq. (C1). The transformations are given
by the following linear maps:⎛
⎝ω

ν

ν ′

⎞
⎠

a

=
⎛
⎝1 −1 −1

0 0 −1
0 −1 0

⎞
⎠

⎛
⎝ω

ν

ν ′

⎞
⎠

p

=
⎛
⎝ 0 1 −1

0 1 0
−1 1 0

⎞
⎠

⎛
⎝ω

ν

ν ′

⎞
⎠

t

,

(C3a)⎛
⎝ω

ν

ν ′

⎞
⎠

p

=
⎛
⎝1 −1 −1

0 0 −1
0 −1 0

⎞
⎠

⎛
⎝ω

ν

ν ′

⎞
⎠

a

=
⎛
⎝1 −1 −1

1 −1 0
0 −1 0

⎞
⎠

⎛
⎝ω

ν

ν ′

⎞
⎠

t

,

(C3b)⎛
⎝ω

ν

ν ′

⎞
⎠

t

=
⎛
⎝ 0 1 −1

0 1 0
−1 1 0

⎞
⎠

⎛
⎝ω

ν

ν ′

⎞
⎠

a

=
⎛
⎝ 0 1 −1

0 0 −1
−1 1 0

⎞
⎠

⎛
⎝ω

ν

ν ′

⎞
⎠

p

.

(C3c)

APPENDIX D: DETAILS OF THE PERTURBATION SERIES

Individual diagrams in perturbation theory are obtained
from successive integration over logarithmic terms. In the
following, we give the most important integral expressions.

The integral over a logarithm to some power n multiplied
with the d propagator G ∼ 1/(iν) raises the power of the
logarithm according to

∫ b

a
dν

1

iν + iω
lnn iν + iω

ξ0
=

[ −i

n + 1
lnn+1 iν + iω

ξ0

]b

a

,

(D1)

where n ∈ N0.
The power of the logarithm is not raised when there is

no additional d propagator. This becomes obvious from the
simple integral

∫ b

a
dν ln

iν + iω

ξ0
=

[
(ν + ω) ln

iν + iω

ξ0
− ν

]b

a

, (D2)

which inductively can be generalized to higher powers of the
logarithm

∫ b

a
dν lnn iν + iω

ξ0
=

[
(ν + ω) lnn iν + iω

ξ0

]b

a

− n
∫ b

a
dν lnn−1 iν + iω

ξ0
. (D3)

Furthermore, if there are multiple d propagators combined
with a logarithm, the power of the logarithm is also not raised.
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This is shown by

∫ b

a
dν

1

(iν + iω)n
ln

iν + iω

ξ0

=
[

i

n − 1

1

(iν + iω)n−1

(
ln

iν + iω

ξ0
+ 1

n − 1

)]b

a

, (D4)

where n > 1. For higher powers of the logarithm m > 1, this
has the following recursive generalization:

∫ b

a
dν

1

(iν + iω)n
lnm iν + iω

ξ0

=
[

i

n − 1

1

(iν + iω)n−1

×
(

lnm iν + iω

ξ0
+ 1

n − 1
lnm−1 iν + iω

ξ0

)]b

a

+ m − 1

n − 1

∫ b

a
dν

1

(iν + iω)n

×
(

lnm−1 iν + iω

ξ0
+ 1

n − 1
lnm−2 iν + iω

ξ0

)
. (D5)

1. Leading-log diagrams

The integral over the bare bubble, Eq. (16), including the
smooth propagator gsm, Eq. (7), is exactly solvable for T = 0.
For this, we keep the original energy integral, which comes
from the density of states, Eq. (5) (we use iω̃ = iω + ξd ):

∫
ν

�a
ω,ν =

∫
ν

Gω−νgsm
ν =

∫ ∞

−∞

dν

2π

1

iν − iω̃

∫ ξ0

−ξ0

dξ

iν − ξ
.

(D6)

First, the ν integral is solved via the residue theorem

∫ ∞

−∞

dν

2π

1

iν − iω̃

1

iν − ξ
= 
(ξ )

−ξ + iω̃
. (D7)

Next, the ξ integral gives the logarithmic behavior:

∫
ν

�a
ω,ν = −

∫ ξ0

0

dξ

ξ − iω̃
= ln

iω̃

iω̃ − ξ0
. (D8)

We are interested in the power-law behavior near the threshold
frequency ω � −ξd . So, after analytic continuation, i.e., iω →
ω + i0+, |ω̃| � ξ0, and we may use [cf. Eq. (16)] [5,6],

ln
iω̃

iω̃ − ξ0
= ln

iω̃

−ξ0
+ O

(
iω̃

−ξ0

)
. (D9)

For general diagrams, the exact treatment of gsm becomes
difficult. Therefore we now use the approximation gsh, Eq. (8),
which holds close to the threshold frequency.

We first compute a general integral over a product of the
bubble �a, involving the sharp Green’s function gsh Eq. (8),

and an arbitrary function f (ν):∫
ν

�a
ω,ν f (ν) = − i

2

∫ ξ0

−ξ0

dν
sgn(ν)

iν − iω̃
f (ν)

= − i

2

∫ ξ0

0
dν

∑
σ=±

f (σν)

iν − σ iω̃
. (D10)

Setting f (ν) = 1, we find the integrated bubble

χ (0)(ω) =
∫

ν

�a
ω,ν = 1

2

∑
σ=±

ln
iω̃

iω̃ − σ iξ0
. (D11)

This resembles the exact result, Eq. (D8), yet the usage of
gsh generates some artifacts at the UV cutoff |ω| � ξ0. Using
ln i + ln −i = 0, we may rewrite this as

χ (0)(ω) = 1

2

∑
σ=±

ln
iω̃

σ ω̃ − ξ0
= ln

iω̃

−ξ0
− 1

2

∑
σ=±

ln

(
1+ ω̃

ξ0

)

= ln
iω̃

−ξ0
+ O

[(
ω̃

ξ0

)2]
, (D12)

consistent with Eq. (D9), Eq. (16) in the main text and Eq. (16)
in Ref. [5].

