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We propose a quantum dimer model for the metallic state of the
hole-doped cuprates at low hole density, p. The Hilbert space is
spanned by spinless, neutral, bosonic dimers and spin S= 1=2,
charge +e fermionic dimers. The model realizes a “fractionalized
Fermi liquid” with no symmetry breaking and small hole pocket
Fermi surfaces enclosing a total area determined by p. Exact di-
agonalization, on lattices of sizes up to 8×8, shows anisotropic
quasiparticle residue around the pocket Fermi surfaces. We discuss
the relationship to experiments.
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The recent experimental progress in determining the phase
diagram of the hole-doped Cu-based high-temperature super-

conductors has highlighted the unusual and remarkable properties
of the pseudogap (PG) metal (Fig. 1). A characterizing feature of
this phase is a depletion of the electronic density of states at the
Fermi energy (1, 2), anisotropically distributed in momentum
space, that persists up to room temperature.
Attempts have been made to explain the pseudogap metal

using thermally fluctuating order parameters; we argue below
that such approaches are difficult to reconcile with recent trans-
port experiments. Instead, we introduce a new microscopic model
that realizes an alternative perspective (3), in which the pseudogap
metal is a finite temperature (T) realization of an interesting
quantum state: the fractionalized Fermi liquid (FL*). We show
that our model is consistent with key features of the pseudogap
metal observed by both transport and spectroscopic probes.
The crucial observation that motivates our work is the tension

between photoemission and transport experiments. In the cup-
rates, the hole density p is conventionally measured relative to
that of the insulating antiferromagnet (AF), which has one
electron per site in the Cu d band. Therefore, the hole density
relative to a filled Cu band, with two electrons per site, is actually
1+ p. In fact, photoemission experiments at large hole doping
observe a Fermi surface enclosing an area determined by the
hole density 1+ p (4), in agreement with the Luttinger relation.
In contrast, in the pseudogap metal, a mysterious “Fermi arc”
spectrum is observed (5–7), with no clear evidence of closed
Fermi surfaces. However, despite this unusual spectroscopic
feature, transport measurements report vanilla Fermi liquid
properties, but associated with carrier density p, rather than 1+ p.
The carrier density of p was indicated directly in Hall measure-
ments (8), whereas other early experiments indicated suppression
of the Drude weight (9–11). Although the latter could be com-
patible with a carrier density of 1+ p but with a suppressed kinetic
term, the Hall measurements indicate the suppression of the
Drude weight is more likely due to a small carrier density. Two
recent experiments displaying Fermi liquid behavior at low p are
especially notable: (i) the quasiparticle lifetime τðω,TÞ determined
from optical conductivity experiments (12) has the Fermi liquid-
like dependence 1=τ∝ ðZωÞ2 + ðcπkBTÞ2, with c an order unity
constant; and (ii) the in-plane magnetoresistance of the pseudogap
(13) is proportional to τ−1ð1+ bH2τ2 + . . .Þ in an applied field H,
where τ∼T−2 and b is a T-independent constant; this is Kohler’s
rule for a Fermi liquid.
It is difficult to account for the nearly perfect Fermi liquid-like

T dependence in transport properties of the pseudogap in a

theory in which a large Fermi surface of size 1+ p (14) is dis-
rupted by a thermally fluctuating order. In such a theory, we
expect that transport should instead reflect the T dependence of
the correlation length of the order.
Moreover, a reasonable candidate for the fluctuating order

has not yet been identified. The density wave (DW) order pre-
sent at lower temperature in the pseudogap regime has been
identified to have a d-form factor (15–18), and its temperature
dependence (19–25) indicates that it is unlikely to be the origin
of the pseudogap present at higher temperature. Similar con-
siderations apply to other fluctuating order models (26) based on
AF or d-wave superconductor.
We are therefore led to an alternative perspective (3), in which

