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We consider the d-dimensional transverse-field Ising model with power-law interactions J/rd+σ in the presence
of a noisy longitudinal field with zero average. We study the longitudinal-magnetization dynamics of an initial
paramagnetic state after a sudden switch-on of both the interactions and the noisy field. While the system eventually
relaxes to an infinite-temperature state with vanishing magnetization correlations, we find that two-time correlation
functions show aging at intermediate times. Moreover, for times shorter than the inverse noise strength κ and
distances longer than a(J/κ)2/σ with a being the lattice spacing, we find a critical scaling regime of correlation
and response functions consistent with the model A dynamical universality class with an initial-slip exponent
θ = 1 and dynamical critical exponent z = σ/2. We obtain our results analytically by deriving an effective action
for the magnetization field including the noise in a nonperturbative way. The above scaling regime is governed
by a nonequilibrium fixed point dominated by the noise fluctuations.
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I. INTRODUCTION

The concept of universality is well established in closed
classical and quantum systems in equilibrium [1,2] and has
been rigorously formulated through a number of advanced
frameworks such as scaling theory [1–3] and the celebrated
renormalization group method [4–9]. Moreover, with the great
degree of control currently available in ion-trap [10–12] and
ultracold-atom setups [13–16], the study of phase transitions
and their effects on the nonequilibrium dynamics of closed
quantum systems has become experimentally possible.

In recent years, and in no small part due to this experimental
advancement, out-of-equilibrium criticality and dynamical
phase transitions have become the subject of extensive theoret-
ical [17–20] and experimental [21–25] research. In equilibrium
one is able to probe criticality only in the ground state or
thermal state of the system, whereas in out-of-equilibrium
systems there can be multiple instances of criticality [26]. More
recently the attention has shifted to criticality in prethermal
states that temporally precede the steady state [27–36] and
to the long-time time-translation invariant steady state itself
[36–38]. Even though the latter has been extensively studied
and is known to be connected to nonanalyticities in a dynamical
analog of the free energy in mean-field models [39,40], the
critical exponents involved in classifying the universality of
the model are directly those known from equilibrium.

Prethermal criticality, on the other hand, offers the unique
possibility of studying truly out-of-equilibrium criticality,
because in this case criticality is probed away from the steady
state and the dynamics is not time-translation invariant. One
of the most fascinating aspects of such prethermal criticality
is the phenomenon of aging in systems quenched to a critical
point [41]. Aging occurs in the prethermal regime, before the
system has relaxed into its steady state, and gives rise to a
truly nonequilibrium critical exponent θ that can be extracted

from the intermediate-time dynamics of the order parameter or
the two-time (s,t) correlation and response functions thereof.
Due to the broken time-translation invariance the latter do not
only depend on the time difference t − s, even at long times.
In fact, the decay as a function of t > s gets slower with
larger s. In other words, the response of a system becomes
slower with its waiting time or age s. This is the characteristic
aging behavior shown also by structural glass and spin glasses,
where even though the slow dynamics after a perturbation such
as a quantum or temperature quench may be approaching an
asymptotic value in single-time quantities, this does not mean
that the system is approaching a stationary state.

Critical dynamics of thermal systems have been shown to
exhibit such aging behavior in two-time correlation functions,
indicating the absence of equilibration to a time-translation
invariant stationary state [42,43]. This type of aging has been
observed also in isolated systems described by O(N ) models
[33–36], where for critical quenches the response and corre-
lation functions at small momenta exhibit time dependence
∝−t(s/t)θ and (st)2−2θ , respectively, for t � s.

Recently, the investigation has been extended to open
systems. A coupling to (possibly nonthermal) baths might be
present, together with other wanted or unwanted sources of en-
vironmental noise. As such, a theoretical framework describing
how the openness of the system affects the aging behavior is
desirable. Moreover, criticality can be fundamentally different
between the closed and open system version of the same
model, as is for instance the case for driven-dissipative systems
even in the steady state [44]. In the context of critical aging
dynamics, dissipative systems, like O(N ) models in contact
with a sub- or super-Ohmic bath [45] or driven and lossy fully
connected spin chains [46], as well as noisy models [47,48],
have been considered. In particular, aging has been predicted
for lattice bosons in the presence of phase noise [48] and
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prethermalization for short-range Ising models with a noisy
transverse field [47,49].

