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List of symbols and abbreviations

This list shows frequently used symbols and abbreviations in alphabetic order along with
the definition if it is short, and the formula, figure or page where they first appear.
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ALadder(ε) absorption in the ladder approximation, c.f. (3.12)

Anp(ν) non-perturbative absorption with the Mahan Ansatz, c.f. (3.40)

Anp(y) non-perturbative absorption with the Nozières Ansatz, c.f. Fig.
4.14

Ap(ν) perturbative absorption with the Mahan Ansatz, c.f. Fig. 3.11
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mass, c.f. Fig. 5.6

A∞(ε, δ) Fermi-edge polariton spectral function for infinite hole mass, c.f.
Fig. 5.2

ak destruction operator of a CB electron, c.f. (1.2)

a0 excitonic Bohr radius, c.f. (1.63)

bk destruction operator of a finite mass VB electron, c.f. (1.2)

b destruction operator of a infinite mass VB electron, c.f. (1.2)

CB conduction band, c.f. page 11

4



CLA consistent ladder approximation, c.f. page 71

ck destruction operator of a cavity photon, c.f. (1.8)

D(t) infinite mass VB hole propagator, c.f. (2.10)

D(Q, t) finite mass VB hole propagator, c.f. (2.3)
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α = ρEB/g
2 prefactor appearing in exciton-diagrams, c.f. (7.7)
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Abstract

Microcavity polaritons are half-light-half-matter eigenmodes of a quasi two-dimensional
system where a direct semiconductor quantum well is embedded in an optical resonator
(microcavity). For polaritons to appear, the cavity photon mode energy must be tuned
close to an optical transition of the semiconductor. When the semiconductor is heavily
n-doped, the relevant transition corresponds to the well-known Fermi-edge singularity,
leading to the formation of so-called Fermi-edge polaritons.

In the usual derivation of the Fermi-edge singularity one assumes an infinite valence
band hole mass, which is appropriate for low-mobility samples. To describe high-mobility
samples, a finite valence band hole mass is required. Recently, the mobility-dependence
of Fermi-edge polaritons has been experimentally investigated in Ref. [1], where a high-
mobility and a low-mobility sample were compared. The measured polariton spectral
function showed a clear mode splitting into an upper and a lower polariton for the
low-mobility sample, but for the high-mobility sample almost no mode splitting was
reported.

To understand this outcome, we investigate spectral properties of two-dimensional
microcavity polaritons in heavily doped semiconductors, with special emphasis on a
finite valence band hole mass. A diagrammatic evaluation of the Green’s function of
the valence band hole for vanishing and large momenta is presented, and the underlying
physics of the hole recoil is outlined. Using the outcome of this calculation and restricting
ourselves to linear response, we compute the self-energy of the microcavity photon,
relying on the diagrammatic approach initiated by Mahan and Nozières. Perturbative
and non-perturbative self-energy regimes are introduced and studied for frequencies close
to the optical threshold. The parametric limitations of the theory are outlined.

As a result, we are able to compute the polariton spectral function. In the non-
perturbative regime, where electron-hole interaction effects dominate as compared to
the hole recoil, the polariton spectrum as function of energy and cavity detuning still
shows some branch splitting (c.f. Fig. 5.4). In the perturbative regime, where the hole
recoil is most prominent, the splitting is seen to vanish almost completely (c.f. Fig.
5.6). Comparing our results with the measurements of Ref. [1], we find them to be in
qualitative agreement.
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1. Introduction

When a high quality direct semiconductor quantum well (QW) is placed inside an op-
tical microcavity, the strong interaction of photons and QW excitations confined in two
dimensions gives rise to a new quasiparticle: the polariton. The properties of this fascin-
ating half-light-half-matter particle strongly depend on the nature of the involved matter
excitations.

If the Fermi energy is in the semiconductor band gap, the matter excitations consist
of single conduction band electrons bound to valence band holes, so called excitons, and
are particle-like. This case is well understood in theory, and the first observation of the
resulting microcavity exciton-polaritons was already accomplished in 1992 by Weisbuch
et al. [2]. Several studies on exciton-polaritons revealed remarkable results. E.g. exciton-
polaritons were shown to form a Bose-Einstein condensate [3], and were proposed as a
mechanism for High-Tc superconductivity [4].

If the Fermi energy is significantly above the conduction band bottom, the matter
excitations have a complex many-body origin, and loose their quasi-particle nature. An
experimental study of the resulting ”Fermi-edge polaritons” was first conducted in 2007
by Gabbay et al. [5], and recently extended by Smolka et al. [1] (2014).

The theoretical explanation of Fermi-edge polaritons can be found in the extensive
literature on the related ”Fermi-edge problem”. This problem has been a major topic in
theoretical condensed matter physics for a long time, with seminal contributions made
by Mahan [6] and Nozières [7], [8], [9].

However, the Fermi-edge problem was mostly studied under the simplifying assump-
tion of an infinite valence band hole mass, corresponding to low-mobility samples. This
model fails to explain the experimental findings in [1], where a high-mobility sample was
studied, for which an almost complete vanishing of the polariton splitting was reported.

In this work, we aim to remove the assumption of infinite hole mass, and to obtain
a qualitative understanding of the resulting two-dimensional Fermi-edge polaritons. We
will also compare our theory to the experimental results of [1].

As the first step, we will introduce the setup under consideration and recall the stand-
ard theory of exciton-polaritons, which will allow us to formulate the statement of the
problem of this thesis in section 1.9.

1.1. Direct gap semiconductors

In this part we will introduce the electronic system which will be studied, and the basic
theoretical assumptions. For further detail compare chapter 8 of [10].

Direct gap semiconductors are systems which have fascinating physical features, but
still are simple enough for an analytical description.

Their basic electronic properties can be described by a simple two band model, as
shown in Fig. 1.1.
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1. Introduction

ω

0

−EG

k

Conduction Band

Valence Band

Figure 1.1.: 1D projection of the bandstructure of a typical direct gap semiconductor.
Blue shading visualizes filled states.

There is a valence band (VB) with a negative curvature near the Γ-point (k = 0), and
a conduction band (CB) with a positive curvature near the Γ-point, with their extrema
at momentum k = 0, and separated by a gap of energy EG. By considering only two
bands, we can study processes which take place at an energy E ' EG. The typical
material used in optical experiments is the III-V compound semiconductor GaAs, for
which EG = 1.518 eV (see Table 8.2 of Ref. [10]).

In all our considerations EG will be the largest energy-scale, e.g. much larger than
the bandwidths of both bands.

To begin with, let us assume that the chemical potential µ is in the gap: −EG < µ < 0.
As indicated in Fig 1.1, especially close to the Γ-point, the energy bands have an

almost parabolic shape. Therefore, we can define an effective mass in the standard way:

m :=

(
∂2Ec
∂k2

)−1

= const , M := −
(
∂2Ev
∂k2

)−1

= const . (1.1)

where Ec,v is the energy of the CB and VB electrons, correspondingly, and k = |k|. We
always use units s.t. ~ = 1.

We will only study optical experiments fine-tuned to the narrow energy range where
this effective mass approximation is valid.

The effective masses have to be understood in a Fermi-liquid picture, containing atomic
crystal effects, and intraband interaction effects such as Coulomb CB electron-electron
interactions.

Let us further note at this point that we will not consider any temperature effects.
Thus, our description will be limited to temperatures T smaller than the low-energy
scales that appear in our evaluations. This also allows us to disregard phonons, which
are frozen out.

After all simplifications, the system is described by the following Hamiltonian:

HCV
0 =

∑
k

k2

2m
a†kak −

∑
k

[
k2

2M
+ EG

]
b†kbk . (1.2)

Here, ak and bk are electron operators for the CB and VB, correspondingly. The energy
is measured from the bottom of the CB, see Fig. 1.1.
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1. Introduction

The momentum in (1.2) belongs to the first Brillouin zone. The space dimensionality
will be specified in the next section. We also implicitly assume spin sums. However, in
this thesis we will never actually consider spin physics except for prefactors of 2.

We will often use the abbreviations:

εk =
k2

2m
, Ek =

k2

2M
. (1.3)

For the effective masses appearing in (1.2) we have M � m. In real GaAs samples,
actually the situation is more complicated, namely there are (at least) two hole bands
called heavy hole (hh) and light hole (lh) band, the hh band having the larger energy. In
units of bare electron mass m0, the CB and the hh-band masses in 3D read (see Table
8.4 of Ref. [10]):

mCB =: m ' 0.066 , mhh =: M ' 0.47 ⇒ β :=
m

M
' 0.14 . (1.4)

In the following we take into account the hh-band only, always assuming that β � 1. A
possible origin for even larger hole band masses is disorder in the system. Classically,
in disordered systems we have spatially fluctuating potentials, which can bind electrons.
The larger the particle mass, the easier it can be bound or localized. Thus, the heavy
VB electrons tend to form such localized state. This can justify the assumption of an
infinite hole mass (M =∞).

1.2. Quantum wells

So far we did not specify the dimensionality of our system. From now on we will only be
concerned with systems that are effectively two-dimensional, so called two-dimensional
electron gases (2DEG). The physical realization of a 2DEG can be achieved with a
quantum well (QW) . A detailed review can be found in chapter 19 of Ref. [11].

Qualitatively, a QW is made inserting the semiconductor in question A between two
layers of a semiconductor B, see Fig. 1.2(a). For a GaAs QW, often the combination
Al1−yGayAs is used. If we want to achieve a confinement of electrons and holes in the
thin layer A, we need a z-dependence of the band extrema in the sample as shown in
Fig. 1.2(b). Such a structure is called a type I QW.

A

B

B

x

y

z

(a)

CB

VB

B A B

z

ω

(b)

Figure 1.2.: (a) A typical QW. (b) z-dependence of band extrema of a type I QW.

In an idealized picture, the band discontinuities at the layer edges form a square well
potential in z-direction. The electron bands then split into a finite number of discrete
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1. Introduction

subbands, where each band corresponds to a particular envelope-function solution of the
Hamiltonian in z-direction. Two such envelope functions are indicated in Fig. 1.2(b).
The energies of the subbands read:

En(k‖) = εn +
1

2m∗
(k2
x + k2

y) , (1.5)

where k‖ is the in-plane momentum and εn is the n-th energy level of the z-dependent

Hamiltonian. For a square well potential one has εn ∼ n2

d2
, where d is the width of the

thin layer. Hence, for thin enough layers the subband-splitting is large enough s.t. we can
consider only one subband nα for the CB and VB each, usually the lowest respectively
highest one. In the following we will do so, and disregard all z-dependence, effectively
treating all envelope functions as delta functions.

We will further absorb the subband-splitting εnα in the definition of the gap, which
we regard as experimental parameter.

However, we can still assume the gap to be of the same order as in the 3D case – e.g.
in the quasi-2D experiment of Ref. [1] the measured value for GaAs is EG ' 1.52 eV.

In reality, also the effective masses can be different in 2D, with a strong dependence on
concrete experimental parameters, especially on the electron density. For high enough
densities, which will be the regime consired from chapter 2 onwards, one can assume the
values to be similar to the 3D case (see e.g. Ref. [12] for the CB and Ref. [13] for the
VB).

1.3. Interaction with light

Let us now study the interaction of the system specified by (1.2) with light (c.f. [14],
chapter 13, [15], chapter 10). In particular we will be interested in setups where not only
the electrons, but also the photons are confined in 2D, which will lead to a reversible
light-matter coupling (as opposed to a simple radiative decay of the matter excitations).
As will be shown below, the general advantage of a 2D setup as compared to 3D is an
enhanced light-matter coupling.

The confinement of photons can be achieved by inserting the QW in the center of an
optical cavity, i.e a system consisting of two mirrors with high reflectivity separated by
a distance L. In our setups of interest L ' µm, hence one uses the name microcavity.
The mirrors can either be metallic or consist of so-called distributed Bragg reflectors
(DBR), which are made of alternating layers of a quarter of wavelength of semiconductor
materials with different indices of refraction.

This optical resonator has standing wave eigenmodes. A sketch of a setup with metallic
mirrors and of the lowest eigenmode is shown in Fig. 1.3.

13



1. Introduction
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Figure 1.3.: Sketch of an optical cavity with a QW inside. The red line indicates the
electrical field strength of the lowest cavity eigenmode.

The cavity eigenmodes have the following dispersion as function of the QW in-plane
wave-vector q:

ωq =
c

ncav

√
π2l2

L2
+ q2 , (1.6)

where c is the speed of light, ncav the cavity refractive index and l ∈ N \ {0} is any
natural number. We assume that the cavity is lossless and absorptionless except for the
QW, i.e. ncav =

√
εcav, where εcav is the cavity dielectric constant. Restricting ourselves

to the lowest mode and for light fields incident almost perpendicular to the xy-plane,
i.e. for q2 � π2/L2, we can write:

ωq ' ω0 +
q2

2mcav
, (1.7)

with ω0 = cπ/ncavL and the effective cavity mass mcav = ω0 · n2
cav/c

2. Restoring units,
for ~ω0 ' 1.5 eV and typical AlGaAs DBR cavities, one obtains mcav ' 3 · 10−5 m0.

The cavity mode energy can be modified using a wedged cavity geometry, s.t. the
effective length L depends on the position of the QW in the cavity.

The bare cavity photon Hamiltonian reads:

Hph
0 =

∑
q

ωqc
†
qcq , (1.8)

where cq are bosonic photon operators. The sum in (1.8) implicitly contains the sum-
mation over polarizations. Since we disregard spin physics, we will also not consider any
explicit polarization dependence.

In our setup the cavity modes will interact with the QW modes. Let us now sketch
the derivation of the 2D interaction Hamiltonian and emphasize the underlying approx-
imations.