Logarithms with more complicated arguments are simpli-
fied up to logarithmic accuracy in order to apply the integral
Eq. (D1):

ln
iν + iν ′ + iω̃

−ξ0
� 
(|ν| − |ν ′|) ln

iν + iω̃

−ξ0

+ 
(|ν ′| − |ν|) ln
iν ′ + iω̃

−ξ0
, (D13)

which was first used before Eq. (29) in Ref. [5].
Turning to the crossed diagram Eq. (19), the integral over

ν ′ is solved by inserting [γ p](2) = −u2L into Eq. (D10):∫
ν ′

[γ p](2)
ω−ν−ν ′�

a
ω,ν ′

= iu2

2

∑
σ ′

∫ ξ0

0
dν ′ 1

iν ′ − σ ′iω̃
ln

iν ′ + σ ′iν − σ ′iω̃
σ ′ξ0

.

(D14)

Via Eqs. (D1) and (D13), the integral is evaluated as∫ ξ0

0
dν ′ 1

iν ′ − σ ′iω̃
ln

iν ′ + iσ ′ν − iσ ′ω
σ ′ξ0

�
∫ |ν|

0
dν ′ 1

iν ′ − σ ′iω̃
ln

iσ ′ν − iσ ′ω
σ ′ξ0

+
∫ ξ0

|ν|
dν ′ 1

iν ′ − σ ′iω̃
ln

iν ′ − iσ ′ω
σ ′ξ0

= −i ln
iν − iω̃

ξ0
ln

i|ν| − σ ′iω̃
−σ ′iω̃

− i

2
ln2 iν ′ − iσ ′ω

σ ′ξ0

∣∣∣∣
ξ0

|ν|
.

(D15)

We write the result as

i ln
iν − iω̃

ξ0

[
ln

−iω̃

ξ0
− ln

i|ν| − σ ′iω̃
σ ′ξ0

]
+ i

2
ln2 i|ν| − iσ ′ω̃

σ ′ξ0
,

(D16)
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where, in the second term, we neglected terms arising from
the upper limit ν ′ = ξ0 as up to logarithmic accuracy we can
set |iξ0 − iσ ′ω̃| � ξ0. Eventually, we combine the terms in
Eq. (D16) by neglecting differences in the signs, as this is also
correct up to logarithmic accuracy:∣∣∣∣ln −iν + iω̃

ξ0
− ln

iν + iω̃

ξ0

∣∣∣∣ �
∣∣∣∣ln −iν + iω̃

iν + iω̃

∣∣∣∣ �
∣∣∣∣ln iν + iω̃

ξ0

∣∣∣∣.
(D17)

This way, we obtain∫
ν ′

[γ p](2)
ω−ν−ν ′�

a
ω,ν ′

� u2

[
1

2
ln2 iν − iω̃

ξ0
− ln

iν − iω̃

ξ0
ln

−iω̃

ξ0

]
. (D18)

The integration over the second frequency ν in the crossed
diagram, Eq. (19), is then performed straightforwardly by
Eq. (D1) and yields the logarithmic behavior − 1

3 u2L3 given
in the main text.

2. Self-energy

The first-order Hartree diagram for the d electron � can be
calculated exactly using gsm:

�
(1)
H = u

∫
ν

gsm
ν eiν0+ = u

∫ ξ0

−ξ0

dξ

∫ ∞

−∞

dν

2π

eiν0+

iν − ξ

= u
∫ ξ0

−ξ0

dξ 
(−ξ ) = uξ0. (D19)

Also the self-energy to second order, Eq. (20), can be inte-
grated exactly using gsm, Eq. (7) (recall iν̃ = iν − ξd ):

1

u2
�(2)

ν = −
∫ ∞

−∞

dω

2π

1

iν̃ − iω

∫ ∞

−∞

dν ′

2π

×
∫ ξ0

−ξ0

dξ1

iν ′ − iω − ξ1

∫ ξ0

−ξ0

dξ2

iν ′ − ξ2
. (D20)

The integrals over ω and ν are performed by the residue
theorem, and we are left with

1

u2
�(2)

ν =
∫ ξ0

−ξ0

dξ1

∫ ξ0

−ξ0

dξ2

(ξ1)
(−ξ2)

ξ1 − ξ2 + iν̃

= iν̃ ln
iν̃

iν̃ + ξ0
+ (iν̃ + 2ξ0) ln

iν̃ + 2ξ0

iν̃ + ξ0
. (D21)

The leading behavior [cf. Eq. (21b)] is extracted as

1

u2
�(2)

ν = iν̃
(

ln
iν̃

ξ0
+ ln 2 − 1

)
+ 2ξ0 ln 2 + O

(
(iν̃)2

ξ0

)
.

(D22)

Setting iν̃ = 0 ⇒ iν = ξd in Eq. (D22) yields the term
u22ξ0 ln 2, which appears in the expansions Eqs. (B3)–(B4)
as threshold renormalization.

We now turn back to the approximated version using gsh,
Eq. (8). Let us start by first integrating the bubble

∫
�a � L,

Eq. (16), inside Eq. (20) for the self-energy �(2). Using the
following integral expression including gsh, Eq. (8), and an

arbitrary function f (ν):∫
ν

f (ν)gν = − i

2

∑
σ=±

σ

∫ ξ0

0
dν f (σν), (D23)

the self-energy term yields

1

u2
�(2)

ν = −
∫

ν ′,ν ′′
�a

ν ′−ν,ν ′′gν ′ � −
∫

ν ′
ln

iν ′ − iν̃

−ξ0
gν ′

= i

2

∑
σ ′

σ ′
∫ ξ0

0
dν ′ ln

σ ′iν ′ − iν̃

−ξ0
, (D24)

which is solved by Eq. (D2). So, we obtain

1

u2
�(2)

ν = i

2

∑
σ ′

σ ′
[

(ξ0 − σ ′ν̃) ln
iξ0 − σ ′iν̃

−σ ′ξ0
− ξ0

+ σ ′ν̃ ln
iν̃

−ξ0

]
. (D25)

To extract the logarithmic behavior in the first term, we ap-
proximate ξ0 − σ ′ν̃ � ξ0 such that the sum over σ ′ yields
−ξ0 ln(i) + ξ0 ln(−i) = −iπξ0. Together with the other terms,
we obtain u2(iν̃L̄ + πξ0/2). Here, the first term yields the
correct logarithmic behavior given in the main text [cf.
Eq. (21b)], but the constant term beyond logarithmic accuracy
is incorrect compared to the exact result, Eq. (D21). We con-
clude that using gsh instead of gsm causes inconsistencies. That
is why, in our numerical evaluation, we refrain from using gsh.