In this paper, we study the relaxation dynamics after a
quench in a noisy spin system. We consider a transverse-field
Ising model in d spatial dimensions with power-law interac-
tions J/rd+σ as a function of distance r in the presence of a
longitudinal field with zero average and Gaussian Markovian
fluctuations of strength κ . Starting from an initial paramagnetic
state and suddenly switching on both the interactions and
the longitudinal noise field, we compute the dynamics of
the response and correlation functions of the longitudinal
magnetization. The quantum Ising model with power-law
interactions is a paradigmatic setup of condensed matter and
quantum many-body physics. In addition to its simplicity, it
encompasses infinitely many universality classes, including
in just one dimension depending on the value of α, and it
has recently been the main protagonist in experiments on

dynamical phase transitions [22,23,25]. As shown below,
it also provides a quantum mechanical spin model where
combined effects of noise and quench dynamics can be studied
analytically, allowing our work to provide a formalism suitable
for investigating criticality in current open many-body exper-
iments.

A. Summary of the main findings

(i) The two-point correlation functions for any given space-
time distance t − s vanish exponentially as a function of
the time (t + s)/2 elapsed after the quench, consistent with
the fact that the system reaches an infinite-temperature state
[47]. However, at intermediate times we find that correlation
functions computed at two times s and t > s remain dependent
on the ratio s/t as is the case for aging systems (see Fig. 5).
In particular, for J � κ and times t,s < 1/κ we analytically
obtain the response and correlation functions (for t > s)

〈Mp,tM̃p,s〉 � − i cos[2Rp(t − s)] − i
κ

4Rp
sin[2Rp(t − s)], (1)

〈Mp,tM−p,s〉 � 4h2

R2
p

(
4R2

p + κ2
){

2Rp(2Rp cos[2Rp(t − s)] − κ sin[2Rp(t − s)])e−2κs − (
4R2

p + κ2
)

cos[2Rp(t − s)]

+ κ

(
κ cos

[
2Rp(t − s)

(
1 + s/t

1 − s/t

)]
+ 2Rp sin

[
2Rp(t − s)

(
1 + s/t

1 − s/t

)])}
, (2)

withRp = √
h(h − Jp), where h is the transverse field strength

and Jp is the Fourier transform of the interaction profile
J/rd+σ . In (1) M is the longitudinal magnetization field and
M̃ is the longitudinal response field. These two-time functions
show the breaking of time-translation invariance.

(ii) For a quench to the closed-system critical point h = J0
and for times t,s � 1/κ as well for large distances such that
|p|a(J/κ)2/σ � 1 with a the lattice spacing, the response and
correlation functions enter an aging scaling regime consistent
with the model A class [26,41]

〈Mp,tM̃p,s〉 � κ

J
(t − s)

2−υ−z
z

(
t

s

)θ

FR

(
|p|(t − s)

1
z ,

s

t

)
, (3)

〈Mp,tM−p,s〉 � (t − s)
2−υ

z

(
t

s

)θ−1

FC

(
|p|(t − s)

1
z ,

s

t

)
, (4)

with

FR(x,y) = − iy

4
√

c0cσ xσ/2
sin

(
2
√

c0cσ xσ/2), (5)

FC(x,y) = 4
c0

cσ

1

xσ

[
cos

(
2
√

c0cσ xσ/2 1 + y

1 − y

)

− cos
(
2
√

c0cσ xσ/2
)]

, (6)

where we have expressed time in units of 1/J and space in units
of a, and with c0,σ being pure numbers. We find the following
critical exponents

z = σ

2
, θ = 1, υ = 2 − σ. (7)

The dynamical critical exponent z is the same as found in the
closed system [50]. The above scaling regime is governed
by a nonequilibrium fixed point dominated by the noise
fluctuations. With the choice of our interaction potential being
1/rd+σ , the above results should hold in arbitrary dimensions
in the weakly interacting regime J � κ .

B. Organization of paper

The rest of the paper is organized as follows. In Sec. II
we present our formalism, based on the Keldysh path-integral
formulation for out-of-equilibrium many-body problems, that
allows us to eventually derive a Langevin vector equation,
from which two-time response and correlation functions of the
longitudinal magnetization and its current can be extracted.
In Sec. III we present our numerical results for the two-
time response and correlation functions of the longitudinal
magnetization and discuss the relaxation dynamics and aging
observed therein, in addition to critical scaling behavior for
quenches close to the critical point. We conclude in Sec. IV,
while providing further details of our derivation in Appendix.

II. FORMALISM

Our goal is to derive an effective Langevin equation
governing the post-quench dynamics of the longitudinal
magnetization in the presence of a noisy magnetic field.
Within this semiclassical approximation, the fluctuations in
the magnetization are induced only by the field noise. Upon
formulating the Martin-Siggia-Rose-De Dominicis-Janssen
(MSRDJ) classical action [51] corresponding to the above
Langevin equation, we compute two-point correlators within
a Gaussian approximation.

045111-2



AGING DYNAMICS IN QUENCHED NOISY LONG-RANGE … PHYSICAL REVIEW B 98, 045111 (2018)

FIG. 1. Closed semi-infinite time contour employed in the path-
integral formulation of the quench problem studied in this paper. At the
initial time t = 0 our system is in a thermal state of the noninteracting
noiseless Hamiltonian H0 given in (8).