the pseudogap metal represents a new quantum state that could
be stable down to very low T, at least for model Hamiltonians not
too different from realistic cuprate models. The observed low-T
DW order is then presumed to be an instability of the pseudogap
metal (27–31). An early discussion (32) of the pseudogap metal
proposed a state that was a doped spin liquid with “spinon” and
“holon” excitations fractionalizing the spin and charge of an
electron: the spinon carries spin S= 1=2 and is charge neutral,
whereas the holon is spinless and carries charge +e. However,
this state is incompatible with the sharp “Fermi arc” photo-
emission spectrum (7) around the diagonals of the Brillouin
zone: the spin liquid has no sharp excitations with the quantum
number of an electron and so will only produce broad multi-
particle continua in photoemission.
Instead, we need a quantum state that has long-lived electron-

like quasiparticles around a Fermi surface of size p, even though
such a Fermi surface would violate the Luttinger relation of a
Fermi liquid. The fractionalized Fermi liquid (FL*) (33) fulfills
these requirements.

Significance
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Fractionalized Fermi Liquids
The key to understanding the FL* state is the topological nature
of the Luttinger relation for the area enclosed by the Fermi
surface. For the case of a conventional FL state, Oshikawa (34)
provided a nonperturbative proof of the Luttinger relation by
placing the system on a torus, and computing the response to a
single flux quantum threaded through one of the holes of the
torus. His primary assumption about the many-body state was
that its only low-energy excitations were fermionic quasiparticles
around a Fermi surface. This assumption then points to a route
to obtaining a Fermi surface of a different size (35): we need
a metal that, in addition to the quasiparticle excitations around
the Fermi surface, has global topological excitations nearly de-
generate with the ground state, similar to those found in in-
sulating spin liquids (36, 37). In the context of the doped spin
liquids noted earlier, we obtain a FL* state when the holon and
spinon bind to form a fermionic state with spin S= 1=2 and
charge +e (a possible origin of the binding is the attraction
arising from the nearest-neighbor hopping), and there is a Fermi
surface with quasiparticle excitations of this bound state (38–40)
[other possibilities for the fate of this bound state have also been
discussed (41)]. Such a Fermi surface has long-lived electron-like
quasiparticles and encloses an area determined by density p, and
not 1+ p (40, 42–44), just as required by observations in the
pseudogap metal. Alternatively, a FL* phase can also be obtained
from Kondo lattice models (45, 46), but we shall not use this here.
Earlier studies have examined a number of phenomenological

and path integral models of FL* theories of the pseudogap (39,
40, 42–44) [and in an ansatz for the pseudogap (47)]. These
models contain emergent gauge field excitations, which are
needed to provide the global topological states required to vio-
late the Luttinger relation of the FL state. However, they also
include spurious auxiliary particle states that are only approxi-
mately projected out. The gauge field can undergo a crossover to
confinement, but the present models do not keep close track of
lattice-scale Berry phases that control the appearance of density
wave order in the confining state (48). Here, we propose to
overcome these difficulties by a new quantum dimer model that
can realize a metallic state that is a FL*. This should open up
studies of the photoemission spectrum, density wave instabilities,
and crossovers to confinement at low T in the pseudogap metal.

Quantum Dimer Models
Quantum dimer models (49–51) have been powerful tools in un-
covering the physics of spin liquid phases, and of their instabilities

to conventional confining phases (52–54). Dimer models of doped
spin liquids have also been studied (49, 55, 56), but all of these
involve doping the insulating models by monomers that carry
charge +e, but no spin. Here, we introduce an alternative route to
doping, in which the dopants are dimers, carrying both charge
and spin.
The Hilbert space of our dimer model is spanned by the close-

packing coverings of the square lattice with two species of dimers
(Fig. 2), with an additional twofold spin degeneracy of the second
species. It can be mapped by an appropriate similarity transform
(49) to a truncation of the Hilbert space of the t-J model.
The first species of dimers are bosons, Diη, which reside on the

link connecting the square lattice site i≡ ðix, iyÞ to the site i+ η̂,
where η̂= x̂≡ ð1,0Þ or ŷ≡ ð0,1Þ. These are the same as the dimers
in the Rokhsar–Kivelson (RK) model (49), to which our model
reduces at zero doping. When connecting to the Hilbert space of
the t-J model, each boson maps to a pair of electrons in a spin-
singlet state:

