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Physics of arbitrarily doped Kondo lattices: From a commensurate insulator to a heavy Luttinger
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We study one-dimensional Kondo lattices (KLs) which consist of itinerant electrons interacting with Kondo
impurities (KIs)—localized quantum magnetic moments. We focus on KLs with isotropic exchange interaction
between electrons and KIs and with a high KI density. The latter determines the principal role of the indirect
interaction between KIs for the low-energy physics. Namely, the Kondo physics becomes suppressed and all
properties are governed by spin ordering. We present a comprehensive analytical theory of such KLs at an
arbitrary doping and predict a variety of regimes with different electronic phases. They range from commensurate
insulators (at filling factors 1/2, 1/4, and 3/4) to metals with strongly interacting conduction electrons (close to
these three special cases) to an exotic phase of a helical metal. The helical metals can provide a unique platform
for realization of an emergent protection of ballistic transport in quantum wires. We compare our theory with
previously obtained numerical results and discuss possible experiments where the theory could be tested.
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I. INTRODUCTION

A Kondo lattice (KL) is a dense D-dimensional array
of local quantum moments (Kondo impurities) interacting
with conduction electrons. KLs have been intensively studied
during the past two decades in different regimes and contexts,
starting from physics of the Kondo effect and magnetic sys-
tems to topological insulators and the emergent protection
of the ideal transport; see reviews [1–3] and Refs. [4–34].
There is a long-standing question whether the physics of
KLs may resemble that of solitary magnetic impurities in a
nonmagnetic host. The model does follow this scenario for
D → ∞ [35]. At intermediate values of D > 1 the physics of
KLs is believed to be determined by the competition between
the Kondo screening and the Ruderman-Kittel-Kosuya-Yosida
(RKKY) [36] interaction, as illustrated by the famous Do-
niach’s phase diagram [4]. It has been suggested that, if the
RKKY interaction wins, the system orders magnetically or,
perhaps, becomes a kind of spin liquid. In one dimension,
where long-range magnetic order does not occur, things may
be more interesting. The physics of the one-dimensional (1D)
KLs is the subject of the present paper.

The phenomenological Doniach’s criterion states that the
RKKY interaction wins in one dimension when the distance
between the spins is smaller than a crossover distance:

ξs < ξcr ∼ ξ
[
ϑ (EF )J2

K/TK
]1/2

,

where ξ is the lattice constant, JK is the exchange integral,
ϑ (EF ) is the density of states at the Fermi level, and TK is
the Kondo temperature. If ϑ (EF )JK < 1 and the Coulomb
interaction is absent (or weak) then ϑ (EF )J2

K/TK � 1 and
ξcr � ξ . The range ξ � ξs � ξcr corresponds to the dense
KL whose physics is dominated by RKKY. We focus on this
regime in the present paper.

One of the first results for a rotationally invariant 1D KL
was obtained by one of us as early as 1994 [12]. It was shown
that, in the 1D KL with a high density of Kondo impurities
(KIs) at half filling and relatively small Kondo coupling, JK �
D, EF (D is the bandwidth), there is really no competition: the
RKKY interaction always overwhelms the Kondo screening
and the physics is governed by the electron backscattering
from the short-range antiferromagnetic fluctuations. Numeri-
cal results of Ref. [19] confirm the absence of the Kondo effect
for a much larger range of parameters. For strong coupling,
JK/EF > 1, the ferromagnetism dominates. At smaller values
of JK/EF � 1, there are two paramagnetic regions separated
by a narrow ferromagnetic one; see the upper panel of Fig. 1.
The position of the maximum in the momentum-dependent
structure factor of the spins is different above and below this
intermediate ferromagnetic region. At larger JK , the maximum
is located at π/ξs − 2kF , with kF being the Fermi momentum
of the band electrons. Such a peak position corresponds to the
scenario where both the local moments and the conduction
electrons contribute to the Fermi-surface (FS) volume (the so-
called large FS). On the other hand, at small JK , the maximum
is at 2kF . It was suggested in Ref. [19] that this corresponds to
the small FS. However, we will argue that the state at a generic
filling is 4kF -charge density wave (CDW) with short-range
spin fluctuations centered at 2kF . The Friedel oscillations
at 4kF do not distinguish between large and small FS. The
large FS has been also found in the recent density-matrix
renormalization-group study conducted away from 1/4, 3/4,
and 1/2 fillings for the relatively large JK , Ref. [34]. The
authors of this paper have reported the existence of a heavy
Tomonaga-Luttinger liquid (TLL) with gapless charge and
spin excitations and Friedel oscillations at k∗

F = π/2ξs − kF .
We will argue that the RKKY interaction generically dom-

inates in 1D dense KLs. For KLs with magnetic anisotropy,
it has been demonstrated in our previous publications [37,38]
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FIG. 1. Upper panel: a cartoon illustrating the weak and the mod-
erate coupling regimes of the phase diagram obtained numerically
for 1D KL in Ref. [19]. The two shaded regions are ferromagnetic
phases. The region called “Polaronic Liquid” corresponds to the
large Fermi surface whose volume incorporates both conduction and
localized electrons. The Kondo effect is suppressed in all regions.
The orange box marks the range of parameters considered in the
present paper. Central and lower panels: phase diagrams of 1D KL
obtained for small JK/EF ; see explanations in Sec. V.

for the case of incommensurate filling. Reference [37] con-
tains renormalization-group arguments which demonstrate
suppression of the Kondo effect.

The Kondo effects can dominate in the 1D KL only under
some specific conditions, e.g., for small concentrations of lo-
cal moments, strongly broken SU(2) spin-rotation symmetry,
and strong Coulomb interactions [39] or strongly enlarged
symmetry [SU(N) instead of SU(2) with N � 1] [16].

The surest indication of the RKKY-dominated physics is
that it is insensitive to the sign of JK but, at the same time,
is very sensitive to doping and anisotropy of the Kondo cou-
pling. For example: (i) KL at half filling is an insulator with
gapped or critical spin excitations; (ii) at quarter filling, KL
is also an insulator but with a strong tendency for spin dimer-
ization [25]; (iii) at incommensurate filling, KL with gener-
alized SU(N) symmetry for large N � 1 has been predicted
to be TLL [16]; (iv) the anisotropic incommensurate KL is
also described by TLL either with a spin-charge separation
(easy-axis anisotropy) or with a separation of different helical
sectors (easy-plane anisotropy) [37,38]. The latter phase is
characterized by broken helical symmetry of fermions which
governs a partial protection of ballistic transport against ef-
fects of disorder and localization. We remind the readers that
helicity of 1D electrons is defined as the sign of the product
of their spin and chirality.

We will consider the isotropic case with SU(2) symmetry
and, thus, complete the picture of the RKKY dominated
physics in the dense 1D KL. Many of the prominent features

of 1D KL have been observed only in numerical studies. The
goal of the present paper is to develop an analytical approach
for the region of JK/EF � 1, see Fig. 1, where numerical
calculations are difficult to perform, but analytical methods
become very powerful. By utilizing various field-theoretical
methods, we have developed a fully analytical and controlled
description of the dense 1D KLs at arbitrary doping. We
will show below that 1D KL can form three distinct phases:
(i) the insulator at special commensurate fillings, (ii) a usual
metal formed by interacting electrons when the band filling
is close to the special commensurate fillings, or (iii) 4kF

charge-density-wave (CDW) state with gapped spin excita-
tions. Remarkably, the third phase can also be described as a
metal where the transport is carried by helical Dirac fermions.
We have determined conditions under which one or another
conducting phase appears. In particular, interacting spinful
fermions (either a Fermi liquid or TLL) always exist close
to the commensurate insulator and form a usual 1D metal. If
the Kondo coupling is relatively large, this phase exists at any
generic filling and becomes the heavy TLL.

