
Doublon-Holon Origin of the Subpeaks at the Hubbard Band Edges

Seung-Sup B. Lee, Jan von Delft, and Andreas Weichselbaum
Physics Department, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience,

Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München, Germany
(Received 10 May 2017; published 5 December 2017)

Dynamical mean-field theory (DMFT) studies frequently observe a fine structure in the local spectral
function of the SU(2) Fermi-Hubbard model at half filling: In the metallic phase close to the Mott
transition, subpeaks emerge at the inner edges of the Hubbard bands. Here we demonstrate that these
subpeaks originate from the low-energy effective interaction of doublon-holon pairs, by investigating how
the correlation functions of doublon and holon operators contribute to the subpeaks. A mean-field analysis
of the low-energy effective Hamiltonian provides results consistent with our DMFT calculation using the
numerical renormalization group as an impurity solver. In the SU(3) and SU(4) Hubbard models, the
subpeaks become more pronounced due to the increased degeneracy of doublon-holon pair excitations.
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Introduction.—The dynamical mean-field theory
(DMFT) [1] provides a widely successful approach in
understanding strongly correlated systems. It treats a lattice
problem by self-consistently solving an effective impurity
model whose impurity and bath correspond to a lattice site
and the rest of the lattice, respectively. Thus, the perfor-
mance of DMFT calculations directly depends on which
particular impurity solver is chosen.
A benchmark calculation for various impurity solvers is

the paramagnetic Mott transition in the half-filled SU(2)
Hubbard model at temperature T ¼ 0 which is character-
ized by a striking change in the local spectral functions
[2,3]. In the metallic phase, the spectral function features a
quasiparticle peak (QP) at the Fermi level and two Hubbard
bands (HBs) below and above the Fermi level each. In the
insulating phase, the QP disappears and a gap opens
between two HBs.
In the metallic phase close to the transition, many DMFT

studies have observed sharp subpeaks that emerge at the
inner edges of the HBs, by using different real-frequency
impurity solvers: perturbative methods [2], the density-
matrix renormalization group (DMRG) [4–7], the numerical
renormalization group (NRG) [8], and exact diagonalization
[9,10]. In contrast, quantum Monte Carlo solvers, which
obtain the spectral functions on the real frequency axis via
(numerically ill-posed) analytic continuation, have not
found these subpeaks. The subpeaks give rise to distinct
features in the momentum-resolved spectral function [5],
measurable by photoemission spectroscopy [11,12].
Despite these frequent consistent observations, the physical
origin of the subpeaks and their relevance in more general
(e.g., multiflavor) models remained unclear.
In this Letter, we show that the subpeaks are induced by

the effective doublon-holon (DH) [13] pair interaction
originating from a second-order virtual process, where a
doublon (holon) means an excitation that one particle is

added to (removed from) a lattice site with average integer
filling. We compute the correlation functions of doublon
and holon operators in the SU(2) Hubbard model, by using
the DMFT with NRG [14,15] as an impurity solver, and
demonstrate that these correlation functions manifest the
peak structure associated with the subpeaks. We reproduce
the peak structure of doublon and holon correlators
via a mean-field analysis of the low-energy effective
Hamiltonian obtained by a generalized Schrieffer-Wolff
transformation (SWT) [16,17]. Both approaches consis-
tently result in a linear dependence of the subpeak position
vs interaction strength. From our DMFTþ NRG calcula-
tions of general SUðNÞ Hubbard models for N ¼ 2, 3, 4,
we observe that the subpeaks become more pronounced
with increasing N, since the DH pair excitations become
more degenerate due to the larger SUðNÞ symmetry.
System.—The SUðNÞ Hubbard model describes N

flavors of fermions on a lattice with local repulsive
interactions, recently realized in ultracold atom experi-
ments with tunable N [18]. The hopping amplitude v, the
interaction strengthU, and the chemical potential are flavor
independent; thus, the system has SUðNÞ flavor symmetry.
Its Hamiltonian is H ¼ HU þHv þHμ, where HU ¼
ðU=2ÞPiðn̂i − n̄Þ2, Hv¼v