D†
iηj0i⇒Uiη

�
c†i↑c

†
i+η̂,↓+ c†i+η̂,↑c

†
i↓

�
j0i

. ffiffiffi
2

p
, [1]

where ciα is the electron annihilation operator on Cu site i with
spin α= ↑, ↓, and j0i is the empty state with no dimers or elec-
trons. The phase factors Uiη depend upon a gauge choice: for the
choice made by RK, Uiy = 1 and Uix = ð−1Þiy.
The second species of dimers are “fermions,” Fiηα with α= ↑, ↓,

which carry spin S= 1=2 and charge +e relative to the half-filled
insulator, and are present with a density p. Each fermionic dimer
maps to a bound state of a holon and a spinon, which we take to
reside on a bonding orbital between nearest-neighbor sites:

F†
iηαj0i⇒Uiη

�
c†iα + c†i+η̂,α

�
j0i

. ffiffiffi
2

p
. [2]

In a three-band model (57, 58), the state F†
iηαj0i can be iden-

tified with the S= 1=2 state of a hole delocalized over a O site
and its two Cu neighbors, considered by Emery and Reiter (59, 60).
Let us stress our assumption that spinon and holon bind not

because of confinement but because of a short-range attraction.
Therefore, the bound state (2) can break up at an energy cost of
order the antiferromagnetic exchange, and the holon and spinon
appear as gapped, free excitations that would contribute two-
particle continuum spectra to photoemission or neutron scattering

Fig. 1. Schematic phase diagram of hole-doped cuprates (apart from those
with La doping) as a function of temperature (T) and hole density (p). The
antiferromagnetic (AF) insulator is present near p= 0, and the d-wave su-
perconductor (dSC) is present below a critical temperature Tc. The pseudo-
gap (PG) is present for T < T* and acquires density wave (DW) order at low T.
The metallic states are the PGmetal, the conventional Fermi liquid (FL), and the
strange metal (SM). The dimer model of the present paper describes only the
PG metal as a fractionalized Fermi liquid (FL*).

Fig. 2. A typical dimer configuration identifying a state in the Hilbert space.
The blue ellipses are the bosons Diη, which are spinless and neutral. The
green rectangles are the fermions Fiηα, which carry spin S= 1=2 and charge
+e. The density of the Fiηα dimers is p.
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spectra. These fractionalized states can be included in our dimer
model by expanding the Hilbert space to include monomers, but
we will not do so here because we focus on the lowest energy
sector. As a consequence, there is no monomer Fermi surface
(42) in the present model of the pseudogap metal.
The states 1 and 2 are precisely those that dominate in the

two-site dynamical mean field theory (DMFT) analysis of the
Hubbard model by Ferrero et al. (61): they correspond to the S
and 1+ states of ref. 61, respectively, which are shown in figure
15 of this study to be the dominant components of the ground-
state wave function at small p (see also ref. 62). The DMFT
analysis captures important aspects of pseudogap physics, but
with a coarse momentum resolution of the Brillouin zone. In
DMFT, the states on the two-site cluster interact with a self-
consistent environment in a mean-field way: the equations have
so far only been solved at moderate temperatures and the nature
of the ultimate ground state at low doping remains unclear. Our
dimer model is a route to going beyond DMFT, and to include
the nontrivial entanglement between these states on different
pairs of sites in a non-mean field manner. The local constraints
between different pairs of dimers are accounted for, allowing for
the emergence of gauge degrees of freedom.
The original RK model can be mapped to a compact U(1)

lattice gauge theory (50, 52, 53). In the doped dimer models studied
earlier, the monomers then carry U(1) gauge charges of ±1 on
the two sublattices. By the same reasoning, we see that the Fηα

fermions carry no net gauge charge, but are instead dipoles un-
der the U(1) field.
We can now describe our realization of the pseudogap metal.