The 4kF -CDW phase with helical transport can exist only
at JK � EF far from the commensurate insulator. Therefore,
it can be detected only when parameters are properly tuned.
On the other hand, it is very notable because it possesses
an emergent protection against disorder and localization. The
emergent protection caused by interactions is well known and
attracts the ever-growing attention of theoreticians [37,38,40–
50], and experimentalists [51–54]. To the best of our knowl-
edge, all previously known examples were found in the sys-
tems with broken (either spontaneously or at the level of the
Hamiltonian) SU(2) symmetry. Our finding is interesting from
this point of view because we predict such a protection to
appear in the rotationally invariant system.

We note in passing that a competition of the RKKY inter-
action with a direct Heisenberg exchange in a dense 1D KL
introduces an additional level of complexity and can lead to
the appearance of exotic phases with a nontrivial spin order,
such as a chiral spin liquid [55] or a chiral lattice supersolid
[56].

The rest of the paper is organized as follows: Section II
describes the model used in our study. The method and sepa-
ration of fast and slow variables are explained in Secs. III and
IV, respectively. Section V contains a brief and nontechnical
summary of our results at the semiclassical level. Section VI is
more technical as it is devoted to the detailed field-theoretical
description of all phases in KL. In Sec. VII, we discuss
possible numerical studies and experiments related to our
theory. Section VIII contains conclusions. Technical details
are presented in the Appendices.

The semiclassical analysis and the protected transport in
the 4kF CDW phase are addressed in detail in Ref. [57]. In the
present paper, we concentrate mainly on the quantum theory
which allows us to analyze the phase diagram of the KL.

II. MODEL

We start from the standard KL Hamiltonian:

Ĥ =
∑

n

[−t (ψ†
n ψn+1 + H.c.) − μψ†

n ψn + JKψ†
n (σ, Sn)ψn],

(1)
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where ψn ≡ {ψn,↑, ψn,↓}T are electron annihilation (ψ†
n , cre-

ation) spinor operators; Sn are quantum spins with magnitude
s; σ ≡ {σx, σy, σz} are Pauli matrices in the spin space; t
and μ are the electron hopping and the chemical potential,
respectively; summation runs over lattice sites. For simplicity,
we do not distinguish constants of KI and crystalline lattices,
ξs = ξ . We also assume that sJK � D where D = 2t and
consider only low temperatures, T → 0.

III. METHOD

Our approach proceeds in several steps. First, we treat the
spins classically and find spin configurations which minimize
the free energy. Second, we identify degrees of freedom
whose fluctuations are gapped, including gapped fermionic
sectors and spin variables [|m| and α in Eq. (4) below] and
integrate out the gapped variables perturbatively. Remaining
spin fluctuations [described by vectors ea in Eq. (4)] receive
the fully quantum-mechanical treatment. This approach is
justified by the separation of scales: the shortest scale is
determined by the inverse Fermi momentum 1/kF , which
is present in the spin ordering and is assumed to be much
smaller than the coherence length of the gapped variables. The
latter is defined by the inverse gap. The semiclassical results
are conclusive if the self-consistency check confirms that the
coherence length is always much larger than 1/kF . Such a
check is presented in Sec. VI and it concludes the proof of
validity of the semiclassical results.

IV. SEPARATING SLOW AND FAST VARIABLES

We are going to derive an effective action for the low-
energy sector of the theory. The crucial step is to single
out smooth modes. It is technically convenient to restrict
ourselves to the case |μ|, |JK | � t which allows us to linearize
the dispersion relation and introduce right- and left-moving
fermions, ψ±, in a standard way [58]. In the continuous limit,
the fermionic Lagrangian density takes the form

LF [ψ±] =
∑
ν=±

ψ†
ν ∂νψν ; ∂± ≡ ∂τ ∓ ivF ∂x. (2)

Here vF is the Fermi velocity, ν is the chiral index which
indicates the direction of motion, ∂ν is the chiral derivative,
and τ is the imaginary time.

Following Refs. [12,37,38], we keep in the electron-KI
interaction only backscattering terms which are the most
relevant in the case of the dense 1D KL. The part of the
electron-KI interaction describing the backscattering on the
site n reads as

Lbs(n) = JK [R†
n(σ, Sn)Lne−2ikF xn + H.c.];

R ≡ ψ+, L ≡ ψ−; xn ≡ nξ . (3)

At large interimpurity distance, the backscattering with a spin
flip is a part of the Kondo screening physics. However, as
we show below, the physics of dense KL is quite different.
This will be proven by insensitivity of all answers to sgn(JK ).
The Kondo screening is suppressed in our model if TK �
JK � vF /ξ . The second inequality is important to accomplish
separation of the fast and the slow modes [37,38].

Lbs(n) contains fast 2kF oscillations which must be ab-
sorbed into the spin configuration. We perform this step in the
path-integral approach where the spin operators are replaced
by integration over a normalized vector field. We decompose
this field as

Sn/s = m + b[e1 cos(α) cos(qxn + θ )

+ e2 sin(α) sin(qxn + θ )]
√

1 − m2 . (4)

where q � 2kF , θ is a constant (coordinate independent)
phase shift; {e1, e2, m} with |e1,2| = 1 is an orthogonal triad
of vector fields whose coordinate dependence is smooth on
the scale 1/kF . The constant b and the angle α must be chosen
to solve normalization |S/s| = 1. Equation (4) is generic
and it allows only for three possible choices of b, α, and
θ determined by the band filling: either 1/2, qxn = 2kF xn =
πn ⇒ b = 1, θ = α = 0, or 1/4, qxn = 2kF xn = πn/2 ⇒
b = √

2, θ = π/4, or a generic one, b = √
2, θ = 0, α =

π/4 [57].
Using the machinery of advanced field-theoretical methods

becomes easier if the vectors e1,2 are expressed via a matrix
g ∈ SU(2),

e1,2,3 = 1
2 tr[σgσx,y,zg

−1]; (5)

see Appendix A. g is a smooth function of x and τ and it
governs the new rotated fermionic basis

R̃ ≡ g−1R, L̃ ≡ g−1L;

LF [R̃, L̃] = R̃†(∂+ + g−1∂+g)R̃ + L̃†(∂− + g−1∂−g)L̃. (6)

The Jacobian of this rotation is given in Appendix B.
Now we insert Eq. (4) into Eq. (3), select the nonoscillatory

parts of Lbs for the three above-mentioned cases, and take
the continuous limit. This yields the smooth part of the
Lagrangian density:

L(1/2)
bs = J̃

√
1 − m2(R̃†σxL̃ + H.c.); (7)

L(1/4)
bs = J̃

√
1−m2

√
2

(eiπ/4R̃†[cos(α)σx + i sin(α)σy]L̃ + H.c.);

(8)

L(gen)
bs = J̃

√
1 − m2(R̃†σ−L̃ + H.c.). (9)

Here the superscript of Lbs denotes the band filling; J̃ ≡
sJK/2, and σ± = (σ1 ± iσ2)/2. Note that the low-energy
physics of KLs with the 1/4 and 3/4 filling is equivalent in our
model with the fermionic spectrum being linearized near the
Fermi points. Therefore, we often discuss only quarter filling
in the text and do not repeat the same discussion for the case
of the 3/4 filling.