The logarithmic behavior of the corresponding susceptibil-
ity, Eq. (24), is calculated by Eqs. (D10) (recall iω̃ = iω +
ξd ):

χ
(2)
� (ω) =

∫
ν

�a
ω,νu2(iν − iω̃) ln

−iν + iω̃

−ξ0

1

iν − iω̃

= −u2 i

2

∫ ξ0

0
dν

∑
σ

1

iν − σ iω̃
ln

iν − σ iω̃

σ ξ0
. (D26)

The expression is directly applicable to Eq. (D1) and yields
the subleading-log term 1

2 u2L2 [cf. Eq. (24)].
Let us briefly comment how the self-energy diagrams of

third order cancel each other. In the Schwinger–Dyson equa-
tion (32), one can replace � by the second-order diagrams
γ (2)

a and γ (2)
p . This yields the following expression for the

self-energy:

(D27)

The terms cancel each other as [γ a
lad](3)

ω = [γ p
lad](3)

ω [cf.
Eqs. (17)] and g−ν ′′ = −gν ′′ .

3. t-reducible diagram

The t-reducible diagram [γt ](3), Eq. (25), contains the
integrated bubble of two conduction-electron propagators,∫
ν2

gν2−(ν ′−ν1 )gν2 similar to the self-energy �(2). We ex-
pand the product Gν1−ωGν1 into partial fractions (recall
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iν̃ = iν − ξd and iω̃ = iω + ξd ):

Gν1−ωGν1 = 1

iν̃1 − iω

1

iν̃1
= 1

iω

[
1

iν̃1 − iω
− 1

iν̃1

]

= 1

iω

[
Gν1−ω − Gν1

]
, (D28)

and then we manipulate Eq. (25) as

[γ t ](3)
ω,ν ′ = u3

iω

∫
ν1,ν2

[Gν1−ω − Gν1 ]gν1+ν2−ν ′gν2 . (D29)

By substituting ν1 → ν ′ − ω′ and ν2 → ν ′′, we identify terms
from the self-energy �(2) Eq. (20):

[γ t ](3)
ω,ν ′ = − u

iω
(−u2)

∫
ν ′,ω′

[Gν ′−ω−ω′ − Gν ′−ω′ ]gν ′′−ω′gν ′′ ,

(D30)

which yields the final expression, Eq. (25), given in the main
text.

Inserting the logarithmic terms for the self-energies,
Eq. (21), yields

[γ t ](3)
ω,ν ′ = u3

iω

[
iν̃ ′ ln

iν̃ ′

ξ0
− (iν̃ ′ − iω) ln

iν̃ ′ − iω

ξ0

]
. (D31)

In numerical calculations, a discontinuity appears at ω = 0,
which reflects that the analytical behavior is critical there.
Actually, the limit limω→0[γ t ](3)

ω,νu3L(−ν ′) + O(1) is well
behaved. To regularize our numerical results, we linearly in-
terpolate γ t

ω,ν at ω = 0 using the values for the first bosonic
Matsubara frequencies ω = ±πT .

Finally, we derive the corresponding third-order term for
the susceptibility, Eq. (26). First, we use Eq. (D10) and get

χ
(3)
γ t (ω) = −1

4

∑
σ,σ ′

∫ ξ0

0
dν

∫ ξ0

0
dν ′ σ

σ iν − iω̃

σ ′

σ ′iν ′ − iω̃

× [γ t ](3)
σν−σ ′ν ′,σν−ω

� u3

4

∑
σ,σ ′

∫ ξ0

0
dν

∫ ξ0

0
dν ′

×
[

σσ ′

σ ′iν ′ − iω̃

1

iσν − σ ′iν ′ ln
iν − σ iω̃

σ ξ0

− σσ ′

σ iν − iω̃

1

σ iν − σ ′iν ′ ln
iν ′ − σ ′iω̃

σ ′ξ0

]
. (D32)

By exchanging the integration and summation variables ν ↔
ν ′ and σ ↔ σ ′, the two terms are the same. The integral over
ν ′ can be performed by use of∫ b

a
dν

1

(iν + iν1)(iν + iν2)

= −i

iν1 − iν2
[− ln(ν + ν1) + ln(ν + ν2)]b

a

= −i

iν1 − iν2

[
− ln

iν + iν1

ξ0
+ ln

iν + iν2

ξ0

]b

a

, (D33)

which is a special case of a product of d propagators (includ-
ing different frequencies ν + νi) without a logarithmic term:

∫ b

a
dν

n∏
i=1

1

iν+ iνi
=

⎡
⎣i(−1)n

n∑
i=1

ln
iν+ iνi

ξ0

∏
j �=i

1

iν j − iνi

⎤
⎦

b

a

.

(D34)

We have ∫ ξ0

0
dν ′ −1

(iν ′ − σ ′iω̃)(iν ′ − σσ ′iν)

� iσ ′

iω̃ − σ iν

[
ln

iω̃

−ξ0
− ln

iν

σξ0

]
, (D35)

where we restricted the terms to the lower boundary of the
integral ν ′ = 0. Equation (D32) then gives

χ
(3)
γ t (ω) = u3

2

∑
σ,σ ′

∫ ξ0

0
dν ln

iν − σ iω̃

σ ξ0

× −i

iν − σ iω̃

[
ln

iω̃

−ξ0
− ln

iν

σξ0

]
. (D36)

The remaining expression is computed by Eq. (D1) us-
ing ln[iν/(σξ0)] � ln[(iν − σ iω̃)/(σξ0)] and again only the
lower boundary ν = 0 is evaluated. This way we find the
subleading-log behavior 1

3 u3L3, given in the main text. In-
terpolating γ t at ω = 0 slightly improves the results for χ

(3)
γ t

shown in Fig. 4(c).
In analogy to our perturbative analysis, we interpolate

the full t-reducible vertex γ t
ω,ν,ν ′ , Eq. (34), linearly around

ω = 0 to avoid further numerical instabilities during the self-
consistency loop of the parquet equations.

