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We study the low energy physics of a Kondo chain where electrons from a one-dimensional band interact
with magnetic moments via an anisotropic exchange interaction. It is demonstrated that the anisotropy
gives rise to two different phases which are separated by a quantum phase transition. In the phase with easy
plane anisotropy, Z2 symmetry between sectors with different helicity of the electrons is broken. As a
result, localization effects are suppressed and the dc transport acquires (partial) symmetry protection.
This effect is similar to the protection of the edge transport in time-reversal invariant topological insulators.
The phase with easy axis anisotropy corresponds to the Tomonaga-Luttinger liquid with a pronounced
spin-charge separation. The slow charge density wave modes have no protection against localization.
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Introduction.—One-dimensional systems present an
ideal platform for formation of charge density waves
(CDWs) [1]; the transport in clean systems is almost ideal
[2]. However, for realistic interactions and at low temper-
atures, even a weak disorder pins the CDW suppressing the
charge transport [3]. The ideal transport can be protected by
symmetries: a well-known example is the edge transport in
two-dimensional time-reversal invariant topological insula-
tors (TIs) [4–7]. The topologically nontrivial state of the
bulk and time-reversal symmetry leads to a lock-in relation
between the chirality and the spin of edge modes making
them helical [8]. As a result, the electron backscattering
must be accompanied by a spin flip; hence, the edge
transport becomes immune to effects of potential disorder.
Other processes which can suppress the ideal transport
include scattering by magnetic impurities [9] or inelastic
processes due to interactions [10–14]. All of them become
ineffective at low temperatures. The presence of (almost)
ballistic edge transport has been confirmed in state-of-the-art
experiments [15–18]. Hence, it is accepted that the ballistic
transport is protected by time-reversal symmetry and this
protection is removed when this symmetry is broken [19,20].
Helical boundary modes can exist in noninteracting

systems due to topological nontriviality of the bulk [21].
In this Letter, we show that helical modes may emerge in
interacting systems as a result of spontaneous symmetry
breaking. As an illustration, we study a model of Kondo
chain [22–26] consisting of band one-dimensional electrons
interacting with local spins; the Hamiltonian of this system is

Ĥ ¼ −t
X
n

ĉ†nþ1ĉn þ
X
m

Jaĉ
†
mσ̂aŜaðmÞĉm þ H:c: ð1Þ

ĉTn ≡ (ĉ↑ðnÞ; ĉ↓ðnÞ) are electron operators at lattice site n;
σ̂a are Pauli matrices (a ¼ x; y; z); ŜaðmÞ are components of
the spin-s operator located on lattice site m; t denotes the

overlap integral. Sites m constitute some subset of sites n,
which is not necessarily regular. We concentrate on the
regime of sufficiently high density of spins where the Kondo
effect is suppressed and the physics is determined mostly by
the exchange (RKKY) interaction [27]. The band is far from
half filling, the spins are quantum and the coupling constants
are much smaller than the bandwidth, sJa ≪ t. We will
consider the coupling which is isotropic in the XY plane:
Jx ¼ Jy ≡ J⊥.
Summary of the results.—The low energy (LE) behavior

of model Eq. (1) includes two distinct regimes correspond-
ing to the easy axis (EA), Jz > J⊥, and the easy plane (EP),
Jz < J⊥, anisotropy. In the first case, all quasiparticle
(fermionic) excitations are gapped. The transport is carried
by gapless collective modes. The CDW couples to a
potential disorder which is able to pin it and to block
the charge transport. The SU(2) symmetric point, Jz ¼ J⊥,
is the point of quantum phase transition into a phase with
spontaneously broken helicity. In the EP phase at T ¼ 0,
quasiparticles with a given helicity acquire a gap and the
other helical branch remains gapless. The charge transport
is carried by the gapless helical electrons and by the slow
collective excitations (spin-fermion waves). If the spin U(1)
symmetry is respected, the long range helical ordering
makes single-particle backscattering of the gapless modes
impossible as in the noninteracting TIs. This leads to
suppression of localization effects: the localization radius
becomes parametrically large and the dc transport acquires
a (partial) symmetry protection in finite but long samples.
Continuum limit.—The LE physics must be described in

a continuum limit. This requires us to single out smooth
modes. We linearize the electron spectrum and expand
operators ĉ in smooth chiral modes:

ĉ↑↓ðnÞ ¼ e−ikFξ0nR̂↑↓ðxÞ þ eikFξ0nL̂↑↓ðxÞ; x ¼ nξ0;

ð2Þ
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ξ0 is the lattice constant. The Lagrangian of the band
electrons becomes

Le ¼ Ψ†½Î ⊗ ðÎ∂τ − iτ̂zvF∂xÞ�Ψ;

vF ¼ 2tξ0 sinðkFξ0Þ; ð3Þ

τ is the imaginary time; the first space in the tensor product is
the spin one, the Pauli matrices τ̂a act in the chiral space;
Î ¼ diagð1; 1Þ; fvF; kFg are the Fermi velocity and momen-
tum; ΨT ¼ ðRT; LTÞ is the four-component fermionic field.
Contrary to Ref. [22], where the effects of forward

scattering at Jz ∼ t (of the Kondo physics) were considered,
we suggest that the LE physics in the dense limit with Ja ≪ t
(dominated by the RKKY interaction) is governed by
backscattering of the fermionic modes. It is described by

Lbs ¼ ρs
X

a¼x;y;z

Ja
X
m

e2ikFξ0mR†SaðmÞσ̂aLþ H:c:; ð4Þ

ρs denotes the dimensionless spin density. Lbs is expected to
lead to opening of the spectral gaps thus reducing the energy
of the electrons. The resulting physics is quite different from
that of Ref. [22].
We can eliminate the oscillatory factors in Eq. (4) by

absorbing them into the spin configurations which amounts
to separation of fast and slow spin variables [28]. The
standard parametrization of the spin by azimuthal and polar
angles, S ¼ sfsinðθÞ cosðψÞ; sinðθÞ sinðψÞ; cosðθÞg, with
the integration measure DfΩSg ¼ sinðθÞDfθgDfψg [33]
is not convenient for our purposes. Therefore, we change to
the rotating orthonormal basis e1;2;3 with e3 ¼ S=s and
decompose the new spin vector, Fig. 1: ~S ¼ ~S⊥ þ ~S∥,

~S∥

s
≡ e3 sin α∥;

~S⊥
s

≡ ½e1 cos α⊥ þ e2 sin α⊥� cos α∥;
ð5Þ

α⊥ ¼ 2kFξ0mþ αðxÞ. The orthonormality can be resolved
by choosing

e1 ¼ f− cosðθÞ cosðψÞ;− cosðθÞ sinðψÞ; sinðθÞg; ð6Þ

e2 ¼ fsinðψÞ;− cosðψÞ; 0g: ð7Þ

The integration measure for α, α∥ will be DfΩαg ¼
cosðα∥ÞDfα∥gDfαg, the total measure reads DfΩg ¼
DfΩαgDfΩSg. This does not result in overcounting the
degrees of freedom since we will find a scale separation
with two fast (massive α∥, θ) and two slow (massless α, ψ )
angles [35]. Verification of the scale separation and stability
of the chosen spin configuration will confirm self-
consistency of our approach.
Inserting the new parametrization in Eq. (4) and keeping

only the nonoscillatory terms, we find LE Lagrangian
Leff ¼ Le þ LðslÞ

bs þ LWZ where

LðslÞ
bs ¼ ~sρs

2
R†

�
J⊥

�
eiψsin2

�
θ

2

�
σ̂− − e−iψcos2

�
θ

2

�
σ̂þ

�

þ Jz sinðθÞσ̂z
�
Le−iα þ H:c:; ~s≡ s cosðα∥Þ;

ð8Þ

LWZ is the topological Wess-Zumino term [34,36]:

LWZ ¼ isρsξ−10 sinðα∥Þ½∂ταþ cosðθÞ∂τψ �: ð9Þ

The fermionic gaps become maximal at α∥ ¼ 0 and θ ¼ 0,
π=2, π. Thus, we expect three extrema of the action whose
stability depends on J⊥=Jz.
EA anisotropy, Jz > J⊥.—The term OðJzÞ dominates

and opens the gap in all fermionic modes. This can be
shown after removing the angles α, ψ from the back-
scattering term Eq. (8) by using the Abelian bosonization
[38,39]: we bosonize the fermions and shift bosonic phases:

~Φc ¼ Φc − α=2; ~Θs ¼ Θs − ψ=2; ð10Þ

fΦc;Θsg are the charge and the (dual) spin phases; ∂xΦ
is coupled to a charge source field [41]: Lh ¼ hc∂xΦc.
The shift, Eq. (10), generates hc∂xα=2 in Lh. Finally, we
can return to the fermionic variables:

LðslÞ ≃ Le þ LðslÞ
bs jα;ψ¼0 þ

X
2Φ¼α;ψ

LTLðΦ; vFÞ þ LWZ; ð11Þ

LTLðΦ; vÞ ¼ ½ð∂τΦÞ2 þ ðv∂xΦÞ2�=πv is the Lagrangian of
the Tomonaga-Luttinger Liquid (TLL) [42].
For fixed values of fθ; α∥g, the fermionic spectrum

consists of the four Dirac modes with the masses

FIG. 1 (color online). Transformation from the frame of the
vector S to that of ~S. Angles α∥;⊥ define the modulus of
the “transverse” component ~S⊥ and its rotation around the
“longitudinal” component ~S∥, respectively.
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m2
� ¼ ð~sρs=2Þ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2⊥cos2θ þ J2zsin2θ

q
� J⊥


2
: ð12Þ

Integrating out the gapped fermions, we get the contribu-
tion to the ground state energy:

EGS ¼ −
ξ0

2πvF

X
χ¼�

m2
χ ln½t=jmχ j� þ oðJ2⊥; J2zÞ: ð13Þ

If Jz > J⊥, EGS has minima at θ ¼ π=2, α∥ ¼ 0; small
fluctuations around the minima read

δEEA=E ≈ ðJ2z − J2⊥Þ cos2ðθÞ þ ðJ2z þ J2⊥Þ sin2ðα∥Þ; ð14Þ

E ≡ ln ðt=JÞðsρsÞ2ξ0=4πvF [43]. Using Eqs. (9) and (14)
and integrating over the Gaussian fluctuations of the angles,
we find parameters of LTLðαÞ which are renormalized due
to the coupling of the spin wave to the gapped fermions
[44]. The LE Lagrangian for the EA anisotropy is [45]

LEA ¼ LTLðψ ; vFÞ
4

þ LTLðα; vαÞ
Kα

þ LðEAÞ
h ;

vα
vF

¼ Kα

4
≪ 1: ð15Þ

LEA corresponds to two U(1)-symmetric TLL models with
the slow charge, α, and the fast spin, ψ , bosonic modes.
Breaking Z2 symmetry.—If Jz ≫ J⊥, then mþ ≃m−, all

fermionic modes have the gap ∼Jz. Mass m− progressively
shrinks towards the SU(2) symmetric point of the quantum
phase transition where m− ¼ 0; one subsystem of the
helical fermions becomes gapless and our approach looses
its validity. We leave a description of the SU(2) symmetric
point for future studies and consider instead the strong EP
anisotropy Jz ≪ J⊥.
EP anisotropy, Jz ≪ J⊥.—We put Jz → 0 and rewrite

Eq. (8) as a sum of helical contributions:

LðH1Þ
bs ¼ ~sρsJ⊥R†

↑cos
2ðθ=2Þe−iðψþαÞL↓ þ H:c: ð16Þ

LðH2Þ
bs ¼ −~sρsJ⊥R†

↓sin
2ðθ=2Þeiðψ−αÞL↑ þ H:c: ð17Þ

If θ≃ π=2, both helical sectors have gaps though the
coupling constant J⊥ is effectively decreased, sin2 ðθ=2Þ≃
cos2 ðθ=2Þ≃ 1=2. If θ≃ 0, π, only one helical sector
acquires the gap m ¼ mþjJz;α∥;θ¼0, and J⊥ is not sup-
pressed, either sin2 ðθ=2Þ≃ 1 or cos2 ðθ=2Þ≃ 1. Since the
contribution of the gapped fermions to EGS is negative and
quadratic in the gap, Eq. (13), θ ¼ π=2 yields the maximum
of the energy and two (degenerate) minima are θ ¼ 0, π.
Thus, the Z2 symmetry between the helical subsystems is
spontaneously broken. This confirms a quantum phase
transition at Jz ¼ J⊥ [46].