We envisage a state where the confinement length scale of the
compact U(1) gauge field is large, and specifically, larger than
the spacing between the Fηα fermions. Then the Fηα fermions can
move coherently in the presence of a dipolar coupling to the
gauge fluctuations (40), and they will form Fermi surfaces
enclosing total area p, thus realizing a FL* state. The confine-
ment scale becomes large near the solvable RK point in the RK
model (63, 64), near a Higgs transition to a Z2 spin liquid in-
duced by allowing for diagonal dimers (54, 65–67), or more
generally near a deconfined critical point (39). Our approach
yields a “minimal model” for realizing FL* (which can be a
stable, deconfined state in the Z2 spin liquid case), and con-
finement transitions in metals.
We present results below for the following Hamiltonian,

illustrated in Fig. 3, acting on the dimer Hilbert space de-
scribed above:

H =HRK +H1 +H2

HRK =
X
i

h
−J  D†

ixD
†
i+ŷ,xDiyDi+x̂,y + 1  term

+V  D†
ixD

†
i+ŷ,xDixDi+ŷ,x + 1  term

i

H1 =
X
i

h
−t1  D†

ixF
†
i+ŷ,xαFixαDi+ŷ,x + 3  terms

− t2  D
†

i+x̂,yF
†
iyαFixαDi+ŷ,x + 7  terms

− t3  D†

i+x̂+ŷ,xF
†
iyαFi+x̂+ŷ,xαDiy + 7  terms

− t3  D
†

i+2 ŷ,xF
†
iyαFi+2ŷ,xαDiy + 7  terms

i
, [3]

where the undisplayed terms are generated by operations of the
square lattice point group on the terms above. The first term,
HRK, coincides with the RK model for the undoped dimer
model at p= 0. Single fermion hopping terms are contained in
H1, with hoppings ti, which are expected to be larger than J. A
perturbative estimate of the dimer hopping amplitudes ti in terms

of electron-hopping parameters can be found in SI Appendix. Note
that all such terms must preserve the dimer close-packing con-
straint on every site, and we have chosen three terms with
short-range hopping; longer-range hopping terms for the fer-
monic dimers are also possible, but expected to decay with
distance, and are omitted for simplicity. Finally, H2 allows for
interactions between the fermionic dimers, with terms of the
following form:

H2 ∼
X
i

�
F†
ixβF

†
i+ŷ,xα −F†

ixαF
†
i+ŷ,xβ

�
FiyβFi+x̂,yα + . . . , [4]

which preserve the dimer constraint and spin rotation invariance.
Purely fermionic dimer models with similar dimer hopping terms
have been considered by Pollmann et al. (68).

Results
We now present results for the dispersion and quasiparticle
residue of a single fermion described by HRK +H1; the in-
teraction terms in H2 play no role here. At a small p, the in-
teractions between the fermionic dimers can be treated by a
dilute gas expansion in p, whereas the dominant contributions
to the quasiparticle dispersion and residue arise from the in-
teraction between a single fermion and the close-packed sea of
bosonic dimers. We computed the latter effects by exactly di-
agonalizing the singe fermion Hamiltonian on lattice sizes up to
8× 8 with periodic boundary conditions, with the largest matrix
of linear size 76,861,458. The RK model has two conserved
winding numbers in a torus geometry, and these conservation
laws also hold for our model: all results presented here are for
the case of zero winding numbers. We extend these results to
nonzero fermion density by interpolation in SI Appendix.
Our numerical study explored the dispersion of a single

fermion over a range of values of the hopping parameters. We
show in Fig. 4 the dispersion «ðkÞ for a single Fηα fermion for
hopping parameters obtained by a perturbative connection on
a t-J model appropriate for the cuprates at the RK point
V = J = 1. SI Appendix has similar results for additional pa-
rameter values.
The minima of the fermion dispersion were found at different