4. Perturbative U(1) Ward identity

The U(1) Ward identity in the Matsubara formalism
yields [66–68]

�σ (ν) − �σ (ν + ω)

=
∫

ν ′

∑
σ ′

([
G−1

0

]σ ′
(ν ′) − [

G−1
0

]σ ′
(ν ′ + ω)

)
× �σσ ′|σ ′σ (ν + ω, ν ′|ν ′ + ω, ν)Gσ ′

(ν ′)Gσ ′
(ν ′ + ω).

(D37)

In this section, we use the general notation for the vertex in-
dices with particle types σ = c, d introduced in Appendix F 1.
For the x-ray edge singularity model with Gd

0 (ν) ≡ Gν =
1/(iν − ξd ), we get (using the notation from the main text
where possible)

�ν − �ν+ω = −iω
∫

ν ′
[�dd ]ν+ω,ν ′|ν ′+ω,νGν ′Gν ′+ω

+
∫

ν ′

(
g−1

ν ′ − g−1
ν ′+ω

)
[�d̂c]ν+ω,ν ′ |ν ′+ω,νgν ′gν ′+ω.

(D38)

In second order of the interaction, the second term exactly
vanishes, which can be seen as follows. First, the second-order
contributions to �d̂c are [γ t

d̂c
](2) and [γ p

d̂c
](2), which are related
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to the well studied terms by crossing symmetry:

[�d̂c](2)
ν+ω,ν ′ |ν ′+ω,ν = −[�dc](2)

ν+ω,ν ′ |ν,ν ′+ω

= −[γ a](2)
ν ′−ν − [γ p](2)

−ν ′−ν−ω. (D39)

From Eqs. (17), we know that those are related by a minus
sign, i.e., [γ a](2)

ω = −[γ p](2)
ω . The clue is now that the c prop-

agator is odd, i.e., g−ν = −gν . By performing the substitution
ν ′ → ν ′ − ω/2 of the integral variable ν ′ and then subdividing
the integral for negative and positive ν ′, it becomes clear that
the second term in Eq. (D38) vanishes:∫

ν ′

(
g−1

ν ′− ω
2

− g−1
ν ′+ ω

2

)( − [γ a](2)
ν ′− ω

2 −ν
+ [γ a](2)

−ν ′− ω
2 −ν

)
× gν ′− ω

2
gν ′+ ω

2

=
∫

ν ′>0

∑
σ ′=±

(
g−1

σ ′ν ′− ω
2

− g−1
σ ′ν ′+ ω

2

)
× ( − [γ a](2)

σ ′ν ′− ω
2 −ν

+ [γ a](2)
−σ ′ν ′− ω

2 −ν

)
gσ ′ν ′− ω

2
gσ ′ν ′+ ω

2

= 0. (D40)

The remaining first term in Eq. (D38) is simplified in second
order. Here, �dd only gives a contribution in the a channel [the
p-channel diagram [γ p

dd ](2) vanishes directly while [γ t
dd ](2)

yields a closed d bubble when integrated multiplied by the
two d propagators in Eq. (D38)]. We now multiply both sides
of Eq. (D38) by u and get

u

iω

(
�

(2)
ν+ω − �(2)

ν

) = u
∫

ν ′

[
γ a

dd

](2)

ν ′−ν
Gν ′Gν ′+ω = [γ t ](3)

ω,ν+ω.

(D41)

Diagrammatically, we could identify the right-hand side with
the third-order diagram in the t channel in Appendix D 3. A
frequency shift ν → ν ′ − ω yields the expression (25) in the
main text.

5. Multi-boson exchange diagram

Inserting the a-reducible multi-boson diagram [Ma](4),
Eq. (28), into the susceptibility χ yields Eq. (29) (recall iω̃ =
iω + ξd ):

χ
(4)
Ma (ω) =

∫
ν,ν ′,ν ′′

�a
ω,ν[γ p](2)

ω−ν−ν ′′�
a
ω,ν ′′ [γ p](2)

ω−ν ′′−ν ′�
a
ω,ν ′

=
∫

ν ′′
�a

ω,ν ′′

[∫
ν

�a
ω,ν[γ p](2)

ω−ν−ν ′′

]2

. (D42)

The integrals over ν and ν ′, which consist each of one bubble
�a and one vertex [γ p](2), could be integrated independently.
They yield the same and, in fact, they coincide with the in-
tegral, Eq. (D18), which has already been performed in the
context of the crossed diagram,[

1

u2

∫
ν

�a
ω,ν[γ p](2)

ω−ν−ν ′′

]2

� 1

4
ln4 iν ′′ − iω̃

ξ0
− ln3 iν ′′ − iω̃

ξ0
ln

−iω̃

ξ0

+ ln2 iν ′′ − iω̃

ξ0
ln2 −iω̃

ξ0
. (D43)

So in the end, one only needs to perform the integration over
ν ′′, which can be recast according to Eq. (D10):

χ
(4)
Ma (ω) � − iu4

2

∫ ξ0

0
dν ′′ ∑

σ

1

iν ′′ − σ iω̃

[
1

4
ln4 iν ′′ − σ iω̃

σ ξ0

− ln
−iω̃

ξ0
ln3 iν ′′− σ iω̃

σ ξ0
+ ln2 −iω̃

ξ0
ln2 iν ′′− σ iω̃

σ ξ0

]
.

