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We generalize Nozières’ Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the
single-impurity Anderson model. In addition to the electrons’ phase shift at the Fermi energy, the low-energy
Fermi-liquid theory is characterized by four Fermi-liquid parameters: the two given by Nozières that enter to
first order in the excitation energy, and two additional ones that enter to second order and are needed away
from particle-hole symmetry. We express all four parameters in terms of zero-temperature physical observables,
namely the local charge and spin susceptibilities and their derivatives with respect to the local level position.
We determine these in terms of the bare parameters of the Anderson model using Bethe ansatz and numerical
renormalization group (NRG) calculations. Our low-energy Fermi-liquid theory applies throughout the crossover
from the strong-coupling Kondo regime via the mixed-valence regime to the empty-orbital regime. From the
Fermi-liquid theory, we determine the conductance through a quantum dot symmetrically coupled to two leads
in the regime of small magnetic field, low temperature, and small bias voltage, and compute the coefficients of
the ∼B2, ∼T 2, and ∼V 2 terms exactly in terms of the Fermi-liquid parameters. The coefficients of T 2, V 2, and
B2 are found to change sign during the Kondo to empty-orbital crossover. The crossover becomes universal in
the limit that the local interaction is much larger than the level width. For completeness, we also compute the
shot noise and discuss the resulting Fano factor.
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I. INTRODUCTION AND SUMMARY

A. Introduction

The single-impurity Anderson model, originally introduced
to describe d-level impurities such as Fe or Mn in metallic
alloys [1–3], may well be one of the most intensely studied
models in condensed matter physics, since it covers a rich
variety of behaviors and nonperturbative effects, including
spin formation, mixed-valence physics, and Kondo screening.
Indeed, various extensions of the Anderson model underlie
our understanding of correlated metals and superconductors,
Mott insulators [4], non-Fermi-liquid systems [5], and heavy
fermion materials [6].

The Anderson model has also emerged as a standard tool
to describe Coulomb blockade in electron transport through
quantum dot nanodevices [7,8]. Since quantum dots can
experimentally be probed under nonequilibrium conditions,
this opened a new chapter in the study of the Anderson
model, involving its properties in the context of nonequi-
librium transport. This raised novel questions, not relevant
for impurities in bulk systems, involving the behavior of the
nonlinear conductance through a quantum dot as a function of
source-drain bias. To date, no exact results are available for
the nonlinear conductance through a quantum dot described by
an Anderson model away from its electron-hole symmetrical
point.

In the present paper, we fill this gap, albeit only at low
energies, by developing a Fermi-liquid (FL) theory for the
low-energy behavior of the asymmetric Anderson model. The
theory is similar in spirit to the FL theory developed by
Nozières for the Kondo model, but employs two additional FL

parameters, whose form had not been established up to now.
While these parameters do not influence quantities such as the
Wilson ratio, they are necessary to determine nonequilibrium
transport properties such as shot noise or the nonlinear
conductance discussed here. We show how to express all FL
parameters of our theory in terms of the zero-temperature,
equilibrium values of physical quantities such as the charge
and spin susceptibilities and the linear conductance. Such
a Fermi-liquid theory is useful, because it offers an exact
description of the system’s low-energy excitations, induced,
e.g., by a small temperature or a nonequilibrium steady-state
transport due to a small source-drain voltage. In this way,
knowledge of ground-state properties can be elegantly used to
make exact predictions about low-lying excitations.

B. Anderson model basics

In its simplest form, the Anderson model consists of a
single spinful interacting level of energy εd and occupation
n̂d = n̂d↑ + n̂d↓, described by the simple Hamiltonian,

Hd = εd n̂d + U

2
n̂2

d , (1)

which is coupled by a tunneling rate 2� to the Fermi sea
of spinful conduction electrons. In the presence of a local
magnetic field, the level is Zeeman split by an additional
term (n̂d↑ − n̂d↓)B/2 (we use units where the Lande factor
times Bohr magneton give gμB = 1). In the nonequilibrium
context of nanodevices—also discussed here—the level may
be coupled to several leads characterized by different tunneling
rates and Fermi energies. As mentioned before, this simple
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model exhibits a surprisingly rich behavior. In particular, in
the limit of small � and a single electron on the level, i.e.,
an average charge nd = 〈n̂d〉 ≈ 1, a local magnetic moment is
formed on the level. In this “Kondo limit,” formally achieved
for [9]

εd = −U/2, U/� � 1, (2)

the Anderson model maps onto the Kondo model at small
energies [10] and accounts for the Kondo effect [3,11], i.e.,
the dynamical screening of the spin of this localized electron
at low temperatures.

Despite being the realm of strong correlations, the low-
energy structure of the screened Kondo state can be captured
by simple means. Following Wilson’s solution of the Kondo
model by the numerical renormalization group [12], Nozières
realized that the low-temperature behavior of the Kondo
model can be described as a local Fermi liquid, and can
be understood in terms of weakly interacting quasiparticles.
He formulated an effective Fermi-liquid theory for these,
in terms of the phase shift that a quasipaticle incurs when
scattering off the screened singlet [13]. This phase shift, say
δσ (ε,nσ ′ ), depends not only on the kinetic energy ε and spin
σ of the quasiparticle, but also on the entire distribution
function nσ ′(ε′) of the quasiparticles with which it interacts.
Nozières expanded this phase shift to leading order in ε and
the deviation δnσ ′ (ε′) of the quasiparticle distribution function
from its ground-state form, and viewed the two expansion
coefficients as phenomenological parameters, α1 and φ1, called
Fermi-liquid parameters. These parameters can be viewed as
coupling constants in an effective Fermi-liquid Hamiltonian,
which, when treated in the Hartree approximation, generates
the phase shifts. The parameters α1 and φ1 can be expressed in
terms of zero-temperature physical observables by exploiting
the fact that the phase shifts determine, via the Friedel sum
rule, the local charge, and magnetization at zero temperature.
In this way, both α1 and φ1 are found to be proportional to
the zero-temperature impurity spin susceptibility χs , whose
inverse defines the Kondo temperature TK , the characteristic
low-energy scale of the Kondo model.

Using the resulting quasiparticle Fermi-liquid (quasipar-
ticle FL) theory, Nozières [13] was able to reconstruct
all essential low-temperature characteristics of the Kondo
model, such as the value of the anomalous Wilson ratio
(the dimensionless ratio of the impurity’s contribution to the
susceptibility and to the linear specific heat coefficient), R = 2
(see Ref. [12]), or the quadratic temperature and magnetic field
dependence of the resistivity.

Independently, Yamada and Yoshida developed a diagram-
matic Fermi-liquid theory [14]: They reproduced the above-
mentioned features within the Anderson model by means
of a perturbative approach and demonstrated by using Ward
identities that they hold up to infinite order in U .

Both the quasiparticle and the diagrammatic Fermi-liquid
approaches proved to be extremely useful. The diagrammatic
FL approach has been extended to orbitally degenerate ver-
sions of the Anderson model [15–18] (see also the interaction
between two impurities [19]), and to out of equilibrium [20],
and led to the construction of the renormalized perturba-
tion theory [3,21,22] (see also Ref. [23]) and its applica-
tion to various extensions of the Anderson model [24–26].

Nozières’ quasiparticle FL approach has been widely used to
study nonequilibrium transport in correlated nanostructures
described by the Kondo model or generalizations thereof
[27–34]. In particular, the effective Fermi-liquid Hamiltonian
of the Kondo model was used to calculate the leading
dependence of the conductance on temperature, bias voltage,
and magnetic field, and to determine the coefficients of
the leading T 2/TK , V 2/T 2

K , and B2/T 2
K terms, say cT , cV ,

and cB . These Fermi-liquid transport coefficients turn out
to be universal numbers, because for the Kondo model the
zero-energy phase shift δ0 has a universal value, δ0 = π/2.