The starting point for the derivation of the Langevin equa-
tion is a Hubbard-Stratonovich (HS) decoupling of the Ising
interaction term performed within a path-integral formula-
tion of the quench problem on the closed semi-infinite time
contour [52] shown in Fig. 1. The decoupling is performed
after mapping the spin-1/2 degrees of freedom to Schwinger
bosons. In the absence of the noisy field, the HS decoupling
would be equivalent to the usual mean-field decoupling. Here
we instead include the noise nonperturbatively by solving the
Dyson equation for the two-point bosonic Green’s function
(GF) in a self-consistent manner.

In Sec. II A we begin with introducing the quantum spin
model used to describe our system and its mapping to
Schwinger bosons. In Sec. II B we then describe the path-
integral formulation of the problem on a closed semi-infinite
time contour. In Sec. II C we finally derive the Langevin
equation and its corresponding MSRDJ action.

A. Model and Schwinger-boson mapping

We consider a transverse-field Ising model described by the
Hamiltonian

Ĥ = Ĥ0 + V̂ , (8)

Ĥ0 = −h
∑

i

σ̂ x
i , (9)

V̂ = −1

2

∑
i 	=j

Jij σ̂
z
i σ̂ z

j +
∑

i

ηi,t σ̂
z
i , (10)

with Jij = J/|i − j |d+σ the spin-spin coupling profile, h the
transverse-field strength, and σ̂ x,z the Pauli matrices along the

x and z directions, respectively. We add a noisy longitudinal
field ηi,t with zero average and Gaussian fluctuations:

〈ηi,t 〉 = 0, (11)

〈ηi,tηj,t ′ 〉 = κ

2
δi,j δ(t − t ′), (12)

with κ a strength parameter.
We now use the Schwinger-boson representation of the

Pauli spin operators,

σ̂ z = sgn(α)b̂†i,αb̂i,α, (13)

σ̂ x = b̂
†
i,αb̂i,ᾱ, (14)

with implied summation over spin indices, where b̂
(†)
iα is the

Schwinger-boson annihilation (creation) operator on site i

for the two spin components α = ±1 (or, equivalently in
our notation, α =↑↓) obeying the canonical commutation
relations [b̂i,α,b̂

†
j,β] = δi,j δα,β and [b̂i,α,b̂j,β ] = 0. This allows

us to express our Hamiltonian in the form

Ĥ = − 1

2

∑
i 	=j

Jij sgn(α)sgn(β)b̂†i,αb̂
†
j,β b̂i,αb̂j,β

− h
∑

i

b̂
†
iαb̂iᾱ +

∑
i

ηi,tsgn(α)b̂†iαb̂iα

+
∑

i

λi,t (b̂
†
iαb̂iα − 2S), (15)

where we have additionally included in the last line a Lagrange
multiplier λi,t to constrain the number of bosons per site to 2S

at all times t , with S = 1/2 the spin length in our model.

B. Nonequilibrium path-integral formulation

We want to describe the dynamics within the follow-
ing quench protocol. At t = 0 we prepare the system in a
thermal state ρ̂0 = e−βĤ0/Z of the noninteracting, noiseless
Hamiltonian Ĥ0, and then let it subsequently evolve with the
full Hamiltonian (8) in the presence of the noise. In order
to compute nonequilibrium GFs we adopt a path-integral
formulation of the partition function on the closed semi-infinite
time contour [52] C : 0 → ∞ → 0 shown in Fig. 1.

After HS decoupling of the interaction term using the aux-
iliary longitudinal magnetization field M, the noise-averaged
partition function reads (see Appendix for more details)

Z =
∫

D[φ̄χ ,φχ ,Mχ ,λ,η]eiS[φ̄χ ,φχ ,Mχ ,λ,η], (16)

with the action given by

S[φ̄χ ,φχ ,Mχ ,λ,η] =
∫ ∞

0
dt

∑
χ=±

χ
∑

i

(
φ̄

χ

i,α,t i∂tφ
χ

i,α,t + hφ̄
χ

i,α,tφ
χ

i,ᾱ,t − ηi,tsgn(α)φ̄χ

i,α,tφ
χ

i,α,t − λi,t φ̄
χ

i,α,tφ
χ

i,α,t

)