We start with the standard minimal coupling Hamiltonian:

Hph
I =

∫
d2r Ψ̂†(r)

(
− e

m0
Â(r) · p̂ +

e2

2m0
Â

2
(r)

)
Ψ̂(r) , (1.9)
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1. Introduction

Here, e is the unit charge, m0 the bare electronic mass, Â(r) the quantized electromag-
netic vector-field operator in the Coulomb gauge, and p̂ the momentum operator. The
integral runs over the whole QW. Ψ̂(r) is the position field operator defined as:

Ψ̂(r) =
∑
k

φc,k(r)ak +
∑
k

φv,k(r)bk , (1.10)

where the φ-factors are the single particle wavefunctions for the CB and VB for momenta
k. These are products of plane waves and Bloch functions. We now insert (1.10) into
(1.9) and restrict ourselfes to one-photon-processes, thus ignoring the part proportional

to Â
2
. In addition, we consider interband transitions only. In this way we obtain:

Hph
I =

∑
k,p

a†kbp ·
(
− e

m0

)∫
d2r φc,k(r) Â(r) · p̂ φv,p(r) + h.c. (1.11)

We now use the mode-expansion of the vector-potential:

Â(r) =
∑
q

Eq
ωq

(
uq(r)cq + uq(r)c†q

)
. (1.12)

ωq the cavity mode dispersion as in (1.7), and uq contains the polarization vectors eq:

uq(r) =
1√
S · L

eq exp (iq · r) , (1.13)

where S is the QW area. We will work in the thermodynamic limit S → ∞.
Eq is the electrical field amplitude created by one photon, which fulfills the relation:

Eq =

√
ωq

2εcav
. (1.14)

Inserting (1.12) into (1.11) gives 4 terms. Of these we disregard the terms of the form

a†kbpc
†
q and akb

†
pcq, since they describe the simultaneous creation or annihilation of a

cavity photon and a CB-VB electron-hole pair, which is beyond our description. Ignoring
these terms corresponds to the rotating wave approximation. As long as we only study
processes where the cavity mode energies ωq are comparable to the band gap EG, this
approximation is excellent.

The result then reads:

Hph
I =

∑
k,p,q

a†kbpcq ·
(
− e

m0

)
· Eq
ωq

∫
d2r φc,k(r) uq(r) · p̂ φv,p(r)︸ ︷︷ ︸

=Mk,p,q

+ h.c.

(1.15)

In evaluating the optical matrix element Mk,p,q we switch to a sum of integrations
over crystal unit cells. We also make use of the electric Dipole approximation, which
corresponds to ignoring the space dependence of the polarization vector on the length
scale of one unit cell:

exp (iq · r) ' 1 for r = O(a0) , (1.16)
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where a0 is the lattice constant. In the energy range of interest this approximation is
certainly valid, since

λoptical '
2π~c
EG

' 1 µm , (1.17)

while a0 = O(Å).
With these considerations after some manipulations we end up with:

Mk,p,q = δk,p+q · −i
εk + Ep + EG

ωq︸ ︷︷ ︸
'1

Eq√
S · L

·N
∫
s0

d2rφc,k(r) (eq · er)φv,p(r)︸ ︷︷ ︸
=µcv

,

(1.18)

where the integral runs over one unit cell with area s0, and N is the number of unit cells
in the QW. µcv is recognized as the familiar dipole matrix element. It stays finite in the
thermodynamic limit due to the normalization of the single particle wave functions.

We will ignore the momentum dependence of the dipole matrix element, which is weak
for momenta sufficiently far away from the edge of the Brillouin zone. In addition we
approximate the ratio of the difference of the band energies and the cavity photon energy
by 1, as indicated in (1.18). Thus, we can write:

Mk,p,q = −iMq · δk,p+q with Mq ∈ R , (1.19)

and our final expression for Hph
I reads:

Hph
I = −i

∑
p,q

Mq · a†p+qbpcq + h.c. (1.20)

In comparison to 3D, the 2D wavefunctions of the CB and VB appearing in 1.18 have
an enhanced overlap. This results in a stronger light-matter interaction, which is ad-
vantageous for optical experiments.

The expressions (1.8), (1.20) are the only cavity terms we are going to consider. We
will disregard other effects like cavity driving or photon-photon interactions. A review
of such additional effects can be found in Ref. [16].

The first term of (1.20) describes the following basic process: a photon comes in and
lifts an electron from the VB to the CB. This results in a VB hole. A sketch of this
process for an empty CB is shown in Fig. 1.4.
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q

p

p + q

k

ω

Figure 1.4.: Sketch of an electron-hole creation process and involved momenta. The wavy
line represents the photon.

In the literature one often switches to hole operators for the VB. We will, however,
always make use of electron operators except for chapter 2.

1.4. The photon propagator

One important point is still missing in our description:
As first observed by Wannier [17], as soon as a VB hole is created, it will interact

with the CB electrons via an attractive Coulomb-interaction, which will depend on the
transferred momentum.

Since the attraction only occures after a photon absorption process, it is called a final
state interaction. Taking it into account, our Hamiltonian reads:

H =
∑
k

εka
†
kak −

∑
k

[Ek + EG] b†kbk +
1

S
∑
k,q,p

V (p− k)a†kapbk−qb
†
p−q︸ ︷︷ ︸

=HCV

+ (1.21)

+
∑
q

ωqc
†
qcq − i

∑
p,q

Mq · a†p+qbpcq + h.c. .

We will specify V (p − k) later. The optical properties of this system can be extracted
from the connected photon-propagator of a single cavity mode, which we define in a
standard way as:

Dc(q, t) =
〈Φ|T̂

{
cq(t)c†q(0)

}
|Φ〉

〈Φ|Φ〉
, (1.22)

Here, T̂ denotes the time-ordering operator, |Φ〉 the interacting photon vacuum, and

cq(t), c†q(t) are Heisenberg-picture operators w.r.t. the full Hamiltonian H (1.21). The
spectral information is contained in the retarded photon Green’s function:

DR
c (q,Ω) =

1

Ω− ωq + i0+ −ΠR(q,Ω)
, (1.23)
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where 0+ is an infinitesimal positive number and ΠR(q,Ω) the retarded photon self-
energy.

(1.23) describes a photon, which is dressed by QW polarization excitations. We can
also think of it as a new quasiparticle. After Hopfield [18] this quasiparticle is called
polariton, which is a combination of the words photon and polarization.

Our aim will be to calculate polariton properties, which can be done perturbatively
in Hph

I . To this end we write:

H̃ +Hph
I = H , (1.24)

and apply conventional T = 0 perturbation-theory w.r.t. |0〉, the ground-state of H̃. |0〉
describes a state without VB holes in the system.

Starting from (1.22), we then obtain (c.f. Ref. [19], Formula (8.9)):

iDc(q, t) =

∞∑
n=0

(−i)n

n!

∫ ∞
−∞

dt1...dtn
〈0|T̂

{
Hph
I (t1)...Hph

I (tn)c†q(t)cq(0)
}
|0〉

〈0|Uε(∞,−∞)|0〉
.

(1.25)

Uε(∞,∞) is the time-evolution operator adiabatically connecting the interacting and
non-interacting ground-state (see Ref. [19] for details). The denominator of (1.25)
cancels all disconnected diagrams. In the following we will not rewrite it explicitly,
presuming that all Green’s functions are connected. All operators appearing in (1.25)

are interaction picture operators w.r.t. Hph
I , i.e. Heisenberg picture operators w.r.t. H̃.

To shorten notations, we introduce electron-hole operators:

B†q =
∑
p

Mqa
†
p+qbp , Bq =

∑
p

Mqb
†
pap+q . (1.26)

We can think of B†q as the creation operator for one quantum of polarization with fixed
momentum q.

Since Hph
I contains only single photon operators, the lowest contribution to (1.25)

arises from second order. Therefore, we arrive at:

iDc(q, t) ' iD(0)
c (q, t) + (1.27)

1

2

∫ ∞
−∞

dt1dt2 〈0|T̂


∑

q1

B†q1
cq1
− c†q1

Bq1

(t1)

∑
q2

B†q2
cq2
− c†q2

Bq2

(t2) cq(t)c†q(0)

 |0〉 .
Since the Bq and cq operators always commute, the time ordering factorizes. Further-
more, we can use the fact that

T̂
{
B†q(t1)Bq(t2)

}
= T̂

{
Bq(t2)B†q(t1)

}
, (1.28)

since the B-operators are quadratic in fermion operators. Then, application of Wick’s
theorem on (1.27) results in:

iDc(q, t) ' iD(0)
c (q, t) +

∫ ∞
−∞

dt1dt2 〈0|T̂
{
Bq(t2)B†q(t1)

}
|0〉D(q, t− t2)D(q, t1) .

(1.29)
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Since our Hamiltonian is time-independent, all quantities can only depend on the time
difference. Thus, taking the Fourier-transform of (1.29), and using the fact that the time
integrals are just a double convolution, we obtain:

iDc(q,Ω) ' iD(0)
c (q,Ω) +

(
D(0)
c (q,Ω)

)2
·
∫
dt exp(iΩt) 〈0|T̂

{
Bq(t)B†q(0)

}
|0〉 .

(1.30)

With help of the Dyson equation we can identify the proper self-energy:

Π(q,Ω) = −i
∫
dt exp(iΩt) 〈0|T̂

{
Bq(t)B†q(0)

}
|0〉 . (1.31)

The expression (1.31) is a Kubo-type formula, and corresponds to linear response in the
photon field.

Π(q,Ω) has the following crucial property: it is automatically retarded, i.e.

Π(q,Ω) = ΠR(q,Ω) . (1.32)

This is easily seen in the time-domain, considering:

Π(q, t) = −i 〈0|T̂
{
Bq(t)B†q(0)

}
|0〉 = −iM2

q

∑
p1,p2

〈0|T̂
{
b†p1

(t)ap1+q(t)a†p2+q(0)bp2
(0)
}
|0〉

(1.33)

= −iθ(t) · M2
q

∑
p1,p2

〈0|b†p1
(t)ap1+q(t)a†p2+q(0)bp2

(0)|0〉 .

In the second line we used the fact that the noninteracting vacuum |0〉 has a filled VB,

s.t. b†p |0〉 vanishes. It is well known that the Fourier-transform of a function which only
has support on the positive semiaxis in the time domain is analytic in the upper half
plane in the frequency domain, i.e. is retarded (Titchmarsh’s theorem, c.f. Ref. [20]).

We can relate the self-energy Π(q,Ω) to the optical susceptibility of the QW, χ(q,Ω).
One has

ε(q,Ω) = 1 + 4πχ(q,Ω) , (1.34)

where ε(q,Ω) is the QW optical dielectric function. Starting from Maxwell’s equations
one can show (c.f. Ref. [21], section 2.10.) that in a homogeneous system with dielectric
function ε(q,Ω) the photon Green’s function must be modified as:

Dc(q,Ω) =
1√

ε(q,Ω) · Ω− ωq + i0+
. (1.35)

Equating (1.35) with (1.23) results in:

ε(q,Ω) =

(
1− Π(q,Ω)

Ω

)2

. (1.36)

However, in the derivation of Π(q,Ω) we only kept terms to second order in the matter-
light coupling constant Mq. To be consistent, when taking the square on the right hand
side of (1.36), only the linear term Π(q,Ω) is kept. Comparing with (1.34), we obtain:

χ(q,Ω) ' −Π(q,Ω)

2πΩ
. (1.37)
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The QW absorption coefficient α(q, ω) is proportional to =[χ(q,Ω)]. Therefore we have

A(q,Ω) := −= [Π(q,Ω)] ∼ α(q,Ω) (1.38)

for Ω close to EG. In the following we will leave out the prefactors and just refer to
A(q,Ω) as the absorption.

To summarize: The absorption is proportional to the imaginary part of the photon
self-energy.

1.5. Wannier-excitons

We will now review the calculation of Π(q,Ω) in the regime where −EG < µ < 0. For
V (p− k) we assume a quasi-2D Coulomb interaction (see Ref. [22], section 7.3):

V (p− k) = − 2πe2

|p− k|ε0
, (1.39)

where ε0 is the QW dielectric constant. For GaAs ε0 ' 13 (static).
Applying perturbation theory in V (q) analogously to (1.25), we can compute Π(q, t).

In zeroth order in the interaction Wick’s theorem gives:

Π(0)(q, t) = −iM2
q

∑
p

G(0)
c (p + q, t)G(0)

v (p,−t) . (1.40)

Here, G
(0)
c , G

(0)
v are bare time-ordered Green’s functions for the CB and VB, respectively,

defined in the standard way. Fourier-transformation yields:

Π(0)(q,Ω) = −iM2
q

∑
p

∫ ∞
−∞

dω

2π
G(0)
c (p + q,Ω + ω)G(0)

v (p, ω) . (1.41)

The corresponding Feynman-diagram is shown in Fig. 1.5. We will call this object an
electron-hole bubble.

p + q,Ω + ω

p, ω

Figure 1.5.: Zeroth order electron-hole bubble. Full lines represent CB electrons, dashed
lines VB electrons.

We now use the standard formula:

G(0)
c (k, ω) =

1− nF (ω)

ω − εk + i0+
+

nF (ω)

ω − εk − i0+
=

1− nF (εk)

ω − εk + i0+
+

nF (εk)

ω − εk − i0+
(1.42)

=
1

ω − εk + i0+sign(εk − µ)
, (1.43)
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where the second equality holds since i0+ is infinitesimal. nF is the Fermi occupation
function

nF (ω)
T→0
= θ(µ− ω) . (1.44)

A formula analogous to (1.42) holds for the VB.
For our choice of µ, we have

nF (εk) = 0 , nF (−Ek − EG) = 1 for all wavevectors k. (1.45)

One can show that as long as (1.45) is true the second order photon self-energy is exact,
since higher orders will just produce multiples of it. (c.f. Ref. [15], page 203, Ref. [21],
section 4.6.3).

