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We study quantum disordered ground states of the two-dimensional Heisenberg-Kitaev model on the triangular
lattice using a Schwinger boson approach. Our aim is to identify and characterize potential gapped quantum spin
liquid phases that are stabilized by anisotropic Kitaev interactions. For antiferromagnetic Heisenberg and Kitaev
couplings and sufficiently small spin S, we find three different symmetric Z2 spin liquid phases, separated by two
continuous quantum phase transitions. Interestingly, the gap of elementary excitations remains finite throughout
the transitions. The first spin liquid phase corresponds to the well-known zero-flux state in the Heisenberg limit,
which is stable with respect to small Kitaev couplings and develops 120◦ order in the semiclassical limit at
large S. In the opposite Kitaev limit, we find a different spin liquid ground state, which is a quantum disordered
version of a magnetically ordered state with antiferromagnetic chains, in accordance with results in the classical
limit. Finally, at intermediate couplings, we find a spin liquid state with unusual spin correlations. Upon spinon
condensation, this state develops Bragg peaks at incommensurate momenta in close analogy to the magnetically
ordered Z2 vortex crystal phase, which has been analyzed in recent theoretical works.

DOI: 10.1103/PhysRevB.95.024421

I. INTRODUCTION

In recent years, it has been realized that spin-orbit coupling
can drive a wealth of interesting new phenomena in electronic
systems. Prominent examples are topological insulators [1,2]
and Weyl semimetals [3], which exhibit exotic edge states
due to their nontrivial topological band structure. Spin-orbit
coupling can also play an important role in strongly correlated
electron systems [4,5]. In particular, the Mott insulating
iridium oxides have been at the focus of experimental and
theoretical research. Here, the crystal field splitting of partially
filled 5d orbitals of Ir4+ ions together with strong spin-orbit
coupling gives rise to half-filled j = 1/2 Kramers doublets,
which can form a Mott insulator with an effective spin-1/2
degree of freedom [6,7]. Interestingly, the exchange coupling
between these local moments can be highly anisotropic and
depends on the spatial direction of the exchange path, leading
to Kitaev-type interactions in such materials [8,9]. From a
theoretical perspective, models with Kitaev-type exchange
couplings are particularly interesting because they can host
exotic quantum spin liquid ground states [10].

While most iridate compounds that have been studied
so far are honeycomb lattice based [11–14], Ba3IrTi2O9

is a layered triangular lattice material and thermodynamic
measurements indicate that the ground state is potentially a
quantum spin liquid [15]. Indeed, susceptibility and specific-
heat measurements show no sign of magnetic ordering down to
temperatures of 0.35 K, even though the exchange coupling is
rather large, as evidenced by a large Curie-Weiss temperature
of θCW � −130 K. Recent theoretical works have argued that
the low-energy properties of the j = 1/2 moments can be
modeled by a Heisenberg-Kitaev Hamiltonian on the triangular
lattice [16], potentially with additional off-diagonal exchange
terms [17]. The interplay of Heisenberg and Kitaev interactions
on the triangular lattice can stabilize interesting magnetically
ordered states. In particular, for antiferromagnetic couplings, a
Z2 vortex crystal state with noncoplanar spin correlations has
been shown to occupy a large part of the phase diagram in the

classical limit [18], as well as in the quantum model [16,19].
This vortex crystal can be understood as a state with 120◦
order, whose topological vortex excitations are condensed and
form triangular lattice crystal. Other numerical work suggests
that a chiral spin liquid ground state may be realized in the
vicinity of the Kitaev point [20].

Motivated by these experimental and theoretical findings,
we study potential quantum disordered spin liquid phases
of the Heisenberg-Kitaev model on the triangular lattice
in the following. Using Schwinger-Boson mean-field theory
(SBMFT), we construct gapped spin liquid states and compute
spin-correlation functions to characterize their properties.
We find three distinct symmetric Z2 spin liquids which
realize different symmetry-enriched topological (SET) phases
[21–24], but are all characterized by the same projective
symmetry group (PSG) [25]. Interestingly, these states are
separated by continuous quantum phase transitions where the
gaps to all elementary excitations remain finite at the transition.
Continuous transitions between different topological states
without closing the gap have been discussed in the context of
topological insulators [26], but so far have not been considered
for SET phases with bulk topological order.

It is worth noting that even though SBMFT does not
give quantitatively accurate results, it is a very useful tool to
construct and characterize potential spin liquid states in Mott
insulators and to analyze their qualitative behavior [27,28].
Furthermore, it allows us to make connections to earlier work
on magnetically ordered states by studying the semiclassical
large spin S limit.

The outline of this paper is as follows: In Sec. II we
introduce the Heisenberg-Kitaev model and develop a de-
coupling of the Kitaev interaction in terms of triplet bond
operators within the SBMFT approach. Furthermore, we
perform a PSG analysis to identify suitable mean-field Ansätze.
In the remainder of this work, we focus on the only fully
symmetric, time-reversal invariant ansatz and our results are
presented in Sec. III, where we determine the phase diagram
for antiferromagnetic Heisenberg and Kitaev couplings and
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FIG. 1. Basis vectors ai of the triangular lattice and definition of
the coordinate system for the spin degrees of freedom.

compute spin structure factors to characterize the three
different spin liquid phases that we found. In addition, we show
that our approach correctly reproduces the previously studied
magnetically ordered phases in the Kitaev and Heisenberg
limits for large spins S and comment on the nature of the phase
transitions between the different Z2 spin liquids. We conclude
with a discussion in Sec. IV. A brief discussion of generalized,
weakly symmetric PSG Ansätze, where time-reversal and
parity symmetries are broken, can be found in Appendix B.

II. MODEL AND METHODS

A. The Heisenberg-Kitaev model on the triangular lattice

The Heisenberg-Kitaev model on the triangular lattice is
given by the following Hamiltonian:

HHK = JH

∑
〈ij〉

Si · Sj + JK

∑
γ ||〈ij〉

S
γ

i S
γ

j , (1)

where Si is a spin-1/2 operator located on lattice site i and the
sums run over nearest-neighbor sites. The first term describes
the usual isotropic Heisenberg interaction, whereas the second,
Kitaev-type interaction term explicitly breaks spin-rotation
invariance. It couples only the γ ∈ {x,y,z} component Sγ of
the spin operators on bonds with direction aγ (see Fig. 1). In
the following, we restrict our discussion to antiferromagnetic
couplings JH ,JK > 0 and parametrize the interactions using
an angular variable,

JH = J cos ψ, JK = J sin ψ. (2)

The units of energy will be set by J =
√

J 2
H + J 2

K = 1. Using
the Klein duality, our results also describe a specific parameter
regime with ferromagnetic Heisenberg couplings [29].