P
hi;ji;νc

†
iνcjνþH:c:, and Hμ ¼

−μ
P

in̂i. Here ciν annihilates a particle of flavor
ν ¼ 1;…; N at lattice site i, n̂i ¼

P
νc

†
iνciν is the particle

number operator at site i, hi; ji indicates nearest neighbors,
n̄ is a parameter for the desired average occupation, and μ is
a fine-tuning of the chemical potential to achieve hn̂ii ¼ n̄.
Throughout this Letter, we focus on T ¼ 0 and the average
occupation number as an integer closest to half filling
n̄ ¼ ⌊N=2⌋, by fixing μ ¼ 0 for N ¼ 2, 4 and fine-tuning μ
for N ¼ 3.
Doublon and holon.—For integer average occupation n̄,

we define the doublon and holon creation operators as
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d†iν ≡ Pi;n̄þ1c
†
iν; h†iν ≡ Pi;n̄−1ciν; ð1Þ

wherePinmeans the projector onto the subspace inwhich the
site i hasn particles. For the SU(2) case, at half filling, n̄ ¼ 1,
these operators reduce to diν ¼ ciνn̂iν̄ and hiν ¼ c†iνð1 − n̂iν̄Þ
with n̂iν ¼ c†iνciν and ν̄ ¼ 3 − ν, and they completely con-
stitute the particle operator ciν¼diνþh†iν. Then the particle
correlator can be decomposed into four doublon and holon
correlators: Acc†ðωÞ ¼ Add† þ Adh þ Ah†d† þ Ah†h, where
AXYðωÞ≡ ð−1=πÞImGXY , with GXYðtÞ ¼ −iϑðtÞh½XðtÞ;
Yð0Þ��iT being the retarded correlation function of the
fermionic (þ) or bosonic (−) local operators X and Y acting
on the same site. In the particle-hole symmetric case, only two
correlators are independent: “diagonal” correlatorsAdd†ðωÞ ¼
Ah†hð−ωÞ, which are asymmetric, and “off-diagonal” cor-
relators Ah†d†ðωÞ ¼ AdhðωÞ, which are symmetric under
ω ↔ −ω. For N > 2 flavors, the decomposition of ciν
acquires more terms than diν and h†iν [17].
DMFT+NRG.—We use the single-site DMFT, which

maps the Hubbard model onto the single-impurity
Anderson model (SIAM) which provides paramagnetic
solutions, by construction. We employ the semicircular
density of states of the Bethe lattice with half-bandwidth
D, together with units D ¼ ℏ ¼ kB ¼ 1, throughout. We
solve the SIAMby the full-density-matrix NRG (fdm-NRG;
[19]), exploiting Uð1Þcharge ⊗ SUðNÞflavor symmetry [20].
The coarse-grained discretization-averaged spectral data are
broadened adaptively [21,25] for the best possible spectral
resolution at higher energies while preserving the intrinsic
accuracy of the NRG at low energies [e.g., the Luttinger
pinning [26] ðπ=2ÞAðω ¼ 0Þ ¼ 1 in the metallic phase is
accurately satisfied; see Figs. 1(a) and 1(b)].
SUð2Þmetallic phase.—We first consider the caseN ¼ 2

equivalent to the spin-full one-band Hubbard model.
At T ¼ 0 and half filling, a metallic phase exists for
U < Uc2 ¼ 2.91ð1Þ and a paramagnetic insulating phase
for U > Uc1 ¼ 2.37ð2Þ. For Uc1 < U < Uc2, the two
phases coexist (e.g., see Fig. 2 or Refs. [3,27]).
Within the metallic phase, the local spectral function