One can give the following interpretations to the above
introduced spin configurations: Equation (7) corresponds to a
staggered configuration of spins at half filling, ↑↓, which was
studied in Ref. [12]. One of us has shown in this paper that the
spin sector of the half-filled KL is an antiferromagnet where
the spins fluctuate around the Néel order with a finite corre-
lation length. Equation (8) assumes a two spins up–two spins
down configuration, ↑↑↓↓, which agrees with the spin dimer-
ization tendency observed numerically in Ref. [25] at quarter
filling. Equation (9) is a rotationally invariant counterpart of
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(a) (b)

(c) (d)
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FIG. 2. (a),(b) Ground state of fermions R̃, L̃ with zero chemical
potential (green region) before and after opening the gap at the level
of μ. (c),(d)Ground state of the fermions for the case of a finite
positive chemical potential. The red regions mark the states between
the gap and the chemical potential which can form Tomonaga-
Luttinger liquid. Panel (e) exemplifies a coexistence of the gapped
(black lines) and the gapless (orange and blue lines) helical fermions.

the helical spin configuration discovered in Refs. [37,38] in
the anisotropic KL at incommensurate fillings. The spins fluc-
tuate around this spiral. The fluctuations are described by an
effective action derived below in Sec. VI. A simplified version
of the spin configuration Eq. (9) was used also in Ref. [7]
for analyzing the phase diagram of a KL at the level of the
mean-field approximation. We emphasize, however, that our
approach is more advanced and generic since it has allowed us
to go much further, namely, to derive the low-energy effective
action and to take into account quantum fluctuations for all
phases.

Backscattering of the Dirac fermions {R̃, L̃} opens a gap,
� ∝ J̃

√
1 − m2, in their spectrum. If the gap is opened at (or

close to) the Dirac point, defined by the level of the chemical
potential, it decreases the ground-state energy of the fermions;
see Figs. 2(a)–2(d). The larger the gap, the stronger is the gain
in the fermionic energy:

δEGS = −ϑ0 ξ
∑

k=1,2

�2
k ln(D/|�k|); (10)

see Eqs. (11)–(13) below and Ref. [57]. Here, ϑ0 = 1/πvF

is the density of states of the 1D Dirac fermions and the
sum runs over two fermionic (helical) sectors. Since the spin
degrees of freedom do not have kinetic energy the minimum
of the ground-state energy is reached at the maximum of the
fermionic gap. This indicates that |m| is the gapped variable
and has the classical value m0 = 0.

V. SEMICLASSICAL ANALYSIS

Let us for the moment neglect all quantum fluctuations
and briefly repeat the semiclassical analysis which has been
presented in Ref. [57]. The KL contains two fermionic sectors
which can have different gaps depending on the band filling
and the spin configuration. The gaps can be found from
Eqs. (7)–(9):

L(1/2)
bs : �

(1/2)
1,2 = J̃; (11)

L(1/4)
bs : �

(1/4)
1,2 = J̃[cos(α) ± sin(α)]/

√
2; (12)

L(gen)
bs : �

(gen)
1 = J̃, �

(gen)
2 = 0. (13)

At special commensurate fillings, 1/2 and 1/4, the minimum
of the ground-state energy is provided by those spin configura-
tions which open the gaps at the Dirac point of both fermionic
sectors, i.e., by the commensurate configurations Eqs. (7) and
(8) [with α = 0, π/2] for the 1/2 and 1/4 filling, respectively.
Note that α is gapped at quarter filling. The conduction band
of these commensurate KLs is empty [see Fig. 2(b)] and,
hence, they are insulators, as expected.

The commensurate spin configurations minimize the
ground-state energy also in a vicinity of half and quarter
fillings. This means that the wave vector q of the spin modes
remains commensurate, Eqs. (7) and (8), and is slightly shifted
from 2kF : 2kF − q ≡ Q � 1/ξ . This case can be described in
terms of backscattered Dirac fermions which, unlike the stan-
dard approach describing 1D systems, have nonzero chemical
potential:

L̄ = LF [R, L] + L( f )
bs [R, L] − (vF Q/2)(R†R + L†L), (14)

where f = 1/4, 1/2. To be definite, we analyze the upward
shift of the chemical potential, see Fig. 2(c), and the down-
ward shift can be studied in much the same way. Backscat-
tering caused by the commensurate spin configuration opens
the gap which is now slightly below the level of μ. The states
with energies 0 < E � vF Q/2 are pushed above the gap; see
Fig. 2(d). These electrons have an almost parabolic dispersion:

E+(k)|vF |k|<|J̃| � |J̃| + (vF k)2/2|J̃|. (15)

Since this new phase possesses a partially filled band it is a
metal. Its metallic behavior originates from the spin configura-
tion whose classic component is governed by only one slowly
rotating vector, e.g., e1, and, therefore, is close to the collinear
one. We will reflect this fact by referring to such phases as
“collinear metals” (CMs).

The CM becomes a less favorable phase when |Q| in-
creases. This is obvious from Fig. 2: the energy of the elec-
trons in the upper band

Ep � ξ J̃k∗
F /π + ξv2

F (k∗
F )3/6π J̃;

becomes large when k∗
F = Q/2 increases. If |Q| is large

enough

|Q| > Qc ∼ J̃/vF , (16)

the minimum of the ground-state energy is provided by the
general spin configuration, Eq. (9). We would like to empha-
size that the spin configuration cannot change gradually. The
switching from the commensurate to the generic configuration
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is always abrupt and, therefore, Qc is the point of a quantum
phase transition.

If J̃/vF � 1/ξ , there is always a parametrically large
window of the band fillings where the new phase is realized
instead of the CM; see the central panel of Fig. 1. In the oppo-
site case of large J̃ , this window shrinks to zero and the CM
dominates at all fillings excluding two special commensurate
cases 1/2 and 1/4; see the lower panel of Fig. 1. This allows us
to surmise that the CM, which we have predicted, corresponds
to the “polaronic liquid” reported in Ref. [19] for the case
JK ∼ EF . The detailed theory of KL with large JK is beyond
the scope of the present paper.

The remaining case of generic filling, Eq. (9), is the most
prominent for transport because rotated fermions are gapped
only in one helical sector, e.g., R̃↓, L̃↑, and the second helical
sector, R̃↑, L̃↓, remains gapless; see Eq. (13) and Fig. 2(e).
This means that the helical symmetry of the fermions R̃, L̃ is
broken on the semiclassical level. The semiclassically broken
helical symmetry is restored by the fluctuations. The rotating
matrix field g(x, τ ) slowly changes in space and time around
the underlying spin spiral. This results in a state with a
gapped spin sector, see Sec. VI below, and a gapless (helical
fermionic) charge sector. Hence, the spin configuration can be
characterized only as a local helix. To reflect this, we refer
to the KLs with the locally broken helicity as helical metals
(HMs). It has been shown in Ref. [57] that the HMs inherit the
symmetry protection of those KLs where the helical symmetry
is broken globally [37,38]; see also the discussion in the next
section.

VI. QUANTUM-MECHANICAL THEORY

Before presenting the quantum-mechanical approach,
let us summarize its key steps. First, we integrate out
gapped fermions, exponentiate the fermionic determinant as
Tr ln[Ĝ−1

0 + Ĝ + δ�̂], with

Ĝ−1
0 =

⎛
⎜⎝

∂+ 0 0 �2

0 ∂+ �1 0
0 �1 ∂− 0

�2 0 0 ∂−

⎞
⎟⎠, (17)

describing the fermions in the case of the classical configura-
tion of spins. Spin and gap fluctuations are contained in matri-
ces Ĝ = diag(g−1∂+g, g−1∂−g) and δ�̂ respectively; detailed
definitions are given in Appendix C. To derive the effective
theory, we add to the exponentiated determinant the Jacobian
of the SU(2) rotation and expand obtained Lagrangian in
gradients of the matrix g and in small fluctuations of |m|
around its classical value m0 = 0. The commensurate spin
configuration, which corresponds to 1/4 filling, requires also
the expansion in fluctuations of α.