points in the Brillouin zone, but there was a wide regime with
minima near momenta k= ð± π=2, ± π=2Þ. In fact, for the mo-
mentum points allowed on a 8× 8 lattice, the global minimum of
the dispersion in Fig. 4 is exactly at ðπ=2, π=2Þ. However, it is also
clear from the figure that the dispersion is not symmetric about
the antiferromagnetic Brillouin zone boundary, and that any
interpolating function will actually have a minimum at ðkm, kmÞ
with km < π=2. A dispersion with these properties is of experi-
mental interest because it will lead to formation of hole pockets
near the minima for the dimer model with a nonzero density of
Fηα fermions. Fig. 5 shows that changes to the dispersion from a
6× 6 lattice are smaller than 5%.

Fig. 3. Terms in the Hamiltonian HRK +H1.
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Our numerical results also yield interesting information on the
quasiparticle residue of the electron operator. This is nontrivial
even for the case of a single fermionic dimer, because, unlike a
free electron, a fermionic dimer can only move by “resonating”
with the background of bosonic dimers, as is clear from Fig. 3. In
the presence of a finite density of fermionic dimers, there will be
an additional renormalization from the interaction between the
fermions that we will not compute here. We do not expect this to
have a significant k dependence around the hole pockets. In the
dimer model subspace defined by the states in Eqs. 1 and 2, the
electron annihilation operator on site i has the same matrix el-
ements as the following:

Ciα =
eαβ
2

�
F†
ixβDix +Fi−x̂,xβ

† Di−x̂,x   +F†
iyβDiy +F†

i−ŷ,yβDi−ŷ,y

�
, [5]

relating the site to the four bonds around it (eαβ is the unit anti-
symmetric tensor). Then the quasiparticle residue is obtained by
computing the following:

ZðkÞ= jhΨFðkÞjCαð−kÞjΨRKij2, [6]

where jΨRKi is the ground state of the undoped model HRK, and
jΨFðkÞi is the ground state of HRK +H1 +H2 in the sector with
one Fηα fermion and total momentum k [the energy difference
between these two states is «ðkÞ]. We show the values of ZðkÞ in
Fig. 6, with parameters the same as those in Fig. 4. Note the
strong suppression of the residue in the second antiferromag-
netic Brillouin zone; line-cut plots of ZðkÞ in Fig. 5 highlight this
suppression. We found this suppression of ZðkÞ to be a robust
property in the regime of hopping parameters (with t2 > 0) that
had minima in the fermion dispersion along the Brillouin zone
diagonal. This result implies that the quasiparticle residue will be
highly anisotropic around the hole pockets that appear in the
finite fermion density case, with little spectral weight along the
“back side” of the pocket.
It is also possible to study the system in perturbation theory in

ti=J. We begin with the model with one fermion at t1 = t2 = t3 = 0.
The problem reduces to that of finding the ground state of HRK
in the presence of a stationary fermionic dimer: it is possible to

do this analytically at the solvable RK point V = J, as described in
SI Appendix. The fermion hoppings at nonzero ti is then com-
puted perturbatively in a single-particle tight-binding model, with
hopping matrix elements determined by overlaps of the wave
functions with a stationary fermion. At the RK point, each matrix
element reduces to the evaluation of a dimer correlation func-
tion in the classical problem of close-packed dimers on the
square lattice (69). The computation of these matrix elements,
and the resulting fermion dispersion, is described in SI Appendix.
This perturbative dispersion is found to be in good agreement
with our exact diagonalization results only for jti=JjK 0.01. This
rather small upper limit is likely a consequence of the gapless-
ness of the RK point, so that higher order corrections involve
noninteger powers of ti=J.

