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1 Introduction

Decades ago, superconductive phenomena have been observed in a rather unexpected

material, a transition metal oxide.[1] This unusual discovery motivated tremendous

researches to explain the mechanism behind the presence of superconductivity. See

Fig.(1). An extremely intriguing phase region with remarkable behaviours is located

at low hole-doping, between the Mott insulator at half filling and the superconduct-

ing phase. Use a variety of different experimental techniques, which enabled more and

more refined measurement, this region has been classified as a so-called pseudogap (PG)

phase.

This hole-doped system is generated from a parent Cu-based compound, which is known

as an antiferromagnetic (AF) insulator. As the charge carriers are doped (holes in our

case) into the parent compound, the AF state is destroyed and superconductivity (SC)

emerges below a critical temperature. It is believed that a comprehension of the in-

termediate area between AF and SC state plays a crucial role for understanding the

physics in hope-doped cuprates, experiments are thus carried out to characterize this

so-called PG phase and to determine its properties. It turns out that the spin sus-

ceptibility drops at low temperatures before the onset of superconductivity, which is

referred to the formation of a spin structure with lower degree of freedom.[2] Moreover,

the specific heat of the system decreases linearly below room temperature, and shows

a jump at the critical temperature where the material undergoes a superconducting

transition. This jump of the specific heat, however, weakens with lower doping densi-

ties. Thus, the spins there should undergo a binding process that their entropy can be

gradually reduced.[3][4][5] Decades prior to these experimental uncovers, theories antic-

ipated that a pair of spins can bind into a singlet bond in low doped system, describing

the behaviours of specific heat above. Anderson first introduced this ideal in his well

known resonating valence bond (RVB) model; Rokhsar and Kivelson later followed in

this direction and established the RK-model. We would give a brief introduction about

these historical works in Sec.(2.1).

More remarkable properties of PG metal are found in recent experimental progresses.
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Figure 1: Schematic phase diagram of hole-doped cuprates as function of doping p and temper-

ature T . At around p = 0 the cuprate compound behaves as an antiferromagnetic insulator.

Upon doping away from the indulating phase, the PG phase is present in the temperature

interval Tc < T < T ∗, while the superconductivity emerges at temperature below Tc. Figure

adapted from [6].

One of them shows a mysterious open Fermi arc in the spectrum through angle resolved

photoemission spectroscopy (ARPES), where a large closed Fermi surface is expected

according to the Luttinger theorem.[7][5][8] Furthermore, Hall measurement reports p

as the density of charge carriers in the system, rather than the larger 1 + p relative to a

fullfilled band.[9][10] This also provides an alternative perspective that the suppression

of Drude weight in early experiments is related to a reduced density of charge carriers,

rather than a suppressed kinetic term.[5][11] The above mentioned RVB model, how-

ever, failed in describing these observations. Nonetheless, a fractionalized Fermi liquid

(FL*) model is proposed by Senthil, Schdev and Voijta based on RVB picture, assigning

the violation of Luttinger theorem to the appearance of topological order[12]. Punk,

Allais and Sachdev then employed this account to construct a new dimer model where

the PG metal is interpreted as a finite temperature realization of FL*. They show in

[6] that the key features of PG metal are well described by this model.

Along this route, Johannes Feldmeier provides in [13] an exact ground state solution

of this new dimer model on the square lattice; perturbs it in the parameter space and

a FL* structure can be recognized. In this article, we intend to generalize this model
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further onto the triangular lattice, which is usually seen as a tilted square lattice with

additional diagonal link. We can see these connections between them from our results

that they can recover the results of the square lattice case in spite of the additional

orientation. As a conclusion, we confirm that a FL* like ground state can be expected

in the triangular lattice.
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2 Model

2.1 RK-Model

Forty years ago, Rokhsar and Kevelson developed the RK-Model[14], intending to ex-

plain the physics of an antiferromagnetic (AF) Mott insulator doped with mobile charge

carriers along the route provided by Anderson with his resonating valence bond (RVB)

model[15]. In Mott insulator, electrons are believed to be locked at their own site with

anti-parallel aligned spins due to strong effects. In this case, the energy cost to fulfill a

site with two electrons U dominates compared to the hopping energy t, and the needed

exchange energy J for two parallel aligning spins is given by 4t2/U , which leads to

an energetically favorable AF state. The simplest way to capture these properties is

employing the well-known t − J model, which is viewed as the strong coupling limit

of Hubbard model. [5] However, with the increasing density of the doped hole, the

unoccupied charge carriers strongly stimulate the hopping of spins so that the AF state

as well as its insulativity is destroyed. The system becomes consequently frustrated

and its structure is determined by the competition of the t and J . The original RVB

model then suggests that by forming singlet bonds, spins become energetically more

competitive with the enduring anti-parallel structure, and in the low doped limit, the

doped holes can move in this singlet background without breaking bonds so that the

AF state consists.

