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The spin- 1
2 XXZ chain with easy-plane anisotropy in a transverse field describes well the thermodynamic

properties of the material Cs2CoCl4 in a wide range of temperatures and fields including the region close to
the spin-flop Ising quantum phase transition. For a comparison with prospective inelastic neutron scattering
experiments on this compound, we present results of an extensive numerical study of its dynamic structure factor
Sαβ (k,ω) using matrix-product-state (MPS) techniques. Close to criticality, the dynamic part of the correlator
Sxx longitudinal to the applied field is incoherent and possesses a small total weight as the ground state is already
close to saturation. The transverse correlator Szz, on the other hand, is dominated by a coherent single-particle
excitation with additional spectral weight at higher energies that we tentatively attribute to a repulsively bound
pair of particles. With increasing temperature, the latter quickly fades and spectral weight instead accumulates
close to zero wave vector just above the single-particle energy. On a technical level, we compare the numerical
efficiency of real-time evolution to an MPS-based Chebyshev expansion in the present context, finding that both
methods yield results of similar quality at comparable numerical costs.
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I. INTRODUCTION

A transverse magnetic field applied to a spin- 1
2 XXZ

chain reduces the remaining U(1) spin-rotation symmetry and
immediately results in a gapped ground state whose classical
analog corresponds to a spin-flop phase with long-range Néel
order. Increasing the magnetic field beyond a critical value
Hc, this long-range order is lost at a Ising quantum phase
transition. Such spin chains govern the magnetic properties of
the material Cs2CoCl4 in a wide regime of temperatures and
fields [1–9]. They effectively emerge from spin- 3

2 Heisenberg
chains attributed to Co2+ ions whose tetrahedral environment
results in a strong single-ion anisotropy. The latter splits
the four levels of each spin- 3

2 into two doublets, and the
low-energy doublet provides an effective spin- 1

2 degree of
freedom. Projecting the Hamiltonian onto this low-energy
subspace [8,10], XXZ chains arise with easy-plane anisotropy.
The CoCl4 tetrahedra of neighboring chains are tilted with
respect to each other which leads to two different easy planes
within a single unit cell, so that only a nonstaggered transversal
magnetic field can be applied along the crystallographic b

axis. In a recent study [8], it was shown that the thermal
expansion and specific heat of Cs2CoCl4 below a temperature
of approximately 2.5 K and for transverse fields smaller than
approximately 3 T can be consistently explained in terms of
the spin- 1

2 XXZ chain Hamiltonian. This parameter range
also encompasses the regime of Ising quantum criticality at
μ0Hc ≈ 2 T. At much lower temperatures of approximately
300 mK, the interchain coupling stabilizes three-dimensional
long-range order with various different phases as a function of
magnetic field [9].

Whereas neutron diffraction experiments on Cs2CoCl4
were carried out already more than ten years ago [5], inelastic
neutron scattering studies, as far as we know, have not
been performed yet. Such an experiment would access the
components of the dynamical spin-spin correlation functions

of the XXZ Hamiltonian in a transverse field,

Sαβ(k,ω) =
∑

j

e−ikj

[ ∫ ∞

−∞
dt eiωt

〈
Ŝα

j (t)Ŝβ

0

〉]
, (1)

where Ŝα
j (t) is a spin- 1

2 operator in the Heisenberg picture
with α = x,y,z, and the sum extends over sites j of the one-
dimensional lattice with unit lattice spacing. The expectation
value is taken with respect to the XXZ Hamiltonian

Ĥ =
∑

j

J
[(

Ŝx
j Ŝx

j+1 + Ŝ
y

j Ŝ
y

j+1

) + �Ŝz
j Ŝ

z
j+1 − hŜx

j

]
. (2)

For Cs2CoCl4 the parameters were estimated in Ref. [8]
to be J/kB ≈ 3 K and � ≈ 0.12. In the following, we
exclusively use this value for � and measure energies in units
of J . The Ising quantum phase transition then occurs at the
dimensionless critical field hc ≈ 1.56.

The correlation functions (1) have been theoretically
investigated before by Caux, Essler, and Löw (CEL) [11]
using exact results in combination with a mean-field approx-
imation (MFA). Here, we study these correlators numerically
with a quasiexact matrix-product-state (MPS) approach as a
function of transverse field at zero and finite temperatures
T , and we extensively compare to the results of CEL. In
particular, we employ the time-dependent adaption of the
density matrix renormalization group (tDMRG) [12–14] in
the MPS framework to carry out the real-time evolution of the
real-space correlators in Eq. (1) before Fourier transforming
into momentum and frequency space. The results at finite T are
obtained by matrix-product purification [15,16]. For a recent
work on the dynamic structure factor of the XXZ chain but
with easy-axis anisotropy see Ref. [17].

The main findings of our numerical study are the following.
The dynamic part of the correlator Sxx longitudinal to the
applied field is confirmed to be incoherent close to quantum
criticality. Moreover, it possesses a small total weight as the
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ground state is already close to saturation. The correlator Szz

transverse to the field and longitudinal to the hard axis is
dominated by a coherent single-particle excitation close to
the critical field in agreement with the findings of CEL. This
coherence gets lost with decreasing field as the hybridization
with two-particle excitations becomes more and more impor-
tant. Furthermore, we find additional spectral weight at higher
energies that we tentatively ascribe to a repulsively bound pair
of particles, which is not anticipated in the MFA of CEL.
A finite temperature is expected to destabilize such pairs.
Correspondingly, we find that this weight quickly decreases
with increasing T , and it is redistributed close to zero wave
vector just above the single-particle energy. The interesting
and rich physics of repulsively bound particle pairs in the
XXZ spin- 1

2 chain might thus be observable in the spin-spin
correlations of the material Cs2CoCl4.

On a technical level, we compare the numerical effi-
ciency of the real-time evolution in the present context
to a recently developed MPS-based Chebyshev expansion
(CheMPS) [18]. Our main conclusion is that CheMPS pro-
duces zero-temperature spectral functions of similar quality as
tDMRG at comparable computational costs. Accordingly, the
CheMPS setup must appropriately deal with a growing amount
of entanglement in the MPS to produce reliable results.