AðωÞ features one QP and two HBs [cf. Figs. 1(a) and 1(b)].
As U increases, the central QP narrows, the HBs widen,
and the dips between the QP and the HBs deepen. On top of
this, subpeaks are present at the inner edges of the HBs,
whose position ωp and width δω decrease linearly with
increasing U, as shown in Fig. 2.
Local spin (i.e., flavor) and charge susceptibilities χs and

χc [28], respectively, in Fig. 1 demonstrate that the QP and
the HBs of AðωÞ are tied to spin and charge degrees of
freedom, respectively; that is, spin and charge excitations
are energetically separated. The peak of χs indicates a
spinlike collective mode responsible for the QP, which is
analogous to the Kondo resonance in the SIAM in that the
spin susceptibility peaks at the Kondo energy scale [29].
The positionωs and width of the χs peak decrease as the QP
narrows with increasing U; especially, ωs has a linear

dependence vs 1=U, as shown in Fig. 2. In contrast, χc is
suppressed within the QP region while having long tails
beyond the outer edges of the HBs.
For T ¼ 0þ, the positive and negative energy sides of a

correlator AXYðωÞ are derived from hXðtÞYð0ÞiT and

FIG. 1. Local correlation functions in (a),(b) the metallic and
(c) insulating phases of the SU(2) Hubbard model: the local
spectral functionAðωÞ (blue solid lines), the correlators of doublon
diν and holon hiν operators [cf. Eq. (1)] (dash-dotted lines), charge
susceptibility χc ¼ Aδn̂;δn̂ (red dashed lines), and spin (i.e., flavor)
susceptibility χs ¼ AS⃗;S⃗=3 (purple dashed lines), with χcðsÞðωÞ ¼
−χcðsÞð−ωÞ, Add†ðωÞ ¼ Ah†hð−ωÞ, and AdhðωÞ ¼ Ah†d†ðωÞ. Here
δn̂i ≡ n̂i − hn̂ii, and S⃗i is the spin operator at site i. Each correlator
is averaged over different discretizations (see Sec. I B ofRef. [21]),
where the corresponding color-matched shaded area provides an
estimate for numerical uncertainties, noticeable only in the HBs.
Panels (b) and (c) show different solutions for the same value ofU
in the coexistence regime. In (b), the inset enlarges the region of the
QP. We mark the location of spectral features by vertical dotted
lines: (a),(b) subpeak position ωp (defined as the local maximum
near the inner HB edge), subpeak width δω [defined as the
minimum positive value satisfyingAðωp − δωÞ ¼ AðωpÞ=2], spin
susceptibility peak position ωs, and (c) inner HB edge at Δ=2,
where Δ is the Mott gap.

FIG. 2. The U dependence of the spectral features: the position
ωp and width δω of the subpeaks, the peak position ωs of
spin susceptibility χs, and the Mott gap Δ (cf. Fig. 1). Symbols
are data points from the DMFTþ NRG calculations, lines are
fits, and shading gives the 95% prediction bounds of fitting. The
zeros of the extrapolated fits of Δ and ωs yield estimates for the
critical interaction strengths Uc1 ¼ 2.37ð2Þ and Uc2 ¼ 2.91ð1Þ,
respectively.
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hYð0ÞXðtÞiT ¼ hX†ðtÞY†ð0Þi�T , respectively. Therefore, the
upper HB in Fig. 1, which mainly consists of Add† ,
originates from the dynamics of the doublon d†iνð0Þ.
Another significant feature of Add† is a peak at
ω ¼ −ωs. Just after the action of diνð0Þ and just before
d†iνðtÞ, the site i has only spin ν̄. Its time evolution between
0 and t with low frequency jωj≃ ωs is driven by the
spinlike collective mode captured by the peak of χs at ωs. In
contrast, the off-diagonal correlator Adh has a symmetric
peak at ω ¼ 0. This reflects the particle-hole symmetric
processes of destroying at the same site first a doublon and
then a holon, or vice versa. Add† and Adh contribute
comparably to the QP, having Add†ð0Þ ¼ Adhð0Þ ¼ ð1=2πÞ.
In the metallic regime in Figs. 1(a) and 1(b), all of the