The RVB model can be further qualitatively classified into two sorts. One is so-called

short-range resonating valence bond (SR-RVB) model developed by Kivelson, Rokhsar

and Sethne in year 1977. The range of the valence bonds are restricted within the

nearest neighbors in this model, while the amplitudes of the long range valence bands

are expected to decay exponentially.[16] One year later, in their article [14], Rokhsar

and Kivelson proposed the famous RK quantum dimer model, where the exponentially

decaying spin-spin correlations finally leads to a sufficiently large spin gap. Thus, a man-

ifold of low-energy states spanned by the linearly independent set of nearest-neighbor

valence-bond states can be considered. In other words, they argued that the effective

short-range dimer Hamiltonian in fact agrees with that of valence-bond states despite
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the nonorthogonaltity. Punk, Allais and Schadev later employed this QDM model in

thier article [6], and expanded that by introducing a new specie of dimers. They offered

in this way an alternative perspective to explain the mechanism behind the appearance

and the behaviours of PG state in the low doped cuprate.

2.2 Hilbert space

As mentioned above, the Hilbert space of the original QDM model on square lattice

is spanned by the orthonormal states |C〉, where each C represents a specific dimer

configuration. The configurations have to satisfy the hard-core constraint, namely each

spin only binds once with one nearest neighbor at the same time. Hence, a dimer is

composed of a pair of spins bound in singlet state. We introduce the bosonic dimer

operator D to represent it:

1√
2

(c†i,↑c
†
i+η̂,↓ − c

†
i,↓c
†
i+η̂,↑) |0〉 → D†i,η |0〉 , (1)

where c†i,↑ creates a spin-up electron on the site i as c†i+η̂,↓ stands for its bound spin-down

electron on site i + η̂ as η ∈ {x, y}. Visually, we draw an orange ellipse covering two

sites for illustration, and the Hamiltonian of QDM model is written as:

HRK =
∑

plaquettes

[−J(
∣∣ 〉 〈 ∣∣+H.c.) + V (

∣∣ 〉 〈 ∣∣+
∣∣ 〉 〈 ∣∣)] (2)

with this notation. The first term with a prefactor J is a kinetic term that describes

the resonance between parallel nearest-neighbor dimers within a plaquette; the second

term with the prefactor V , like the energy offset U in Hubbard model, describes the re-

pulsion between them. Note that J and V here are both positive. This choice is purely

conventional on square lattice[14], and remains the same for the triangular lattice[17].

Analogous to the t−J model, the competition between J and V determines the ground

states of Hamiltonian HRK . For V > J > 0, the so-called valence-bond solid (VBS)

states serve as the only ground states, where the dimers become ”staggered” as the

parallel aligning is energetically not favorable, see Fig.(2) On contrary, for J > 0 > V ,

the number of flippable plaquettes is maximized, leading to a ”column state”. Rokhsar

and Kivelson then stated that the Hamiltonian can be exact solvable at the middle
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(a) (b) (c)

Figure 2: (a) a staggered state for V > J .(c) the column state. (b) a typical dimer

covering on square lattice.

point J = V , namely ”RK-point”, where the unique zero-energy ground state ψ0 is

composed by the equal-amplitude superposition
∑

C |C〉.[14]

We later need to generalize this model onto the triangular lattice for further calcula-

tions. One of the most important points is the orthogonality of the basis vectors. The

short-range effective Hamiltonian Eq.(2) corresponds to the case despite the nonorthog-

onality of the valence-bond states on square lattice[14]. We hope this is the case on

the triangular lattice as well. Fortunately, by evaluating the overlap matrix, for the

sufficiently large triangular lattice, the overlap becomes eventually very small though

never zero.[18] Thus, as the tiny overlap among configurations {|C〉} is neglected, {|C〉}

is taken as a set of complete orthonormal basis for short-range dimer Hamiltonian on

the triangular lattice, and a Hamiltonian based on orthonormal dimer configurations is

now allowed to be built on the triangular lattice. We will show it in details in Sec.(3)

2.3 Fermionic dimer

We reviewed in the previous sections the establishment of QDM model and its proper-

ties. However, we can only describe dope-less cuprates with the QDM model consisting

of pure bosonic dimers. In this section, we proceed to see how doped holes are treated

in the models, and arrive at the expanded dimer model introduced in [6].

