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We show that the numerical renormalization group is a viable multi-band impurity solver for dynamical
mean-field theory (DMFT), offering unprecedented real-frequency spectral resolution at arbitrarily low
energies and temperatures. We use it to obtain a numerically exact DMFT solution to the Hund metal
problem for a three-band model on a Bethe lattice at 1=3 filling. The ground state is a Fermi liquid. The
one-particle spectral function undergoes a coherence-incoherence crossover with increasing temperature,
with spectral weight being transferred from low to high energies. Further, it exhibits a strong particle-hole
asymmetry. In the incoherent regime, the self-energy displays approximate power-law behavior for positive
frequencies only. The spin and orbital spectral functions show “spin-orbital separation”: spin screening
occurs at much lower energies than orbital screening. The renormalization group flows clearly reveal the
relevant physics at all energy scales.
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Introduction.—A widely-used method for dealing with
interactions in strongly-correlated electron systems and elec-
tronic structure calculations is dynamical mean-field theory
(DMFT) [1,2]. It treats the interplay between a given lattice site
(the “impurity”) and the rest of the lattice (the “bath”) as a
quantum impurity model with a self-consistently determined
hybridization function. Since DMFT’s performance depends
on that of the method used to solve this impurity model, much
effort has been invested over the years to develop ever more
powerful impurity solvers. Formulti-bandmodels, continuous-
time quantum Monte Carlo (CTQMC) methods appear to be
the current favorites in terms of versatility and performance [3].
However, they are not without limitations: sign problems
can occur, low-temperature calculations are costly, and
obtaining real-frequency spectra requires analytic continuation
of imaginary (Matsubara) frequency QMC data, which is
notoriously difficult. Thus, there is a continued need for real-
frequency impurity solvers suitable for multi-band DMFT
applications.
In this Letter, we show that the numerical renormaliza-

tion group (NRG) [4–6] is such a tool, offering unprec-
edented real-frequency spectral resolution at low energies.
NRG is the gold standard for impurity models, with
numerous previous DMFT applications (e.g., [7–13]) but,
so far, was limited to models with at most two bands.
However, recent technical progress [14–16] has now made
three-band calculations feasible [17–19].
We illustrate the potential of DMFTþ NRG by

studying the minimal model [20–22] of a three-band
“Hund metal” [23,24], which has both a Hubbard inter-
action U and a ferromagnetic Hund coupling J, with
Uð1Þch × SUð2Þsp × SUð3Þorb symmetry for its charge (ch),
spin (sp), and orbital (orb) degrees of freedom. Hund metals

are multi-orbital materials with broad bands which are
correlated via the Hund-J rather than the Hubbard-U inter-
action. Examples are iron pnictide and chalcogenide high-
temperature superconductors [23,25], ruthenates [26,27], and
other 4d transition metal oxides [21,28].
Early DMFT studies using CTQMC [3] as impurity solver

suggest that consequences of the Hund’s rule coupling
include (i) Fermi-liquid behavior at low energies [23]
and (ii) a coherence-incoherence crossover with increasing
temperature [23], relevant for various material systems
[27,29]. The incoherent regime is characterized by (iii) a
fractional power law for the imaginary part of the Matsubara
self-energy [20,26,30], and (iv) the coexistence of fast
quantum mechanical orbital fluctuations and slow spin
fluctuations [20]. However, since CTQMC can not reach
truly low temperatures, (i) could not be conclusively estab-
lished yet, and a more detailed understanding of (ii)–(iv) is
difficult to achieve based on imaginary-frequency data alone.
Our real-frequency DMFTþ NRG results definitively settle
these issues and yield further insights. For the parameters
used in our study, we find (i) a Fermi-liquid ground state;
a real-frequency one-particle spectral function showing (ii) a
coherence-incoherence crossover (driven by Hund J, not
HubbardU) with significant transfer of spectral weight from
low to high energies, and (iii) strong particle-hole asymme-
try, which leads to the above-mentioned apparent fractional
power laws; (iv) two-stage screening, where spin screening
occurs at much lower energies than orbital screening (“spin-
orbital separation”); and (v) zero-temperature spectral prop-
erties that are similarwith orwithoutDMFTself-consistency,
in contrast to Mott-Hubbard systems, where the DMFT self-
consistency opens a gap in the quasiparticle spectrum at large
interaction strength.
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Model.—Our three-band model has the Hamiltonian