Discussion
In this article, we develop a new class of doped dimer models
featuring coherent electronic quasiparticle excitations on top of
a spin-liquid ground state. The scenario considered here is based
on the assumption that spinons and holons form bound states on
nearest-neighbor sites. These fermionic bound states with spin
S= 1=2 and charge +e form a Fermi sea with density p and are
observable as electronic quasiparticles in experiments. Such a
Fermi sea realizes a topological quantum state called the “frac-
tionalized Fermi liquid” (33), whose Fermi surfaces encloses

Fig. 5. Line cuts of the dispersion in Fig. 4 (Top) and of the quasiparticle residue
in Fig. 6 (Bottom). Also shown are the results from exact diagonalization on a
6× 6 lattice for comparison (red squares), which has a different set of allowed
momentum points. The overall shape of the dispersion remains the same as for
the 8× 8 lattice, and the fractional changes to «ðkÞ are smaller than 5%. The
Inset shows the residue between ð0,0Þ and ðπ, πÞ on a logarithmic scale.

Fig. 4. Lowest energy of a single-charge +e Fηα fermion as a function of
momentum k. We take hopping parameters obtained from the t-J model,
t1 =−1.05, t2 = 1.95, and t3 =−0.6, at the RK point V = J=1 on a 8× 8 lattice
with periodic boundary conditions and zero winding numbers. Note that the
dispersion is not symmetric about the magnetic Brillouin zone boundary,
i.e., across the line connecting ðπ, 0Þ to ð0, πÞ. Line cuts of this dispersion are
in Fig. 5.
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an area distinct from the Luttinger value in a conventional
Fermi liquid.
The undoped RK model on the square lattice features a

deconfined spin liquid ground state only at the special RK point
J =V, whereas the ground state breaks lattice symmetries away
from this point. Consequently, our numerical results of a single
fermionic dimer coupled to the background of bosonic dimers
focused at the RK point to uncover properties of the FL* state.
At finite densities of fermionic dimers, we expect that our model
(3) features a FL* phase in an extended parameter range.
However, similar to the RK model, we also expect a wide pa-
rameter regime where our model has a ground state with broken
lattice symmetries. We leave the computation of the phase dia-
gram of our model for future study.
The main implication of our model of the pseudogap metal (in

zero applied magnetic field and at moderate T below T*) is that
there are four well-formed pockets of charge +e fermions car-
rying spin S= 1=2 in the vicinity of (but not exactly centered at)
momentum ðπ=2, π=2Þ. The total area enclosed by these pockets
is 2π2p. Clearly, such pockets can immediately explain the
Fermi liquid-like transport observed in recent optical (12) and

magnetoresistance (13) measurements. We also note that the
hopping of electrons between CuO2 layers requires to break ei-
ther fermonic or bosonic dimers in our model, which naturally
accounts for the observed gap in c-axis optical conductivity.
Experiments that involve removing one electron from the

system (such as photoemission) have difficulty observing the
back sides of the pockets because of the small (but nonzero)
quasiparticle residue ZðkÞ noted above (Fig. 6). We propose this
feature as an explanation for the photoemission observation
of ref. 7 in the pseudogap metal. For further studies of these
pockets, it would be useful to use experimental probes of the
Fermi surface that keep the electrons within the sample (70):
possibilities include ultrasound attenuation, optical Hall, and
Friedel oscillations.
Our theory can be loosely summarized by “the electron be-

comes a dimer in the pseudogap metal,” as in Eq. 5: with a spin-
liquid background present, there can be no single-site state
representing an electron, and a dimer is the simplest possibility.
The main advantage of our quantum dimer model over pre-

vious treatments (39, 40, 42–44) of fractionalized Fermi liquids
(FL*) is that it properly captures lattice-scale dispersions, qua-
siparticle residues, and Berry phases: all of these are expected to
play crucial roles in the crossovers to confinement and associated
symmetry breaking at low T (48, 52, 53). Given the elongated
dimer and dipolar nature of the electron, Ising-nematic order
(71) is a likely possibility; the d-form factor density wave (15, 16)
is then a plausible instability of such a nematic metal. The in-
terplay between the monopole-induced crossovers to confine-
ment (52, 53) and the density wave instabilities of the hole
pockets (30, 31) can also be examined in such dimer models. The
onset of superconductivity will likely require additional states,
such as a spinless, charge +2e boson consisting of a pair of
empty sites.
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