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Two-Species Quantum Dimer Models on the Triangular Lattice

by Brin VERHEIJDEN

This thesis introduces a two-dimer model on the triangular lattice which is believed
to explain the pseuso-gap phase1. An exact expression for the classical Bosonic
single-dimer correlation on the triangular lattice is found using Grassman variables,
which can be used to find all classical many-dimer correlations. Using said classical
correlations, an exact triangular two-dimer ground state2 is found for a Fermionic
extension to the Rokhsar-Kivelson Hamiltonian 3 at the RK-point. This ground
state will be perturbed analytically up to first order and investigated. A numeri-
cal method is set up, using the Lanczos algorithm, to find the corresponding ground
state dispersion for the aforementioned Hamiltonian and perturbations to it. Finally,
a suggestion is made for analytical and for numerical validation of the results pre-
sented.

1Punk, Allais, and Sachdev, 2015, Sachdev and Chowdhury, 2016
2Feldmeier, Huber, and Punk, 2018
3Rokhsar and Kivelson, 1988

HTTP://WWW.EN.UNI-MUENCHEN.DE/INDEX.HTML
https://www.en.physik.uni-muenchen.de/faculty/index.html
https://www.theorie.physik.uni-muenchen.de/TMP/




v

Acknowledgements
I would like to thank my supervisor, Matthias Punk, for his support, patience and
his vast knowledge of the subject throughout the entirety of the project, whenever I
needed it.

A word of gratitude to Sebastian Huber, as well, who helped me make sense of
my work by helping me answer many unannounced questions about my analytical
work.

One who cannot be left out when displaying my gratitude is my predecessor,
Johannes Feldmeier, who’s work on the exact ground states for the square lattice
formed a comprehensive guide on how to approach these calculations.





vii

Contents

Abstract iii

Acknowledgements v

1 Introduction to the Dimer Model 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Wannier- and Bloch Functions . . . . . . . . . . . . . . . . . . . 1
1.1.2 Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Formulation of the Dimer Model . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Introducing the Bosonic Dimer Operator . . . . . . . . . . . . . 3
1.2.2 Calculating the Overlap of Two Coverings . . . . . . . . . . . . 5
1.2.3 Approximating Orthonormality . . . . . . . . . . . . . . . . . . 7
1.2.4 Topological Sectors and Locality . . . . . . . . . . . . . . . . . . 8

1.3 Rokhsar-Kievelson Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 RK Hamiltonian on Triangular Lattices . . . . . . . . . . . . . . 12
1.3.2 The Staggered Phase . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 The RK point and RVB State . . . . . . . . . . . . . . . . . . . . . 14
1.3.4 The Columnar Phase . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.5 Completing the Phase Diagram . . . . . . . . . . . . . . . . . . . 16

2 Classical Dimer Correlations on the Triangular Lattice 19
2.1 Setting Up the Grassman Variables . . . . . . . . . . . . . . . . . . . . . 19
2.2 Computation of the Two-Variable Correlation . . . . . . . . . . . . . . . 22
2.3 Numerical Analysis on the Four-Variable Correlation . . . . . . . . . . 26

3 Exact Ground State Solution of a Special Case of the Triangular RK-Hamiltonian 29
3.1 Finding the Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Using the Projector . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Proposing a Ground State . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Normalising the Ground State . . . . . . . . . . . . . . . . . . . 35

3.2 Using the Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 First Order Perturbation to the Ground State . . . . . . . . . . . 36
3.2.2 Quasi-Particle Approach . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Difference Between Square and Triangular Lattice . . . . . . . . 40

4 Simulations of Fermionic Perturbations to the Triangular RK-Hamiltonian 43
4.1 Finding the State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Failed Attempt: Brute Force Method . . . . . . . . . . . . . . . . 43
4.1.2 Recursive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Early Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Computations on the State Space of Dimer Coverings . . . . . . . . . . 48
4.2.1 Periodic and Twisted Boundary Bonditions . . . . . . . . . . . . 49
4.2.2 Lanczos Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 50



viii

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Estimating the Effects of Twisted Boundary Conditions . . . . . 53
4.3.2 Deviating from the RK-Line . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Conclusions and Outlook 59

Bibliography 61



1

Chapter 1

Introduction to the Dimer Model

1.1 Background

1.1.1 Wannier- and Bloch Functions

When describing electrons on a lattice, the usual approach is to look at each given
site is occupied by an electron or not. These occupations are represented by Wannier
functions {ΨWannier,x,σ}, the position-based counterparts of the momentum-based
Bloch functions {ΨBloch,k,σ}. Wannier functions have the unique property that they
are periodic in (pseuso-)momentum space, as where Bloch functions are periodic in
(physical) space. Both the set of Wannier functions and the set of Bloch functions
form orthonormal bases for the state space of the corresponding lattice. Working
with these functions is usually done in the operator basis (or canonical quantisation).
The usual rule for anti-commuting variable can be used, as is typical for Fermionic
particles:

{cxσ, c†
x′σ′} = δxx′,σσ′ (1.1)

{cxσ, cx′σ′} = 0 (1.2)

{c†
xσ, c†

x′σ′} = 0 (1.3)
cxσ|0〉 = 0 (1.4)

Where |0〉 is the ground state. Equations 1.1 to 1.4 analogously for ckσ and c†
kσ. Fi-

nally, the Wannier states and Bloch states are related to each other via equation 1.5,
where N is the total number of lattice sites.

cxσ =
1√
N

∑
k

eikxckσ (1.5)

This description in terms single electrons allows one to mathematically set up electron-
electron interactions in a very controlled way. The corresponding Hilbert space is
well defined, and it scales with the number of sites as 4N . This because each site
can have four different states (|0〉, | ↑〉, | ↓〉 and | ↑↓〉). It works well (Nth-)nearest
neighbour interactions and momentum exchange between, to name a few examples.

1.1.2 Hubbard Model

When using the operator basis, the simplest model that can be studied with interac-
tions is the Hubbard model. This model consists of a hopping term J and a potential
term U, as shown in equation 1.6.
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H = −J ∑
〈i,j〉,σ

c†
iσcjσ + U ∑

i
c†

i↑ci↑c†
i↓ci↓ (1.6)

The indices in brackets are nearest neighbours (defined in terms of physical dis-
tance). Even though this model is quite simple, much of it is not yet understood.
The interesting part for this thesis is when the potential is dominating |U| � |J|.
For a strongly attractive potential (U negative) there is a very strong pairing of pairs
of opposite spin on each site, but in the case of a repulsive (positive) U, the system
becomes Mott-insulating. This is a unique and anti-ferromagnetic state with highly
suppressed fluctuations. This Mott state can only exist at (and very close) half-filling
(a single Fermion per site). When the state deviates from this near-perfect half fill-
ing, the state stays anti-ferromagnetic, though what exactly happens is not entirely
figured out yet.

AFM FL

dSC

PG

SM

FIGURE 1.1: This figure shows the phase diagram of the Fermi-
Hubbard model as function of temperature and hole doping. Show-
ing the following phases: antiferromagnet (AFM), d-wave supercon-
ductor (dSC), Fermi-liquid (FL), strange metal (SM) and pseudo-gap

metal (PG).

Figure 1.1 shows a phase diagram in terms of the hole doping p and temperature
T, that is experimentally found and expected to be the result of the Hubbard model
near half-filling1. It shows the anti-ferromagnetic (AFM) state near p = 0 (p positive
means less electrons), which becomes a Mott insulator at high temperatures, close to
p = 0. The red phase is a d-wave superconductor (dSC) and further it shows what is
known as a strange metal phase (SM), the metallic Fermi liquid phase (FL) and the
pseudo-gap metal (PG). This last phase is what this thesis is trying to explain.

The pseudo-gap phase is an anti-ferromagnetic metallic state. Where for a Fermi
liquid, the charge carrier density n is something that goes with the hole density: n =
1 + p (half-filling + doping), the pseudo-gap metal acts as if it has a charge carrier

1Sachdev and Chowdhury, 2016
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density equal to the doping: n = p. There is experimental work2 that describes
this this transition to be a very abrupt jump from n = p to n = 1 + p between
p = 0.16 and p = 0.19. Because of this, it is often described as what is called a
fractionalised Fermi liquid3. To build a model that predicts this fractionalised Fermi
liquid, a model with dimers, rather than single electron is used. This model will be
introduced in section 1.2 and the Hamiltonian that is used to get back to this phase
will be introduced in section 1.3. This will be a dimer version of the Hubbard model,
with a similar kinetic and potential term.

1.2 Formulation of the Dimer Model

Section 1.1.1 outlines how the usual description of electrons on a lattice is given in
terms of the occupations of lattice site by said electrons. This section aims to intro-
duce a way to describe electrons in a reduced Hilbert space. To do this, the system
looks at the occupation of two neighbouring sites by two electrons as a so-called
dimer, rather than per individual site. Such a dimer would have an electric charge
of 2e (e is the electron charge) as a given. More than that, it will be defined as being
Bosonic and free of spin.The creation operator of such a dimer on neighbouring sites
x and y would be given by equation 1.7.

1.2.1 Introducing the Bosonic Dimer Operator

To begin, the definition of the first version of the creation operator for the Bosonic
dimer is defined by equation 1.7 as a (spinless) singlet state. After section 1.2.3 an
aproximation will be made, changing the properties of D(†)

xy somewhat.

D†
xy :=

c†
x↑c

†
y↓ − c†

x↓c
†
y↑√

2
(1.7)

Note that using 1.3 one finds that D†
xy = D†

yx, which is an important detail for the
unicity of the dimer on two given sites: there is no dominant site.

Since D†
xy is a superposition of two two-electron states, it is expected to be a

Boson-like operator. Ideally this would follow the commutation rules for Boson.
Two of these rules are trivially true, simply doubly commuting the Fermionic oper-
ators mentioned above.

[D†
xy, D†

x′y′ ] = 0 (1.8)

[Dxy, Dx′y′ ] = 0 (1.9)

The third commutator, on the other hand, is less straight forward than equation 1.1,
as seen in equation 1.10.

[Dxy, D†
x′y′ ] = δxx′,yy′ + δxy′,yx′ + rest term (1.10)

2Badoux, 2016, Proust and Taillefer, 2018
3Senthil, Sachdev, and Vojta, 2003, Punk, Allais, and Sachdev, 2015
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As a first has a double Kronecker delta, and second of all, there is what will be called
a “rest term”, which is given in equation 1.11.

rest term = −1
2

(
δxx′
(
c†

y↑cy′↑ + c†
y↓cy′↓

)
+ δyy′

(
c†

x↑cx′↑ + c†
x↓cx′↓

)
+δxy′

(
c†

y↑cx′↑ + c†
y↓cx′↓

)
+ δyx′

(
c†

x↑cy′↑ + c†
x↓cy′↓

)) (1.11)

Though this does not perfectly fit the Bosonic commutator, it has the same expecta-
tion value in the vacuum:

〈0|[Dxy, D†
x′y′ ]|0〉 = δxx′,yy′ + δxy′,yx′

= δ{xy}{x′y′}
(1.12)

The notation in equation 1.12 means that x and y must be equal to x′ and y′, as an
unordered pair. A different and unambiguous way to name the dimers is to label
each dimer by one of the sites and orientation. On the square lattice this would be
of the form (i, η), where η = x, y. The two sites are then (~i,~i + η̂). By not allowing η
to be −x or −y, (i, η) gives a unique way to label the dimer. On a triangular lattice
the allowed values for η would be a, b and c, where ~a = (1, 0), ~b = (− 1

2 ,
√

3
2 ) and

~c = (− 1
2 ,−

√
3

2 ), assuming the lattice constant is 1. Figure 1.2 gives a visualisation
of all dimers around labelled to belong to site i. By restricting oneself to only the
dimer orientations shown, double counting is avoided. The other dimers that cover
site i can be made with another site: take (i −~a, a) is what otherwise would have
been (i,−a). The choice of these dimers is made with symmetry in mind. Using this
notation equation 1.12 can be rewritten to the more compact equation 1.13.

〈0|[D(i,η), D†
(i′,η′)]|0〉 = δii′,ηη′ (1.13)

This notation can be further simplified by reducing (i, η) to just i. Henceforth, dimer
operators shall often be named according to equation 1.14.

i = (i, η)

= (i, i +~η)
(1.14)

In which the second line is the original two-site notation (x, y).

(i, x)

(i, y)

i + x̂

i + ŷ

i (i, a)

(i, b)

(i, c)

i + â

i +~b

i +~c

i

FIGURE 1.2: This figure shows the different dimers on site i according
to the (i, η)-notation, left for the square lattice, right for the triangular

lattice.



1.2. Formulation of the Dimer Model 5

Before continuing to the next section, a short discussion of some of the limita-
tions imposed on the notation from equation 1.7 could be useful. First of all, the
definition of D†

xy is in principle not limited to neighbouring sites. Since long dis-
tance (or non-nearest neighbour) dimers will not be discussed anywhere during this
thesis, the notation will be restricted to only allow for nearest neighbours. The (i, η)
notation automatically applies this restriction by only allowing certain values for η.
Secondly, according to the definition in equation 1.7 it is possible to have overlap-
ping dimers. For example, the states

(
D†

xy
)2|0〉 and D†

xyD†
xz|0〉 both give non-zero

states. Though this would describe an interesting system, this is not the type of
dimer this thesis intends to discuss. Therefore the hard-core constraint is applied,
not allowing overlapping dimers to exist on the same state.

1.2.2 Calculating the Overlap of Two Coverings

Now that a first definition of the dimer operator has been given in the previous sec-
tion, it is time to create the basis states that will be used for the larger part of this the-
sis. These states will be a given lattice filled with dimers, such that there are no un-
occupied sites left. Keep in mind that the the dimers are considered to be hard-core
dimers, so no two dimers can have overlap on any given site. Because of this, the
amount of dimers (Ndimers) is fixed to be half the number of lattice sites (N): Ndimers =
1
2 N. To define a covering, let C := {i|i = (i, η) s.t. i is a dimer in the covering }, and
let |C〉 be the corresponding state:

|C〉 = ∏
i∈C

D†
i |0〉 (1.15)

The states defined in equation 1.15 will the be the states that form a basis for the
dimer state space. An example of two possible dimer coverings on the square lattice
is given in figure 1.3, which will be called C′ and C respectively. An example of a
triangular cover is shown in figure 1.4. The triangular covering has one dimer that
showcases the periodic boundary conditions of the system, which is a property both
the square and triangular lattice share.

FIGURE 1.3: Examples of two dimer coverings on the square lattice.
The red covering (on the right) will be named C, while the blue cov-

ering shall be called C′.

All coverings C have a corresponding state |C〉, which together form a basis for
the dimer state space. Ideally this basis would be orthonormal: 〈C′|C〉 = δC′C. This
would be true if the D†

i operators would be perfectly (hard-core) Bosonic, but since
equation 1.10 holds, this is not the case.
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FIGURE 1.4: An example of a covering for the triangular lattice.

Using the (anti-)commutation rules for the D(†)
i and c(†)iσ one can find the value

of 〈C|C〉. Since there is no partial overlap between the Di and D†
i (only complete

overlap), this value can be shown to be 〈C|C〉 = 1. This means that the states are
normalised, but not necessarily orthogonal. To calculate each individual cross sec-
tion (〈C′|C〉), one could use the same (anti-)commutation rules, but it is hard to get
a general result that way.

There has been an article4 that showed an alternative way to find the value of
〈C′|C〉. To illustrate this more graphical approach, figure 1.5 shows both square
lattice coverings from figure 1.3 on the same figure. The figure has been split up
into four different numbered parts, or loops. The dimers in a given loop will never
have overlap with dimers from a different loop, and because of that the terms can be
viewed separately. The product of these terms will be the overlap of the C′ and C.

#1

#2

#3

#4

FIGURE 1.5: This figure shows the overlap of the two coverings from
figure 1.3 with their respective colours kept as in the original. As is
indicated by the numbers #1 to #4, this figures can be split up into

four separate loops, which can be used to calculate 〈C′|C〉.

