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1. Introduction

Ever since the pioneering work of Ernst Ising, low dimensional magnetic systems have at-
tracted the attention of many researchers. Over the years, refinements in numerical tech-
niques and the increase of computational resources have opened access to the characterization
of this class of quantum many body systems. Although we are still restricted to the study of
relatively simple systems, these already often reveal many unusual exotic physical phenom-
ena such as quantum phase transitions [24]. Low-dimensional frustrated magnetic systems
have been of particular interest for solid state theorists in recent years. This particular class
of magnets feature extremely interesting low-energy properties such as the appearance of
new phases of matter such as spin liquid- [19, pp. 23-27] and spin ice- [19, p. 239] phase.
In the following work, we will inspect the frustrated spin-1/2 ladder with cross couplings.
This system is known to exhibit a quantum phase transition from a spin-singlet to spin-
triplet phase [35]. Our goal will be to characterize the low energy excitation spectrum in the
vicinity of thecritical point and observe the influence of finite temperatures on the spectral
features. We will explore the interplay of frustration and thermal fluctuations will cause
drastic spectral weight redistribution, especially as we approach criticality. In chapter 2, we
will characterize frustrated systems and describe some of their peculiarities. In section 2.2 we
will take a closer look at the frustrated spin ladder in order to develop a deeper understand-
ing for the system we want to study. Chapter 3 will elaborate on the excitation spectrum of
such a spin system and how it can be obtained in the contex of inelastic neutron scattering.
Sections 3.15 ,3.4, 3.5 and 3.6 are devoted to introducing the numerical tools required for the
theoretical calculation of the spectra. In the scope of this thesis we refrain from providing
a complete discussion of these frameworks, we do however present some of their main ideas.
The numerical techniques we discuss are density matrix renormalization group [31, 25] (both
in the time dependent (tDMRG) and time independent variant (DMRG)) and mixed state
purification. In order to understand how these methods work, we also provide a brief in-
troduction into the matrix product state (MPS) and tensor network (TN) formalisms [22,
25]. Once the numerical background has been provided, we discuss our numerical results in
Chapter 4 and draw some comparisons with the already known results presented in Refs.
[15, 16]
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2. Frustrated Magnetism

In the following, we will make some introductory remarks on frustrated systems necessary to
understand many of the features of the spin ladder system.
After a more generic discussion on some of the exotic features connected to magnetic frus-
tration, we will introduce the specific spin ladder model and provide the necessary background
to interpret to numerical results which will be reported later on in the work.

2.1 Frustrated systems

Many-body frustrated systems are characterized by Hamiltonians that do not allow for the
simultaneous minimization of all the interaction energies. These particular Hamiltonians
can arise when we try to merge physical systems (such as Ising spin ensembles) on ordered
structures such as Bravais lattices. If we define the exchange energy of two interacting spins
as follows:

E = J(~Si · ~Sj) , (2.1)

we will have one of two cases:

� J < 0 : ferromagnetic ordering.

� J > 0 : antiferromagnetic ordering.

The most prominent example of frustration is represented by the the antiferromagnetic
Heisenberg Hamiltonian applied on a 2-dimensional triangular lattice:

Ĥ = J
∑
<i,j>

~Si · ~Sj , J > 0 , (2.2)

where < i, j > runs over all nearest neighbors.
Let us now consider organizing a group of interacting spins on a lattice. Assuming the
exchange coefficient between neighboring sites is J > 0, the nature of the ground state
strongly depends on the type of lattice. If the lattice is bipartite, the ground state configura-
tion yields neighboring spins to align in opposite direction and form a antiferromagnetically
ordered Néel state. If the lattice is not bipartite, however, (meaning some triangular struc-
tures are present) the spins are unable to satisfy the minimization of energy on every bond
by antiferromagnetic ordering, leading to a more exotic ground-state configuration.

2
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Figure 2.1: Illustration of frustration induced by the geometry of the cell: one of the three
bonds of the triangular cell remains unsatisfied.

In the classical picture, comparing the unfrustrated square plaquette of the with the
frustrated triangle in Fig. 2.1 another striking peculiarity emerges: while the degeneracy of
the unfrustrated ground state is two-fold (configuration equivalent under global spin-flip),
the degeneracy of ground state the frustrated variant in increased to six.
This can be understood from the following consideration: since the lowest possible energy is
obtained with one of the three bonds not satisfied, evaluating the ground degeneracy is the
combinatorial equivalent of calculating the number of permutations of three elements, two
of them repeating (two satisfied bonds and one not satisfied).

P
(2)
3 =

3!

2!
= 3 . (2.3)

Counting the symmetry associated with spin means we need simply multiply the obtained
numbers by two, yielding the desired result.
While this is of course merely an example, it turns out that, in a classical picture, frustration
always induces degeneracy on the ground state manifold [19, pp. 8-10, 7]. It is precisely this
increase in the ground state degeneracy that is responsible for the appearance of a lot of
new and exotic physics in frustrated magnets. The quantum case is more complicated and
variations in the degeneracy cannot be calculated by simple combinatorial operations. Some
of the effects of quantum fluctuations in frustrated systems will be addressed later in this
section. One paradigmatic example of the features of magnetic frustration is constituted by
the Kagomé-Heisenberg antiferromagnet, illustrated in Fig. 2.2.
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Figure 2.2: Illustration of the Kagomé lattice: each vertex of the lattice hosts a spin.

In the classical limit, energy minimization simply requires the total spin on each triangle
to be zero [19, p. 208], rendering the ground state of the Kagomé antiferromagnet infinitely
degenerate and the system extremely inclined to overall magnetic disorder. Considering the
quantum nature of spins (specifically, S = 1/2), the situation is even more complex and no
consensus regarding the actual nature of the ground-state has been reached yet. While there
seems to be agreement on the disordered nature of the ground state, the discussion on the
exact configuration is still open [20]: there are two potential ground state candidates, namely
a gapless algebraic spin liquid phase [13], and a resonating valence bond Z2 spin liquid [37].
The name ,,spin liquid state” refers to the absence of symmetry breaking or magnetic or-
dering in the ground state of the Kagomé antiferromagnet and constitutes a completely new
phase of matter.
Applying magnetic fields to a frustrated system and inspecting the magnetization curve can
also reveal some intriguing features. The magnetization process of a Néel antiferromagnet is
a very well understood phenomenon: considering the spins as classical vectors, the magneti-
zation curve simply has a linear increase and a final saturation plateau.
Experimental results of magnetically frustrated spin systems, however, reveal great differ-
ences from the classical case characterized by the appearance of finite magnetization plateaus
[19, pp. 241-260]. A magnetization plateau refers to phases, where the magnetization of the
system remains unaffected from changes of the magnetic field strength at some finite value
M < Msat, as illustrated in Fig. 2.3.
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Figure 2.3: left panel: Magnetization curve of the triangular lattice. The system displays
a magnetization plateau at Msat

3 ; right panel: Magnetization curve of a typical unfrustrated
antiferromagnet [19, p. 242].

We can sketch the occurrence of this phenomenon by briefly explaining the magnetization
process on a triangular lattice under the influence of an external magnetic field. To this end,
we consider a Heisenberg Hamiltonian with external field pointing in z-direction,

Ĥ =
∑
<i,j>

~Si · ~Sj − h
∑
i

~Szi . (2.4)

In absence of the field, the ground features a planar order with all spins oriented 120◦ with
respect to one another (see Fig. 2.4):

Figure 2.4: Classical ground state configuration of the spins at h = 0.
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Increasing the magnetic field, many different ground-state configurations will satisfy en-
ergy minimization [1, 4]. In a purely classical picture the system continuously varies the
orientation of the spins to reach saturation. The presence of quantum fluctuations in real
atomic models, however, manages to alter the magnetization process by selecting coplanar
states among the many possible ground state configurations of the classical case. The ar-
gument rests on a quasi-classical 1/S expansion [5]: the basic idea is to consider quantum
fluctuations as perturbations of the classical configuration and then proceed by adding higher
orders of the expansion,

E0 = Eclass. + Equant. +O . (2.5)

If the influence of zero-point energy (energy associated with quantum uncertainty) becomes
significant, quantum fluctuations end up stabilizing states that are classically to be excluded.
In the case of the triangular lattice, the state that is favored by quantum fluctuations features
2 spins pointing parallel to the the field and 1 pointing in antiparallel direction [19, pp. 245-
246, 4], as illustrated in Fig. 2.5

Figure 2.5: Spin configuration selected by quantum fluctuations.

This configuration represents the ground state order for an extended interval of the
magnetic field (see Fig. 2.3) h1 ≤ h ≤ h2. Once the magnetic field is increased to values
h > h2, the plateau structure is broken off by the dominating Zeeman term in Eq. (2.4)
and the spins get polarized towards saturation. Different lattices, however, reveal an even
richer behavior with several magnetization plateaus [19, p. 255], all appearing at fractional
or integer values of the saturation magnetization [19, p. 244].
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2.2 The frustrated spin-1
2 ladder

Magnetic frustration is not only a theoretical phenomenon, but is actually present in a lot
of compounds. Although we are able to directly probe these materials through magnetic
neutron scattering [19, pp. 45-51, 26, pp. 10-21] or other techniques, fully understanding
some of the exotic physical phenomena taking place requires us to break them down into
minimal models because of the to high level of complexity of the real lattices. In other
words, experimental results allow us to observe the effects, but to identify the causes from
a theoretical standpoint, we need actual numerically solvable models that display similar
proportions.
Here we are focusing on the frustrated spin 1/2 ladder, which is believed to capture some of
the characteristics of the real compound SrCu2(Bo3)2. The magnetic layer of this compound
is displayed in Fig. 2.6

B

Cu

O

J

J’

J’

J

J’

J’

J’

J’

J’

J’

Figure 2.6: Magnetic layer of the SrCu2(Bo3)2 compound. The atoms that actually have spin
are the Cu2+-ions (spin 1/2). The spins interact with one another through the other atoms. The
system can be reduced to a spin lattice with nn (J) and nnn (J’) interactions.
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Its lattice structure is topologically equivalent to the so called ,,Shastry-Sutherland”
lattice [19, pp. 520-522], illustrated in Fig. 2.7.