Proceeding, (1.41) reads:

Π(0)(q,Ω) = −iM2
q

∑
p

∫ ∞
−∞

dω

2π

1

Ω + ω − εp+q + i0+
· 1

ω + Ep + EG − i0+
. (1.46)

Closing the contour below yields

Π(0)(q,Ω) = M2
q

∑
p

1

Ω− Ep − EG − εp+q + i0+
, (1.47)

which is proportional to the resonant part of the optical susceptibility for free carriers
(see Ref. [22], formula 5.62). The corresponding absorption then reads:

A(0)(q,Ω) = πM2
q

∑
p

δ(Ω− Ep − EG − εp+q) . (1.48)

This expression is recognized as Fermi’s Golden Rule for the transition rate of the photon
absorption, which does not take into account the final state interaction. We can further
evaluate (1.48) by writing:

Ep + EG + εp+q = EG +
1

2mr
(p +

mr

m
q)2 +

1

2M+
q2 , (1.49)

where mr is the reduced mass and M+ = m + M . Switching to an an integration in
(1.48) and shifting the integration variable we obtain:

A(0)(q,Ω) =
γqπρ

1 + β
· θ
(

Ω− EG −
1

2M+
q2

)
, (1.50)

where

ρ =
m

2π
(1.51)

is the single spin DOS in 2D,

β =
m

M
(1.52)

is the mass ratio, and

γq = M2
q · S (1.53)
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is effective light-matter coupling strength. The additional factor of S in the definition of
γq came from changing to a momentum integral. γq stays finite in the thermodynamic
limit.

We will always work under the assumption that β is small, taking into account the
leading terms in β only. Thus, we will approximate the prefactor 1/(1+β) ' 1 in (1.50).

The interpretation of A(0)(q,Ω) is transparent: As soon as the photon energy is lar-
ger than sum of the gap and the center of mass energy of an electron hole pair with
momentum q, the absorption sets in, and is proportional to the DOS of the CB which
measures the phase space of available states.
Let us now derive Π(q,Ω) in higher orders. We will only sketch the most important
steps. Details can be found in Ref. [21], chapter 9.22 - in 3D, but the calculation
in 2D is analogous. We use a diagrammatic evaluation. One can show that the only
diagrams contributing to Π(q,Ω) are the so-called ladder diagrams, as drawn in Fig. 1.6.

p1 + q,Ω + ω1

p1, ω1

+ +

p2 + q,Ω + ω2

p2, ω2

Figure 1.6.: The series of ladder diagrams. Dotted lines represent the Coulomb interac-
tion.

All other diagrams (especially all self-energy diagrams) vanish for the following reason:
In the time domain, all non-ladder diagrams either contain CB electrons propagating
backwards in time or VB electrons propagating forwards in time. The bare Green’s
functions in the time domain read:

G(0)
c (k, t) = −i [θ(t)− nF (εk)] exp (−iεkt) (1.54)

G(0)
v (k, t) = −i [θ(t)− nF (−Ek − EG)] exp (−i (−Ek − EG) t) . (1.55)

Thus, because of the condition for the Fermi-functions (1.45):

t < 0 ⇒ Gc(k, t) ∼ nF (εk, t) = 0 (1.56)

t > 0 ⇒ Gv(k, t) ∼ 1− nF (−Ek − EG, t) = 0 . (1.57)

An example for a CB-self-energy diagram that is absent due to the condition (1.57) is
shown in Fig. 1.7.
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Gv(t1) = 0

Gv(−t1)

Gc(t1)

t0 t1

Figure 1.7.: Vanishing CB self-energy diagram. For t1 > 0, the VB Green’s function
shown in blue is zero.

One can sum the whole series of ladder diagrams by introducing an auxiliary function
Pq(r,Ω + i0+) s.t.

Π(q,Ω) = γqPq(r = 0,Ω + i0+) . (1.58)

Pq(r,Ω + i0+) is related to the vertex function. Starting from a Bethe-Salpeter-type
integral equation one can then write down a differential equation for Pq(r,Ω + i0+):(

Ω + i0+ − EG −
q2

2M+
−HH

)
Pq(r,Ω + i0+) = δ(r) (1.59)

HH = − 1

2mr
∇2

r −
e2

ε0r
.

HH is recognized as the Hamiltonian for the relative motion in a Hydrogen atom. The
eigenfunctions φn(r) of HH are known:

HHφn(r) = εnφn(r) . (1.60)

This eigenfunction-equation is referred to as Wannier equation. Expanding in the eigen-
functions, one obtains a solution for Pq and, therefore, also for Π(q,Ω):

Π(q,Ω) = γq
∑
n

|φn(0)|2

Ω− EG − q2/2M+ − εn + i0+
. (1.61)

The summation extends over all eigenstates, i.e. over bound and scattering states. The
bound states are commonly called Wannier-excitons.

In comparison to the free carrier susceptibility (1.47), formula (1.61) shows a red-
shift of the excitation energies due to the formation of Hydrogen-like bound states. In
addition, it contains the factors |φn(r = 0)|2. Since r is the relative position of CB
electron and VB hole, this factor describes the probability to create an electron-hole
pair at the same point, which is required for photon absorption.

The bound state energies εn, counted from EG + q2/2M+, fulfill the relation:

En = −E0 ·
1

(n+ 1/2)2
, E0 =

e4mr

2ε20
=

1

2mra2
0

. (1.62)

23



1. Introduction

The lowest (1s) exciton has an energy of −4E0, where E0 ' 4 meV for GaAs (see Ref.
[22], Fig. 10.1). a0 is the (3D)-excitonic Bohr radius:

a0 =
ε0
me2

+O(β) . (1.63)

For GaAs a0 ' 13 nm.
For a two-dimensional description to be valid, the width of the QW d should be smaller

than a0.
Inserting the 2D hydrogenic wavefunctions into (1.61), one can obtain the absorption

A(q,Ω) from (1.61). This results in an expression known as 2D Elliott formula. We
will not give it here, for details see Ref. [22], formula (10.110). A plot of A(q,∆) as a
function of the normalized detuning

∆ =
Ω− EG − q2

2M+

E0
(1.64)

is shown in Fig. 1.8, where we have only kept the three lowest bound states and used a
finite damping to highlight the exciton poles.

normalized detuning ∆

A(q,∆)/γqπρ

2

-4 0

Figure 1.8.: Absorption in the Wannier-exciton regime. The lowest bound state (n = 0)
appears broader due to it’s enhanced weight, which scales as 1/(n+ 1/2)3 .

Besides the pole structure Fig. 1.8 also shows an increase by a factor of 2 at the onset
of the continuum absorption (compare with (1.50)), which can be seen as a residue of
the excitonic enhancement.

1.6. Exciton-polaritons

Having obtained the photon-self-energy (1.61), we can also calculate the polariton dis-
persion. Of the sum in (1.61) we only keep the 1s-exciton (n = 0), meaning that the
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cavity mode is tuned close to the 1s-exciton resonance. Furthermore, the weight of the
higher-order bound states is sizably smaller. Thus, we consider a two-oscillator model.
In the limit of infinite exciton and photon lifetime, we can simply insert the n = 0 con-
tribution into (1.23). The eigenenergies of the resulting exciton-polaritons can then be
found by solving for the zeros of the denominator. This gives a quadratic equation, with
the solutions:

Ω± =
1

2

(
ωq + eq ±

√
(ωq − eq)2 + 4g2

ep(q)
)
, (1.65)

where

eq = EG +
q2

2M+
− 4E0 (1.66)

is the exciton dispersion, and

gep(q) =
√
γq|φ0(0)| (1.67)

is the exciton-photon coupling. To have two well resolved polariton branches, 2gep(q)
must be larger than both the cavity linewidth Γc and the exciton linewidth. This con-
stitutes the so-called strong coupling regime. In this regime we can think of the photon
as being absorbed and reemitted by the QW and reflected by the mirrors several times,
s.t. the notion of the polariton as a new quasiparticle is really justified.

Let us now recall the cavity photon dispersion (1.7):

ωq ' ω0 +
q2

2mcav
.

with mcav ' 10−5m0, while M+ 'M ' 0.5m0. Therefore, in comparison to the photon,
the exciton is practically dispersionless. In addition, as can be seen from formulas (1.7),
(1.14) ff., also the q-dependence of gep(q) is weak. Thus, it is justified to set q = 0 in the
calculation of the photon self-energy Π(q, ω). We will do so in the following, effectively
considering only vertical VB-CB transitions.

We now introduce the detuning δ of the cavity mode from the exciton mode:

δ = ω0 − e0 . (1.68)

Using this notation, Fig 1.9 shows a plot of the polariton and bare cavity and exciton
dispersions, with eq ' e0 and gep(q) ' gep(0) =: gep.
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1

0.05 0.1 0.15

(Ω− ω0)/(−δ)

qL/π

2gep

0

Figure 1.9.: Dispersion of the exciton-polariton. Blue dashed curves show bare cavity and
exciton dispersions, red curves show polariton dispersions. Used parameters:
δ/ω0 = −0.006, δ/gep = −2 .

One can see that at small momenta the upper polariton-branch approaches the exciton-
branch, while at larger momenta it approaches the photon branch. Thus, the upper
polariton is exciton-like for small momenta, and light-like for large momenta. For the
lower polariton one has the opposite behaviour. This is often made explicit by so called
Hopfield coeffcients, measuring the effective light and matter content of the polaritons. In
the simple exciton-polariton case, these can be found by introducing polariton operators
as linear combination of photon and exciton operators (c.f. Ref. [22], page 203ff.).

A further discussion of polariton properties in combination with experimental results
in a different regime of Fermi energy will be presented in chapter 5. A detailed review
on exciton-polaritons can be found in Ref. [23].

1.7. The Fermi-edge regime: experimental motivation

The well-established theory of microcavity exciton-polaritons discussed in the preceeding
sections is fairly simple due to the absence of a Fermi sea dynamically responding to the
excitons. As soon as the Fermi sea is populated, which is the case for n-doped semicon-
ductors, the nature of excitons and polaritons will change. For very weak dopings the
exciton can bind an additonal CB electron, resulting in so-called trions. We will not
further consider this regime; a very recent theoretical study is presented in Ref. [24].

If the Fermi-energy is well above the bottom of the CB, further changes can be expected
due to the strong response of the Fermi sea. This situation is found in two recent
experiments conducted by Gabbay et al. [5] (2007) and Smolka et al. [1] (2014), where
the CB was populated strongly. Taking Ref. [1] (see supplementary material) as an
example, this can be achieved in two steps:

First, to insert free carriers in the CB, the system is n-doped. To reduce the impurity
scattering, not the QW itself is doped, but a layer which is spatially separated. This
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procedure is called modulation doping (compare also Ref. [25], section 11.3.4). The
impurity-density of the QW can be indirectly characterized via the electron mobility.
One can qualitatively distinguish two cases: Low-mobility samples have a high-impurity
concentration, and vice versa. Since the mobility scales as one over mass (c.f. Ref. [26],
page 601ff.), in low-mobility samples we can qualitatively assume the hole mass to be
infinite, while in high-mobility GaAs samples the mass is assumed to be as in (1.4).

Second, the capping layer of the sample is p-doped. This layer then effectively acts as
an electron reservoir. The electron density respectively the Fermi level of the QW can
then be tuned applying a voltage between the QW and the capping layer.

The experiments of Refs. [5], [1] measured the properties of polaritons in these heavily
doped systems, claiming to reach the strong coupling limit: E.g. in [1] the cavity photon
linewidth is given as Γc ' 1 meV, while the exciton-photon coupling respectively the
polariton splitting is measured to be 2gep ' 2 meV.

The resulting so-called Fermi-edge polaritons are found to differ drastically from the
simple exciton-polaritons. An especially remarkable feature is the strong dependence
on the electron mobility accentuated in [1], where a high-mobility and a low-mobility
sample were investigated. The measured polariton spectral function as function of energy
E and cavity detuning δ (c.f. (1.68)) is shown in Fig. 1.10. A detailed discussion of this
measurement will be presented in section 5.2. For now, we will only highlight the main
points.

Figure 1.10.: Polariton spectra as function of energy E and cavity detuning δ, measured
in Ref. [1]. Left figure: low-mobility sample. Right figure: high-mobility
sample. Data shown with courtesy of A. Imamoğlu.

While in the low-mobility sample (left) two clear polariton branches are visible, in the
high-mobility sample (right) the polariton-splitting vanishes almost completely. This
behaviour can certainly not be explained within the theory of exciton-polaritons (nor
with trions), where the mobility respectively hole mass dependence of the polaritons is
marginal.

As already qualitatively pointed out in [1], the key origin of this reduced Fermi-edge
polariton splitting is the hole recoil, which is absent for infinite mass holes.
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1.8. The Fermi-edge regime

To theoretically describe the polariton formation in heavily doped semiconductor mi-
crocavities, let us now introduce the Fermi-edge regime (FER) of a large Fermi-energy.
To be specific, we will regard a setup where the chemical potential µ is much larger than
the exciton binding energy E0:

µ� E0 . (1.69)

This condition can also be rewritten as:

kF · a0 � 1 , (1.70)

where kF is the Fermi-wavevector, and a0 the excitonic Bohr radius. In this regime, which
requires strong doping as discussed on page 26, the semiconductor is called degenerate.

By contrast, we call the regime of µ � E0, where excitonic effects are dominant as
discussed in the previous sections, the exciton regime.