As holes are doped with sufficiently large density into a short-range RVB state, the

singlet bonds can be broken. Its debris is classified into two types. The piece carrying

charge +e but no spin is called ”holon”, while ”spinon” stands for the other type with

no charge but spin 1/2. They actually are believed to move in principle separately

8



(a)
(b)

Figure 3: (a) Orientations are denoted with α = 1, 2, 3 (b) Coordinate we used in calculation

on the triangular lattice.

on the lattice at RK-point, and are therefore regarded as deconfined monomers in the

2D-QDM model.[17]

In [6], the authors treat these monomers, however, together by introducing new specie

of dimer, which is a monomer bond formed by a pair of neighbouring spinon and holon.

They show that, in a hole-doped antiferromagnet, the presence of such dimers explains

the unexpected hole density p in the system. This new dimer has the expression

F †i,η,s |0〉 →
1√
2

(c†i,s + c†i+η̂,s) |0〉 , (3)

and is named as fermionic dimer for its half-integer spin (in our case, s = 1/2, carried

by the spinon). Note that since the holon and spinon are deconfined at RK-point, this

combination is regarded as a result of energetic preference, i.e., a short-range attraction.

The low energy Hilbert space of the QDM model hence needs to be expanded to adapt

to this introduction of fermionic dimer, and it is simply accomplished by adding doped

fermionic dimer into hard-core coverings.
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3 Quantum dimer model on triangular lattice

In this section we build up the corresponding Hamiltonian to describe the interactions

between doped hole and its neighboring spins on the triangular lattice by implementing

the quantum dimer model. Then with the method developed by Rokhsar and Kivelson

of choosing a line in parameter space to reconstruct the Quantum dimer Hamiltonian

as a sum of local projectors [14], we are able to obtain the exact ground state wave

functions. Finally, we study the perturbations around the chosen parameter line, and

are able to see that the small perturbations leading to a thorough reconstruction of flat

dispersion relation of the ground state, as well as to the presence of Fermi pockets.

We follow in this section the calculations of exact ground state and perturbations around

RK line on square lattice done by J.Feldmeier in [13], and expand to the triangular

lattice case.

3.1 The dimer model on triangular lattice

3.1.1 Rokhsar-Kivelson quantum dimer Hamiltonian

In order to represent all configurations of dimers on a triangular lattice, we use elemen-

tary plaquettes that are parallelograms consisting of an up- and down triangle. One

attention should be made here is that unlike all plaquettes on the square lattice aligned

in the same direction in [13], they have three possible orientations on the triangular

lattice, namely rotated by ±60◦ [19]. Thus, we construct the Rokhsar-Kivelson

quantum dimer Hamiltonian:

ĤRK = −JT̂+V V̂ =
∑
i

3∑
α=1

(−J
∣∣ 〉 〈 ∣∣+H.c)+V (

∣∣ 〉 〈 ∣∣+∣∣ 〉 〈 ∣∣),
(4)

where the sum on α runs over the three orientations of plaquettes, and i represents the

site on triangular lattice. (For the definition of orientation index α and coordinate we

chose see in Fig.(3)) What would happen to the ground state now when we vary the

balance of V and J? We see that, in the square lattice the spins will undergo a phase

transition from VBS to a spin liquid (RVB) state, and this is roughly the the case on
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the triangular lattice. See Fig.(4). However, unlike the U(1) spin liquid on the square

(a) (b) (c)

Figure 4: (b) a typical RVB dimer covering on the triangular lattice. (c) the column state. (a)

A staggered state with the four-dimer move connecting it to other states. In this staggered

configuration a local dimer dynamics is shown.[19]

lattice, the Z2 RVB liquid (Fig.(4)(b)) can stay in a stable state over a parameter regime

around the special RK-point J = V ,[18] implies a more stable ground state of QDM on

the square lattice when the next near neighbors are taken in concern.

3.1.2 Hamiltonian with doped fermionic dimers

In [6], Punk, Allais and Sachdev detailed the Hamiltonian introduced by doped fermionic

dimers on the square lattice. Similarly, we use the following results to describe the

Hamiltonian of plaquettes with certain orientation

H =
3∑
α

Hα , with Hα = HRK,α +H1,α +Hν1,α , (5)

Note that in the Hamiltonian above, we treated different orientations separately. Its

validity is endowed by the property that the dimers in different orientations are mutually

independent in terms of the Hamiltonian, so that each Hamiltonian is merely related

to the parallel plaquettes, i.e., within one orientation. Moreover, if there is no dimer

appearing diagonally in the parallelogram plaquettes, the Hamiltonian should be similar

to that of the square lattice, since the parallelogram is merely a tilted square. This can

be seen from the following calculations.
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Figure 5: Hoppings of fermionic dimer (blue, dashed) and bosonic dimer (orange) on a

plaquette with certain orientation (α = 1).