Loops #1 and #2 are barely loops, they are made because both C′ and C had
dimers in common, so it is clear that these terms give a 1 on as their countribution to
the product. Loops #3 and #4 are more complicated, to find their contributions, one
must look at what options there are to get non-zero terms. This is done by realising
that a dimer is a superposition of c†

x↑c
†
y↓ and c†

x↓c
†
y↑, and a prefactor 1√

2
. Figure 1.6

shows part of loop #4. On the left side, the blue vertical dimer has been fixed to have
↑ (or ↓ between brackets) on the lower site and ↓ (or ↑) on the higher site. Since a
non-zero term is wanted, the red dimer on the upper site is forced to fix its spin to

4Sutherland, 1988
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be equal to the spin of the blue dimer: ↓ (or ↑). This fixes both sites of the red dimer
as shown on the right site of figure 1.6, so now the right side of this red dimer (the
upper middle site) must have spin ↑ (or ↓), which in turn fixes the blue horizontal
dimer’s spin on that same site. This can be extended to the entire loop, and since
the loop must have en equal amount of red and blue dimers, this will always be
possible.

↑ (↓)

↓ (↑)

↑ (↓)

↓ (↑)
↓ (↑) ↑ (↓)

↑ (↓) ↓ (↑)

FIGURE 1.6: This figure shows what happens when choosing a spin
on a given site (lowe left site) to be ↑ (or ↓). This fixes both sites of the

dimer (on the left), and by extension, the entire loop (on the right).

Now, since there are two ways to fix the spins, the σ and (−σ) choice any given
site, there are two non-zero terms of the same value. This value is a result of the
prefactor 1√

2
. For fixed each dimer (red and blue alike) there is one factor 1√

2
. So

each loop #i contributes the factor:

factor#i = 2 ·
(

1√
2

)#red dimers+#blue dimers

= 21−#di

(1.16)

In which #di is the amount of dimers (of one colour) in the loop #i. Keep in mind
that equation 1.16 holds for loops such as #1 and #2 as well. Taking the product of
all loop factors, 〈C′|C〉 can be found as seen in equation 1.17.

〈C′|C〉 = ∏
i

21−#di

=
(

∏
i

2
)(

2∑i #di
)

= 2#loops−#dimers

(1.17)

As before, #dimers = 1
2 N, half the number of sites. For the number of loops and

of dimers, the following always holds true: #dimers ≥ #loops. In the case that
#dimers = #loops, all loops consist of twice the same dimer: C and C′ are identical.
The smaller the number of loops (with a minimun of 1), the closer 〈C′|C〉 approaches
zero.

1.2.3 Approximating Orthonormality

With this result it is possible to express how close to (or how far from) each other
two states are in terms of powers of 1

2 (or 1√
2
, as is often done). Identical expressed

as
( 1√

2

)0, and each additional power means the two states are more different from

one another. It is possible to create and expand a Hamiltonian5 in terms of a variable

5Rokhsar and Kivelson, 1988



8 Chapter 1. Introduction to the Dimer Model

x, which then is the Boltzmann weight of each term. If one picks x small enough
( x = 1√

2
is small enough6), one can ignore terms of second order or higher. If the

terms of order
( 1√

2

)2 and higher are to be ignored, then the different |C〉would form
an orthonormal basis, after all. Note that these conclusions can be drawn for not just
the square lattice, but in particular for the triangular lattice too.

Hence, from this point on, the following equations are assumed true.

[D†
i , D†

i′ ] = 0 (1.18)
[Di, Di′ ] = 0 (1.19)

[Di, D†
i′ ] = δii′ (1.20)

Di|0〉 = 0 (1.21)
〈C|C′〉 = δCC′ (1.22)

1.2.4 Topological Sectors and Locality

When working in the basis of coverings, the obvious way to build a Hamiltonian is
in terms of covering to covering transitions. The most general Hamiltonian would
then be:

H = ∑
CC′

tCC′ |C〉〈C′|+ h.c. (1.23)

In practice a Hamiltonian as the one from equation 1.23is not needed: often it is
desired to look at local interactions: local dimer displacements. Aside from near-
est neighbour interactions, a good measure of how local a given interaction is, is to
see how many dimers are involved. The minimal interaction would be a two-dimer
interaction (for certain lattices, such the hexagonal lattice, three- or more-dimer in-
teractions are minimal7). If comparing this to the orders

( 1√
2

)n from section 1.2.3 a
two-dimer interaction would have order n = 2. In general, an N-dimer inter action
would be of order n = 2(N − 1), so this is consistent with the way of think from
section 1.2.3.

Next it is important to define what interactions are considered local, and what
interactions are not8. Since this thesis considers predominantly finite lattice with pe-
riodic boundary conditions, every interaction could be considered finite to a certain
extent. For each interaction, a loop can be drawn. These loops have been drawn in
magenta for several examples in figures 1.7 and 1.8 and consist of the dimers before
and after the interaction. The distinction between local interactions and non-local
is whether the given loop uses the periodicity or not. The periodic lattice is topo-
logically equivalent to a torus, so “using the periodicity” is equivalent to having
non-zero winding number on the path that the loop would take on the torus. Hence,
the 2- and 4-dimer interactions in figure 1.7 are obviously local. The red interaction
in figure 1.8 is local too, despite it crossing the boundary. By spatial translation, it
is clear that this interaction is of the same type as the red 2-dimer interaction from
figure 1.7. The blue interaction from figure 1.8 is non-local. There is no spatial trans-
lation that would make it not cross the boundaries, it is a loop around the the torus.

6Kohmoto and Shapir, 1988
7Moessner, Sondhi, and Chandra, 2000 briefly discusses an example, and the review article Moess-

ner and Raman, 2008 treats many different lattices
8Sections 1.3.1 and 1.3.2 in Moessner and Raman, 2008
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4-dimer

2-dimer

FIGURE 1.7: This image showcases two local interactionn: a 4-dimer
interaction in blue and a 2-dimer interaction in red. The 4-dimer in-

teraction can be recreated with three 2-dimer interactions.

A different way to determine whether an interaction is local or not, is to see if it
can be reproduced by repetitions of minimal interactions. In the case of the square
and triangular lattices, the minimal interactions are 2-dimer interactions on a 2× 2
square of sites. These will be called “plaquette flips”, from now on. For figures
1.7 and 1.8 the red interactions are already 2-dimer interactions an a 2× 2 patch of
sites, so they are trivially local. The blue interactions are more complex. For the 4-
dimer interaction from figure 1.7, the interaction can be reproduced in three 2-dimer
interactions. From the left lattice to the right: first flip the two horizontal dimers in
the top-middle square, so there are four vertical dimers in a row. Then flip the top-
left and top-right squares and the 4-dimer interaction has been reproduced. Note
that the order of three 2-dimer interactions is

( 1√
2

)3·2, which is equal to the order

of one 4-dimer interaction:
( 1√

2

)2·(4−1). The blue interaction from figure 1.8, even
though it is strictly speaking a 2-dimer interaction, can not be reduced to plaquette
flips by any means.

non-local

local

FIGURE 1.8: This image showcases two 2-dimer interactions in which
the periodic boundary is crossed: a non-local interaction in blue and
a local interaction in red. The red interaction can be translated to a
place on the lattice that would make it not cross the boundary, while

this is not possible for the blue interaction.

The fact that certain transitions can not be reproduced by repeated local basis
interactions (plaquette flips), means that if one only allows local interactions, the
state space can be split up into different disconnected parts. These parts are called
topological sectors and can be useful when trying to reduce the size of the state
space for local calculations. All states in a given topological sector can be found
by choosing two paths through the lattice (between sites). These two fixed paths



10 Chapter 1. Introduction to the Dimer Model

must have winding numbers (when considering the lattice as a torus, again), such
that linear combinations of the two would make it possible to generate all winding
numbers. In practice, this comes usually down to choosing one loop vertical and
one horizontal. This path needs not necessarily be straight, as showcased in figure
1.9. To find the (topological) section number of a covering in the case of a square
lattice, with given paths, one must divide all sites up into two groups. They will
be called “black” and “white”, since they are distributed over the sites in the same
way that black and white tiles are distributed on a chess board (an example in figure
1.9). Now each dimer is covering both a black and a white lattice site. They will
be given a direction (solely for determining the topological sector), namely pointing
from white to black, as is indicated by the arrows in the figure. The two paths may
cross some dimers, and they should be counted in two groups for each path. These
two groups are the dimers that point to the left and the dimers that point to the right,
with respect to the path taken. By subtracting the amount left-pointing dimers from
the amount of right pointing dimers, for both paths individually, the section number
is given as two integers (sx, sy). For figure 1.9 the section number is (sx, sy) = (0, 1).

∨ ∧
<

>

∨
>

<

∧

FIGURE 1.9: This figure gives an example of how to determine the
topological sector of which a given covering is part. By following the
red and blue arrows, on can find the x- and y-sector, respectively, by
counting the amount of dimers crossed pointing to the right, minus
those crossed pointing to the left (with respect to the path). The Cov-

ering in this figure is part of sector (0, 1).

This section number may seem arbitrary at first, especially since there is a lot of
choice in deciding how it is calculated. The paths taken are arbitrary, which tiles are
white and which are black is arbitrary, the directionality of the dimers is arbitrary
and the choice between (left− right) and (right− left) is arbitrary. Those last three
factors only determine the sign of the winding number, so they do not matter too
much (as long as chosen consistently). The reason this works, becomes clear once a
fixed path is chosen. Take any covering of a certain topological section. By definition
of these sections, all other coverings in this section can be creating by applying a
multitude of plaquette flips. If a plaquette flip happens in a plaquette through which
the path does not go, the number remains unchanged. If the path does lead through
that plaquette, the path crosses two (or a multiple of two, if it crosses the plaquette
more that once) potential dimers. Keep in mind: the dimers present always are
opposing each other. If the path can cross through both dimers or non of the dimers,
the net gain for the section number is null, so flipping between the two options
does not change anything. If one dimer is crossed, the path must bend, so-to-speak,
around one of the four corners/sites. Both before and after the plaquette flip, the
path will cross one dimer pointing towards (or away from) that corner, so the gain
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will be ±1 in both cases. So long story short: since plaquette flips do not change the
section number, and since all local interactions are repeated plaquette flips, all states
in one topological sector have the same sector number for the square lattice.

For the triangular lattice the sections are somewhat different9: there are only two
possible values per axis, so four in total. The possible values for sx and sz are odd
and even, or 1 and 0, so it has a Z2 topology. The reason for this is that the triangular
lattice has more flippable plaquettes per lattice site: three instead of one. This allows
for more possibilities in topological sector. Calculating the sector number is easier,
though, is does not require considering the direction of the dimer, only the total
amount of dimers crossed, modulo 2. If figure 1.9 were triangular (which would be
equivalent to adding diagonal dimers, but only from lower left to upper right, in
each square), its section number would be (sx, sy) = (even, odd).

1.3 Rokhsar-Kievelson Hamiltonian

Equation 1.23 shows the most general form of a Hamiltonian working on dimer cov-
erings. General Hamiltonians do, in principle, contain all information there possibly
is to know, but unfortunately functions like this are hard to work with. Because of
this, working with only local interactions (as discussed in section 1.2.4) is often a
very manageable way to obtain information form otherwise complicated systems.
This section takes a look at a Hamiltonian the looks at coverings in terms of their
flippable plaquettes. Named after its creators, the Rokhsar-Kivelson Hamiltonian10

for the square lattice is given as:

HRK = −t ∑
i

(
| i〉〈 i|+ | i〉〈 i|

)
+ v ∑

i

(
| i〉〈 i|+ | i〉〈 i|

)
(1.24)

The notation used is in terms of flippable plaquettes on any covering, rather than in
term coverings themselves. The index i signifies which plaquette is concidered, and
will from here not be written down, unless specifically needed. To remove any am-
biguity on which plaquette has index i on the square lattice: the plaquette consisting
of sites i, i + x̂, i + ŷ and i + x̂ + ŷ.

It is relevant to realise, is that when equation 1.24 is written in the form HRK =

∑i HRK,i, each term HRK,i works on all coverings with a dimer configuration such
that a flip on plaquette i is possible. To take the two example coverings from fig-
ure 1.3: the blue covering has 4 flippable plaquettes (one of them uses the periodic
boundaries) and the red covering has 6 (again, one using periodic boundaries).

The Rokhsar-Kivelson (or RK-) Hamiltonian describes two interactions: a poten-
tial or static term, and a kinetic term. The potential term, whose strength is given
by v can be seen as an attraction or repulsion between dimers on neighbouring sites.
The kinetic term, determined by t, gives a measure of how likely it is that a given
plaquette flips from horizontal to vertical (or the other way around). These two pa-
rameters v and t, together with the lattice structure itself, determine the behaviour
of the system.

9Moessner and Sondhi, 2001
10Rokhsar and Kivelson, 1988
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1.3.1 RK Hamiltonian on Triangular Lattices

The triangular version of equation 1.24 is given below, in equation 1.25. The form
in this Hamiltonian is in principle identical to the square case,: it has a potential
term and a kinetic term, and it can similarly be split up into parts working on a each
plaquette (i, η).

HRK = −t ∑
i,η

(
| 〉〈 |+ | 〉〈 |

)
+ v ∑

i,η

(
| 〉〈 |+ | 〉〈 |

)
(1.25)

The main difference for the triangular lattice compared to the square case, is that
there are more plaquettes on a triangular lattice then there are on a square lattice,
hence the index η. For the square lattice, one plaquette for each site suffices, but
on the triangular lattice the amount of plaquettes is trippled. Similar to the naming
of the dimers, the plaquatte indices (i, η) represent the site and its orientation. The
allowed values for η are a, b and c, as with the dimers. Figure 1.10 visualises11 the
plaquettes alongside the dimers with the same index.

(i, a)

(i, b)

(i, c)

i

FIGURE 1.10: This figure shows all plaquettes (i, η) for a fixed i. The
dimers of the same index are shown alongside them.

When working with triangular dimers in particular, it is useful to define an oper-
ation to relate the different dimer with one another. The operation η+, and its inverse
η−, are operations to rotate orientation η to the next (or previous) orientation. For
the triangular lattice, this means a rotation by 120◦ for the plus and −120◦ for the
minus. The full defining properties of these operations are given in equations 1.26
to 1.29. Since η+ and η− are definined symetrically and as each others inverse, the
plus and minus can be swapped and the equations still hold true (with the notable
exception of equation 1.28).

11For those that read this thesis without colour: (i, a) is the upper right area, (i, b) is the upper left
area and (i, c) is the downward area



1.3. Rokhsar-Kievelson Hamiltonian 13

η = (η+)− (1.26)
η− = (η+)+ (1.27)

a = b−

= c+
(1.28)

~η = −~η+ −~η− (1.29)

Using this new operation, it is possible to write down the sites of plaquette (i, η) in
terms of only i and η. The sites are: i, i +~η, i−~η− and i +~η −~η−.

There is some arbitrarity in the orientations a, b and c, though for the symmetry
of this choice, and because working with a = (−1, 0) instead of a = (1, 0) feels al-
most dirty, the choice was very obvious. The choice of which plaquette corresponds
to (i, η), however, has a lot more freedom, even whith the restriction that it must be
symmetric. An alternate candidate for the sites of plaquette (i, η) would have been:
i, i+~η, i+~η+ and i−~η−. This is slightly cleaner in notation, and compacter if drawn
as in figure 1.10. The sole reason this choice was not made, is that it came to mind
after most calculations requiring the (i, η) indexing had already been completed.

It is possible to create a similar operation to η+ on the square lattice. Since there
are only two relevant orientations (x̂ and ŷ), this operation would allow for alterna-
tion between these two orientations. Geometrically this would not be a rotation, but
a reflection on the line x = y. Then, x+ = y and y+ = x, meaning that (η+)+ = η
holds on the square lattice, and making η− redundant, since η− = η+.