Surprisingly, Nozières’ quasiparticle Fermi-liquid theory
has not yet been extended to the case of the Anderson model
(except for the special case of electron-hole symmetry [35]),
although this model has a Fermi-liquid ground state in all
parameter regimes [36,37]. The reason has probably been
that such a theory requires additional Fermi-liquid parameters,
called φ2 and α2 below, and no strategy was known to relate
these to physical observables. In this work, we fill this gap
and develop a comprehensive Fermi-liquid approach to the
Anderson model, applicable also away from particle-hole
symmetry [38,39]. Our strategy is a natural generalization
of that used by Nozières for the Kondo model. We develop
an effective quasiparticle theory characterized by four Fermi-
liquid parameters (α1, φ1, α2, and φ2), and use these to expand
the phase shifts of the quasiparticle systematically as a function
of the quasiparticles’ energy and distribution. Using the Friedel
sum rule, we express these Fermi-liquid parameters in terms of
four zero-temperature physical parameters, namely the local
charge and spin susceptibilities, χc and χs , and their derivatives
χ ′

c and χ ′
s with respect to the local level position εd . We then

use the resulting Fermi-liquid Hamiltonian for the Anderson
model to calculate the conductance to quadratic order in
temperature, bias voltage, and magnetic field, in a similar
manner as for the Fermi-liquid Hamiltonian for the Kondo
model. However, the Fermi-liquid transport coefficients cT , cV ,
and cB are no longer universal, but depend on χc, χs , χ ′

c, χ ′
s and

the zero-energy phase shift δ0, all of which are functions of εd .
For completeness, we also compute the current noise to third
order in the voltage. We calculate these functions explicitly by
using Bethe ansatz and NRG [12,37]. We thus obtain explicit
results for the εd dependence of cT , cV , cB and the current
noise throughout the entire crossover from the strong-coupling
Kondo regime (−U + � � εd � −�) via the mixed-valence
regime (−� � εd � �) to the empty-orbital regime (εd � �).

C. Summary and overview of main results

In this subsection, we gather the main ideas of our approach
and its main results in the form of an executive summary.
Details of their derivation are presented in subsequent sections.

We shall focus on the quantum dot configuration connected
symmetrically to two lead reservoirs. In this case, the level
on the dot couples only to the “symmetrical” combination
of electronic states in the leads. Correspondingly, the Fermi-
liquid theory can be constructed in terms of quasiparticles
in “even” and “odd” channels, b and a, respectively [33].
Since the “odd” quasiparticles do not hybridize with the d

level, the effective low-energy Fermi-liquid Hamiltonian can
be constructed solely from the “even” quasiparticles, and is
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given to leading and subleading order by

HFL =
∑

σ

∫
ε

(ε − σB/2) b†εσ bεσ + Hα + Hφ + . . . ,

Hα = −
∑

σ

∫
ε1,ε2

[
α1

2π
(ε1 + ε2) + α2

4π
(ε1 + ε2)2

]
b†ε1σ

bε2σ ,

Hφ =
∫

ε1,...,ε4

[
φ1

π
+ φ2

4π

(
4∑

i=1

εi

)]
: b

†
ε1↑bε2↑b

†
ε3↓bε4↓ : ,

(3)

where B is the magnetic field. Here α1, φ1, α2, and φ2 are
the four Fermi-liquid parameters. The form of Eq. (3) can be
justified rigorously using conformal field theory arguments as
discussed in the Supplemental Material [40]. The operators
b†εσ here create incoming single-particle scattering states of
kinetic energy ε and spin σ , and incorporate already the
zero-temperature phase shift δ0 experienced by electrons at the
Fermi energy, ε = 0. The term Hα in this expansion accounts
for energy dependent elastic scattering, while the terms in Hφ

describe local interactions between the quasiparticles. In the
Kondo model, charge fluctuations are suppressed, and the low-
energy theory exhibits electron-hole symmetry under the trans-
formation b†εσ ↔ b−εσ . In the presence of such symmetry, the
parameters α2 and φ2 must vanish, since their presence would
violate electron-hole symmetry. Furthermore, as shown by
Nozières [13], the parameters α1 and φ1 are equal in the Kondo
model. Therefore the Kondo model’s effective FL theory (3)
is characterized by a single Fermi-liquid scale E∗, defined as

E∗ ≡ π

4α1
, (4)

and identified as the Kondo temperature, E∗ = TK . We
use units in which kB = 1. In contrast, in the generic
Anderson model, three of the four Fermi-liquid parameters
are independent (more precisely, each of them is a function
of three variables, �, and the dimensionless ratios εd/U

and εd/�), and therefore the low-energy behavior cannot be
characterized by a single Fermi-liquid scale. Nevertheless,
we shall still use Eq. (4) to define the characteristic energy
scale E∗ and express physical quantities in terms of it. We
emphasize that whereas the calculation of Nozières accounted
only for local spin excitations, our approach includes both
spin and charge fluctuations and allows us to capture the
mixed-valence regime and smoothly interpolate between the
Kondo and Coulomb blockade regions.

To make use of the Fermi-liquid theory in its full power, we
shall determine the Fermi-liquid parameters in Eq. (3) in terms
of the bare parameters of the Anderson model, U , εd , and �. To
this end, we shall first demonstrate that the four FL parameters
of the Anderson model are directly related to zero-temperature
physical observables, and can be expressed solely in terms of
the local charge (χc) and spin (χs) susceptibilities of the Ander-
son model and their derivatives (χ ′

c and χ ′
s) with respect to εd ,

α1

π
= χs + χc

4
,

α2

π
= −3

4
χ ′

s − χ ′
c

16
, (5a)

φ1

π
= χs − χc

4
,

φ2

π
= −χ ′

s + χ ′
c

4
. (5b)
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FIG. 1. (Color online) Fermi-liquid parameters, α1,2 (dashed
line) and φ1,2 (dash-dotted line), in units of 1/� (or 1/�2), as
functions of (εd + U/2)/� for U = 5�, calculated from Eq. (5), with
the susceptibilities occurring therein extracted from the Bethe ansatz
computations. Charge degeneracy occurs for εd + U/2  2.5�. The
thin continuous lines were computed using the analytical formulas,
Eqs. (26) and (27), valid in the Kondo regime. We also include the
zero-energy phase shift δ0 (dashed line) in the top panel, obtained
from the Friedel sum rule Eq. (22) (at B = 0) and the Bethe ansatz
calculation of nd .

The expressions for α1 and φ1 were known [3,14,21] (see
Sec. S-I in [40]); those for α2 and φ2 are central results
of this work. We then determine the FL parameters from
these relations, by computing the susceptibilities χc(εd,�,U )
and χs(εd,�,U ) from NRG [12,37] and, complementarily,
by computing the Bethe ansatz solution to the Anderson
model [41,42].

Typical results of our computations are shown in Fig. 1,
where we display the four Fermi-liquid parameters for
moderately strong interactions, U/� = 5, as a function of
the level’s position. In agreement with the discussion above,
the parameters α2 and φ2 vanish at the electron-hole sym-
metrical point, εd = −U/2, and are antisymmetrical with
respect to it, while the Fermi-liquid parameters α1 and φ1

display a symmetrical behavior. In the local-moment regime,
〈nd〉 ≈ 1, charge fluctuations are suppressed, and the charge
susceptibility χc can be neglected in the expression of the
Fermi-liquid parameters. Here we can derive an analytical
approximation for them [Eqs. (26) and (27)] by making use
of the Bethe ansatz expression for the spin susceptibility
in the local-moment regime, χs ∼ T −1

K . Although Eqs. (26)
and (27) are expected to be valid only for U � �, even for the
moderate interaction of Fig. 1, surprisingly good agreement
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with the complete solution is found for |εd + U/2| � U/2.
In the opposite limit of an almost empty orbital, 〈nd〉 ≈ 0,
interactions are negligible, and transport is well described by
a noninteracting resonant level model. The crossover from the
local-moment to the empty-orbital regime becomes universal
for large values of U , for which the dimensionless Fermi-liquid
parameters, � α1, � φ1, �2 α2, and �2 φ2 can be expressed
as universal functions of εd/�.