The second term of the Hamiltonian for α = 1 is

H1,α=1 =− t1
∑
i

(F †i,xD
†
i+z,xDi,xFi+z,x +D†i,xF

†
i+z,xFi,xDi+z,x

+ F †i,zD
†
i+x,zDi,zFi+x,z +D†i,zF

†
i+x,zFi,zDi+x,z)

− t2
∑
i

(F †i,xD
†
i+z,xDi+x,zFi,z + F †i,xD

†
i+z,xDi,zFi+x,z

+D†i,xF
†
i+z,xFi+x,zDi,z +D†i,xF

†
i+z,xFi,zDi+x,z

+D†i,zF
†
i+x,zFi+z,xDi,x +D†i,zF

†
i+x,zFi,xDi+z,x

+ F †i,zD
†
i+x,zDi+z,xFi,x + F †i,zD

†
i+x,zDi,xFi+z,x),

(6)

where ti represents amplitude of energy contributions of two selected short-range hop-

pings of fermionic dimers, which are illustrated in Fig.(5). Other short-range as well

as long-range hoppings are not prohibited in our model, however, we are allowed to

omit them to simplify the calculation since their amplitudes are expected to decay

exponentially with increasing distance.

The explicit calculation of ti through the perturbative mapping can be found in the

Appendix of [6].

The third term Hν1 in Eq.(5) indicates the energy contribution of flippable plaquettes

which contain doped fermionic dimers. With the characterizing amplitude parameter

ν1, the corresponding term Hν1 for α = 1 is

Hν1,α=1 = ν1
∑
i

(F †i,xD
†
i+z,xDi+z,xFi,x +D†i,xF

†
i+z,xFi+z,xDi,x

+F †i,zD
†
i+x,zDi+x,zFi,z +D†i,zF

†
i+x,zFi+x,zDi,z) .

(7)

To further evaluate the exact ground state wave functions, a line in parameter space
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needs to be identified, where the Hamiltonian from Eq.(5) can be reconstructed as a

sum of projectors.[14] The choice in determining the original RK Hamiltonian is a point

J = V for only two parameters, namely RK point. Similarly, we take the choice

ν1 = t2 = −t1, (8)

and insert this RK-line into Eq.(5). We obtain

H = J
∑
l

3∑
α

(
∣∣ 〉

−
∣∣ 〉

)(
〈 ∣∣− 〈 ∣∣)+

+ ν1
∑
l

3∑
α

(
∣∣ 〉

+
∣∣ 〉

−
∣∣ 〉

−
∣∣ 〉

)(
〈 ∣∣+

〈 ∣∣− 〈 ∣∣− 〈 ∣∣).
(9)

The first term represents the original RK Hamiltonian on the triangular lattice while the

second one describes the Hamiltonian produced by introduced fermionic dimers. Their

similar forms guide us to the following conjucture: As in the original RK RVB model, the

ground state is realized by the superposition of equally weighed dimer configurations,

that for doped case is expected to be realized by equal weighted superposition of dimer

configurations despite the site occupied by doped fermionic dimers as well. However,

due to the antisymmetry of the fermionic dimers, this is only true for at most one

doped fermionic dimer. This argument is discussed by J.Feldmeier in [13]. Moreover,

the Hamiltonian we obtained for the triangular lattice behaves as the sum of that for

square lattice running over three directions. When we later fixed the orientation of

doped fermionic dimer, the additional possibility of orientation compared to that on

square lattice differs the ground state wave functions. Nevertheless, the deviation can

be recovered by adding a diagonal link on square lattice, i.e. a compressed triangular

lattice.

3.2 Exact ground states

To examine the exact ground state wave functions of our model, we start in this section

with applying the Hamiltonian to a general expansion form of dimer configurations

with two doped fermionic dimers, then we detail the expansion form by minimizing
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the Hamiltonian. The ground state of arbitrary doping density is finally achieved by a

straightforward generalization.

Firstly, we define the three states in following Sec.(3.2.1) and Sec.(3.2.2), and finish the

calculations later in Sec.(3.2.3).

3.2.1 Two doped fermionic dimers state

To build up the form of the ground state for two doped fermionic dimers, the discussion

in Sec.(3.1.2) suggests that the plausible form of ground state is related to an equally

weighed superposition of all dimer configurations. Moreover, the specific form of the

Eq.(9) guarantees the Hamiltonian to be positive definite, which implies the zero eigen-

value of Hamiltonian at ground state |ψ0〉. In the original RK model, the consistency

of these two properties is straightforward to be checked. We define our basic form of

doped states

|(i1, η1), (i2, η2)〉 ≡ N · F †i1,η1F
†
i2,η2
|0〉(i1,η1),(i2,η2) ⊗

 ∑
c∈C(i1,η1),((i2,η2)

|c〉

 , (10)

where the zero eigenvalue of HRK is realized by summing up all possible configurations

|c〉 of bosonic dimer on undoped sites equally.