1.3.2 The Staggered Phase

The RK Hamiltonian has two parameters which can be used to tune the system. The
kinetic term with parameter t (often J in literature) and the static term (or potential
term) with parameter v. Once a lattice has been chosen, these terms determine the
behaviour of the system.

Some phases may differ for different lattices, but one that is the same for all
shapes is the case where v > |t| (and v > 0). The energy of this of any state Ψ is
given by E = 〈Ψ|HRK|Ψ〉. The contribution of any non-flippable plaquette is always
zero (independent of v and t), so the energy would be the sum of the contributions
of all flippable plaquettes. For each given plaquette, the situation can be reduced
to a| 〉 + b| 〉, with a and b complex numbers. There is an individual a and b
for each unique pair of coverings that are equal to each other, bar plaquette i. The
energy contribution of this part will be

(
ā〈 |+ b̄〈 |

)
HRK,i

(
a| 〉+ b| 〉

)
. So,

this would boil down to:

〈Ψ|HRK|Ψ〉 = ∑
all (a,b)

−2t
(
Re(a)Re(b) + Im(a)Im(b)

)
+ v
(
|a|2 + |b|2

)
(1.30)

The triangle inequality can be applied to the right-hand side of equation 1.30 find
that Im(a)2 + Im(b)geq2Im(a)Im(b) and Re(a)2 + Re(b)2 ≥ 2Re(a)Re(b). This gives
gives a lower limit to 〈Ψ|HRK|Ψ〉, given in equation 1.31.

〈Ψ|HRK|Ψ〉 ≥ ∑
all (a,b)

2(v− t)
(
Re(a)Re(b) + Im(a)Im(b)

)
(1.31)
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Laslty, since v > |t| by choice this means that 〈Ψ|HRK|Ψ〉 > 0 as soon as there is
any covering with at least one flippable plaquette. So the ground state for v > |t|
are the so-called “staggered states12”. The staggered states are all states that have no
flippable plaquettes, which makes their energy nil. This conclusion holds true for
all lattice-shapes, figure 1.11 shows an example of these staggered states for two dif-
ferent kinds of lattices: triangular and square. The staggered states are only a very
small portion of the state space. On a square lattice, there are four states: the state
shown in figure 1.11 can be inverted to get a second vertical staggered state, and
there are the horizontal versions of these states. Since all these states are oriented in
a specified direction, the staggered state breaks rotational and translational invari-
ance. The triangular lattice does not have staggered states for all lattice sizes13, but
for lattices of 4N× 4M size, there are at least twelve (the one in the figure, three spa-
tially translated version of said lattice, and those four in two different orientations).

FIGURE 1.11: Examples of staggered dimer coverings on square the
lattice (left) and triangular lattice (right).

1.3.3 The RK point and RVB State

The next situation to consider is the case v = ±t. The same reasoning as for the
staggered state can be applied for this situation, up until equation 1.30. Filling in
t = ±v will give equation 1.32.

〈Ψ|HRK|Ψ〉 = ∑
all (a,b)

v
(
|a|2 + |b|2 ∓ 2Re(a)Re(b)∓ 2Im(a)Im(b)

)
(1.32)

Here, the triangle inequality can be applied again, which teaches us that Im(a)2 +
Im(b)∓2Im(a)Im(b) ≥ 0 and Re(a)2 + Re(b)2 ∓ 2Re(a)Re(b) ≥ 0. It is important
that this inequality can only be an equality when Im(a) = ±Im(b) and Re(a) =
±Re(b). Or with other words, all for all a and b: a = ±b. This would mean that
〈Ψ|HRK|Ψ〉 = 0 if |ψRK〉 is a superposition of all coverings with flippable plaquettes
(all non-staggered coverings). For v = t all coefficients would be equal and for
v = −t all coefficients amplitudes would be equal amplitude, but with alternating

12Moessner and Raman, 2008
13See figure 4.4 in section 4.1.3
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sign. This sign of a covering |C〉 would then be (−1)n, where n is the amount of
plaquette flips needed to reach C in its topological sector from an arbitrary begin
state (within that sector).

If t is assumed to be positive, the only parameter to be considered in a phase
diagram is the ratio of t and v. The point where this ratio is 1 is called the Rokhsar-
Kivelson point (sometimes line), after the people that originally found this ground
state. This state is unique because it is what is called a resonating valence bond
state14 or RVB liquid. These states, in general, are not necessarily equal weight,
there can be some deviations, as long as the system is singlet (no spin), the gauge
symmetry (Z2 for triangular HRK, U(1) for square) is not broken and the system
keeps its translational and rotational invariance.

It is important that the ground state on the RK point is degenerate. Both the
RVB state (or alternating RVB state) and the staggered states have zero energy. So
the ground state is a superposition of staggered states and RVB states, allowing for
degeneracy in the ground state. Further degeneracy in the ground state comes from
the fact that there is a separate RVB state for each topological sector. To reduce the
degeneracy, the RVB-state are defined per sector, since numerics and analytics can
be limited to one sector.

The RVB phase is something that is not necessary restricted to the RK point.
Depending on the lattice, this phase can extend into the regions where |t| > v (and
t ≥ 0). The square lattice has the RVB state is a U(1) spin liquid15. Because of
this, its symmetry breaks away from the RK point, so the RVB phases is limited
to this point. On systems with a Z2 gauge symmetry, like the RK-Hamiltoniian on
the triangular lattice, the RK point goes from a unique critical point to an actual
new phase (see figure 1.13). The symmetry is not broken as easy as in the case of
a square lattice HRL (U(1) symmetry). The RVB state away from the RK point is
slightly different from the state exactly on said point, in the sense that it is not an
equal weight superposition of all states anymore. In particular (but not limited to
only this), there are no more staggered states in the RVB spin liquid outside the RK
point.

1.3.4 The Columnar Phase

Now consider the regime where v < −|t| ≤ 0. Since v is negative, and larger than
|t| in absolute value, each flippable plaquette on a covering lowers the energy of the
state. The ground states are the coverings with the most possible flippable plaque-
ttes. This is a state with only dimers in the smae direction, parallel to each other.
Examples of these states are given in figure 1.12. Keep in mind that even though the
shown triangular columnar state looks similar to the staggered square state from fig-
ure 1.12, it certainly is columnar: triangular lattices have more flippable plaquettes
than square lattices. These states have an energy of E = N

2 v. It is possible to create
states that get a negative contribution from the kinetic part of the RK Hamiltonian.
But by doing so, the coefficient of the fully columnar states becomes smaller, so the
total energy would be higher than that of the columnar state. For the square lattice,
there is a degeneracy of 4 in the ground state, for the triangular lattice this is larger,
and even proportional to the lattice size. This state too breaks rotational symmetry.

14Moessner and Sondhi, 2001 and Anderson, 1987
15Fradkin and Kivelson, 1990
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FIGURE 1.12: Examples of columnar dimer coverings on the square
lattice (left) and triangular lattice (right).

1.3.5 Completing the Phase Diagram

With all the different found ground states for different regimes in section 1.3.2 to
1.3.4 it is possible to create part of a phase diagram. This is done in figure 1.13,
though there are a few caveats. Where the RVB state begins and ends is not clear for
all lattices, and for for some lattices it does not reach beyond the RK line. Numerical
simulations 16 indicate that the RVB phase of the triangular lattice lies between 0.8 <
v
t < 1.0. In addition to this, the part of the RVB phase for t < 0 is the alternating
variant17.

v

t v = t

v = −t

staggered phase

columnar phase

RVB phase

other phase(s)

FIGURE 1.13: This figure shows the phase diagram for the RK model.
Keep in mind that the RVB phase only extends beyond the RK line
(v = ±t) if the system has a Z2 symmetry, like the triangular HRK.
The other phase is for a large part unknown, with the exception of

some very specific cases.

16Ralko et al., 2005
17Some research has been done to states similiar to the alternating RVB state, where this state is

called a “vison”, see Senthil and Fisher, 2000 for more on this
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The other phase(s)
footnoteMoessner and Raman, 2008 in figure 1.13 are generally not known, though
parts of it are known. For the triangular lattice there is a certain phase called the√

12×
√

12 phase, since it has a 12-site unit cell. For several bipartite lattices, such
as the square lattice and honeycomb, there exists another phase called the plaquette
state (partially in the same regime as the RVB phase for other lattices) and there are
certain ideas based around ver large unit cells of 36 sites and similar 18. Most of these
more exotic phases will not be relevant for this thesis.

18read Zeng and Elser, 1995 for 36 sites at once and Nikolic and Senthil, 2003 for more on the kagomé
lattice
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Chapter 2

Classical Dimer Correlations on the
Triangular Lattice

This chapter will be dedicated to the calculation of the classical correlation functions
for dimers on a triangular lattice. This is done, because they are needed in chapter
3 to be able to complete the calculation of the ground state, there. The methods
used are similar in approach to the calculation of the classical dimer correlations in
Johannes Feldmeier’s work1.

This chapter was originally supposed to be merely a section in chapter 3, but due
to the difference in complexity of the square and triangular lattice, this grew out to
become its own chapter.

2.1 Setting Up the Grassman Variables

One way to calculate the classical correlation function for two variables of any kind,
is to set up a field theory. Since the dimers described in chapter 1 are Bosonic,
one’s first intuition would likely be to create Bosonic variables corresponding to
each dimer. But since dimers are described to be on two separated sites, it makes
more sense to describe the dimers as a combination of two Fermionic variables on
separate sites. This naturally includes the hard-core constraint of the dimers, since
the variables used will be Grassman variables.

Grassman variable or Grassman numbers are number-like variables named after
(surprise, surprise!) Hermann Grassman. The main property of Grassman numbers
is that they anticommute, and because of this, the square of a Grassman variable
is naught. To create a field theory, one needs to find an appropriate action S[η, η̄],
where η and η̄ are the Grassman numbers used to describe the dimers. Then, using
this action it is possible to find the partition function and calculate the correlation
functions.

Z =
∫

D[η, η̄]eS[η,η̄] (2.1)

〈ηiη̄j〉 =
1
Z

∫
D[η, η̄]ηiη̄jeS[η,η̄] (2.2)

So the first thing to do, is to create an action that describes all possible dimers
on a lattice. To do so, it is useful to take a look at a unit cell of the triangular lattice,
which for this purpose is 2× 2 lattice sites, as shown in figure 2.1. This unit cell can
be repeated to fill the entire lattice with dimers. To use the dimers, they need to be
given a directinality such that hat every circular path of even length on the lattice

1section 2.2 of Feldmeier, 2018
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(from site to site to site) is clockwise odd2. This means that if one follows this path
(of even length) in clockwise direction, the amount of counterclockwise pointing
dimers is odd. The lattice in figure 2.1 is clockwise odd3, though this is not a unique
choice. This thesis will stick with the convention given in the figure.

FIGURE 2.1: This figure shows a unit cell of the triangular lattice in
terms of all possible dimers, drawn with their directionalities given

by the arrows.

In addition to this, it is necessary to split the lattice up into two types of sites,
denoted by ◦ and ×. In addition to that, each unit cell gets assigned an index (m, n),
such that the sites in each unit cell are called

(
2m(+1), 2n(+1)

)
, figure 2.2 shows

this.

◦ ◦

◦

◦

◦

×

×

×

×

(2m, 2n) (2m+1, 2n) (2(m+1), 2n)

(2m, 2(n+1))
(2m+1, 2(n+1))

(2(m+1), 2(n+1))

(2m, 2n+1) (2(m+1), 2n+1)
(2m+1, 2n+1)

FIGURE 2.2: This figure shows the same unit cell as figure 2.1, but
with the labeling of the sites added.

Now that an example unit cell has been created, is is time to associate variables
with lattice sites. The sites will be split up into two sets of Grassman numbers, the
ηi correspond to the ◦-sites and the η̄i correspond to the ×-sites. Now, if a dimer
points from site i to site j, the variable with index i will be written first. Since the
variable are anticommuting, this is a way to assign sign to the dimers. All possible
dimers for sites i and j are shown in figure 2.3. It is important to realise that there
is no relation between variable ηi and η̄i, other than that they both happen to be
assigned to the same site. For normal (commuting) variables, the bar would indicate
a complex conjugate. The bar is only present on Grassman variables to be consistent
with the notation of commuting fields, but has not inherent meaning.

The action S[η, η̄] can now be written as a sum of all dimers on each unit cell. But
to restrict the partition function to only close packed coverings, an opposite close
packed reference covering is needed. It is opposite in the sense that its arrows point
in the opposite direction and its ◦- and ×-sites have been swapped. This additional
term ensures that only well-defined coverings are allowed. The reference covering
used in this thesis is shown in figure 2.4.

2Kasteleyn, 1961 gives a very mathematically rigourous and precise set of conditions for which this
method can be applied

3This example was found by Fendley, Moessner, and Sondhi, 2002
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i j notation

× ◦ η̄iηj

◦ × η̄jηi

× ◦ ηjη̄i

◦ × ηiη̄j

◦ ◦ ηiηj

◦ ◦ ηjηi

× × η̄iη̄j

× × η̄jη̄i

FIGURE 2.3: This figure shows all possible ways a dimer could be
written down on two sites i and j with the corresponding notation in

Grassman numbers.

◦

◦

×

×

(2m, 2n)

FIGURE 2.4: This figure shows the example reference filling used dur-
ing the calculation, with site (2m, 2n) as a reference point.

Together, the reference coverings and all allowed dimer form the action of the
classical triangular dimer model: S[η, η̄] = ∑m,n dimers + ∑m,n reference. The full
corresponding equation can be seen in equation 2.3. The first twelve terms (or first
four lines) are the possible dimers in the unit cell, and the final two terms are the
reference covering.

S[η, η̄] = ∑
m,n

(
η2m,2nη̄2m+1,2n + η̄2m+1,2nη2m+2,2n + η2m,2nη̄2m,2n+1

+ η2m+1,2n+1η2m,2n + η2m+1,2n+1η̄2m+1,2n + η̄2m+1,2nη̄2(m+1),2n+1

+ η̄2m,2n+1η2m+1,2n+1 + η2m+1,2n+1η̄2(m+1),2n+1 + η̄2m,2n+1η2m,2(n+1)

+ η̄2m+1,2(n+1)η̄2m,2n+1 + η̄2m+1,2(n+1)η2m+1,2n+1 + η2m+1,2n+1η2(m+1),2(n+1)

+ η̄2(m+1),2nη2m+1,2n + η2(m+1),2n+1η̄2m+1,2n+1

)
(2.3)

Since the action has such an inconveniently large summand, it is often useful to write
the action down as S[η, η̄] = ∑m,n Smn. These terms Smn will be further looked into
during the next section, in order to find expressions for Z and 〈ηiη̄j〉 that can be used
for numerical (and in some few cases even exact) analysis.
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2.2 Computation of the Two-Variable Correlation

In principle, it is possible of any finite-sized lattice to write the action from equation
2.3 in the form S[η, η̄] = ∑α,β ηα Mαβηβ. The indices α and β would include both the
site and whether there is a bar on the η or not. The problem with this, is that there is
no simple-to-work-with form in which to write the matrix M. So a work-around is
needed, for which the following transformations will be used:

η2m,2n =
∫ dpdq

(2π)2 ei~p·~mχ1
~p

η2m+1,2n =
∫ dpdq

(2π)2 ei~p·~mχ2
~p

η2m,2n+1 =
∫ dpdq

(2π)2 ei~p·~mχ3
~p

η2m+1,2n+1 =
∫ dpdq

(2π)2 ei~p·~mχ4
~p

η̄2m,2n =
∫ dpdq

(2π)2 ei~p·~mχ̄1
~p

η̄2m+1,2n =
∫ dpdq

(2π)2 ei~p·~mχ̄2
~p

η̄2m,2n+1 =
∫ dpdq

(2π)2 ei~p·~mχ̄3
~p

η̄2m+1,2n+1 =
∫ dpdq

(2π)2 ei~p·~mχ̄4
~p

(2.4)

The transformation in equation 2.4 is the same for all η and η̄ alike, in particular:
the sign of the exponent is the same independent of the bar. The vectors ~p = (p, q)
and ~m = (m, n) are the normal and reciprocal lattice vectors of the lattice of the unit
cells. This means that these lattice vectors are double the length of the vectors of the
original triangular lattice.