Equipped with our Fermi-liquid theory and with the four
Fermi-liquid parameters, we then study a quantum dot device,
coupled symmetrically to two leads [43], and derive exact
results for the FL transport coefficients, cV , cT , and cB , char-
acterizing the conductance at low bias voltage, temperature,
and magnetic field,

G(V,T ,B) − G0 ≈ −2e2/h

(E∗)2
(cT T 2 + cV (eV )2 + cBB2),

(6)
with G0 = (2e2/h) sin2(δ0) denoting the linear conductance of
the quantum dot at zero temperature and zero magnetic field.
In terms of the Fermi-liquid parameters, the coefficient cB can
be expressed, e.g., as

cB = −π2

64

(α2 + φ2/4) sin 2δ0+(α1 + φ1)2 cos 2δ0

α2
1

. (7)

The other two coefficients cV and cT are expressed by similarly
complex expressions, given by Eqs. (50) and (51) in Sec. IV B.
The value of these coefficients can be trivially determined
in the empty-orbital regime, where the following asymptotic
values are obtained,

ceo
T = −π4

16
, ceo

V = −3π2

64
, and ceo

B = −3π2

64
. (8)

Moving to the Kondo regime, the coefficients cT and cV change
sign and their ratio changes by a factor of 2 as compared to the
empty-orbital regime,

cK
T = π4

16
 6.009, cK

V = 3π2

32
 0.925, (9)

reflecting the emergence of strong correlations in the Kondo
regime. In hindsight, this sign change may be not very
surprising: In the Kondo regime, the perfect conductance
through the Kondo resonance is reduced by a finite temperature
(bias), destroying Kondo coherence, while in the empty-orbital
regime a gradual lifting of the Coulomb blockade is expected
as the temperature or bias voltage is increased.

cB also changes sign and its ratio with cV increases by a
factor 3/2 in the Kondo regime, where

cK
B = π2

16
 0.617. (10)

The evolution of the normalized coefficients cV /cK
V , cB/cK

B ,
and cT /cK

T is shown in Fig. 2(a) for U/� = 10 as a function
of the level’s position εd , using Bethe ansatz computations.
Susceptibilities can also be computed from NRG and Fig. 2(b)
illustrates the excellent agreement between Bethe ansatz and
NRG on one transport coefficient. Importantly, all three
transport coefficients can be, in principle, extracted from
transport measurements, and thus the predictions of this
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FIG. 2. (Color online) (a) Normalized Fermi-liquid transport co-
efficients ĉB ≡ cB/cK

B , ĉT ≡ cT /cK
T , and ĉV ≡ cV /cK

V as a function
of the level position for U/� = 10, obtained from Bethe ansatz
computations with Eqs. (7), (50), and (51). The linear conductance
G0 is shown for comparison in the top panel, in units of 2e2/h.
(b) Transport Fermi-liquid coefficient ĉV = cV /cK

V , plotted as func-
tion of (εd + U/2)/� for different values of U/�, computed using
the Bethe ansatz (lines) and the numerical renormalization group
(symbols).

Fermi-liquid theory can be verified by straightforward trans-
port measurements [44].

In addition, we also compute the zero frequency current
noise at low voltage. It is characterized by a generalized Fano
factor F [33] (see Eq. (53) in Sec. IV C), defined as the ratio
of the leading corrections to the noise and current with respect
to the strong coupling fixed point values. We find for the Fano
factor,

F = cos 4δ
(
α2

1 + 5φ2
1

) + 4φ2
1 + sin 4δ0(α2/2 − 3φ2/8)

cos 2δ0
(
α2

1 + 5φ2
1

) + sin 2δ0(α2 − 3φ2/4)
,

(11)
displayed in Fig. 3 for different U/�. At particle-hole
symmetry (in agreement with Ref. [35]), F varies between −1
in the noninteracting case U = 0, corresponding to Poissonian

075120-4



FERMI-LIQUID THEORY FOR THE SINGLE-IMPURITY . . . PHYSICAL REVIEW B 92, 075120 (2015)

F

−5/3

Δ/2)U/+dε(
0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

1

1.5

FIG. 3. (Color online) Generalized Fano factor, Eq. (53), as
functions of (εd + U/2)/� for U/� = 10,1,0 (full, dotted, and
dashed lines). The divergence of F corresponds to a vanishing current
correction δI , which occurs approximately in the mixed-valence
regime.

statistics for the backscattered current, to −5/3 at large
U � �, emphasizing the role of interactions and two-particle
backscattering processes [28,30,33]. As εd increases towards
the empty orbital regime, the Fano factor interpolates to the
noninteracting Poissonian result F = 1. The sign change as εd

is varied indicates that F describes a backscattering current at
εd = −U/2 but transmitted electrons at large εd .

The rest of this paper is organized as follows. In Sec. II,
we construct the basic Fermi-liquid theory for the Anderson
model and relate the Fermi-liquid parameters of the effective
Hamiltonian HFL to physical observables [(5)]. In Sec. III
we construct the current operator and set the framework for
nonequilibrium calculations, which we then use to compute
the expectation value of the current and noise perturbatively.
The final form of the transport coefficients and Fano factor
is presented in Sec. IV. Section V concludes and offers an
outlook. The empty-orbital limit is discussed in Appendix.
Technical details regarding the Bethe ansatz equations and
their integral solutions, a conformal field theory approach to
the strong coupling fixed point, and the calculation of the T
matrix, are left to the Supplemental Material [40]. In addition,
the SM also contains detailed numerical results for the FL
transport coefficients, and a comparison to previous works for
the Wilson ratio.

II. FERMI-LIQUID THEORY

In this section, we present our Fermi-liquid theory for the
Anderson model. The Fermi-liquid theory is by essence a
perturbative approach. It gives the expansion of observables
at bias voltages and temperatures smaller than the Kondo
temperature TK . We begin in Sec. II A by a reminder of the
Fermi-liquid approach to the Kondo model, as introduced
by Nozières [13,45], and explain in detail how the model’s
invariance, in the wide-band limit [46], under a global
energy shift can be used to relate the different Fermi-liquid
parameters. In Sec. II B, we extend this approach to the
Anderson model. In Sec. II C, we take advantage of the Friedel
sum rule to express all Fermi-liquid parameters in terms of
the spin and charge susceptibilities [see Eq. (5)], a result

of considerable practical importance. The spin and charge
susceptibilities are simple ground-state observables—and can
be computed semianalytically by Bethe ansatz—while the
Fermi-liquid theory is able to deal with more complicated
situations, such as finite temperature or out-of-equilibrium
settings. Analytical expressions of the Fermi-liquid parameters
are obtained in the Kondo and empty-orbital limits in Sec. II D.
Finally, the effective Fermi-liquid Hamiltonian, applicable at
low energy and already advertised in Eq. (3), is discussed in
Sec. II E.

A. Kondo model

We begin by briefly reviewing Nozières’ local Fermi-
liquid theory for the Kondo model. The main ideas are well
established—for details we refer to the seminal papers of
Nozières [13] or to Refs. [21,27,32]. Our goal here is to
phrase the arguments in such a way that they will generalize
naturally to the case of the Anderson model, discussed in the
next subsection.

For energies well below the Kondo temperature, the
reduction of phase space for inelastic processes implies that
elastic scattering dominates, due to the same phase-space
argument [47,48] as in conventional bulk Fermi liquids. The
system can then be characterized by the phase shift, δσ (ε,nσ ′ ),
acquired by a quasiparticle with kinetic energy ε and spin σ

that scatters off the screened Kondo singlet [the form of this
phase shift can be derived explicitly from the effective Fermi-
liquid Hamiltonian Eq. (3) (with α2 = φ2 = 0), as explained
in Sec. II E below]. Since the singlet has a many-body origin,
δσ (ε,nσ ′ ) depends not only on ε but also on the quasiparticle
distribution functions n↑(ε′) and n↓(ε′). Our goal is to find a
simple description of this phase shift function, valid for small
excitation energies relative to the ground state.

In equilibrium and at zero temperature and magnetic
field, the quasiparticle ground state is characterized by a
well-defined zero-temperature chemical potential μ0. Let ε0

be an arbitrary reference energy, different from μ0, which
serves as the chemical potential of a reference ground state
with distribution function n0

ε0
(ε) = θ (ε0 − ε). We then Taylor

expand the phase shift around this reference state as

δσ (ε,nσ ′) = δ0 + α1(ε − ε0) − φ1

∫
ε′

δnσ̄ ,ε0 (ε′), (12)

with δnσ ′,ε0 = nσ ′ − n0
ε0

. The last term accounts for local
interactions with other quasiparticles, and σ̄ denotes the spin
opposite to σ , since by the Pauli principle local interactions can
involve only quasiparticles of opposite spins. We should stress
that the distributions nσ ′(ε′) can have arbitrary shapes (depend-
ing on chemical potential, temperature, magnetic field, and, for
out-of-equilibrium distributions, source-drain voltage), as long
as the expansion variables ε − ε0 and

∫
ε′ δnσ̄ ,ε0 (ε′) in Eq. (12)

are small compared to the Fermi-liquid scale E∗ [49]. The
Taylor coefficients δ0, α1, and φ1 serve as the Fermi-liquid
parameters of the theory. Their dependence on ε0 drops out
in the wide-band limit considered here, and they are universal
coefficients.