In Ref. [1], µ ' 4 meV, which has to be compared to E0 = 4 meV for GaAs. Thus,
we can regard this experiment as somewhat inbetween the FER and the exciton regime.

In order to keep the calculations feasible, from now on we will use a simplified model
for the interaction. Namely, we will use a contact interaction in real space, i.e. a constant
in momentum space. The calculations below will show that in the FER the dominant
contributions to all observables will arise from momenta close to kF . Therefore, we will
use the following interaction Ansatz:

V (q) ' V (kF ) ' − 2πe2

ε0(kF + κ)
= −V0 , (1.71)

where κ is the 2D screening wave-vector. In the static Lindhard-Ansatz, κ ∼ 1/a0, s.t.
we can actually disregard it as compared with kF .

It should be noted that the assumption of a purely 2D screening is a pretty rough
approximation - there will always be screening from layers outside the QW, which will
effectively reduce the value of V0.

We will further assume that the interaction is cut off at energies εk = µ + ξ, where
ξ = O(µ). Typically, µ + ξ is of order of the CB bandwidth. The special case of µ = ξ
corresponds to half filling.

To summarize, the energy scales under consideration are:

E0 � µ, ξ � EG . (1.72)

A sketch of the bandstucture in the FER is shown in Fig. 1.11.
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Figure 1.11.: 1D projection of the bandstructure in the FER.

Of course, the requirement of a large chemical potential is actually best fulfilled in
metals. For these, a type of problem close in spirit to our study is the x-ray-edge problem:
One considers the process where an electron is lifted from a core level of the atom to the
conduction band. The required energies are usually in the (soft) x-ray regime, hence the
name. The empty electronic state of the core shell can also be regarded as a hole, which
is very localized; therefore, in the x-ray-edge problem it is meaningful to regard the hole
mass as infinite.

1.9. Statement of the problem

We are now in a position to formulate the aim of this thesis: To obtain a qualitative
understanding of the results found in Ref. [1], we will study two-dimensional microcavity
polaritons in the FER, concentrating on finite hole masses. To our knowledge, this
problem was not yet considered in the literature in full detail. Our study has the following
structure:

• To obtain insights in the physics of hole recoil, we will first calculate the VB hole
Green’s function in the FER, using perturbative techniques. We will especially
elucidate the influence of particle-hole scattering phase-space on the shape of the
VB hole spectral function, studying it for vanishing and large momenta.

• We will use the results of the first step as an input to compute the photon self-
energy in linear resonse, making use of the extensive literature on the x-ray-edge
problem. Our main technical tool will be the leading-log approximation suggested
by Mahan [6] and Nozières [7], [27]. Our study will focus on frequencies close to the
optical threshold. The physical implications of a finite hole mass will be clarified,
and the validity of our theory will be outlined.

• As the final step, we will then compute the FER finite mass polariton spectral
function, discussing the physical requirements for polariton formation. We will
also compare our results to the findings of Ref. [1].

• As a supplement, we sketch a way to go beyond the FER analytically, which we
have not completed yet.

29



1. Introduction

Our theory does not allow for a detailed quantitative explanation for the outcome of
Ref. [1]: First of all, we will use relatively rough approximations, and our results can thus
only indicate trends. Second, the experiment in Ref. [1] does not correspond to a clear
theoretical parametric regime, as was outlined in the previous section. This is also the
case for the effective dimensionality: As noted in section 1.5, a purely two-dimensional
description requires that the width of the sample d is much smaller than the excitonic
Bohr radius a0. In Ref. [1] d = 20 nm as compared to a0(GaAs) ' 13 nm, which means
that the system is neither in 2D nor in 3D.

However, because the basic features of polaritons will be found to be weakly dependent
on space dimensions, our study can still reproduce some fundamental findings of Ref.
[1] qualitatively.
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2. The hole propagator in the Fermi-edge
regime

In preparation of the evaluation of the FER photon self-energy in the next chapter, we
will now calculate a simpler quantity, which will already give us useful physical insights:
the VB hole propagator D.

In the Wannier-exciton case discussed in section 1.5, this propagator was a simple free
particle propagator, since all self-energy diagrams vanished. In the FER, however, the
interaction with the CB electrons will significantly alter the form of D, as will be shown
below.

In this chapter only we will switch from VB electron to VB hole operators. This
involves the following standard replacements (we use d’s for CB hole operators):

bk → d†−k , b†k → d−k . (2.1)

In addition a VB hole with momentum k has the energy EG + Ek.
Since a hole is just a missing electron, the Fermi function of holes nhF in the FER

fulfills:

nhF (Ek + EG) = 1− nF (−Ek − EG) = 0 , (2.2)

where we used that the unexcited VB is completely filled. In terms of the hole operators,
our quantity of interest in this chapter will be:

D(Q, t) = −i 〈0|T̂
{
dQ(t)d†Q(0)

}
|0〉 . (2.3)

Since we will be interested in the absorption later on, we average over the state |0〉, i.e.
the noninteracting ground-state of the system without CB or VB holes.

It is easily seen that

D(Q, t) ∼ θ(t) , (2.4)

s.t. the VB hole Green’s function is automatically retarded.
It should further be noted that the CB electron propagator in the Fermi-edge regime still
is that of a free particle: the decay rate of CB electrons is proportional to the VB hole
density, which is assumed to be zero. Since in the rest of this thesis all appearing CB
electron propagators will be bare ones, we will leave out the superscript (0) for them.

An experiment, which in principle can directly measure the hole spectral function
Ah(Q,Ω), corresponding to (2.3), is X-ray photoelectron spectroscopy (XPS). (see Ref.
[21], section 9.3.5.). In XPS, a photon with energies of order of keV is used to excite a
VB electron to a very large kinetic energy. The excited electron leaves the sample very
fast, and is practically unaffected by the CB Fermi-sea. A measurement of the kinetic
energies of the outgoing electrons is therefore directly related to Ah(Q,Ω).
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2. The hole propagator in the Fermi-edge regime

2.1. The hole propagator: infinite mass case

2.1.1. Anderson orthogonality

Following the literature (c.f. Refs. [21], [28]), we will start from the calculation of the
propagator of an immobile hole, i.e. M = ∞. This means that the hole dispersion is
completely flat, and hole operators do not have a momentum quantum number.

In the infinite mass case, the hole propagator was calculated by many authors as
byproduct of the absorption in the x-ray-edge problem. A short overview over these
works will be presented in section 3.1.

Let us now write down the Hamiltonian H∞ for the CB-VB system (without photons).
For physical transparence, we will phrase the interaction term as a contact potential in
real space. Thus, starting from HCV as defined in (1.21), our (M = ∞) - Hamiltonian
reads:

H∞ = EGd
†d+

∑
k

εka
†
kak − V0Ψ†(r = 0)Ψ(r = 0)d†d , (2.5)

where Ψ are the CB electron position operators, and we have centered our coordinate
system at the position of the hole. We have also left out the constant term corresponding
to the filled VB.

The hole operators appear in (2.5) only in the combination nd = d†d, which is the
hole number operator. Since a hole is a fermion, nd can have the (eigen-)values 0 or 1.
In dependence of the value of nd, two sectors for the CB electron system can be defined.

In the absence of a hole (nd = 0), there is just the bare CB Fermi-sea without interac-
tions. As soon as a hole is created (nd = 1), it acts as a local potential scatterer for the
CB electrons. Thus, the creation of a hole can be seen as a quantum quench connecting
the two sectors [29].

With the notation

V̂ = −V0Ψ†(r = 0)Ψ(r = 0) , (2.6)

the corresponding electronic Hamiltonian H∞ for the two sectors reads:

H∞(nd = 0) =
∑
k

εka
†
kak = Hi i =̂ initial (2.7)

H∞(nd = 1) = EG +
∑
k

εka
†
kak + V̂︸ ︷︷ ︸

=Hf

f =̂ final . (2.8)

These two sectors have different groundstates. We will call them |0〉 for Hi, and |G〉 for
Hf.

It is interesting to consider the overlap |〈0|G〉| of these two states. As first shown by
Anderson, in the thermodynamic limit it will vanish: The two groundstates are said to
show Anderson orthogonality [30]. In a simplified way, this intriguing property can be
understood as follows (c.f. Ref. [21], section 9.3.3):

For a system consisting of N CB electrons, and considering S-waves only, |0〉 can
be described as an N -dimensional Slater determinant of wave functions of the form
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2. The hole propagator in the Fermi-edge regime

sin(kr)/kr. On the other hand, far from the origin, |G〉 will consist of an N -dimensional
Slater determinant of shifted S-waves of the form sin(kr + δ)/kr. Here, δ is the small
scattering phase shift for one-electron scattering from the hole potential.
One can compute the overlap of these two Slater-determinants. Effectively, it will be
proportional to the N -th power of terms which are slightly smaller than 1. As a result,
one obtains:

|〈0|G〉| = N−
δ2

π2 . (2.9)

In the thermodynamic limit, N → 1023, the overlap will therefore vanish.

2.1.2. Heuristic calculation of the hole propagator

Our aim now is to find the time-ordered hole propagator:

D(t) = −i 〈0|T̂{eiH∞tde−iH∞td†}|0〉 = −iθ(t) 〈0|eiH∞tde−iH∞td†|0〉 . (2.10)

For the second equality, we used that H∞ conserves the number of holes, and there are
no holes in the groundstate |0〉.

The right hand side of (2.10) has the following operator structure: First, a hole is
created. Then, the time-evolution operator exp(−itH∞) acts on a state with one hole
(nd = 1). Then, the hole is destroyed again. And finally, the inverse time-evolution oper-
ator exp(itH∞) acts on a state without holes (nd = 0). Thus, employing the definitions
(2.7), (2.8), we can rewrite D(t) as:

D(t) = −iθ(t)e−itEG 〈0|eiHitde−iHftd†|0〉 . (2.11)

Since Hi, Hf do not contain hole operators, in (2.11) we can just commute d with
exp(−iHit), which leads to:

D(t) = −iθ(t)e−itEG 〈0|eiHite−iHftdd†|0〉 = −iθ(t)e−itEG 〈0|eiHite−iHft|0〉 , (2.12)

where we used that dd† |0〉 = (1− nd) |0〉 = |0〉.
Following Ref. [29], the behaviour of D(t) can be found in a heuristic manner. Insert-

ing a 1 of eigenstates |n〉 of Hf in (2.12), one obtains:

ieit(EG−Ei)D(t) = θ(t)
∑
n

e−iEnt|〈0|n〉|2 , with Hi |0〉 = Ei |0〉 . (2.13)

In the long time limit, due to fast oscillations, the only contribution to (2.13) will arise
from the term |〈0|G〉|2 ∼ N−2δ2/π2

(c.f. (2.9)).
As time increases, the local scattering potential will influence increasing length scales

L(t) ∼ vF t, where vF is the Fermi velocity. The effective particle number contributing
to the overlap will be proportional to this length: N ∼ L(t). As a result, the long time
behaviour of D(t) looks like:

D(t) ∼ t−2 δ
2

π2 . (2.14)

Let us analyse the phase shift δ. For a local scatterer, and for energies close to µ, δ is
given by (c.f. [28], formula 25.29)):

δ(ω ' µ) = arctan(πρV0) . (2.15)
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2. The hole propagator in the Fermi-edge regime

A useful interpretation of δ is given by the Friedel sum rule ([21], section 4.1.3):
According to this rule, δ/π can be seen as the displaced charge (in units of e), which

is moved by the scattering potential from infinity to a large, but finite sphere around
the scattering site.
The value of the phase-shift is determined by the dimensionless quantity

g = ρV0 . (2.16)

In the FER, inserting the definitions for ρ and V0 (1.71), we have:

g ' 2πe2

ε0kF
· m

2π
=

1

a0 · kF
=

1√
µ/E0

� 1 , for E0 � µ , (2.17)

where we also used the definition of the excitonic Bohr radius (1.63).
Thus, we can approximate δ by

δ/π = g +O(g3) . (2.18)

In this approximation, (2.14) then reads:

D(t) ∼ t−2g2 . (2.19)

To summarize, (2.19) shows a power law singularity originating from the Anderson or-
thogonality after local quantum quench, induced by photon absorption. Since g can
be changed e.g. by modifying the chemical potential, this power law is experimentally
tunable. A detailed theoretical study of such a tunable Anderson orthogonality in the
context of Kondo physics can be found in Ref. [31], and a experimental realization is
presented in Ref. [32].

The preceeding derivation was actually independent of the space dimension except for
the definition of g. This is a general feature at (M = ∞) for the hole propagator as
well as for the absorption: The problems are effecively one-dimensional, and can also be
solved by bosonization. This approach was first applied in this context by Schotte and
Schotte in Ref. [33]. A summary is found in section 26 VI of Ref. [28]. This effective
one-dimensionality will, however, no longer be fulfilled at (M <∞). Thus, we will keep
the restriction to 2D in the following.

2.1.3. Linked-cluster calculation of the hole propagator

Having obtained a first hint of D(t), let us now calculate it diagrammatically. We choose
the diagrammatic evaluation, because it will allow for a straightforward generalization
to finite hole masses M .

We have seen in (2.12), that D(t) is proportional to the factor:

〈0|eiHite−iHft|0〉 = 〈0|Ŝ(t)|0〉 , (2.20)

with the S-matrix Ŝ = eiHite−iHft.
With this manipulation we have completely erased the hole propagators from the

problem. The only effect of the hole is now to determine when the potential V̂ contained
in Hf is switched on, namely only for times between 0 and t. We can make this explicit
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by attributing a time-dependence to the potential. Switching to momentum space, it
then reads:

V̂ (ti) = −V0θ(t− ti)θ(ti)
1

S
∑
k1,k2

a†k1
(ti)ak2(ti) . (2.21)

With this definition, (2.20) can be summed in exponential form using the linked cluster
theorem (see Ref. [21], section 3.6.1): One introduces functions Fn(t) s.t.