(D44)

This expression is solvable by Eq. (D1),

χ
(4)
Ma = − iu4

2

∑
σ

[−i

20
ln5 iν ′′ − σ iω̃

σ ξ0

+ i

4
ln

−iω̃

ξ0
ln4 iν ′′ − σ iω̃

σ ξ0

− i

3
ln2 −iω̃

ξ0
ln3 iν ′′ − σ iω̃

σ ξ0

]

� u4

[
− 1

20
+ 1

4
− 1

3

]
ln5 iω̃

−ξ0
, (D45)

and yields the leading-log result 2
15 u4L5 (cf. Eq. (29) in the

main text).

APPENDIX E: NUMERICAL RESULTS
FOR THE SELF-ENERGY

From Eq. (33), we concluded that inserting a leading-
log vertex �

(n)
lead ∼ unLn−1 into the Schwinger–Dyson equa-

tion (32) yields a subleading-log contribution to the
self-energy �

(n+1)
sub ∼ un+1iν̃L̄n. Analogously, inserting a

subleading-log vertex �sub ∼ unLn−2 yields a subsubleading-
log term �

(n+1)
subsub ∼ un+1iν̃L̄n−1. Consequently, inserting the

full leading-log vertex �lead, solved by Eqs. (30), into the
Schwinger–Dyson equation (32) reproduces the full sub-
leading logarithm of the self-energy, while inserting the
subleading-log �sub, solved by Eqs. (32)–(36) and the full d
propagator, reproduces the full subsubleading logarithm of the
self-energy.

As mentioned at the end of Sec. II, the expansion of
Anderson’s orthogonality power law, Eq. (13), involves pow-
ers of u2L̄. The second-order term u2iν̃L̄ for the self-energy
[cf. Eq. (21b)] involves the subleading logarithm and is thus
correctly reproduced by inserting �lead into the Schwinger–
Dyson equation (32). The fourth-order term u4iν̃L̄2, in
contrast, already goes beyond the subleading logarithm and
can only be correctly reproduced when also the subleading
contributions to �sub and the renormalized propagator Gsub are
included in Eq. (32). Furthermore, a complete computation of
the sixth-order term u6iν̃L̄3 would already require inclusion of
the envelope diagram R(4)

� .
We see that terms involving the subleading logarithm

uniν̃L̄n−1 have to exactly cancel in higher orders of per-
turbation theory O(un�3) in order to reproduce Anderson’s
orthogonality power law. Using our scheme, we cannot
guarantee the complete reproduction of the first nonvan-
ishing logarithmic terms at arbitrary orders of perturbation
theory for the self-energy without the inclusion of totally
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FIG. 16. Frequency dependence of � from self-consistent sum-
mations at u = 0.28, T/ξ0 = 0.002, and ξd/ξ0 = −0.01. The self-
energy differences ��, Eq. (22), are divided by iν̃ = iν − ξd . We
compare the numerical results after inserting the leading-log vertex
into the Schwinger–Dyson equation (blue dots) and after inserting
the subleading-log vertex and the renormalized d propagator into the
Schwinger–Dyson equation (red dots) to the analytically determined
T = 0 power law with the subleading-log exponent αG = u2 (pink,
dashed) and the exact exponent αG = (δ/π )2 (light blue, dashed).

irreducible diagrams (beyond the bare vertex). These are be-
yond the scope of this work. Nonetheless, an insertion of
�lead into Eq. (32) already generates a lot of terms beyond
the subleading logarithm uniν̃L̄n−1−p with p > 0. We eval-
uate them numerically, being aware that their summation is
incomplete.

Although within the parquet approximation, it is impossi-
ble to capture the u2 power law at all orders of perturbation
theory, we may still compare our numerical data to the power
law, Eq. (B2). Figure 16 shows the results when inserting the
leading-log vertex �lead, Eq. (30), into the Schwinger–Dyson
equation (32) (blue dots) and when additionally including the
subleading-log vertex �sub, Eq. (36), and the full d propa-
gator (red dots). The analytic power laws with αG = u2 and
αG = (δ/π )2 (pink and light blue, dashed), applicable in a
rather small frequency regime, are not too far from the numer-
ical results. Moreover, it is remarkable that the quantitative
difference between inserting �lead or �sub into the Schwinger–
Dyson equation is rather small.

FIG. 17. Translation between the two diagrammatic conventions:
The square vertex is used in Hubbard-like models. Here, the positions
of the legs are fixed. This more general notation is exclusively used in
this section. The round vertex on the other hand is used in the main
text. There, the frequencies are defined according to the respective
leg type, not its leg position.

APPENDIX F: DETAILS ON THE t-REDUCIBLE VERTEX

Here, we give details on how our expression for the t-
reducible vertex, γ t Eq. (34), can be motivated from the full
parquet formalism and how we have implemented its numeri-
cal computation.

1. More general vertex conventions

The bare interaction u appearing in the action S, Eq. (6),
describes only a single scattering event between the d electron
with one c electron. In a general diagrammatic treatment,
however, the full vertex � describes all scattering events be-
tween d electrons and c electrons involving two particles, in
particular, also scattering events within one particle type. For
this, it naturally comes with four indices �1′2′|12 representing
the four different particle types of the legs (cf. Appendix C
and Ref. [43]). While in the main text only one component
is needed, namely that with four distinguishable legs, in the
general treatment, we have to include the particle-type in the
notation. Figure 17 points out the difference between the two
conventions: In Hubbard-like models, we represent the full
vertex by a square, where the indices of its four legs are iden-
tified by their position (�1′2′|12: 1′ bottom-left, 2′ top-right,
1 bottom-right, 2 top-left). When using only one component
with four distinguishable legs, this notation becomes superflu-
ous; so, in the main text, we always take � ≡ �1′2′ |12 (with 1′
outgoing d , 2′ outgoing c, 1 ingoing d , 2 ingoing c). There,
the indices are identified by its particle types and the position
is not decisive. To mark the difference, we represent � by a
circle.