Now, the key point is to realize that the function δσ (ε,nσ ′ )
is of course independent of the reference energy ε0 used for its
Taylor expansion. Differentiating Eq. (12) with respect to ε0
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FIG. 4. Qualitative depiction of (a) the distribution function,
(b) the phase shift, and (c) the Kondo resonances in the impurity
spectral function, for two choices of chemical potential, μ (solid
lines) and μ + δμ (dashed lines). Dotted lines illustrate the reference
distribution function n0

ε0
(ε) = θ (ε0 − ε) in (a).

[and noting that δnσ̄ ,ε0 (ε′) depends also on ε0] one thus obtains
dδσ (ε,nσ ′)/dε0 = φ1 − α1 = 0, or

α1 = φ1. (13)

This relation constitutes one of Nozières’ central Fermi-liquid
identities for the Kondo model.

As can be checked easily, Eq. (13) guarantees that for any
distribution nσ ′ with a well-defined chemical potential, e.g.,
nμ(ε′) = (e(ε′−μ)/T + 1)−1 for nonzero temperature, the phase
shift δσ (ε,nμ), depends on energy and chemical potential only
through the combination ε − μ. In other words, if μ is changed
to μ + δμ, e.g., by doping the system to increase the electron
density, then the new phase shift at ε + δε equals the old one
at ε,

δσ (ε + δμ,nμ+δμ) = δσ (ε,nμ), (14)

as illustrated in Fig. 4. [In fact, an alternative way to derive
Eq. (13) is to impose Eq. (14), with the same ε0 on both sides of
the equation, as condition on the general phase shift expansion
Eq. (12) for δσ (ε,nμ); the calculations are simplest if done
at zero temperature, i.e., with nμ → n0

μ0
]. Since at T = 0 the

energy dependence of the phase shift determines that of the
Kondo resonance in the impurity spectral function, Adσ,μ(ε),
the latter, too, is invariant under a simultaneous shift of ε and μ.
Pictorially speaking, the “Kondo resonance floats on the Fermi
sea” [13,32]: If the Fermi surface rises, the Kondo resonance
rises with it, and if the Fermi sea is deep enough (wide-band
limit), the Kondo resonance does not change its shape while
rising.

The next step is to express δ0 and α1 = φ1 in terms of
physical quantities, such as the local charge nd and the local
spin susceptibility χs . This can be done by calculating the latter
quantities via the Friedel sum rule, evaluating the ground-
state phase shift in a small magnetic field. We discuss this
in detail in the next section, in the more general context of

the Anderson model. Here we just quote the results: For the
Kondo model, one finds δ0 = π/2, α1 = φ1 = πχs , and, since
χs = 1/(4TK ), from Eq. (4), E∗ = TK for the Fermi-liquid
energy scale controlling the expansion Eq. (12).

Before proceeding further with the Anderson model, we
wish to emphasize two important points.

(i) We have restricted our attention to elastic scattering
processes. As pointed out in Ref. [33], inelastic processes
involve the difference between the energies of incoming and
outgoing electrons and are therefore invariant under a global
shift of all energies by δμ.

(ii) Equation (12) corresponds to the first few terms of
a general expansion of δσ (ε,nσ ′) in powers of ε − ε0 and∫
ε′ δnσ ′,ε0 (ε′). In the calculation of the conductance, for

example, at finite temperature, the α1 and φ1 terms give a
vanishing linear contribution and must therefore be taken
into account up to second order. To be consistent, one then
needs to include the next subleading terms ∼1/T 2

K in the
expansion of δσ (ε,nσ ′). This has been worked out explicitly
for the SU(N ) case with N > 3 [31–34,50]. These subleading
terms, however, turn out to vanish identically in the SU(2)
Kondo model, as a result of electron-hole symmetry. This is
no longer the case for the asymmetric Anderson model, as we
will see below.

B. Anderson model

The Anderson model is described by a low-energy Fermi-
liquid fixed point for all regimes of parameters, hence we now
seek to generalize the above approach to this model, too. The
main complication compared to the Kondo model is that the
Anderson model involves an additional energy scale, namely
the impurity level εd , and its physics depends in an essential
way on the distance εd − μ0 between its impurity energy level
and the chemical potential. We again Taylor expand the phase
shift with respect to a reference energy ε0, as in Eq. (12), but
now include the next order in excitation energies [32]:

δσ (ε,nσ ′ ) = δ0,εd−ε0 + α1,εd−ε0 (ε − ε0)

−φ1,εd−ε0

∫
ε′

δnσ̄ ,ε0 (ε′) + α2,εd−ε0 (ε − ε0)2

− 1

2
φ2,εd−ε0

∫
ε′

(ε + ε′ − 2ε0)δnσ̄ ,ε0 (ε′) + . . .

(15)

δ0, α1, φ1, α2, and φ2 are the Taylor coefficients of this
expansion. In contrast to the case of the Kondo model, they
now do depend explicitly on the reference energy ε0, and since
we are in the wide-band limit, this dependence can arise only
via the difference εd − ε0. For notational simplicity, we will
suppress this subscript below, taking this dependence to be
understood. In the Kondo limit of Eq. (2), the dependence on
εd drops out, and the coefficients δ0, α1, φ1, α2, and φ2 become
universal, as seen in the previous section for δ0, α1, and φ1.

Similarly to Sec. II A, the Taylor coefficients are not all
independent as a result of the phase shift δσ (ε,nσ ′ ) invariance
under a change in ε0. Differentiating Eq. (15) with respect
to ε0, and equating the coefficients of the various terms in the
expansion (const., ∼(ε − ε0), ∼ ∫

δnσ̄ ,ε0 ) to zero, we therefore
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obtain the following three relations [51]:

− δ′
0 − α1 + φ1 = 0, (16a)

−α′
1 − 2α2 + φ2/2 = 0, (16b)

φ′
1 + φ2 = 0. (16c)

Here a prime denotes a derivative with respect to the energy
argument, e.g., δ′

0 = d(δ0,εd−ε0 )/dεd .
As can be checked easily, Eq. (16) guarantees that for any

distribution nσ ′ with a well-defined chemical potential, e.g.,
nμ, the phase shift δσ,εd

(ε,nμ) (where the subscript εd indicates
the εd dependence of its Fermi-liquid parameters) remains
invariant if ε, εd , and μ are all shifted by the same amount:

δσ,εd+δμ(ε + δμ,nμ+δμ) = δσ,εd
(ε,nμ). (17)

Conversely, an alternative way to derive Eq. (16) is to impose
Eq. (17) as a condition on the Taylor expansion (15) for
δσ,εd

(ε,nμ).
Collecting results, the first-order Fermi-liquid parameters,

α1 and φ1, are related to each other through

φ1 − α1 = δ′
0 , (18)

while the second-order Fermi-liquid parameters, α2 and φ2, can
be expressed via Eq. (16) in terms of derivatives of lower-order
ones:

α2 = −δ′′
0

4
− 3α′

1

4
, φ2 = −φ′

1. (19)

Having established the above relations between the Fermi-
liquid parameters, we henceforth choose the reference energy
at the zero-temperature chemical potential, ε0 = μ0. More-
over, since the choice of μ0 is arbitrary in the wide-band limit,
we henceforth set μ0 = 0. Hence, the energy argument of the
Fermi-liquid parameters is henceforth understood to be εd , i.e.,
δ0 stands for δ0,εd

, etc.