Ĥ ¼
X

i

ð−μN̂i þ Ĥint½d̂†iν�Þ þ
X

hijiν
td̂†iνd̂jν; ð1aÞ

Ĥint½d̂†iν� ¼
3

4
JN̂i þ

1

2

�
U −

1

2
J

�
N̂iðN̂i − 1Þ − JŜ2

i : ð1bÞ

Here, d̂†iν creates an electron on site i of flavor (fl) ν, with
composite index ν ¼ ðmσÞ labeling its spin (σ ¼ ↑;↓) and
orbital (m ¼ 1; 2; 3). N̂i ¼

P
νd̂

†
iνd̂iν is the total number

operator for site i and Ŝi its total spin, with components
Ŝαi ¼

P
mσσ0 d̂

†
imσ

1
2
σασσ0 d̂imσ0 , where σα are Pauli matrices.

We study a Bethe lattice with nearest-neighbor hopping
amplitude t, used as energy unit (t ¼ 1). On-site inter-
actions are described by Ĥint [20]. The on-site Coulomb
interaction U penalizes double occupancy. The ferromag-
netic coupling J > 0 accounts for Hund’s first rule by
favoring a large spin per site. We choose the chemical
potential μ such that the filling per lattice site is one below
half-filling, hN̂ii≃ 2, inducive to an intricate interplay of
spin and orbital degrees of freedom.
Methods.—We use single-site DMFT to map the lattice

model onto a three-band Anderson-Hund model (AHM)
of the form ĤAHM ¼ εdN̂ þ Ĥint½d̂†ν� þ Ĥbathþhyb. Here, d

†
ν

creates a local (“impurity”) electron of flavor ν with energy
εd ¼ −μ, experiencing local interactions Ĥint, with total
number and spin operators N̂ and Ŝ defined analogously to
N̂i and Ŝi. The local site, on average, hosts two electrons
(nd ¼ hN̂i≃ 2), forming a spin triplet and orbital triplet
(the one hole relative to half-filling can be in one of three
orbital levels). The local electrons hybridize with a three-
band spinful bath,

Hbathþhyb ¼
X

kν

ðεkc†kνĉkν þ Vk½d̂†νĉkν þ ĉ†kνd̂ν�Þ; ð2Þ

with a hybridization function ΓðεÞ ¼ π
P

kjVkj2δðε − εkÞ
that fully characterizes the impurity-bath interplay. In
DMFT, ΓðεÞ has the role of the effective Weiss mean-field
and is determined self-consistently [1,2,31]. We studied
both the self-consistent AHM (SCAHM) and also, for
comparison, the pure impurity AHM (IAHM), without self-
consistency, using a flat density of states with half-
bandwidth D, ΓðεÞ≡ ΓΘðD − jεjÞ.
We use full-density-matrix NRG [42] exploiting non-

Abelian symmetries [15], both to solve the IAHM and for
each SCAHM iteration (for NRG details, see [31]). The key
idea of NRG, due to Wilson [4], is to discretize the bath’s
continuous spectrum logarithmically, map the model onto a
semi-infinite “Wilson” chain with exponentially decaying
hopping amplitudes, and exploit this energy-scale separa-
tion to iteratively diagonalize the model while discarding
high-energy states. This allows one to zoom in on
low-energy properties, at the expense of having only
coarse-grained resolution at high energies. Nevertheless,
NRG results are also accurate for spectral integrals even if

these include large energies, since they can be evaluated
using discrete, unbroadened NRG data.
Matsubara benchmark.—We illustrate this by bench-

marking NRG versus CTQMC [31], which treats the
bath as a continuum and has no bath discretization
issues. We used both methods to compute the self-energy
ΣðiωnÞ of the Matsubara correlator GðiωnÞ associated
with the retarded local correlator GRðωÞ ¼ hdν∥d†νiω. In
NRG, its spectral function is expressed in terms of discrete

data, AðωÞ ¼ −ð1=πÞImGRðωÞ ≃NRGPs asδðω − ξsÞ, hence,
GðiωnÞ ¼ R

dωAðωÞ=ðiωn − ωÞ ≃NRG P
s as=ðiωn − ξsÞ.