The triangular lattice is spanned by the basis vectors
ax = e′

x, ay = − 1
2 e′

x +
√

3
2 e′

y, where the lattice constant has
been set to unity. Additionally, we define az = − 1

2 e′
x −√

3
2 e′

y = −ax − ay. Here we expressed the vectors in the primed
coordinate system, where e′

x and e′
y are a pair of orthogonal

vectors in the lattice plane and e′
z is perpendicular to the lattice.

Spin-orbit coupling locks the primed coordinate system
to the unprimed one, which defines the orientation of the
spin operators with respect to the lattice, i.e., the component

Sγ points in the γ direction of the unprimed coordinate
system, as shown in Fig. 1. This coordinate system is fixed
by the condition e′

z = (1,1,1)/
√

3 and that ex projected onto
the lattice plane points into the direction of e′

x. Note that
the combined spin-orbit symmetry is D3d [18], and threefold
rotations C3 around the e′

z ∼ (1,1,1) axis act as

C3 : (ax,ay,az) → (ay,az,ax), (3a)

C3 : (Sx,Sy,Sz) → (Sy,Sz,Sx). (3b)

B. Schwinger boson mean-field theory (SBMFT)

Schwinger boson mean-field theory is a useful analytical
approximation to study quantum disordered ground states
of correlated spin models. It is based on representing spin
operators with bosons and decoupling the interactions using
suitably chosen bond operators. Subsequently, the theory is
analyzed using a mean-field approximation by making an
Ansatz for the expectation values of the bond operators, which
are computed self-consistently. This approximation can be
formally justified in a large-N limit in generalized models
with Sp(N ) symmetry [27,30].

We start by expressing the spin operators in terms of
Schwinger bosons as

Si = 1
2b

†
iασαβbiβ, (4)

where the indices α and β run over the 2S + 1 angular
momentum basis states (we employ a summation conven-
tion over Greek indices) and σαβ is a (2S + 1)-dimensional
representation of SU(2). This mapping preserves the angular
momentum algebra if there are precisely 2S bosons per lattice
site,

n̂i =
∑

α

b
†
iαbiα = 2S. (5)

Unphysical states with more or less than 2S bosons per site
need to be projected out. We impose the above constraint by
adding a Lagrange multiplier term

∑
i λi

(
b
†
iαbiα − 2S

)
to the

Hamiltonian.
Focusing on the relevant S = 1/2 case, the common SU(2)

symmetric Heisenberg term of HHK can be decoupled in terms
of the SU(2) invariant bond operators,

Âij = 1
2εαβbiαbjβ, B̂ij = 1

2b
†
iαbjα, (6)

where εαβ is the fully antisymmetric tensor. The non-SU(2)
invariant Kitaev interactions can be expressed in terms of the
triplet operators,

t̂ xij = i

2
(bi↑bj↑ − bi↓bj↓), (7a)

t̂
y

ij = −1

2
(bi↑bj↑ + bi↓bj↓), (7b)

t̂ zij = −i

2
(bi↑bj↓ + bi↓bj↑). (7c)

Note that we included factors of i in the definition of the
triplet bond operators for convenience, such that they transform
under time reversal only by complex conjugation, where the
time-reversal operator is given by T = −iσ yK , and K denotes
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complex conjugation. The interaction terms in the Hamiltonian
(1) can now be written as (: : denotes normal ordering)

Si · Sj =: B̂
†
ij B̂ij : −Â

†
ij Âij , (8a)

S
γ

i S
γ

j = −t̂
γ †
ij t̂

γ

ij+ : B̂
†
ij B̂ij : . (8b)

A similar decomposition has been used in Ref. [31] for
Heisenberg-Kitaev models on the honeycomb lattice. We are
now ready to preform a mean-field decoupling by expanding
HHK to linear order in fluctuations around the expectation
values of the various bond operators, e.g.,

Â
†
ij Âij = Â

†
ijAij + A∗

ij Âij − |Aij |2 + O
(
δÂ2

ij

)
, (9)

where Aij = 〈Âij 〉 denotes the expectation value. The mean-
field decoupled Hamiltonian now reads

HMF = (JH +JK )
∑
〈ij〉

[
(Bij )∗

1

2
b
†
iαbjα+Bij

1

2
biαb

†
jα−|Bij |2

]

−JH

∑
〈ij〉

[
(Aij )∗

1

2
εαβbiαbjβ +Aij

1

2
εαβb

†
jβb

†
iα−|Aij |2

]

−JK

∑
γ ||〈ij〉

[(
t
γ

ij

)∗
t̂
γ

ij + t
γ

ij

(
t̂
γ

ij

)† − ∣∣tγij ∣∣2]

+
∑

i

λi(b
†
iαbiα − 2S), (10)

with t̂
γ

ij defined in Eq. (7). Note that the expectation values of
the bond operators need to be determined self-consistently:

Aij = 〈Âij 〉MF, Bij = 〈B̂ij 〉MF, t
γ

ij = 〈
t̂
γ

ij

〉
MF. (11)

These conditions are equivalent to demanding that we are at a
saddle point of the free energy FMF(Aij ,Bij ,t

γ

ij ,λi). In order to
reduce the complexity of the problem, we furthermore make a
standard approximation and set λi = λ, i.e., the constraint of
having one boson per lattice site is only satisfied on average.

It is important to emphasize that the SBMFT approach
has the advantage that we can formally set the spin S

to unphysical values S < 1/2 by adjusting the Lagrange
multiplier term specified below Eq. (5). This allows us to reach
parameter regimes where quantum fluctuations are artificially
enhanced and any kind of magnetic order is suppressed. Note
that in the problem considered here, the ground states are
always magnetically ordered at the physical value S = 1/2
within SBMFT. Nevertheless, it is possible that SBMFT
underestimates quantum fluctuations and the true ground state
of the model (1) at S = 1/2 is indeed a spin liquid, which might
correspond to a state that appears in SBMFT for S < 1/2. In
this case, the strength of SBMFT is to provide an analytic
tool which allows us to characterize these potential spin liquid
phases.