C. Charge and spin static susceptibilities

Our next task is to express the Fermi-liquid parameters in
terms of physical quantities. This can be done using the Friedel
sum rule. To this end, consider a zero-temperature system in
a small nonzero magnetic field B, with distribution n0

μσ ′ (ε
′) =

θ (μσ ′ − ε′) and spin-split chemical potentials, μσ ′ = σ ′B/2,
as illustrated in Fig. 5. Using this distribution for nσ ′ in
Eq. (15), with ε0 = 0 and δnσ̄ ,0 = n0

μσ̄
− n0

0, we find

δσ

(
ε,n0

μσ ′
) = δ0 + α1ε − φ1

2
σ̄B + α2ε

2

− φ2

2
[εσ̄B/2 + B2/8]. (20)

Now evoke the Friedel sum rule [52]. For given spin σ it
relates the average charge bound by the impurity at T = 0,
ndσ = 〈n̂dσ 〉, to the ground-state phase shift at the chemical
potential, i.e., at ε = μσ :

πndσ = δσ

(
μσ ,n0

μσ ′
)

(21a)

= δ0 + σ

2
(α1 + φ1)B + 1

4
(α2 + φ2/4)B2. (21b)

1
0

1
0

1
0

0
1

0
−1

μ

↓μ
0n

↑μ↓μ

)ε(

μ
0n )ε(

↑μ
0n

0

)ε(

,μ↓δn )ε(

,μ↑δn )ε(

ε

B

0

0

0

FIG. 5. (Color online) Zero-temperature quasiparticle distribu-
tion functions used for the calculation of Eq. (20): At zero field
we use n0

0 as reference distribution (in Sec. II C, we set ε0 = μ0 = 0),
while the system at small field B has distribution n0

μσ
, differing from

the reference distribution by δnσ,0 = n0
μσ

− n0
0. The shifted chemical

potentials, μσ = σB/2, derive from the condition 〈b†
εσ bεσ 〉 = 0 for

ε − σB/2 > 0.

Thus, the average local charge nd and average magnetization
md of the local level can be expressed as

nd = nd↑ + nd↓ = 2δ0

π
+ 1

2π
(α2 + φ2/4)B2, (22a)

md = (nd↑ − nd↓)/2 = B

2π
(α1 + φ1). (22b)

In the strong-coupling Kondo regime we have nd = 1 at
zero field, implying δ0 = π/2. In general, however, ndσ is
a function of εd . From Eq. (22), the local charge and spin
susceptibilities at zero field are given by

χc = −∂nd

∂εd

∣∣∣∣
B=0

= −2
δ′

0

π
= 2

π
(α1 − φ1), (23a)

χs = ∂md

∂B

∣∣∣∣
B=0

= 1

2π
(α1 + φ1). (23b)

Using Eqs. (23a) and (23b), the Fermi-liquid parameters
can be written in terms of the charge and spin susceptibilities
χc and χs , and their derivatives with respect to to εd , denoted by
χ ′

c and χ ′
s . The result is given in Eq. (5) in the introduction. As a

consistency check, we note from Eq. (5) that (α2 + φ2/4)/π =
−χ ′

s , thus Eqs. (22) imply

∂nd

∂B
= −∂md

∂εd

, (24)

which is a standard thermodynamic identity.
For the Anderson model, nd , χc, χs , and their derivatives

with respect to εd can all be computed using the Bethe ansatz,
as detailed in the Supplemental Material [40]. This allows us to
explicitly determine how the Fermi-liquid parameters depend
on εd . A corresponding plot is shown in Fig. 1 for U/� = 5.

The Anderson model has a particle-hole symmetry, which
manifests itself as an invariance under the replacements
εd → −εd − U for the impurity single-particle energy and
nd → 2 − nd for the impurity charge. The particle-hole
symmetric point therefore corresponds to εd = −U/2 and
nd = 1. Moreover, χc and χs are symmetric with respect to
particle-hole symmetry, while χ ′

c and χ ′s are antisymmetric.
Consequently, Eq. (5) shows that α1 and φ1 are symmetric
while α2 and φ2 are antisymmetric, a feature already pointed
out in the introduction. As a result, α2 and φ2 identically vanish
at the particle-hole symmetric point εd = −U/2. At this point,
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our result for the current will therefore agree with those of
Refs. [13,20,24,25]. In the Kondo limit of Eq. (2), charge
fluctuations are suppressed such that χc = 0, and Eq. (23a)
reproduces the Fermi-liquid identity Eq. (13) of the Kondo
model.

As discussed Sec. S-1 of the Supplemental Material [40],
our approach reproduces the known FL relation between
susceptibilities and the linear specific heat coefficient, and
the corresponding Wilson ratio.

So far in this section, we have not used the specific form of
the Anderson model. The only ingredients that we have used
are the presence of a single-particle energy εd for the impurity
and the assumption of Fermi-liquid behavior. This emphasizes
the generality of our Fermi-liquid approach, which is also
applicable, for instance, to other impurity models such as the
interacting resonant model [53].

D. Analytical expressions

In order to better understand the dependence of the Fermi-
liquid parameters on εd , it is instructive to consider certain
limiting cases where analytical expressions can be derived. In
the Kondo regime, U � � and −U + � < εd < −�, spin
excitations dominate and the charge susceptibility can be
neglected (χc  0, χ ′

c  0), so that [from Eq. (5)]

α1  φ1  πχs, 4α2/3  φ2  −πχ ′
s . (25)

The spin susceptibility is given with a very good accuracy by
the asymptotical expression,

χs = 1

2
√

2U�
eπ(U/8�−�/2U )e−x2

, (26)

where we introduced the distance to the particle-
hole symmetric point x = (εd + U/2)

√
π/(2�U ). Equa-

tion (26) agrees with the well-known formula 1/TK ∝
(U�)−1/2e−πεd (εd+U )/(2�U ) [36], up to an extra factor
e−π�/(2U ), which was neglected in [36] because the limit
U/� � 1 is implicit there. Differentiating Eq. (26) with
respect to εd , we find

−χ ′
s = π1/2

2�U
eπ(U/8�−�/2U )xe−x2

. (27)

Equations (25)–(27) together largely explain the shape of all
the curves in Fig. 1, namely approximately Gaussian for α1

and φ1, or the derivative of a Gaussian for α2 and φ2.
The other limit in which analytical expressions can be

derived is the empty-orbital regime, for εd � �. The results
are detailed in Appendix. Together with Eqs. (26) and (27),
they give us a good analytical understanding of the εd

dependence of the Fermi-liquid parameters. In the Kondo
regime, α1 and φ1 follow the spin susceptibility (or the
inverse Kondo temperature) and decrease with increasing εd

(for εd > −U/2) while crossing over into the mixed-valence
regime. Finally, in the empty-orbital regime χs = χc/4, hence
α1 still follows the spin susceptibility, but with a factor 2,
α1  2πχs , while φ1 becomes negligible.

It is interesting to consider the ratios α2/α
2
1 and φ2/α

2
1

which measure the importance of the second generation of
Fermi parameters compared to the first one. In the Kondo
region but far enough from particle-hole symmetry, α2 ∼ φ2 ∼

1/(TK�) [the precise formula is implied by Eq. (27)] so that
α2/α

2
1 ∼ φ2/α

2
1 ∼ TK/�. The two ratios are small but increase

with εd and TK towards the mixed-valence region where they
reach values of order 1. Above, in the empty-orbital region,
εd � �, φ2/α

2
1 = 6/π for εd � U but is negligible for εd �

U , while α2/α
2
1 = εd/� continues to increase with εd [see

Eqs. (A6) to (A8)].

E. Hamiltonian form

The analysis carried out so far may seem abstract. It is
based on the elastic phase shift alone and it is not clear how
transport quantities and other observables can be computed.
We thus need to write an explicit low-energy Hamiltonian
reproducing the phase shift of Eq. (15). The leading order, or
strong coupling Hamiltonian, is simply given by the first term
of Eq. (3),

H0 =
∑

σ

∫
dε (ε − σB/2)b†εσ bεσ , (28)

where the quasiparticle operators bεσ , defined in the introduc-
tion, satisfy the fermionic anticommutation relations,

{bεσ ,b
†
ε′σ ′ } = δσ,σ ′δ(ε − ε′), {bεσ ,bε′σ ′ } = 0. (29)

The low-energy Hamiltonian admits an expansion in corre-
spondence with the phase shift expansion [54] of Eq. (15),
the increasing orders being increasingly irrelevant in the
renormalization group sense [45]. The first two terms of this
expansion are given in Eq. (3). A more formal but complete
justification of the form of the Hamiltonian, using conformal
field theory arguments, is given in the Supplemental Material
[40].