The term N in Eq.(10) intends to normalize the summation term. We consider that

for an N sites lattice with Nt possible configurations in total, the normalized factor

gains the form N ≡
√
N(i1,η1),(i2,η2)/Nt where N(i1,η1),(i2,η2) is the possible configuration

of bosonic dimers after doping fermionic dimers on (i1, η1), (i2, η2). Thus,

〈(i1, η1), (i2, η2)|(i1, η1), (i2, η2)〉 =
N(i1,η1),(i2,η2)

Nt

. (11)

In [13], this factor N is further identified as the classical dimer correlation function Qc,

which yields a vanishing norm Qc[c] = 0 as any QDM-constraint violating configuration

c.

3.2.2 Plaquette states

The state of dimers is defined by their locating site as well as their orientations. We

use the same indices to characterize the doped fermionic dimers. And since the three
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different orientated plaquettes can be assigned to one site, we thus define the plaquette

states solely labeled by site l as

|φl〉 =
∑
α

|φl,α〉 = |φl,1〉+ |φl,2〉+ |φl,3〉, (12)

where the state of certain orientated plaquette e.g. α = 1 is

|φl,1〉 = F †i,xD
†
i+z,x +D†i,xF

†
i+z,x − F

†
i,zD

†
i+x,z −D

†
i,zF

†
i+x,z. (13)

As claimed in Eq.(9), we rewrite the Hamiltonian as a sum of projectors by setting a

proper RK line. Note that the projectors of H1 + Hν1 part in the Hamiltonian consist

of projection operators coinciding with the above defined plaquette states. We then

define the projector on site l

Pl = Pl,1 ⊕ Pl,2 ⊕ Pl,3

= (|φl,1〉〈φl,1|+ |φl,2〉〈φl,2|+ |φl,3〉〈φl,3|)⊗
∏
p 6=l

1p
(14)

and rewrite the H1 +Hν1 part as

H1 +Hν1 =
∑
l

Pl

=
∑
l

3∑
α

Pl,α

(15)

We finally define a mix state

|φl,α, (i, η)〉 =
1√

N(l,τ),(l+µ,τ),(i,η)

F †i,η|0〉(i,η) ⊗ |φl,α〉 ⊗

 ∑
c∈C(l,τ),(l+µ,τ),(i,η)

|c〉

 , (16)

which is normalized by 1/
√
N(l,τ),(l+µ,τ),(i,η), the number of configurations of dimers

when the plaquette |φl,α〉 occupy the sites (l, τ), (l + µ, τ) and the doped fermionic

dimer is located on (i, η).

3.2.3 Exact ground state

For the system with only two doped fermionic dimers, we start with the ansatz

|φ0〉 =
∑

i1,η1,i2,η2

A(i1,η1),(i2,η2) |(i1, η1), (i2, η2)〉, (17)
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(a) A doped fermionic

dimer can be assigned to

four possible plaquettes.

(b) Fermionic dimers orientated in three directions and their pos-

sible corresponding plaquettes with bosonic dimers

Figure 6: For each doped dimer, four nearby plaquettes are affected by applying Hamil-

tonian.

i.e. expand the assumed ground state |φ0〉 in terms of the basis functions Eq.(10) with

two doped fermionic dimers, and weigh the states with A(i1,η1),(i2,η2). Then we apply

the Hamiltonian H

H|φ0〉 = J
∑
plaq

HRK |φRK0〉+ ν1
∑
l

3∑
α

∑
i1,η1,i2,η2

A(i1,η1),(i2,η2) Pl,α|(i1, η1), (i2, η2)〉

= ν1
∑
l

3∑
α

∑
i1,η1,i2,η2

A(i1,η1),(i2,η2) Pl,α|(i1, η1), (i2, η2)〉.
(18)

The fact that the RK term vanishes is resulted from the equally weighed bosonic dimer

configurations in Eq.(10).

We now observe how the projector Pl,α acts on the plaquettes explicitly. It acts non-

trivially only on the plaquettes containing a single fermionic dimer. As shown in Fig.(6),

one fermionic dimer can be contained by four nearby different orientated plaquettes

which are assigned to three labeling sites l. Since the doped dimers are characterized

by both its locating site i and orientation η, we apply the projectors with respect to

their locating label l as well and treat different orientated dimer separately.