Next, we reinstate the Wess-Zumino term for the spin field
[59], which is required by the quantum theory,

LWZ = is
∫ 1

0
du (N, [∂uN × ∂τ N]), (18)

where u is an auxiliary variable, N(u = 1) = S/s and N(u =
0) = (1, 0, 0). We insert the decomposition Eq. (4) into
Eq. (18) and select nonoscillating parts of LWZ. The com-
mensurate spin configurations generate also the topological

term (see Ref. [12], Sec. 16 of the book [59], and references
therein).

Finally, we integrate out fluctuations of |m| (and of α, if
needed) in the Gaussian approximation.

These steps result in the nonlinear σ model (nLSM) in 1 +
1 dimensions, which describes the spin degrees of freedom.
We will argue that the theory which we suggest is stable.

The nLSM depends on the band filling. Its derivation
is rather lengthy but standard. Therefore, we will present
in the main text only answers and explain the algebra in
Appendices C–F.

A. Insulating KL at special commensurate fillings

The Lagrangian of the σ model at the special commensu-
rate fillings takes the following form:

L( f ) = 1

2g f

[
(∂τ e1)2

c f
+ c f (∂xe1)2

]
, (19)

where “ f ” denotes the band filling, either 1/2 or 1/4, c f =
vF g f /4π is the renormalized velocity of the spin excitations
and g f is the dimensionless coupling constant:

g1/2 = 4π/

√
1 + s2/(ϑ0ξ J̃ )2ln[D/|J̃|],

g1/4 = 4π/

√
1 + 8s2/(ϑ0ξ J̃ )2ln[

√
2D/|J̃|].

Clearly, the σ model contains only one vector, e1 in our
choice of variables, which governs the fermionic gap. The
second vector, e2, is redundant in the case of the special
commensurate fillings.

The action is given by the sum of the gradient and topolog-
ical terms:

S( f ) =
∫

dτdxL( f ) + Stop, Stop = (2s − 1)iπk. (20)

The integer k marks topologically different sectors of the
theory.

Hence, the spin excitations at the special commensurate
cases are described by the O(3)-symmetric nLSM in (1 + 1)
dimensions with the topological term. Its spectrum depends
on the value of 2s − 1: half integer s are all equivalent to
the zero topological term and integer ones to Stop = iπ . The
O(3) nonlinear sigma model is exactly solvable in both cases
[59–61]. It possesses a characteristic energy scale

E f ∼ |J̃|g−1
f exp(−2π/g f ), f = 1/2, 1/4. (21)

For half-integer s, this scale is the spectral gap of the coherent
triplet excitations whose dispersion has a relativistic form:

half integer s : ε f (p) =
√
E2

f + (c f p)2. (22)

For integer s, E f marks a crossover from the weak-coupling
regime to a critical state [in the field-theoretical language, it is
described by the SU1(2) Wess-Zumino-Novikov-Witten the-
ory with central charge C = 1]. Below E f , such KL behaves
as a spin-1/2 Heisenberg antiferromagnet with incoherent
spin response and gapless excitation spectrum consisting of
spin-1/2 spinons.

We note that, for small J̃ , the energy scale E f is exponential
in 1/|J̃| and, for J̃ > 0, it may be confused with the Kondo
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temperature. However, as we have mentioned above, E f does
not depend on the sign of J̃ which testifies to the fact that the
underlying physics is related to the RKKY exchange and not
to the Kondo screening.

B. KL in a vicinity of special commensurate fillings

We have explained already that the spin configuration
remains unchanged if the band filling is slightly detuned from
one of the special commensurate cases. The interesting fea-
tures of such KLs are caused by the presence of the conduction
electrons. They are coupled to spin modes which can mediate
indirect electron interaction. In the rotated fermionic basis, the
electron-spin coupling is described by

Le−s = R̃†g−1∂+gR̃ + L̃†g−1∂−gL̃ (23)

[see Eq. (6) and the first paragraph in Appendix C]. The
energy of the effective electron interaction can be estimated
(at least for the case of the gapped spin excitations) after
selecting in Eq. (23) the contribution of the only relevant
vector e1,

g → i(σ, e1), g−1∂αg → i(σ, [e1 × ∂αe1]);

(see Appendix A), neglecting time derivatives, and integrating
over ∂xe1. This yields

L(eff)
e−e ∼ −[(R̃†σR̃)2 + (L̃†σL̃)2]/ϑ0. (24)

Thus, for the dressed fermions, we obtain a strongly repulsive
Fermi gas. In the energy range close to the new Fermi surface,
|E − E+(k∗

F )| � E+(k∗
F ), the effective interaction converts

the conduction electrons to the repulsive and spinful TLL
whose excitations are charge and spin density waves. This
TLL is characterized by a new Fermi momentum k∗

F = Q/2 =
kF − π/2ξ near 1/2 filling or k∗

F = Q/2 = kF − π/4ξ near
1/4 filling. If the effective repulsion is strong enough, TLL
becomes heavy. In particular, the velocity of CDW becomes
much smaller than vF . Such a heavy TLL has been observed
numerically in Ref. [34].

The spin response of the conduction electrons is shifted to
the region of wave vectors between 0 and 2k∗

F while the main
response of the spin sector is at frequencies higher than the
spin gap coming from the vicinity of the commensurate wave
vector (π/ξ for half filling, ±π/2ξ for quarter filling); see a
cartoon in Fig. 3.

The appearance of the new Fermi vector k∗
F points to the

existence of the large FS. The response at 2kF is suppressed
and is replaced by the singular response at 2k∗

F in agreement
with the general theory [62,63]. Note that 1D nature and the
effective repulsion make CMs very sensitive to spinless im-
purities: even a weak disorder easily drives it to the Anderson
localized regime with suppressed dc transport [64].

C. KL at arbitrary fillings

The Lagrangian of the σ model at the generic band filling
takes the following form:

L(gen) = 1

2ggen

{[
�(z)

τ

]2

cgen
+ cgentr(∂xg+∂xg)

}
; (25)

FIG. 3. The spin response of the KL close to the special com-
mensurate fillings. The main response is at frequencies higher than
the spin gap and coming from the vicinity of the commensurate wave
vector (e.g., π/ξ for half filling). The spin response of TLL is shifted
to the region of wave vectors between 0 and 2k∗

F .

with

ggen = π/

√
1 + 8s2/(ϑ0ξ J̃ )2ln[D/|J̃|] (26)

and cgen = vF ggen/π, �(z)
τ ≡ itr[σzg−1∂τ g]/2. This theory

is anisotropic and has only the SU(2)-symmetry, g →
Mg, M ∈ SU(2). Moreover, the time derivative is present
only in the �z term. This points to a short correlation length
of spins and might challenge our approach, which is based on
separation of the fast and slow degrees of freedom in the spin
dynamics. However, the σ model Eq. (25) has been derived
for scales larger than the coherence length of the gapped
fermions, vF /�(gen) � ξ . Thus, the actual UV cutoff of the
theory is much larger than the lattice spacing and the working
hypothesis on the scale separation is not violated. The spin
gap is expected to be ∝�(gen) ∼ J̃ .

Let us point out an indication that the spin coherence length
becomes larger than vF /JK in the IR limit. It could be provided
by RG arguments predicting that the anisotropy is irrelevant
and L(gen) flows to the well-known SU(2)×SU(2)-symmetric
nonlinear σ model in (1 + 1) dimensions. The latter possesses
the large coherence length of the spin fluctuations. One can
check irrelevance of the anisotropy in (2 + 1) dimensions by
using RG equations derived in Ref. [65]. Their generalization
to the 1D case and a comprehensive RG analysis of the theory
(25) will be presented elsewhere.