We consider the configuration θ≃ 0 where only LðH1Þ
bs

yields the femionic gap [47]. One can estimate that
contributions of the gapped and the gapless fermions to
fluctuations of EGS are of order ∼ðJ2⊥=vFÞsin2ðθ=2Þ and
∼ðJ2⊥=vFÞsin4ðθ=2Þ, respectively. The latter is subleading,
it is beyond our accuracy and must be neglected. Thus,
LðH2Þ
bs is irrelevant for the effective LE theory and must be

neglected too. The combination ψ − α becomes redundant;
ψ in the combination ψ þ α, Eqs. (9) and (16), can be
included into α: ψ þ α → α [48]. Now, we proceed very
similar to the EA case: (i) eliminate the shifted spin phase
α from LðH1Þ

bs by doing the transformation

~Φc ¼ Φc þ α=2; ~Θs ¼ Θs − α=2; ð18Þ

(ii) integrate out massive helical fermions and obtain the
fermionic energy close to its minima:

δEEP=E ≃ J2⊥½sin2ðθ=2Þ þ sin2ðα∥Þ=2�; ð19Þ

(iii) integrate out small quadratic fluctuations of angles
around the stationary value; (iv) bosonize gapless helical
fermions by using the Abelian phase ΦH. These steps yield
the effective Lagrangian for the EP case [44,45]:

LEP ¼
LTLðΦH; vFÞ

2
þ LTLðα; v0αÞ

K0
α

þ LðEPÞ
h ;

v0α
vF

¼ K0
α

4
≪ 1: ð20Þ

Similar to LEA, LEP corresponds to two U(1)-symmetric
TLL models with the fast, ΦH, and the slow, α, bosonic
modes. However, as we discuss below, the effective
theories with and without the helical symmetry have
different transport properties if a disorder is added.
We note that Eqs. (16) and (20) are similar to their

counterparts describing a helical edge mode in the TI with
an array of the Kondo impurities [19,20]. In our case,
however, this helical mode has emerged as a result of
spontaneous symmetry breaking.
Density correlation functions and disorder effects.—The

source terms,LðEAÞ
h ¼hc∂xα=2;L

ðEPÞ
h ¼ hcð∂xΦHþ∂xα=2Þ,

generate the charge density-density correlation function:
CEA ∝ h∂xα∂xαi, CEP ∝ ðh∂xΦH∂xΦHi þ h∂xα∂xαi=4Þ.
CEA;EP with Lagrangians LEA;EP correspond to the ideal
metallic transport. In the EA case, it is supported by the
slow CDW with the small compressibility Kα. CEP contains
the contribution from the helical quasiparticles with the
bare velocity and from the slow collective wave with the
small compressibility K0

α [49].
The coupling of backscattering spinless impurities to the

fermions is described by Vdis½g� ¼ gðxÞΨ†ðI ⊗ τ†ÞΨþ
H:c:; g is the smooth 2kF component of the scalar random
potential. We use the model of the Gaussian white noise:
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hg1;2idis ¼ 0; hgðx1Þg�ðx2Þidis ¼ Dδðx1 − x2Þ, assumingthat
thedisorder isweak,D≪ðm�;mÞvF, andgapsareunchanged.
After shifts Eqs. (10) and (18), g acquires the phase

factor: g → geiα=2. Thus, the backscattering impurities are
coupled to all gapless charge carriers. To figure out whether
this may lead to localization, we perform the disorder
averaging and integrate out the massive fermions [50]. The
relevant terms appear only in D2 order and have a different
form in EA and EP phases. In the first case, D2 couples
directly to expðiαÞ; in the EP phase, it couples to
Rþ
σ L−σ expðiαÞ. The latter fact is related to the impossibility

of single particle backscattering in the phase with broken
helicity. The power counting indicates the parametric
difference in the localization radius in different phases:
LðlocÞ
EA =LðlocÞ