For fermionic dimer located on (i1, x),∑
α

Pl,α|(i1, x), (i2, η2)〉 = (Pl,1 ⊕ Pl,2 ⊕ Pl,3)|(i1, x), (i2, η2)〉

= (δl,i1 + δl−x,i1 + δl+z,i1)Pl|(i1, x), (i2, η2)〉,
(19)

where for δl,i1
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δl,i1(Pl,1 ⊕ Pl,2 ⊕ Pl,3)|(i1, x), (i2, η2)〉 = δl,i1Pl,η1|(i1, x), (i2, η2)〉 =

=
1√
Nt

∑
c∈C(l,η1),(i2,η2)

|φl,1〉〈φl,1|F †l,xF
†
i2,η2

(
|0〉(l,x),(i2,η2) ⊗ |c〉

)
.

(20)

To further simplify this expression, we take one bosonic dimer from |c〉 and combine it

with the fermionic dimer F †l,x from before into a plaquette state coupling with 〈φl,1| :

=
1√
Nt

∑
c∈C(l,x),(i2,η2)

|φl,1〉〈φl,1|F †l,xF
†
i2,η2

(
|0〉(l,x),(i2,η2) ⊗ |c〉

)
=

=
1√
Nt

∑
c′∈C(l,x),(i2,η2),(l+z,x)

|φl,1〉〈φl,1|F †l,xF
†
i2,η2

D†l+z,x
(
|0〉(l,x),(i2,η2)),(l+z,x) ⊗ |c′〉

)
=

=
1√
Nt

〈φl,1|F †l,xD
†
l+z,x|0〉(l,x),(l+z,x)F

†
i2,η2
|0〉(i2,η2)) ⊗ |φl,1〉 ⊗

 ∑
c′∈C(l,x),(i2,η2),(l+z,x)

|c′〉

 =

= 〈φl,1|F †l,xD
†
l+z,x|0〉(l,x),(l+z,x)

√
N(l,τ),(l+µ,τ),(i,η)

Nt

⊗ F †i2,η2|0〉(i2,η2)) ⊗ |φl,1〉 =

= 〈φl,1|F †l,xD
†
l+z,x|0〉(l,x),(l+z,x)

√
Qc[(l, x), (l + z, x), (i2, η2)]|φl,1, (i2, η2)〉

= +
√
Qc[(l, x), (l + z, x), (i2, η2)]|φl,1, (i2, η2)〉.

(21)

Analogously, we can repeat the calculation for other kronecker deltas as well as orien-

tations:

(δl,i1 + δl−x,i1 + δl+z,i1)Pl|(i1, x), (i2, η2)〉 =

+ δl,i1
√
Qc[(l, x), (l + z, x), (i2, η2)]|φl,1, (i2, η2)〉

− δl−x,i1
√
Qc[(l, x), (l + y, x), (i2, η2)]|φl,2, (i2, η2)〉

+ δl+z,i1
√
Qc[(l, x), (l − z, x), (i2, η2)]|φl,1, (i2, η2)〉

− δl+z,i1
√
Qc[(l, x), (l − y, x), (i2, η2)]|φl,2, (i2, η2)〉

(22)
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(δl,i1 + δl−y,i1 + δl−x,i1)Pl|(i1, y), (i2, η2)〉 =

+ δl,i1
√
Qc[(l, y), (l − x, y), (i2, η2)]|φl,2, (i2, η2)〉

− δl−y,i1
√
Qc[(l, y), (l + z, y), (i2, η2)]|φl,3, (i2, η2)〉

+ δl−x,i1
√
Qc[(l, y), (l + x, y), (i2, η2)]|φl,2, (i2, η2)〉

− δl−x,i1
√
Qc[(l, y), (l − z, y), (i2, η2)]|φl,3, (i2, η2)〉

(23)

(δl,i1 + δl−y,i1 + δl+x,i1)Pl|(i1, z), (i2, η2)〉 =

+ δl,i1
√
Qc[(l, z), (l − y, z), (i2, η2)]|φl,3, (i2, η2)〉

− δl,i1
√
Qc[(l, z), (l + x, z), (i2, η2)]|φl,1, (i2, η2)〉

+ δl−y,i1
√
Qc[(l, z), (l + y, z), (i2, η2)]|φl,3, (i2, η2)〉

− δl+x,i1
√
Qc[(l, z), (l − x, z), (i2, η2)]|φl,1, (i2, η2)〉.