∫ dpdq
(2π)2 :=

1
N ∑

~p
(2.5)

The integral in equation 2.4 is abuse of notation. As long as there is a Grassman
number in the integral it will always be a sum over all reciprocal lattice vectors ~p,
as shown in equation 2.5. Once the Grassman variables have been removed, it is
possible to take the limit to an actual integral, if the lattice is assumed to be large:
N → ∞, with N the number of vectors over which the sum runs (this is not the
number of lattice sites).

∑
~m

ηα
~m+~aη

β

~m+~b
=

1
N2 ∑

~m~p~p′
ei~m·(~p+~p′)+i(~a·~p+~b·~p′)χα

~pχ
β
~p′

=
1

N2 ∑
~p~p′

(
∑
~m

ei~m·(~p+~p′)
)

ei(~a·~p+~b·~p′)χα
~pχ

β
~p′

(2.6)

Using equations 2.4 and 2.5 the action can be rewritten as a sum over ~m, ~p and ~p′,
where the summand is the transformed version of the 14 dimers from equation 2.3.
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Each of these 14 terms can be written down in the same form shown in equation 2.6.
The part between brackets can be rewritten according to equation 2.7.

∑
~m

ei~m·(~p+~p′) = Nδ~0,~p+~p′ (2.7)

Combining if then the sum over ~p′ is taken, this Kronecker delta gives ~p + ~p′ = 0
which is then used to eliminate p′, resulting in equation 2.8.

∑
~m

ηα
~m+~aη

β

~m+~b
=

1
N ∑

~p~p′
δ~0,~p+~p′e

i(~a·~p+~b·~p′)χα
~pχ

β
~p′

=
1
N ∑

~p
ei(~a−~b)·~pχα

~pχ
β
−~p

=
∫ d2 p

(2π)2 ei(~a−~b)·~pχα
~pχ

β
−~p

(2.8)

By anticommuting ηα
~m+~a and η

β

~m+~b
before anything else and then repeating all steps

from equation 2.6 to 2.8, equation 2.9 can be obtained as well.

∑
~m

ηα
~m+~aη

β

~m+~b
= −

∫ d2 p
(2π)2 e−i(~a−~b)·~pχ

β
~pχα
−~p (2.9)

This result can be applied on each of the 14 terms of the action, to eventually obtain
a matrix form for the action in equation 2.10.

S[η, η̄] =
∫ d2 p

(2π)2~χ
T
~p M′(~p)~χ−~p (2.10)

Where M′(~p) is given by equation 2.11 and ~χT
~p =

(
χ1
~p, χ2

~p, χ3
~p, χ4

~p, χ̄1
~p, χ̄2

~p, χ̄3
~p, χ̄4

~p

)
.

M′(~p) =



0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 eip(1,0)

1 + e−ip(1,1) 0 0 0 0 1 e−ip(1,0) 0
0 eip(1,0) 0 0 0 0 0 0

e−ip(1,0) 0 0 eip(0,1) 0 0 e−ip(1,0) + eip(0,1) 0
e−ip(0,1) 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0


(2.11)

In which p(x, y) = ~p · (~a−~b) for all ηαηβ-terms. The matrix-term ~χT
~p M′(~p)~χ−~p can be

rewritten using the equation 2.9. This would be the same as preforming three actions
on the current matrix: transposing, multiplying by −1 and lastly substituting ~p by
−~p. So ~χT

~p M(~p)~χ−~p = ~χT
~p

(
− M′T(−~p)

)
~χ−~p. To make the matrix more symmetric,

the choice made will be to write 1
2~χ

T
~p M(~p)~χ−~p, where M(~p) is defined as in equation

2.12.
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1
2

M(~p) =
1
2
(

M′(~p)−M′T(−~p)
)

(2.12)

The resulting matrix will M(~p) then be:



0 0 0 −1-eip(1,0) 0 1-eip(1,0) 1-eip(0,1) 0
0 0 0 0 -e-ip(1,0) 0 0 0
0 0 0 0 0 0 0 eip(1,0)

1+e-ip(1,1) 0 0 0 0 1-e-ip(0,1) e-ip(1,0)-1 0
0 eip(1,0) 0 0 0 0 0 0

e-ip(1,0)-1 0 0 eip(0,1)-1 0 0 e-ip(1,0)+eip(0,1) 0
e-ip(0,1)-1 0 0 1-eip(1,0) 0 -eip(1,0)-e-ip(0,1) 0 0

0 0 -e-ip(1,0) 0 0 0 0 0


(2.13)

The with the matrix M(~p), it is now possible to rewrite the action to equation 2.14.

S[η, η̄] =
1
2

∫ d2 p
(2π)2~χ

T
~p M(~p)~χ−~p (2.14)

The matrices M(~p) have the shape 8 × 8, but the action can be seen as one very
large 8N × 8N matrix if one combines the sum over ~p with M(~p). This large matrix
M8N×8N would have the N 8× 8-matrices as its diagonal terms, as shown in equation
2.15.

M8N×8N =


M(1) 0 . . . 0

0 M(2)
...

...
. . . 0

0 . . . 0 M(N)

 (2.15)

The argument of the M(i) is then the ith unit cell of the reciprocal lattice. Keep in
mind that the values for p are cyclic, thus the final vector becomes ~χT = (~χT

1 ,~χT
2 , . . . ,~χT

N).
This same cyclicity, in combination with equations 2.8 and 2.9 ensures that M8N×8N
is anti-symmetric. Now, it is possible to fill in equation 2.1: Z =

∫
D[η]eS[η] =∫

D[η] exp ( 1
2~χ

T M8N×8N~χ) Use from now on the short-hand notation: S[η] = S[η, η̄].
Next, rewrite the transformation in equation 2.4 as:

~η = A~χ

~χ = A−1~η
(2.16)

This gives the following value for the partition function:

Z =
∫

D[η]e
1
2 (A−1~η)T M8N×8N(A−1~η) (2.17)
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Equation 2.18 offers a way4 to rewrite equation 2.17 as an integral over χ.

∫
D[ψ] f (ψ) = det T

∫
D[ξ] f (T−1~ξ) (2.18)

In equation 2.18 ~ξ = T~ψ. For η and χ, ~χ = A−1η, and det A−1 = 1
det A , so this turns

equation 2.17 into equation 2.19 and eventually equation 2.20.

Z =
1

det A

∫
D[χ] exp

(1
2
(
(A−1)−1~χ

)T M8N×8N(A−1)−1~χ)
)

=
1

det A

∫
D[χ] exp

(1
2
~χT M8N×8N~η)

) (2.19)

=

√
det M8N×8N

det A
(2.20)

The last thing to calculate is the actual correlation function 〈ηα
~i

η
β
~j
〉, as given in equa-

tion 2.2. Up until equation 2.19, the same steps can be taken for the correlation func-
tion. Since (A−1)−1~χ = ~η, filling in (A−1)−1~χ in both ηα

~i
and η

β
~j

gives
∫ d2 p

(2π)2 ei~p·~iχα
~p

and
∫ d2 p′

(2π)2 ei~p′·~jχ
β
~p′ , respectively. These terms can thus be found in equation 2.21.

〈ηα
~i

η
β
~j
〉 = 1

Z
1

det A

∫
D[χ]

( ∫ d2 p
(2π)2 ei~p·~iχα

~p

)( ∫ d2 p′

(2π)2 ei~p′·~jχ
β
~p′

)
e

1
2~χ

T M8N×8N~χ (2.21)

Since
∫ d2 p

(2π)
is only a sum, and 1

Z = det A√
det M8N×8N

, equation 2.21 can be reordered to:

〈ηα
~i

η
β
~j
〉 = 1√

det M8N×8N

∫ d2 pd2 p′

(2π)4 ei(~p·~i+~p′·~j)
∫

D[χ]χα
~pχ

β
~p′e

1
2~χ

T M8N×8N~χ

= −
∫ d2 pd2 p′

(2π)4 ei(~p·~i+~p′·~j)(M−1
8N×8N

)
~p~p′,αβ

(2.22)

The inverse matrix M−1
8N×8N can be found using equation 2.23, where M(i) = Mi and

I8 is the 8× 8 identity matrix.


M1 0 . . . 0

0 M1
...

...
. . . 0

0 . . . 0 MN




M−1
1 0 . . . 0

0 M−1
2

...
...

. . . 0
0 . . . 0 M−1

N

 =


I8 0 . . . 0

0 I8
...

...
. . . 0

0 . . . 0 I8

 (2.23)

So the inverse of M−1
8N×8N is the diagonal matrix with all inverses M−1(i) on the di-

agonal. Because of this, (M−1
8N×8N)~p~p′,αβ is only non-zero if~p = −~p′. So (M−1

8N×8N)~p~p′,αβ =

Nδ~p,−~p′M−1(~p)αβ. Because of this, the final form of 〈ηα
~i

η
β
~j
〉 is given by:

4equation 2.5 from Samuel, S., 1980
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〈ηα
~i

η
β
~j
〉 = −

∫ d2 p
(2π)2 ei~p·(~i−~j)M−1(~p)αβ (2.24)

The matrix M−1(~p) is painfully large: it does not fit on a single page. Because of
this, it is not realistic to calculate the integrals from equation 2.24 manually. Luckily,
this type of integral can be solved numerically by for example Mathematica5. Since
all Grassman number have been removed from the equation, it is finally possible to
take the limit where the integral actually is an integral, rather than a sum.

2.3 Numerical Analysis on the Four-Variable Correlation

To calculate a correlation function of two dimers, four Grassman variables are re-
quired. Take for example the correlation function of dimers (i, b) and (i + 2r(~a +
~b), b), with r integer. If the corresponding correlation function would be called C(r)
and would be independant of the original site i, as given in equation 2.25.

C(r) = 〈η2m,2nη̄2m,2n+1η2(m+r),2(n+r)η̄2(m+r),2(n+r)+1〉
= 〈η0,0η̄0,1η2r,2rη̄2r,2r+1〉

(2.25)

The beauty of having calculated the correlation function for the two-variable case,
is that it paves the way for any more-variable correlation functions, if combined
with Wick’s theorem. Applying Wick’s theorem to equation 2.25 gives the following
result:

C(r) = 〈η0,0η̄0,1〉〈η2r,2rη̄2r,2r+1〉 − 〈η0,0η2r,2r〉〈η̄0,1η̄2r,2r+1〉+ 〈η0,0η̄2r,2r+1〉〈η̄0,1η2r,2r〉
(2.26)

The first term of equation 2.26 is two factors of 6. This makes sense, when realising
that the correlation function of a single dimer (such as 〈η0,0η̄0,1〉 and 〈η2r,2rη̄2r,2r+1〉)
is the same as the amount of possible coverings with one dimer fixed divided by all
possible coverings without any fixed dimers. There are six ways to fix a dimer on
each site, so there should sixe times more coverings if nothing is fixed.

The second term (with the minus-sign) is nil squared, independent of the dis-
tance r between the dimers. This is more intuitive, when realising that η0,0 and η2r,2r
have the same corresponding χp term, namely: χ1

~p. The product of this with itself is
naught. The same holds true forη̄0,1, η̄2r,2r+1 and χ̄3

~p, hence the nill squared.
If then the third term (which is dependant of r, unlike the first and second term)

is given the name f (r, r), equation can be rewritten to be:

C(r) =
1

36
+ f (r, r) (2.27)

5CHECK the sign of the exponent with mathematica
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Computations in Mathematica, using equation 2.24, confirm the the
( 1

6

)2 and 02

terms. f (r, r) has been put in Mathematica for different integer values of r. To in-
spect the general behaviour, the logarithm of the absolute value of f (r, r) has been
calculated for r ∈ {1, 2, . . . , 16},

-3.4826 x - 4.56614

5 10 15
x

-60

-50

-40

-30

-20

-10

log(|f[x,x]|)

FIGURE 2.5: This figure shows the numerical result of the examina-
tion of log | f (x, x)| for x ∈ {1, 2, . . . , 16}, graph made with Mathe-

matica.

Figure 2.5 suggest a linear relation between log | f (r, r)| (y-axis) and r (x-axis):
y = −3.4826x − 4.56614. The physical distance d between the dimers is d = r · a,
with a the lattice constant. Rewriting the linear formula in the form of exponential
decay gives:

| f (r, r)| = 0.010e−3.48r

| f (d)| = 0.010e−
1.74

a d
(2.28)

Following from equation 2.28 a correlation length of a
1.74 is found.

To conclude, even though the numerics in this section are not by any means
definitive proof that correlation functions decay exponentially (plus 1

36 ), it is con-
sistent with earlier results6 that show exponential decay. So, even without the cal-
culations done in this chapter, this is enough evidence to assume the decay of the
correlation is fast enough to be neglected in chapter 3.

6CHECK, I still need the reference for this





29

Chapter 3

Exact Ground State Solution of a
Special Case of the Triangular
RK-Hamiltonian

When considering the dimer model, it is normal to have states that are full coverings,
with one dimer on every site. There would be an electron density n of one electron
per site (so n = 1), or half-filling. A common way to add impurities to the model
is to add doping of some sort. In the original paper1 introducing the HRK, these
where single site holes: single unoccupied sites that were treated as spinless particles
with positive charge, compared to half-filling. These particles decrease the electron
density, so with a (negative) doping p: n = 1 + p.2 Adding single electrons as
impurities, rather than holes, gives a chargeless perturbation in spin that does not
influence n.

An alternative idea is not to think in single-site perturbations, but in dimer per-
turbations. These dimers are a superposition of an electron (with spin ± 1

2 ) on one
site and a hole on the other, and the other way around, as given in equation 3.1.

F†
(i,η),σ =

c†
i,σ + c†

i+~η,σ√
2

(3.1)

Here σ is the spin index, which will often be surpressed, unless specifically needed
and (i, η) uses the same convention as for the Bosonic dimers (equation 1.14 and
figure 1.2). This type of dimer is Fermionic, and will from here on be referred to as
such. Similar to the Bosonic dimer, this dimer will be treated as a normal hard-core
dimer, but then following anti-commutation rules, rather than commutation rules,
as shown in equations 3.2 to 3.5. Keep in mind that Bosonic dimer operators always
commute with Fermionic dimer operators.

{F†
iσ, F†

i′σ′} = 0 (3.2)
{Fiσ, Fi′σ′} = 0 (3.3)

{Fiσ, F†
i′σ′} = δii′,σσ′ (3.4)

Fiσ|0〉 = 0 (3.5)

1Rokhsar and Kivelson, 1988
2CHECK I want to make a comment on the behaviour w.r.t. the doping density
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RK-Hamiltonian

Adding Fermionic dimers to the system, naturally requires perturbations to the RK-
Hamiltonian (equations 1.24 and 1.25) to investigate the changes due to the impu-
rities. To keep these new terms local, and consistent with the way of thinking from
the RK-Hamiltonian, all interactions will be given in terms of plaquettes: ,
, and . These are the relevant triangular plaquettes, where the red dimer
represents the Fermion and the black dimer represents the Boson. This chapter will
consider one specific perturbation: a perturbation that can be considered an exten-
sion of the RK-Point on the triangular lattice. The RK-Hamiltonian can be written
down as in equation 3.7 and the perturbation is given in equation 3.8. The work
done in the rest of this chapter will be very similar to the work that Feldmeier3 has
done on the square lattice.

Hp = HRK + vH′ (3.6)

HRK = v ∑
(
| 〉 − | 〉

)(
〈 | − 〈 |

)
(3.7)

H′ = ∑ |
(
| 〉+ | 〉 − | 〉 − | 〉

)(
〈 |+ 〈 | − 〈 | − 〈 |

)
(3.8)

The Hamiltonian Hp in equation 3.6 is a sum of two projectors. Because of this, all
eigenvalues have to be null, or larger. This is a property of the RK-point, it is an
extension of the RK-point in the sense that it is a similar projection. Keep in mind
that if all minus signs are changed to plus signs, the computation in section 3.1 could
be executed the same way, with the main distinction being a minus sign here or there.