+
∫ ∞

0
dt

∑
χ=±

χ
∑
i 	=j

(
Mχ

j,tJij sgn(α)φ̄χ

i,α,tφ
χ

i,α,t − Mχ

i,t

Jij

2
Mχ

j,t

)
+ i

κ

∫ ∞

0
dt

∑
i

η2
i,t , (17)
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FIG. 2. Diagrammatic expression of the Gaussian action for
the magnetization field M (wiggly lines), leading to the Langevin
equation (18). The dimensionless noise field η/κ is indicated by
a dashed line while the Schwinger boson by a solid line. The
magnetization couples to the bosons with coupling constant Jij

while the dimensionless noise field with coupling constant κ . The
nonequilibrium Green’s functions are computed on the semi-infinite
real-time closed contour of Fig. 1. Contour indices as well as bosonic
spin indices are suppressed. The Gaussian action is defined by
diagrams (a) plus (b), whereby the bosonic loops are computed using
the Green’s functions dressed by the self-energy insertions (c), (d),
and (e).

where χ = ± indicates the forward (0 → ∞) or backward
(∞ → 0) branch of the contour, respectively, φχ

i,α,t are bosonic
fields with φ̄

χ

i,α,t their complex conjugate, and Mχ

i,t is a real
field. The noise field ηi,t is a classical field and therefore its
value does not depend on the contour branch.

C. Langevin equation and MSRDJ action

In order to obtain the Langevin equation describing the
dynamics of the magnetization field Mi,t , we perform a
Keldysh rotation in (17), integrate out the classical and quan-
tum bosonic fields φ

cl(q)
i,α,t = (φ+

i,α,t ± φ−
i,α,t )/

√
2, and consider

the saddle-point equation of motion up to linear order in Mi,t

(see Appendix for a detailed derivation), which reads

Mi,t = − 2i
∫ ∞

0
dτ

(∑
l

JilMl,τ − ηi,τ

)

× (�G
K,↑↑
(i,τ ),(i,t)G

R,↑↑
(i,t),(i,τ ) − i�G

K,↑↓
(i,τ ),(i,t)G

R,↓↑
(i,t),(i,τ )

)
,

(18)

with the classical component of the magnetization fieldMi,t ≡
Mcl

i,t = (M+
i,t + M−

i,t )/2 and we have assumed our system is
in the paramagnetic phase so that G↑↑ = G↓↓ and G↑↓ =
G↓↑, with the bosonic GFs defined as iGR,αα′

(j,t),(j ′,t ′) = θ (t −
t ′)〈[b̂j,α(t),b̂†j ′,α′ (t ′)]〉 and iGK,αα′

(j,t),(j ′,t ′) = 〈{b̂j,α(t),b̂†j ′,α′ (t ′)}〉.
The action corresponding to the above Langevin equation is

diagrammatically expressed by the sum of the two self-energies
given in Figs. 2(a) and 2(b). In a purely Gaussian approxima-
tion the bosonic GFs appearing in (18) would be the bare prop-
agators obtained for κ = Jij = 0. The natural improvement
over this crude approximation is the self-consistent Hartree-
Fock treatment corresponding to the self-energy corrections
expressed diagrammatically in Figs. 2(c)–2(e), whereby the
M GF in Figs. 2(d) and 2(e) includes the loop corrections
from Figs. 2(a) and 2(b).

However, we will restrict here to a weakly interacting
case J � κ where we can neglect the corrections Figs. 2(d)
and 2(e) to the bosonic self-energies, so that the latter are
purely determined by the noisy magnetic field. Due to the
self-consistent resummation, the diagrams (d) and (e) of Fig. 2
cannot be in general neglected based on the perturbative
criterion J � κ . However, as we shall show in what follows,
the presence of the noise limits the growth of the magnetization
correlation functions so that no self-consistent enhancement
takes place even at the critical point.

Within the above approximation we obtain the following
bosonic response (see Appendix for a detailed derivation)

G
R(A),↑↑
(i,t),(j,t ′) = ∓ie∓ κ

4 (t−t ′)�[±(t − t ′)] cos[h(t − t ′)]δi,j , G
R(A),↑↓
(i,t),(j,t ′) = ±e∓ κ

4 (t−t ′)�[±(t − t ′)] sin[h(t − t ′)]δi,j , (19)

and correlation functions

G
K,↑↑
(i,t),(j,t ′) = δi,j

{ − 2i
[
e

κ
4 (t ′−t)�(t − t ′) + e

κ
4 (t−t ′)�(t ′ − t)

]
cos[h(t − t ′)]

+ e− κ
4 (t+t ′)[e− κ

2 t ′�(t − t ′) + e− κ
2 t�(t ′ − t)

]
sin[h(t − t ′)]

}
,

G
K,↑↓
(i,t),(j,t ′) = δi,j

{ − e− κ
4 (t+t ′)[e− κ

2 t ′�(t − t ′) + e− κ
2 t�(t ′ − t)

]
cos[h(t − t ′)]

+ 2
[
e

κ
4 (t ′−t)�(t − t ′) + e

κ
4 (t−t ′)�(t ′ − t)

]
sin[h(t − t ′)]

}
, (20)

where, for simplicity, we consider our initial paramagnetic
state to be at zero temperature. As explained in Appendix, the
above correlation functions are obtained by solving the Dyson
equation with the noise-induced self-energy of Fig. 2(c) in a
nonperturbative, self-consistent manner. That is, the bosonic
GF appearing in the self-energy is not the bare one. This leads
to a first-order linear partial differential equation which is the
two-time extension of the Fokker-Planck or master equation
employed for the noninteracting fermionic model of Ref. [47].