Without constraining the mean-field bond parameters by
symmetries, their number grows linearly with system size,
which makes the numerical problem of finding the saddle-point
values cumbersome. If we expect a homogeneous solution,
however, the parameters should attain just a few different
values. Indeed, numerical solutions of the Heisenberg model
on small clusters confirm this expectation [32].

We will simplify our problem by choosing an Ansatz for the
mean-field parameters that is invariant under the symmetries of
the original Hamiltonian HHK. Since our description in terms
of Schwinger bosons contains a U(1) gauge redundancy bjα →
bjαeiϕj , symmetries can act on b,b† projectively, i.e., the bond
parameters should only be invariant under lattice symmetries
modulo gauge transformations. All compatible Ansätze can be
determined by the projective symmetry group (PSG) approach
[25,28,33]. Note that all spin liquid states constructed here are
so-called Z2 spin liquids due to the condensation of boson
bilinears Âij and t̂

γ

ij , which reduces the gauge symmetry from
U(1) to Z2. Ansätze which are not invariant under symmetries
of HHK (up to gauge transformations) lead to ground states
which break translational and/or rotational symmetries, such
as valence bond solid states. We do not consider such states in
this work.

Following Ref. [33], we have preformed a PSG classi-
fication of all weakly symmetric Ansätze (see Appendix B
for details). In the following, however, we will only consider
strictly symmetric, time-reversal invariant mean-field Ansätze.
Incidentally, there is just one Ansatz in this class on the
triangular lattice. It directly (i.e., nonprojectively) incorporates
translation, point-group, and time-reversal symmetries. This
Ansatz corresponds to the well-known zero-flux state in the
Heisenberg limit and has the following properties [27,28,33].
First of all, all bond parameters are real due to time-reversal
symmetry. Second, translation and rotation symmetries ensure
that the expectation values Aij = A and Bij = B are equal
on all bonds. Note, however, that the Aij = −Aji have a
direction, which we choose such that A is positive if it points
in one of the three directions given by aγ . Lastly, let us
examine the action of threefold rotations C3 around the z′
axis on the triplet bond operators t̂ γ [when using only two
coordinates, they are expressed in the lattice coordinate system
(r1,r2) = r1ax + r2ay]. Under C3 rotations, the Schwinger
boson operators transform as

C3

⎡
⎣b

†
(r1,r2)↑

b
†
(r1,r2)↓

⎤
⎦ = e

− i

2
√

3
2π
3 (σx+σy+σ z)

⎡
⎣b

†
(−r2,r1−r2)↑

b
†
(−r2,r1−r2)↓

⎤
⎦. (12)

Accordingly, the triplet operators transform as

C3C3
(
t̂ x(0,0)(1,0)

) = C3
(
t̂
y

(0,0)(0,1)

) = t̂ z(0,0)(−1,−1). (13)

Combined with the fact that t̂
γ

ij = t̂
γ

j i , it follows that the
triplet bond parameters are all equal 〈t̂ γij 〉 = t in a rotationally
invariant state, as expected.

To diagonalize the quadratic Hamiltonian, we first preform
the Fourier transformation

briα =
∑

k

e−ikribkα, (14)

where k is summed over the first Brillouin zone. Using the
pseudospinor notation k = (bk↑,bk↓,b

†
−k↑b

†
−k↓)T , HMF reads

1

N
HMF = 1

N

∑
k

ψ
†
kHkψk + 3JH |A|2 + 3JK |t |2

− 3(JH + JK )|B|2 − λ(1 + 2S), (15)
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with the detailed form of the 4×4 matrix Hk given in Appendix A. Hk can be diagonalized by a Bogoliubov transformation using
a SU(2,2) matrix Pk defined via

k = Pk�k, (16a)

�k = (γk1,γk2,γ
†
−k1γ

†
−k2)T , (16b)

P
†
kHkPk = �k, (16c)

where the γki operators describe bosonic Bogoliubov quasiparticles, i.e., bosonic spinons carrying spin 1/2. �k is a diagonal
matrix with two doubly degenerate eigenvalues, which take the form

ω±(k) = 1
2

√
[λ + (JH + JK )B̃]2 − J 2

H Ã2 − J 2
Kt2(cos2 k1 + cos2 k2 + cos2 k3) ± 2|JH JKÃ|

√
t2(cos2 k1 + cos2 k2 + cos2 k3),

(17a)

Ã = A[sin(k1) + sin(k2) + sin(k3)], B̃ = B[cos(k1) + cos(k2) + cos(k3)], (17b)

corresponding to half of the spinon excitation energy. Above
we defined k1 = k · ax, k2 = k · ay, and k3 = −k1 − k2. To
determine the self-consistent bond parameters, we compute
the saddle points of ground-state energy in the thermodynamic
limit,

EGS

N
=

∫
BZ

d2k

VolBZ
[ω+(k) + ω−(k)] + 3[JH |A|2 + JK |t |2

− (JH + JK )|B|2] − λ(1 + 2S). (18)

We used the CUHRE numerical integration routine from the
CUBA package [34] to evaluate the above integral numerically.
The relevant saddle point was found by maximizing EMF/N

with respect to B and λ, and minimizing with respect to A

and t .
In order to characterize the SBMFT solutions for different

spin liquid states, we compute the static spin structure
factor, which can be measured directly in neutron-scattering
experiments. It is given by the equal-time spin-spin correlation
function

S(q) = 1

N

∑
i,j

〈Si · Sj〉eiq(ri−rj). (19)

In addition, we compute off-diagonal elements of the spin-
correlation tensor,

Scd (q) = 1

N

∑
i,j

〈
Sc

i S
d
j

〉
eiq(ri−rj). (20)

In order to calculate Scd (q), we express the spin operators in
terms of Schwinger bosons,

Scd (q) = 1

4N

∑
k,k′′

〈
b
†
kασ c

αβb(k+q)βb
†
k′′γ σ d

γ δb(k′′−q)δ
〉
, (21)

and use the Bogoliubov transformation matrix Pk to evaluate
the expectation value in terms of the Bogoliubov quasiparticle
operators using Wick’s theorem. We get contributions ∼δ−k,k′′ ,
δk′′,k+q, as well as ∼δq,0. The latter is proportional to the
expectation value of the spin operator and thus vanishes in
the spin liquid state.

Since there are many Wick contractions, we used the
MATHEMATICA package SNEG for symbolic calculations with

second-quantization-operator expressions [35]. The final
expressions have the form

Scd (q) = 1

Volk

∫
d2kf cd (Pk,Pk+q), (22)

where f cd (Pk,Pk+q) is a complicated function of around 50
terms consisting of the elements of the transformation matrices
Pk and Pk+q, which we do not state here explicitly.