The gapped spins mediate repulsion between the gapless
electrons. Its strength can be estimated similar to the CM case.

Let us now identify the nature of the HM in terms of its
low energy excitations. First, we note that the fermion density,
current density, and backscattering operators are invariant
under g rotation (6):

R†R = R̃†R̃, L†L = L̃†L̃, R†L = R̃†L̃. (27)

The low-energy physics is governed by fields whose cor-
relation functions decay as power law. To obtain them, we
project the fields on the gapless sector, i.e., average over
high-energy gapped modes. For example, components of the
charge density are

q � 0 : ρ0 = R̃†
↑R̃↑ + L̃†

↓L̃↓; (28)

q � 4kF : ρ4kF = e−4ikF xR̃†
↑〈R̃†

↓L̃↑〉L̃↓ + H.c. (29)
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The absence of ρ2kF has a simple physical explanation: it
would correspond to a single-particle elastic backscattering
between the gapless fermion and the gapped one which is not
allowed. The same argument was used to omit contributions to
ρ4kF which are not included in Eq. (29). Since the projection of
the spin density on the low-energy sector vanishes, the helical
metal is the 4kF CDW phase. This fact has two important
consequences: (i) the (local) spin helix moves the Friedel
oscillations of the charge density from 2kF to 4kF , which
is indistinguishable from 4(kF − π/2ξ ) due to k period-
icity and, even more importantly, (ii) it drastically reduces
backscattering caused by spinless disorder; see Ref. [57] for
details.

VII. DISCUSSION OF FURTHER NUMERICAL AND
EXPERIMENTAL STUDIES OF KONDO LATTICES

The insulating KLs were studied numerically in several
papers, for example, in Ref. [25] (1/4 filling) and Ref. [66]
(3/4 filling). A very important task for the subsequent re-
search is to reliably detect different metallic phases in 1D
KLs. This requires us to tune system parameters, in particular,
the band filling and the Kondo coupling. Detecting the CM is
a relatively simple task because it is generic at relatively large
JK and filling away from 1/2, 1/4, and 3/4. The heavy TLL
formed by the interactions in the CM has been observed in
the numerical results of Ref. [34]. However, JK was too large
for finding the HM. The KL studied in Ref. [28] exhibits an
unexpected 2kF peak at small JK . Yet, the peak was detected in
the spin susceptibility of six fermions distributed over 48 sites.
So small KLs cannot yield a conclusive support or disproof of
our theory. A more comprehensive study of the larger KLs is
definitely needed.

We have already described conditions under which one
or another metallic phase appears. Here, we would like to
recapitulate their key features which could help to distinguish
these phases in numerics and in experiments. The conductance
of the CM is equal to the quantum G0 = 2e2/h while the
HM must show only G0/2 conductance due to the lifted spin
degeneracy. CM is a spinful TLL. Its response has a peak
at the shifted Fermi momentum. HM must possess the same
property [62,63]. However, HM is 4kF CDW and, therefore,
kF and k∗

F are indistinguishable on the lattice. This indicates
that HM has the response peak at kF . Since CM responds
to scalar potentials at 2k∗

F and HM, at 4k∗
F ≡ 4kF , the spin-

less disorder potential may have a profound difference with
respect to the transport in the CM and HM phases. Namely,
localization is parametrically suppressed in HM.

The best control of the system parameters is provided by
the experimental laboratory of cold atoms where a 1D KL
was recently realized [67]. Such experiments are, probably,
the best opportunity to test our theory. However, modern
solid-state technology also allows one to engineer a specific
1D KL even in solid-state platforms. It looks feasible to
fabricate a 1D KL in clean 1D quantum wires made, e.g., in
GaAs/AlGaAs by using the cleaved edge overgrowth tech-
nique [68] or in SiGe [69]. Magnetic adatoms can be deposited
close to the quantum wire with the help of the precise ion-
beam irradiation. One can tune parameters of these artificial
KLs by changing the gate voltage, type, and density of the

magnetic ad-atoms and their proximity to the quantum wire.
The experiments should be conducted at low temperatures,
T � �, E , where destructive thermal fluctuations are weak.

As far as more conventional condensed-matter systems are
concerned, we are aware of only one group of candidates:
the quasi-one-dimensional organic compounds Per2M(mnt)2

(M = Pt, Pd). They are considered as realizations of weakly
coupled quarter-filled S = 1/2 Kondo chains [70–75], al-
though the role of the interchain coupling there is not clear.
According to Refs. [70–74], (Per)2[Pt(mnt )2] possesses a
unique combination of spin-Peierls and CDW order param-
eters, which agrees with our theory. The band in the perylene
chain is quarter filled and the band in the Pt(mnt )2 chain
is half filled [71,76]. The perylene chain is metallic, and at
low temperature undergoes a Peierls (CDW) transition to an
insulating state where the perylene molecules tetramerize with
wave vector qPer = π/2ξ . The Pt(mnt )2 chain is an insulator
that undergoes a spin-Peierls transition where the Pt-dithiolate
molecules dimerize with wave vector qPt = π/ξ ; here the
spin-1/2 Pt moments form a spin singlet. Remarkably, even
though qPt = 2qPer, diffuse x-ray scattering, specific heat,
and electrical transport measurements indicate that both the
CDW and SP transitions occur at the same, or very similar,
temperature [77,78]. This observation suggests that the two
chains are strongly coupled in spite of the mismatch in q
vectors.

VIII. CONCLUSIONS

We have developed a unified theory for 1D Kondo lat-
tice with a dense array of spins in the regime of a small
and rotationally invariant Kondo coupling, |JK | � EF . The
physics of such KLs is controlled by the RKKY indirect spin
interaction. This is clearly demonstrated by the fact that their
low-energy properties are insensitive to the sign of the Kondo
exchange. Nevertheless, the phase diagram is quite rich. We
have identified three different phases. They include (i) the
insulating phase which appears at special commensurate band
filling, either 1/2, or 1/4, 3/4; (ii) spinful interacting metals
which exist in the vicinity of that commensurate fillings; and
(iii) 4kF charge-density wave phase at generic band fillings;
see Fig.(1). Electron-spin interactions can convert the second
phase to the heavy Tomonaga-Luttinger liquids.

Spin configurations, which govern the first and second
phases, are collinear. That’s why the second phase can be
called “collinear metal.” The spin fluctuations around these
classical arrangements are described by the well-known O(3)-
symmetric nLSMs with topological terms. The commensurate
insulators and the heavy TLL appearing in the collinear metal
were known before and were described analytically or numer-
ically, cf. Refs. [12,25,34]. The commensurate insulators at
1/4 filling were explored even in experiments which we have
discussed in Sec. VII.

Our most intriguing finding is, probably, the 4kF -CDW
phase. The underlying classical spin configuration is a slowly
rotating helix. That’s why we have referred to this phase as
“helical metal.” The spin fluctuations around the helix are
described by the nLSM whose solution is unknown. Neverthe-
less, we have argued that the spin helix is stable. Suppression
of the 2kF response is the direct consequence of the local
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spin helicity. It parametrically suppresses effects of a spinless
disorder and localization. Thus, we come across the emergent
(partial) protection of transport caused by the interactions.
This gives an example of such a protection in the system
where the SU(2) (spin rotation) symmetry is present in the
Hamiltonian and cannot be broken spontaneously. We are
not aware of previous papers reporting similar results. Our
theoretical prediction, that the backscattering is suppressed in
the HMs, has also potential applications in nanoelectronics
and spintronics.

We believe that detecting the HM, at first, in numerical
simulations and, much more importantly, in real experiments,
seems to be a task of high importance. Our results suggest how
to tune the physical parameters, in particular the band filling
and the Kondo coupling, such that the HM could be realized.