Substituting the GFs (19) and (20) in the Langevin equation
(18), taking a t-derivative twice, and going to Fourier space we
obtain the following Langevin equation

∂tM
a
p,t = Aab

p,tM
b
p,t + Bab

p,t ξ
b
p,t , (21)

where summation over repeated indices is implied and
we defined the vectors Mp,t = (Mp,t ,∂tMp,t /h)ᵀ, ξp,t =
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(0,ηp,t /h)ᵀ and the matrices

Aab
p,t =

(
0 h

−4h − κ2

4h
+ 4Jpe−κt −κ

)
ab

, (22)

Bab
p,t =

(
0 0
0 −4he−κt

)
ab

. (23)

Here we have introduced the Fourier transform Jp of the
interaction matrix Jij .

The Langevin equation with a first-order time derivative has
to take a vector form since the original equation (18) forMp,t is
a second-order differential equation (see Appendix). Note that
the vectorial form of the Langevin equation (21) belongs to the
model A dynamical universality class, but with the peculiarity
that the friction and noise act directly onto the current ∂tM and
not onto the magnetizationM itself. Still, there is no conserved
quantity here as is the case for the model A class.

In order to compute response and correlation functions of
the magnetization from the Langevin equation (21) we adopt
the stardard MSRDJ method to obtain the following classical
action

SMSRDJ[M̃,M] =
B.z.∑

p

∫ ∞

0
dt

[
4κ

ih2
M̃a

p,tBab
p,tBbc

p,tM̃
c
p,t

− 2M̃a
p,t

(
1ab∂t − Aab

p,t

)
Mb

p,t

]
, (24)

with the response-field vector M̃p,t = (M̃p,t ,∂tM̃p,t /h)ᵀ. The
above MSRDJ action is quadratic in the magnetization field.
However, it does not result from a purely Gaussian approxi-
mation since it includes the loop corrections shown in Fig. 2.
The longitudinal magnetization response

i
[
DR

(p,t),(p′,t ′)
]ab = δp,p′

〈
Ma

p,tM̃
b
p,t ′

〉
(25)

and correlation function

i
[
DK

(p,t),(p′,t ′)
]ab = δp,−p′

〈
Ma

p,tM
b
−p,t ′

〉
(26)

can be directly computed by inverting the matrix-valued
differential operator

D−1
(p,t),(p′,t ′) =

(
0

[
D−1

(p,t),(p′,t ′)
]R†

[
D−1

(p,t),(p′,t ′)
]R [

D−1
(p,t),(p′,t ′)

]K

)
, (27)

[
D−1

(p,t),(p′,t ′)
]R = δp,p′δ(t − t ′)

×
( −∂t h

−4h − κ2

4h
+ 4Jpe−κt −∂t − κ

)
,

(28)

[
D−1

(p,t),(p′,t ′)
]K = δp,−p′δ(t − t ′)

(
0 0
0 −64iκe−2κt

)
. (29)

III. RESULTS

Starting from an initial paramagnetic state and suddenly
switching on both the interactions and the longitudinal noise
field, we want to study the dynamics of two-time response
and correlation functions of the longitudinal magnetization.
We will first discuss the typical behavior of response and
correlation functions both in the vicinity of and away from the

DR,11
(0,t),(0,s), κ = 10J0, h = 13J0

tJ
0

sJ0 sJ0

[DK,11
(0,t),(0,s)], κ = 10J0, h = 13J0

FIG. 3. Response and correlation function of the longitudinal
magnetization [see (25) and (26)] far away from the critical point.

critical point. We will subsequently turn to the aging behavior
at intermediate times, especially focusing on what happens
in the vicinity of the critical point. For simplicity, we have
considered in our analysis a zero-temperature paramagnetic
initial state, although our formalism can readily account for
the finite-temperature case.