Figure 1 compares NRG and CTQMC results for ΣðiωnÞ
at T ¼ 0.002. The agreement is excellent, also, at large
frequencies [with relative deviations of≲2.5% for ImΣðiωnÞ
and ≲0.5% for ReΣðiωnÞ]. However, the numerical costs
differ vastly (≃102 versus 104 CPU hours) [31], since the
chosen temperature is challengingly low for CTQMC,
whereas NRG can access any temperature. Luttinger pin-
ning at zero frequency [1,43] is fulfilled within 1% for both
methods [31]. ImΣðiωnÞ displays fractional power-law
behavior for intermediate frequencies (0.05≲ ωn ≲ 0.5),
as found in [20,26], and Fermi-liquid behavior (∝ ωn) for
very low frequencies, as found in [23,27], but not in [26].
Coherence-incoherence crossover.—We now turn to

real-frequency properties [Fig. 2]. At zero temperature,
the local spectral function AðωÞ of the SCAHM shows a
well-defined low-energy quasiparticle peak and −ImΣRðωÞ
a dip reaching down to zero [insets of Figs. 2(a) and 2(b)].
This indicates that strong Kondo-type screening correla-
tions exist between bath and local spin and orbital degrees
of freedom. At higher energies, AðωÞ also shows incoher-
ent, rather flat particle-hole asymmetric side peaks, that
reflect charge fluctuation.
With increasing temperature, a coherence-incoherence

crossover occurs: the quasiparticle peak first weakens and
then gives way to a pseudogap [Fig. 2(a)]; concurrently,
the dip in −ImΣRðωÞ is first smeared out into a broader
minimum, which then changes into a maximum [Fig. 2(b)].

(b)(a)

FIG. 1 (color online). Benchmark comparison of NRG and
CTQMC for the three-band SCAHM. (a) Imaginary and (b) real
part of the self-consistently converged self-energy as a function of
Matsubara frequencies. Grey lines in (a) are power-law fits to low
and intermediate-frequency data, respectively. The inset of (a)
shows ImΣðiωnÞ on a linear scale.
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During this process, quasiparticle weight is transferred
from low to high energies, in a way reminiscent of recent
photoemission measurements [44–46] (see Fig. S-4 in
[31]). Note that the spectral weight near ω≃ 0 remains
nonzero at all temperatures, implying that metallic behavior
persists for the parameters studied here. The evolution of
these features to those of the Mott transition that occurs
for larger values of U is left for future investigation.
Since the SCAHM is based on an impurity model, it is

instructive to study a corresponding IAHM, with parameters
tuned to yield a similar spectral function at T ¼ 0 [Figs. 2(c)
and 2(d)]. Likewise, it features a large low-energy (Kondo)
peak that weakens with increasing temperature, though no
pseudogap occurs. This shows that the T ¼ 0 spectral pro-
perties of the SCAHM are governed by the impurity physics
of the IAHM. The transfer of spectral weight with increasing
T is driven by Hund J for both IAHM and SCAHM
(see Fig. S-2 of [31]), and for the latter, it is amplified by
DMFT self-consistency [compare Figs. 2(a) and 2(b)].
Particle-hole asymmetry.—Next, we exploit the power of

NRG to zoom in to arbitrarily low energy scales: In Figs. 3(a)
and 3(b), we replot, on a logarithmic scale, the data [black
(red) for SCAHM (IAHM)] from Figs. 2(a)–2(d) for
AðωÞ and ImΣRðωÞ at T ¼ 10−8. For comparison, the right
columnof Fig. 3 again shows results for the IAHM,but using
parameters that yield smaller crossover scales (defined
below), to better separate the low-energy features associated
with spin and orbital screening from high-energy features
associatedwith charge fluctuations. Note, again, the striking
qualitative similarity between the SCAHM (black) and
IAHM (red or blue) spectra – clearly, for T ¼ 0, DMFT
self-consistency plays no major role.

With decreasing temperature, the quasiparticle peaks
in Figs. 2(a) and 2(c) show an increasing particle-hole
asymmetry (which is not surprisingly away from half-
filling), which at T ¼ 0 is very pronounced: in Figs. 3(a)
and 3(d), for AðωÞ, the thick (ω < 0) lines show a
shoulderlike structure for intermediate frequencies
(between the vertical solid and dashed lines), while the
thin (ω > 0) lines do not; and in Figs. 3(b) and 3(e), for
ImΣRðωÞ, the thick lines show a plateaulike structure,
whereas the thin lines show approximate ∼ωα power-law
behavior (with nonuniversal α). For the Matsubara
self-energy obtained via the Hilbert transform

(a) (c)

(b) (d)

FIG. 2 (color online). (a) The local spectral function AðωÞ and
(b) the imaginary part of the retarded self-energy, ImΣRðωÞ, for
the SCAHM, plotted versus frequency for four temperatures.
Insets show a larger frequency range for T ¼ 10−8. (c)–(d) Same
as in (a) and (b), but for an IAHM.