The paper is structured as follows. In Sec. II we briefly
review the approximation of CEL used in their computation of
the correlators (1) and introduce the two matrix-product-state
techniques, tDMRG and CheMPS, employed in our numerical
calculations. Our results for the dynamic structure factor are
presented in Sec. III and compared to the approximation of
CEL. The paper ends with a short discussion in Sec. IV.
Technical details on tDMRG and CheMPS, including our
comparison of their numerical efficiency, are presented in the
Appendix.

II. METHODS

A. Approximation of CEL

The approximation employed by Caux, Essler, and Löw
(CEL) [11] involves two steps. First, after a Jordan-Wigner
transformation of the Hamiltonian (2) the interaction between
Jordan-Wigner fermions is treated within a self-consistent
mean-field approximation (MFA). This amounts to solving
three coupled nonlinear equations numerically. The validity
regime of the MFA was determined by CEL with the help of
DMRG calculations of thermodynamic quantities. In a second
step, the structure factor (1) is evaluated with respect to the
mean-field Hamiltonian, that can be identified with an effective
anisotropic XY spin chain. The spin-spin correlator longitu-
dinal to the magnetic field Sxx(k,ω) reduces to a density-
density correlation function of Jordan-Wigner fermions that
can be straightforwardly computed. The spin-spin correlators
transverse to the field Sαβ(k,ω) with α,β = y,z on the
other hand, contain Jordan-Wigner strings so that a further
approximation is employed. Exact results for the XY spin chain
are now exploited to approximate the transverse spin-spin
correlator either by the contribution of the two-particle sector
at intermediate fields, h < hc, or by the contribution of the
single-particle sector at larger fields, h > hc.

CEL also discuss the range of validity of the MFA by
comparing thermodynamic quantities to static density matrix

renormalization group (DMRG) calculations. They conclude
(for � = 1/4) that the MFA should work well for large fields
h � 1.5 whereas for intermediate field strengths 0.5 � h �
1.5 it should provide at least qualitatively correct results. It
breaks down however in the low-field limit h → 0.

B. Numerical matrix-product-state techniques

To capture all facets of the interacting model (2) beyond
the approximation of CEL, we employ quasiexact numerical
simulations in a matrix-product-states (MPS) setup. The
MPS framework offers different approaches to evaluate the
components of the dynamic structure factor (1) in frequency
space. Here, we mostly use the time-dependent adaption of
the density matrix renormalization group (tDMRG) [12–14]
to evolve the real-space spin-spin correlation function in time.
The dynamic spin structure factor in frequency space is then
obtained by a subsequent Fourier transform of the real-time
data. At zero temperature, we start from the ground state of
the system obtained with standard DMRG [19–21] before
applying the local perturbation Ŝ

β

0 and evolving the state in
real time. To obtain finite-temperature correlators, the initial
MPS is chosen to be a thermal state representing the purified
density matrix at a certain temperature [15,16]. Details on
our tDMRG implementation, the post-processing by means of
Fourier transform, and the chosen numerical parameters can be
found in Appendix 1. We emphasize that all results presented
in Sec. III were obtained using tDMRG.

To conclude this section, we briefly mention a point
of technical interest for readers with a numerical MPS
background. Recently, an MPS-based Chebyshev expansion
technique (CheMPS) has been successfully established as a
competitive alternative to tDMRG [18,22–25]. It evaluates
dynamic correlators directly in frequency space avoiding
the Fourier transform required in any real-time approach.
However, it still remains unclear which of the two methods,
CheMPS or tDMRG, is more efficient for computing spectral
functions. To gain some insight into this open question, we
conducted a detailed comparison for the present problem at
zero temperature. We found that both methods yield results
of similar quality at almost identical computational costs. For
an extended discussion of technical details of CheMPS, and
a comparison of the performance of tDMRG and CheMPS
for the present model system, the reader is referred to the
Appendices 2 and 3, respectively.

For completeness, we note that the correction-vector (CV)
method can also be employed to calculate the dynamic
structure factor at zero temperature [26–29]. However, CV
requires individual calculations for each frequency point ω

and is therefore not practicable in the context of this work.
In comparison, tDMRG and CheMPS are significantly more
efficient since these methods can access the entire frequency
axis using a single calculation.

III. RESULTS

A. Phase diagram

In order to identify the position of the Ising quantum phase
transition of the Hamiltonian (2) we have first considered its
ground-state properties. The panels in Fig. 1 illustrate distinct
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FIG. 1. (a) Entanglement spectrum, (b) staggered per-site magne-
tization mst, and (c) per-site magnetization mx along the in-plane field
direction as functions of h. To generate the entanglement spectrum,
we used a system of N = 301 spins with a site-dependent field
that linearly increases along the chain. Every other state in the
entanglement spectrum is shown in red for better visual contrast.
The data in panels (b) and (c) was generated from individual DMRG
runs for each h on a system with N = 100 spins using both open and
smooth boundary conditions (OBC/SBC). The phase transition from
the spin-flop to the spin-polarized phase occurs around hc ≈ 1.56
beyond which the order parameter mst vanishes.

static features of the different ground state phases. The data
in panel (a) represents the entanglement spectrum, which
is generated from a single ground-state DMRG calculation
[19,20] of a system with N = 301 sites while keeping all states
associated with singular values larger than εSVD = 10−5. We
chose a site-dependent magnetic field hj , which is increased
in small steps of 0.01 throughout the chain from h1 = −0.5 at
the first site to h301 = 2.5 at the last site.

This setup provides a quick snapshot of the physics of the
different phases vs magnetic field along the chain within a
single DMRG run and does not require a separate calculation
for each value of the magnetic field [30,31]. While finite-size
effects in the bulk part of the chain are reduced in this setup
leading to a smooth tuning of the spectrum as a function of
h, blurred effective finite-size effects are present and depend
on the speed of the tuning. In the present case, however, the
position of the phase boundary is already in good agreement
with the calculations from homogeneous systems in Figs. 1(b)
and 1(c).