III. RESULTS

A. Self-consistent mean-field parameters

In the following, we restrict our discussion to the interesting
regime where both the Heisenberg and the Kitaev coupling are
antiferromagnetic, JH > 0, JK > 0. We identify three distinct
Z2 spin liquid phases, denoted by SL1, SL2, and SL3, at
sufficiently small spin S and the corresponding phase diagrams
for three different values of S, shown in Fig. 2. The saddle-
point values of the self-consistent mean-field parameters A,
t , and B are shown as a function of ψ = arctan JK/JH in
Fig. 3 for the same three values of S. In SL1, the mean-field
parameters A and B are nonzero; in SL2, all three parameters
are nonzero; and in SL3, only the parameter t is different
from zero. Note that the parameters vanish continuously at the
transition between the three different Z2 spin liquid phases,
indicating the presence of two second-order quantum phase
transitions as a function of JK/JH .

Interestingly, the spinon gap remains finite at the two
continuous phase transitions, as shown in Fig. 4. This points to

SL1

SL2
SL3

S=0.07

JH

JK

SL1

SL2
SL3

S=0.14

JH

JK

SL1

SL2
SL3

S=0.17

JH

JK

FIG. 2. Phase diagrams as a function of the Heisenberg and
Kitaev couplings JH = cos ψ and JK = sin ψ for three different
values of spin S. SL1, SL2, and SL3 denote three distinct spin liquid
phases, separated by continuous phase transitions.
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−0.02
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S =0.07

A

t

B

0.5 0.6 0.7 0.8 0.9 1.0 1.1

−0.05

0.05

0.10

0.15

S= 0.14

A

t

B

0.5 1.0 1.5
−0.05

0.05

0.10

0.15

0.20

S = 0.17

A

t

B

FIG. 3. Saddle-point values of the self-consistent mean-field parameters A, t , and B as a function of ψ = arctan(JK/JH ), shown for three
values of spin S. In all three cases, the gap for spinon excitations is finite and the ground state is thus a Z2 spin liquid.

an unconventional type of quantum phase transition between
different symmetry-enriched topological (SET) phases. Note
that these continuous phase transitions connect states which
do not differ in their PSG. Indeed, transitions between SET
phases corresponding to different PSGs are expected to
be discontinuous, i.e., first-order transitions (an example is
discussed in Appendix B). Even though they correspond to the
same PSG, the three spin liquids are different phases of matter,
as they cannot be adiabatically connected (see discussion in
Sec. III E) and differ qualitatively in their physical observables,
such as the spin structure factors.

Note that within the SBMFT description, the SL1 as well
as the SL3 phase have an emergent SU(2) symmetry with
a doubly degenerate spinon band. By contrast, in the SL2
phase, this SU(2) symmetry is broken and the degeneracy of
the two spinon bands is lifted since both A and t are nonzero,
as can be seen from Eq. (17). It is possible that this SU(2)
symmetry is destroyed if fluctuations around the mean-field
solution are taken into account.

Finally we mention that the extension of the SL2 phase
in parameter space is enlarged by increasing the spin size
S. However, if the spin S is increased beyond S � 0.2, the
spinon gap closes and we get a Bose-Einstein condensate for
some values of ψ , corresponding to a magnetically ordered
state. In Fig. 4, we plot the spinon gap as a function of S for
ψ = 0.9, where one can see that the gap closes continuously
and magnetic order sets in beyond S = 0.32.

For an in-depth characterization of the three different spin
liquid phases, we will focus our following discussion on six
saddle points at S = 0.14, with parameters shown in Table I.

B. Spinon dispersion

Even though the spinon dispersion is not gauge invariant
and thus not a directly observable quantity, it is nevertheless

FIG. 4. Left: spinon gap as function of spin size S at ψ = 0.9.
The gap closes at S ≈ 0.32, leading to a magnetically ordered state for
S > 0.32. Right: spinon gap as function of ψ for S = 0.14. Note that
the gap remains finite throughout the continuous transitions between
the three different Z2 spin liquid phases.

an interesting object. In particular, the minima of the spinon
dispersion determine the structure of the spinon condensate in
the magnetically ordered phase, which allows us to determine
the position of Bragg peaks in the spin structure factor.

The lower-energy branch ω− of the spinon dispersion in
Eq. (17) is shown in Fig. 5 for the six saddle points listed in
Table I. The minima of the dispersion in the SL1 phase are at
the K points (i.e., the corners) of the first Brillouin zone, which
is consistent with previous results [27]. Condensing spinons
at the K points for larger values of S indeed leads to the
well-known 120 degree order, as will be shown in Sec. III D 1.
By contrast, the degenerate dispersion minima in the SL3 phase
appear at the M points in the middle of the edges of the first
Brillouin zone, as well as at the � point at q = 0.

In the SL2 phase close to the transition to SL1, the
dispersion minima remain at the K points of the first Brillouin
zone. Upon increasing ψ , the minima start to move to
incommensurate momenta along the edge of the first Brillouin
zone. For some values of ψ and S, however, the global
minimum jumps to zero momentum. We believe that this is an
artifact of the mean-field approximation, where the B fields are
likely overestimated. Indeed, changing the value of B by a few
percent already shifts the absolute minimum to the previously
mentioned incommensurate momenta at the Brillouin zone
edges. This is important because a spinon condensate at q = 0
alone would lead to a ferromagnetically ordered state, which
is not expected for antiferromagnetic couplings JH and JK .

Our mean-field analysis thus seems to be not always reliable
to accurately determine the position of the dispersion minima
in the SL2 phase. Indeed, we will argue later on that dispersion
minima at incommensurate wave vectors along the Brillouin
zone edges are in accordance with the expected magnetic order
in the classical limit.

TABLE I. Six saddle points for different ψ = arctan JK/JH at
S = 0.14, used for further characterization of the three different
spin liquid phases. A, t , and B denote the expectation values of
the corresponding bond operators, λ is the value of the Lagrange
multiplier, and EMF denotes the mean-field ground-state energy per
spin.