doublon and holon correlators show peaklike features at
ω ¼ �ωp. For U ≳ 2.3 [21], their contributions to these
subpeaks have relative weights Add†ðωpÞ > Adhð�ωpÞ >
Add†ð−ωpÞ. Our effective theory (described below) aims to
reproduce this relative order of contributions as well as the
linear dependence of ωp vs U.
SUð2Þ insulating phase.—The QP, the subpeaks, the

spin-charge separation in energy space, and the peaks of the
doublon and holon correlators all disappear in the insulat-
ing phase, as depicted in Fig. 1(c). Instead, a Mott gap Δ
opens, and the susceptibilities χs and χc spread over a large
energy range jωj > Δ=2 with suppressed heights. While
both ωp in the metallic phase and Δ=2 in the insulating
phase correlate to the location of the inner HB edges, their
dependences on U are clearly different (see Fig. 2). Here
the absence of subpeaks is consistent with previous studies
[4–10]. Though other works [30–32] have reported sub-
peaks even in the insulating phase, their observations are
not numerically stable due to, e.g., ill-posed analytic
continuation or underbroadening.
DH pair interaction.—We will now demonstrate that the

peaks of the doublon and holon correlators at ω ¼ �ωp,
which add up to the subpeaks of AðωÞ, originate from a DH
pair interaction within the low-energy effective
Hamiltonian of the SU(2) Hubbard model. Our theory is
based on the separation of three energy scales:
ωs < ωp < U=2, corresponding to the QP, the subpeaks,
and the HBs, respectively. We focus on the intermediate
scale ωp by integrating out the larger scale U=2 and by
approximating the physics of the smaller scale ωs.
We first integrate out the charge fluctuation of energy

scale U=2, by employing a generalized SWT [16,17]. We
decompose the hopping term into different components
Hv ¼

Pþ1
m¼−1Hv;m, which cost Coulomb energy mU since

mUHv;m ¼ ½HU;Hv;m�. Here Hv;0 ≡ v
P

hi;ji;νðd†iνdjν −
h†iνhjνÞ þ H:c: describes the hopping of doublons and
holons without an energy cost, whereas Hv;1 ≡
v
P

hi;ji;νðd†iνh†jν þ d†jνh
†
iνÞ or (Hv;−1 ¼ H†

v;1) creates (anni-
hilates) nearest-neighbor DH pairs by paying (gaining)
energy cost U. Then we write the low-energy effective
Hamiltonian Heff as a power series in v=U:

Heff ¼ Hv;0 þHss þHdh þH3-site þOðv3=U2Þ;

Hss ¼
v2

U

X

hi;ji
4S⃗i · S⃗j − Pi1Pj1;

Hdh ¼
2v2

U

X

hi;ji
ðc†j1c†j2ci2ci1 þ Pi2Pj0Þ þ ði ↔ jÞ

¼ v2

U

X

hi;ji;ν;ν0
ðh†iνd†jν þ h†jνd

†
iνÞðdiν0hjν0 þ djν0hiν0 Þ;

ð2Þ

whereH3-site is the sum of the products of operators at three
nearest-neighbor sites. The term Hss þHdh þH3-site ¼
½Hv;1; Hv;−1�=U, of the order ofOðv2=UÞ, can be interpreted
as second-order virtual processes. Heff is similar to the t-J
model [33], widely used as the effective low-energy model
for a Mott insulator, but additionally contains a three-site
termH3-site and, importantly, the DH termHdh. Each term in
Eq. (2) respects the SUð2Þcharge ⊗ SUð2Þspin symmetry of
the system. SeeRef. [17] for a detailed derivation for general
N. Hereafter we discard the higher-order Oðv3=U2Þ terms.
The low-energy HamiltonianHeff in Eq. (2) describes two