〈0|Ŝ(t)|0〉 = exp

[ ∞∑
n=1

Fn(t)

]
. (2.22)

These functions are shown to be:

Fn(t) =
(−i)n

n

∫ t

0
dt1...

∫ t

0
dtn 〈0|T{V̂ (t1)...V̂ (tn)}|0〉dc , (2.23)

where the subscript dc means that one only has to sum over topologically different,
connected diagrams. As we will see explicitly for the first two terms, in our case these
diagrams are closed CB electron loops.

The basic idea of the linked cluster theorem is to count how many copies of a certain
connected diagram will appear in a certain order of interaction, and resum these copies in
such a form that one only has to evaluate each connected, topologically different diagram
once. In spirit this resummation is close to Dyson’s equation, and the proof for formula
(2.22) is just an exercise in combinatorics. We will see that the relevant contributions
Fn are logarithmic, so upon reexponentiation D(t) will be a power law of time. We will
restrict ourselves to the calculation of the leading behaviour of this power law in the
coupling constant g defined in (2.16).

Let us start the evaluation. To begin with, the zeroth order hole propagator is given
by:

D(0)(t) = −iθ(t)e−itEG . (2.24)

Then, using (2.23), the first order term in the cluster expansion reads:

F1(t) = −i
∫ t

0
dt1 〈0|V̂ (t1)|0〉 =

∫ t

0
V0

1

S
∑
k1

Gc(k1, 0
−) (2.25)

= itV0
1

S
∑
k1

nF (εk1) = 2itV0n .

where n is the homogeneous CB electron density. In (2.25) we have used the standard
rule for the evaluation of equal time Green’s functions as well as formula (1.54). The
additional factor of 2 came from the spin degree of freedom. Diagrammatically, (2.25)
corresponds to a simple CB-electron loop, as shown in Fig. 2.1.

k1, 0
−

Figure 2.1.: First order CB electron loop. The dot represents the time-dependent poten-
tial (2.21).
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Upon exponentiation, this term will lead to a linear red-shift of the gap EG. It can
also be seen as change of the total CB Fermi-sea energy in presence of the scattering
potential.

We will, however, never try to calculate such shifts of the gap energy, regarding EG
as an experimental parameter. Thus, we will disregard the contribution from F1(t).

In second order, application of Wick’s theorem yields exactly one connected contribution:

F2(t) = − 1

2S2

∑
k,k2

V 2
0

∫ t

0
dt1

∫ t

0
dt2 Gc(k1, t2 − t1)Gc(k2, t1 − t2) . (2.26)

The corresponding diagram is a second order CB loop, shown in Fig. 2.2.

k1, t2 − t1

k2, t1 − t2

Figure 2.2.: Second order CB electron loop.

Upon inserting Gc(k, t) from (1.54), the time integrals are easily evaluated, resulting
in:

F2(t) = −V
2

0

S2

∑
k1k2

[
itnF (εk1)

εk2 − εk1

− nF (εk1)(1− nF (εk2))

(εk2 − εk1)2
(1− e−it(εk2−εk1))

]
. (2.27)

The first summand linear in time again just shifts the gap, and we will disregard it. Let
us concentrate on the second term, which we will just call F2(t) from now on. Relabeling
momenta, k1 = p, k2 = p + q, it can be rewritten as:

F2(t) = −
∫ ∞
−∞

1

ν2
N(ν)(1− e−iνt)dν (2.28)

N(ν) =
V 2

0

S2

∑
p,q

nF (εp)(1− nF (εp+q))δ(ν + εp − εp+q) . (2.29)

The function N(ν) has a transparent physical interpretation. It counts the phase space
for the following process: A CB electron is scattered by the local VB hole potential,
which results in a particle-hole excitation of the CB Fermi sea. Such processes were
absent in the Wannier case since the CB was empty. In the FER, however, these will
determine the shape of the hole spectral function Ah, as we will see below. It should be
noticed, that these excitations necessarily cost energy (ν > 0) due to the structure of
the Fermi-functions in (2.29). A sketch of such a process is shown in Fig. 2.3.
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ν

ω

k

q

µ+ ξ

µ

Figure 2.3.: Sketch of a CB particle-hole excitation.

Let us now evaluate N(ν). Switching to energy integrals, one obtains

N(ν) = 2g2

∫ 0

−µ
dε1

∫ ξ

0
dε2 δ(ν + ε1 − ε2) , (2.30)

where again we got a prefactor of 2 from the spin summation, we used g as defined in
(2.16) and the upper cutoff on the interaction ξ.

(2.30) is easily integrated. At low frequencies N(ν) will be linear in ν, and for fre-
quencies ν > ξ it will decrease continously, vanishing for ν = ξ + µ. This behaviour
is understood as follows: Increasing the energy, the phase space for scattering increases
since there are less final states forbidden by the Pauli principle; for energies above the
bandwidth scatterings are not possible anymore. Since the details of the UV cutoff are
of no physical relevance, we can then approximate N(ν) in the following way:

N(ν) = 2g2ν · θ(ν) · θ(ξ − ν) . (2.31)

Inserting this into (2.28), we obtain:

F2(t) = −2g2

∫ ξ

0

1

ν
(1− e−iνt)dν . (2.32)

We notice that F2(t) has the property

F2(−t) = F2(t) , (2.33)

which was also the case for the S-matrix, see (2.20). As will be seen below, this property
will simplify the evaluation of the hole spectral function Ah(Ω). Therefore, we will do
approximations in such a way that (2.33) is conserved.

We will now bring F2(t) in a compact form considering different limits of |t|.
First, we consider |t| � 1/ξ. Then the argument of the exponential will be small,

hence one can expand the exponential to first order, which leads to :

F2(t) ' −2g2itξ |t| � 1/ξ . (2.34)

For |t| � 1/ξ one can split the integral into two parts. For ν < 1/|t| we can again expand
the exponential. For for ν > 1/|t| the exponential will be larger than 1, hence in this
region it will oscillate quickly and we can qualitatively ignore it. Together this leads to:

F2(t) ' −2g2i

∫ 1/|t|

0
dν t − 2g2

∫ ξ

1/|t|
dν

1

ν
= −2g2i · sign(t)− 2g2 log (ξ|t|) (2.35)

' −2g2 log (ξ|t|) t� 1/ξ .
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The last line holds with logarithmic accuracy, which is the major approximation tech-
nique that will be used in this work. In this approximation, one can ignore terms of
order of 1 in comparison to terms which are logarithmically divergent.

We note that, inserting the long time form of F2(t) into (2.20) and (2.10), we obtain:

D(t) = −ie−iEGt(ξt)−2g2 t� 1/ξ , (2.36)

coinciding with the heuristic result (2.19).
Let us proceed with the calculation of the hole spectral function Ah. First we notice,

that with logarithmic accuracy one can always write:

log(z) ' log(|z|) ∀z ∈ C \ R−0 s.t. |z| � 1 , (2.37)

where we used the principal branch of the logarithm, and the fact that the imaginary
part of the complex logarithm is at most 2π.

Employing the approximation (2.37), one can combine the two limits of F2(t) s.t. the
analytic property (2.33) is fulfilled:

F2(t) ' −2g2 log (1 + itξ) . (2.38)

Since D(t) is retarded, we can obtain the spectral function by just taking the imaginary
part.

Ah(Ω) = −2=
[∫ ∞
−∞

dt exp(iΩt)D(t)

]
= 2<

[∫ ∞
0

dt exp (i(Ω− EG)t) exp (F2(t))

]
.

(2.39)

We now introduce the detuning from the gap ε:

ε = Ω− EG . (2.40)

In terms of ε, and using the property (2.33), we can rewrite (2.39) as

Ah(ε) =

∫ ∞
−∞

dt exp (iεt) exp (F2(t)) . (2.41)

Inserting the simplified form (2.38), we obtain

Ah(ε) =

∫ ∞
−∞

dt
exp (iεt)

(1 + itξ)2g2
. (2.42)

This integral can be performed by a contour integration (see page 617 of Ref. [21] for
details). The result reads:

Ah(ε) = θ(ε)Γ(1− 2g2)
2 sin(2πg2)

ξ

exp(−ε/ξ)
(ε/ξ)1−2g2

, (2.43)

where Γ is the Gamma function. Near the threshold, Ah(ε) behaves as a power law:

Ah(ε) ∼ 1

ξ
· (ε/ξ)2g2−1 . (2.44)
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2. The hole propagator in the Fermi-edge regime

With help of identities for Gamma functions, one can check that Ah(ε) is properly
normalized:∫ ∞

−∞

dε

2π
Ah(ε) = 1 . (2.45)

Using this property, it is also clear that

lim
g→0

Ah(ε) = 2πδ(ε) , as expected. (2.46)

A plot of Ah(ε) is shown in Fig. 2.4.

1

α = Γ
(
1− 2g2

)
· sin(2πg2)

ξ

Ah(ε)/α

ε/ξ
1

Figure 2.4.: Infinite mass hole spectral function for g = 0.1.

Let us restate the most important point: Without interactions, or for µ < 0, the
hole spectral function would just be a delta function. In the FER, however, we have
particle hole excitations of the CB Fermi-sea, shown in Fig 2.3. Since such excitations
are possible at an infinitesimal energy cost, the delta function is turned into a power law
for energies larger than EG.

2.1.4. Dyson equation calculation of the hole propagator

Another possibility to obtain the VB hole propagator is the straightforward use of the
Dyson equation. This means that we have to reattach the hole propagators to the
electron-loop diagrams discussed so far, and calculate the self-energy.

This method is also implicitly shown in the first two of the seminal three papers on
the x-ray-edge problem by Nozieres et al. [7], [8], where also the results of this section
can be found.

To be consistent with the calculations done so far, as lowest Ansatz for the VB hole
self-energy Σ(Ω) we must use the diagram in the frequency domain corresponding to
Fig. 2.2 with reattached hole propagators. The relevant diagram is then shown in Fig.
2.5.
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2. The hole propagator in the Fermi-edge regime

p + q, ω1

p, ω2

ω

ω = Ω− ω1 + ω2

Figure 2.5.: Self-energy used for the hole propagator. Dashed lines represent VB holes,
labeled with the frequency only since they are momentum-independent.

Let us evaluate this diagram. First, we recall the bare Green’s functions, using (1.42):

Gc(k, ω) =
1

ω − εk + i0+sign(εk − µ)
(2.47)

D(0)(ω) =
1

ω − EG + i0+
. (2.48)

Using these, the diagram of Fig. 2.5 reads:

Σ(Ω) =
2V 2

0

(2π)6

∫
dp dq dω1 dω2

1

Ω− EG + i0+
· (2.49)

1

ω1 − εp+q + i0+sign(εp+q − µ)
· 1

ω2 − εp + i0+sign(εp − µ)
.

The frequency integrations are easy contour integrals. They yield, in terms of detuning:

Σ(ε) =
2V 2

0

(2π)4

∫
dp dq

nF (εp)(1− nF (εp+q))

ε− εp+q + εp + i0+
. (2.50)

To begin with, we evaluate Σ(ε) with logarithmic accuracy. This can be done, keeping the
term i0+ in the denominator of (2.50) finite during the integration. Then all appearing
logarithms will be well defined. Of course, such an evaluation actually only gives <[Σ](ε)
(compare (2.37)).

Following Ref. [7] (compare Eq. (25b) ff.), we assume <[Σ](0) to be already absorbed
in the definition of the renormalized gap EG. Switching to energy integrations and
cutting the q-integration at the cutoff ξ + µ, the leading logarithmic term of <[Σ](ε)
then reads:

<[Σ](ε) ' 2g2ε log(|ε|/ξ) . (2.51)

Starting from (2.50), one can also explicitly calculate = [Σ] (ε):

=[Σ](ε) = − V 2
0

(2π)3

∫
dp dq nF (εp)(1− nF (εp+q))δ(ε− εp+q + εp) . (2.52)

Comparing with (2.30) ff., this is readily evaluated:

=[Σ](ε) = −2g2πε · θ(ε) . (2.53)
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2. The hole propagator in the Fermi-edge regime

We can combine =[Σ], <[Σ] as

Σ(ε) = 2g2ε log

(
−ε− i0+

ξ

)
= 2g2ε log(|ε|/ξ)− i2g2πε · θ(ε) . (2.54)

Beginning with <[Σ](|ε|) (notice the absolute value in (2.51)), there is another way to
find =[Σ](ε) (compare [7], eq. (42) ff.):
We note that Σ[ε] is retarded. This is obvious from (2.50), and also holds for arbitrary
hole self-energy diagrams: Since a hole necessarily propagates forward in time, one also
has Σ(t) ∼ θ(t). Therefore, having obtained <[Σ](|ε|), =[Σ](|ε|) is fixed by Kramers-
Kronig relations.

We can then determine =[Σ](ε) from the fact that the spectral function Ah(ε) fulfills:

Ah(ε)

{
> 0 ε > 0

= 0 ε < 0
. (2.55)

This fixes the signs for the imaginary part of the complex logarithm, yielding (2.54). This
will be the way to go in most of our calculations: We will evaluate retarded quantities
with logarithmic accuracy, with typical results like

εα = exp [α log(ε)] .

Then, using known properties like (2.55), we will add the imaginary part of the logarithm
as in (2.54).