By cutting the chain on each bond and diagonalizing
the reduced density matrix ρ̂j , we obtain the entanglement
spectrum ξ

j

k as a function of h from the spectral decomposition
ρ

j

k of ρ̂j , i.e., ξ
j

k = − log ρ
j

k . The entanglement spectrum
displays a smooth behavior in both the spin-flop and the spin-
polarized phase and nicely captures the distinct ground-state
degeneracy in the two phases. Whereas the ground state is
twofold degenerate in the spin-flop phase 0 < h < hc, it is
unique within the spin-polarized phase, h > hc.

To locate the critical point quantitatively, we study the
order parameter of the system, represented by the staggered
magnetization. Since a finite length N breaks translational
symmetry, leading to∑

j

〈ψ0|(−1)j Ŝy

j |ψ0〉 =
∑

j

〈ψ1|(−1)j Ŝy

j |ψ1〉 = 0, (3)

we calculate the order parameter using

mst = 1

N

∑
j

〈ψ0|(−1)j Ŝy

j |ψ1〉, (4)

where |ψ0〉 is the ground state and |ψ1〉 the first excited
state of the system. Figure 1(b) illustrates the dependence
of the order parameter on the in-plane field h using both
MFA and ground-state DMRG calculations. Both methods
nicely agree for larger fields and pinpoint the critical point at
hc ≈ 1.56 ± 0.01, without performing any further finite-size
scaling. Since the MFA works poorly for small fields, we
observe strong deviations between MFA and DMRG within the
spin-flop phase—a phenomenon which we will reencounter
when calculating the components of the dynamic structure
factor in Sec. III B.

We note that the DMRG calculations of mst are plagued
by strong finite-size effects when using a standard setup with
open boundary conditions (OBC) in the spin-polarized phase,
as illustrated by the large finite value of the red curve for
h > hc in Fig. 1(b). The finite-size effects can be significantly
reduced for high fields by employing the concept of smooth
boundary conditions (SBC) [32,33] in a small region of 10
sites on the edges of the system (blue curve). The idea of SBC
is to smoothly decrease the parameters of the Hamiltonian to
zero at both ends of the chain to avoid having a sharp and rigid
boundary as in the OBC setup. However, finite-size effects
for small fields, albeit reduced with SBC, are not completely
absent as indicated by the nonzero value of mst at zero field.

Other quantities such as the magnetization per site, mx =
1
N

∑
j 〈ψ0|Ŝx

j |ψ0〉, are already well converged in the OBC
setup. As illustrated in Fig. 1(c), a nonzero field immediately
leads to a finite magnetization which increases monotonically
with h. Note that even in the spin-polarized phase at h > hc, the
magnetization is not saturated yet due to quantum fluctuations.
Full saturation is only reached in the limit of infinitely strong
magnetic fields.

B. Dynamic structure factors at T = 0

In the following, we present the numerical tDMRG results
for various components of the zero-temperature dynamic
structure factor and compare them to the approximation of
CEL. Numerical details on our tDMRG implementation can
be found in Appendix 1 a. We will discuss the contribution Szz

longitudinal to the hard axis and transverse to the magnetic
field, the contribution Sxx longitudinal to the magnetic field,
and the spin-flip contribution S+− = Sxx + Syy + i(Syx −
Sxy). For our analysis, we choose four representative values of
the magnetic field h = 0.8,1.4,1.56,2: the first two are located
within the spin-flop phase, the third corresponds to the critical
field hc, and the last is located within the polarized phase. We
do not consider the limit of zero magnetic field, h = 0, as the
dynamic structure factor in this case is well known [34,35].
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FIG. 2. Dynamic spin structure factor Szz(k,ω) longitudinal to the hard axis and transverse to the applied magnetic field h, at zero
temperature. (a)–(d) show the numerical results of tDMRG [N = 100, tmax = 60; see Appendix 1 a for details] whereas (e)–(h) display the
corresponding CEL approximation with contributions from (e)–(g) the two-particle sector and (h) the one-particle sector only. The system
is gapped within the spin-flop phase [(a),(b),(e),(f)] with an incoherent spectrum. The gap closes at the quantum phase transition, (c),(g), at
hc ≈ 1.56. The gap reopens within the spin-polarized phase, (d),(h), where the spectrum is dominated by a single coherent mode [dashed line
in (d)] in excellent agreement with the CEL approximation. In panel (b) a distinct higher-energy branch is visible that is absent in the CEL
spectra of panel (f).

1. Transverse dynamic structure factor S zz(k,ω)

The results for the dynamic structure factor Szz(k,ω)
transverse to the applied magnetic field but longitudinal to
the hard axis are shown in Fig. 2. The panels in the first row
[Figs. 2(a)–2(d)] illustrate our numerical tDMRG calculations,
to be compared with the CEL approximation in the panels
shown in the second row [Fig. 2(e)–2(h)]. The spectra in
the spin-flop phase [Figs. 2(a), 2(b), 2(e), 2(f)] display an
incoherent continuum with a gap. The majority of the spectral
weight is distributed around k = π for h = 0.8, but is partly
shifted to k = 0 as the field strength is increased. At the
critical point [Figs. 2(c) and 2(g)], the spectrum becomes
gapless at the wave vector k = π and is dominated by a single
coherent mode, which remains a persistent feature also in the
spin-polarized phase [Figs. 2(d) and 2(h)] where the gap opens
up again.

This coherent mode is fully captured within the CEL
approximation. It possesses a dispersion of the form [11]

ω(k) = J̃+
√

(cos k + h̃)2 + γ 2 sin2 k , (5)

where the parameters J̃+, h̃, and γ depend on the magnetic
field h and obey self-consistent mean-field equations. This
dispersion is also shown as a dashed line in Fig. 2(d) with
excellent agreement with the tDMRG numerics. At large
fields, the magnetization is already close to saturation and
the coherent mode essentially corresponds to a single spin-flip
excitation.