effective nearest-neighbor interactions whose role and rel-
evance depend on the phase of the system. (i) Hss contains
the Heisenberg spin-spin interaction. In our paramagnetic
metallic phase, this interaction induces a spinlike collective
mode of energy scale ωs. The interaction strength v2=U is
consistent with the scaling of ωs ∼ 1=U (cf. Fig. 2). On the
other hand, Hss becomes irrelevant in the paramagnetic
insulating phase, where the spin susceptibility χs is overall
suppressed. (ii) Hdh describes a DH pair interaction which
acts on the subspace with a finite number of DH pairs. Thus
Hdh is relevant (irrelevant) in the metallic (insulating) phase.
Doublon and holon peaks.—After integrating out the

largest energy scale U, we consider the doublon and holon
dynamics governed by the effective Hamiltonian Heff ,
aiming at the intermediate energy scale ωp > ωs, in the
metallic phase. We simplify the physics at lower energies
(≲ωs) without exactly solving Heff , by introducing two
approximations described in detail in Ref. [17]. (i) We
introduce a mean field, Δdh ≡ ðv=2ÞPνhdiνhjν þ djνhiνi,
which regards the Fermi-liquid ground state as the “con-
densate” of the DH pairs. Then we approximate the
DH interaction term as Hdh ≈ ðv=UÞPhi;ji;νΔ�

dhðdiνhjνþ
djνhiνÞ þ ðH:c:Þ. The mean-field variable Δdh, comprised
of the expectation value of the pair annihilation operator
diνhjν þ djνhiν, is reminiscent of the Bardeen-Cooper-
Schrieffer theory. Here the situation is quite different,
though, in that charge conservation is actually not broken,
given that the pair annihilation operator is nothing but a
summand of the decomposed hopping term Hv;−1. The DH
pairs are singlets of the SUð2Þcharge ⊗ SUð2Þspin symmetry
preserved in the metallic phase, and the mean-field
approximation of Hdh also respects that symmetry [17].
(ii) We decouple the doublon and holon correlators from
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charge and spin density fluctuations. This is based on the
numerical results that they are characterized by different
energy scales: Charge fluctuations are suppressed in the
regime jωj ≲U=2, and spin fluctuations predominantly
occur at energies jωj≲ ωs (see Fig. 1). As a result, the
equations of motion for the correlators close.
Figure 3(a) shows the resulting doublon and holon corre-

lators for finiteΔdh in the metallic phase. They have a pair of
peaks atω ¼ �ωdh, akin to their peaks atω ¼ �ωp in Fig. 1.
Figure 3(b) demonstrates that the DH peak positionωdh from
the effective theory and the DMFTþ NRG result of the
subpeak positionωp agreewell up to an overall scaling factor
of≃4.7, which may be expected to arise given the crudeness
of our approximations. In contrast, in the insulatingphaseHdh
is irrelevant, such that Δdh ¼ 0. As a consequence, the
subpeaks are absent in the insulating phase.
Predictions for photoemission spectroscopy.—The QP

and the HBs of the local spectral functions have already
been observed in photoemission spectroscopy [11,12]. This
technique, which probes the momentum-resolved spectral
function Aðω;kÞ [whose momentum average yields the
local AðωÞ discussed hitherto], should also be able to reveal
the DH subpeaks. We have thus computed Aðω;kÞ; see
Figs. S3 and S4 of Ref. [21]. Our T ¼ 0 results agree with
prior DMFTþ DMRG results from Ref. [5], showing that
the feature in Aðω;kÞ, which leads to the subpeak in AðωÞ,
has distinct dispersion, consistent with the interpretation of
DH pair propagation. Going beyond Ref. [5], we also
analyze finite T and find that the subpeak-related features
survive below the critical temperature for the Mott tran-
sition [21]. The distinct dispersion and T dependence of the
subpeak, correlated with those of the QP, distinguish it from

other fine structure of the HBs originating from atomic
levels. We suggest to search for such features in photo-
emission data, especially in multiband materials where the
subpeaks become more pronounced, as we discuss below.
SUðN > 2Þ models.—We also analyze the SU(3) and