Figure 2.7: Left panel: effective spin lattice for the SrCu2(Bo3)2 crystal. Right panel: through
a homotopy transformation, we can link the lattice to the Shastry-Sutherland geometry. The
blue ovals represent spin singlets. This configuration is known to be a ground state of this lattice
for J ′/J < 0.68 [23].

Magnetic neutron scattering experiments reveal the gapped nature of the spectrum of this
geometry [17]. The ground state is known to be a spin-dimer configuration for J ′/J < 0.68
(right panel of Fig. 2.7) [23]. The first excitation corresponds to the generation of a spin
triplet on one of the dimers and, as soon as temperature comes into play, this spectral feature
starts to lose considerable spectral weight. The reasons for the spectral weight decrease of
the first excited state remained unclear until recently, since the treatment of the excitation
spectrum of the full 2D model is numerically not feasable. Ref.[15] recently shed some light
into this issue by considering spin-1/2 frustrated ladder (Fig. 2.2), which, with the correct
combination of coupling parameters, is able to display an identical ground state configuration
and low energy regime.
The Hamiltonian of the frustrated spin-1/2 ladder has the following structure:

Ĥ =
∑
i

J⊥~S
1
i
~S2
i +

∑
i,m=1

(J‖~S
m
i
~Smi+1 + J×~S

m
i
~Sm̄i+1) , (2.6)

J⊥ , J‖ , J× > 0 . (2.7)
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Figure 2.8: Frustrated spin-1/2 ladder.

As all couplings are antiferromagnetic, each of the triangular plaquettes displays frus-
tration. The fully frustrated case appears if we set J‖ = J×. In this configuration, the
Hamiltonian can be rewritten [14] as

ĤF = J⊥


J‖

J⊥

L∑
i=1

~Ti · ~Ti+1︸ ︷︷ ︸
1O

+
L∑
i=1

(
1

2
~T 2
i − S(S + 1)

)
︸ ︷︷ ︸

2O

 , (2.8)

where we introduced the new total spin rung operators ~Ti = ~S1
i + ~S2

i and the spin quantum
number per site S = 1/2. The model has already been studied under many aspects [15, 16].
One of the most striking peculiarities is the presence of two distinct phases of the ground
state separated by a first order quantum phase transition (QPT) , i.e a phase transition
that takes place at T = 0, driven solely by the relation J⊥/J‖. The two phases can be
characterized by the distinct spin orientation on each rung.

Rung singlet phase: Each rung hosts a spin singlet meaning ~Ti
2

= 0 ∀i, as illustrated in
Fig. 2.9. This state has very similar properties to the ground-state of the Shastry-Sutherland
lattice.

= 1/
√

2(|↑↓〉 − |↓↑〉)

Figure 2.9: Singlet-phase ground states: each blue oval represents a rung singlet

Dimer or spin-triplet phase: The spins of each rung align yielding triplets: ~Ti
2

= 1 ∀i,
as illustrated in Fig. 2.10.
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Figure 2.10: One of the possible triplet-phase ground states

Studying the Hamiltonian in Eq. (2.8) we can understand the origin of the two distinct
phases. In the parameter regime J⊥ � J‖, the term 2O of Eq. (2.8) ends up dominating the

Hamiltonian. In that case the minimum energy configuration would be ~T 2
i = 0 ∀i, leading to

the singlet phase of Fig. 2.9. On the other hand, for J⊥ � J‖ the term 1O of Eq. (2.8) makes
the biggest contribution the energy. In this case the energetically most favorable configura-
tion yields an anti-aliged order on every J‖ bond, resulting in the triplet phase (Fig. 2.10).
To characterize these two different phases, we use the staggered magnetization (a magneti-
zation per site that points along a certain quantization axis), which in the case of the spin
ladder has the following form:

M̂stag =
1

N

∑
l

(−1)l~Szl . (2.9)

The index l represents the rung number and Ŝzl the sum of the z-component of the spins on

that particular rung. A singlet ground state |Ψ〉S will display 〈Ψ|S M̂stag |Ψ〉S = 0, whereas

the triplet phase will be characterized by a non zero value of 〈M̂stag〉.
The parameters that tune the QPT are the coupling constants J‖ and J⊥ of the model [16].
The value for the critical coupling constant in the fully frustrated regime (J‖ = J×) can be
derived theoretically [35] and has value J⊥/J‖ ≈ 1.401484 (in the thermodynamic limit).
A recent study based on exact diagonalization has been able to inspect the spectra of this
particular system at T = 0 as well as at finite T up to lengths of 16 rungs [15]. Characterizing
the influences of finite temperature on the excitation spectra for systems, which go beyond
these system sizes, have however, not been successful due to the excessive numerical costs.
Reduced ladder lengths may produce thermodynamic limit relevant data when the system
is far away from the phase transitions because interaction lengths in these regimes are short.
As we approach criticality though, a significant increase of the correlation length renders
conclusions drawn on smaller systems not applicable to the thermodynamic limit, and thus,
to realistic systems (see Chapter 4).
Recent developments in the field of matrix product states have provided us with a new
toolbox enabling us to study energetic spectra of the spin ladder in the vicinity of the phase
transition both at T = 0 and at finite temperature, where larger system sizes are necessary
to faithfully approximate the thermodynamic limit.



3. Numerical methods

After having established the physical background of the underlying system, we need to discuss
the numerical framework used to produce quantitative results. Here we discuss how to derive
the excitation spectrum of the corresponding Hamiltonian by computing dynamical spin-spin
correlators in the framework of matrix product states

3.1 Measuring method

Experiments can typically access the excitation spectrum of a compound by means of inelas-
tic neutron scattering. In this section we derive the excitation spectrum of the spin ladder
in terms of dynamical spin-spin correlators, which are experimentally accessible.
The assumption about our system is that the spins are fixed, allowing only for spin-spin in-
teraction between the neutron and the sample. The measured observable, as in all scattering
experiments, is the doubly differential cross section, which in the case of magnetic neutron
scattering has the following from [19, pp. 50-53]

d2σ

dEdΩ
= r2

0

kf
ki
f( ~Q)2

∑
α,β

(δαβ − k̂αk̂β)Sαβ( ~Q , ω) . (3.1)

This expression is a function that determines how many neutrons are being scattered in a
differential solid angle dΩ and how many of these have an energy contained in the energy
shell dE. A peak in the differential cross section implies that a large number of neutrons are
scattered in this particular energy shell, meaning that the energy transfer between probing
neutron and sample drives the system into an excited state. A peak in the differential cross
section corresponds to an excitation level of the sample spectrum. In order to understand
where the peaks may arise, we need to inspect the tensor Sαβ( ~Q , ω), which is called the
dynamic structure factor [26, pp. 135-138],

Sαβ(~k, ω) =
1

2π

∑
~R

∞∫
−∞

ei(
~k·~R+ωt) 〈Sα0 (t = 0)Sβ~R

(t)〉︸ ︷︷ ︸
Sαβ
≡~R

(t)

dt , (3.2)

where ~k is a momentum, ω an energy and ~R the real space lattice vector.
Eq. (3.16) is the space time Fourier transform of the time dependent spin-spin correlation
function of the sample. Time is being treated as a continuous variable, while space is a
discrete variable (the spins are located on a lattice with spacing a = 1). In the case of the
spin ladder in Eq. (2.6) the structure factor can be simplified [3]:

11
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Sαβky=0(k, ω) =
∑
l

∞∫
−∞

ei(ωt−kl) 〈Sα0,k0(t = 0)Sβl,k0(t)〉 dt , (3.3)

Sαβky=π(k, ω) =
∑
l

∞∫
−∞

ei(ωt−kl) 〈Sα0,kπ(t = 0)Sβl,kπ(t)〉 dt . (3.4)

We discretize space in one dimension (~R→ l = rung number) and restrict the possible values
of the momentum in y−direction to qy ∈ {0, π}. The second simplification stems from the
structure of the ladder:

~k =

(
kx
ky

)
= 2π

(
nx/Lx
ny/Ly

)
, (3.5)

Lx = L/2 , Ly = 2 , (3.6)

nx ∈ {0, · · · , Lx} , ny ∈ {0, 1} . (3.7)

In the scope of this thesis the two distinct tensors (3.3) and (3.4) will be calculated and
displayed separately. The reason for this distinction is that the combination of selection
rules for neutron scattering (∆S = 0,±1) and conservation laws of spin on each rung ensure
different excitation are visible in different channels [15]. For instance, direct processes in
the singlet ground state phase, i.e, the ones where the total number of triplets changes from
n→ n, n+1 as a consequence of neutron-spin interaction are only visible in the antisymmetric
channel.
In numerical practice the time variable will be discrete and limited, thus

t ∈ R→ tn = n∆t, n ∈ {0, 1, 2, · · · , N} , (3.8)