The computation of the elastic phase shift with H involves
all processes stemming from H0 and Hα , in addition to the
Hartree diagrams inherited from Hφ . Using δσ (ε)/π = ε −
σB/2 − ∂〈HFL〉/∂nσ (ε), it is straightforward to check that
Eq. (15) is reproduced, as required.

The low-energy expansion of Eq. (15) is valid as long as
typical energies (B, T or V ) are smaller than a certain energy
scale depending on εd . At large U � �, this energy scale is
TK in the Kondo regime. It crosses over to � in the mixed-
valence regime where physical quantities are universal when
energies are measured in units of �; see Sec. S-II in [40]. In the
empty-orbital regime, a resonant level model centered around
εd emerges (see Appendix), and this energy scale crosses over
to εd .

To summarize this section, Eq. (3) constitute a rigorous
and exact low-energy Hamiltonian for the Anderson model
(or for other similar models), and a basis for computing the
low-energy quadratic behavior of observables. We shall use it
in the next section to compute the conductance and the noise.
The introduction of the elastic phase shift was mainly aimed
at determining the expressions of the Fermi-liquid parameters
given in Eq. (5).

III. CURRENT AND NOISE CALCULATIONS

The Fermi-liquid theory developed so far is very general,
and applies to many quantum impurity systems with a Fermi-
liquid ground state and a single relevant channel of spinful
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electrons attached to it. We now turn to the concrete case
of the Anderson model and calculate the current and the
noise through a quantum dot using the Fermi-liquid theory
described in the previous section. For this purpose, the geom-
etry of lead-dot coupling becomes important and scattering
state wave functions have to be introduced in the spirit
of Landauer’s approach. Similar calculations can be found
in Refs. [17,31,33]. Section III A introduces the Anderson
model and the corresponding Fermi-liquid Hamiltonian valid
at low energy, already outlined in the introduction. The current
operator is given in Sec. III B and expanded over the convenient
basis of quasiparticle states. The perturbative calculations of
the current and noise current are then separated into an elastic
part in Sec. III C and an inelastic part in Sec. III D.

A. Hamiltonians

1. Anderson model

We consider the model of a single-level dot symmetrically
coupled to right and left leads with the Hamiltonian H =
Ha + HAM, with Ha = ∑

σ

∫
dε ε a†

εσ aεσ and

HAM =
∑

σ

∫
dε ε b̃†εσ b̃εσ + εd

∑
σ

nσ + Un̂d↑n̂d↓

+√
ν0 t

∑
σ

∫
dε(b̃†εσ dσ + d†

σ b̃εσ ), (30)

where, instead of the original left and right operators, cL,εσ and
cR,εσ , we use the symmetric and antisymmetric combinations,(

b̃εσ

aεσ

)
= 1√

2

(
1 1
1 −1

)(
cL,εσ

cR,εσ

)
. (31)

These satisfy the same anticommutation relations as in
Eq. (29). The leads are approximated, as usual [2,12], by a
linear spectrum with a constant density of states ν0 per spin
species, otherwise the results would not be universal. dσ is the
electron operator of the dot and nσ = d†

σ dσ the corresponding
density for spin σ . U > 0 denotes the charging energy, εd the
single-particle energy on the dot, and t the tunneling matrix
element from the dot to the symmetric combination of leads.
The antisymmetric combination aεσ , associated with the wave
function,

ψa
kσ (x) = (ei(kF +k)x − e−i(kF +k)x)/

√
2, (32)

for all x, decouples from the dot variables. Here x < 0
describes the left lead and x > 0 the right lead; energies and
wave vectors are related through ε = �vF k. For simplicity, the
whole system is assumed to be one-dimensional. Being odd in
x, this wave function vanishes at the origin and is therefore not
affected by the Anderson impurity. We define the hybridization
� = πν0t

2 for later use.

2. Effective low-energy Hamiltonian

At low energy, screening takes place and the Anderson
model flows to a Fermi-liquid fixed point for all values of εd ,
U , and �. The Hamiltonian describing the low-energy physics
of Eq. (30) is then given by Ha + HFL, with the Fermi-liquid
Hamiltonian HFL for the even channel given by Eq. (3).

The difference between the original operators b̃εσ asso-
ciated with symmetric combinations of lead states and the
corresponding quasiparticle operators bεσ is the zero-energy
phase shift δ0, i.e., the phase shift that arises for Hα = Hφ = 0.
Hence bεσ is associated with the scattering state,

ψb
kσ (x) =

{
(ei(kF +k)x − S0e

−i(kF +k)x)/
√

2 x < 0,

(e−i(kF +k)x − S0e
i(kF +k)x)/

√
2 x > 0,

(33)

with the S matrix S0 = e2iδ0 . In contrast, for the antisymmetric
combination of lead states described by aεσ operators, which
decouple from the dot variables, the corresponding S matrix is
trivially equal to 1, i.e., the corresponding scattering phase is
zero.

B. Current operator

In a one-dimensional geometry, the local current operator
is given by

Î (x) = e�

2mi

∑
σ

(ψ†
σ (x)∂xψσ (x) − ∂xψ

†
σ (x)ψσ (x)), (34)

where m is the electron mass. Various expressions for the
current can be derived depending on which basis of states
it is expanded in. Here we choose a basis adapted to the
low-energy model, namely we expand over the zero-energy
scattering states,

ψσ (x) =
∫

dε
√

ν0
[
ψa

kσ (x) aεσ + ψb
kσ (x) bεσ

]
, (35)

with ν0 = 1/hvF the density of states of incoming quasiparti-
cles.

A voltage bias applied between the two leads, μL − μR =
eV, drives a current through the quantum dot. In a stationary
situation, the current is conserved along the one-dimensional
space. We thus define the symmetric current operator as Î =
(Î (x) + Î (−x))/2, where x is arbitrary, corresponding to the
average of the left and right currents. Inserting the expansion
Eq. (35) in Eq. (34), one finds the Landauer-Buttiker-type [55]
current expression,

Î = e

2h

∑
σ

∫
ε,ε′

a†
εσ bε′σ (ei(k′−k)x − S0 e−i(k′−k)x) + H.c.,

(36)
with x < 0. A more compact expression can be obtained with
the definition aσ (x) ≡ ∫

dεaεσ eikx , namely

Î = e

2h

∑
σ

(a†
σ (x)bσ (x) − a†

σ (−x) (S0bσ )(−x) + H.c.).

(37)
Physically, operators taken at x (−x) correspond here to
incoming (outgoing) states.

Fluctuations in the current are characterized by the zero
frequency current noise,

S = 2
∫

dt〈�Î (t)�Î (0)〉, (38)

where �Î (t) = Î (t) − 〈Î (t)〉.

075120-9
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C. Elastic scattering

We study the average current through the dot in the presence
of a voltage bias. We include in this section only the elastic and
Hartree contributions; the inelastic terms will be considered in
the next Sec. III D.

1. Strong coupling fixed point

We start by considering the strong coupling fixed point,
i.e., without the Fermi-liquid corrections Hα and Hφ , where
we have a free gas of quasiparticles. The Hamiltonian is
H0 + Ha and a†

εσ and b
†
ε′σ create eigenstates of the model.

The left and right scattering states, which are even and odd
combinations of aεσ and bε′σ , are in thermal equilibrium with
spin-dependent chemical potentials μLσ = μL + σB/2 and
μRσ = μR + σB/2. Hence, we have

〈a†
εσ aε′σ ′ 〉 = 〈b†εσ bε′σ ′ 〉 = δσ,σ ′δ(ε − ε′)

fLσ (ε) + fRσ (ε)

2
,

〈a†
εσ bε′σ ′ 〉 = δσ,σ ′δ(ε − ε′)

fLσ (ε) − fRσ (ε)

2
, (39)

with the Fermi distributions fLσ (ε) and fRσ (ε). The mean
value of the current Î for the case of purely elastic scattering
discussed in this subsection is then given by

I = 〈Î 〉 = e

h

∑
σ

∫
dεTσ (ε)[fLσ (ε) − fRσ (ε)], (40)

with the transmission Tσ (ε) = sin2(δ0), which here is energy
and spin independent, because Hα and Hφ have been neglected.
Performing the summation over ε, one finds the average elastic
current,

I = I0 = (2e2V/h) sin2(δ0),

which is maximal (unitary) at particle-hole symmetry δ0 =
π/2 and approaches zero as |εd − U/2|/� becomes very large,
so that |δ0| → 0.