3.1 Finding the Ground State

Since Hp is a projector, the minimal eigenvalue is naturally naught, so by setting the
energy to nil, a condition for the ground state can be found. To find this condition,
it is useful to start by defining the state |i1, i2〉 = |(i1, η1), (i2, η2)〉 as given below.

|(i1, η1), (i2, η2)〉 =
1√
Nt

F†
i1,η1

F†
i2,η2
|0〉(i1,η1),(i2,η2) ⊗

(
∑

c∈C(i1,η1),(i2,η2)

|c〉
)

(3.9)

Here C(i1,η1),(i2,η2) is the set of all subcoverings with dimers (i1, η1) and (i2, η2) empty,
Nt is some constant, equal to the amount of possible dimer coverings without any
sites left empty. Equation 3.9 is a good example of why using shorthand notation
can be very useful. Since all subcoverings |c〉 are orthonormal, it is easy to find the
magnitude of |i1, i2〉:

〈i1, i2|i1, i2〉 =
Ni1,i2
Nt

= Qc[i1, i2]
= 〈i1, i2〉classical

(3.10)

Ni1,i2 is the amount of states with dimers i1 and i2 fixed (= the amount of subcover-
ings in Ci1,i2), 〈i1, i2〉classical is the classical two-dimer correlation and Qc[i1, i2] is the

3Feldmeier, Huber, and Punk, 2018 and Feldmeier, 2018
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notation used by Feldmeier4, which will here be used for consistency. This entire
chapter draws a lot from his work on the square lattice. Because of the F†

i being
Fermionic, |i1, i2〉 = −|i2, i1〉, in addition to this: if the sets {i1, i2} and {j1, j2} are not
the same, 〈i1, i2|j1, j2〉 = 0.

Next, it is useful to define a state |φi〉 on plaquette i as follows:

|φi〉 = | 〉i + | 〉i − | 〉i − | 〉i (3.11)

Equation 3.11 can be used to define a projection operator Pi:

Pi = |φi〉〈φi| ⊗∏
i′ 6=i

idi′

Pi(a) =
(

a|φi〉〈φi|
)
⊗∏

i′ 6=i
idi′

(3.12)

Which projects plaquette i on the state |φi〉 (with prefactor a, if wanted) and keeps
the rest of the system unchanged. Using this projector, equation 3.6 can be rewritten
to:

Hp = HRK + ∑
l

Pl(v) (3.13)

3.1.1 Using the Projector

Now that all preliminary objects have been defined, it is time to use the Hamiltonian,
in the form of equation 3.13 on the state from equation 3.9. Even though this is a
two-Fermion state, the calculation of ground states with a larger Fermionic doping
should be done analogously. Since HRK is at the RK-point, its contribution to the
energy of |i1, i2〉 is naught. Hence:

Hp|i1, i2〉 = 0 + ∑
l

Pl(v)|i1, i2〉 (3.14)

Which reduces Hp|i1, i2〉 to only a sum over Pl(v)|i1, i2〉. For each dimer i there are
four possible plaquettes of which the dimer i can be part. These plaquettes have
been visualised in figure 3.1.

i

(i, η)

(i, η)
i+~η-

i

(i+η-, η)

(i, η)

i i+~η

(i+~η, η+)

(i, η)

i

i+~η-~η+

(i+~η-~η+, η+)

(i, η)

FIGURE 3.1: This figure shows all plaquettes that contain the dimer
(i, η), The plaquette index is given in black, along with the corre-
sponding dimer. The η+ and η- are defined in equation 1.26 to 1.29

Using these plaquettes, Pl(v)|i1, i2〉 (where l = (l, ξ)) can be rewritten to:

4Chapter 4 from Feldmeier, 2018 is dedicated to the same subject on the square lattice
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Pl(v)|i1, i2〉 =
2

∑
k=1

(
δlik δξηk + δl,ik+~η-

k
δξηk + δl,ik+~ηk

δξη+
k
+ δl,ik+~ηk-~η+

k
δξη+

k

)
Pl(v)|i1, i2〉

(3.15)

This expression has 8 δδ terms that need to be considered. Take the term with
δli1 δξη1 to begin with. Because of the the multiplication Kronecker delta, the fac-
tor |(i1, η1), (i2, η2)〉 can be written as |(l, ξ), (i2, η2)〉. The operator F†

(l,ξ) is part of
|(l, ξ), (i2, η2)〉, because of this, the only term that is not zero after P(l,ξ)(v) has worked
on it is:

P(l,ξ)(v)|(l, ξ), (i2, η2)〉 =
1√
Nt

P(l,ξ)(v)
(

F†
(l,ξ)F

†
(i2,η2)

D†
(l−~ξ-,ξ)

|0〉()()()
)
⊗
(

∑
c′∈C()()()

|c′〉
)

(3.16)

Here ()()() = (l, ξ)(i2, η2)(l − ~ξ-, ξ), to avoid a terrible mess of notation. Bosonic
and Fermionic operators commute, so F†F†D† = F†D†F†. Then P(l,ξ)(v) acts on
plaquette (l, ξ) as follows:

P(l,ξ)(v)F†
(l,ξ)D

†
(l−~ξ-,ξ)

|0〉l,η = v|φl,ξ〉〈φl,ξ |F†
(l,ξ)D

†
(l−~ξ-,ξ)

|0〉l,η
= v · (−1)|φl,ξ〉

(3.17)

The minus sign comes from the minus sign for horizontal dimers in equation 3.11.
Using all this, the result is:

δli1 δξη1 Pl(v)|i1, i2〉 = −
vδli1 δξη1√

Nt
|φl,ξ〉 ⊗ F†

i2,η2
|0〉(i2,η2) ⊗

(
∑

c′∈C3
1

|c′〉
)

(3.18)

In which C3
1 is even shorter notation for C(l,ξ)(i2,η2)(l−~ξ-,ξ). All steps that took the

δli1 δξη1-term from equation 3.15 to equation 3.18 can be applied to all other δδ-terms.
For all i1 terms, the results are given in equation 3.19 to 3.21.

δl,i1+~η-
1
δξη1 Pl(v)|i1, i2〉 =−

vδl,i1+~η-
1
δξη1√

Nt
|φl,ξ〉 ⊗ F†

i2,η2
|0〉(i2,η2) ⊗

(
∑

c′∈C3
2

|c′〉
)

(3.19)

δl,i1+~η1 δξη+
1
Pl(v)|i1, i2〉 =

vδl,i1+~η1 δξη+
1√

Nt
|φl,ξ〉 ⊗ F†

i2,η2
|0〉(i2,η2) ⊗

(
∑

c′∈C3
3

|c′〉
)

(3.20)

δl,i1+~η1-~η+
1
δξη+

1
Pl(v)|i1, i2〉 =

vδl,i1+~η1-~η+
1
δξη+

1√
Nt

|φl,ξ〉 ⊗ F†
i2,η2
|0〉(i2,η2) ⊗

(
∑

c′∈C3
4

|c′〉
)

(3.21)

Where C3
2 = C(i2,η2)(l,ξ)(l−~ξ-,ξ) and C3

3 = C3
4 = C(i2,η2)(l−~ξ-+~ξ,ξ-)(l−~ξ-,ξ-). Since these are

the sets of all subcoverings that do not cover the subscripted dimers, the order of
these dimers does not matter, but more important both the pair (l, ξ) and (l −~ξ-, ξ)

and the pair (l − ~ξ- + ~ξ, ξ-) and (l − ~ξ-, ξ-) cover the same four sites. Namely the
four sites of the plaquette with index (l, ξ). Hence, C3

n = C()()() of all n. Because of
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this, it is useful to introduce yet another new notation, as this shortens the expres-
sions in equation 3.18 to 3.21 significantly:

|φl,ξ , (ik, ηk)〉0 = |φl,ξ〉 ⊗ F†
ik ,ηk
|0〉(ik ,ηk) ⊗

(
∑

c′∈C()()()

|c′〉
)

(3.22)

With the knowledge that |i1, i2〉 = −|i2, i1〉 holds, one easily finds that the values
of all δδ terms with i2 are equal to their i1 counterparts, but then with a minus sign,
and with i1 and i2 swapped. This combines with equation 3.22 to equation 3.23.

Pl(v)|i1, i2〉 =

v
2

∑
k=1

(-1)k
√

Nt

(
δlik δξηk + δl,ik+~η-

k
δξηk − δl,ik+~ηk

δξη+
k
− δl,ik+~ηk-~η+

k
δξη+

k

)
|φl,ξ , (ik̄, ηk̄)〉0 (3.23)

Note that ik̄ represents the complement of ik (k̄ = 2 fo k = 1, etc.). This formula can
be generalised to more-dimer systems: the 2 would be replaced by the amount of
dimers n, and (ik̄, ηk̄) would be replaced by {(ik̄, ηk̄)}, the set of all dimers but ik.

Next, define a variety on equation 3.22 (more-dimer version can be defined anal-
ogously):

|φl,ξ , (ik, ηk)〉 =
1√

N(l,ξ)(l−~ξ-,ξ)(ik ,ηk)

|φl,ξ , (ik, ηk)〉0 (3.24)

This definition is chosen, such that equation 3.23 can be rewritten to:

Pl(v)|i1, i2〉 = v ∑
k
(-1)k

√
Qc[(l, ξ), (l −~ξ-, ξ), (ik, ηk)]

(
∑ δδ

)
|φl,ξ , (ik̄, ηk̄)〉 (3.25)

Not that Qc[(l, ξ), (l −~ξ-, ξ), (ik, ηk)] is null if there is any overlap between the fixed
dimers, this ensures that this formula holds, even when (i1, η1) and (i2, η2) are (par-
tially) in the same plaquette.

3.1.2 Proposing a Ground State

Knowing how |i1, i2〉 responds to the Hamiltonian, introduces an opportunity in
creating a ground state, built from these two-Fermion states. This state will be as
general as possible, for a two-Fermion state, namely: a linear superposition of all
possibilities. The state that eventually will become the ground state is defined as:

|ψ0〉 = ∑
i1,12

Ai1,i2 |i1, i2〉 (3.26)

When using Hp = ∑l Pl(v) on |ψ0〉, the result is:

Hp|ψ0〉 = v ∑
l,i1,j2,k

(-1)k
√

Qc[. . . ]
(

∑ δδAik

)
|φl,ξ , (ik̄, ηk̄)〉 (3.27)
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Since ∑i1,i2 runs twice over all possible dimers, The distinction between in the indices
in |φl,ξ , (ik̄, ηk̄)〉 becomes somewhat meaningless. It is more useful to look at each
|φl,ξ , (i, η)〉 and look what its prefactor is.

The sum over l (and ξ) is conserved, but the sum over ik (and ηk) fix A. In short
notation, the sum over i1 turns all indices i1 in the δδ part into l -terms for A: ∑ Al,i2 .
Similarly, the sum over i2 results in Ai1,l . So, renaming the remaining sums over ik
simply to i gives:

∑ δδAik =− A(l,ξ)(i,η) − A(l−~ξ−,ξ)(i,η) + A(l−~ξ−,ξ−)(i,η) + A(l−~ξ−+~ξ,ξ−)(i,η)

+ A(i,η)(l,ξ) + A(i,η)(l−~ξ−,ξ) − A(i,η)(l−~ξ−,ξ−) − A(i,η)(l−~ξ−+~ξ,ξ−)

(3.28)

Using equation 3.28, together the beforehand described resummation, turns equa-
tion 3.27 into:

Hp|ψ0〉 = v ∑
l,i

√
Qc[. . . ]

(
∑ δδAik

)
|φl,ξ , (i, η)〉 (3.29)

Here, Qc[. . . ] = Qc[(l, ξ), (l − ~ξ-, ξ), (i, η)], as before. The next step is to find an
expression for the energy in terms of A:

〈ψ0|Hp|ψ0〉 = v ∑
i1,i2,j1,j2,l

A∗j1,j2 Ai1,i2〈j1, j2|φl〉〈φl |i1, i2〉

= v ∑
l,i

Qc[(l, ξ), (l −~ξ-, ξ), (i, η)]
∣∣∣∑ δδAik

∣∣∣2 (3.30)

If 〈ψ0|Hp|ψ0〉 is to be nil, that means all ∑ δδAik need to be nil. To find a solution for
A, choose:

Ai1,i2 = ai1 bi2 (3.31)

This definition reduces ∑ δδAik = 0 to:

0 = bi,η
(
− al,ξ − al−~ξ−,ξ + al−~ξ,ξ− + al−~ξ−+~ξ,ξ−

)
− ai,η

(
− bl,ξ − bl−~ξ−,ξ + bl−~ξ,ξ− + bl−~ξ−+~ξ,ξ−

) (3.32)

This is a very symmetric expression, which is useful, because that suggests to treat
both lines from equation 3.32 separately. Now, it is possible to mathematically prove
that the solution ai,η = 0 = bi,η is a rather boring solution. Jokes aside, looking for
a solution for −al,ξ − al−~ξ−,ξ + al−~ξ,ξ− + al−~ξ−+~ξ,ξ− = 0 and the equivalent −bl,ξ −
bl−~ξ−,ξ + bl−~ξ,ξ− + bl−~ξ−+~ξ,ξ− = 0 can be done by making the following Ansatz:

ai,η = ci,η(~p1) = C(~p1)ηei~p1·~i (3.33)

bi,η = ci,η(~p2) = C(~p2)ηei~p2·~i (3.34)

Filling in this new definition in either of the terms between brackets from equation
3.32 set equal to zero gives:
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Cη(~pk) =
1 + ei~pk ·~η

1 + ei~pk ·~η−
Cη−(~pk) (3.35)

By applying the definition of the η− multiple times, it can be found that Cη(p) =

C((η−)−)−(p), which is good, because η =
(
(η−)−

)−. After this small legitimacy
check, Cη(p) can fully be defined:

Cη(p) =
q√
N

1 + ei~pk ·~η

|1 + ei~pk ·~η |2 + |1 + ei~pk ·~η− |2 + |1 + ei~pk ·~η+ |2
(3.36)

Equation 3.36 is chosen as it is, because now |Cη |2 + |Cη− |2 + |Cη+ |2 = q2

N . N is
the number of sites, and q will later prove to be q =

√
6. With this definition, and

previous definitions 3.33, 3.34 and 3.31, it is possible to write |ψ0〉 = |p1, p2〉 as:

|p1, p2〉 = ∑
i1,η1,i2,η2

Cη1(p1)Cη2(p2)ei(~p1·~i1+~p2·~i2)|(i1, η1), (i2, η2)〉 (3.37)

3.1.3 Normalising the Ground State

The last thing to do, before |p1, p2〉 can be considered a proper ground state, is nor-
malising it. In other words, it is necessary to find a value for q that normalises the
state.

〈p1, p2|p1, p2〉 = ∑
i1,i2,j1,j2

a∗i1 b∗i2 aj1 bj2〈i1, i2|j1, j2〉

= ∑
i1,i2,j1,j2

a∗i1 b∗i2 aj1 bj2
(
δi1 j1 δi2 j2 − δi1 j2 δi2 j1

)
Qc[i1, i2]

= ∑
i1,i2

(
|ai1 |

2|bi2 |
2 − a∗i1 ai2 b∗i2 bi1

)
Qc[i1, i2]

(3.38)

Since the first term of that last line is straightforward, the second term is investigated
first:

term 2 = ∑
η1,η2

C∗η1
(p1)C∗η2

(p2)Cη2(p1)Cη1(p2) ∑
i1,i2

ei(~i1−~i2)·(~p2−~p1)Qc[(i1, η1), (i2, η2)]

(3.39)

The last part of term 2 can be seen as a Fourier transform of a classical two-dimer
correlation. As the entirety of chapter 2 is trying to show5, the classical two dimer
correlation has the form:

Qc(r) =
1

36
+O(e−λ|r|) (3.40)

5This remark is the entire reason there is a chapter two in the first place, the calculation got a bit out
of hand CHECK: other reference to this?
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Here r is the distance between the two dimers and λ is an unimportant (for this
derivation) positive real constant. For large lattices, on average r → ∞, so the ex-
ponent becomes negligible in a Fourier transform. Taking a Fourier transform over
1

36 gives a Kronecker delta δ~p2−~p1 , which is always null, unless the two momenta ~p1
and ~p2 are equal. But the state |p1, p2〉 is zero in that case, so this term is null. Note
that taking a Fourier transform only requires one summation over i1 or i2, the other
summation remains and gives a factor of order N. But in both cases this is irrelevant
because of faster (exponential) decay or a factor nil (the delta).