Sαβky (k, ω) ≈
Nt∑

n=−Nt+1

L/2∑
l=−L/2+1

ei(ωtn−kl)Sαβl,ky ∆t , (3.9)

〈Sα0,kπ(t = 0)Sβl,kπ(t)〉 = 〈Ψ| eitnĤSβl+L/2,me
−itnĤSαL/2,m |Ψ〉 . (3.10)

The l index identifies on which rung we are on, while the wave equation |Ψ〉 in Eq. (3.10)
can represents the ground state or a thermal state of the Hamiltonian.
In order to mitigate the finite-time effects on the discrete Fourier transform, we apply a
Gaussian filter [3] with a line broadening parameter η = 2/tN :

g(tn) = e−(tnη)2 , (3.11)

Sαβky (k, ω) ≈
Nt∑

n=−Nt+1

L/2∑
l=−L/2+1

ei(ωtn−kl) g(tn)Sαβl,ky︸ ︷︷ ︸
→Sαβl,ky

∆t . (3.12)

In the next section, we will elaborate on the numerical framework employed in this thesis to
numerically simulate Eq. (3.12).
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3.2 Matrix product states

The framework of matrix product states (MPS) forms the building blocks of some of the
most powerful numerical methods for 1D quantum systems that are also employed in this
thesis. Based on MPS, we determine the ground state by means of the density matrix
renormalization group (DMRG). The ground state of the spin ladder is taken as starting point
to compute the dynamical spin structure factor at T = 0 using real-time evolution via time-
dependent DMRG (tDMRG). To extract the dynamics of the model at finite temperatures,
we use density-matrix purification to obtain the thermal density matrix, which is again
time evolved using tDMRG. In this section, we give a brief introduction to these numerical
techniques and sketch their main concepts. For a detailed description we refer to the reviews
[25, 22].

3.2.1 Diagrammatic representations

In order to understand the above mentioned numerical techniques (DMRG and tDMRG), it
is helpful to introduce the framework of matrix product states (MPS). Many steps of MPS
methods can greatly be simplified by using a diagrammatic representation of the underlying
mathematical equations, which we briefly introduce in the following.
MPS and other tensor networks parametrize the wavefunction of a quantum many-body
system by a set of multidimensional tensors. A tensor is a multidimensional array of numbers,
and can be pictorially represented as in Fig. 3.1.

σ1 σ2 σ3 · · · σNσN−1σi · · ·

Figure 3.1: Diagrammatic representation of an N-dimensional tensor.

In this diagrammatic representation, the legs sticking out identify the indices σi of the
tensor. In general, tensors can be obtained from contraction of other tensors. Tensor con-
traction are diagrammatically represented as follows (Fig. 3.2) throughout this project:
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a1 a2 a3

σ1 σ2 σ3 σ4

σ1 σ2 σ3 σ4

Figure 3.2: Complex tensor contraction.

A leg connecting two tensors implies that we are summing over this particular index.
The legs that remain sticking out are the relevant ones: they define the dimension of the
resulting tensor. By adopting this convention, we can reduce complex tensor contractions
involving lengthy mathematical equations to simple diagrams. For instance, the diagram of
Fig. 3.3

β γ

i j

A B C

Figure 3.3: Diagrammatic representation of a combined matrix multiplication.

actually stands for the expression.

Dij =
∑
βγδ

aiβbβγcγj , (3.13)

see Appendix 6.1 for the procedure or refer to Ref. [25, pp. 19-24] for a complete overview of
the methodology.

3.2.2 MPS generalities

We will now give a brief introduction to the matrix product state representation of quantum
many-body states. Let us consider an arbitrary pure many-body quantum state of a system
with L sites:

|ψ〉 =
∑
σ1···σL

Ψσ1···σL |σ1 · · ·σL〉 , σi = 1, · · · , d ∀ i . (3.14)
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The state is defined by its wave equation coefficient tensor Ψσ1···σL in combination with the
Fock state |σ1 · · ·σL〉. The key idea of an MPS representation is to express Ψσ1···σL set of
three-dimensional tensors Mσi leading to the following form.

|ψ〉 =
∑
σ1···σL

Mσ1Mσ2 · · ·MσL |σ1 · · ·σL〉 . (3.15)

The diagrammatic representation of Eq. (3.15) immediately yields Fig. 3.4.

σ1 σ2 · · · σL
a1 a2 aL−1· · ·

Figure 3.4: MPS form of a pure quantum state.

What are the main advantages of the MPS representation of the wave function? First
of all, we are talking about physically relevant solid state models, which attempt to capture
the behaviors on the atomic scale. The dimension of the Hilbert space grows exponentially
with system size L and so does the number of wave-function coefficients. In the MPS rep-
resentation one can avoid this exponential scaling by introducing an upper cutoff dimension
D (the so-called bond dimension) limiting the sizes of the M tensors in Eq. (3.15). In this
way, the numerical costs of the MPS only scale polynomially with system size, which is the
key to the effectiveness of many MPS approaches.
One other great advantage of the MPS representation is the way it encodes information
about quantum entanglement. In the normal algebraic representation, determining whether
a wave function encodes entanglement typically cannot be naturally deduced. Our newly
introduced formalism on the other hand, captures information about entanglement in a nat-
ural and convenient way.
To further elaborate on these statements, we again consider the MPS representation of the
many-body state in Eq. (3.15). Cutting the system up in two parts and writing the wave
function in terms of this bipartite system leads to:

|ψ〉 =
∑
ij

Ψij |i〉A ⊗ |j〉B , (3.16)

or, in the Schmidt-basis (see Appendix 6.2)

|ψ〉 =
r∑

a=1

s2
a |a〉A ⊗ |a〉B , (3.17)

which is diagrammatically represented is Fig. 3.5

σ1 σ2 · · · σL

a1 a2
aL−1

|a〉A |a〉B

S
a a

Figure 3.5: Diagrammatic representation of the Schmidt-decomposition of a pure quantum
state. This is also known as the bond-canonical form of an MPS [25, p. 23].
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We compute the reduced density matrix for subsystem A:

ρ̂A = TrB(|Ψ〉 〈Ψ|) =
r∑

a=1

s2
a |a〉A 〈a|A . (3.18)

This procedure can be repeated analogously for ρ̂B. If we assume a to have at most bond
dimension D, the size of density matrix is upper bound by D.

ρ̂A =

D∑
a=1

s2
a |a〉B 〈a|B . (3.19)

The amount of entanglement in the system can be expressed by computing the so-called
von-Neumann entropy, which in this basis has the simple form,

SA|B = −TrA[ρ̂Alog2(ρ̂A)] = −TrB[ρ̂Blog2(ρ̂B)] = −
D∑
a=1

s2
alog2(s2

a) . (3.20)

As a consequence of Eq. (3.19), entanglement entropy is also bound by the bond dimension
D.
At this point the relationship between bond dimension and entanglement entropy emerges
with clarity.

� D = 1⇒ SA|B = 0: The quantum state is not entangled.

� D > 1⇒ SA|B > 0: The quantum state is entangled.

We should remark that a bond dimension D > 1 is an indicator of entanglement but it
does not give information about the degree of entanglement, namely, given two MPS in the
Schmidt-basis with bond dimensions D1 and D2

D1 > D2 ; SA|B,1 > SA|B,2 . (3.21)

The degree of entanglement depends on the distribution of the eigenvalues of the density
matrix s2

a in Eq. (3.20): the closer to an equipartition distribution, the higher the degree of
entanglement SA|B.
At this point we should make some remarks as to under which circumstances we are able to
work with this formalism and retrieve useful data.
It can be shown [22] that, for an arbitrary quantum state, the dimension of the tensors
composing the network will grow exponentially with the size of the system. Imposing an
upper threshold D for the bond dimension is therefore strictly necessary in order to ease the
exponential scaling and allow for a numerically feasible MPS representation [25, pp. 45-50,
21]. However, this raises some concern since in this procedure we have to truncate large
parts of the Hilbert space that could potentially be important for an accurate representation
of the wavefunction.
Fortunately it turns out that in many physically relevant Hamiltonians (i.e., ones with short-
ranged interactions) the MPS can still capture the entanglement properties of low-energy
and thermal states faithfully. It has been demonstrated, that different Hamiltonians possess
different scaling properties of the entanglement entropy with respect to system size for differ-
ent energy scales. These properties can be formalized in terms of so-called volume- and area
laws [8]. Generic states of most Hamiltonians follow the volume law, i.e. given a bipartite
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system A|B with spatial dimension M , the entanglement entropy of these states SA|B ∝ LM .
For Hamiltonians with short-range interactions though, it can be shown [11] that the low-
lying energy states of this particular class of systems obey an area law scaling of the en-
tanglement entropy SA|B ∝ LM−1. To analyze the worst case scenario, we maximize the
expression for entanglement entropy in Eq. (3.20) by setting s2

a = 1/D ∀ a

SA|B = log2(D)⇒ D = 2SA|B . (3.22)

If we are dealing with a 2D (M = 2) system, L identifies the side length and the area law
for the low-energy regime states that SA|B(L) ∝ L which implies D(L) ∝ 2L. The bond
dimension experiences exponential growth with L, meaning that MPS truncation will yield
an uncontrollable error. If however, our system is 1D (M = 1), SA|B(L) ∝ 1 which means
D(L) = const. . This is an important result, as is states that one-dimensional systems allow
us to truncate the bond dimension to a finite value without sacrificing excessive accuracy of
the results.
The Hamiltonian describing the frustrated spin ladder does not fall exactly in this category
since the interactions go beyond simple next neighbor exchange. As we will discover in the
next sections however, we will be able to re conduct it to a system perfectly suitable with
the MPS formalism.