Correspondingly, the result for the noise is

S = 4e2

h

∑
σ

∫ μLσ

μRσ

dεTσ (ε)(1 − Tσ (ε)), (41)

and the partition noise is

S = S0 = (e3|V |/h) sin2(2δ0)

at the strong coupling fixed point.

2. Elastic scattering and phase shift

We now include the Fermi-liquid terms Hα and Hφ into the
Hamiltonian. We first consider the elastic scattering processes
associated with Hα . Since they describe single-particle pro-
cesses, they can be absorbed in H0 by a change of scattering
basis. The above analysis for computing the current and noise
can be reproduced with the only change that the S matrix now
carries an energy and spin dependence, Sσ (ε) = e2iδσ (ε), and
the knowledge of the phase shift δσ (ε) suffices to characterize
elastic scattering. The resulting current and noise are still given
by Eqs. (40) and (41), with Tσ (ε) = sin2[δσ (ε)].

Before writing the expression of the elastic phase shift,
we note that the Hartree terms stemming from Hφ are
formally equivalent to elastic scattering. Diagrammatically,

each interaction vertex connecting a fermionic line to a single
closed fermionic loop (a bubble) is similar to a local potential
vertex where the energy is conserved after scattering. As
mentioned already earlier, collecting purely elastic and Hartree
contributions, and calculating the phase shift, we indeed arrive
at Eq. (15).

For the rest of this section, we set B = 0. At finite
temperature T and voltage V , the energy integrals in the phase
shift expansion Eq. (15) yield∫

ε

δnσ,0(ε) = 0,

∫
ε

εδnσ,0(ε) = (πT )2

6
+ (eV)2

8
, (42)

so that we obtain the spin-independent phase shift,

δσ (ε) = δ0 + α1ε + α2ε
2 − φ2

(
(πT )2

12
+ (eV )2

16

)
. (43)

Inserting this result into Eq. (40) for the elastic current and
expanding to third order in energy, one obtains

Iel = 2e2V

h

[
sin2 δ0 − sin 2δ0 φ2

(
(πT )2

12
+ (eV)2

16

)

+ (
α2 sin 2δ0 + α2

1 cos 2δ0
)( (πT )2

3
+ (eV)2

12

)]
. (44)

This represents the elastic and Hartree contributions to the
current.

For the noise, we find S = S0 + δSel with

δSel

4e5|V |3/h
= α2

1

12
cos 4δ0 + sin 4δ0

(
α2

24
− φ2

32

)
. (45)

D. Inelastic scattering

In the previous section, only the Hartree diagrams asso-
ciated with Hφ and the terms Hα have been included in the
current calculation. A full account of Hφ requires the use
of the Keldysh framework [56] to compute the current in an
out-of-equilibrium setting. The average current is given by

I = 〈
TcÎ (t)e− i

�

∫
C dt ′:Hφ :(t ′)〉, (46)

where : Hφ : denotes the interaction terms Hφ in Eq. (3),
with the Hartree contributions removed and incorporated in
the scattering wave functions and operators appearing in H0.
The Keldysh contour C runs along the forward time direction
on the branch η = + followed by a backward evolution on
the branch η = −, and Tc is the corresponding time ordering
operator. Time evolution and mean values are determined by
the free Hamiltonian H0, Eq. (28), now incorporating all elastic
and Hartree processes. Hence the current operator is given by
Eq. (37) with S0 simply replaced by the energy-dependent
Sσ (ε). Starting with Eq. (46), we expand to second order in
: Hφ :, and compute the resulting integrals in Keldysh space.
The first-order term vanishes by construction, and the only
remaining second-order term is shown in Fig. 6. The resulting
current contribution is [33]

Iinel = 2e2V

h
φ2

1 cos 2δ0

(
2(πT )2

3
+ 5(eV)2

12

)
. (47)

Terms proportional to ∼φ1φ2 and ∼φ2
2 are not included here,

since they involve higher powers of T and/or eV. The same is
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FIG. 6. This diagram represents an inelastic process in which an
electron is scattered and locally excites an electron-hole pair.

true for third- or higher order terms in the expansion of :Hφ :,
which are proportional to ∼φ3

1 at least. As φ1 has the dimension
of an inverse energy, the corresponding leading contributions
to Iinel scale as V T 3 or V 4, and are hence neglected in our
approach. The total average current is obtained by summing
the elastic and inelastic terms, I = Iel + Iinel.

The inelastic contribution to the noise involves six di-
agrams. They are represented and calculated in detail in
Refs. [31,33]. The result is S = S0 + δS with δS = δSel +
δSinel and

δSinel

4e5|V |3/h
= φ2

1

(
1

3
+ 5

12
cos 4δ0

)
. (48)

IV. FERMI-LIQUID TRANSPORT COEFFICIENTS AND
FANO FACTOR

In this section, we discuss the results for the current
obtained at low energy in terms of Fermi-liquid transport
coefficients cB , cT , and cV introduced in Eq. (6). We also
compute the Fano factor related to low voltage noise.

A. Finite magnetic field

In principle, the set of Fermi-liquid parameters derived
above is not essential for the calculation of the linear
conductance at zero temperature and finite magnetic field.
In this regime, the ground state is still a Fermi liquid,
even at large magnetic field. Moreover, although a finite
magnetic field separates the chemical potentials of the two spin
orientations, μσ = σB/2, it does not create room for particle-
hole excitations (a term of order V 3 at least is necessary
for particle-hole excitations). Thus, the linear conductance is
given by Eq. (40), which reduces to

G = e2

h

∑
σ

sin2[δσ (ε = μσ )]. (49)

For B = V = 0, this relates the phase δ0 to a physical
observable, namely the linear conductance. More generally,
the phase shifts occurring in Eq. (49) are related via the
Friedel sum rule, Eq. (21a), to the spin-dependent populations,
δσ (μσ ) = πndσ . These are static observables that can be
computed directly from Bethe ansatz or NRG techniques,
hence Eq. (49) can be evaluated without resorting to our
Fermi-liquid expansion of the phase shift.

We may nevertheless use the latter to compute the low-field
expansion of the linear conductance, as given by Eq. (6),
in order to compare cB with cT and cV . Substituting the

small-field Fermi-liquid expansion Eq. (21b) for δσ (μσ ) into
Eq. (49) and expanding in B we obtain the Fermi-liquid
coefficient cB given in Eq. (7). This Fermi-liquid expression
interpolates continuously between the empty-orbital Eq. (8)
and Kondo limits Eq. (10).

B. Finite temperature and nonlinear conductance

Since the definition of the Fermi-liquid scale is somewhat
arbitrary, there is no unambiguous way to define the Fermi-
liquid transport coefficients cT and cV in the general case. Here
we use the definition of Eq. (6) with the Fermi-liquid scale
E∗ defined in Eq. (4), which recovers conventional results in
the particle-hole Kondo limit where E∗ = TK . The current
obtained in the previous section then yields the Fermi-liquid
transport coefficients,

cT = π4

16

(
φ2

12 − α2
3

)
sin 2δ0 − ( α2

1
3 + 2φ2

1
3

)
cos 2δ0

α2
1

, (50)

and

cV = π2

64

( 3φ2

4 − α2
)

sin 2δ0 − (
α2

1 + 5φ2
1

)
cos 2δ0

α2
1

. (51)

At particle-hole symmetry, these expressions simplify since
α2 = 0, φ2 = 0, and δ0 = π/2. They can be written in terms of
the Wilson ratio, R = 1 + φ1/α1 [from Eq. (2) in the Supple-
mental Material [40]], namely cT = (π4/48)[1 + 2(R − 1)2]
and cV = (π2/64)[1 + 5(R − 1)2]. Their ratio is thus given by

cV

cT

= 3

4π2

1 + 5(R − 1)2

1 + 2(R − 1)2
, (52)

in agreement with Refs. [20,35,57]; it interpolates between
3/(2π2) in the Kondo limit R → 2 and 3/(4π2) in the
noninteracting limit R → 1. The values of cT and cV in the
Kondo regime are given in Eq. (9). In the noninteracting limit,
U = 0, i.e., for the resonant level model, the FL transport
coefficients are readily calculated. Their ratios are found to be
independent of εd , cV /cT = 3/(4π2) and cT /cB = 4π2, with
cV = (π2/64)(�2 − 3ε2

d )/(�2 + ε2
d ); see Fig. 2(b).