(24)

Fig.(6b) illustrates the above presented results, where each orientated fermionic dimer

has four coupling bosonic dimers. They are combined together so that four mix states

with alternating sign are generated. In the next step, we insert previous results into

Eq.(18) and obtain∑
l

∑
i1,η1,i2,η2

A(i1,η1),(i2,η2)Pl|(i1, η1, (i2), η2)〉 =

∑
l,η1,i2,η2

A(i1,η1),(i2,η2)[(δl,i1
√
Qc[(l, x), (l + z, x), (i2, η2)] + δl+z,i1

√
Qc[(l, x), (l − z, x), (i2, η2)]

− δl,i1
√
Qc[(l, z), (l + x, z), (i2, η2)]− δl+x,i1

√
Qc[(l, z), (l − x, z), (i2, η2)]|φl,1, (i2, η2)〉

(− δl−x,i1
√
Qc[(l, x), (l + y, x), (i2, η2)]− δl+z,i1

√
Qc[(l, x), (l − y, x), (i2, η2)]

+ δl,i1
√
Qc[(l, y), (l − x, y), (i2, η2)] + δl−x,i1

√
Qc[(l, y), (l + x, y), (i2, η2)]|φl,2, (i2, η2)〉

(− δl−y,i1
√
Qc[(l, y), (l + z, y), (i2, η2)]− δl−x,i1

√
Qc[(l, y), (l − z, y), (i2, η2)]

+ δl,i1
√
Qc[(l, z), (l − y, z), (i2, η2)] + δl−y,i1

√
Qc[(l, z), (l + y, z), (i2, η2)]|φl,3, (i2, η2)〉]

+
∑

i1,η1,l,η2

[. . . ]|(i1, η1), φl〉

(25)
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As J.Feldmeier argued in [13], the classical correlation functionQc[(l, η), (l+µ, η), (i2, η2)]

does not have true dependence on η and µ. Moreover, as claimed in Sec.(3.1.2), the

Hamiltonian is expected to have minimal value at zero, we consequently demand the

coefficient for each term to vanish. It turns out that the coefficient A(i1,η1),(i2,η2) is

constrained with conditions

A(l,x),(i2,η2) + A(l+z,x),(i2,η2) − A(l,z),(i2,η2) − A(l+x,z),(i2,η2) = 0

A(l−x,y),(i2,η2) + A(l,y),(i2,η2) − A(l+z,x),(i2,η2) − A(l−x,x),(i2,η2) = 0

A(l−y,z),(i2,η2) + A(l,z),(i2,η2) − A(l−y,y),(i2,η2) − A(l−x,y),(i2,η2) = 0
(26)

and symmetrical conditions for (i2, η2).

To solve these conditions, we employ the ansatz

A(i1,η1),(i2,η2) = ai1,η1ai2,η2 , (27)

and insert it into Eq.(26). It yields three equalities

a(lm,x),(i2 + a(lm+z,x) − a(lm,z) − a(lm+x,z) = 0

a(lm−x,y) + a(lm,y) − a(lm+z,x) − a(lm−x,x) = 0

a(lm−y,z) + a(lm,z − a(lm−y,y) − a(lm−x,y) = 0

(28)

for m = 1, 2. Hence, for more doped fermionic dimers m = 1, . . . , Nf , the conditions

are easily expanded as for each dimer they are mutually independent. By introducint

the lattice momenta pm, we make the ansatz

aim,ηm = aim,ηm(pm) = Cηm(pm)eipm·im . (29)

The exact ground state with two doped dimers is

|φ0〉 =
∑

i1,η1,i2,η2

ai1,η1(p1)ai2,η2(p2)|(i1, η1), (i2, η2)〉 = |p1,p2〉, (30)

namely the exact ground state is characterized by the lattice momentum of doped

dimers, which can be directly generalized to arbitrary fermion number. By inserting

Eq.(29it into conditions Eq.(28), we obtain

Cx(pm) = Cz(pm)
1 + eipm,x

1 + eipm,z
(31)
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and

Cy(pm) = Cx(pm)
1 + eipm,y

1 + eipm,x
= Cz(pm)

1 + eipm,y

1 + eipm,z
(32)

as on the triangular lattice the sum of unit vectors x + z reproduces the unit vector

y. Finally, with the normalization |Cx|2 + |Cx|2 + |Cx|2 = 9
N

of Eq.(30), where 9 comes

from 3× 3 possibilities of orientations for two doped fermionic dimers, Cη(pm) has the

choice:

Cη =
3√
N

1 + eipm,η√
|1 + eipm,x|2 + |1 + eipm,y|2 + |1 + eipm,z|2

, (33)

which has a similar form compered to the choice of Cη on square lattice in [13]: we add a

normalization term representing y-direction orientated momenta into the denominator,

and replace the number of orientations 2 on the square lattice with 3. The relationships

among Cη indicated this result already as well. By taking one orientation of plaquette

on the triangular lattice away, we can reproduce the choice made for square lattice. On

the other hand, our anticipation in Sec.(3.2.1) is confirmed that a triangular case can

be recovered by adding the diagonal orientation into square lattice.