3.2.3 Evaluation of observables

One of the reasons MPS are very popular in numerical treatments, is because of one can easily
and accurately implement overlaps and expectation values. The overlaps we are dealing with
in the scope of this project involve mainly local operators such as:

〈Ψ0| Ŝβl+L/2,m(tn)ŜαL/2,m |Ψ0〉 (zero temperature) , (3.23)

〈ΨT | Ŝβl+L/2,m(tn)ŜαL/2,m |ΨT 〉 (finite temperature) . (3.24)

Since these involve time evolution in the form of eiĤt, evaluating them requires further
background knowledge which will be provided in the tDMRG section (Section 3.5). Here we
will concentrate on the evaluation of time independent observables, in particular correlators.
A local operator is one only acting on one of the sub-spaces:

Ô[i] =
∑
σi,σ′i

Oσiσ′i |σ
′
i〉 〈σi| . (3.25)

|ψ〉

i

ÔÔ[i] |ψ〉 =

M M

σi

· · ·

σ1 σ2 · · ·
σ′i

σL

Figure 3.6: Local operator acting on an MPS.
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A generic correlator calculation in MPS formalism has the following structure:

〈φ| Ô[i]P̂ [j] |ψ〉 =
∑

σ1···σi···σj ···σL
σ′iσ
′
j

M̃σ1† · · · M̃σ′i† · · · M̃σ′j† · · · M̃σL†Oσiσ′iPσjσ′jM
σ1 · · ·MσL .

(3.26)

|ψ〉

〈φ|

i j

Ô P̂〈φ| Ô[i]P̂ [j] |ψ〉 =

M̃ M̃ · · ·

M M

σ′i

σi

σ′j

σj

· · ·

σ1 σ2 · · ·

Figure 3.7: Matrix element of the correlator in diagrammatic representation.

Evaluating this number amounts to a complex tensor contraction. It should be noted that
simply performing this contraction without taking in account the order might result in an
exponential increase of the numerical costs with the system size [25, pp. 34-36]. Organizing
the contraction in the following scheme, however, reduces the cost to a linear dependence on
system size:

|ψ〉

〈φ|

Ô P̂

M̃ M̃ · · ·

M M · · ·

1

2

3

4

5

6

7

8

9

10

11

Figure 3.8: Convenient contraction order.

For the details about the correct contraction order we refer to the review [25, pp. 34-36]

3.3 Mapping the ladder onto a chain

Although MPS are ideally suited to represent one-dimensional systems, they work fairly well
when applied to two-dimensional systems with finite width Ly (albeit the numerical costs
scale exponentially with the width). In case of the spin ladder, the width of the system is
fairly small, Ly = 2, and an MPS treatment still works well.
To make the system amenable for MPS, we have to map the ladder onto a chain with longer-
ranged interactions.
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J‖

J×

i-1,m i,m i+1,m

i-1,m̄ i,m̄ i+1,m̄

J⊥

Figure 3.9: A segment of the spin-1/2 ladder.

Consider a segment of the spin ladder shown in Fig. 3.9, where we observe that sites at
rung i interacts with 5 other sites. If we map the spin ladder onto a spin chain, some of
the interaction terms, that in the original setup coupled nearest-neighbor sites, now become
longer ranged, as illustrated in Fig. 3.10. However, since the interaction strengths (J) do not
depend on the geometry of the lattice, the two structures are inherently equivalent.

J‖

J×

i-1,m i,m i+1,m

i-1,m̄ i,m̄ i+1,m̄

J⊥

J‖
i-1,m̄ i,m̄ i+1,m̄ i-1,m̄ i,m̄ i+1,m̄i-1,m̄ i,m̄

i+1,m̄

i-1,m i,m i+1,m

i-1,m i,m i+1,mi-1,m̄ i,m̄

J⊥ J⊥J× J×J⊥

J×
J×

J‖
J‖

J‖J‖

Figure 3.10: Illustration of the chain mapping for the spin ladder model.

The cost of the mapping operation lies in the longer-ranged interactions that occur in
the chain. These will have consequences for the entanglement of the wave function and for
the technical setup of the DMRG and tDMRG calculations.

3.4 DMRG in MPS formalism

In order to compute the dynamic structure factor at zero temperature, we need to determine
the ground state of the Hamiltonian. While exact diagonalization approaches are indeed
possible, the exponential growth of the many body Hilbert space dimension limits their use
to small systems. Finite size density matrix renormalization group (DMRG) is a variational
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method designed to obtain the ground state of high-dimensional Hamiltonians such as the
ones appearing in many body quantum physics.

DMRG was introduced by Steve White prior [31] to the development of MPS and TN
methods. As it turn out, the success of DMRG is routed in the implicit MPS structure of
the algorithm and the explicit formulation of DMRG in the MPS framework lead to the
development of many powerful extensions and improvements of the algorithm. From the
historic perspective, one normally starts by describing the variant of DMRG that treats
infinitely long systems (infinite-size DMRG) and then focuses of the finite-size variant of
the algorithm. Since we only treat chains of finite length in the scope of this thesis, we
focus on the finite-size algorithm only. We refer to Schollwoeck’s review for a more complete
discussion of the topic [25].
Consider a Hamiltonian Ĥ. To determine its ground state |ψ0〉 ∈ H we follow a variational
procedure.

Ĥ |ψ0〉 = E0 |ψ0〉 , (3.27)

⇒ 〈ψ| Ĥ |ψ〉 ≥ E0 〈ψ|ψ〉 , (3.28)

⇒ |ψ0〉 = arg min
〈ψ|∈H

(〈ψ| Ĥ |ψ〉 − λ 〈ψ|ψ〉) . (3.29)

The Lagrange multiplier λ ensures ground state normalization. Assuming we are able to
produce the matrix product operator (MPO) representation of the Hamiltonian [25, 22],
Eq. (3.29) can be depicted by TN diagrams in Fig. 3.11

−λ×

〈ψ|

|ψ〉

Ĥ

〈ψ|

|ψ〉

M †1

M1 M2

M †2

M † M †

M M

· · ·

· · ·

· · ·

· · ·
Mi

M †i

M †i

Mi

Figure 3.11: Diagrammatic representation of the minimization problem in Eq. (3.29).

The variables of this problem are the tensors Mi composing the wave function: they
constitute the parameters that, upon variation, yield lower and lower energies. Naively we
could try varying all the tensors simultaneously in order to obtain the correct ground state
but this approach implies solving a highly non linear optimization problem, which cannot
be numerically solved for large system sizes. Here the key idea of DMRG comes into play:
instead of treating the tensors globally, we start from a random set of tensors and minimize
the system one tensor at the time, updating the MPS wave function at each step.
The iterational ground state search algorithm has the following structure:
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sweep 1: left → rigth (3.30)

˜|ψ0〉
[1]

= arg min
M1

(〈ψ| Ĥ |ψ〉 − λ 〈ψ|ψ〉) , (3.31)

˜|ψ0〉
[2]

= arg min
M2

(
˜〈ψ0|

[1]
Ĥ ˜|ψ0〉

[1]
− λ 〈ψ̃0

[1]|ψ̃0
[1]〉
)
, (3.32)

... (3.33)

˜|ψ0〉
[L]

= arg min
ML

(
˜〈ψ0|

[L−1]
Ĥ ˜|ψ0〉

[L−1]
− λ 〈ψ̃0

[L−1]|ψ̃0
[L−1]〉

)
. (3.34)

Once we have reached the end of the system, we revert the algorithm and proceed from right
to left in what is known as ”sweeping” through the system.

sweep 2: right → left (3.35)

˜̃|ψ0〉[L+1] = arg min
ML−1

(
˜〈ψ0|

[L]
Ĥ ˜|ψ0〉

[L]
− λ 〈ψ̃0

[L]|ψ̃0
[L]〉
)
, (3.36)

˜̃|ψ0〉[L+2] = arg min
ML−2

(
˜̃〈ψ0|[L+1] Ĥ

˜̃|ψ0〉[L+1] − λ 〈 ˜̃
ψ

[L+1]
0 | ˜̃ψ[L+1]

0 〉
)
, (3.37)

... (3.38)

˜̃|ψ0〉[2L] = arg min
M2

(
˜̃〈ψ0|[2L−1] Ĥ

˜̃|ψ0〉[2L−1] − λ 〈 ˜̃
ψ

[2L−1]
0 | ˜̃ψ[2L−1]

0 〉
)
. (3.39)

The importance of this scheme, is that it allows us to reduce a non-linear optimization
problem in a series of linear optimization problems. The minimization equation can in fact
be rewritten in terms of matrix products:

min
Mi

(〈ψ| Ĥ |ψ〉 − λ 〈ψ|ψ〉) = min
Mi

(M †i ĤeffMi − λM
†
iNMi ) , (3.40)

assuming canonical form of the MPS [25], we can reformulate the minimization problem in
a generalized eigenvalue problem:

σ′l a′la′l−1

alal−1

σl

Heff

Ml

σ′l a′la′l−1

alal−1 σl

N

Ml

−λ×

M †l M †l

Figure 3.12: Minimization at site l: all tensors 6= Ml,M
†
l are absorbed either in an effective

Hamiltonian Ĥeff or in the normalization matrix N

At this point we search for the minimum by forming the partial derivative with respects
to M †l and obtain a generalized eigenvalue problem:

∂

∂M †i
(M †i ĤeffMi − λM

†
iNMi ) = 0 , (3.41)

⇒ ĤeffMi − λNMi = 0 . (3.42)
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Since we are interested in the matrix Ml that minimizes λ, we only need to compute the
smallest eigenvalue. This kind of problem can be tackled with the Lanczos method [18] and
costs much less in numerical terms than a complete diagonalization. Once we have mini-
mized Ml, we will update the MPS and proceed to the next iteration, where our goal will be
to minimize Ml+1. The minimization of each individual matrix ensures we obtain lower and
lower energies at every iteration, however the number of sweeps one needs to perform before
the energy converges is heavily dependent the specific system.
As much as this new approach for the ground state search might seem attractive, we should
keep in mind that, much like many other numerical methods, it has its strengths and weak-
nesses [25]. Finally, we need to briefly discuss how some spectral features of the Hamiltonian
may negatively influence the validity of the produced results. Consider a parameter regime
of some Hamiltonian that yields a very small excitation gap with an almost continuous dis-
tribution of excited states above the ground state. If we apply finite-size DMRG in this
situation, we may notice that we need a lot of sweeps before witnessing convergence. This
can be attributed to the large number of states with very similar energies in the vicinity of
the ground state. This particular aspect will be further discussed in chapter 4.

3.5 tDMRG

With DMRG we can obtain the ground state of the spin ladder across the entire phase
diagram. The latter is the starting point for the calculation of the dynamic spin structure
factor at zero temperature, which now has to be evolved in real time before applying a
Fourier transform. Evaluating the time evolution of a pure quantum state constitutes yet
another strength of the MPS formalism [33, 6, 29].
The time-dependent Schrödinger equation allows us to write the time evolution operator as
follows:

|ψ(t)〉 = e−iĤt |ψ(0)〉 . (3.43)

Several techniques apart from the here discussed tDMRG (see tMPS and TEBD in Ref. [25,
pp. 75-84] for a review) have been developed to deal with this problem, each with its strengths
and weaknesses depending on the kind of Hamiltonian determining the dynamics.
Mapping the spin ladder onto a chain has increased the of interaction range of some bonds
(see Fig. 3.10) which increases the technical complexity of MPS-based time evolution. How-
ever, the time evolution in this system can still be performed in terms of a Suzuki-Trotter
composition, which has proven to be highly successful for systems with nearest-neighbor
interaction only. In this section, we elaborate on standard MPS time evolution before dis-
cussing how to incorporate longer-ranged interaction terms by means of swap gates.

3.5.1 Nearest-neighbor interaction

If the Hamiltonian that determines the dynamics of the system only depends on nearest-
neighbor interaction, it can be factorized as follows:

Ĥ =
L−1∑
i

ĥi , (3.44)

where ĥi encodes the interaction between sites i and i+ 1. Splitting the total time evolution
in N smaller time steps τ = t/N enables us to express the time evolution operator by a set
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of local gates using a first-order Suzuki-Trotter decomposition [12]:

e−iĤt =

(
L−1∏
i=1

e−iĥiτ +O(τ2)

)N
. (3.45)

The non-commutativity of the local operators is accounted for by inserting the so-called
,,Trotter-error” term of quadratic order in the time step. Eq. (3.45) is known as a first order
Suzuki-Trotter decomposition of the time evolution operator.
The magnitude of the Trotter-error can be further reduced by selecting higher order Suzuki-
Trotter approximations [12]. In this thesis, for instance, we used a second order Suzuki-
Trotter decomposition, which has the form

e−iĤt =

(
L−1∏
i=1

e−iĥiτ/2
1∏

i=L−1

e−iĥiτ/2 +O(τ3)

)N
. (3.46)

In this approximation, the time evolution process of the MPS can be visualized by the
diagram in Fig. 3.13

σ1 σ2 σ3 σ4

e−iĥ1τ/2

e−iĥ2τ/2

e−iĥ3τ/2

e−iĥ2τ/2

e−iĥ1τ/2

1 2 3

e−iĥ3τ/2

Figure 3.13: One time step τ performed with a second order Suzuki-Trotter decomposition on
a MPS of with L = 4 .

It should be noted that the time evolution operator increases the bond dimension of the

MPS at each application e−iĥiτ/2 [25]. In order to prevent the computational costs from
growing exponentially, we have to apply a truncation procedure after each bond evolution,
which yields a truncation error. The Trotter error and the truncation error are the two main
limiting factors of the time evolution of an MPS. However, while the trotter error can be
controlled by reducing the time step τ or by using a higher order Trotter approximation, the
truncation error grows exponentially in time [25], making it the main limiting factor for the
reliability of the time evolution calculations.
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3.5.2 Beyond next-neighbor interactions

The previously introduced formalism derives all its conclusions on the assumption that the
Hamiltonian can be written as a sum of next-neighbor terms.
However, if a Hamiltonian accounting for interactions that go beyond next-neighbor only
includes two-site interaction, one can still rely on a Trotter decomposition to perform the
time evolution by introducing so-called swap gates [27, pp. 6-8]. A swap gate simply switches
the physical indexes of two adjacent sites of the MPS, as illustrated in Fig. 3.14. For a spin
system they are represented as follows:

Ŝl,l+1 =
∑

σl σl+1 σ
′
l,σ
′
l+1

δσl,σ′l+1
δσl+1,σ

′
l
|σl σl+1〉 〈σ′l σ′l+1| . (3.47)

|ψ〉

σl σl+1

σl+1 σl

|ψ〉

σlσl+1

σ1 · · ·

σ1 · · ·

Ŝl,l+1

Figure 3.14: Action of a swap gate on an MPS.

Consider a Hamiltonian that includes the non-local interaction between sites i and j in

the form of e−iĥτ , the procedure to time evolve the bond can be performed by first applying
a set of swap gates so that the location of site j in the MPS is switched next to site i. Then,
the local Trotter gate can be applied before moving site j back to its original position by
another set of swap gates, as illustrated in Fig. 3.15.

Ŝi+1,iŜi+2,i+1 · · · Ŝj−1,je
−iĥτ Ŝj,j−1 · · · Ŝi+1,i+2Ŝi,i+1 |ψ〉 . (3.48)
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σi σi+2σi+1

σ1 · · · Ŝi,i+1

Ŝi+1,i+2

e−iĥτ

σi+1 σi

σi+2 σi

σi

Ŝi+1,i

Ŝi+2,i+1

σi+2

σi+1 σi+2

σi

σi σi+2

σL

Figure 3.15: Diagrammatic representation of Eq. (3.48) of the case j = i+ 2.

This simple scheme allows us to extend the employment range of the Suzuki-Trotter de-
composition beyond nearest- neighbor Hamiltonians. The main disadvantage of this method
is that it relies on the application of two-site operators which preserve the MPS form of
the wave function only under the performance of an additional singular value decomposition
(SVD) after every application [25]. If there is a great number of long-ranged interaction, the
additional costs of these SVDs might pile up, rendering the swap gate approach inefficient.

3.6 Finite temperature calculations

Another important part of our project is the characterization of thermal effects on the spec-
trum of the spin ladder. In this chapter we will refrain from giving a complete description
of the numerical methods used to produce these data. Instead, we give some introductory
remarks and provide a more qualitative outline of the problem. For a more complete de-
scription we refer to Schollwöck’s review [25].
We start by considering an arbitrary mixed state living in some space P spanned by the
eigenvectors of a generic Hamiltonian Ĥ. The state will be characterized by some density
operator of the form (see Appendix 6.2):

ρ̂P =
d∑
a=1

s2
a |a〉P 〈a|P . (3.49)

It is possible to express the thermal density matrix of a system within the MPS framework
by means of purification [28]. To this end, we consider the density operator ρ̂p as the partial
trace over some auxiliary space A applied to a pure quantum state living in an enlarged
Hilbert space Htot = P ⊗A. In mathematical terms:

|ψ〉 =

d∑
a=1

sa |a〉P |a〉A ⇒ ρ̂P = TrA(|ψ〉 〈ψ|) , ψ ∈ Htot . (3.50)
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As we introduce this new auxiliary space A, it is important to notice how it can be chosen
arbitrarily since the Hamiltonian we are interested in only acts on the physical space P .
Observing Eq. (3.49), the only restriction for the subspace A is the necessity for a matching
dimension of P : it is convenient to simply take a copy of P . To setup the thermal density
matrix ρ̂β at some finite inverse temperature, we first express the operator as

ρ̂β =
1

Z(β)
e−βĤ =

1

Z(β)
e−βĤ/2Îe−βĤ/2 . (3.51)

The identity matrix can be interpreted as the density matrix of a quantum state with maximal
entropy:

Î ∝ ρ̂0 ⇒ ρ̂0 = diag(1/Z(0) , 1/Z(0) , · · · , 1/Z(0)) , (3.52)

(3.52)→ (3.51)⇒ ρ̂β =
Z(0)

Z(β)
e−βĤ/2ρ̂0e

−βĤ/2 , (3.53)

where Z(0) denotes the partition function at infinite temperature.
If we now apply the mixed state purification to ρ̂0 :