Phase ψ A t B λ EMF

SL1 0 0.181 0 −0.0528 0.4025 −0.0901
SL2 0.6 0.176 0.0389 −0.0476 0.303 −0.0701
SL2 0.8 0.132 0.117 −0.023 0.281 −0.0635
SL2 0.85 0.109 0.135 −0.0147 0.276 −0.0634
SL2 0.9 0.0687 0.154 −0.0055 0.272 −0.0645
SL3 π

2 0 0.165 0 0.338 −0.082
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FIG. 5. Lower branch of the spinon dispersion ω−(k) from Eq. (17a) for the six different values of ψ shown in Table I. The black hexagon
marks the boundary of the first Brillouin zone. Note that by increasing ψ , the minima of the dispersion move from the K points at the corners
of the first Brillouin zone in SL1, through incommensurate momenta in SL2, to the M points at the middle of the Brillouin zone edges as well
as to the � point (q = 0) in SL3 (see main text).

C. Static spin structure factor

The static spin structure factor can be measured directly in
neutron-scattering experiments. Note that due to the presence
of fractionalized spinon excitations in a spin liquid, the
structure factor exhibits a broad two-spinon continuum, rather
than sharp Bragg peaks as in a magnetically ordered phase.

In Fig. 6, we show the results for the xx component
Sxx(q) of the structure factor for the six different saddle points
listed in Table I. While Sxx(q) is symmetric under sixfold
rotations around the � point and is peaked at the K points in
the SL1 phase, the maxima change their position and move
to incommensurate momenta upon increasing ψ in the SL2
phase, where the sixfold rotation symmetry is lost as well.
Finally, in the SL3 phase, Sxx(q) is peaked at q = ±(2π/3,0).
We note that equivalent peaks have been observed in related
Kitaev-type models in Ref. [36].

The other two diagonal elements of the spin-correlation
tensor Syy(q) and Szz(q) can be obtained from Sxx(q) simply
through a rotation by ±π

3 around the � point in all phases, and
are thus not shown explicitly.

The total static spin structure factor is just the sum of the
diagonal elements,

S(q) = Sxx(q) + Syy(q) + Szz(q), (23)

and is shown in Fig. 7. Here, the peaks stay at commensurate
momenta in all phases, in contrast to the peaks of the individual
diagonal components Saa(q).

We also note that even though the total magnetization
〈∑i Si〉 = 0 vanishes in all spin liquid ground states per

construction, the variance of the total spin 〈(∑i Si)2〉 is
nonzero in the SL2 and SL3 phases, as evidenced by the fact
that the structure factor does not vanish at the � point (see
Fig. 7). This is due to the fact that the ground state is not a
total spin singlet in SL2 and SL3 because the triplet fields t̂γ
acquire a nonzero expectation value.

The defining observable difference between the SL2 phase
and the other two phases is that the off-diagonal elements of
the spin-correlation tensor Sab(q) defined in Eq. (20) vanish in
SL1 and SL3, but are nonzero in SL2, indicating correlations
between different spin components. In Fig. 8, we show the real
and imaginary parts for the off-diagonal components of Sab(q)
for one particular point in the SL2 phase (ψ = 0.85). Even
though Sab(q) can be diagonalized for any given momentum
q, i.e., one can find a frame where any two spins are collinear,
it is important to note that Sab(q) is not diagonal in the same
frame for all momenta q. This is in marked contrast to SL1
and SL3.

D. Spinon condensation and classical limit

One advantage of the SBMFT approach over fermionic
slave-particle approaches is that SBMFT simply allows for
the description of magnetically ordered states through spinon
condensation. As mentioned earlier, the spinon gap decreases
upon increasing the spin length S and closes at a discrete set
of momenta in the Brillouin zone at some critical value Sc, as
shown in Fig. 4. Further increasing S adds bosons in the zero
modes and a Bose-Einstein condensate forms, resulting in a
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FIG. 6. Diagonal component Sxx(q) of the spin-correlation tensor given by Eq. (20) for the six points shown in Table I. Note that the other
diagonal components Syy(q) and Szz(q) can be obtained simply from Sxx(q) by ±π/3 rotations around the � point. Note that the maxima move
to incommensurate momenta in the SL2 phase.

FIG. 7. Total static spin structure factor S(q) for the six saddle points shown in Table I. The peaks of S(q) stay at commensurate momenta,
in contrast to the maxima of the diagonal components Saa(q).
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FIG. 8. Real and imaginary part of the off-diagonal elements Sab(q) computed for one point in the SL2 phase (ψ = 0.85). By contrast,
these off-diagonal elements vanish identically in the SL1 and SL3 phases. Note that Sab(q) cannot be diagonalized simultaneously for all
momenta q.

nonzero expectation value of the spin operator 〈Si〉 and we get
a magnetically ordered state. The size of the ordered magnetic
moment (i.e., the density of the Bose-Einstein condensate) is
determined by the saddle-point conditions.

1. Classical limit in SL1 phase

The magnetic order parameter obtained by condensing
spinons in the SL1 phase has been discussed already in the
context of the Heisenberg model on the triangular lattice by
Sachdev [27] as well as by Wang and Vishwanath [28]. We
briefly review these results here.

In the SL1 phase, the zero modes appear at the corners
(K points) of the first Brillouin zone. The corresponding two
inequivalent momenta are kc = ±(4π/3,0). The structure of
the magnetic order parameter is determined by the eigenvectors
of the matrix τ zHkc , i.e., the columns of the Bogoliubov
rotation matrix Pkc . At kc, the eigenvalues of τ zHkc are doubly
degenerate, so we get two orthogonal eigenvectors,

ψ1(kc) = (i,0,0,1)T ,

ψ2(kc) = (0,−i,1,0)T . (24)

The spinon condensate thus has the form

 ⎛
⎜⎜⎝

bkc↑
bkc↓
b
†
−kc↑

b
†
−kc↓

⎞
⎟⎟⎠
!

= s1ψ1(kc) + s2ψ2(kc) =

⎛
⎜⎝

is1

−is2

s2

s1

⎞
⎟⎠, (25)

where s1 and s2 are complex constants and only |s1|2 + |s2|2 is
fixed by the size of spin S. In real space, the spinon condensate
is given by

x ≡
�(

br↑
br↓

)�
=

(
ic1e

ikcr − ic2e
−ikcr

c∗
2e

ikcr + c∗
1e

−ikcr

)
, (26)

where we redefined the constants as c1 = s1 and c2 = is∗
2 to

match the notation in Ref. [28].
The ordered magnetic moment can easily be calculated

from x as S(r) = 1
2x†σx and corresponds to the well-known

coplanar 120◦ order, as expected in the Heisenberg limit [37].
The freedom to choose c1 and c2 is just a consequence of the
global SU(2) symmetry, which allows one to arbitrarily rotate
the plane in which the magnetic moments lie.