3.3 Perturbations around RK line

We further proceed the study of perturbations in the parameter space, which is expected

to change the ground state structure thoroughly. It suggests that the deviations around

RK line lead to a dispersion relation of energy and lattice momenta in contrary to the

huge degeneracy of the ground state. In accordance with the work done by J.Feldmerier

in [13], we do following calculations to investigate the perturbed energy. We start in a

like manner with two doped dimers and restrict the perturbations in exchange hopping

parameters t1 and t3. With the first order perturbation, we evaluate the energy by

determining

E = E0 + 〈p1p2|∆Hti |p1p2〉 = 〈p1p2|∆Hti |p1p2〉, (34)
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Figure 7: The dispersion relation for δt1 = −0.02, J = V = 1.(a)(b) show that small

perturbations around RK-Line change the ground state dramatically and Fermi pockets

emerge already at the edge of first Brillouin zone.

where

∆Hti = −δti
Sti∑
s=1

∑
j,η

F †
j+rs,ηti

,η+ηti
D†j,ηDj+rs,ηti

,η+ηti
Fj,η. (35)

In the second equality, we merely summarize the Hamiltonian in Eq.(9) by introducing

the displacement vector rs,ηti , changing of the orientation ηti and then summing up Sti

correlated terms referring to the given interaction process ti. Additionally, ti is replaced

by its deviation δti to associate with perturbation.

We then insert Eq.(17) into Eq.(35) and (34) in order to identify the expression of
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∆E(p1p2):

∆E = −δti
Sti∑
s=1

∑
j,η

∑
i1,η1,i2,η2

∑
l1,τ1,l2,τ2

ai1,η1(p1)ai2,η2(p2)a
∗
l1,τ1

(p1)a
∗
l2,τ2

(p2)×

× 〈(l1, τ1), (l2, τ2)|F †j+rs,ηti ,η+ηti
D†j,ηDj+rs,ηti

,η+ηti
Fj,η |(i1, η1), (i2, η2)〉 .

(36)

With an universe evaluation of the matrix element done by Federmeier in [13] and the

abbreviation i1 = (i1, η1) he used, we thus obtain

∆E = −δti
Sti∑
s=1

∑
i1,i2

ti
(
ai1(p1)ai2(p2)a

∗
i1+r

s,i1
ti

(p1)a
∗
i2

(p2)− ai1(p1)ai2(p2)a
∗
i1+r

s,i1
ti

(p2)a
∗
i2

(p1)
)
×

×Qc[i1, i2, i1 + rs,i1 ]+

+δti
(
. . .
)
×Qc[i1, i2, i2 + rs,i2 ].

(37)

Note that it can be written as a sum of single particle energy
∑

pi
εpi if we only consider

the leading order in low doping limit, since the cross coefficients, e.g. in the first term,

ai2(p2)a
∗
i2

(p2) can be evaluated together as a constant, and the left part has the variable

p1 only. By inserting 29 into the leading order terms, the single particle energy is thus

defined as:

ε(pi) ≡ −δti
∑
ηi

(1 + eipi,ηi )(1 + e
−ipi,ηi+ηti )

|1 + eipm,x|2 + |1 + eipm,y|2 + |1 + eipm,z|2

Sti∑
s=1

[e−ir
s,ηi
ti
·pi ]Qc[(0, ηi)|rs,ηiti ],

(38)

whose dispersion in momenta space is illustrated in Fig.(7).
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4 Summary

Here we briefly summarize our previous calculations. Our goal is to expand QDM onto

the triangular lattice. To examine the explicit form of Hamiltonian and the ground

states, we follow the calculations on the square lattice in [13] and adapt them accord-

ing to the specific geometry of the triangular lattice. We start with building up the

Hamiltonian, then follow the method proposed by Rokhsar and Kivelson to rewrite the

Hamiltonian into exact solvable form at chosen parameter line. Based on it we obtain

the exact ground state which confirmed our expectations.(Sec.3.2.3) From [13] we know

that small perturbations around exactly solvable parameter line lead to a collapse of

the flat energy band in momentum space. Consequently a non-trivial dispersion re-

lation emerges, where the significant structure Fermi pocket can be observed. These

conclusions are recovered in the triangular lattice case as well. As shown in Fig.(7),

the dispersion relation is apparently distinct from flat band at very small perturbations

(ti = −0.02), and small tunnels appear at the edge of the first Brillouin zone.

For further study of QDM in the triangular lattice, the states |p1, . . . ,pNf 〉 is expected to

reconstructed with creation and annihilation operators which fulfill canonical fermionic

anticommutation relations as in square lattice case. Finally, a fractionalized Fermi

liquid structure (FL*) is able to to be built upon the triangular lattice.
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