ρ̂β =
Z(0)

Z(β)
e−βĤ/2TrA(|ψ〉0 〈ψ|0)e−βĤ/2 . (3.54)

Since Ĥ only acts on subspace P, we can pull the thermal operators e−βĤ/2 inside the
trace:

ρ̂β =
Z(0)

Z(β)
TrA(e−βĤ/2 |ψ〉0 〈ψ|0 e

−βĤ/2) , (3.55)

ρ̂β =
Z(0)

Z(β)
TrA(|ψ〉β 〈ψ|β) , |ψ〉β := e−βĤ/2 |ψ〉0 , (3.56)

|ψ〉0 , |ψ〉β ∈ Htot . (3.57)

The thermal state |ψ〉β can be obtained by performing a standard MPS time evolution in
imaginary time, using a Suzuki-Trotter decomposition analogous to the time evolution case:

eβĤ =

(
L−1∏
i

eĥiκ +O(κ2)

)N
, κ =

β

N
. (3.58)

At this point we have all the necessary ingredients to retrieve the dynamic structure factor:

〈ψT | Ŝβl+L/2,m(tn)ŜαL/2,m |ψT 〉 . (3.59)

Since all the steps have been discussed separately in the previous sections, we only include
a diagrammatic representation of the procedure in Fig. 3.16.
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imaginary time
evolution

real time
evolution

|ψ〉β=0

〈ψ|β=0

β

β

t

t

Ŝ0

Ŝl(t)

real time
evolution

imaginary time
evolution

Figure 3.16: Diagrammatic representation of the dynamic structure factor at finite temperature
of Eq. (3.59). The action of the swap-gates is not included for reasons of space.



4. Results

After having motivated the numerical background of this project, we now present the dynamic
structure factor of the frustrated spin ladder obtained with tDMRG calculations. Following an
introduction to the already known features of the spin ladder spectrum, we display results for
the dynamic structure factor of the perfectly frustrated ladder at T = 0, managing to extract
data in parameter configurations very close to the phase transition. In order to illustrate the
effects of perfect frustration on the spectrum, we also present additional results for the spin
ladder in a state of relaxed frustration. Moreover, we present the dynamic structure factor at
finite temperature and discuss the details of thermal effects, finally motivating the anomalous
spectral loss of the one triplet excitation in the vicinity of the phase transition.

4.1 Excitation and spectral features

Our numerical data examines the excitation spectrum of the spin ladder at different coupling
regimes. As a preamble to the discussion of the results, we summarize some of the already
known characthteristics of the spectrum which are discussed in great detail in Refs.[15] and
[16].

� Singlet phase: The first excitation of the singlet phase consist in the flipping of a
single spin, which results in the formation of a spin-triplet residing on the rung as
illustrated in Fig.4.1

Figure 4.1: Red colored sites indicate a triplet excitation in singlet sites.

These excitations are known to be localized objects in the perfeclty frustrated regime
(J× = J‖) [9] and thus do not exhibit dispersion in scattering simulations. Further
high-energy excitations yield multi-triplet bound states. As an example, we illustrate
the two-triplet excitation in Fig. 4.2 :

28
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Figure 4.2: circled sites: 2 triplet excitations

In this phase, the behavior of the multi-triplet excitations can be understood by con-
sidering the system as a Haldane chain [36, 22, p. 24] with open boundary conditions.
The length of the chain is determined by the number of adjacent triplet rungs of the
excitation. In the case of Fig. 4.2, for instance,the length of the corresponding Haldane
chain is two and exact diagonalization yields the following energies:

E2s

J‖
= 2(j′ − 1) ,

E2t

J‖
= 2j′ − 1 ,

E2q

J‖
= 2j′ + 1 , (4.1)

j′ ≡ J⊥
J‖

. (4.2)

In this context, these values represent the energies of the two-triplet excitation in the
frustrated spin ladder. The same procedure can be applied to further multi-triplet
excitations. The key aspect of these energies lies in the j′ dependency: in fact, as
we approach the critical value of the coupling parameters, these energies converge
toward energies far below the one-triplet excitation. However, these excitations are not
directly accessible at T = 0 because pure spin-spin interaction (in absence of thermal
fluctuations) in the perfectly frustrated regime J‖ = J× , prevents them from arising
[15]. In the presence of finite temperature though, the competing effects of thermal
fluctuations generates a non vanishing spectral weight of these multi-triplet modes. As
we approach the critical point, large numbers of these states start to appear below the
one-triplet excitation: this great variety of low lying energy states plays a key role in
understanding the spectral weight redistribution of the one-triplet band displayed in
the figures of Section 4.3.

� Triplet phase As mentioned in Section 2.2, the ground state of the rung triplet phase
forms a total spin singlet S = 0. The first excited state in this phase forms a total spin
triplet S = 1, also known as the dispersive one magnon excitation [2, pp. 704-706],
corresponding to flipping the spins of two sites of a rung, as displayed in Fig. 4.3.
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Figure 4.3: Circled rung corresponds to one magnon excitation.

In the thermodynamic limit, the first excitation is energetically separated from the
ground state by a gap ∆ ≈ 0.4105J‖. Further excitations are referred to as multi-
magnon bands [34] and arise at integer multiples of the one-magnon gap: e.g the
two-magnon band arises at ∆2 = 2∆. It should be noted, however, that the location
of these energy values is strongly dependent upon the actual size of the system. Other
excitations in the rung-triplet phase correspond to the formation of a rung singlet as
a consequence of a spin-flip at a single site, as illustrated in Fig. 4.4.

Figure 4.4: The blue circle corresponds to a singlet excitation.

These excited states are localized and thus do not experience spectral dispersion. As
shown in Ref. [16], these energy levels experience a size related convergence toward the
value E/J‖ ≈ 1.208, which lies in the vicinity of the one-magnon gap ∆.

4.2 Zero-temperature spectra

In a first study, we focus on the spectral feature of the spin ladder at zero temperatures. In
particular, we examine these dynamical features at values around the quantum critical point
and perfect frustration,

J× = J‖ = 1 , J⊥,c = 1.401 . (4.3)

We fix J× = J‖ = 1 , and tune the rung coupling J⊥ to probe the different phases of the
spin ladder. We initialize the MPS as a Néel state as starting wave function for the DMRG
algorithm. In this parameter regime however, we noticed that DMRG has trouble identifying
the correct ground state, as illustrated by the staggered magnetization displayed in Fig. 4.5.
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Figure 4.5: Staggered magnetization (see Eq. (2.9)) of the ground states calculated with DMRG
using a Néel state as starting wave function.

As discussed in Section 2.2, the staggered magnetization is the order parameter of the
frustrated ladder. The phase transition seems to be located around J⊥ = 1.25, in disagree-
ment with the results of other publications [30, 15]. This deviation can be attributed to
several issues of the finite-size DMRG:

� The initial state provided for the DMRG algorithm is of Néel order on all J⊥ bonds.
Due to its magnetic order, this state has a slight bias to the ground state of the singlet
phase (J⊥ � J‖, J×).

� In addition, the singlet state seems to be a rather persistent local energy minimum also
in the triplet phase. With DMRG performing only updates on two sites at once, the
algorithm shows great difficulties to converge to the actual triplet ground state only
allowing for local updates. Note that we also tried converging the state using an initial
noise term [32] in the DMRG. This did not yield better convergence.

In order to solve the convergence issue, it is useful to change the initial state of the algorithm
to a rung-antiferromagnetic state with similar to the one shown in Fig. 2.10. The DMRG
with this initial state yields a phase transition value of J⊥ in good agreement with previous
results, as illustrated by the values of the staggered magnetization shown in Fig. 4.6
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Figure 4.6: Staggered magnetization (see Eq. (2.9)) of the ground states calculated with DMRG
using a rung-antiferromagnetic state as starting wave function.

At this point we can compute the dynamical structure factor of the spin-ladder and
consequently the spectrum. In the following we present the dynamic structure factor for
chain size 100 × 2 and the J⊥ parameter ranging from 1.2 (Fig. 4.7) to 1.8 (Fig. 4.10). The
symmetric channel (ky = 0) results are portrayed on the left of each panel, the antisymmetric
(ky = π) on the right. Other DMRG tuning parameters are a cutoff value of e−9 (discarded
weight), a line broadening parameter of η = 0.1 and a time limit of T = 40s. The maximal
time Tmax achieved by tDMRG is reported in each figure separately.