As expected, the agreement between the tDMRG and
the CEL approximation deteriorates with decreasing field.
Interestingly, below the critical field even pronounced qual-
itative differences emerge. At h = 1.4 within the spin-flop
phase but close to the critical point [Figs. 2(b) and 2(f)],
the CEL approximation still captures the low-energy branch
qualitatively but it fails to describe the additional branch
at higher energies, ω > 2. This higher-energy branch is a
distinct feature that is quasicoherent and possesses only a weak

dispersion. It might arise from repulsively bound two-particle
states that we will further discuss in Sec. IV.

For even smaller fields, strong deviations between tDMRG
and CEL are expected, because the latter is no longer able to
describe the low-energy properties of the system, as we have
already seen in the study of the order parameter in Sec. III A.
For a field h = 0.8 [Figs. 2(a) and 2(e)], the higher-energy
features visible around k = 0 in the CEL spectra appear to be
shifted to k = π in the tDMRG data. At the same time, the
spectral weight around k = 0 at low energies is not captured
by the CEL approximation.

2. Longitudinal dynamic structure factor S xx(k,ω)

The component Sxx(k,ω) of the dynamic spin structure fac-
tor longitudinal to the applied field is shown in Fig. 3. Within
the CEL approximation this quantity is related to a density-
density correlation function of Jordan-Wigner fermions.

Both the CEL approximation and the tDMRG calculations
show that these longitudinal correlations are basically inco-
herent for any value of the applied magnetic field. Moreover,
we find that the correlators exhibit an incommensurable
low-energy feature in the spin-flop phase [Figs. 3(a), 3(b), 3(e),
3(f)], reminiscent of the incommensurability of the isotropic
XY model in a longitudinal field [36]. The incommensurable
wave vector is located near k = π (not shown) at small
magnetic fields and moves towards k = 0 at the quantum phase
transition. The incommensurability becomes most apparent
in Figs. 3(a) and 3(e) for h = 0.8, where the wave vector
corresponds to k ≈ 0.8π . This incommensurate low-energy
feature is also captured by the CEL approximation, whereas the
low-energy branch at k = π and the higher-energy excitations
again substantially deviate from the tDMRG results at h = 0.8.
For increasing field, the spectral weight decreases and becomes
very small within the spin-polarized phase for all momenta
as the magnetization approaches full saturation, which is
illustrated by the reduced intensity of Sxx(k,ω) in Figs. 3(c),
3(d), 3(g), and 3(h) [note that their color bars differ]. Similar
to the transverse component in Fig. 2(b), the longitudinal
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FIG. 3. Dynamic spin structure factor Sxx(k,ω) longitudinal to the applied magnetic field h at zero temperature. (a)–(d) show the numerical
results of tDMRG [N = 100, tmax = 60; see Appendix 1 a for details] whereas (e)–(h) display the corresponding CEL approximation. In the
spin-flop phase [(a),(b),(e),(f)] the spectra show weight at low energies located at an incommensurate wave vector which moves towards k = 0
at criticality (c),(g). The weight of the spectra (d),(h) substantially decreases within the spin-polarized phase [note the different color scales].
Again, we find that the agreement between the CEL approximation and tDMRG is improving with increasing field strength.

component also exhibits a higher-energy branch in panel
Figs. 3(b) and 3(c) that is not captured within the CEL
approximation.

3. Spin-flip dynamic structure factor S+−(k,ω)

In Fig. 4 we show tDMRG results for the spin-flip compo-
nent S+−(k,ω) of spin operators within the easy plane. At high
fields, the spectra are dominate by the coherent single-particle
spectrum like the one of the transverse correlator in Fig. 2. In
the spin-flop phase at lower fields in Figs. 4(a) and 4(b) we
find that most spectral weight is distributed around k = π .

C. Dynamic structure factor at finite T

We now present an analysis of the temperature dependence
of the dynamical structure factor limiting ourselves, however,
to a discussion of the transverse component Szz(k,ω,T )
only. The results are obtained using real-time evolution in
combination with matrix-product purification [15,16], where
an auxiliary copy of the physical Hilbert space is introduced,
which adopts the role of a heat bath and effectively doubles

FIG. 4. Dynamic spin structure factor S+−(k,ω) at T = 0 ob-
tained with tDMRG [N = 100, tmax = 60; see Appendix 1 a for
details]. The spectra show the system in (a),(b) the spin-flop phase,
(c) at the quantum phase transition, and (d) the spin-polarized phase.

the system size. Starting from a product state consisting of
maximally entangled pairs of physical and auxiliary sites,
we imaginary-time evolve the system from T = ∞ to the
desired temperature to obtain the thermal initial state |ψT 〉
for the real-time evolution. For numerical details we refer to
Appendix 1 b.

Considering the same field values h = 0.8,1.4,1.56,2 as in
the previous section, we compute Szz(k,ω,T ) at three different
temperatures T = 1, 1

4 , 1
12 , measured in units of J with kB =

1. For these temperatures, the approximation of an effective
spin- 1

2 description for Cs2CoCl4 is still justified: the energy
gap between the doublets of the original spin- 3

2 due to the
single-ion anisotropy is �E ≈ 4.6 in the same units [8] so
that T � �E.

Figure 5 displays the numerical results for Szz(k,ω,T ).
First, we notice that thermal fluctuations quickly lead to a
blurring of the excitation gap in the spin-flop phase [Fig. 5
left two columns]. Already at very small temperatures 1

12
[Figs. 5(a) and 5(b)], we observe additional spectral weight
being distributed around k ≈ π at ω = 0. Increasing tempera-
ture further, the two spectra in the spin-flop phase show quite
different behavior. Deep in the spin-flop phase for h = 0.8
and T = 1

4 [Fig. 5(e)], the gap is also washed out around
k ≈ 0.2π and a lot of spectral weight is distributed towards
lower energies ω. At high temperatures T = 1 [Fig. 5(i)],
almost all spectral structures are already washed out. Closer
to the phase transition at h = 1.4 [Fig. 5(f)], the growing
thermal fluctuation predominantly shift spectral weight into
the region between the low and higher energy branch. For
T = 1 [Fig. 5(j)], the two branches have dissolved into a
continuum around k = π , while the gap at k = 0 still remains
very pronounced. Interestingly, an additional spectral feature
seems to arise close to k = 0 at slightly higher energies than
the low-energy branch as indicated by the arrow. We will offer
an interpretation for it in the next section.