A. Relaxation dynamics and aging

By inverting the operator (27) we obtain the four differ-
ent response (25) and correlation (26) functions. The four
components correspond to the magnetization, the current,
and the two mixed correlators. In Figs. 3 and 4 we provide
an example of the magnetization response and correlation
functions. Figure 3 shows results computed far away from
the critical point of the closed system, which is defined by
h = J0. The response function has the correct causal structure.
It is also apparently translation invariant, i.e., it depends only
on the time difference t − s. The latter is a property of our
approximation which should be valid in the weakly interacting
regime κ � J (see discussion in Sec. II C). Before decaying
exponentially at late times, both the response and correlation
functions show an oscillatory behavior with frequency 2Rp

with Rp = √
h(h − Jp) bounded from below by the distance

R0 to the critical point. When Rp is small for p → 0 and h →
J+

0 , as is the case in Fig. 4, the oscillations do not have time
to develop before the envelope decays exponentially to zero.

The exponential decay of the correlations towards zero for
late times is consistent with the expectation that the system

tJ
0

sJ0 sJ0

[DK,11
(0,t),(0,s)], κ = 10J0, h = 1.01J0DR,11

(0,t),(0,s), κ = 10J0, h = 1.01J0

FIG. 4. Response and correlation functions of the longitudinal
magnetization [see (25) and (26)] close to the critical point.
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FIG. 5. Behavior of the correlation of the longitudinal magnetization as a function of the ratio of the two times, both away (upper panel)
and close to (lower panel) the critical point. Different colors correspond to different values of the time difference. The dashed lines indicate the
asymptotic solution at small times from (2) of the two-time correlation function.

relaxes to an infinite-temperature state due to the presence
of noise [47]. However, due to the quench that leads to the
breaking of time-translation invariance, two-point functions
must still depend on both times t,s (and not only on their
difference) up to a certain equilibration time τeq. The latter is
set in our case by the exponential decay and is proportional
to the inverse noise strength: τeq ∼ 1/κ . For times smaller
than 1/κ we can analytically compute response and correlation
functions as given in (1) and (2) for t > s. They explicitly
depend not only on the time difference t − s but also on
their sum or, equivalently, on the ratio s/t . As long as these
functions depend on s/t the system has not relaxed to its
equilibrium state, as is the case for systems showing aging.
The dependence of the correlation function on s/t is shown
in Fig. 5 for different values of the time difference. After a
given time the curves decay to zero and flatten out, indicating
relaxation to a time-translation invariant state. On the other
hand, for intermediate times there is a strong dependence on
s/t and the correlation function agrees well with the analytic
form (2).

B. Critical scaling behavior

For a quench to the critical point of the noiseless system
h = J0 and restricting to 0 < σ < 2 as well distances such
that |p|a � 1, we have

Jp/J
p→0� c0 − cσ |p|σ , (30)

where we have chosen the lattice spacing a as our unit of
length and c0,cσ are positive pure numbers depending on the
dimension d. In d = 1 we have for instance c0 = 2ζ (1 + σ ),
cσ = −2 cos(πσ/2)�[−σ ]. At the critical point we have thus

Rp � J
√

c0cσ |p|σ/2. (31)

For times t,s � 1/κ such that we can neglect the expo-
nential term in (2), and for momenta such that κ � Rp, i.e.,
distances much longer than a(J/κ)2/σ , we can approximate
the response and correlation functions of (1) and (2) as

〈Mp,tM̃p,s〉 � − iκ

4J
√

c0cσ |p|σ/2
sin[2

√
c0cσ |p|σ/2J (t − s)],

(32)

〈Mp,tM−p,s〉 �
{

cos

[
2
√

c0cσ |p|σ/2J (t − s)

(
1 + s/t

1 − s/t

)]

− cos[2
√

c0cσ |p|σ/2J (t − s)]

}
4c0

cσ |p|σ .

(33)

The above critical response and correlation functions can be
brought into the scaling form given in (3) and (4), which
is consistent with the scaling form expected for the model
A dynamical universality class [26,41] [we recall that our
Langevin equation takes the model A form (21) with no
conserved quantities]. We thus get the critical exponents given
in (7). It is interesting to note that while the dynamical critical
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exponent z agrees with the thermal equilibrium value, the
initial-slip exponent θ deviates from the value expected for
the model A class in contact with a thermal bath [41]. This
feature might be interpreted as an example of a “hierarchical
shell structure of nonequilibrium criticality” as proposed in
Ref. [53], whereby the dynamical universality class is further
refined by an additional exponent in an open system without
detailed balance. In our case the universal exponents are valid
in the weakly-interacting regime κ � J , where the critical
behavior is governed by a fixed point dominated by the noisy
longitudinal field with zero average. Differently from Ref. [53]
where a driven-dissipative steady state is considered, in our
case detailed balance at early times is broken by the post-
quench aging behavior, whereby the additional slip exponent
emerges.