Figure 4.7: J⊥ = 1.2 , J‖ = J× = 1 , Tmax = 40 s
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Figure 4.8: J⊥ = 1.3 , J‖ = J× = 1 , Tmax = 40 s

Figure 4.9: J⊥ = 1.4 , J‖ = J× = 1 , Tmax = 40 s
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Figure 4.10: J⊥ = 1.8 , J‖ = J× = 1 , Tmax = 40 s

In this parameter regime (Figs. 4.7-4.10), a typical DMRG ground state search required
a bond dimension of D ≈ 150 and D ≈ 200 at maximum time step Tmax.
For J⊥ < J⊥,c in Figs. 4.7-4.9 (rung triplet ground state), we notice dispersion in the sym-
metric channel which can be directly related to the one-magnon excitation of a Haldane chain
[34]. The antisymmetric channel exhibits the discrete one-singlet excitation as a completely
flat spectral feature (Fig. 4.10).
For J⊥ > J⊥,c in Fig. 4.10 (rung singlet ground state), we notice the localized one-triplet
excitation in the antisymmetric channel and no spectral features at all in the symmetric
channel.
The important aspect that should be stressed, is the tendency of the first excited state (por-
trayed as the bright yellow line appearing in the antisymmetric channel) to move toward
smaller values as we approach the critical point J⊥ → 1.401 and then increasing again, as
we further increment the J⊥ values (see Figs. 4.7-4.10). With L=100, the DMRG converges
very slowly in the vicinity of the phase transition due to the appearance of many low-energy
excitations (see Section 4.1). To this end, we reduce the system length L from 100 to 40,
allowing us to decrease the computational costs and study regimes very close the the phase
transition. Apart from reducing the system length, the other calculation parameters were
left unvaried:

� cutoff value e−9 (discarded weight)
� line broadening parameter of η = 0.1
� time limit of T = 40s
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Figure 4.11: J⊥ = 1.402 , J‖ = J× = 1 , Tmax = 40 s

Figure 4.12: J⊥ = 1.405 , J‖ = J× = 1 , Tmax = 40 s



36 Chapter 4. Results

Figure 4.13: J⊥ = 1.406 , J‖ = J× = 1 , Tmax = 40 s

It should be noted that the coupling parameter combination responsible for the phase
transition is susceptible to the size of the system. Therefore we find the characteristic one-
magnon dispersion even at values J⊥ > 1.401. The striking feature is the vanishing of the
spectral gap which can be observed in Fig. 4.13. This indicates that the phase transition is
slightly shifted to J⊥ ≈ 1.406, where the gap closes completely, signaling the divergence of
correlation length. In this regime (Figs. 4.11-4.13), our calculations required a bond dimen-
sion D ≈ 200 at the maximum time step Tmax and D ≈ 150 for the ground-state search.

4.2.1 Relaxed frustration regime

In order to show the role of frustration in this particular system, we include the dynamic
structure factor of the ladder in a relaxed frustration regime: i.e at J⊥ = J‖ = 1. In this
region of the phase diagram, the critical point is located at J× = 0.599 [16]. We present
simulation results for J× ranging from 0.4 (Fig. 4.14- rung triplet phase) to 0.7 (Fig. 4.17-
rung singlet phase). The calculations are once again performed on a ladder length of L = 100
and the numerical parameters are left unvaried:

� cutoff value e−9 (discarded weight)
� line broadening parameter η = 0.1
� time limit T = 40s

as in the fully frustrated case, the symmetric channel (ky = 0) is displayed on the left panels,
the antisymmetric channel (ky = π) on the right.
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Figure 4.14: J× = 0.4 , J⊥ = J‖ = 1 , Tmax = 40 s

Figure 4.15: J× = 0.58 , J⊥ = J‖ = 1 , Tmax = 38.3 s
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Figure 4.16: J× = 0.6 , J⊥ = J‖ = 1 , Tmax = 24.9 s

Figure 4.17: J× = 0.7 , J⊥ = J‖ = 1 , Tmax = 40 s

The required bond dimension increases significantly as we approach criticality (Figs. 4.15-
4.16), varying from D ≈ 100 to D ≈ 350 for the ground state search and from D ≈ 300 to
D > 3000 at maximum time step Tmax.
The important aspect that should be noted, is how the one-triplet excitation appearing in
the antisymmetric channel now appears to have dispersive features (right panel of Figs. 4.14-
4.17) in contrast to the results shown for perfect frustration J× = J‖ = 1 above (right
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panel of Figs. 4.7-4.10). The consequence of perfect frustration appears to be the complete
localization of the single- and multi-triplet excitations. Again, we observe that the spectral
gap closes towards the critical point. In contrast to the perfectly frustrated spin ladder, we
notice that the gap closes in both channels (Fig. 4.16). This interesting property could be a
consequence of relaxed frustration. As mentioned in Ref. [15], multi-triplet bound states are
not accessible at T = 0 in the perfectly frustrated regime. By relaxing the frustration, we
may indeed be able to probe them directly and witness the closing of the spectral gap.

4.3 Finite temperature

As observed in the T = 0 data for the rung-singlet phase, no direct coupling to the multi-
triplet bound states is possible as a consequence of perfect frustration [15]. The only visible
spectral features are the one-triplet excitation in the antisymmetric channel (left panel of
Figs. 4.7-4.10). In the following, we select some of the previously calculated T = 0 spectra
and show how finite temperature yields a spectral weight redistribution involving multi-
triplet bound states. In order to show the onset of these excitations, we start from low
temperatures, gradually increasing them until we reach energies comparable with the first
excitation in the antisymmetric channel. Obtaining reliable results for the high-temperature
regimes is not always possible in the mixed state purification framework as entanglement
growth during real-time evolution is significantly increased by thermal fluctuations. At large
temperatures, we typically have difficulties to perform the real-time evolution to larger time
scales (Tmax < 10). This results in a poor frequency resolution and prevents us from drawing
conclusions from the data.
In the following, we present the spectra of the spin ladder in the perfectly frustrated regime
J× = J‖ = 1 with J⊥ ranging from 1.3 (Figs. 4.18-4.20) to 1.8 (Figs. 4.24-4.26). In order
to facilitate the calculations and access longer times, we reduced the system length from
L = 100 to L = 50. The other numerical parameters are:

� Cutoff value e−9 (discarded weight)
� Line broadening parameter η = 0.1
� Time limit T = 80 s

It should be noted that the line broadening parameter plays a less relevant role in the finite-
temperature calculations as thermal effects already mitigate some of the finite-time effects
present in the Fourier transform of Eq. (3.12). For reasons of consistency we used a line
broadening parameter of η = 0.1. The maximally reached time with tDMRG is reported
separately in every figure.
The effects of finite temperatures are also recognizable from the increased bond dimensions
of the treated quantum states: a thermal state typically requires a bond dimension D ≈ 100
initially and D > 3000 at maximum time Tmax.
As before, the symmetric channel (ky = 0) is displayed on the left panels and the antisym-
metric channel (ky = π) on the right.



40 Chapter 4. Results

4.3.1 Rung triplet phase:

Figure 4.18: J⊥ = 1.3 , J‖ = J× = 1 , β = 3 , Tmax = 7.55 s

Figure 4.19: J⊥ = 1.3 , J‖ = J× = 1 , β = 1.5 , Tmax = 5.75 s
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Figure 4.20: J⊥ = 1.3 , J‖ = J× = 1 , β = 1 , Tmax = 4.85 s

4.3.2 Rung singlet phase:

Bringing finite temperatures into play, the actual size system starts playing a very important
role. Our goal is to observe the onset of multi-triplet bound states while approaching the
critical point from the side of the singlet phase. These bound states are extended objects,
meaning their number is proportional to the number of available rungs, therefore, finite size
effects become very noticeable as seen by comparing our results (Lmax = 50) with those
produced by Honecker et al. [15] (Lmax = 16). As an example, comparing the right panel
of Fig. 3 in Ref. [15] with Fig. 4.24-4.26 reveals how the new thermally induced bands occur
at slightly shifted energy values. Furthermore, the spectral weight decrease in Fig. 4.26 is
already similar to the one shown in Fig. 3 of Ref. [15], despite the temperature used here
(β = 1) is still relatively far from compensating the energetic gap of Fig. 4.10 (β ≈ 0.5).
We speculate that the extended size of the ladder provides a wider array of multi-triplet
bound states to fuel the spectral weight decrease of the one-triplet excitation, but a definitive
confirmation of this statement is not possible as it would require direct access to the numerical
results obtained in Ref. [15].
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Figure 4.21: J⊥ = 1.6 , J‖ = J× = 1 , β = 3 , Tmax = 80 s

Figure 4.22: J⊥ = 1.6 , J‖ = J× = 1 , β = 2 , Tmax = 80 s
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Figure 4.23: J⊥ = 1.6 , J‖ = J× = 1 , β = 1 , Tmax = 5.9 s

Figure 4.24: J⊥ = 1.8 , J‖ = J× = 1 , β = 3 , Tmax = 80 s
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Figure 4.25: J⊥ = 1.8 , J‖ = J× = 1 , β = 1.5 , Tmax = 5.3 s

Figure 4.26: J⊥ = 1.8 , J‖ = J× = 1 , β = 1 , Tmax = 4.45 s

The spectral weight redistribution in the anti-symmetric channel of Figs. 4.21-4.26 ap-
pears evident. As we approach high temperatures, we notice how the one-triplet excitation
loses spectral weight appreciably in favor of the onset of new non dispersive spectral feature
both above and below it. These bands correspond to the aforementioned multi-triplet bound
states, which are now accessible due to the interference of thermal fluctuations.
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4.3.3 Vicinity of the phase transition:

In the vicinity of the phase transition, we attempt to capture the influence of finite temper-
atures both coming from the rung triplet and rung singlet phase:

Figure 4.27: J⊥ = 1.38 , J‖ = J× = 1 , β = 3 , Tmax = 7.9 s

Figure 4.28: J⊥ = 1.38 , J‖ = J× = 1 , β = 1.5 , Tmax = 5.75 s
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Figure 4.29: J⊥ = 1.38 , J‖ = J× = 1 , β = 1 , Tmax = 4.85 s

Figure 4.30: J⊥ = 1.41 , J‖ = J× = 1 , β = 3 , Tmax = 9.6 s
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Figure 4.31: J⊥ = 1.41 , J‖ = J× = 1 , β = 2 , Tmax = 7.5 s

Figure 4.32: J⊥ = 1.41 , J‖ = J× = 1 , β = 1 , Tmax = 5.1 s

If we compare the spectral weight of the first excited state in the vicinity of the phase
transition (antisymmetric channel of Figs. 4.27-4.32) with parameter combinations away from
criticality (antisymmetric channel of Figs. 4.18-4.20 and 4.21-4.26), we notice there is an
accelerated redistribution taking place. Transitioning from β = 3 → 1, for example, causes
the spectral weight at J⊥ = 1.41 (Figs. 4.30-4.32) to drop by about 72%, while the same
temperature jump causes the the a spectral weight drop ≈ 50% at J⊥ = 1.3 (Figs. 4.18-4.20).
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As mentioned before, this phenomenon can be understood by considering the presence of
many non-dispersive excitations appearing in the vicinity of the phase transition. At T = 0,
these excitations are not accessible because of selection rules in the spin-spin correlation
function [15], but as we increase the temperature, thermal fluctuations allow us to access
these levels too. When the temperature is of a magnitude comparable with the first excitation
energy, we witness a continuum of excitations above the ground state level, meaning it is not
protected by a gap anymore.