Thus, we have not only collected many pieces of knowl-
edge into a unified physical picture but also gained a sig-
nificant breakthrough into understanding properties of the
different phases in KLs. It would be interesting to study in
the future how the direct Heisenberg interaction between the
spins could modify our theory.

ACKNOWLEDGMENTS

We are grateful to J. Klinovaja for useful discussions.
A.M.T. was supported by the US Department of Energy
(DOE), Division of Materials Science, under Contract No.
DE-SC0012704. O.M.Ye. acknowledges support from the
DFG through Grants No. YE 157/2-1 and No. YE 157/2-2.
We gratefully acknowledge hospitality of the Abdus Salam
ICTP where the part of this project was done. A.M.T. also
acknowledges the hospitality of the Department of Physics
of Maximilian Ludwig University where this paper was final-
ized.

APPENDIX A: USEFUL RELATIONS

Using the matrix identities

Â = A( j)σ j, A( j) = 1
2 tr[σ j Â];

tr[σÂ−1σ j Â] tr[σÂ−1σ j′ Â] = 4δ j, j′

j, j′ = x, y, z (A1)

and reparameterizing the (real) orthogonal basis e1,2,3 in terms
of a matrix g ∈ SU(2):

e1,2,3 = 1

2
tr[σgσx,y,zg

−1],

e3 = [e1 × e2],∑
a=1,2,3

(∂αea)2 = 4tr[∂αg−1∂αg]; (A2)

we can rewrite a scalar product (σ, e j ) as follows:

(σ, e1,2) = 1
2 gσx,yg−1 ⇒ (σ, [e1 ± ie1]) = gσ±g−1;

σ± ≡ (σx ± iσy)/2. (A3)

One can also do an inverse step and express the SU(2) matrix
via a unit vector

g = i(σ, n), g−1 = −i(σ, n);

|n| = 1 ⇒ g−1∂αg = i(σ, [n × ∂αn]). (A4)

Another useful quantity, which will be used below, is

�(b)
α = i

2
tr[σbg−1∂αg],

b = x, y, z ⇒ g−1∂αg = −i
∑

b

σb�
(b)
α ; (A5)

where ∂α denotes some derivative. Note that �(b)
α defined in

such a way are real. They can be straightforwardly related to
the vectors e1,2: ∑

b�=a

(
�(b)

α

)2 = 1

4
(∂αea)2. (A6)

APPENDIX B: JACOBIAN OF THE SU(2) ROTATION

Let us derive the Jacobian of the rotation

R̃ = g−1
+ R, L̃ = g−1

− L, (B1)

where g± ∈ SU(2). Formally, it is given by the following
equality:∫

D{R, L}e−S+[R,R†]−S−[L,L†]

= J [g±]
∫

D{R̃, L̃}e−S+[R̃,R̃†;g+]−S−[L̃,L̃†;g−] (B2)

(S± are actions of the free chiral Dirac fermions). The Jaco-
bian results from the chiral anomaly and is given by the ratio
of determinants,

J −1 =
∏
μ=±

det
(
∂μ + g−1

μ ∂μgμ

)
det(∂μ)

. (B3)

Here, we have introduced chiral derivatives ∂± ≡ ∂τ ∓ ivF ∂x.
Exponentiating determinants and Taylor-expanding the loga-
rithm, we find

det(∂μ + φμ)

det(∂μ)
= exp

(
Trln

[
1 + ∂−1

μ φμ

])

= exp

(
−1

2
Tr

[
∂−1
μ φμ∂−1

μ φμ

])
;

φμ ≡ g−1
μ ∂μgμ. (B4)

The linear term is absent because we are performing the
expansion around equilibrium and all higher terms are can-
celed out because of the so-called loop cancellation [58,79].
We note that the inverse chiral derivatives are the Green’s
functions of the Dirac fermions,

∂−1
± = GR/L = 1

iω ∓ vF k
,

and rewrite Eq. (B4) as follows:

det(∂μ + φμ)

det(∂μ)
= exp

(
−1

2
Tr[φμ�μμφμ]

)

= exp

(
−1

2
Tr

[
�μμφ2

μ

])
. (B5)

Here �μμ are chiral response functions:

�μμ =
∫

dqdω

(2π )2
Gμ(ω, k)Gμ(ω + �, k + Q)

= μ

2π
QGμ(�, Q) → iμ

2π
∂x∂

−1
μ . (B6)
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Note that the frequency integral must be calculated prior to the
integral over momentum. Using this equation and identities

g−1
μ ∂μgμ = −∂μg−1

μ gμ ⇒ (
g−1

μ ∂μgμ

)2 = −∂μg−1
μ ∂μgμ

= 1
2

(
g−1

μ ∂2
μgμ + ∂2

μg−1
μ gμ

)
, (B7)

Tr
(
g−1

μ ∂2
μgμ

) = Tr
(
∂2
μg−1

μ gμ

)
, (B8)

we reduce Eq. (B5) to

det(∂μ + φμ)

det(∂μ)
= exp

(
iμ

4π
Tr

[
∂xg−1

μ ∂μgμ

])
. (B9)

Thus, the Jacobian reads as

J −1 = exp

(
i

4π
Tr[∂xg−1

+ ∂+g+ − ∂xg−1
− ∂−g−]

)
. (B10)

If g− = g+ = g, the Jacobian simplifies to

g− = g+ = g ⇒ J −1 = exp

(
vF

2π
Tr[∂xg−1∂xg]

)

= exp

(
−1

2
v2

F ϑ0Tr
[
g−1∂2

x g
])

. (B11)

APPENDIX C: INTEGRATING OUT GAPPED FERMIONS

The inverse Green function of the rotated fermions {R̃, L̃} can
be written as Ĝ−1 = Ĝ−1

0 + Ĝ + δ�̂ with

Ĝ−1
0 =

⎛
⎜⎜⎜⎝

∂+ 0 0 �2

0 ∂+ �1 0

0 �1 ∂− 0

�2 0 0 ∂−

⎞
⎟⎟⎟⎠; Ĝ =

(
φ+ 0

0 φ−

)
;

δ�̂ =

⎛
⎜⎜⎜⎝

0 0 0 δ�2

0 0 δ�1 0

0 δ�1 0 0

δ�2 0 0 0

⎞
⎟⎟⎟⎠. (C1)

Ĝ0 describes the fermions in the case of the classical configu-
ration of spins; �1,2 and δ�1,2 are classical gap values and gap
fluctuations, respectively; Ĝ describe spin fluctuations. In the
main text, we have introduced the symmetric unitary rotation
of all four fermions, Eq. (6), by the single matrix g. For
completeness, we keep here different matrices φ± = g−1

± ∂±g±
and will reinstate the equality g+ = g− at a later stage of
calculations.

The Green’s function of each gapped fermionic sector at
Ĝ = δ�̂ = 0 is

Ĝ(�1,2) =
(

G(+)
F GB

GB G(−)
F

)
;

G(±)
F = iω ± vF q

ω2 + (vF q)2 + �2
1,2

, (C2)

GB = �1,2

ω2 + (vF q)2 + �2
1,2

.

We have to integrate out gaped fermions, exponentiate the
fermionic determinant as Tr log[Ĝ−1

0 + Ĝ + δ�̂], and expand
it in all fluctuations. After Taylor-expanding logarithm, we
trace out high-energy degrees of freedom and obtain low-
energy Lagrangians.