Now that the second term has been shown to be null, it is time to look at the first
term (while keeping equation 3.40 in mind):

〈p1, p2|p1, p2〉 = ∑
i1,i2

∑
η1

|Cη1 |2 ∑
η2

|Cη2 |2
( 1

36
+O(e−λ|r|)

)
(3.41)

The exponent will go fast to zero, again, so:

〈p1, p2|p1, p2〉 = ∑
i1,i2

q2

N
q2

N
1
36

=
q4

36
(3.42)

Which finally shows that with q =
√

6, |p1, p2〉 is a normalised ground state of Hp,
with zero energy.

3.2 Using the Ground State

To learn more about the ground state discovered in section 3.1, one can tweak the
Hamiltonian and see how the energy responds to that in first order of perturbation
theory. The difference in energy ∆E is given by:

∆E = 〈Ψ0|∆H|Ψ0〉 (3.43)

In this expression, Ψ0 is the original unperturbed ground state of the original Hamil-
tonian (|p1, p2〉 and Hp, respectively), and ∆H is the perturbation on the Hamilto-
nian. Since the energy of |p1, p2〉 is nil, the energy of the perturbed Hamiltonian (up
to first order) will be equal to exactly ∆E.

3.2.1 First Order Perturbation to the Ground State

The perturbations that will be considered in this section are dimer swaps. This could
mean a plaquette flip (rotation by 180◦, not by 90◦), but also a swap of two dimers
over longer distance. Call the type of operation a u-swap6, with the corresponding
Hamiltonian:

∆Hu = −δu

Su

∑
s=1

∑
j,ζ

F†
j+rs,ζ

u ,ζ+η
s,ζ
u

D†
j,ζ Dj+rs,ζ

u ,ζ+η
s,ζ
u

Fj,ζ (3.44)

6Section 4.3 from Feldmeier, 2018 calls this ti
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In which rs,ζ
u and η

s,ζ
u are the difference in position and orientation between the two

dimers that an u-swap consists of. The index s goes over all Su ways that a dimer
(j, ζ) can perform a u-swap. Lastly, δu is the energy attributed to said u-swap. Next
up is finding an expression for ∆E = 〈p1, p2|∆H|p1, p2〉:

∆E = −δu ∑
s,j,ζ

∑
i1,i2,l1,l2

a∗l1 b∗l2 ai1 bi2〈l1, l2|F†
j+rs,ζ

u ,ζ+η
s,ζ
u

D†
j,ζ Dj+rs,ζ

u ,ζ+η
s,ζ
u

Fj,ζ |i1, i2〉 (3.45)

Indices have been kept short, where possible, and in the next few lines all orienta-
tions will be suppressed, until new orientations arise that have not yet been written
down. Thus:

〈l1, l2|F†D†DF|i1, i2〉 = δji1

(
δl1,j+rs,ζ

u
δl2i2 − δl2,j+rs,ζ

u
δl1i2

)
Qc[i1, i2, i1 + rs,ζ

u ]

+ δji2

(
δl2,j+rs,ζ

u
δl1i1 − δl1,j+rs,ζ

u
δl2i1

)
Qc[i1, i2, i2 + rs,ζ

u ]
(3.46)

Taking the sum over j removes the Kronecker deltas outside the brackets, without
changing the a and b factors, and ir turns rs,ζ

u into rs,ηk
u (ik = (ik, ηk)). Then, after

taking the sums over both l1 and l2, the result is:

∆E = −δu ∑
s,i1,i2

ai1 bi2

( (
a∗

i1+rs,η1
u

b∗i2 − a∗i2 b∗
i1+rs,η1

u

)
Qc[i1, i2, i1 + rs,η1

u ]

+
(
a∗i1 b∗i2+rs,η2

u
− a∗i2+rs,η2

u
b∗i1
)
Qc[i1, i2, i1 + rs,η2

u ]

) (3.47)

Rename the terms to: ∆E = −δu ∑ ∑(T1 + T2 + T3 + T4), and treat them individually,
beginning with T1 and filling in the C-terms for a and b:

T1 = ∑
s,i1,i2

|Cη2(p2)|2Cη1(p1)Cη1+η
s,η1
u

(p1)e−i~rs,η1
u ·~p1 Qc[i1, i2, i1 + rs,η1

u ] (3.48)

This term contains7:

∑
i2,η2

|Cη2(p2)|2Qc[i1, (i2, η2), i1 + rs,η1
u ] = Qc[i1, i1 + rs,η1

u ] (3.49)

Which is independent of the position i1 because rs,η
u is relative, so Qc[i1, i1 + rs,η1

u ] =
Qc[(0, η1), rs,η1

u ]. Because of this, after taking the sum over i1 and filling in the C-terms
even further and writing η1 = η, the result is:

T1 = −6δu ∑
s,η

(1 + ei~p1·~η)(1 + e−i~p1·(~η+~η
s,η
u ))e−i~p1·~η

s,η
u

|1 + ei~p1·~η |2 + |1 + ei~p1·~η− |2 + |1 + ei~p1·~η+ |2
Qc[(0, η), (rs,η

u , η + η
s,η
u )]

= ε(p1)

(3.50)

7CHECK I do not believe this is correct, but Johannes used it
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The term T3 is similar to T1, but with the following variables swapped: i1 ↔ i2 and
a↔ b or p1 ↔ p2. This results via the same logic in:

T3 = ε(p2) (3.51)

When filling in the the definitions of a, b and then C in T2, it will be of the form:

T2 = δu ∑
s

∑
η1,η2

Cη1(p1)Cη2(p2)C∗η2
(p1)C∗η1+η

s,η1
u

(p2)e-i~p2·r
s,η1
u

×∑
i1,i2

ei(~i1-~i2)(~p1-~p2)Qc[i1, i2, i2 + rs,η1
u ] (3.52)

Of which only the second line is relevant: it contains a Fourier transform of a corre-
lation function. Similar to equation 3.40, this is again the sum of some constant and
an exponential decay. So this term too (and with it the very similar T4), will be null,
for large lattices:

T2 = 0 = T4 (3.53)

If one finally combines all terms Ti the final result for the first order perturbation in
the energy is obtained:

∆E = ε(p1) + ε(p2) (3.54)

This derivation can be repeated similarly for more-particle systems. The correspond-
ing energy is given below.

∆E = ∑
i

ε(pi) (3.55)

3.2.2 Quasi-Particle Approach

Since the energy (equation 3.54 and 3.55) of the ground state (equation 3.37) of Hp
(equation 3.6) is a sum of separate energies ε(pi) corresponding to a single momen-
tum, these energies can be treated as single-quasi-particle excitations of the RK-
Hamiltonian. To do so, let |0∗〉 = |RK〉, the ground state of the non-Fermionic
RK-Hamiltonian. Then a state |p1, . . . , pn〉 can be described as follows:

|p1, . . . , pn〉 = ∏
i

f †
pi
|0∗〉 (3.56)

f †
p = ∑

i,η
Cη(p)ei~p·~iF†

iη Diη (3.57)

Hp|p1, . . . , pn〉 = ∑
i

ε(pi) (3.58)

Because of equation 3.58, it makes sense to want to write Hp in terms of f -operators:
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Hp = ∑
p

ε(p) f †
p fp (3.59)

But for this to make sense, f †
p needs to be a properly Fermionic operator that follows

the anti-commutation relations:

{ fp, fq} = 0 (3.60)

{ f †
p , f †

q } = 0 (3.61)

{ fp, f †
q }

?
= δpq (3.62)

The first two are no problem, but the last one gives some complications. Using that
Cη(p)ei~p·~i = aiη(p):

{ fp1 , f †
p2
} = ∑

i1,i2

ai1(p1)a∗i2(p2)
{

F†
i1 Di1 , D†

i2 Fi2
}

= ∑
i1,i2

ai1(p1)a∗i2(p2)δi1i2
(

F†
i1 Fi2 + D†

i2 Di1
)

= ∑
i1

ai1(p1)a∗i1(p2)N̂i1

(3.63)

In which N̂i = F†
i Fi + D†

i Di, the operator that counts the amount of dimers (both
Fermionic and Bosonic) of type i = (i, η). Evidently, this is not nil, at all. Luckily, tak-
ing the absolute value (squared) of { fp1 , f †

p2
}|0∗〉 gives something more useful after

writing all a-terms as C and after realising 〈0 ∗ |N̂i1,η1 Ni2,η2 |0∗〉 = Qc[(i1, η1), (i2, η2)]:

|{ fp1 , f †
p2
}|0∗〉|2 = ∑

η1,η2

Cη1(p1)C†
η1
(p2)C∗η2

(p1)Cη2(p2)

×∑
i1,i2

ei(~i1−~i2)·(~p1−~p2)Qc[(i1, η1), (i2, η2)] (3.64)

The two-dimer correlation can be approximated by equation 3.40 for large lattices.
After one sum over i2 the result is:

|{ fp1 , f †
p2
}|0∗〉|2 = ∑

η1,η2

Cη1(p− 1)C†
η1
(p2)C∗η2

(p1)Cη2(p2)

×∑
i1

ei(~i1)·(~p1-~p2)
( N

36
δp1,p2 +O(e-λ|r|)

)
(3.65)

Which after neglecting the exponent, taking the sum over i1 and keeping the Kro-
necker delta in mind gives:
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|{ fp1 , f †
p2
}|0∗〉|2 = ∑

η1,η2

Cη1(p1)C†
η1
(p1)C∗η2

(p1)Cη2(p1)
N2

36
δp1 p2

=
36
N2

N2

36
δp1 p2 = δp1 p2

(3.66)

This is obviously not enough to be able to say that the operator is perfectly Fermionic.

3.2.3 Difference Between Square and Triangular Lattice

Up until here, this entire chapter has roughly followed the same calculation as done
by Feldmeier in chapter 4 his master thesis8, who worked on the square lattice. Even
though doing calculations the triangular lattice is more convoluted and tedious, es-
pecially when it comes to notation, the physics described up until here are the same
for both cases. The next step on the square lattice would be to constrain the system to
one topological sector and then find a constraint for which equation 3.62 does hold.
For the square lattice, this condition is that px = py, but when repeating that same
process on the triangular lattice the momenta for which the operator f †

p is properly
Fermionic is given by:

~p ·~η = ~p ·~η− (3.67)

On first glance this seems fine, until the realisation kicks in that this needs to hold
for all η. So by extension:

~p ·~η = ~p ·~η− = ~p ·~η+ (3.68)

And that’s where it gets troublesome. Now, in principle one could vind the values
of p1 and p2 for which the following holds:

0 =
(
1 + ei~p1·~η-)(

1 + e-i~p2·~η-)(
1 + ei(~p1-~p2)·~η

)
−
(
1 + ei~p1·~η

)(
1 + e-i~p2·~η

)(
1 + ei(~p1-~p2)·~η-) (3.69)

This needs to hold for all η. This does hold when p1 = 0 or p2 = 0, but that does
not really give a proper space on which to work.

Anyways, for the strange shaped space on which it does work, it is possible to
relate f †

p to the electron operators. In terms of Dimer operators, the electron annihi-
lator can be written as:

ciα =
εαβ√

6
∑
η

(
F†

i,η,βDi,η + F†
i-~η,η,βDi-~η,η

)
(3.70)

Or in terms of momentum:
8Feldmeier, 2018
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cpα =
1√
N

∑
i

ei~p·~iciα

=
εαβ√
6N

∑
i,η

ei~p·~i
(

F†
i,η,βDi,η + F†

i-~η,η,βDi-~η,η

)
=

εαβ√
6N

∑
i,η

ei~p·~i(1 + e-i~p·~η)F†
i,η,βDi,η

(3.71)

When ignoring the spin, this means that (using the definition of Cη(p)):

f † = K(p)c−p (3.72)

K(p) =
6

|1 + ei~pk ·~η |2 + |1 + ei~pk ·~η− |2 + |1 + ei~pk ·~η+ |2
(3.73)

Lastly, when in the very specific regime that equation 3.69 holds, it is possible to
write down the quasi-particle spectral function A(p, ω) = Z(p)δ

(
ω − ε(p)

)
. In this

case Z(p) is given by equation 3.74.

Z(p) =
∣∣〈p|c−p|0∗〉

∣∣2
=
∣∣〈0∗| fp

1
K(p)

f †
p |0∗〉

∣∣2
=
∣∣∣ 1
K(p)

∣∣∣2
=

1
36 ∑

η

|1 + ei~p·~η |2

=
2

36 ∑
η

(
1 + cos (~p ·~η)

)
(3.74)

This would have been a very interesting result, would it not be the case that the
regime in which this holds is mostly unknown. For the square case there is a very
clear regime for which these particle can be treated as described above. But unfortu-
nately there is no proper known regime for which this free Fermi gas-like description
is valid. Especially since the restriction p1 = 0 or p2 = 0 leaves the system rather
asymmetrical.
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Chapter 4

Simulations of Fermionic
Perturbations to the Triangular
RK-Hamiltonian

In this chapter we will discuss the work done on finding the ground state energies
for different versions of the two-dimer RK-Hamiltonian and a more general version
of equation 3.6. These dimers are defined in chapter 3.

H = HRK + tstatic ∑ | 〉〈 |+ t f lip ∑ | 〉〈 |+ trotation ∑ | 〉〈 |
(4.1)

Where, as before, the summations are over all triangular plaquettes, all orientations
of these plaquettes ( , , and ) and all possible rotations (so both
clockwise and anticlockwise for the trotation-term. Note that 3.6 is a special case of
equation 4.1.

The program used to calculate the ground state energies for this Hamiltonian
starts out by creating all possible states for a given lattice (preferably N × N) and
then applying the Lanczos algorithm (see section 4.2.2) on a randomised and nor-
malised begin state. For speed and control, C++ is used as the programming lan-
guage.

4.1 Finding the State Space

The first thing to do is find an efficient way to find all states in the state space. For
now the state space will consist of solely Bosonic dimers. The obvious choice for a
complete (orthonormal) basis is to find all unique dimer coverings. An N×M-lattice
is created in the form of an array with one entry for each lattice site. Once a proper
(no empty sites, no overlapping dimers) and unique dimer covering is found, it will
be stored in a linked list for later use.

4.1.1 Failed Attempt: Brute Force Method

The first attempt of finding all coverings was made using a brute force approach.
This approach gave each site a value between 0 and 3. The number 1 signified a
horizontal dimer sprouting from it’s site, 2 a vertical dimer and 3 was used as a
diagonal dimer. Since a dimer always consists of a connection between two sites,
the second site of each of these dimers would have the number 0. Which had the
function of “recieving” of a dimer, initiated from a site with a 1, 2 or 3. An example
of a covering with an array describing it can be found in figure 4.1. Keep in mind
that what is called “vertical” is still not perpendicular to the horizontal direction in
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physical reality. But since reality is reduced to a two-dimensional array, the term
vertical refers to the vertical axis of said array.

2 2 1 0

0 0 0 0

3 1 0 3

1 0 1 0

FIGURE 4.1: This figure shows an example covering (left) on a 4×4-
lattice with dimers in all three possible orientations. On the right this
same covering has been displayed as array with numbers correspond-
ing to the dimer orientations as described above. Note that periodic

boundary conditions are in place.