At the phase transition, thermal fluctuations cause some
interesting new features in the spectrum. First of all, we note
that the higher-energy branch becomes more pronounced at
finite T while it was barely visible at T = 0, Fig. 2(c), and
not captured at all within the CEL approximation. We also
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FIG. 5. Dynamic structure factor Szz(k,ω,T ) transverse to the applied magnetic field for three finite temperatures: (a)–(d) T = 1
12 , (e)–(h)

T = 1
4 , and (i)–(l) T = 1 obtained with tDMRG [N = 50–70, tmax = 20–60; see Appendix 1 b for details]. Analogously to Fig. 2, the spectra

show the system in the spin-flop phase (first two columns), at the quantum phase transition (third column), and in the spin-polarized phase
(fourth column). At finite T an additional feature appears close to k = 0, as indicated by the white arrow.

find that thermal fluctuations strongly redistribute spectral
weight between the two branches for increasing temperatures.
Moreover, the additional spectral feature close to k = 0 found
in Fig. 5(j) also appears at the quantum phase transition at
hc ≈ 1.56 [Fig. 5(k)].

A finite temperature plays only a minor role in the spin-
polarized phase at h = 2 because the large excitation gap of
�e ≈ 0.5 suppresses most thermal fluctuations for T < �e

[Figs. 5(d) and 5(h)]. Only for temperatures above the gap,
we observe thermal broadening and again the appearance of
an additional excitation mode around k = 0 [white arrow in
Fig. 5(l)].

IV. DISCUSSION

In this work, we performed an extensive numerical study
of the dynamic structure factor Sαβ (k,ω) of the spin- 1

2 XXZ
model (2) in a transverse field for a particular value of easy-
plane anisotropy � = 0.12. Employing matrix-product-state
calculations, we computed the components of the structure
factor at zero and finite temperatures for various values of the
transverse field with a particular focus on the Ising quantum
phase transition separating a gapped spin-flop phase and a
gapped spin-polarized phase at a critical dimensionless field
hc ≈ 1.56.

Comparing with previous approximate analytical calcu-
lations of Caux, Essler, and Löw (CEL) [11] for T = 0,
we confirmed that at large fields, h � hc, the correlator Szz

transverse to the applied field is governed by a coherent
single-particle mode, which in the large-field limit basically
corresponds to a single spin-flip excitation of the almost
polarized chain. At smaller fields, Szz loses coherence as
it becomes dominated by the two-particle continuum. The
correlator Sxx longitudinal to the field, on the other hand,
is mostly incoherent.

Our numerical study has revealed two distinct features in
the dynamic structure factor that deserve special attention: (i)
an additional relatively sharp mode located at higher energies
ω > 2J clearly visible in Szz, see Fig. 2(b), as well as in Sxx ,
see Figs. 3(b) and 3(c); and (ii) additional weight emerging at
finite temperature just above the low-energy branch close to
zero wave vector, see white arrow in Fig. 5. In particular, a
mode at higher energies ω > 2J is not anticipated within the
mean-field approximation of CEL.

Let us speculate about the origin of these additional
features. A possible candidate for (i) the higher-energy mode
is a repulsively bound two-particle state, which goes beyond
the mean-field approximation. The presence of such a bound
state is at least supported from an analysis in the large field
limit. In this limit, the ground state is completely polarized
and a particle excitation just corresponds to a single spin flip.
While a spin flip loses Zeeman energy Jh, it gains twice the
bond energy J/2 due to the antiferromagnetic alignment with
its neighboring spins. This also applies for each spin flip of the
two-particle excitation provided that they are separated by at
least two sites. If spin flips occupy adjacent sites, however, they
gain only half of the bond energy giving rise to an effective
repulsive interaction J . In lowest order in 1/h, this repulsion
gives rise to a bound state above the two-particle continuum
similar to the doublon in the Hubbard model [37]. At high
fields, its weight is probably too small to be observable in
the dynamic structure factor, but it might survive at smaller
fields, giving rise to the signatures observed in our spectra.
The lifetime of this repulsively bound state could be large at
small temperatures, as its decay requires the interaction with
additional particles in order to release its energy [38–40]. At
finite temperatures, the thermal occupation of particles will
facilitate the decay, which might explain the fading of the
higher-energy mode in the spectra in Fig. 5 with increasing T .
It is striking that the signature (ii) close to zero wave vector
in the transverse dynamic structure factor Szz identified by
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the white arrow in Fig. 5, which is reminiscent of a Villain
mode [41], gains weight with the simultaneous vanishing of the
higher-energy mode. It is therefore tempting to speculate that
this feature (ii) is associated with the decay of the repulsively
bound pair.