Using (2.54), one can then straightforwardly obtain the spectral function from the
Green’s function:

D(ε) =
1

ε− Σ(ε)
(2.56)

Ah(ε) ' 4π
g2

ε
· θ(ε) +O

(
g4 log(ε/ξ)

ε

)
. (2.57)

It should be noted that the result (2.57) is independent of <[Σ](ε).
Comparing (2.57) with the cluster result (2.43), we see that in leading order g2 the

two approaches coincide. If we only retain the self-energy diagram of Fig. 2.5, the two
approaches will differ for higher orders in g. We should then prefer the cluster expression,
since it coincides with the heuristic Anderson orthogonality result. Furthermore, the
exponent of the cluster result is also obtained in the famous paper by Nozières and de
Dominicis [9]. There, the calculation of the infinite mass hole propagator is reduced to
a one-body problem, resulting in an integral equation. This equation can then be solved
exactly in the limit ε→ 0.

However, the Dyson Ansatz will prove useful in the evaluation of the finite mass hole
spectral function, as discussed below.

2.2. The hole propagator: finite mass case

Let us advance to finite hole masses. Now the Hamiltonian H in the hole picture reads:
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2. The hole propagator in the Fermi-edge regime

H =
∑
k

(EG + Ek)d†kdk +
∑
k

εka
†
kak −

V0

S
∑
p,k,q

a†k+qakd
†
p−qdp︸ ︷︷ ︸

=V̂

. (2.58)

We aim to calculate the spectral function of the VB hole propagator (2.3):

Ah(Q,Ω) = −2= [D(Q,Ω)] , (2.59)

again using the fact that the VB hole is automatically retarded.

2.2.1. Linked-cluster approach

First, let us try to proceed in analogy to the infinite mass case. However, since dQ does
not have such simple projector properties, we cannot simply relate the Green’s function
to the S-matrix.

Following a suggestion by A. Rosch [34], the way around this problem is the cluster
expansion for the Green’s function (compare Ref. [21], section 3.6.2). As before, we will
relate the standard perturbative expansion to the exponentiated version. First, one has

iD(Q, t) =
∞∑
n=0

λnWn(Q, t) , (2.60)

where λ is a dimensionless coupling constant introduced to keep track of the powers of
V̂ . Later we will set λ = 1. The factors Wn(Q, t) are defined as:

Wn(Q, t) =
(−i)n

n!

∫ ∞
−∞

dt1...

∫ ∞
−∞

dtn 〈0|T{V̂ (t1)...V̂ (tn)dQ(t)d†Q(0)}|0〉 . (2.61)

In order to resum this as:

D(Q, t) = D(0)(Q, t) exp

[ ∞∑
n=1

λnFn

]
, (2.62)

upon comparing orders of λ we arrive at the following equations:

F1 =
−iW1

D(0)
(2.63)

F2 =
−iW2

D(0)
− 1

2
F 2

1 . (2.64)

Let us calculate D(Q, t) using these formulas. The zeroth order propagator reads:

D(Q, t) = −iθ(t)e−i(EG+EQ)t . (2.65)

For W1(Q, t) we obtain:

W1(Q, t) =
iV0

S

∫ ∞
−∞

dt1
∑

k1,p1,q1

〈0|a†k1+q1
(t1)ak1(t1)d†p1−q1

(t1)dp1
(t1)dQ(t)d†Q(0)|0〉 =

(2.66)

=− i4V0

S

∫ ∞
−∞

dt1
∑
k1

G(0)(k1, 0
−)D(Q, t1)D(Q, t− t1) .
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2. The hole propagator in the Fermi-edge regime

The other disconnected contraction gives no contribution since it is proportional to
D(k, 0−) = 0.

The diagram corresponding to W1(Q, t) is shown in Fig. 2.6.

Q, t1 Q, t− t1

k1, 0
−

Figure 2.6.: W1(Q, t), first order contribution to D(Q, t).

Comparing this diagram to the corresponding one in the infinite mass case, Fig. 2.1,
we see that we obtain the diagrams in the finite mass case from the ones in the infinite
mass case by drawing an incoming and outgoing VB hole line at each vertex.

Inserting the bare Green’s functions (1.54) and (2.65), (2.66) is easily evaluated:

W1(Q, t) = 2iV0

∫ ∞
−∞

dt1n · θ(t− t1)θ(t1)e−i(EG+EQ)t = 2inV0θ(t)e
−i(EG+EQt)t .

(2.67)

Hence, using (2.63):

F1(Q, t) = 2itV0n , (2.68)

which coincides with the infinite mass result (2.25).
As in the infinite mass case, we assume that this shift is contained in the definition of

the renormalized gap.
Now let us calculate W2(Q, t). First, there are two contributions (identical upon

relabeling of variables) from contractions like this:

W a
2 (Q, t) = − 1

2S2
V 2

0

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2
∑

k1,p1,q1

∑
k2,p2,q2

(2.69)

〈0|c†k1+q1
(t1)ck1(t1)d†p1−q1

(t1)dp1
(t1)c†k2+q2

(t2)ck2(t2)d†p2−q2
(t2)dp2

(t2)dQ(t)d†Q(0)|0〉 =

i5

2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2
∑
p,q

Gc(p, t1 − t2)G(p + q, t2 − t1)D(0)(Q, t1)D(0)(Q− q, t2 − t1)D(0)(Q, t− t2) .

Diagrammatically, this is depicted in Fig. 2.7.

43



2. The hole propagator in the Fermi-edge regime

p + q, t2 − t1

p, t1 − t2

Q, t1 Q− q, t2 − t1 Q, t− t2

Figure 2.7.: W a
2 (Q, t), second order contribution to D(Q, t).

We note that this diagram exactly corresponds to the one we used for the hole self-
energy in the infinite mass case, c.f. Fig. 2.5.

The second contribution to W2(Q, t) comes from contractions like this (there are again
two identical combinations):

W b
2 (Q, t) = −1

2
V 2

0

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2
∑

k1,p1,q1

∑
k2,p2,q2

(2.70)

〈0|c†k1+q1
(t1)ck1(t1)d†p1−q1

(t1)dp1
(t1)c†k2+q2

(t2)ck2(t2)d†p2−q2
(t2)dp2

(t2)dQ(t)d†Q(0)|0〉

= − i
5

2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2
∑
k1,k2

Gc(k1, 0
−)Gc(k2, 0

−)D(0)(Q, t1)D(0)(Q, t2 − t1)D(0)(Q, t− t2)

The corresponding diagram is shown in Fig. 2.8.

Q, t1 Q, t2 − t1

k1, 0
−

Q, t− t2

k2, 0
−

Figure 2.8.: W b
2 (Q, t), second order contribution to D(Q, t).

All other contractions vanish since they contain VB holes propagating backwards in
time.

Now let us evaluate F2(Q, t), using formula (2.64). Inserting the bare Green’s func-
tions, it is seen that:

−i2W b
2 (Q, t)

D(0)
− 1

2
F 2

1 (Q, t) = 0 , (2.71)

as expected, since Fig. 2.8 is essentially just the square of Fig. 2.6, and the cluster
expansion is designed to count every disjunkt diagram only once.
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2. The hole propagator in the Fermi-edge regime

Inserting the bare Green’s function into (2.69) and after straightforward integration,
we thus obtain:

F2(Q, t) =
−i2W a

2 (Q, t)

D(0)
= (2.72)

V 2
0

∑
p,q

[
itnF (εp)(1− nF (εp+q))

εp+q + ∆q − εp
− nF (εp)(1− nF (εp+q))

(εp+q + ∆q − εp)2
(1− e−it(εp+q+∆q−εp))

]
,

where

∆q = EQ−q − EQ . (2.73)

It should be noted that (2.72) coincides with the infinite mass expression (2.27) for
∆q = 0 (the first term looks different, but the expressions coincide by antisymmetry).
The factor (εp+q − εp + ∆q) appearing in (2.72) is precisely the energy cost for creating
one bubble as shown in Fig. (2.7).

2.2.2. Hole spectral function for Q = 0

Let us now specialize on an external hole momentum of Q = 0. We choose this value
as the simplest case of study; furthermore, one can expect to gain insights on zero-
momentum excitons, for which the calculation is in principle similar (c.f. supplement,
chapter 7).

The calculation of the (Q = 0) hole spectral function was already accomplished in
Ref. [35], where a saddle-point evaluation of a functional integral was used. We will,
however, stick to the cluster approach introduced in the last section. We believe that this
allows for a simpler understanding of the underlying physics, especially in view of the
calculation of the absorption we will do later on. We will recover all findings of Ref. [35]
relevant for our problem, and furthermore be able to verify some important analytical
properties of the hole spectral function. In addition, we will clarify the connection with
the Q > 0 case, which was not considered in Ref. [35].

A short linked-cluster calculation of a similar (spin-dependent) problem can be found
in Ref. [36].

Let us start the evaluation. Beginning with (2.73), for Q = 0 we have:

∆q = Eq . (2.74)

As in the infinite mass case we concentrate on the second term of F2(Q, t). In the same
fashion, we obtain:

F2(t) = −
∫ ∞
∞

1

ν2
N(ν)(1− e−iνt)dν (2.75)

N(ν) = V 2
0

∑
p,q

nF (εp)(1− nF (εp+q))δ(ν − Eq + εp − εp+q) . (2.76)

In the evaluation of N(ν), now we have to distinguish two cases. First, we consider the
high-frequency case ν . ξ, i.e. ν not much smaller than the UV cut-off. Then clearly
for all relevant momenta q we have:

ν � Eq . (2.77)
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2. The hole propagator in the Fermi-edge regime

Therefore we can just set ν −Eq ' ν in the delta-function (2.76), and reuse the infinite
mass result (2.31):

N(ν) ' 2g2νθ(ξ − ν) , ν . ξ . (2.78)

The reason for this is transparent: For frequencies much higher than characteristic VB
hole kinetic energies, the VB hole behaves as if it were immobile.

Now let us consider the low-frequency case, i.e. ν � ξ. First, we notice that in the
delta-function of (2.76), we necessarily have ν − Eq > 0 due to the structure of the
Fermi-functions. This also means that N(ν) will vanish at ν = 0: every scattering will
increase the energy of the (Q = 0) - hole from EG to EG+q2/2M and result in a particle
hole excitation of the CB Fermi sea, which also costs energy. Thus, only scatterings for
ν > 0 are possible.

Second, we observe that in the limit ν → 0 in the q-sum in (2.76) only the momenta
q < 2kF contribute, since for higher values of q necessarily εp+q − εp > 0. Thus, there
are two cutoffs on the q-sum:

• q2/2M < ν ⇒ q <
√

2Mν and

• q < 2kF .

Following Ref. [35], we will call the energy, at which the two cutoffs conincide, the recoil
energy ER:

ER =
(2kF )2

2M
= 4βµ . (2.79)

ER corresponds to the maximal energy transferred to a hole in a scattering process
where the resulting CB-electron hole pair has an infinitesimal energy. A sketch of such a
process is shown in Fig. (2.9). Since we are working in the hole picture, the VB energy
band is shown inverted.

ω

k

D

q ' 2kF

EG

ER

Figure 2.9.: Low-energy scattering process where ER is transfered to the VB hole. VB
holes are drawn as red dots.

We will now restrict ourselves to the ultra-low frequency regime, meaning that we
will calculate the leading behaviour in ν of N(ν) for ν � ER. Since ER can be seen as
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2. The hole propagator in the Fermi-edge regime

the characteristic kinetic energy of a VB hole, this means that we are interested in the
high-mobility limit. ER will serve as the crossover scale between the high mobility and
the immobility limit.

Starting from (2.76), switching to momentum integrations and carrying out the im-
plicit spin sum, we thus have to calculate:

N(ν) = 2V 2
0

∫
q<
√

2Mν

dq

(2π)2
L(q, ν − Eq) (2.80)

L(q, ν − Eq) =

∫
dp

(2π)2
nF (εp)(1− nF (εp+q))δ(ν − Eq + εp − εp+q)θ(ν − Eq) .

Due to the q-dependence of the term Eq, the evaluation of this integral is more difficult
than in the infinite mass case. We can proceed observing that the term L(q, ν − Eq) is
proportional to the imaginary part of the 2D Lindhard-function χ2. The calculation of
the latter is a text-book problem; in two dimensions it is found in Ref. [37]. Comparing
with formula (5.5) of Ref. [37], we find:

L(q, ν − Eq) = − 1

2π
θ(ν − Eq)χ2(q, ν − Eq) . (2.81)

To match the notations in Ref. [37], we now introduce rescaled variables:

x =
q

kF
, ωx = α− Eq

µ
, α =

ν

µ
. (2.82)

In terms of these rescaled variables, we will be looking for the leading behaviour of N(α)
in α. For fixed α, χ2(x, ωx) then reads:

χ2(x, ωx) =


χb2(x, ωx) −1 +

√
1 + ωx < x < 1−

√
1− ωx

χa2(x, ωx) 1−
√

1− ωx < x < 1 +
√

1− ωx
χb2(x, ωx) 1 +

√
1− ωx < x < 1 +

√
1 + ωx

0 else

, (2.83)

where

χa2(x, ωx) = −
k2
F

2π
· 1

µ
· 1

x

[√
1− 1

4

(ωx
x
− x
)2
−
√

(1− x2

4
)− ωx

2
− ω2

x

4x2

]
. (2.84)

and

χb2(x, ωx) = −
k2
F

2π

1

µ

1

x

√
1− 1

4

(ωx
x
− x
)2

. (2.85)

In our energy regime of interest the momentum cut-off is given by

x <
√
α/β � 1 , (2.86)

s.t. we only have to consider the first two cases of (2.83). We now notice that:

ωx = O(α) . (2.87)
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Simply by considering the boundaries in (2.83) one can then show that the contribution
to N(α) coming from χb2 will scale as O(α2), which will be shown to be subleading.
Thus, we concentrate on the contribution from χa2.