EP ∼ KαðD=vFmÞ4=3 ≪ 1 with LðlocÞ
EP ∼ ðvF=mÞ

ðvFm=DÞ2.
Localization blocks the dc transport if a sample size is

large: L ≫ LðlocÞ. Thus, the ballistic transport in the phase
with broken helicity acquires the symmetry protection up to
the parametrically large scale LðlocÞ

EP . This conclusion holds
true as long as the U(1) symmetry in the spin sector is
respected. Breaking the U(1) spin symmetry allows the
direct backscattering of fermions and removes protection
of the ideal transport in the EP phase (cf. localization of
the helical edge modes of the TIs after introducing an
anisotropy in the XY plane [19]).
Finite temperature effects (clean case).— Previous cal-

culations were done for zero temperature. They can be
generalized for T ≠ 0 provided that T ≪ m�; m. Finite
temperature restores broken helical symmetry at Jz < J⊥
since thermal fluctuations produce domains with opposite
helicity. When the spin configuration interpolates between
the phaseswith different helicity there is an energy increase of
the order of the difference between the energy in the unstable
state (with θ≃ π=2) and the ground state energy (with θ≃ 0,
π). Thus, we can estimate the energy of the domain wall
as Ewall ∼m2ξ0=vF, cf. Eq. (13). The maximal number of
the domain walls is Lm=vF. If T ≪ Ewall, it becomes
exponentially suppressed: Nwall ∼ Lm=vF expð−Ewall=TÞ.
If Nwall > 1, the walls appear and block the quasiparticle
transport since the electrons with a given helicity aremassless
only in one domain and massive in the other (neighboring)
one. Hence, the electrons are reflected from domain bounda-
ries. An influence of the domain wall on the phase α is
reduced to a jump in theLuttinger parameterK0

αwhich cannot
affect the dc conductance [51]. Thus, the dc transport in the
phase with the broken helicity remains ballistic at finite
temperatures [52].
Validity.—The effective LE theory, Eqs. (15) and (20), is

valid at energies below the smallest fermionic gap,m− andm
for the EA and the EP anisotropy, respectively. Since m−
vanishes at the SU(2) symmetric point, the approach fails in
the vicinity of the quantum critical point. Quickly oscillating
contributions ∝ e�2ikFx, which we neglected, are generically
unable to change the physics at the large distances: If the

Kondo chain is close to incommensurability the quickly
oscillating exponentials can be treated as random variables
[23]. However, in the most interesting case of the broken
helicity, the amplitude of the oscillating terms is suppressed
in the vicinity of the classical spin configuration, θ≃ 0, as
∼ðξ0J2⊥=vFÞ sin4ðθ=2Þ [see the discussion of the derivation
of Eq. (20)] which is squared after averaging over the
random fluctuations, i.e., becomes negligible.
Conclusions.—We have demonstrated that the dc charge

transport in the Kondo chain model Eq. (1) with the U(1)
symmetry of spins remains ballistic in long samples,
L < LðlocÞ

EP , in the presence of the potential disorder when
the anisotropy of the exchange interaction is of the easy
plane type. Because of the spontaneous breaking of the Z2

symmetry, the charge carriers are quasiparticles possessing
a particular helicity (whose spin and chirality are locked)
and composite spin-fermion collective modes. In the
presence of the U(1) spin symmetry, all gapless modes
are protected from simple backscattering by the mechanism
similar to that in noninteracting TIs. We emphasize that the
symmetry protected transport in our model results from
interaction (i.e., many-body) effects instead of the coupling
to the noninteracting and topologically nontrivial bulk. In
the case of the easy axis anisotropy, the helical symmetry is
respected. The quasiparticles are fully gapped and transport
is carried solely by the collective modes, slow CDWs,
which do not possess the symmetry protection.