It might be worth exploring these spectral features further
in future theoretical work. The physics of repulsively bound
particle pairs should be particularly transparent in the Ising
limit of the XXZ spin- 1

2 chain for a longitudinal field close
to its triple point [42]. On the experimental side, the dynamic
structure factor considered in this work might be observable
with the help of inelastic neutron scattering experiments on the
compound Cs2CoCl4. This material thus offers the opportunity
to study the rich structure of the dynamic spin-spin correlations
of the XXZ spin- 1

2 chain in a regime where it is not integrable
with interesting effects emerging already on the two-particle
level. We hope that our study motivates such experiments in
the near future.
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APPENDIX: NUMERICAL DETAILS

This Appendix discusses the numerical methods used to
obtain the results presented in the main part of the paper. Sec. 1
deals with tDMRG, Sec. 2 with CheMPS, and Sec. 3 offers a
detailed comparison of their efficiency within the context of
the present spin- 1

2 XXZ model.

1. tDMRG

This section elaborates on the details of our tDMRG
implementation employed to generate the results for the
dynamic structure factor at zero and finite temperatures in
the main part of this work.

a. Zero temperature

To evaluate the zero-temperature structure factor by means
of real-time evolution, we first have to determine the time-
dependent ground-state correlators

Sαβ(j,t) = eiE0t 〈ψ0|Ŝα
j e−iĤ t Ŝ

β

0 |ψ0〉 (A1)

for various times t and distances j . To this end, we initialize
the ground state |ψ0〉 in terms of an MPS employing DMRG
[19–21] before applying the local perturbation Ŝ

β

0 in the
middle of the chain (labeled with jM = 0) to generate |φ〉 =
Ŝ

β

0 |ψ0〉. |φ〉 is the initial state for the real-time evolution,
|φ(t)〉 = e−iĤ t |φ〉, which is carried out using standard tDMRG
techniques [12–14,21]. This amounts to splitting the time-
evolution operator e−iĤ t into a product of M small time steps

τ = t/M . For systems with short-ranged interactions, each
term e−iĤ τ is decomposed into a product of local operator
via a Suzuki-Trotter decomposition. For Hamiltonians with
nearest-neighbor interactions only, such as (2), this results in
combining all interaction terms corresponding to even and
odd numbered bonds, respectively, i.e, Ĥ = Ĥe + Ĥo. Note
that all terms in one group commute with each other but
the terms in Ĥe generally do not commute with the ones in
Ĥo. The second-order Suzuki-Trotter decomposition for the
time-evolution operator then reads

e−iĤ τ = e−iĤeτ/2e−iĤoτ e−iĤeτ/2 + O(τ 3) . (A2)

The time evolution is carried out by repeatedly applying the
Trotter-decomposed evolution operator to the initial state |φ〉.
For every (or a subset of) time step(s) we evaluate the two-point
correlators Sαβ(j,t) for all possible values of j on the finite
chain. In the end, we compute the Fourier transform in time
t and real space j to obtain the dynamic structure factor of
Eq. (1).

Such calculations are typically affected by two major error
sources:

(1) The Trotter decomposition introduces an error of the
order O(τ 3) because it ignores the noncommutativity of odd
and even terms of the Hamiltonian. This so-called Trotter error
can be dealt with by using a higher-order decomposition [43]
or a smaller time step.

(2) The spreading of the excitation over time causes a
growth of entanglement in the state during the time evolution,
which typically requires the bond dimension of the MPS
to increase exponentially towards longer time scales. This
effectively restricts the accessible time scale to some maximum
time tmax, the value of which strongly depends on the specific
model and parameter regime.

The finite-time limit also puts a constraint on the resolution
of the spectral functions in frequency space. In order to remove
artificial finite-time oscillations in the spectra, one needs to
include some type of broadening when performing the Fourier
transform to frequency space. Here we choose to include a
Gaussian filter exp[−η2t2] in the time integral in Eq. (1) and
choose η dependent on tmax. Hence, the resulting spectral
functions contain the exact spectral features convolved with
a Gaussian exp[−ω2/(2W 2)], with a frequency resolution
W = √

2η. In some cases, linear prediction can be used
to avoid the artificial broadening and extract more spectral
information from the time series [44,45]. We refrain from
employing linear prediction in this work, because we found
its results were very sensitive to changes of the regularization
parameter and the statistical window on the given time scale
for the present model.

The zero-temperature tDMRG calculations in Sec. III B
were performed on a chain with open boundary conditions and
N = 100 spins, which is large enough to prevent any finite-size
reflections for the considered time scales. We worked with a
second-order Suzuki-Trotter decomposition and used a time
step τ = 0.05, which is small enough in the context of
the present model that the Trotter error becomes negligible.
Moreover, the bond dimension D of the time-evolved MPS
|φ(t)〉 was chosen adaptively by keeping all singular values
larger than εSVD = 10−4 during the application of the Trotter
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gates. We stopped the time evolution at tmax = 60 and worked
with a broadening parameter η = 0.033, which corresponds
to an energy resolution of W = √

2η = 0.047J using the
Gaussian filter of Ref. [12] in the reconstruction of the dynamic
structure factor. In practice, this lead to a maximum bond
dimension of D < 1400 during the last time step. Furthermore,
we note that a setup with smooth boundary conditions,
employed in Sec. III A to minimize finite-size effects in
static quantities, is not particularly well suited for dynamic
calculations. Its decreasing energy scales at the chain’s ends
introduce a set of low-energy states, which significantly alter
the entanglement growth during time evolution.

b. Finite temperatures

The above approach can be generalized with minor modi-
fications to calculate finite-temperature correlators

Sαβ(j,t,T ) = 〈ψT |eiĤ t Ŝα
j e−iĤ t Ŝ

β

0 |ψT 〉 . (A3)

In this case, the local perturbation Ŝ
β

0 is no longer applied
to the ground state |ψ0〉 but rather to a thermal state |ψT 〉,
which either represents the purified density matrix [15] or one
state of an ensemble of minimally entangled typical thermal
states (METTS) [46,47], depending on the chosen finite-
temperature algorithm. Since the evolution operator acting on
the bra cannot be factored out as a phase factor anymore,
one has to carry out two independent real-time evolutions,
|φ(t)〉 = e−iĤ t Ŝ

β

0 |ψT 〉 and |�(t)〉 = e−iĤ t |ψT 〉 and evaluate
Sαβ (j,t,T ) = 〈�(t)|Ŝα

j |φ(t)〉 accordingly.
The finite-temperature tDMRG calculations in Sec. III C

were performed in the purification setup on an open chain of
N = 50–70 physical spins (corresponding to a total number of
Ntot = 100–140 sites in the purified scheme), where the time
scales were again chosen such that no finite-size reflections
occurred. We set εsvd = 10−4, 10−5 during the real- and
imaginary-time evolution, respectively, and chose a Trotter
step of τ = 0.05 in both cases. Since the entanglement of
the MPS during time evolution grows much more rapidly
the higher the temperature, the accessible time scale varied
between tmax = 60 for T = 1/12 and tmax = 20–40 for T = 1.1

Although thermal broadening dominates at high temperatures
on the considered time scale, we nevertheless included a
broadening parameter η = 0.05 in the Fourier transform for
consistency.