IV. CONCLUSION AND OUTLOOK

We considered the long-range transverse-field Ising model
with power-law interactions, where we perform a quench on
the disordered side of the equilibrium phase diagram in the
presence of a noisy longitudinal magnetic field with zero
average. We showed that the dynamics exhibits aging at short
to intermediate times before the system eventually settles
into an infinite-temperature state. At these early times and

at long distances we also find a scaling regime governed by
a nonequilibrium fixed point dominated by the noise fluctu-
ations. Interestingly, the universal initial-slip exponent θ = 1
that we find deviates from the value expected for the model
A dynamical universality class in contact with a thermal bath.
This suggests the emergence of a hierarchical shell structure of
nonequilibrium criticality in concomitance with aging in open
systems. We defer a thorough investigation of this scenario to
a future work.

An important feature of the present analysis is that it
puts forward an approach for computing two-time response
and correlation functions of quantum spin models undergoing
dephasing. The method involves the derivation of an effective
Langevin equation from which to compute two-point correla-
tors within a self-consistent approximation. Our method can
be readily extended to other quantum many-body systems with
different symmetries under the influence of dephasing.
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APPENDIX: FURTHER DETAILS ON THE DERIVATION OF THE LANGEVIN EQUATION

1. Effective Keldysh action

In the main text, we presented the partition function

Z =
∫

D[φ̄χ ,φχ ,λ,η]eiS[φ̄χ ,φχ ,λ,η],

which one obtains upon averaging over the Gaussian noise, with the action given by

S[φ̄χ ,φχ ,λ,η] =
∫ ∞

0
dt

∑
χ=±

χ

(∑
i

φ̄
χ

i,α,t i∂tφ
χ

i,α,t − H [φ̄χ ,φχ ,λ,η]

)
+ i

κ

∫ ∞

0
dt

∑
i

η2
i,t , (A1)

H [φ̄χ ,φχ ,λ,η] = − 1

2

∑
i 	=j

Jij sgn(α)sgn(β)φ̄χ

i,α,tφ
χ

i,α,t φ̄
χ

j,β,tφ
χ

j,β,t − h
∑

i

φ̄
χ

i,α,tφ
χ

i,ᾱ,t

+
∑

i

ηi,tsgn(α)φ̄χ

i,α,tφ
χ

i,α,t +
∑

i

λi,t

(
φ̄

χ

i,α,tφ
χ

i,α,t − 2S
)
, (A2)

and χ = ± indicates dynamics along the forward (backward) branch of the contour. We now perform the Hubbard-Stratonovich
(HS) transformation by inserting in (A1) the “fat unity”

1 =
∫

D[Mχ ]e−i
∫ ∞

0 dt
∑

i 	=j M
χ

i,t
χ

2 JijMχ

j,t , (A3)

where a trivial prefactor has been absorbed into the measure. We shift the HS field Mχ

i,t → Mχ

i,t − sgn(α)φ̄χ

i,α,tφ
χ

i,α,t , which
brings the Keldysh action in the form (17), and then perform the Keldysh rotation

φ
χ

i,α,t = 1√
2

(
φcl

i,α,t + χφ
q
i,α,t

)
, (A4)

Mχ

i,t = Mcl
i,t + χMq

i,t , (A5)
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where “cl” and “q” denote the classical and quantum components of the field. Note that the fields ηi,t and λi,t are classical and,
therefore, have no quantum component. (A4) and (A5) put the action (17) in the form

S[φ̄cl(q),φcl(q),λ,η,Mcl(q)] =
∫ ∞

0
dt

∫ ∞

0
dt ′

∑
i,j

�̄i,t

[
G−1

(i,t),(j,t ′) + V(i,t),(j,t ′)
]
�j,t ′

+
∫ ∞

0
dt

⎡
⎣ i

κ

∑
i

η2
i,t −

∑
i 	=j

Jij

(
Mcl

i,tM
q
j,t + Mq

i,tMcl
j,t

)⎤⎦, (A6)

where �i,t = (φcl
i,↑,t ,φ

cl
i,↓,t ,φ

q
i,↑,t ,φ

q
i,↓,t )

ᵀ, and we have split the bosonic-field part of the action into a free term described by

G−1
(i,t),(j,t ′) =

(
0

[
G−1

(i,t),(j,t ′)
]A[

G−1
(i,t),(j,t ′)

]R [
G−1

(i,t),(j,t ′)
]K

)
, (A7)

[
G−1

(i,t),(j,t ′)
]R(A) = δi,j δ(t − t ′)[(i∂t ± iε)σ 0 + hσx], (A8)

[
G−1

(i,t),(j,t ′)
]K = 2iε

(
F ↑↑(t,t ′) F ↑↓(t,t ′)
F ↓↑(t,t ′) F ↓↓(t,t ′)

)
δi,j , (A9)

where (A9) serves as a pure regularization term that is necessary for G−1 to be invertible with ε → 0 and Fαβ(t,t ′) are (upon
Wigner transformation) distribution functions, and into a “source” term described by