Following the convention with four indices of the full
vertex �1′2′ |12 introduced in Ref. [43], we denote the spin
components of vertices in the following way:

�dc = �dc|dc, �d̂c = �dc|cd , �dd = �dd|dd . (F1)

The other components �cd , �ĉd and �cc are obtained by ex-
changing c ↔ d . The corresponding diagrams are illustrated
in Fig. 18. In contrast to Hubbard-like models obeying SU(2)
spin symmetry, �dd cannot be retrieved from �dc and �d̂c.
Moreover, due to the advanced property of the d propaga-
tor, closed loops of dashed d lines are suppressed, so �cc

is negligible as it must contain closed dashed loops. In the
main text, we exclusively use the component �dc and drop the
corresponding indices.
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FIG. 18. Convention for the particle-type components of the full
vertex �.

Exchanging two fermionic legs of the vertex yields an
additional minus sign:

�1′2′|12 = −�2′1′|12 = −�1′2′|21 = �2′1′ |21. (F2)

An insertion of the frequencies Eqs. (C1) and spin indices
Eqs. (F1) yields the so-called crossing symmetries [12,69].
Applying symmetries interrelates the different vertex com-
ponents and heavily simplifies the numerical effort. Note
that under exchange of two legs, the a and t channels are
translated into each other while the p channel translates into
itself.

In the main text, only bubbles including one d line G and
one c line g were used [cf. Eq. (15)]. In general, however, the
products of two propagators can appear in all possible combi-
nations of particle-type indices and diagrammatic channels:[

�a
i j

]
ω,ν

= Gi
νGj

ν+ω, (F3a)[
�

p
i j

]
ω,ν

= 1
2 Gi

−νGj
ν+ω, (F3b)[

�t
i j

]
ω,ν

= −Gi
νGj

ν+ω. (F3c)

Note that in contrast to Eq. (15) in the main text, we inserted
an additional factor 1/2 in the definition of �

p
i j to compensate

overcounting, which appears as the additional sum over par-
ticle types in the Bethe–Salpeter equations includes both �dc

and �cd [43]. Moreover, in the general framework, we denote
Gc

ν = gν and Gd
ν = Gν .

2. Subleading-log parts of the t-reducible vertex

Here, we motivate that our expression for γ t , Eq. (34), can
be derived from the full parquet formalism [29,43] by taking
into account only subleading-log diagrams. In the full parquet
formalism, the dc component of the t-reducible vertex is given
by [cf. Fig. 19(a)]

[
γ t

dc

]
ω,ν,ν ′ =

∫
ν ′′

[
�t

cc

]
ω,ν,ν ′′

[
�t

cc

]
ω,ν ′′

[
It
dc

]
ω,ν ′′,ν ′

+
∫

ν ′′

[
�t

dc

]
ω,ν,ν ′′

[
�t

dd

]
ω,ν ′′

[
It
dd

]
ω,ν ′′,ν ′ . (F4)

The first term does not contribute as �cc contains closed
dashed loops. According to Sec. III F, γ t

dc at the most contains
subleading-log terms if both the inserted vertices are leading
log. Insertions of the self-energy into �t

dd and subleading
contributions of the two vertices �dc and It

dd are beyond our
subleading-log scheme. Thus they are on the same footing as
the higher-order totally irreducible vertices, which are any-
ways dropped according to the parquet approximation.

So, we focus on �dc and It
dd in leading-log order. The irre-

ducible vertex is given by It
dd = γ a

dd + γ
p

dd . There is only one

FIG. 19. Vertices appearing in the full parquet expression for the
t-reducible vertex γ t .

contribution in the p-reducible channel γ
p

dd [cf. Fig. 19(b)]:

[
γ

p
dd

]
ω,ν,ν ′ =

∫
ν ′′

[
�

p
dd

]
ω,ν,ν ′′

[
�

p
dd

]
ω,ν ′′

[
I p
dd

]
ω,ν ′′,ν ′ . (F5)

This eventually leads to closed dashed loops when inserted
into Eq. (F4) and thus leads to a vanishing contribution.
From the two contributions in the a-reducible channel γ a

dd [cf.
Fig. 19(c)],

[
γ a

dd

]
ω,ν,ν ′ =

∫
ν ′′

[
�a

d̂c

]
ω,ν,ν ′′

[
�a

cc

]
ω,ν ′′

[
Ia
ĉd

]
ω,ν ′′,ν ′

+
∫

ν ′′

[
�a

dd

]
ω,ν,ν ′′

[
�a

dd

]
ω,ν ′′

[
Ia
dd

]
ω,ν ′′,ν ′ , (F6)

the second one also leads to closed dashed loops and is
therefore negligible. Hence, the remaining term includes Ia

d̂c
and �ĉd . By crossing symmetry, the a-irreducible vertex is
related to the t-irreducible one, i.e., Ia

ĉd
= −It

cd = u − γ a
cd −

γ
p

cd , which, to leading-log order coincides with the full vertex
−�cd (there are no leading-log contributions in the transversal
channel). So, only the term∫

ν ′′

[
�a

d̂c

]
ω,ν,ν ′′

[
�a

cc

]
ω,ν ′′

[
�a

ĉd

]
ω,ν ′′,ν ′ ⊆ [

It
dd

]
ω,ν,ν ′ (F7)

leads to the subleading logarithm of the full parquet t-
reducible vertex γ t

dc, Eq. (F4). Thus the remaining term in
Eq. (F4) [cf. Eq. (F8)] reproduces the expression used in the
main text [cf. Eq. (34)].