Expanding it in ωx leads to:

χa2(x, ωx) = −
k2
F

2π
· 1

µ
· 1

x

ωx√
4− x2

+O(ω3
x) . (2.88)

In leading order of accuracy, we can then rewrite the relevant integral (2.80) as:

N(α) =
2V 2

0

(2π)3

(kF )4

µ

∫ √α/β
0

dx
α− βx2

√
4− x2

. (2.89)

In extending the lower boundary of (2.89) down to zero we made an error of order∫ α

0
dx χa2(x, ωx) = O(α2) , (2.90)

which can be shown considering higher derivatives of χa2(x, ωx) in ωx. The remaining
integral (2.89) is carried out easily noticing that since

√
α/β � 1, we can approximate

the squareroot by 1/2. As a result we obtain:

N(ν) =
4g2

3π
· 1√

ER
· ν3/2 , ν � ER . (2.91)

In terms of α thus N(α) ∼ α3/2.
To make progress in the calculation of Ah(0,Ω), we now combine the two limits of

N(ν), (2.78) and (2.91), in the following rough approximation:

N(ν) =


C1g

2 · ν3/2 0 < ν < ER , C1 = 4/(3π
√
ER)

2g2 · ν + C2 ER < ν < ξ

0 ν > ξ

. (2.92)

We have introduced the constant C2 = O(ER) (the concrete value is irrelevant) to ensure
continuity of N(ν). A schematic plot of N(ν) is shown in Fig. 2.10.

ν

N(ν)

0 ER ξ

N(ν) ∼ ν3/2

N(ν) ∼ ν

Figure 2.10.: Schematic plot of the scattering phase space function N(ν).
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As discussed in the infinite mass case, N(ν) measures the phase space for the scattering
of CB electrons and VB holes with energy cost ν. We have found that this phase space
is reduced in the region ν < ER. This can be understood as follows: For ν very small,
there are two extremal scattering processes in terms of the transferred momentum q:

• Scatterings with q ' 0+. A sketch of these is shown in Fig. (2.11).

ω

k

D

q ' 0+

EG

ν ' 0+

Figure 2.11.: Scattering with low momentum transfer and low energy cost.

Since for these processes the final kinetic energy of the VB hole is negligible, they
will still contribute to the low-frequency phase space.

• Scatterings with q ' 2kF . The corresponding picture was shown in Fig. 2.9. In the
infinite mass case, since the hole band was flat, such scatterings could happen at
infinitesimal energy cost. Now, however, the energy cost is at least ER. Therefore,
these scatterings will not contribute to the low-frequency phase space, which is
thus reduced compared to the infinite mass case.

Let us now continue with the evaluation of Ah(0,Ω). In terms of ε, the detuning from
EG, and analogously to formula (2.41), we have to calculate:

Ah(0, ε) =

∫ ∞
−∞

dt exp (iεt) exp (F2(t)) (2.93)

F2(t) = −
∫ ξ

0
dν

1

ν2
N(ν)(1− e−iνt) . (2.94)

First, we consider the behaviour of F2(t) as t → ±∞. In the infinite mass limit F2(t)
was logarithmically divergent, c.f. (2.35). Now, however, since the factor N(ν)/ν2 is
integrable at ν = 0, inserting (2.92) into (2.94) yields:

lim
t→±∞

F2(t) = const ' 2g2 log(ER/ξ) for ER � ξ , (2.95)

which holds with logarithmic accuracy. Inserting this limit into (2.93), we obtain the
quasi-particle (coherent) part of the spectral function:

Ach(0, ε) = 2π(ER/ξ)
2g2 · δ(ε) . (2.96)
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The appearance of this peak can again be understood in terms of scattering phase space:
Since scatterings with q ' 2kF cost a finite amount of energy ER, there is not enough
phase space available to completely convert the noninteracting spectral function, which
is a delta peak, into a power law as in the infinite mass case. A delta peak with a finite
weight always remains, as also found in Ref. [35].

It should be noted, that for M → ∞, i.e. ER → 0, the weight vanishes, while in the
absence of interactions, g = 0, the delta peak aquires the full weight 2π.

Let us now consider the incoherent part of the spectral function. It can be found simply
subtracting the coherent part. Splitting exp(F2(t)) in the coherent and incoherent part,
one obtains:

Aih(0, ε) = (ER/ξ)
2g2
∫ ∞
−∞

dt eiεt
[
exp

(∫ ξ

0
dν

1

ν2
N(ν)e−iνt

)
− 1

]
(2.97)

= (ER/ξ)
2g2
∫ ∞
−∞

dt eiεt
∞∑
n=1

1

n!

[∫ ∞
−∞

dν

2π
e−iνt · 2π 1

ν2
N(ν)θ(ν)θ(ξ − ν)

]n
.

(2.98)

To begin with, we specialize on a qualitative evaluation of the limit ε→ 0. The largest
contribution to the integral comes from typical times:

ttyp ∼ 1/ε . (2.99)

Thus, e−iνt will oscillate quickly, hence the term in square brackets will have a small
value. Also N(ν) itself contains the small parameter g2. Therefore, as leading approx-
imation one can just keep the first order term of the exponential. With the notation:

B(ν) = 2π
N(ν)

ν2
θ(ν)θ(ξ − ν) , (2.100)

we see that in this approximation

Aih(0, ε) ' (ER/ξ)
2g2
[
FT ◦ FT−1(B)

]
(ε) , (2.101)

where FT denotes the Fourier-transform. Therefore, we just obtain:

Aih(0, ε) ' (ER/ξ)
2g2B(ε) . (2.102)

Inserting the low frequency behaviour of N , we see that

Aih(0, ε) ∼ 1√
ε

ε� ER , (2.103)

which again coincides with the results in Ref. [35]. As in the discussion of the incoherent
part, we observe that in comparison to the infinite mass limit (2.44), the spectral function
is narrower for ε > 0.

Let us continue with the evaluation of some important analytic properties of the
spectral function. Starting from (2.98), and interchanging the sum and the time integral,
one observes that the time integral of the n-th summand yields a delta-function of the
form:

δ(ε− ν1 − ν2 ... − νn) with ν1, ... νn ∈ [0, ξ] . (2.104)
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2. The hole propagator in the Fermi-edge regime

Therefore, we conclude that Aih(0, ε) ∼ θ(ε), as expected.
For the further evaluation it is worth noticing that Aih is just a sum of multiple

convolutions of B(ν):

Aih(0, ε) = (ER/ξ)
2g2

∞∑
n=1

1

n! · (2π)n−1
[B ∗ ... ∗B]︸ ︷︷ ︸

n times

(ε) . (2.105)

Since B(ν) > 0, one immediately obtains Aih(0, ε) > 0. In addition, the positivity of
the convolutions shows that the expansion of the exponential was meaningful in the first
place by monotone convergence. Using∫ ∞

−∞

dε

2π
B(ε) ' 2g2 log(ξ/ER) , (2.106)

and the identity∫ ∞
−∞

dx (f ∗ f) (x) =

(∫ ∞
−∞

dxf(x)

)2

, (2.107)

one can further check that the sum rule for Ah(0, ε) is fulfilled:∫ ∞
−∞

dε

2π
Ah(0, ε) =

∫ ∞
−∞

dε

2π

(
Ach(0, ε) +Aih(0, ε)

)
= (2.108)(

ER
ξ

)2g2 {
1 +

∫ ∞
−∞

dε

2π

(
B(ε) +

1

2!2π
(B ∗B) (ε) +

1

3!(2π)2
(B ∗B ∗B) (ε)...

)}
'
(
ER
ξ

)2g2

exp

(
2g2 log

(
ξ

ER

))
= 1 .

Studying the convolutions, one can also extract the leading behaviour of Ah(0, ε) for
ε . ξ (of course for ε > 0, Ah(0, ε) = Aih(0, ε) ). We study ε < ξ, since Ah(ε) will have a
discontinuity at ε = ξ due to the term θ(ξ − ε) in B(ε).
The first order contribution from (2.105) reads:

Ah(0, ε)(1) = (ER/ξ)
2g2B(ε) = 2π(ER/ξ)

2g2 · 2g2

ε
. (2.109)

Using ξ � ER, the second order contribution reads:

Ah(0, ε)(2) = (ER/ξ)
2g2 1

4π
(B ∗B)(ε) ' (ER/ξ)

2g2π(2g2)2

∫ ε−ER

ER

dω
1

ω

1

ε− ω
,

(2.110)

where we only used the high-frequency form of B(ε), which will dominate the convolution
integral. A partial fraction expansion then shows that:

Ah(0, ε)(2) ' 2π(ER/ξ)
2g2 · (2g2)2

ε
log (ε/ER) . (2.111)
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2. The hole propagator in the Fermi-edge regime

The third order contribution reads:

Ah(0, ε)(3) = (ER/ξ)
2g2 · 1

24π2
(B ∗B ∗B)(ε) (2.112)

' (ER/ξ)
2g2 1

3
π(2g2)3

∫ ε−2ER

ER

dω1

∫ ε−ω1−ER

ER

dω2
1

ω1

1

ω2

1

ε− ω1 − ω2

(2.113)

' 2π(ER/ξ)
2g2 · (2g2)3

2ε
log2(ε/ER)

In the last step we again used a partial fraction expansion and took the most divergent
parts of the ω1-integral.

One can extrapolate this series, which yields:

Ah(ε) = 2π(ER/ξ)
2g2 · 1

ε
(ε/ER)2g2 ∼ 1

ξ
·
(
ε

ξ

)2g2−1

. (2.114)

compare (2.44). This means that for energy scales much larger than ER we recover the
(M =∞)-behaviour, as expected.

Due to the discontinuity at ε = ξ mentioned above, the detailed form of the UV
cutoff of the spectral function is different than in the infinite mass case, but this is of no
physical relevance.

A summary of our results for the (Q = 0) hole spectral function is sketched in Fig.
7.6.

Ah(ε)/γ

γ = g2(ER/ξ)
2g2/ER = Aih(ε)/γ

= Ach(ε)/γ

εER ξ

1

Figure 2.12.: Sketched plot of the Q = 0 hole spectral function. Coherent part is shown
with a finite width. Scale on the vertical axis reflects the correct order of
magnitude for Ah(ER).

For better comparison of the different power laws, Fig. (2.13) shows a sketched double
logarithmic plot of the spectrum.
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2. The hole propagator in the Fermi-edge regime

ε/ER

Ah(ε)/γ

∼ ε−1/2

∼ ε2g2−1

Figure 2.13.: Sketched double logarithmic plot of the Q = 0 hole spectral function. Used
parameter: g = 0.1.

To summarize, we have found that in the low-frequency regime the hole spectral
function Ah(0, ε) is more particle-like due to the reduced scattering phase space.

2.2.3. Hole spectral function for Q = kF

Let us now discuss the hole spectral function for Q = kF . We choose this special value,
since the momenta close to kF will dominate the physics of the cavity absorption in the
Fermi-edge regime, as discussed in the next chapter.

Starting from the linked cluster approach, now the factor ∆q in (2.73) reads:

∆q = EQ−q − EkF , Q = |Q| = kF . (2.115)

The corresponding scattering phase space factor then reads, in analogy to (2.76):

N(ν) = V 2
0

∑
p,q

nF (εp)(1− nF (εp+q))δ(ν −∆q + εp − εp+q) . (2.116)

The behaviour of N(ν) now has a major difference to the cases discussed before: N(ν)
vanishes at ν = −EkF , not at ν = 0 as before. This is easily seen: In (2.116) we have
ν − ∆q > 0, but as seen from (2.115), min(∆q) = −EkF . This can be understood in
terms of scatterings (compare also Ref. [38]): For Q = kF , there can be scatterings
which lower the energy. The extremal case of such a scattering is shown in Fig. 2.14.
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2. The hole propagator in the Fermi-edge regime

ω

k

D

EG
EkF

kF

Figure 2.14.: Scattering of a VB hole with Q = kF which lowers the energy. In the CB,
the 2D dispersion paraboloid is indicated.

Thus, the minimal energy for the creation of a hole with momentum kF is actually
EG instead of EG + EkF . We can therefore assume that the onset of the hole spectral
function is at EG. Such a threshold mediated by scatterings is called indirect.

Is is clear that the appearance of this threshold also leads to a nonsingular spectral
function: The spectral weight of the particle delta-peak at EG +EkF is now distributed
over the interval [EG, EG + EkF ], s.t. no singularity remains.

In principle we could now proceed with the linked cluster evaluation. For the high-
frequency behaviour we do not expect any changes, in complete analogy to the (Q = 0)-
case:

Ah(kF , ε) ∼
1

ξ
(ε/ξ)2g2−1 , ε . ξ . (2.117)

In the low-frequency regime, however, the evaluation is difficult, since the resulting
function F2(t) is complicated. The Fourier-transform needed for the spectral function is
then hard to do analytically.

Let us therefore make use of the Dyson equation approach discussed in section 2.1.4
for the infinite mass case. In doing so, we restrict ourselves to the evaluation of all
quantities to order O(g2).

The generalization of the Dyson approach to finite masses is straightforward. A similar
calculation (or rather the result) can be found in Ref. [27], but in 3D instead of 2D.

Let us redraw the important self-energy diagram corresponding to Fig. 2.5 for finite
hole mass:
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2. The hole propagator in the Fermi-edge regime

p + q, ω1

p, ω2

Q− q, ω

ω = Ω− ω1 + ω2

Q = kF

Figure 2.15.: Self-energy used for the hole propagator for finite mass and Q = kF .