(d)(a)

(b) (e)

(c) (f)

(g) (h)

FIG. 3 (color online). (a)–(f) Spin-orbital separation in real-
frequency, ground state correlators. The left column uses the same
parameters and color code as Fig. 2 for the SCAHM (black) and
IAHMwith ðΓ; DÞ ¼ ð0.778; 0.5Þ (red). For comparison, the right
column shows IAHM results with ðΓ; DÞ ¼ ð0.200; 1.0Þ (blue),
yielding smaller crossover scales. (a) and (d) The local spectral
functions, (b) and (e) the local self-energy, and (c) and (f) the spin
and orbital susceptibilities, χ00sp (solid) and χ00orb (dashed). We use
a logarithmic frequency scale, with thick (thin) lines for ω < 0
(ω > 0). Insets show data on a linear scale. In all panels, solid
(dashed) vertical lines mark the spin (orbital) Kondo scale, Tsp

K
(Torb

K ). Grey guide-to-the-eye lines indicate Fermi-liquid power
laws (solid) or apparent fractional power laws (dashed). Inset to (f):
Kondo scales Tsp

K (solid) and Torb
K (dashed) for the IAHM, plotted

as a function of nd. (g) and (h) show NRG eigenlevel flow
diagrams for the SCAHM and IAHM of panels (a)–(c) and (d)–(f),
respectively: the rescaled energies of the lowest-lying eigenmul-
tiplets of a Wilson chain of (even) length k are plotted versus its
characteristic level spacing ωk ∝ Λ−k=2 (see text). Numbers above
lines give multiplet degeneracies, Q their symmetry labels.
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ΣðiωnÞ ¼ −ð1=πÞ R dωImΣRðωÞ=ðiωn − ωÞ, the asymmet-
ric contributions from the power law and shoulder in
ImΣRðω≷0Þ conspire in such a way that ImΣðiωnÞ shows
an apparent fractional power law, but ReΣðiωnÞ does not
[Figs. 1(a) and 1(b)]. Conversely, this example illustrates
that care is due when drawing real-frequency conclusions
from imaginary-frequency power laws: if one is present
only for ImΣðiωnÞ, but not for ReΣðiωnÞ (as in [20,26]),
then ImΣRðωÞ need not show pure power-law behavior.
Spin-orbital separation.—Next, we elucidate the

screening of local spin and orbital degrees of freedom
by the bath of conduction electrons. To this end,
Figs. 3(c) and 3(f), respectively, show the imaginary part
ðχ00Þ of the dynamical susceptibilities of the spin and
orbital operators for the impurity site, χsp ¼ 1

3

P
αhŜα∥Ŝαiω

and χorb ¼ 1
8

P
ahT̂a∥T̂aiω, with orbital operators T̂a ¼P

mm0σd̂
†
mσ

1
2
τamm0 d̂m0σ , where τa are the SU(3) Gell-Mann

matrices, normalized as Tr½τaτb� ¼ 2δab. Both χ00sp and χ00orb
exhibit a peak with (nearly) power-law flanks, character-
istic of Kondo screening of the local spin and orbital
degrees of freedom. Strikingly, for both SCAHM and
IAHM the peak for χ00sp occurs at a much lower energy
and is much higher than for χ00orb. We take the peak positions
to define the spin and orbital Kondo scales, Tsp

K and Torb
K

(vertical solid and dashed lines). Tsp
K acts as the coherence

scale below which Fermi-liquid behavior [ImΣRðωÞ ∝ ω2,
χ00sp;orb ∝ ω, see Figs. 3(b)–3(f), grey lines] sets in. The
SUð2Þsp and SUð3Þorb crossover scales differ strongly,
Tsp
K ≪ Torb

K , because the Kondo temperature for an
SUðNÞ Kondo model scales as lnTK ∼ −1=N [47]. This
implies two-stage screening, with spin screening occurring
at significantly lower energies than orbital screening. This
“spin-orbital separation”, featuring a very small coherence
scale and an intermediate regime with screened orbital
degrees of freedom coupled to slowly fluctuating, large
spins, was first anticipated in Ref. [47] and, more recently,
discussed qualitatively in Refs. [21,22]. Its explicit dem-
onstration here is a central result of this Letter.
The inset of Fig. 3(f) depicts Tsp

K and Torb
K for the IAHMas

a function of the filling nd. For nd ≃ 1, where the bare
impurity’s ground state has SU(6) symmetry also for J ≠ 0,