SU(4) Hubbard models at integer filling hn̂ii ¼ ⌊N=2⌋,
with the results shown in Fig. 4. Similar to the case N ¼ 2
in Fig. 1, we again observe subpeaks on the inner edges of
the HBs. While the subpeaks carry small weights compared
with the rest of the HBs for N ¼ 2 [cf. Fig. 1(b)], the
subpeaks for N ¼ 3, 4 have significantly larger relative
weights (cf. purple lines in Fig. 4). Even for N ¼ 4, the
subpeaks are clearly higher than the rest of the HBs. Note
that the QP persists more strongly at large U ≳ 3 for larger
N, similarly to the widening of the Kondo peak in the
SUðNÞ Kondo model [34].
We interpret this enhancement of the subpeaks as

resulting from the enlarged space of DH pair excitations
in the SUðN > 2Þ Hubbard models. Generalizing the DH
interaction Hdh discussed above to the SUðN > 2Þ cases,
we find that the DH pair excitations on nearest neighbors
are threefold and 15-fold degenerate in the SU(3) and
SU(4) models, respectively, in contrast to the nondegener-
acy in the SU(2) case [17]. A particularly promising area
for studying this behavior is ultracold atom physics, where
pronounced DH correlations have been reported in the 2D
Hubbard model [35].
Conclusion.—We showed that the subpeaks at the inner

HBedges canbe related to the effectiveDHpair interactionby
using a generalized SWT. By using the NRG as a real-
frequency impurity solver for the DMFT, we uncovered
detailed dynamical information on the decomposition of the
local spectral function into doublon and holon correlators. By
utilizing a recently developed broadening scheme [25], we
efficiently resolved those spectral features at high energies

FIG. 3. (a) Doublon and holon correlators Add† (orange dash-
dotted line) and Adh (green dash-dotted line) from our effective
theory for the metallic phase. Lower-energy spin dynamics at
energies jωj ≲ ωs and higher-energy scales jωj ≳ U=2 are ne-
glected (as schematically indicated by the gray shading) by
employing the generalized SWT together with a mean-field
decoupling scheme. Adh is symmetric, while Add† is asymmetric.
Both lines have a pair of peaks at ω ¼ �ωdh, showing
Add†ðωdhÞ > Adhð�ωdhÞ > Add†ð−ωdhÞ. This is qualitatively con-
sistentwith theDMFTþ NRGresults forAdd† andAdh atω ¼ �ωp

in Fig. 1(b) using the same color coding. (b) The peak position ωdh
from the effective theory decreases linearly with increasingU. The
narrow shading gives the 95% prediction bounds of a linear fit. ωdh
nicely overlaps with ωp (data taken from Fig. 2) up to an overall
scaling factor.We takeΔdh ¼ 2.91 ¼ Uc2 independent ofU, while
the half-filled fraction hPi1i is U dependent, with the data taken
from our DMFTþ NRG results [21].

FIG. 4. Local spectral function AðωÞ for (a) the SU(3) and
(b) SU(4) Hubbard models in their metallic phases. Shading again
reflects the uncertainties based on discretization averaging
(cf. Fig. 1). For N ¼ 3, the chemical potential μ was fine-tuned
to have the integer filling hn̂ii≃ 1 for differentU, as shown in the
legend of (a). For N ¼ 4, we have μ ¼ 0 due to particle-hole
symmetry. In all cases, being in the metallic regime, subpeaks
emerge at the inner HB edges.
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which had been considered challenging for the NRG in the
past due to its logarithmic coarsegraining.An effective theory
based on the scale separation of the characteristic energy
scales ωs, ωp, and U reproduces the linear U dependence of
ωp found numerically in DMFTþ NRG. Our predictions
should be testable using photoemission spectroscopy of
correlated materials or in ultracold atom systems.
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