2. Classical limit in SL3 phase

Determining the magnetic order parameter in the large-S
limit of the SL3 phase is more cumbersome because now
we have four nonequivalent zero modes, corresponding to
the three nonequivalent M points, as well as the � point
in the Brillouin zone, as shown in the last panel of Fig. 5.
Moreover, the Hamiltonian is no longer SU(2) symmetric. The
four inequivalent momenta of the zero modes are given by

kc0 = (0,0), kc1 =
(

0,
2π√

3

)
,

kc2 =
(

π,
π√

3

)
, kc3 =

(
π, − π√

3

)
. (27)
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Again each eigenvalue is doubly degenerate, so we get two
eigenvectors for every zero mode,

ψ01 =
(

1 − i√
6

,
i√
6
,

1√
2
,0

)T

, (28a)

ψ02 =
(

i√
6
,
1 + i√

6
,0,

1√
2

)T

, (28b)

ψ11 =
(−1 − i√

6
,
−i√

6
,

1√
2
,0

)T

, (28c)

ψ12 =
( −i√

6
,
−1 + i√

6
,0,

1√
2

)T

, (28d)

ψ21 =
(

1 + i√
6

,
−i√

6
,

1√
2
,0

)T

, (28e)

ψ22 =
( −i√

6
,
1 − i√

6
,0,

1√
2

)T

, (28f)

ψ31 =
(−1 + i√

6
,

i√
6
,

1√
2
,0

)T

, (28g)

ψ32 =
(

i√
6
,
−1 − i√

6
,0,

1√
2

)T

. (28h)

Accordingly, the condensate takes the form
 ⎛

⎜⎜⎝
bk↑
bk↓
b
†
−k↑

b
†
−k↓

⎞
⎟⎟⎠
!

=
3∑

i=0

(ci1ψi1 + ci2ψi2) δk,kci . (29)

In contrast to the SL1 case, we now have eight complex
constants cij to determine the order parameter. In order to
reduce the number of independent constants, we use the
fact that the points kci and −kci are equivalent as they are
connected by reciprocal lattice vectors. Self-consistency of
our description thus requires that 〈bkciα〉 = 〈b−kciα〉 must hold,
which gives four equations,

c∗
i1(ψi1)∗3 + c∗

i2(ψi2)∗3 = ci1(ψi1)1 + ci2(ψi2)1, (30)

where i goes from 0 to 3. Taking these equations into account,
there are still four complex parameters to be fixed in order
to uniquely determine the magnetic order parameter. To do
this, it would be necessary to consider interactions between
the various condensate modes, which would require us to go
beyond mean-field theory. In the following, we circumvent
this problem by making a few reasonable assumptions about
the structure of the condensate. First, we demand a constant
density of condensed bosons at each lattice site, which
translates to the fact that the size of the ordered moment
is the same on each lattice site (note that this assumption
definitely holds in the classical limit S → ∞). Since the order
is commensurate, we have only four inequivalent sites which
gives four additional constraints. These fix the phases of the
condensates at the zero modes. Second, we demand that the
total magnetization vanishes. These conditions still do not fully
determine the structure of the condensate, which is due to

FIG. 9. Sketches of the magnetic order obtained by condensing
spinons in the SL3 phase. Top: same condensate density at all four
zero modes. Bottom: condensate density vanishes at two of the four
zero modes. For illustrative purposes, we rotated the spin components
Sγ to the primed lattice coordinate system shown in Fig. 1. Note the
antiferromagnetically ordered chains along one of the three directions
of the triangular lattice, as expected from the classical limit at the
Kitaev point.

the fact that we still have a D2h symmetry in spin space at
the Kitaev point. Incorporating all constraints, there remains
some freedom in choosing the amplitudes of the condensates
at the various zero modes. Demanding that either all four or
two modes have the same occupancy, we numerically solved
the constraint equations and the resulting magnetic order is
shown in Fig. 9. The ordered magnetic moment for the two
above-mentioned amplitude choices can be written as

S(n,m) = 1√
2

[(−1)n+m,0,(−1)n]T , (31a)

S(n,m) = 1√
2

[(−1)n+m,(−1)n+m,0]T , (31b)

where the first expression corresponds to the case where
the condensate density is equal in all four modes, whereas
in the second expression the condensate density is zero for
two modes and equal in the other two. Here, we labeled
sites on the triangular lattice by the integer indices n and m

via r = nax + may = (n,m). Note that both solutions indeed
correspond to degenerate ground states of the classical Kitaev
model on the triangular lattice with the energy E0 = −NJK

[18]. Even though the full set of degenerate classical ground
states also contains noncoplanar spin configurations, we only
recover states with coplanar order because we start from a real,
time-reversal symmetric Ansatz. In Appendix B, we show that
degenerate noncoplanar states can be obtained in the large-S
limit starting from a weakly symmetric Ansatz which breaks
time-reversal symmetry.

3. Classical limit in SL2 phase

Finally, we comment on the classical limit of the SL2 phase.
Assuming that the zero modes are located at incommensurate
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FIG. 10. Schematic positions of magnetic Bragg peaks after
spinon condensation in the SL2 phase. The discrete set of zero
modes at momenta kci (orange, large circles) where the spinon gap
vanishes determine the possible positions of Bragg peaks in the static
spin structure factor (blue, small circles), which are given by the
differences kci − kcj modulo reciprocal lattice vectors. The black
hexagon marks the first Brillouin zone.

momenta along the Brillouin zone edges as discussed above,
we get six inequivalent condensate modes. In this case,
interactions between condensate modes are clearly important
and it is no longer possible to determine the structure of
the condensate and the magnetic order parameter within
mean-field theory because there are too many free parameters
and too few constraints.

For this reason, we restrict our discussion of the classical
limit to the location of Bragg peaks in the static structure factor.
As already mentioned, the spinon gap closes at a discrete
set of momenta {kci}, where i runs over all nonequivalent
zero modes in the first Brillouin zone. As can be seen from
Eq. (21), the possible positions of magnetic Bragg peaks in
the spin structure factor are determined by the differences of
the zero-mode momenta kci − kcj modulo reciprocal lattice
vectors. The resulting Bragg peak positions in the SL2 phase
are shown schematically in Fig. 10. Note that we assumed here
that the zero modes only appear at incommensurate momenta
along the edges of the Brillouin zone (see discussion of the
spinon dispersion above). Notably, the position of Bragg peaks
on the Brillouin zone edges is in accordance with expectations
for the Z2 vortex crystal phase, which is the ground state of
the classical Heisenberg-Kitaev model on the triangular lattice
for JH > 0 and JK > 0 [16,18]. Consequently, it appears as if
the SL2 phase might represent a quantum disordered version
of the classical Z2 vortex crystal.