5. Conclusion

In this work, we have set out to inspect the interplay of quantum and thermal fluctuations
on the spin-1/2 ladder with cross couplings using a tDMRG-based real-time evolution at zero
and finite temperatures. In this way, we were able to access spectral data for system lengths
of up at L = 100 for T = 0 calculations and L = 50 at finite temperatures, which go well
beyond sizes accessible with exact diagonalization techniques. We were able to identify the
two distinct phases of the ground state at T = 0 (rung-triplet and -singlet) and the closing
of the spectral gap in the vicinity of the critical point. Bringing finite temperatures into play
revealed the existence of non-dispersive modes below the first excitation in the antisymmetric
channel. These modes are considered to cause the spectral weight redistribution onto the
one-triplet excitation. As we approach the phase transition, an ever growing number of these
non-dispersive modes fills the energetic gap in the antisymmetric channel, determining an
accelerated spectral weight loss of the one triplet excitation. In the case of close vicinity to
the phase transition, we witness an almost continuous spectral weight distribution above the
ground state. The effects of geometrical frustration are inspected by comparing the spectra
in the perfectly frustrated regime (J× = J‖ = 1 , J⊥,c ≈ 1.401) with the spectra in a relaxed
frustration regime (J⊥ = J‖ = 1 , J×,c ≈ 0.599). Comparing the dynamic structure factor
reveals how perfect frustration yields completely localized excitations in the antisymmetric
channel.
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6.1 Appendix A: the MPS algorithm

In the following, we will be looking into some of the technicalities regarding the transforma-
tion of a quantum state in MPS form.
The starting point is an arbitrary pure many body quantum state:

|ψ〉 =
∑
σ1···σL

Ψσ1···σL |σ1 · · ·σL〉 , σi = 1, · · · , d ∀i . (6.1)

The multi-index object Ψσ1···σL is what we want to bring in MPS form. We will proceed as
follows: as a first step, we reshape the tensor Ψσ1···σL into a d× (dL−1) object:

Ψσ1···σL = Ψσ1;(σ2···σL) . (6.2)

We then decompose the resulting matrix using singular value decomposition (SVD) [10,
pp. 70-72]

Ψσ1;(σ2···σL) =

r1∑
a1

Uσ1a1Sa1a1V
†
a1;(σ2···σL) . (6.3)

We then introduce a simple change of notation:

Uσ1a1 ≡ Aσ1a1 , (6.4)

Sa1a1V
†
a1;(σ2···σL) ≡ Ψ̃a1;(σ2···σL) , (6.5)

⇒ Ψσ1···σL =

r1∑
a1

Aσ1a1 Ψ̃a1;(σ2···σL) . (6.6)

At this point we reshape Ψ̃a1;(σ2···σL) into Ψ̃(a1σ2);(σ3···σL) perform another SVD

r1∑
a1

Aσ1a1 Ψ̃a1;(σ2···σL) =

r1∑
a1

r2∑
a2

Aσ1a1U(a1σ2);a2Sa2,a2V
†
a2;(σ3···σL)ß, . (6.7)

Again, performing a notation change and reshaping in the last step we have:

U(a1σ2);a2 ≡ Aσ2a1a2 , (6.8)

Sa2,a2V
†
a2;(σ3···σL) ≡

˜̃Ψa2;(σ3···σL) →
˜̃Ψa2σ3;(σ4···σL) , (6.9)

Ψσ1···σL =

r1∑
a1

r2∑
a2

Aσ1a1A
σ2
a1a2

˜̃Ψa2σ3;(σ4···σL) . (6.10)

50



6.1. Appendix A: the MPS algorithm 51

We can now again perform SVD on ˜̃Ψa2σ3;(σ4···σL) and continue adding A-Matrices for the
entire length of the chain. The final result has the following form:

Ψσ1···σL =

r1∑
a1

r2∑
a2

· · ·
rL−1∑
aL−1

Aσ1a1A
σ2
a1a2 · · ·A

σL
aL−1

. (6.11)

Plugging the final result in the initial wave equation we obtain:

|ψ〉 =
∑
σ1···σL

 r1∑
a1

r2∑
a2

· · ·
rL−1∑
aL−1

Aσ1a1A
σ2
a1a2 · · ·A

σL
aL−1

 |σ1 · · ·σL〉 . (6.12)

For any configuration of {σi}, the expression between brackets represents the multiplication
of a string of matrices Aσ1Aσ2 · · ·AσL

|ψ〉 =
∑
σ1···σL

Aσ1Aσ2 · · ·AσL |σ1 · · ·σL〉 . (6.13)

In pictorial language, the algorithm can be visualized as follows:

iterate

Reshape

SVD
Contract + reshape

SVD

Contract + reshape

σ1 σ2 σL

σ1

σ2 σL

σ1 σ2 σL

a1 a1
U S V † A Ψ̃

A U S V †

A A ˜̃Ψ

σ1 σ2 σL

a1

σ1 σ2

a1 a2 a2

σ3 · · · σL

σ1 σ2

σ1 σ2 · · · σL

A A A A A A A

a1 a2

a1 a2 aL−1

σ3 · · · σL

Figure 6.1: MPS algorithm in TN notation

The last expression is what we mean for MPS form of a pure state.
As a final remark, it should be noted how the A matrices inherit some of the convenient
properties of the U matrices originating from SVD. It is known, that

U †U = Î . (6.14)
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A generic A matrix is related to the corresponding U matrix by the following:

Aσiai−1,ai ≡ Uai−1σi;ai , (6.15)

with (14), we have:

δai,a′i =
∑
ai−iσi

U †ai;ai−iσiUai−iσi;a′i , (6.16)

δai,a′i =
∑
ai−iσi

Aσi†aiai−iA
σi
ai−ia′i

, (6.17)

⇒ δai,a′i =
∑
σi

(
Aσ†Aσ

)
aia′i

. (6.18)

If the matrices of the MPS have the property (13), the MPS is said to be in left canonical
form.
The last statement goes to show how MPS form of pure quantum state is not unique: we
could have in fact started decomposing the initial Ψ tensor from the right. In that case,
the resulting matrices end up having different properties [25, p. 24]. There are a number of
different methods that yield slightly different properties of the matrices composing the MPS.
What particular kind of MPS form should be used depend on the details of each application.
For a complete overview of the different MPS forms we refer to Schollwoeck’s review [25,
pp. 18-24].

6.2 Appendix B: the Schmidt decomposition

In the following we will briefly discuss the Schmidt decomposition of a quantum state. Let
us imagine a many body quantum state living in a composite Hilbert space Htot. In compact
notation:

|ψ〉 =
∑
σ1···σL

Ψσ1···σL |σ1 · · ·σL〉 , |σ1 · · ·σL〉 ∈ Htot . (6.19)

We now partition the Hilbert space in two and rewrite the wave equation of the resulting
mixed state:

|ψ〉 =
∑
ij

Ψij |i〉A ⊗ |j〉B where |i〉A ∈ HA , |j〉B ∈ HB , (6.20)

HA ⊗HB = Htot . (6.21)

We now perform SVD [10, pp. 70-72] on the tensor Ψij :

|ψ〉 =
∑
ij

min(NA,NB)∑
a=1

UiaSaaV
†
aj |i〉A ⊗ |j〉B . (6.22)

The matrices U and V † act separately on the subspaces HA,HB and they induce a basis
transformation but, since they result from a SVD, the orthonormality of the |i〉A ⊗ |j〉B-
basis remains preserved.
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|ψ〉 =

min(NA,NB)≡r∑
a=1

Saa

(∑
i

Uia |i〉A

)
⊗

∑
j

V †aj |j〉B

 , (6.23)

|ψ〉 =
r∑

a=1

Sa |a〉A ⊗ |a〉B . (6.24)

The advantage provided by this new representation is the resulting diagonal representation
of the reduced density operators on the two subspaces:

ρ̂{A,B} = Tr{B,A}(|Ψ〉 〈Ψ|) =
r∑

a=1

s2
a |a〉{A,B} 〈a|{A,B} . (6.25)

Loosely speaking, the Schmidt decomposition amounts to nothing more than transforming
the basis vectors composing an arbitrary quantum state in a new basis in which the density
matrix is diagonal.
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