The expansion in the gap fluctuations yields

Lg � −
∑
l=1,2

Tr(GB[�l ])δ�l = −ϑ0

2

∑
l=1,2

[�l ln(D/|�l |) δ�l ];

(C3)
where

1/2 filling : �1,2 = J̃, δ�1,2 = −1

2
J̃m2;

1/4 filling : �1,2 = 1√
2

J̃, δ�1,2=− 1

2
√

2
J̃ (m2+α2±2α);

generic filling: �1 = 0, �2 = J̃, δ�2 = −1

2
J̃m2.

The expansion in the spin fluctuations is done at δ�1,2 = 0.
Tr ln[Ĝ−1

0 ] determines the ground-state energy and, therefore,
the linear terms in expansion in the spin fluctuations are
absent:

Tr ln[1 + Ĝ0Ĝ] � − 1
2 Tr[Ĝ0ĜĜ0Ĝ]. (C4)

Similar to the derivation of the Jacobian, Eq. (C4) can be
rewritten in terms of the response functions. The difference is
that they are now short-range response functions of the gapped
fermions. Since typical energy scales of the spin fluctuations
are expected to be much smaller than gaps, the response
functions can be calculated at zero frequency and momentum.

The contribution to the action generated by the gradients of
g (i.e., by the spin fluctuations) reads as

δSg = 1
2 Tr[Ĝ0ĜĜ0Ĝ] − ln(J ). (C5)

1. The case of the commensurate insulator

Let us at first consider the case �1 = �2, i.e., all four
fermionic modes are gapped, where we obtain

Ĝ0 = G(+)
F (τ̂+τ̂− × σ̂0) + G(−)

F (τ̂−τ̂+ × σ̂0) + GB(τ̂1 × σ̂x ) (C6)

⇒ − 1
2 Tr[Ĝ0ĜĜ0Ĝ] = − 1

2 Tr[G(+)
F φ+G(+)

F φ+ + G(−)
F φ−G(−)

F φ− + GBσ̂xφ+GBσ̂xφ− + GBσ̂xφ−GBσ̂xφ+]. (C7)

Here τ̂ j are the Pauli matrices which operate in the chiral subspace. The response functions which we need are

�FF =
∫

dqdω

(2π )2

[
G(μ)

F (ω, q)
]2 = −ϑ0

4
; �BB =

∫
dqdω

(2π )2
[GB(ω, q)]2 = ϑ0

4
. (C8)
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Note that the frequency integral must be calculated prior to the integral over momentum. Inserting Eq. (C8) into Eq. (C6) we
arrive at

−1

2
Tr[Ĝ0ĜĜ0Ĝ] = ϑ0

8
Tr[φ+φ+ + φ−φ− − 2σ̂xφ+σ̂xφ−]

= ϑ0

8
Tr[g−1

+ ∂2
+g+ + g−1

− ∂2
−g− − 2σ̂xg−1

+ ∂+g+σ̂xg−1
− ∂−g−]

= ϑ0

4

{
Tr

[
g−1∂2

τ g − v2
F g−1∂2

x g
] − Tr[(σ̂xg−1∂τ g)2 + (vF σ̂xg−1∂xg)2]

}
. (C9)

We use Eq. (B11) for the Jacobian (the anomalous contribution) of the symmetric rotation with g+ = g− = g and find

−1

2
Tr[Ĝ0ĜĜ0Ĝ] + ln(J ) = ϑ0

4

{
Tr

[
g−1∂2

τ g + v2
F g−1∂2

x g
] − Tr[(σ̂xg−1∂τ g)2 + (vF σ̂xg−1∂xg)2]

}
. (C10)

It is instructive to rewrite Eq. (C10) in terms of �(b)
α :

Tr
[
g−1∂2

αg
] = Tr[(g−1∂αg)2] = −Tr

⎡
⎣(∑

b

σb�
(b)
α

)2
⎤
⎦ = −2Tr

[(
�(x)

α

)2 + (
�(y)

α

)2 + (
�(z)

α

)2]
;

Tr[(σ̂xg−1∂αg)2] = −Tr

⎡
⎣(

σ̂x

∑
b

σb�
(b)
α

)2
⎤
⎦ = −2Tr

[(
�(x)

α

)2 − (
�(y)

α

)2 − (
�(z)

α

)2]
;

⇒ −1

2
Tr[Ĝ0ĜĜ0Ĝ] + ln(J ) = −ϑ0

2
Tr

[(
�(y)

τ

)2 + (
�(z)

τ

)2 + (
vF �(y)

x

)2 + (
vF �(z)

x

)2]
. (C11)

Thus, the contribution to the Lagrangian reads as

Special commensurate cases: δLg = ϑ0

8
[(∂τ e1)2 + (vF ∂xe1)2]. (C12)

Here, we have used the identity Eq. (A6). The symmetry of the theory Eq. (C12) is reduced from the SU(2)×SU(2) symmetry
of the initial model, Eq. (3), to the O(3) symmetry. This reflects the properties of Eq. (7) obtained after selecting nonoscillating
terms in backscattering. Interestingly, neither the part generated by the gradient expansion nor the Jacobian are Lorenz invariant
but the Lorenz invariance is restored in the final answer Eq. (C12) after summing all parts.

2. The case of the helical metal

Consider now the case where only one helical sector is gapped with the second remaining gapless: �1 = 0,�2 �= 0. Since
we integrate our only gapped fermions, Eq. (C6) must be modified by excluding gapless modes from calculations:

Ĝ0 → G(+)
F (τ̂+τ̂− × σ̂+σ̂−) + G(−)

F (τ̂−τ̂+ × σ̂−σ̂+) + GB(τ̂+ × σ̂+ + τ̂− × σ̂−) (C13)

⇒ −1

2
Tr[Ĝ0ĜĜ0Ĝ] = −1

2
Tr[G(+)

F σ̂+σ̂−φ+G(+)
F σ̂+σ̂−φ+ + G(−)

F σ̂−σ̂+φ−G(−)
F σ̂−σ̂+φ− + 2GBσ̂−φ+GBσ̂+φ−]

= ϑ0

8
Tr[σ̂+σ̂−φ+σ̂+σ̂−φ+ + σ̂−σ̂+φ−σ̂−σ̂+φ− − 2σ̂−φ+σ̂+φ−]. (C14)

Note that we have neglected the coupling of φ to products of two fermionic fields with different helicity (i.e., products of one
gapped and one gapless fermions). One can check that

Tr[σ̂+σ̂−φνσ̂+σ̂−φν] = Tr[σ̂−σ̂+φνσ̂−σ̂+φν] = −Tr[σ̂−φνσ̂+φν]. (C15)

Therefore, only time derivatives remain in Eq. (C14):

−1

2
Tr[Ĝ0ĜĜ0Ĝ] = ϑ0

8
Tr[4σ̂+σ̂−φτ σ̂+σ̂−φτ ] = ϑ0

8
Tr[(σ̂0 + σ̂z )φτ (σ̂0 + σ̂z )φτ ] = ϑ0

8
Tr[(g−1∂τ g)2 + (σ̂zg

−1∂τ g)2]. (C16)

Adding the Jacobian, Eq. (B11), we obtain

−1

2
Tr[Ĝ0ĜĜ0Ĝ] + ln(J ) = ϑ0

8

{
Tr

[
g−1∂2

τ g + (2vF )2g−1∂2
x g

] + Tr[(σ̂zg
−1∂τ g)2]

}
. (C17)
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Similar to Eq. (C12), we can rewrite

Tr[(σ̂zg
−1∂αg)2] = −Tr

⎡
⎣(

σ̂z

∑
b

σb�
(b)
α

)2
⎤
⎦ = −2Tr

[ −(
�(x)

α

)2 − (
�(y)

α

)2 + (
�(z)

α

)2]
; (C18)

⇒ Tr
[
g−1∂2

τ g
] + Tr[(σ̂zg

−1∂τ g)2] = −4Tr
(
�(z)

τ

)2
. (C19)