Once this notation has used, one can find all possible coverings by going through
all possible N×M arrays filled with only the numbers 0 to 3. For each of these arrays
the program needs to check whether it can be considered a proper covering. If this is
the case, the covering will be copied and stored in the covering list before continuing
to cycle through the rest of the potential coverings.

This method has one advantage: it is very easy to make sure one does not acci-
dentally coverings twice. By taking one single cycle through all candidate coverings
(from all zeroes to all threes) every proper covering is evaluated once. The major
downside to this: an excessive amount of faulty coverings is evaluated before being
dismissed. Since this brute force algorithm considers 4 numbers for each lattice sites,
the time it takes to execute is proportional to 4N×M. So in practice, this algorithm
works fine for lattices with a size of up to about 4×4, and becomes outrageously
slow for larger scales. To illustrate, running the program for a 4×4-lattice took about
20 seconds. By linear extrapolation (multiplication by 436−16) it was calculated to
take over 600,000 years to go over all potential coverings for a 6×6-lattice.

4.1.2 Recursive Search

Since 600,000 years tends to be somewhat much for a master thesis a different ap-
proach was taken: iterative search. Rather than filling an entire array with numbers
in hopes that it will be a well-defined covering, this method works by taking a partial
covering (with part of not covered by dimers, yet) and trying to add a new dimer on
the lowest empty site (the sites can be numbered any way, as long as it is consistent).
For all the dimers that can be added to the lowest site, a new partial covering is ob-
tained. The same process is applied to these new coverings, until it is a completely
full covering or no more dimers can be added without overlapping each other. More
detailed description follows later this section.

The way the dimers are represented by numbers has slightly changed, compared
to section 4.1.1. Since this algorithm requires to be able to make dimers in all six
directions there now are 6 directions, and the number 0 for empty sites. The numbers
1, 2 and 3 serve the same purpose as before (representing horizontal (1, 0), vertical
(0, 1) and diagonal (−1,−1) dimers respectively), but the “other end” of the dimer
is no longer indicated by a 0. For the other end of a horizontal dimer a 4 is used,
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making 4 represent a dimer in (−1, 0)-direction. The number 5 is the counterpart
to the number 2, making the corresponding direction (0,−1), and finally, 6 is the
opposite of 1, namely: (1, 1). See figure 4.2 to see the same covering as before being
represented by this new notation.

2 2 1 4

5 5 6 6

3 1 4 3

1 4 1 4

FIGURE 4.2: On the left side the same covering as in figure 4.1 is
shown. On the right this covering is represented by the new nota-
tion: 1 is (1, 0), 2 is (0, 1), 3 is (−1,−1), 4 is (−1, 0), 5 is (0,−1) and
6 is (1, 1). The number 0 is not seen in this figure, as it represents an

empty lattice site.

This new notation has four main advantages over the previous notation. In the
first place, this allows for empty sites, which are crucial when working with partial
coverings. The second advantage is that this makes running though 6 orientations
less confusing when writing the code. Rather than running from 1 to 3 and then
making 3 special cases for the zeroes, the program can simply run from 1 to 6. The
third advantage is that this makes checking the lattice for flippable plaquettes, when
building the Hamiltonian, a lot more straight forward. Not only for writing clear
code, but also because less checks have to be done to reach a sound conclusion.
The last advantage was accidental: because the way the program works (finding
the lowest empty site and trying to add dimers from 1 to 6), all states are ordered.
Ordered in the sense that if the numbers on each site (from low site number to high
sit number) where written as digits of a number, representing the site, the list of
these numbers would be ascending. This is useful for the Hamiltonian part of the
program.

In figure 4.3 a piece of pseudo code is shown, to explain the process of finding all
possible covering. This is a simplified version of the recursive function used in the
actual program.

The search is initiated when an empty covering is given to the function called
“RecursiveSearch” in figure 4.3. This can also be done with a non-empty (partial)
covering, if all coverings with given fixed dimers need to be found. The initial par-
tial or empty covering (called “PartialCovering”) is given as an integer array with a
length equal to the number of sites. Additionally a second integer array of the same
size is created, named “NewPartialCovering”, and an integer is created to saved the
lowest empty site number (called “LowestEmptySite” in the figure). Next up is a for-
loop, looping through the number 1 to 6, for the six possible dimer orientations. For
each of those, copy the initial covering (PartialCovering) to NewPartialCovering.
Then see if the given orientation can be added with the function AddDimerPossi-
ble. If not: try the next orientation until it works, or turns out to be impossible. If it
works, add the new dimer to NewPartialCovering. Then check whether the covering
is complete with “NoEmptySites”, and save if it to the list if it is. If NewPartialCov-
ering still has empty sites, call in a new instance of the function RecursiveSearch to
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add more dimers. Once a complete dimer covering has been found, the current in-
stance closes to go back one layer and try the rest of the options, to eventually find
all possibilities.

void RecursiveSearch ( i n t Par t ia lCover ing [ NumberOfSites ] ) {

i n t NewPartialCovering [ NumberOfSites ] ;
i n t LowestEmptySite = FindLowestEmpty ( Par t ia lCover ing ) ;

for ( i n t i = 1 ; i <= 6 ; i ++){ / / i i s d imer d i r e c t i o n
NewPartialCovering = Par t ia lCover ing ; / / make a copy
AddDimerPossible ( Par t ia lCover ing , LowestEmptySite , i ) ;

i f ( AddDimerPossible ) {
AddDimer ( NewPartialCovering , LowestEmptySite , i ) ;

i f ( NoEmptySites ( NewPartialCovering ) ) {
SaveToList ( NewPartialCovering ) ;

} / / i f ( NoEmptySites )
e lse { / / s t a r t s f o l l o w i n g i t e r a t i o n

RecursiveSearch ( NewPartialCovering ) ;
} / / e l s e

} / / i f ( AddDimerPoss ib l e )
} / / f o r i

} / / v o i d R e c u r s i v e S e a r c h

FIGURE 4.3: This figure shows a sketch of the recursive function used
in the search algorithm.

A helpful detail considering this approach, is that there are no prerequisites for
the initial partial covering (other than having an even number of empty sites). So
by inserting a partial covering consisting of a single Fermionic dimer (which can be
indicated by new number), one can find all coverings for fixed doping, making the
step from all undoped to all doped coverings very small.

This approach is significantly faster than the aforementioned brute force ap-
proach. Since each dimer covers two sites, going from empty to full on an N ×M-
lattice takes N×M

2 steps with 6 directions each. But this number can be reduced, since
for the first, since only the very first site truly can be pointed in all six directions. The
next N− 2 (assuming N to be the horizontal direction, here) only have five options or
less. This because a number of neighbouring sites is already occupied. The Nth site
only has four possibilities, since both the previous and very first site are both filled
and nearest neighbours. Then for each site on a new row there are only four options
too, except the last one, for which there are only two. The last site on a row has only
two options as well and the very last site of the very last row has now choice, what-
soever. Every other site, has three options to choose from. All together, this reduces

the number of attempt to scale with: 6 · 5N−2 · 4M−1 · 2M−1 · 3
(

N×M
2 −N−2M+4−1

)
=

81
100 ·

( 5
3

)N ·
( 8

9

)M · 3 N×M
2 . Or for an N × N-lattice:

tcomputation ∝
81

100
·
(40

27

)N
· 3 N2

2 (4.2)
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Which is drastically faster than the 4N2
from the brute force approach. A 6×6 lattice

can be filled in about 12 seconds, using this algorithm.

4.1.3 Early Results

This section gives a brief discussion considering the results from generating the state
spaces for N × N-lattices using the recursive algorithm described above.

Ncoverings tcomputation Nstaggered
2×2 12 ∼ 0 sec 0
4×4 1 920 0.003 sec 12
6×6 10 045 824 13 sec 0

FIGURE 4.4: The simple statistics considering the generation of the
state space for all feasible N × N-lattices. Result of the recursive

search method described in section 4.1.2.

Figure 4.4 shows the basic results after running for all possible N × N-lattices.
Lattices with odd N are excluded, since an even number of sites is needed for dimers
to completely cover it. Lattices with even N > 6 are not possible to calculate for
time’s sake: extrapolating from the computation time (tcomputation) for the 6×6-lattice
with equation 4.2 gives a run time of over 4 years for the 8×8-lattice. Since the
computation times differ from computer to computer, calculating all coverings for
the 8×8-lattice within a more reasonable time seems plausible, just not necessary
considering the time it would take.

When looking at the number of unique coverings (Ncoverings) grows drastically
with the lattice size. Because of this, only the output of the 2×2-lattice included (in
figure 4.5) in this thesis. Keep in mind that when translating the numbers to cov-
erings, one should read from left to right and from low to high. As an example,
the covering in figure 4.2 has the number 2214...1414 (and not 1414...2214). Read-
ing these number differently does not change the physics, as long as it is applied
consistently.

1414 1441 2255 2552

3366 3636 4114 4141

5225 5522 6363 6633

FIGURE 4.5: This figure shows the output dimer coverings of the re-
cursive algorithm for a 2 × 2-lattice in the form of a single 4 digit

number.

When looking at the figure, one sees that the list of covering in the previous figure
is ordered from small to large. This is a very useful (though originally unintentional)
feature of the recursive algorithm. But by starting at the lowest site with the lowest
orientation number, and working to higher sites and orientation numbers, the cov-
erings are ordered from low to high by construction. The reason this is useful, is that
when looking up a state (for the Hamiltonian function, described in section 4.2), the
ordering can be used to skip large parts of the coverings.

One last detail about figure 4.4 worth considering is the amount of staggered
states for 2N× 2N-lattices. Only the 4× 4 has a non-zero amount of staggered states.
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The 2× 2-lattice is simply too small for that, since every possible covering has exactly
2 flippable plaquettes. The 4× 4 staggered state in figure 1.11 (on the right) can be
used as a basis cell for staggered states on 2N× 2N (with N even). By repeating this
basis one can generate staggered states for lattices with said even N. This still leaves
the question whether staggered states exist for 2N × 2N with odd N. The data from
the aforementioned table shows that there are none for the 6× 6-lattice, suggesting
that this these do not exist. Although unnecessary for the simulations done for this
thesis, this can be an interesting detail to look further into.

4.2 Computations on the State Space of Dimer Coverings

Now that all dimer coverings are generated (with or without doping), the program
needs to be able to calculate the ground state energy of the Hamiltonian (equation
4.1). To do so, a way to store a current state is needed, along with a way to calculate
the working of the Hamiltonian on this state (similar to the work done before on the
square lattice1). Since this program works in the (orthonormal) basis of all unique
dimer coverings on a given N ×M-lattice, the obvious choice is to attach a complex
number (or two real floating point numbers) to each covering, turning the list of
coverings into a vector. In practice it will be turned into three vectors: one current
vector (vcurr), one previous vector (vprev, not more than one previous state will be
needed) and one new state (vnext,because the Hamiltonian must be able to work on
a state without losing the data of the original).

The undoped part of the Hamiltonian is implemented in a very straightforward
way. The function goes over all coverings in search of flippable plaquettes. For each
dimer there are 4 potiental plaquette flips. Since there are 3 dimer orientations is
enough to describe all possible dimers, this results in 12 potential 12 plaquettes per
dimer, or six per site. The program used to generate the data for this thesis checks
three plaquettes per site and checks for both possible flips (those two flips are each
other’s inverse). For each flipable plaquette found on covering C, a temporary copy
(called D) of the covering is made, on which the flip will be applied. Then the list
of coverings is searched (using its ordering to speed it up) and when covering D is
found, the value of the component corresponding to D and C of vnext (called vnext,D
and vnext,C, respectively) will be changed as follows:

∆vnext,C = v · vcurr,C (4.3)
∆vnext,D = −t · vcurr,C (4.4)

In which v and t are the parameters of HRK (see equation 1.25). Once every covering
has been gone through this process, the vector vnext = Hvcurr.

When turning the system into a doped system the only thing that needs to be
done is to add perturbation in the form of one or more Fermionic dimers. To pre-
vent the Hilbert space from drastically increasing in size, this method will be con-
strained to perturbations of a single Fermionic dimer. So the state space that needs
to be found would on first glance be a lot larger than the undoped state space. This
state space can be found by placing a single Fermionic dimer on an empty lattice
and then filling the rest the lattice with with Bosonic covers in all configurations
possible, using the recursive algorithm from section 4.1.2. This then has to be done
for each possible position of the Fermionic dimer, requiring the recursive algorithm

1Punk, Allais, and Sachdev, 2015
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the be applied 3N × M times. Luckily there are a two ways to reduce the amount
of states needed for calculations. The first one, which can also be applied to the un-
doped case, is to restrict the Hilbert space to a single topological sector, as described
in section 1.2.4. The topological sector used during this thesis was defined by the
amount of dimer crossings through the red an blue lines in figure 4.6. Keep in mind
that Fermionic and Bosonic dimers are interchangeable for the purpose of finding
the topological sector. The topological sector used for all calculations, later on, is
(even, even).

FIGURE 4.6: This figure shows which paths where chosen to deter-
mine the topological sector of which the covering was part. In this

example the covering is part of sector (odd, even).

4.2.1 Periodic and Twisted Boundary Bonditions

The next principle used to reduce the state space is by using the periodic boundary
conditions. Many of the generated states are in essence different states with a spatial
translation. Using periodic boundary conditions one can relate these by multipli-
cation with a phase factor. If |C〉 is a given base state and |C′〉 is the same state,
but translated by a ~xtrans. Those state then are related as shown in equation 4.5, see
figure 4.7 for an example with ~xtrans = ax̂.

|C〉 = e−i~p·~xtrans |C′〉 (4.5)

Where ~p is the momentum of the state. The sign of the phase factor can be both
negative and positive, but this convention has been chosen for the simulations in
this thesis. By equation 4.5 the state space can be drastically reduced by simply
translating the Fermionic dimer to the origin (and the rest of the covering along
with it). When this is done the amount of timed the recursive algorithm has to be
applied can be reduced from 3N ×M to 3. Instead one has to keep the phase factors
in account, but luckily this adds momentum to the system in a natural way. So not
only can the ground state be found, the ground state can be found as a function of
momentum.

After applying the periodic boundary conditions, information about momentum
can be obtained. The momentum states possible in a finite lattice are limited to N ×
M values, being ~p = n

N~px +
m
M~py with n = 0, 1, ..., N− 1 and m = 0, 1, ..., M− 1. With

~px and ~py the reciprocal lattice vectors. For the triangular case the reciprocal lattice

vectors are ~px = 2π
a x̂ + 4π√

3a
ŷ and ~py = 4π√

3a
ŷ, with~rx = ax̂ and~ry = − 1

2 ax̂ +
√

3
2 aŷ the

(non-reciprocal) lattice vectors. The symbol a is the distance between neighbouring
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eipxa

e−ipxa

FIGURE 4.7: This figure shows two doped coverings that are differ-
ent by only a spatial translation. The Fermionic dimer is coloured
red. The two coverings are related as follows: |Cle f t〉 = e−ipxa|Cright〉,

where a is the distance between neighbouring sites.

lattice sites. By the definition of the the (reciprocal) lattice vectors, the phase factor

e−i(n′~rx+m′~ry)·~p = e−i( n′n
N +m′m

M )2π, which makes the computation simpler.
It is possible to expand on the periodic boundary conditions to allow for more

momentum values using a trick called twisted boundary conditions. Other than
restricting oneself to the aforementioned allowed phase factors, one chooses an arbi-
trary phase to allow for a higher resolution in momentum. These momentum values
then still lay in the first Brillouin zone, off course. This artificial increase of resolu-
tion in momentum is the same as pretending the lattice is larger than it actually is.
All finite size effects of the actual lattice will remain in place. So the state space stays
smaller than what would otherwise be the case for a larger lattice. Additionally, this
means that the effect of one fixed dimer (the Fermionic one, for example) has more
impact on the rest of the dimers than usual. Lastly, the doping does not translate
over well to larger lattices. For a small lattice, a doping of one dimer is larger (rel-
ative to the total amount of particles) than it would be for a bigger lattice. These
effects are usually worse for systems with a long correlation length, but since dimers
on a triangular lattice are described by a Z2 spin liquid2, they generally have a short
correlation length. The expectation is that the effects will acceptable when applied
to a 2x2-lattice. This will be empirically tested in section 4.3.1.