However, we used a real Ansatz and the corresponding spin
liquid states are time-reversal symmetric. In the classical limit
(if it exists), we thus expect coplanar order [33], which is
different from the noncoplanar order in the Z2 vortex phase
[18]. This is apparent by looking at the scalar spin chirality
(defined for spins on an elementary triangle),

χijk = Si · (Sj × Sk) ∼ Im(B̂ij B̂jkB̂ki) = 0, (32)

which vanishes in all time-reversal invariant states considered
here, but is nonzero in the Z2 vortex crystal. This problem can
be resolved by considering the so-called weakly symmetric
Ansätze, which obey lattice symmetries but are allowed to
break time-reversal and parity symmetries [33]. In this case,
some mean fields obtain a complex phase and the scalar spin
chirality is nonzero. We briefly discuss chiral bosonic states in
Appendix B.

Finally, we mention that the position of the other three
Bragg peaks in the vicinity of the Brillouin zone corner
coincides with the maxima of the three diagonal elements
of the structure factor Saa(q) in the SL2 phase, which are thus
expected to carry the largest weight.

E. Phase transitions

The two continuous quantum phase transitions between the
different Z2 spin liquids have interesting properties. First of
all, the excitation gaps of all elementary excitations remain
finite throughout both transitions. Indeed, the spinon gap is
always finite, as discussed in detail above. Besides spinon
excitations, a Z2 spin liquid exhibits vortex excitations of an
emergent Z2 gauge field, which are gapped but carry no spin
[30,38–40]. These so-called visons are not accounted for in the
SBMFT description. They are related to phase fluctuations of
the mean fields, which are gapped due to the Higgs mechanism
by condensing either the Âij or the t̂

γ

ij bond operators. In our
case, the vison gap is finite throughout the transitions as well
because either the A or the t fields are condensed in any case.
The question thus remains which excitation gap closes at the
continuous transition between two different Z2 spin liquid
phases.

Considering the transition between SL1 and SL2, we see
from Fig. 3 that the triplet amplitude t vanishes at the critical
point. Consequently, collective fluctuations of the triplet fields
t̂
γ

ij are gapless at the critical point. They carry spin 1 and
have gauge charge q = 2 with respect to the emergent gauge
field. Since all other excitations are gapped, we can formally
integrate out the spinons as well as the fields A and B, which
can be viewed as Hubbard-Stratonovich fields, and derive an
effective action for the triplet fields t alone. The form of the
Lagrangian is severely constrained by gauge invariance and
takes the form

Leff = LB +
∑
i,j

(
c1

∣∣tγij ∣∣2 + c2

∣∣tγij ∣∣4)

+
∑
loops

t
γ ∗
ij t

γ

jkt
β∗
k� t

β

�i + · · · , (33)

where LB is a Berry phase term involving temporal gradients
of the fields t

γ

ij (τ ), the dots denotes further gauge invariant
terms on even loops, and c1,2 are real constants. Making
the reasonable assumption that the Berry phase term only
contains second-order derivatives, there are only few potential
universality classes for the critical point, depending on the
detailed form of the fourth-order term. Among the possible
universality classes are the fixed point of the three-dimensional
O(6) model or a cubic fixed point [41]. Similar arguments can
be applied to study the transition between SL2 and SL3. We
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leave a detailed investigation of these phase transitions open
for future study.

IV. DISCUSSION AND CONCLUSIONS

We used Schwinger boson mean-field theory to construct
Z2 spin liquid ground states of the Heisenberg-Kitaev model on
the triangular lattice in the regime where both the Heisenberg
as well as the Kitaev coupling are antiferromagnetic. Using
a symmetric, time-reversal invariant mean-field Ansatz, we
found three distinct spin liquid phases for sufficiently small
spins S. At the physical value S = 1/2, the spinons are
condensed in all phases and the ground state has magnetic
order.

The SU(2) symmetric SL1 spin liquid phase shows up in
the vicinity of the Heisenberg point and corresponds to the
well-known zero-flux state [27,28]. It develops 120◦ order
in the classical limit, which agrees with previous results of
the Heisenberg model on the triangular lattice. Note that SL1
is stable with respect to small Kitaev couplings JK in our
approach. This is in contrast to numerical studies as well as
to the behavior in the classical limit, where the 120◦ order is
unstable towards a Z2 vortex crystal for infinitesimally small
JK . We emphasize, however, that the region occupied by SL1
in the phase diagram shrinks as the spin S is increased, which
follows the correct trend that SL1 is unstable to small Kitaev
couplings in the limit of large S.

Increasing the antiferromagnetic Kitaev coupling JK be-
yond a critical value, we observe a second-order transition
from SL1 to a different spin liquid phase, dubbed SL2, which
has interesting properties. Here, the minima of the spinon
dispersion appear at incommensurate momenta. An interesting
feature of the SL2 phase is that the maxima of the diagonal
elements of the spin-correlation tensor Sab(q) are shifted away
from the Brillouin zone corners. Moreover, the SL2 phase
exhibits nonzero off-diagonal elements of Sab(q), indicating
unusual spin correlations. This is in marked contrast to the
SL1 and SL3 phases, where off-diagonal spin correlations are
absent.

In the classical limit of the SL2 phase, certain Bragg
peak positions coincide with Bragg peaks in the exotic Z2

vortex crystal phase, which has been discussed in detail in the
literature [16,18]. It remains to be seen what type of magnetic
order develops in the classical limit of the SL2 phase, however.
Using a time-reversal symmetric Ansatz gives rise to coplanar
order in the classical limit (if it exists). To obtain a noncoplanar
state, such as the Z2 vortex crystal, one needs to consider
weakly symmetric Ansätze, where time reversal is broken (a
PSG classification of such chiral Ansätze together with a brief
discussion can be found in Appendix B). We did not perform
an exhaustive search for bosonic chiral spin liquid states and
leave this question open for future work.

Finally, increasing JK further, we observe another contin-
uous transition from the SL2 to the SL3 spin liquid phase.
The minima of the spinon dispersion in SL3 are located at
the M and � points. We showed that we recover classical
ground states of the Kitaev model on the triangular lattice
in the large-S limit under reasonable assumptions, which
further substantiates the validity of our SBMFT approach. The
spin-correlation tensor Sab(q) in SL3 is again diagonal, but

the three diagonal components are not equal due to the lack of
SU(2) symmetry.