3. Numerical implementation of the t-reducible vertex

In the subleading-log parquet scheme, Eq. (36), the dc
component of the t-reducible vertex γ t is taken additionally,
which, on the other hand, includes the dd component of the
a-reducible vertex γ a. Using the conventions introduced in
Sec. F 1, the t-reducible vertex γ t , Eq. (34), from the main
text is equivalent to[

γ t
dc

]
ω,ν,ν ′ =

∫
ν ′′

[
�t

dc

]
ω,ν,ν ′′

[
�t

dd

]
ω,ν ′′

[
γ a

dd

]
ν ′′−ν ′,ω+ν ′,ν ′ ,

(F8a)
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[
γ a

dd

]
ω,ν,ν ′ =

∫
ν ′′

[
�a

d̂c

]
ω,ν,ν ′′

[
�a

cc

]
ω,ν ′′

[
�a

ĉd

]
ω,ν ′′,ν ′ , (F8b)

(F8c)

To minimize the effort in numerical computations, the ad-
ditional vertex components �t

dc, �a
d̂c

and �a
ĉd

are expressed
in terms of �t

dc and �a
dc by using the crossing symmetries,

Eqs. (F2). Explicitly we have[
�t

dc

]
ω,ν,ν ′ = −u + [

γ t
dc

]
ω,ν,ν ′ + [

γ a
dc

]
ν−ν ′,ω+ν ′,ν ′

+ [
γ

p
dc

]
ω+ν+ν ′,−ω−ν ′,−ν ′ , (F9a)[

�a
d̂c

]
ω,ν,ν ′ = −[

�a
dc

]
ν ′−ν,ν,ν+ω

= u − [
γ a

dc

]
ν ′−ν,ν,ν+ω

− [
γ

p
dc

]
ω+ν+ν ′,−ν,−ν−ω

− [
γ t

dc

]
−ω,ν ′,ν+ω

, (F9b)[
�a

ĉd

]
ω,ν,ν ′ = −[

�a
dc

]
ν−ν ′,ν ′+ω,ν ′

= u − [
γ a

dc

]
ν−ν ′,ν ′+ω,ν ′ − [

γ
p

dc

]
ω+ν+ν ′,−ν ′−ω,−ν ′

− [
γ t

dc

]
ω,ν,ν ′ . (F9c)

Note that for the first-order contribution we have �
(1)
dc = −u =

−�
(1)
d̂c

= −�
(1)
ĉd

. By inserting Eqs. (F9) into Eqs. (F8), we
receive the equations given in the main text, were everything
is expressed in the dc component. For clarity, let us elaborate
the derivation. In a first step, Eqs. (F9b) and (F9c) are inserted
into Eq. (F8b):

[
γ a

dd

]
ω,ν,ν ′ =

∫
ν ′′

[
�a

dc

]
ν ′′−ν,ν,ν+ω

[
�a

cc

]
ω,ν ′′

[
�a

dc

]
ν ′′−ν ′,ν ′+ω,ν ′ ,

(F10)

which is then inserted into Eq. (F8a):[
γ t

dc

]
ω,ν,ν ′

=
∫

ν1,ν2

[
�t

dc

]
ω,ν,ν1

[
�t

dd

]
ω,ν1

[
�a

dc

]
ν2−ω−ν ′,ω+ν ′,ν+ν1−ν ′

× [
�a

cc

]
ν1−ν ′,ν2

[
�a

dc

]
ν2−ν ′,ν1,ν ′ . (F11)

Inserting the bubbles, Eqs. (F3), and dropping the dc indices
gives Eq. (34).

In our code, we save the three vertices �t
dc, �a

dc and �a
dc

(minus their constant first-order contributions, i.e., �̃ = � −
�(1)) on three-dimensional frequency grids.

To calculate γ a
dd , Eq. (F8b), we subdivide the equa-

tion into contributions of different asymptotic classes [31,43],
i.e., γ a

dd = [Ka
1]dd + [Ka

2′ ]dd + [Ka
2]dd + [Ka

3]dd , which are

given by [
Ka

1

]dd

ω
= �

(1)
d̂c

∫
ν ′′

[
�a

cc

]
ω,ν ′′�

(1)
ĉd

, (F12a)

[
Ka

2′
]dd

ω,ν ′ =
∫

ν ′′
�

(1)
d̂c

[
�a

cc

]
ω,ν ′′

[
�̃a

ĉd

]
ω,ν ′′,ν ′ , (F12b)

[
Ka

2

]dd

ω,ν
=

∫
ν ′′

[
�̃a

d̂c

]
ω,ν,ν ′′

[
�a

cc

]
ω,ν ′′�

(1)
ĉd

, (F12c)

[
Ka

3

]dd

ω,ν,ν ′ =
∫

ν ′′

[
�̃a

d̂c

]
ω,ν,ν ′′

[
�a

cc

]
ω,ν ′′

[
�̃a

ĉd

]
ω,ν ′′,ν ′ .

(F12d)

Also the numerical result for γ t
dc, Eq. (34), is subdivided

into asymptotic classes γ t
dc = [Kt

2′ ]dc + [Kt
3]dc, which are

given by

(F13a)

(F13b)

APPENDIX G: DETAILS ON THE NUMERICAL
IMPLEMENTATION

The self-consistent schemes presented in Sec. IV A are
implemented using the recently developed Julia library
MatsubaraFunctions.jl [49]. To efficiently handle the fre-
quency dependence, the two-particle reducible vertices γ r are
parametrized in single-boson exchange vertices [32–43]:

γ r
ω,ν,ν ′ = λ̄r

ω,νη
r
ωλr

ω,ν ′ + u + Mr
ω,ν,ν ′ . (G1)

(Note that the bare vertex is defined with an additional minus
sign, i.e., �(1) = −u.) Here the U -reducible contribution is a
product of one bosonic propagator ηr

ω and two Hedin vertices
λ̄r

ω,ν and λr
ω,ν ′ coupling fermionic degrees of freedom with

exchange bosons. The remaining term is incorporated in the
multi-boson vertex Mr

ω,ν,ν ′ .
The parquet equations (30) and (36) are then solved in

terms of the single-boson vertices using the following set of
self-consistent equations (cf. Eqs. (41) in Ref. [43]):

Pr
ω =

∫
ν ′′

λr
ω,ν ′′�

r
ω,ν ′′ , (G2a)

ηr
ω = −u − uPr

ωηr
ω, (G2b)
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λ̄r
ω,ν = 1 +

∫
ν ′′

T r
ω,ν,ν ′′�

r
ω,ν ′′ , (G2c)

λr
ω,ν ′ = 1 +

∫
ν ′′

�r
ω,ν ′′T r

ω,ν ′′,ν ′ , (G2d)