Hence, we arrive at the answer:

Generic case: δLg = ϑ0

2

{(
�(z)

τ

)2 + Tr|vF ∂xg|2}. (C20)

APPENDIX D: SMOOTH PARTS
OF THE WESS-ZUMINO TERM

Let us now project the Wess-Zumino term of the action on
the low-energy sector. First, we consider a given site n, use the
standard expression for the Wess-Zumino Lagrangian on this
site

LWZ = is
∫ 1

0
du (N, [∂uN × ∂τ N]);

N(u = 0) = (1, 0, 0), N(u = 1) = Sn/s, (D1)

substitute the decomposition Eq. (4) for N, and neglect all q
oscillations. Following the procedure, which is explained in
detail in Sec. 16 of the book [59], we arrive at the following
answer for the smooth contribution of LWZ:

L(sl)
WZ = − isb2(1 − m2)

2
(cos2(α)(m, [e1 × ∂τ e1])

+ sin2(α)(m, [e2 × ∂τ e2])). (D2)

If |m| � 1, we must keep in Eq. (D2) only terms of order
O(m) and substitute the classical value for α, e.g., α = 0, at
the 1/4 filling. Hence, Eq. (D2) reduces to

2L(1/2)
WZ = L(1/4)

WZ = −is(m, [e1 × ∂τ e1]), (D3)

L(gen)
WZ = − is

2
(m, [e1 × ∂τ e1] + [e2 × ∂τ e2]) (D4)

in the cases of the commensurate fillings, Eqs. (7) and (8), and
the generic filling, Eq. (9), respectively.

|m| is the gapped variable. Its deviations from the classical
value m = 0 reflect the gap fluctuations and are described by
the quadratic Lagrangian

Lg = 1

2M( f )
|m|2; (D5)

see Eq. (C3), which defines the value of the variance M( f ) ∝
1/(ϑ0J̃2) with the superscript “ f ” marking the band filling.
Now, we have to calculate the Gaussian integral over m. This
step depends on the spin configuration.

1. Cases of the special commensurate band filling

Equation (D3) includes only one vector, e1. Therefore, the
direction of the vector m is not fixed by the effective action
and one must integrate over |m| and over all directions of this

vector. In the Gaussian approximation, this results in

N
∫ +∞

−∞
dmx,y,ze

− ∫
d{τ,x}[Lg+(m,A)] = exp

[M( f )

2
(A, A)

]
;

(D6)

with N being the normalization factor. Equation (D6) yields
contributions to the Lagrangian, which are governed by the
smooth part of the Wess-Zumino term in the special commen-
surate cases:

δL(1/2)
WZ = s2

8 ϑ0(ξ J̃ )2ln(D/|J̃|) (∂τ e1)2, (D7)

δL(1/4)
WZ = s2

ϑ0(ξ J̃ )2ln(
√

2D/|J̃|) (∂τ e1)2. (D8)

Here, we have used the identity [e × ∂e]2 = (∂e)2, |e| = 1.
Adding Eqs. (C12) and either (D7) or (D8) yields the σ model
describing the spin excitation at the special commensurate
filling (1/2 and 1/4 respectively) and in its vicinity.

2. The case of the generic band filling

Unlike the special commensurate cases, Eq. (D4) contains
both vectors, e1,2. Therefore, the direction of the vector m is
fixed: m = |m|[e1 × e2] and one must integrate only over |m|.
In the Gaussian approximation, this results in

N
∫ +∞

−∞
dme− ∫

d{τ,x}[Lg+m(e3,A)] = exp

[M( f )

2
(e3, A)2

]
;

e3 ≡ [e1 × e2]. (D9)

Equation (D9) yields the contribution to the Lagrangian,
which is governed by the smooth part of the Wess-Zumino
term in the case of the generic band filling:

δL(gen)
WZ = s2

ϑ0(ξ J̃ )2ln(D/|J̃|) (e3, [e1 × ∂τ e1])2

= 4s2

ϑ0(ξ J̃ )2ln(D/|J̃|)
(
�(z)

τ

)2
. (D10)

Here, we have used the identity (e3, [e1 × ∂τ e1]) = (e3, [e2 ×
∂τ e2]). Adding Eqs. (C20) and (D10) yields the σ model
describing the spin excitation at the generic band filling.

APPENDIX E: TOPOLOGICAL PART
OF THE WESS-ZUMINO TERM

Let us now focus on the special commensurate fillings and
single out leading in |m| parts of the Wess-Zumino Lagrangian

165110-11
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which are sign alternating and produce the topological contri-
bution to the effective action.

1. Topological term for the 1/2 filling

Following Ref. [12], we insert into Eq. (D1) only the term
(−1)ne1 from Eqs. (4) and (7). This yields∑

n

L(1/2)
top (n)

= is
∑

n

(−1)n
∫ 1

0
du (e1(n), [∂ue1(n) × ∂τ e1(n)]). (E1)

After converting the sum over the lattice sites to the space
integral, we obtain the topological contribution to the action:

S(1/2)
top = i

s

2

∫ β

0
dτ

∫ L

0
dx (e1, [∂xe1 × ∂τ e1]) = 2siπk;

(E2)

see details in Sec. 16 of the book [59]. The integer k marks
topologically different sectors of the theory.

2. Topological term for the 1/4- filling

Similar to the previous case, we insert into
Eq. (D1) only the term

√
2{e1 cos(α) cos(πn/2 + π/4) +

e2 sin(α) sin(πn/2 + π/4)} from Eqs. (4) and (8). Using the
classical value of α, we obtain

∑
n

L(1/4)
top (n) = is

N∑
n=1

(
√

2 cos(πn/2 + π/4))

×
∫ 1

0
du (e1(n), [∂ue1(n) × ∂τ e1(n)])

� 2is
N/4∑
n=1

∫ 1

0
du{(e1, [∂ue1 × ∂τ e1])|2(2n+1)

− (e1, [∂ue1 × ∂τ e1])|2n}; (E3)

and find the topological contribution to the action

S(1/4)
top = is

∫ β

0
dτ

∫ L/2

0
dx (e1, [∂xe1 × ∂τ e1]) = 2siπk. (E4)

Thus, we have found S(1/2)
top = S(1/4)

top = 2siπk.

APPENDIX F: TOPOLOGICAL PART
OF THE FERMIONIC DETERMINANT

The gradient expansion Eq. (C4) can generate subleading
terms:

Tr log[1 + Ĝ0Ĝ] � − 1
2 Tr[Ĝ0ĜĜ0Ĝ] + 1

3 Tr[Ĝ0ĜĜ0ĜĜ0Ĝ].

(F1)

If the fermions were gapless, all subleading terms beyond
the second order in Ĝ would disappear because of the loop
cancellation [58,79]. However, the gap makes them finite, in
particular:

Tr[Ĝ0ĜĜ0ĜĜ0Ĝ] = Tr[(G(+)
F φ+)3 + (G(−)

F φ−)3

+ 3GBσ̂xφ+G(+)
F φ+GBσ̂xφ−

+ 3GBσ̂xφ−G(−)
F φ−GBσ̂xφ+] �= 0. (F2)

Equation (F2) describes a nonlinear response of the system
and it may contain topological terms [80]. Extracting the
topological part of the nonlinear response function is a lengthy
and nontrivial task which is beyond the scope of the present
paper. Instead of the direct algebra, we will rely on the claim
of Ref. [12]: the topological part of the fermionic determinant
reduces the spin value in S( f )

top by 1/2. This reflect the strong
coupling of the itinerant electrons with the localized magnetic
moment in the commensurate cases. Thus, we use the expres-
sion

Stop = (2s − 1)iπk (F3)

for the analysis of the special commensurate fillings.
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