Tsp
K ≃ Torb

K ≃ TSUð6Þ
K . As nd increases from 1 to 2, Tsp

K and
Torb
K split apart if J ≠ 0, indicating that spin-orbital separa-

tion sets in. (See, also, Ref. [31], Fig. S-3.) As nd continues
to increase towards 3, Tsp

K drops below the lowest relevant
energy scale and Torb

K becomes very large (≳D), reflecting
the fact that, for half-filling, the orbitals form an orbital
singlet from the outset. In this sense, nd ≃ 2 is special: there,
conditions are optimal for the Hund coupling to align two
spins in different orbitals without forming an orbital singlet.
RG flow.—In RG terms, the two-stage screening dis-

cussed above is associated with the RG flow between three
fixed points, describing high, intermediate, and low-energy
excitations. Their effective fixed point Hamiltonians have

ground state multiplets whose spin × orbital structure is
triplet × triplet, triplet × singlet, and singlet × singlet,
implying an impurity contribution to the ground state
entropy of ln(9), ln(3), and ln(1), respectively (see
Fig. S-5 in [31]). The RG flow between these fixed points
can be visualized via NRG eigenlevel flow diagrams
[Figs. 3(g) and 3(h)]. Technically, they show how the
lowest-lying rescaled eigenlevels of a length-k Wilson
chain evolve with k, where “rescaled” means given in
units of ωk ∝ Λ−k=2 (as defined in [6]), where Λ > 1 is a
discretization parameter [31]. Conceptually, these levels
represent the finite-size spectrum of the impurityþ bath
put in a spherical box of radius Rk ∝ Λk=2, centered on the
impurity [4,48]: as k increases, the finite-size level spacing
ωk ∝ 1=Rk decreases exponentially. The corresponding
flow of the finite-size spectrum is stationary (k indepen-
dent) while ωk lies within an energy regime governed by
one of the fixed points but changes when ωk traverses a
crossover between two fixed points.
Figures 3(g) and 3(h) show this RG flow for the SCAHM

and the IAHM, revealing similar behavior for both [49].
We label multiplets by their Uð1Þch × SUð2Þsp × SUð3Þorb
symmetry labels, Q ¼ ½q; 2S; q1q2�; here q denotes particle
number relative to half-filling, S spin, and ðq1q2Þ an SU(3)
irreducible representation, identified by a Young diagram
with q1 þ q2 (q2) boxes in its first (second) row. The flow of
the lowest-lying levels reveals two crossover scales,Torb

K and
Tsp
K (whose spacing, though, is too small for the level flow

in between to become stationary [50]). As ωk drops below
Torb
K , orbital screening sets in, favoring orbital singlets

[ðq1q2Þ ¼ ð00Þ], hence, other multiplets rise in energy.
Similarly, as ωk drops below Tsp

K , spin screening sets in,
favoring spin singlets and pushing upmultiplets with S ≠ 0.
For ωk ≪ Tsp

K , the ground state is a spin and orbital singlet
[Q ¼ ð0; 0; 00Þ]. We have checked that its excitation spec-
trum can be interpreted in terms of noninteracting single-
particle excitations, thus confirming its Fermi-liquid nature.
Conclusions.—We have demonstrated the potential of

DMFTþ NRG as a real-frequency method to treat multi-
orbital systems, with no need for analytic continuation.
Applied to the simplest model of a three-bandHundmetal, it
revealed subtle spectral features which aremanifestly differ-
ent from those of Mott-Hubbard systems, and which can be
probed in photoemission and STM spectroscopies.
Our work is a first step towards using LDAþ DMFTþ

NRG to calculate ac and dc transport properties in strongly
correlated materials. Such applications will typically involve
less orbital symmetries than themodel studiedhere, but could
be treated using the recent “interleaved” NRG approach of
[16]. The latter yields results of comparable accuracy and
efficiency as when symmetries can be exploited [51].
A key advantage of NRG is its ability to iteratively

uncover the system’s RG flow from high to low energies,
revealing the relevant physics at each energy scale. In the
context of Mott-Hubbard systems, RG ideas have been very
fruitful even in very approximate implementations [52–54].
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For the present Hund metal, the numerically exact RG flow
achieved via DMFTþ NRG revealed a clear, simple
picture of the crossover from the incoherent to the coherent
Fermi-liquid regime: two-stage screening of first orbital,
then spin degrees of freedom. Using DMFTþ NRG to gain
this type of RG understanding of real material properties
would be a worthwhile goal for future research.
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