A notable observation is that the gaps of all elementary
excitations remain finite throughout the two continuous transi-
tions between the three Z2 spin liquid phases, whereas the gap
of collective triplet or singlet excitations closes. This provides
an interesting example of a continuous quantum phase transi-
tion between different symmetry-enriched topological phases
which do not differ in their projective symmetry group.
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APPENDIX A: THE FORM OF THE MATRIX Hk

Here we explicitly state the elements of the 4×4 matrix Hk
in Eq. (15). Again we use the notation k1 = k · ax, k2 = k · ay,
and k3 = −k1 − k2.

Hii = λ

2
+ (JH + JK )

2
B(cos k1 + cos k2 + cos k3),

H14 = 1

2
[iJH A(sin k1 + sin k2 + sin k3) − iJKt cos k3],

H23 = 1

2
[−iJH A(sin k1 + sin k2 + sin k3) − iJKt cos k3],

H13 = JK

2
(it cos k1 − t cos k2), (A1)

H24 = JK

2
(−it cos k1 − t cos k2),

H32 = H ∗
23, H41 = H ∗

14, H31 = H ∗
13, H42 = H ∗

24,

H12 = 0, H21 = 0, H34 = 0, H43 = 0.

APPENDIX B: WEAKLY SYMMETRIC ANSÄTZE

We construct weakly symmetric Ansätze on the triangular
lattice following the procedure introduced by Messio et al. [33]
and extend it to include the triplet bond operators t̂ γ as defined
in Eq. (7). The main difference is that the sixfold rotations
around a triangular lattice site are replaced by pseudorotations
in our case, where the spin operators transform as well under
lattice rotations due to spin-orbit coupling. Details of the
computation are published elsewhere [42].

A list of all possible weakly symmetric Ansätze is shown
in Table II, where we use the same definitions and notation
as in Ref. [33]. Ansätze with p1 = 1 have a doubled unit cell
with extra π phases on certain bonds; the integer k refers to
complex phases φA = 0, k 2π/3, k 4π/3 of the A parameter
on bonds in the ax,y,z direction, whereas φB and φt denote the
phases of the B and t bond parameters (for k �= 0, the t fields
carry the phase φA + φt ). The only difference in our notation
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TABLE II. Summary of all possible weakly symmetric PSGs.
Here we allow for negative fields so phases 0 and π correspond to the
same Ansatz. Ansatz 1 respect all symmetries including time reversal
and is the only totally symmetric Ansatz, while Ansatz 2 breaks
only time-reversal symmetry. Ansätze 2–6 are weakly symmetric and
correspond to the chiral states, where parity symmetry is broken as
well. Moreover, Ansätze with p1 = 1 have a doubled unit cell.

Ansatz p1 k φB φt

1 0 0 0 0
2 0 0 0 any
3 0 0 any 0
4 0 −1,1 0 0
5 1 0 π/2 0
6 1 −1,1 π/2 0

is that we allow for negative moduli of the parameters, i.e.,
phase differences of π correspond to the same Ansatz.

In the main part of this paper, we studied only the
fully symmetric Ansatz 1 from Table II. Using the slightly
generalized chiral Ansatz 3 instead, which allows for complex
B parameters, does not lead to a different mean-field ground
state because the self-consistency condition always yields
φB = 0.

A brief discussion of the properties of Ansatz 4 follows
below. We leave the detailed study of the more complicated
Ansätze 5 and 6 open for future work.

Ansatz 4

Here we summarize relevant properties of Ansatz 4 (char-
acterized by k = 1) as listed in Table II. Using the saddle-point
equations with Ansatz 4, we find two different quantum spin
liquid (QSL) phases as a function of ψ , separated by a first-
order phase transition at ψ � 0.7 for S = 0.14. In the phase
at small ψ close to the Heisenberg point, the t fields vanish,
whereas in the other phase around the antiferromagnetic Kitaev
point, the A and B fields are zero at the saddle point. For
ψ � 0.75 (at S = 0.14), the mean-field ground-state energy
of Ansatz 4 is actually lower than the energy of the fully
symmetric Ansatz 1, which we discussed in detail in the main
text. A plot of the energies is shown in Fig. 11.

0.5 0.6 0.7 0.8 0.9 1.0 1.1

−0.085

−0.080

−0.075

−0.070

−0.065

EMF
S=0.14

k=0
k=1 A,B fields
k=1 t fields

FIG. 11. Mean-field ground-state energy of Ansatz 1 (k = 0,
discussed in the main text) vs the energy of the weakly symmetric
Ansatz 4 from Table II (k = 1) for S = 0.14. Ansatz 4 has a lower
energy than Ansatz 1 close to Kitaev point for ψ � 0.75.

FIG. 12. The xx component of the static spin structure factor
Sxx(q) for Ansatz 4 at the Kitaev point. Note the similarities to Sxx(q)
in the SL3 phase, shown in Fig. 6.

To characterize the chiral phase corresponding to Ansatz 4,
we calculated the xx component of the spin structure factor
Sxx(q), shown in Fig. 12, and studied the magnetically ordered
phase in the semiclassical limit at large S.

At the Kitaev point, the minima of the spinon dispersion
corresponding to Ansatz 4 coincide with the dispersion minima
of the SL3 state. Using the four eigenvectors of the Bogoli-
ubov transformation matrix, consistency under exchanging
momenta k → −k, and further assuming a constant spin size
and zero total magnetization, we obtain the following ordered
moment in the classical limit:

S(n,m) = 1√
3

[(−1)n+m, − (−1)m,(−1)n], (B1)

where n and m again denote the position of the triangular
lattice site r = nax + may. A plot of this order parameter is
shown in Fig. 13. In contrast to the coplanar ordered moment
obtained from Ansatz 1, this spin configuration is noncoplanar,
as expected from condensing spinons in a chiral spin liquid
where time-reversal symmetry is broken. Moreover, this spin
configuration is also one of the degenerate classical ground
states of the Kitaev model with energy E = −JKN . Ansatz 4
thus recovers noncoplanar states in the degenerate ground-state
manifold of the classical Kitaev model, which were missing in
Ansatz 1.

FIG. 13. Ordered moment in the classical limit of Ansatz 4 at the
Kitaev point, which is indeed a noncoplanar classical ground state of
the Kitaev model.
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