2. CheMPS

In this section we discuss the basics of CheMPS, which
are relevant for the detailed comparison to tDMRG in
Appendix 3. With CheMPS we are able to work directly
in frequency space and compute dynamic correlators of the

1In order to reach these time scales, we applied a backward time
evolution on the auxiliary states for T = 1, 1

4 , which significantly
reduced the growth of entanglement [50]. Note that we refrained from
exploiting time-translation invariance to reach even larger times [51],
since it would have required to carry out tDMRG runs individually
for each distance j .

type

Sαβ(j,ω) = 〈ψ0|Ŝα
j δ(ω − Ĥ + E0)Ŝβ

0 |ψ0〉 . (A4)

The CheMPS approach expands the δ-function in Eq. (A4) in
terms of Chebyhsev polynomials of the first kind, Tn. To ensure
the convergence of the Chebyshev expansion, the Hamiltonian
has to be rescaled such that its support is fully contained in
the interval [−1,1]. One way to achieve this is to use a linear
mapping Ĥ ′ = (Ĥ − E0)/a − b, ω′ = ω/a − b with the two
rescaling factors a,b chosen properly.

Reference [48] showed that the details of the rescaling
procedure clearly affect the efficiency of the calculation. It
is usually most efficient to map the support of the spectral
function close to the lower boundary of the interval [−1,1],
where the zeros of the individual Chebyshev polynomials are
densely distributed. This can be achieved by using a “b = 1”
setup, which is in the following distinguished from the “b = 0”
setup, where the support of the spectral function lies at the
center of [−1,1].

After proper rescaling, the correlator in Eq. (A4) can be
represented with Chebyhsev coefficients

μn(j ) = 〈ψ0|Ŝα
j Tn(H ′)Ŝβ

0 |ψ0〉, (A5)

leading to

Sαβ (j,ω) = 1

a

NChe∑
n=0

wn(ω′)μn(j )Tn(ω′), (A6)

with wn(ω) = (2 − δn0)/(π
√

1 − ω2). The numerically de-
manding part is to determine the Chebyshev coefficients
μn(j ). To this end, one employs standard MPS techniques and
exploits the recursion relations of the Chebyshev polynomials
to iteratively generate the Chebyshev vectors

|tn〉 = 2Ĥ ′|tn−1〉 − |tn−2〉, (A7)

|t0〉 = Ŝ
β

0 |ψ0〉, |t1〉 = Ĥ ′|t0〉. (A8)

Thus by storing only three MPS per expansion step, we can
iteratively evaluate the Chebyshev coefficients μn(j ) by com-
puting overlaps of the type μn(j ) = 〈ψ0|Ŝα

j |tn〉 for all values
of j on the finite chain. Analogous to real-time evolution, it is
typically more convenient to carry out the Fourier transform
from real- to momentum-space after completing the expansion,
instead of applying momentum-space operator Ŝ

β

k to the
starting state. In this way, only a single calculation is required
to obtain the spectrum at various momenta. Moreover, a local
perturbation Ŝ

β

0 leads to a significantly reduced entanglement
growth during the expansion.

The increase of entanglement stored in |tn〉 at higher
expansion orders is caused by the repeated application of
the Hamiltonian Ĥ to the MPS and is necessary from a
physical point of view to represent the spreading of the local
excitation in real space over time. This results in a roughly
exponentially growing demand on the numerical resources in
order to store and manipulate Chebyshev vectors. Therefore,
the expansion is limited to some finite order NChe, at which
the computational costs “hit the exponential wall.” The finite-
order cutoff introduces numerical artifacts in the dynamic
correlators, which can be removed by including coefficients gn
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of a broadening kernel in Eq. (A6), which smears out the higher
order terms and generate a smooth spectrum. Alternatively, it
is also possible to determine the full resolvent function in
Eq. (A4) for a nonzero value of η [22] or, in some cases, to
avoid broadening at all by means of linear prediction [23].

Recently, Ref. [25] expanded CheMPS to determine spectra
also at finite temperatures. To this end, they formulated the
Chebyshev expansion in terms of a Liouvillian and matrix-
product purification. It is also possible to combine CheMPS
with METTS, but for technical reasons this turned out to be
very inefficient [49].

3. tDMRG vs CheMPS

In the following, we compare the numerical efficiency of
the two methods, tDMRG and CheMPS. CheMPS has been
frequently applied in practice [22–25,52–55], but no conclu-
sive answer has yet been presented to the question whether
it provides a computationally more efficient framework over
real-time evolution to simulate spectral functions. Whereas
tackling this question in full generality would go beyond the
scope of this work, we present below a brief analysis of the
efficiency of CheMPS in the present context.

Our main conclusion is that CheMPS produces zero-
temperature results of similar quality as tDMRG at compa-
rable computational costs. Accordingly, the CheMPS setup,
too, needs to appropriately deal with a growing amount of
entanglement in the MPS to produce reliable results.

In order to compare real-time evolution and CheMPS, we
have studied the spin- 1

2 XXZ chain Hamiltonian (2) with N =
100 spins directly at quantum criticality h = 1.56 and T = 0.
Starting by placing an excitation in the middle of the chain, we
take Ŝ

β

0 |ψ0〉 as the initial state for both the real-time evolution
and the Chebyshev expansion. The CheMPS simulation is
carried out in two setups: one with b = 0 in the linear mapping,
see Appendix 2, and NChe = 4800 iterations, another with
b = 0.995 and NChe = 2100 iterations. The reference tDMRG
calculation uses the data from Fig. 2(c). As previously, we
adapt the bond dimension of the MPS by truncating according
to εSVD = 10−4 in every Trotter step as well as any Chebyshev
iteration Eq. (A7) during the entire calculation.