V(i,t),(j,t ′) =
(

V
q

(i,t),(j,t ′) V cl
(i,t),(j,t ′)

V cl
(i,t),(j,t ′) V

q
(i,t),(j,t ′)

)
, (A10)

V
q

(i,t),(j,t ′) =
∑

l

JilMq
l,t σ

zδi,j δ(t − t ′), (A11)

V cl
(i,t),(j,t ′) = δi,j δ(t − t ′)

[(∑
l

JilMcl
l,t − ηi,t

)
σ z − λi,tσ

0

]
. (A12)

Inverting (A8) yields the free retarded and advanced propagators

GR(A),↑↑
(i,t),(j,t ′) = ∓ie∓ε(t−t ′)�[±(t − t ′)] cos[h(t − t ′)], (A13)

GR(A),↑↓
(i,t),(j,t ′) = ±e∓ε(t−t ′)�[±(t − t ′)] sin[h(t − t ′)], (A14)

and where due to Z2 symmetry we have GR(A),↑↑
(i,t),(j,t ′) = GR(A,),↓↓

(i,t),(j,t ′) and GR(A),↑↓
(i,t),(j,t ′) = GR(A,),↓↑

(i,t),(j,t ′). Integrating out the bosonic degrees of
freedom in the partition function

Z =
∫

D[φ̄cl(q),φcl(q),λ,η,Mcl(q)]eiS[φ̄cl(q),φcl(q),λ,η,Mcl(q)] =
∫

D[λ,η,Mcl(q)]eiSeff[λ,η,Mcl(q)], (A15)

leads to the effective Keldysh action

Seff[λ,η,M,M̃] = i Tr ln G−1 + i Tr ln (1 + GV ) +
∫ ∞

0
dt

⎡
⎣ i

κ

∑
i

η2
i,t −

∑
i 	=j

Jij

(
Mcl

i,tM
q
j,t + Mq

i,tMcl
j,t

)⎤⎦. (A16)

1 + GV is not diagonal in Keldysh, Nambu, or time space. We therefore Taylor expand its inverse (1 + GV )−1, which up to
second order in V leads to the saddle-point solution

Mi,t = −2i
∫ ∞

0
dτ

( ∑
l

JilMl,τ − ηi,τ

)(�GK,↑↑
(i,τ ),(i,t)G

R,↑↑
(i,t),(i,τ ) − i�GK,↑↓

(i,τ ),(i,t)G
R,↓↑
(i,t),(i,τ )

)
, (A17)

and this entails settingMq → 0, and we have thus dropped the superscript “cl” from the classical magnetization fieldMi,t ≡ Mcl
i,t

for notational brevity.

2. Self-energies

In order for Mi,t to be self-consistent, we must now calculate the self-energies. This is conveniently achieved by calculating
the full propagator

Guw
(l,γ,τ ),(m,μ,τ ′) = − i

〈
φu

l,γ,τ φ̄
w
m,μ,τ ′

〉 = −i
〈
φu

l,γ,τ φ̄
w
m,μ,τ ′eiSV

〉
0, (A18)
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by expanding up to second order in the interaction part of the action (A6)

SV [φ̄,φ,λ,η,M,Mq] =
∫ ∞

0
dt

∫ ∞

0
dt ′

∑
i,j

�̄i,tV(i,t),(j,t ′)�j,t ′ . (A19)

The self-energies arising from this expansion by approximating the Dyson equation as

G = G + G�G ≈ G + G�G, (A20)

are

�
R,A,K
(i,t),(j,t ′) =κ

2
δi,j δ(t − t ′)σ 0 +

∑
l,r

JilJjr〈Ml,tMr,t ′ 〉0σ
zGR,A,K

(i,t),(j,t ′)σ
z, (A21)

where, as mentioned previously, we take Mq → 0. Recasting the Dyson equation in the form

14×4 =
(

0 [G−1]A − �A

[G−1]R − �R −�K

)(
GK GR

GA 0

)
, (A22)

and taking J � κ while considering the dynamics to always be restricted to the disordered phase, the retarded and advanced full
propagators can then be calculated to be (19) in the main text.

Also from (A22), upon enforcing self-consistency through replacing GK with GK in the expression for �K (which for clarity
we shall now call �̃K) we obtain

([G−1]R − �R)GK = �̃KGA, (A23)

from which we calculate the Keldysh full propagator (20) presented in the main text. Replacing GK(R) with GK(R) in (A17), we
arrive at (18) in the main text. Fourier-transforming from position into momentum space, and thereafter carrying out a time
derivative twice, we arrive at the second-order differential equation(

∂2
t + κ∂t + 4h2 + κ2

4
− 4hJpe−κt

)
Mp,t = −4he−κtηp,t , (A24)

which is then transformed into a first-order Langevin vector equation (21) as illustrated in the main text.
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