A.M. T. acknowledges the hospitality of Ludwig
Maximilians University where this work was done. A.M. T.
was supported by the U.S. Department of Energy (DOE),
Division of Materials Science, under Contract No. DE-
AC02-98CH10886. O.M. Ye. acknowledges support from
the DFG through SFB TR-12, and the Cluster of Excellence,
Nanosystems Initiative Munich. We are grateful to Vladimir
Yudson and Igor Yurkevich for useful discussions, and to
Dennis Schimmel for carefully reading the Letter and for his
participation in the derivation of the Wess-Zumino term.

[1] T. Giamarchi, Quantum Physics in One Dimension
(Clarendon; Oxford University Press, Oxford, 2004).

[2] A. Rosch and N. Andrei, Phys. Rev. Lett. 85, 1092 (2000).
[3] T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325 (1988).
[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[5] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[6] S.-Q. Shen, Topological Insulators: Dirac Equation in

Condensed Matters (Springer, New York, 2012).
[7] M. Franz and L. Molenkamp, Topological Insulators

(Elsevier Science, New York, 2013).
[8] C. Wu, B. A. Bernevig, and S. C. Zhang, Phys. Rev. Lett.

96, 106401 (2006).
[9] Y. Tanaka, A. Furusaki, and K. A. Matveev, Phys. Rev. Lett.

106, 236402 (2011).
[10] T. L. Schmidt, S. Rachel, F. von Oppen, and L. I. Glazman,

Phys. Rev. Lett. 108, 156402 (2012).

PRL 115, 216402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 NOVEMBER 2015

216402-4

http://dx.doi.org/10.1103/PhysRevLett.85.1092
http://dx.doi.org/10.1103/PhysRevB.37.325
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.106.236402
http://dx.doi.org/10.1103/PhysRevLett.106.236402
http://dx.doi.org/10.1103/PhysRevLett.108.156402


[11] V. Cheianov and L. I. Glazman, Phys. Rev. Lett. 110,
206803 (2013).

[12] J. I. Väyrynen, M. Goldstein, and L. I. Glazman, Phys. Rev.
Lett. 110, 216402 (2013).

[13] J. I. Väyrynen, M. Goldstein, Y. Gefen, and L. I. Glazman,
Phys. Rev. B 90, 115309 (2014).

[14] N. Kainaris, I. V. Gornyi, S. T. Carr, and A. D. Mirlin, Phys.
Rev. B 90, 075118 (2014).

[15] M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann,
L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318,
766 (2007).

[16] A. Roth, C. Brüne, H. Buhmann, L. W. Molenkamp, J.
Maciejko, X.-L. Qi, and S.-C. Zhang, Science 325, 294
(2009).

[17] I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 107,
136603 (2011).

[18] K. Suzuki, Y. Harada, K. Onomitsu, and K. Muraki, Phys.
Rev. B 87, 235311 (2013).

[19] B. L. Altshuler, I. L. Aleiner, and V. I. Yudson, Phys. Rev.
Lett. 111, 086401 (2013).

[20] O. M. Yevtushenko, A. Wugalter, V. I. Yudson, and B. L.
Altshuler, arXiv:1503.03348.

[21] B. A. Bernevig and T. L. Hughes, Topological Insulators
and Topological Superconductors (Princeton University
Press, Princeton, NJ, 2013).

[22] O. Zachar, S. A. Kivelson, and V. J. Emery, Phys. Rev. Lett.
77, 1342 (1996).

[23] G. Honner and M. Gulacsi, Phys. Rev. Lett. 78, 2180
(1997).

[24] H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys.
69, 809 (1997).

[25] E. Novais, E. Miranda, A. H. Castro Neto, and G. G.
Cabrera, Phys. Rev. B 66, 174409 (2002).

[26] M. Gulácsi, Adv. Phys. 53, 769 (2004).
[27] This statement means that the spin density is sufficiently

high so that the Kondo effect is cut by the gap
generated by backscattering terms in Ĥ, cf. Refs. [19,20].
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