C. Fano factor

Following Refs. [31,33,34], we introduce a generalized
Fano factor,

F = 1

2e

δS

δI

∣∣∣∣
V →0

, (53)

comparing the leading nonlinear parts of the noise and current
expansion, δS = S − S0 and δI = I − I0. We note that, with
the exception of the two limits δ0 → π/2 and δ0 → 0, the
low-voltage current and noise are dominated by their strong
coupling values S0 and I0.

Collecting the results of the current and noise corrections,
Eqs. (44), (45), (47), and (48), we find the expression Eq. (11)
advertised in the introduction.

V. CONCLUSION AND OUTLOOK

The quasiparticle Fermi-liquid theory presented here pro-
vides a simple and controlled framework to describe the
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leading behavior of the Anderson model at low temperatures,
voltages, and magnetic fields. It should also be possible to
obtain the results presented here with other methods such as
renormalized perturbation theory (RPT) [21]. It is, however,
not quite clear how the five parameters α1,2 and φ1,2 and the
phase shift δ0, characterizing the generic quasiparticle Fermi-
liquid theory would appear in RPT. Just as the underlying
Anderson model, RPT has typically three parameters in its
usual form, ε̃d , Ũ , and �̃. It is not absolutely clear if
these three parameters are sufficient to obtain the correct
low temperature behavior, or if, similar to the quasiparticle
Fermi-liquid theory, additional parameters need be introduced.
The parameters α1,2 could be incorporated, e.g., via an energy-
dependent hybridization, � → �(ε), but the implementation
of the irrelevant operator φ2 does not seem to be entirely
straightforward. Also, extracting additional parameters of RPT
directly from the finite size NRG spectrum [37] may run into
technical difficulties.

As an outlook, let us put our results in a more general
context. First, our expressions for cV , cT , and cB in terms of the
Fermi-liquid parameters χc, χs , χ ′

c, χ ′
s , and δ0 are exact results

relating transport coefficients to zero-temperature, equilibrium
physical observables. Our result for cV is, to the best of
our knowledge, the first exact result for a nonequilibrium
transport property of the Anderson model away from particle-
hole symmetry. This result constitutes a benchmark against
which approximate analytical or numerical treatments of the
nonequilibrium Anderson model [58,59] could be tested.

Second, we emphasize that the conceptual framework laid
out in the present paper is not tied to the specifics of the
Anderson model. It could be applied to any other model
whose low-energy fixed point is in the same universality
class as that of the Anderson model. This is the case if the
following conditions are met: (i) The model involves scattering
of spinful electrons off a spatially confined region of charge;
(ii) the model has SU(2) symmetry; (iii) the ground state is
a spin singlet; and (iv) the scattering matrix involves only
one nontrivial scattering phase (in the sense discussed in
Sec. III A 2). One example other than the Anderson model is
the interacting resonant level model [53], as already mentioned
earlier. Another example would be a multilevel quantum dot
model of the type studied in Ref. [60], with dot-lead coupling
constructed such that only left-right-symmetric combinations
of lead states couple to the dot while the antisymmetric ones
decouple, so that the S matrix has only one nontrivial phase. For
such a model, conditions (i)–(iv) are satisfied and the model’s
low-energy fixed point is in the same universality class as
the Anderson model. Suppose one has access to a method
that reliably captures the many-body correlations of such a
model at zero temperature, but that is not able to treat nonzero
temperature or nonequilibrium situations. (An example of
such a method would be the functional renormalization group
in the Matsubara formulation, used in [60]). Then low-T ,
low-V predictions could be obtained via our Fermi-liquid
approach by proceeding as follows: First, one could use
the zero-temperature, many-body method to calculate the
local charge per spin species as a function of gate voltage
and magnetic field. Next, one could extract the Fermi-liquid
parameters of the system via Eqs. (5) and (20)–(23). Finally,
our Fermi-liquid theory could be used for T �= 0 or V �= 0

to calculate cT and cV as a function of gate voltage, thus
predicting the system’s behavior at low temperature or low
source-drain voltage.

Third, we remark that at T = V = 0 the system is a Fermi
liquid for arbitrary magnetic fields, not only small ones.
Hence, it is possible to generalize the Fermi-liquid theory
presented above to arbitrary B �= 0, and to calculate, for
example, the Fermi-liquid transport coefficients cT and cV

as functions of B. This analysis will be published separately.
Fourth, it would be very interesting to generalize our

approach to situations where both eigenphases of the scattering
matrix are nontrivial. The number of Fermi-liquid parameters
would increase, but it should still be possible to relate them
all to ground state values of physical observables. A prime
candidate for which this would be useful would be a quantum
point contact showing the 0.7-anomaly [61,62]. It was recently
shown experimentally that at low excitation energies the
0.7-anomaly displays Fermi-liquid behavior [63] rather similar
to that of the Kondo effect. This experimental result suggests
that it should be possible to describe the low-energy behavior of
the 0.7-anomaly using a Fermi-liquid theory à la Nozières. In
particular, it would be of great interest to calculate cB , cT , and
cV as functions of the gate voltage controlling the width of the
quantum point contact, since these quantities were measured in
great detail experimentally [63]. This could possibly be done
within the conceptual framework developed here, suitably
generalized to involve two nontrivial scattering phases and
an arbitrary magnetic field. In this way, Fermi-liquid theory
could be used very instructively to elucidate the low-energy
behavior of the 0.7-anomaly.
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APPENDIX: EMPTY-ORBITAL REGIME

In this Appendix, we examine the empty-orbital regime
εd � � using standard perturbation theory (Rayleigh-
Schrödinger). The unperturbed state is for t = 0 (or � = 0),
it corresponds to an empty impurity level with a filled zero-
temperature Fermi sea. Perturbation theory is carried out with
respect to the tunneling of electrons between the impurity and
the conduction sea. The unnormalized wave function of the
ground state |ψ〉 is computed to third order in t . The impurity
occupancy is then given by

nd = 〈ψ |n̂d |ψ〉
〈ψ |ψ〉 . (A1)

For U � εd , we obtain the asymptotic expressions,

χc = 2�

πε2
d

[
1 + 2�

πεd

{
− 3

2
+ ln

(
εd

U

)}]
, (A2)
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for the charge susceptibility and

χs = �

2πε2
d

[
1 + 2�

πεd

{
1

2
+ ln

(
εd

U

)}]
, (A3)

for the spin susceptibility, in agreement with Haldane [64].
Equation (A2) and Eq. (A3) can also be derived from the
mixed-valence results, Eq. (S-16) and Eq. (S-17) in the
Supplemental Material [40], in the limit εdR � �.

In the opposite case U � εd , the results are

nd = 2�

πεd

[
1 − �U

πε2
d

]
, (A4)

and

χs = �

2πε2
d

[
1 − �U

πε2
d

]
. (A5)

The Fermi-liquid parameters can be deduced from these
expressions using Eq. (5). To leading order in �/εd the
parameters α1 and α2 that describe elastic scattering do not

depend on the ratio of U/εd . They are given by

α1 = π

(
χs + χc

4

)
 �

ε2
d

,

(A6)

α2 = −π

(
3

4
χ ′

s + χ ′
c

16

)
 �

ε3
d

,

corresponding to the phase shift expansion of a noninteracting
resonant level model δ(ε) = atan[�/(εd − ε)]. The parame-
ters φ1 and φ2 that describe interaction processes depend on
U/εd . They are given by

φ1 = π

(
χs − χc

4

)
 2�2

πε3
d

φ2 = −φ′
1 = 6�2

πε4
d

, (A7)

for U � εd and

φ1 = �2U

πε4
d

φ2 = −φ′
1 = 4�2U

πε5
d

, (A8)

for U � εd . The corresponding FL transport coefficients are
given by Eq. (8).
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