4.2.2 Lanczos Algorithm

From the previous sections it is now clear how the state space is created and how
the Hamiltonian naturally includes momentum into the picture. But just knowing
how to apply the Hamiltonian does not lead to the ground state, yet. To go from an
arbitrary state to the ground state an algorithm will be used, called the Lanczos algo-
rithm (not to be confused with the Lanczos block algorithm or Lanczos resampling).
This is a fairly well-known algorithm used to find the eigenvalues of Hermitian n× n
matrices. In this case this matrix is the Hamiltonian (with n the number of states in
the state space). Every iteration of the algorithm finds one new eigenvalue of the
matrix, eventually finding them all (after n steps).

This algorithm uses the fact that there is always a highest eigenvalue in a finite
state space. A simplified version of the algorithm takes both the Hamiltonian and
beside that real number larger than the highest eigenvalue: λ+. Then a random
normalised vector (v0) is chosen to begin with. The simplified algorithm is shown in
equations 4.6 to 4.8.

2Moessner and Raman, 2008
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v′i = (λ+ − H)vi1 (4.6)

vi =
v′i
|v′i|

(4.7)

λi = 〈vi, Hvi〉 (4.8)

The vi are the normalised versions of v′i, and λi is the energy of vi. Since λ+ is larger
then any eigenvalue of H, 〈veigen, (λ+ − H)veigen〉 will always be larger than 0, with
the lowest eigenvalue giving the largest contribution. When this algorithm is re-
peated, the prefactor of each eigenvector will be (λ+−λeigen)

n after n steps. This fac-
tor will grow the fastest for the lowest eigenvalue (the ground-state-eigenvalue), so
eventually all other contributions will be negligible. After enough (no upper limit)
iterations vi wil be the ground state: limi→∞ vi = vground and limi→∞ λi = λground.
This simplified version of the algorithm works, but is rather slow. When this was
tested on a 2× 2-lattice for Rokhsar-Kivelson Hamiltonian along the RK-line, with a
known ground state energy of 0. This algorithm took around 350 iterations to be at
a precision of 10−5.

The (actual not-simplified) Lanczos algorithm is a lot faster than the simplified
version, though a bit more complex. This algorithm, too, begins with an arbitrary
normalised ground state v0, and going to v1 works the same. From there the algo-
rithm deviates from the previous version by following the steps shown in equations
4.9 to 4.12.

αi = 〈vi, Hvi〉 (4.9)
v′i+1 = (H − αi)vi − βi−1vi−1 (4.10)
βi+1 = |v′i+1| (4.11)

vi =
v′i
|v′i|

(4.12)

Keep in mind that if one chooses β0 = 0, the first step is reduced to the simplified
case from equation 4.6 to 4.8. Keep in mind that both this algorithm and the previous
version assume that v′i 6= 0. When applying the algorithm, this is practically always
true, so if this would happen, the program would give an error. One can continue by
choosing (if v′i = 0) a new arbitrary normalised vector for vi, which is orthogonal to
all vj with j < i. This last part was not necessary to implement since the probability
of this happening is near zero.

T =



α0 β1 0
β1 α1 β2

β2 α2
. . .

. . . . . . βn−2
βn−2 αn−2 βn−1

0 βn−1 αn−1


(4.13)

The energy of the vectors vi obtained in by executing the Lanczos algorithm is equal
to the value βi. Unlike the previous algorithm this value is not the parameter that
will slowly converge to the ground state. To find the ground state, all found values αi
and βi are needed in the form of a tridiagonal matrix T, as seen in equation 4.13. This
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is the Matrix after n iterations. Keep in mind that other sources might start at i = 1,
rather than i = 0 The tridiagonal matrix works on the vector space consisting of the
span of vi, which is n + 1-dimensional. The n + 1 eigenvectors and eigenvalues of T
are eigenvectors and -values of H as well. So solving the eigenvalue problem for T
gives n + 1 of which the lowest can be selected. This algorithm strictly guarantees
that for a D-dimensional Hamiltonian in D steps (giving values 0, 1, ...D− 1 for i) all
eigenvalues can be found. Finding the ground state energy (lowest eigenvalue) is in
practice a lot faster. Choosing the lowest eigenvalue quickly converges to the real
ground state eigenvalue. For the RK-line, with an exact ground state energy of 0, the
algorithm takes about 100 iterations to reach a precision 10−15, which is less than the
numerical precision of the program itself.

4.3 Results

The first few tests were done on the undoped dimer model around the RK-point,
mostly to act as a control experiment. At the RK-point and at v > |t| the systems
quickly converge to zero ground state energy, as expected. At values where 0 <
v < |t| the energy was negative, more so when v got smaller, and as a last test for
v < −|t|, the the ground state energy went to 1

2 Nv. Hence, the program quickly
passed the undoped test.

FIGURE 4.8: This figure shows the Fermionic dispersion of a 4× 4-
lattice with a resolution of 12 and Hamiltonian parameters similar to
those used in Punk, Allais, and Sachdev, 2015. Both figures show the

same data from a different angle.

The interesting results begin when the doping is turned on (one single Fermionic
dimer on the lattice) and the twisted boundaries are applied. Before going there
it is important to set some standards for all results from here on, unless explicitly
specified otherwise. First: all data, except part section 4.3.1, is generated using a
4× 4-lattice and twisted boundary conditions. The “resolution” of an image, is the
multiplier for the that determines the effective lattice size after applying twisted
boundary. To be completely explicit: if a figure is made using resolution R, the
amount of sites on the effective lattice will be 4R × 4R. The figure will consist of
(4R + 1) × (4R + 1) data points, since the boundary is included on all sides. The
values for momentum are always given to be between null and 2π, as if the lattice
has size 1 (not the lattice constant, the size of the entire lattice). All data points are
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calculated up to 100 lanczos iteration, or to the point where a new Lanczos iteration
makes a difference in energy of less than 10−9 (less than numerical precision for
the output). In figure 4.8 an example is given with a resolution of 12, making it an
effective 48× 48-lattice.

4.3.1 Estimating the Effects of Twisted Boundary Conditions

It may not come as a surprise that using a high resolution comes at the cost of los-
ing precision. This because the original lattice and state space will be significantly
smaller than the lattice that is being imitated. To give an estimate of the discrepancy
between the actual lattice and the twisted boundary version, figure 4.9 shows the
comparison between an actual 6× 6-lattice and a 6× 6-lattice imitated by a 4× 4-
lattice with twisted boundaries.

FIGURE 4.9: This figure shows both a real 6 × 6-lattice (left) and a
4× 4-lattice (right) twisted to have the effective size of a 6× 6-lattice.

The data is shown under different angles for better comparison.
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Comparing the 6× 6 lattice with the twisted 4× 4 lattice from a visual standpoint
shows quite some similarity. The corners, (n2π, m2π) with n and m integer, are the
lowest point in both cases with a value of approximately −2.5. From the corner to
the middle, the energy quickly increases to around −2.25 for the 6× 6-lattice and
around −1.9 for the twisted 2 × 2-lattice. Then, further to the middle the value
goes down to roughly −2.35 and −2.2, respectively. The dale in the middle is more
expressed in the 6 × 6-lattice, but it is observable in both cases. Because of low
resolution it is hard to say whether the ring around the middle that is clearly visible
in the higher resolution version of the 4× 4-lattice (figure 4.8) is present on the 6× 6-
lattice, though it does not seem that way. A way to quantify the difference between
the real 6× 6-lattice and the twisted 4× 4-lattice, is to plot their ration for each point
on momentum space in a graph, as done in figure 4.10.

FIGURE 4.10: This figure shows the the ratio of the dispersion rela-
tion for the 6× 6-lattice and the twisted 4× 4-lattice as a function of

momentum (E6×6(p)/Etwisted(p)).

Apart from the corners, where the ratio E6×6(p)/Etwisted(p) seems to be 1, the
value of E6×6(p)/Etwisted(p) seems to vary between 0.95 and 0.85. So a deviation of
roughly 10% seems to be correct, for the twisted lattice. This difference will likely
get larger when the resolution increases, though the obtaining numerical evidence
for this would take outrageously long.

Even though an error of 10% is rather large, the twisted 4× 4-lattice is still the
optimal lattice to use for calculations. The reason for this, is that the data for the
twisted 4× 4-lattice took less then 9 seconds to generate and the data for the 6× 6-
lattice was generated over the course of 3 days (on a faster computer, evident from
executing the same programs om both). Because the amount of time save is so mas-
sive, and the generated error by using the twisted boundaries was only 10%, it is still
worthwhile to do analysis using the twisted boundaries, as long as the numbers are
not taken too precisely.

There is one additional difference between the 4×- and 6× 6-lattice other than
the scale. As shown in section 4.1.3, there are no staggered states on a 6× 6-lattice,
while there always are staggered states on 2n × 2n-lattices with even n. Because
of this, taking a lattice without staggered states may potentially increase the error
when trying to twist a lattice with staggered states into it.
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4.3.2 Deviating from the RK-Line

The most obvious place to start looking at dispersion relations, is near the RK-line.
On the RK-line everything is zero, and small deviations near the near the line are
easy to predict. To begin, look at figure 4.11.

FIGURE 4.11: This figure shows the dispersion relation at the
Fermionic RK-line, with a resolution of 6.

Figure 4.11 shows the very flat dispersion relation on the RK-line. Do not get
confused, the difference in colour is smaller than 10−8, all deviation from naught
is only due to the fact that not every point converges at the exact same speed. If
patterns seem periodic, this is due to the fact that they are, and this fact is used. So
the relatively dark blue points around the centre are the same deviation, repeated
multiple times. The symmetry of the system has been used to avoid calculating
points, that are guaranteed to be the same, twice. All other versions of the RK-line
(with t = −1, trotation = 1 or both) give the same result, with deviations smaller than
10−8.

FIGURE 4.12: This figure shows the top view of the dispersion rela-
tions shown in figure 4.13, for δu < 0.06.
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Adding a perturbations to the RK-line can be done as described in section 3.2.1.
Which in this case means adding a value δu to t f lip, making t f lip = 1+ δu, since other
deviations are no dimer swaps. According to equation 3.50 and 3.55 the resulting
energy ε(p) should scale linearly with δu. Figure 4.13 shows four different dispersion
relations, from δu = 0.0001 to δu = 0.1 in powers of ten. The figures for δu =
0.01 and smaller look identical, up to scale, yet the figure where δu = 0.1 shows a
“dent”. Repeating this for different values of δu indicates that the transition happens
between δu = 0.062 and δu = 0.065, which gives an upper bound for δu above the
first order perturbation theory done in section 3.2.1 does no longer hold. Being more
precise about this is not useful, since there will be a difference due to the twisted
boundaries anyways.

FIGURE 4.13: This figure shows dispersion relations for different val-
ues of δu at a resolution of 6. The top view for the first three is shown

in figure 4.12.

The results in figure 4.13 are all done with positive perturbations, letting δu be
negative gives the results shown in figure 4.14. The shape of the results is the same
as for 0 < δu < 0.06, but with the opposite sign (as it should be). When δu starts
getting bigger (more negative) it starts deviating from this shape. This is clearly
visible in for δu = −0.25, though is subtly showing for δu = 0.1 as well. When trying
to find the values for which the assumption holds, it seemed that around δu = −0.06
it started to deviate. So the first order perturbations theory seems to hold for roughly
−0.06 < δu < 0.06.

When instead perturbing trotation, rather than t f lip, the results seems to look simi-
lar in shape to the previously discussed results. See figure 4.15 for an example with
trotation = −1 + δu, for δu = ±0.01. Even though the shape of the graphs is similar,
there is one main difference. For positive (or negative) δu, the entire dispersion rela-
tion is above (or below) zero, though for perturbations in t f lip, this was around zero



4.3. Results 57

FIGURE 4.14: This figure shows dispersion relations for different val-
ues of δu at a resolution of 6.

(half above, half below). This suggests that even though this energy is not given by
equation 3.50, it very well may be similar in form.

The exploration of the first order perturbations are by no means conclusive ev-
idence about the correctness of equations 3.50 and 3.55. It does, however indicate
that the ground state of the extended RK-line is somewhat stable when it comes
to deviations. Since this ground state energy is nil, all perturbations in first order
δuH′ will give an energy proportional to δu, as long as the first order approximation
holds. Which is equivalent to saying that the ground state does not change. Hence,
the ground state is stable for small perturbations. To definitively prove that

4.3.3 Further Discussion

Something that is hard to see on the figures in section 4.3.1 and 4.3.2 is the hexagonal
structure of the first Brillouin zone. This is mostly because the shape in which the
data is presented is a slightly deformed parallelogram. This is done to present the
data in a clearer way, but the downside is that the horizontal and vertical axes are no
longer scaled one-to-one. To show the hexagonal structure of the dispersion relation
of one of the previous images (where t f lip = 1.01), figure 4.16 is made. It shows
a hexagonal structure, with the origin as its centre, by using the periodicity of the
dispersion.

To prove that the dispersion has a hexagonal structure, note that the maxima of
the dispersion are at the corners of the parallelogram (in all previous dispersions).
The first corner is located on the origin, while the second is located along the y-axis,
at a distance of 4√

3
π. The third is located at (2π, 2√

3
π), which is a distance of 4√

3
π

away from the first two corners. So these three points form an equilateral triangle.
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FIGURE 4.15: This figure shows dispersion relations for the pertur-
bations trotation = 1 + 0.01 (left) and trotation = 1 − 0.01 (right) at a

resolution of 6.

FIGURE 4.16: This figure shows the hexagonal structure of the disper-
sion relation, by showing the four Brillouin zones around the origin.

The resolution of this image is 6.

The last maximum lies a distance of 4√
3
π above the third, at (2π, 2√

3
π), which lies at

the same distance away from the second point, forming another equilateral triangle.
By now it is clear that the code written for this thesis is capable of producing

dispersion relations. Beside the obvious value of this, namely: finding said disper-
sion relations, these results can be used to find the size of the Fermi surface. This is
simply done by setting the chemical potential to a given value, and finding the con-
tour of where the dispersion is equal to this chemical potential. The reason that this
is valuable is that this is something that can be measured with the photo-emission
spectrum. This creates a way to experimentally verify the validity of the numerical
predictions made in this thesis.
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Chapter 5

Conclusions and Outlook

In chapter 2 of this thesis, an exact expression is found for the classical two-variable,
or single-dimer, correlations on the triangular lattice. Using Wick’s theorem they
can be used to find any more-dimer correlation. This expression can be, and is,
numerically evaluated to find that the classical dimer-dimer correlations decay ex-
ponentially. Which is consistent with earlier predictions1.

Chapter 3 introduces a Fermionic dimer to the system introduced in chapter 1.
Because of this, the triangular RK-Hamiltonian is expanded and, along the extended
RK-line, the exact ground state is found (for large lattices). This system can be ana-
lytically perturbed to find that each Fermionic adds a new energy term. Unlike the
square lattice, however, it is not possible to find critera for which the system can be
seen as a Fermi liquid of quasi-particle excitations.

In chapter 4 a program is described that finds the ground state for a given tri-
angular Hamiltonian. This is then used to explore the perturbed and unperturbed
Hamiltonians described in chapter 3. The program shows a lot of potential and
seems to work very well, both on and around the RK-lineTo properly show whether
the analytical predictions made are correct or not, one could use a program like
Mathematica to compare the exact expression for ε(p) with the numerical results.
In addition to this, taking a contour of the dispersion at a given height allows for
experimental verification of the theory.

1CHECK
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