T r
ω,ν,ν ′ = �r

ω,ν,ν ′ − λ̄r
ω,νη

r
ωλr

ω,ν ′ , (G2e)

Mr
ω,ν,ν ′ =

∫
ν ′′

(
T r

ω,ν,ν ′′ − Mr
ω,ν,ν ′′

)
�r

ω,ν ′′T r
ω,ν ′′,ν ′

=
∫

ν ′′
T r

ω,ν,ν ′′�
r
ω,ν ′′

(
T r

ω,ν ′′,ν ′ − Mr
ω,ν ′′,ν ′

)
. (G2f)

Here, the polarization Pr is the bosonic self-energy. T r rep-
resent the U -irreducible vertices in a respective channel. In
practice, we use a symmetrized form of the two expressions
for the multi-boson vertex, Eq. (G2f). We solve Eqs. (G2)
self-consistently by using the Anderson acceleration method,
which leads to a faster convergence involving adaptive mixing
of prior solutions.

The susceptibility, Eq. (14), is directly obtained from the
bosonic propagator,

χ (ω) = 1

u2

(
ηa

ω + u
)
. (G3)

Using −u − u
∫
ν ′′ �

r
ω,ν ′′�ω,ν ′′,ν ′ = ηr

ωλr
ω,ν ′ (cf. Eq. (42b) in

Refs. [43,70]), the Schwinger–Dyson equation (32) repre-
sented in single-boson exchange vertices yields

�ν = −
∫

ν ′′
ηa

ν ′′−νλ
a
ν ′′−ν,ν ′′gν ′′

= −
∫

ν ′′
η

p
−ν ′′−ν

(
2λ

p
−ν ′′−ν,−ν ′′ − 1

)
gν ′′ . (G4)

Here, the Hartree term �H = u
∫
ν

gνeiν0+
is implicitly added.

We save the objects Pr
ω, ηr

ω,�ν on one-dimensional fre-
quency grids, λ̄r

ω,ν, λ
r
ω,ν ′ , [Kt

2′ ]dc
ω,ν ′ on two-dimensional fre-

quency grids and Mr
ω,ν,ν ′ , [Kt

3]dc
ω,ν,ν ′ on three-dimensional

frequency grids. In doing so, we ensure that the largest
frequencies of the three-dimensional quantities exceed the
bandwidth νmax � 1.5 ξ0. The frequency boxes correspond-
ing to the lower-dimensional vertices are taken much larger.
To represent the high-frequency asymptotics of the one-
dimensional quantities Pr

ω and ηr
ω in a more sophisticated

way, we approximate the Matsubara summation over bubbles
outside the frequency box by an integral over the bare bubble:

1

β

∑
ν ′′

�r
ω,ν ′′ ≈ 1

β

∑
|ν ′′ |�νmax

�r
ω,ν ′′ + β

∫
|ν ′′|>νmax

dν ′′

2π
[�r](0)

ω,ν ′′ .

(G5)

Figures 20 and 21 show exemplary numerical results for ver-
tex functions obtained from the subleading parquet scheme,
Eqs. (32)–(36).

APPENDIX H: ANALYTICAL CONTINUATION

To test how well the minimal pole representation for ana-
lytical continuation [50,51] predicts the power-law behaviors,

FIG. 20. Frequency dependence of the t-reducible vertices
[Kt

2′ ]dc and [Kt
3]dc, Eqs. (F13). These are obtained for T/ξ0 = 0.002,

ξd/ξ0 = −0.01, and u = 0.28 from the subleading parquet scheme,
Eqs. (32)–(36).

we start from the exact power law, Eq. (10a),

χ (z) = 1

α

[
1 −

(
z − ω0

−ξ0

)−α
]
, (H1)

continued to complex variables z. The power law for χ (z) is an
approximation near the threshold and does not decay to zero
for |z| → ∞. Nevertheless, after subtracting the offset 1/α,
we find a spectral representation. By separating the power law
into real and complex parts,

(−x − i0+)−α = |x|−αe−iα arctan2(−x,−0+ )

= |x|−α[
(−x) + 
(x)eiπα], (H2)

FIG. 21. Frequency dependence of the a-reducible Hedin vertex
λa

ω,ν′ and the multi-boson vertex Ma
ω,ν,ν′ , Eqs. (G2), obtained for

T/ξ0 = 0.002, ξd/ξ0 = −0.01, and u = 0.28 from the subleading
parquet scheme, Eqs. (32)–(36).
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with x = (ω − ω0)/ξ0, the spectral function A(ω) =
−Im χ (ω + i0+)/π yields

A(ω) = sin πα

πα

(ω − ω0)

(
ω − ω0

ξ0

)−α

. (H3)

In the Matsubara formalism, this gives

χ (iω) − 1

α
=

∫ ∞

−∞
dω′ A(ω′)

iω − ω′ = − 1

α

(
iω − ω0

−ξ0

)−α

. (H4)

The expression in imaginary frequencies is thus identical to a
simple transformation z → iω in Eq. (H1).

We generated imaginary-frequency data including differ-
ent levels of artificial noise. This test showed that data at a
temperature T/ξ0 � 0.002 and with relative error 10−4 are
sufficient to reproduce the exact power when only taking a few
Matsubara frequencies, i.e., the lowest 50. From this proce-
dure, we can be confident about the validity of the analytically
continued data presented in the main text (cf. Fig. 11).

The power-law exponent is extracted from the slope of the
log-log plot in Fig. 11(b). For ω > ω0, we have

d

d ln(ω − ω0)
ln[−Im χ (ω + i0+)]

= ω − ω0

Im χ (ω + i0+)
Im

d

dω
χ (ω + i0+). (H5)

Inserting the analytical power law, Eq. (H1), gives exactly −α.
For the logarithmic derivative of our numerical data, we use
the minimal pole expansion,

d

dz
χ (z) = d

dz

∑
i

Ai

z − xi
=

∑
i

−Ai

(z − xi )2
, (H6)

defined in Refs. [50,51].
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