Figure 6 displays the corresponding evolution of
the excitation with time, 〈Ŝz

j (t)Ŝz
0〉, and iteration order,

μn(j ) = 〈ψ0|Ŝα
j |tn〉, respectively. In all cases, the initially

localized excitation spreads out in real-space showing the

FIG. 6. Evolution of the excitation over (a) time 〈Ŝz
j Ŝ

z
0(t)〉 and

(b),(c) iteration order μn(j ) = 〈ψ0|Ŝα
j |tn〉.
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FIG. 7. (a) Local spectral function 〈Ŝz
0 Ŝ

z
0〉(ω) obtained from

tDMRG and CheMPS for the spin- 1
2 model for Cs2CoCl4 with

N = 100 spins directly at the phase boundary for h = 1.56 and
T = 0. (b)–(d) Comparison of entanglement entropy Sent, bond
dimension D, and cumulative CPU time tCPU.

typical light-cone structure. We clearly observe that finite-size
reflections are not present up to the maximum time tmax = 60
in the tDMRG simulation [Fig. 6(a)]. The same applies to the
CheMPS results of the b = 0 setup in Fig. 6(b). Following the
literature, the final iteration corresponds to an effective time
scale t ∼ NChe/a ≈ 60, which is equivalent to the maximum
time of the tDMRG reference calculation. However, the
excitation in (b) is already spread out significantly further
in the system than at the end of the tDMRG calculation. This
deviation becomes even more apparent studying the b = 0.995
setup in (c), which in principle should evolve according to the
same effective time scale as the rescaling factor a is unchanged.
In reality, the excitation has already reached the boundary
of the system after n ≈ 1100 iterations. Reflections at both
boundaries become strongly visible for higher iterations. This
suggests that the effective time scale of t∗ = 60 is already
reached significantly sooner in the b = 0.995 setup, which is
in agreement with the findings of Ref. [48].

Hence, we conclude that only n∗ < atmax CheMPS itera-
tions have to be carried out in order to obtain spectral data with
comparable accuracy as in the reference tDMRG simulation.
This is illustrated in Fig. 7(a), where the local spectral
function 〈Ŝz

0Ŝ
z
0〉(ω) obtained from tDMRG and CheMPS data

is displayed. We use only the first n∗ moments of the respective
CheMPS calculation and a Jackson kernel in the Chebyshev
reconstruction to mimic both the maximum time cutoff and the
Gaussian broadening in the Fourier transform of the real-time
data, choosing n∗ such that the agreement with the reference
data is best. These iterations n∗ are indicated by the dashed
vertical lines in Figs. 6(b) and 6(c). As one would intuitively
expect, the excitation is spread over approximately the same
distance after these n∗ iterations as in the tDMRG calculation
at tmax.

Thus we can restrict our efficiency analysis to the first
n � n∗ iterations in order to conduct a reasonable comparison
to tDMRG. Figures 7(b)–7(d) show the entanglement entropy,
bond dimension, and accumulated CPU time, respectively.
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The tDMRG data is plotted in real-time units t , whereas the
CheMPS results are displayed with a rescaled iteration number
n/a for better comparability. Again, the dashed vertical lines
indicate the iteration n∗/a of interest. First of all, we note that
the Chebyshev vectors at n∗ in both setups are slightly more
entangled than the time-evolved MPS [Fig. 7(b)], although
this is not reflected in the respective bond dimensions at
n∗ or tmax, respectively: The final time-evolved MPS has
a bond dimension D = 213, the corresponding Chebyshev
vectors in the b = 0 and b = 0.995 setup carry a somewhat
comparable number of many-body states (D = 188 and D =
218, respectively). This indicates that both methods require
very similar amounts of numerical resources in order to
reproduce the same spectral information. A comparison of
CPU times further confirms this, as tDMRG and b = 0.995
CheMPS require almost the identical amount of total CPU-
time, namely tCPU = 2.8 hours on a 8-core machine. The
CheMPS calculation in the b = 0 setup takes approximately
three times longer due to the larger number of iterations
necessary to reach the same time scale.

We have conducted this study only for a single model and
set of parameters, thus we cannot provide an unambiguous

answer to whether a spectral function is best represented in
terms of Fourier modes or Chebyshev functions. However, we
learned here that both methods are affected by the dynamical
entanglement growth in a very similar matter. Therefore,
it seems rather unlikely that one method can significantly
outperform the other. For this reason, we have only applied one
approach, namely tDMRG, to generate the results presented in
Secs. III B and III C. Our analysis would have to be extended to
other parameters and systems in order to give a fully conclusive
answer. For instance, we expect that tDMRG outperforms
CheMPS at finite T , since (i) the Liouvillian formulation of
CheMPS requires a factor a twice as large as in the T = 0
setup; (ii) the more efficient b = 1 setup, which aims to shift
the support of the spectral function close to the lower boundary
of the rescaled interval [−1,1], might not be appropriate
if finite temperatures shift the support to higher energies;
(iii) there exists no counterpart to time-translation invariance,
which allows us to effectively double the maximum time scale
in the tDMRG setup [51]. On the other hand, CheMPS might
be the preferred choice for zero-temperature calculations in
models with long-ranged interactions, where a Trotter-based
time evolution is no longer feasible.
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Mech.: Theor. Exp. (2004) P04005.
[15] F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, Phys. Rev. Lett.

93, 207204 (2004).
[16] A. E. Feiguin and S. R. White, Phys. Rev. B 72, 220401(R)

(2005).

[17] Z. Wang, J. Wu, S. Xu, W. Yang, C. Wu, A. K. Bera, A. T. M.
Nazmul Islam, B. Lake, D. Kamenskyi, P. Gogoi, H. Engelkamp,
A. Loidl, and J. Deisenhofer, arXiv:1512.01753.

[18] A. Holzner, A. Weichselbaum, I. P. McCulloch, U. Schollwöck,
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