For finite hole mass, the bare propagator now reads:

D(0)(k,Ω) =
1

Ω− EG − Ek + i0+
. (2.118)

The self-energy diagram gives:

Σ(kF ,Ω) =
2V 2

0

(2π)6

∫ ∫
dp dq dω1 dω2

1

ω − EG − EQ−q + i0+
· (2.119)

1

ω1 − εp+q + i0+sign(εp+q − µ)
· 1

ω2 − εp + i0+sign(εp − µ)
.

The frequency integrals are easily performed with contour integration. This also fixes
the determination of the signum-functions: for a wrong sign, both poles lie in the same
half plane and closing the contour gives zero. This type of frequency integration will
always occur in the FER.

The result reads, in terms of detuning from the gap ε:

Σ(kF , ε) =
2V 2

0

(2π)4

∫
dp dq

nF (εp)(1− nF (εp+q))

ε− EQ−q − εp+q + εp + i0+
. (2.120)

Let us first compute =[Σ](kF , ε). It reads:

=[Σ](kF , ε) = − V 2
0

(2π)3

∫
dp dq nF (εp)(1− nF (εp+q))δ(ε− EQ−q − εp+q + εp) .

(2.121)

As in (2.80) ff. we can calculate this using the Lindhard function:

=[Σ](kF , ε) =
V 2

0

(2π)2

∫
dq χ2(q, ε− EQ−q)θ(ε− EQ−q) (2.122)

We now restrict ourselves to the limit of small ε:

ε ≤
k2
F

2M
= βµ . (2.123)

Note that ε = βµ corresponds to the pole of the noninteracting hole spectral function at
Ω = EG + k2

F /2M .
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2. The hole propagator in the Fermi-edge regime

We introduce dimensionless variables:

α = ε/µ , x = q/kF (2.124)

and consider the resulting factor χ2

(
x, α− β(eQ − x)2

)
θ
(
(α− β(eQ − x)2)

)
, where eQ

is the unit vector in Q - direction.
(2.83) shows that for any frequency ω we can write

χ2 (x, ω) = χa2(x, ω) for 0 < ω < −x2 + 2x , (2.125)

where we just have rewritten the boundaries for χa2(x, ω). A consideration of higher
derivatives in ω further shows that for ω � −x2 + 2x the approximation of χa2(x, ω) by
it’s leading expansion in ω as in (2.88) is justified.

In our case of interest we can estimate the maximum value of α− β(eQ − x)2 as:

α− β(eQ − x)2 ≤ β − β(1− x)2 = β(−x2 + 2x)� −x2 + 2x . (2.126)

Thus, we can replace χ2 by the leading term of χa2 in (2.122). Changing variables:

y = eQ − x , (2.127)

we obtain:

=[Σ](kF , α) = (2.128)

− θ(α) · 2g2µ

π

∫ 2π

0
dφ

∫ √α/β
0

dy
y(α− βy2)√

4− (1− 2y cos(φ) + y2)
· 1√

(1− 2y cos(φ) + y2)
.

First, we calculate the leading behaviour of =[Σ](kF , α) in α for α � β. This is easily
done, since we can then approximate the square roots as constants. The result then
reads:

=[Σ](kF , ε) = −θ(ε) · 1√
3
g2βµ

ε2

(βµ)2
, ε� βµ . (2.129)

Numerical integration of (2.128) shows that the Ansatz (2.129) is actually relatively
accurate even for ε . βµ. A comparison of the two methods is shown in Fig. 2.16.

ε/βµ

−=[Σ](kF , ε)/g
2βµ

Figure 2.16.: Evaluation of =[Σ](kF , ε). Blue curve: perturbative Ansatz (2.129). Yellow
curve: numerical integration of (2.128).
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2. The hole propagator in the Fermi-edge regime

As an important result we will use later on, we note that

=[Σ](kF , βµ) ' − 1√
3
g2βµ . (2.130)

This means that the hole-propagator for Q = kF has a finite life-time (which is also
true for any Q > 0): A hole with Q = kF is no longer the ground state, it can decay
into electron-hole excitations and a hole with Q < kF .

We will not attempt a proper evaluation of =[Σ](kF , ε) for ε > βµ. Of course, since in
the limit Q→ 0 we must recover the results of section 2.2.2, the power law in =[Σ](kF , ε)
should change for βµ < ε < ER = 4βµ. However, this change will be only marginal since
there is no clear separation of scales.

In the limit ε� βµ it is also clear that =[Σ](kF , ε) approaches the infinite mass result
(2.53).

Now we have to calculate <[Σ](kF , ε). There will be two contributions. The constant
part <[Σ](kF , 0) can only renormalize the gap and the VB hole mass, and we assume
that this is already accounted for. The frequency dependent part, which we can obtain
applying Kramers-Kronig relations on =[Σ](kF , ε), for small enegies will approximately
vary as:

<[Σ](kF , ε) ' g2 ε
2

βµ
log(ε/ξ) ε < βµ . (2.131)

For ε � βµ this term is clearly irrelevant. For ε ' βµ = k2
F /2M , the pole of the bare

hole spectral function, it can have a sizeable contribution. Effectively, it shifts the pole
by

∆E = βµ · g2 log (β) +O([g2 log(β)]2 · βµ) . (2.132)

We will now restrict ourselves to the regime where

|g2 log(β)| � 1 . (2.133)

In this regime, the shift of the pole is negligble; most importantly, the maximal value
and the width of the spectral function Ah(kF , ε) are unaffected by <[Σ](kF , ε).

Finally, if ε becomes large, as in the infinite mass case the inclusion of <[Σ](kF , ε)
can only lead to O(g4) corrections for Ah(kF , ε), which we do not take into account
(c.f. (2.57)). Thus, in the regime under consideration we can consistently disregard
<[Σ](kF , ε) alltogether. Our general expression for the spectral function therefore reads:

Ah(kF , ε) =
−2=[Σ](kF , ε)

(ε− βµ)2 + (=[Σ](kF , ε))
2 , (2.134)

Inserting the low-energy form (2.129) then immediately shows the properties

Ah(kF , ε) = θ(ε)
g2

√
3

ε2

(βµ)3
ε� βµ (2.135)

max(Ah(kF , ε)) = Ah(kF , βµ) = 2
√

3/(g2βµ) . (2.136)
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2. The hole propagator in the Fermi-edge regime

If we use a self-energy expression which continuously interpolates between the low-energy
limit (2.129) and the high-energy limit (2.53), we obtain a spectral function as shown in
Fig. 2.17.

ε/βµ

Ah(kF , ε) · βµg2

1

1

0

∼ ε2 ∼ ε−1

Figure 2.17.: Dyson equation result for the hole spectral function with Q = kF . Used
parameter: g = 0.4.

To summarize, we have found that the hole spectral function Ah(kF , ε) is of finite
height due to the decay into CB electron-hole excitations, and it vanishes at ε = 0,
which is the minimal energy for hole creation.
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3. Absorption in the Fermi-edge regime:
Mahan approach

3.1. Historical overview

Having obtained an understanding of the underlying physics of the hole propagator, let
us now proceed with the calculation of the absorption in the Fermi-edge regime. This
has been a major problem of interest since the late sixties, studied with a large variety
of methods, both analytical and numerical. However, usually it was considered under
the simplifying assumption of infinite VB hole mass, which we are going to lift.

Let us first give a short overview over the theoretical state of the art and give some
references; detailed evaluations will be shown in subsequent sections.

In the infinite mass case, the first seminal contribution was made by Mahan [6] in 1967,
who already correctly identified the leading behaviour. Near the threshold ωT := EG+µ,
the absorption behaves as a power law:

A(ω) ∼ (ω − ωT )−2g . (3.1)

Mahan used a diagrammatical method; an extended and more self-consistent diagram-
matical calculation using so-called Parquet equations was achieved in 1969 by Nozières
et al. [7], [8] in the first two of a series of three outstanding papers. In the third paper
[9], Nozières and de Dominicis were able to reduce the question to a one-body problem,
similar as shown in section 2.1.3 when we erased the hole lines. They then calculated
the power law exponent in terms of the scattering phase shift δ, obtaining:

A(ω) ∼ (ω − ωT )(δ/π−1)2−1 . (3.2)

In honor of Mahan, Nozières and De Dominicis the x-ray-edge-problem is also frequently
called MND-problem.

A useful interpretation of the power law in (3.2) was given by Hopfield [39] (1969): As
for the hole propagator, the term δ/π describes the number of electrons displaced by the
hole potential according to Friedel’s sum rule as we discussed starting from (2.15). In
addition, in a photon absorption process an electron is excited from the VB to the CB;
this additional electron is accounted for by the extra term −1 added to the phase-shift.
This rule of counting electrons has also been applied with success to other situtions.
More examples for the applications of this so-called Hopfield rule of thumb can be found
in Ref. [29].

As discussed before, for small couplings g one has δ/π = g+O(g3), therefore in second
order in g (3.2) reads:

A(ω) ∼ (ω − ωT )g
2−2g , (3.3)

disregarding spin. The term g2 can be seen as a remainder of the Anderson orthogonality
discussed in the previous chapter; it is therefore often called Anderson contribution,
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3. Absorption in the Fermi-edge regime: Mahan approach

while the term −2g is called Mahan contribution. Our perturbative calculation will be
restricted to the latter.

There have been many further important results for the x-ray-edge problem. Of these
we want to mention the bosonization treatment by Schotte and Schotte [33] (1969) and
the approach of Combescot and Nozières [40] (1971), who tranformed the problem to a
calculation of Slater-determinants, and were able to go beyond the FER, allowing µ to
be small, but finite.

It should be noted that the analytical methods are mainly concerned with a spectral
region asymptotically close to the threshold; for the full absorption line-shape numerical
methods are needed. Such calculations and a detailed review of many further results can
be found in Ref. [41] (1990) by Othaka and Tanabe.

Now let us mention the treatments in the case of finite VB hole mass. First, there is
the diagrammatic treatment of Gavoret, Nozières et al. [27] (1969) in 3D. This treatment
was further discussed and extended by Ruckenstein and Schmitt-Rink [42] (1987), also
adding some results in 2D. We will present a detailed calculation of the absorption in
2D based on these two papers in chapter 4. To anticipate the result, the major effect of
the finite mass is to cut and wash out the edge singularity. A short physical discussion
of this outcome is found in a late paper by Noziéres [38] (1994).

Furthermore, there are some numerical approaches. The first relevant one is by Uenoy-
ama and Sham [43] (1990), based on a concise semianalytical functional integration. The
resulting absorption, however, is only shown at very strong magnetic fields and is rather
featureless.

The second important study we are aware of is by Hawrylak [44] (1990). He also
accounted for effects beyond our treatment, like band gap renormalization and a more
realistic electron-hole interaction. The effects of these modifications are difficult to es-
timate; however, the major point that the finite mass will cut the singularity is confirmed
in his paper.

3.2. Mahan approach for the infinite mass case

We will now begin our evaluation, starting from the original approach by Mahan [6].
As we will see, this treatment has to be regarded only as a first guess. However, it will
allow for a straightforward generalization to final masses, that already contains the most
important physical ingredients. A more elaborate treatment, based on Ref. [27], will be
presented in the next chapter.

Let us first sketch the calculation in the infinite mass case, following Ref. [21], section
9.3.2. We will not show the calculations in detail, since the infinite mass case can be
easily recovered from the finite mass case we will calculate afterwards.

We switch back to the VB electron picture, starting from the Hamiltonian with the
simple form of interaction (2.5). In momentum space, our Hamiltonian then reads:

H∞ = −EGb†b+
∑
k

εka
†
kak −

V0

S
∑
k,p

a†ka
†
pbb
† . (3.4)

We will now calculate the photon self-energy in linear response. As announced in
section (1.6), we will set the photon momentum q to zero. Then we have to evaluate

60



3. Absorption in the Fermi-edge regime: Mahan approach

(see (1.33)):

Π(Ω) = −iM2
0

∫
dt exp(iΩt)

∑
p1,p2

〈0|T̂
{
b†(t)ap1

(t)a†p2
(0)b(0)

}
|0〉 . (3.5)

Exactly as in section 1.5, the zeroth order result corresponds to the bare electron-
electron-bubble shown in Fig. 3.1.

p,Ω + ω

ω

Figure 3.1.: Zeroth order electron-hole bubble.

The bare VB propagator in the FER for infinite hole mass reads:

G(0)
v (ω) =

1

ω + EG − i0+
. (3.6)

We note that in the electron picture VB propagators must be purely advanced, which
will also be the case for finite mass.

Using this Green’s function and carrying out the frequency integration as discussed in
section 2.2.3, Π(0)(Ω) reads:

Π(0)(Ω) =M2
0

∑
p

1− nF (εp)

Ω− EG − εp + i0+
= M2

0Sρ
∫ µ+ξ

µ
dεp

1

Ω− EG − εp + i0+
(3.7)

=γ0ρ log

(
Ω− EG − µ+ i0+

Ω− EG − µ− ξ + i0+

)
,

where we used the definition of γ0 = M2
0S as in (1.53).

We now concentrate on the energy regime Ω & EG + µ. It is clear e.g. from the FER
bandstructure picture of Fig. 1.11, that the absorption A(Ω) will set in at EG + µ in
the noninteracting case. For reasons to be explained later, we will call ΩI = EG + µ the
indirect threshold . From now on we will phrase all expressions in terms of the detuning
ε from this threshold, which we assume to be small. More precisely, we will use that

ε = Ω− ΩI � ξ . (3.8)

Thus, for Π(0)(Ω) we obtain in terms of ε:

Π(0)(ε) = γ0ρ log

(
−ε− i0+

ξ

)
, (3.9)

which leads to a zeroth order absorption

A(0)(ε) = γ0πρ · θ(ε) . (3.10)

Let us proceed with higher orders. First, there are the ladder diagrams which appeared
in the calculation of the Wannier-exciton. Let us redraw them:
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p1,Ω + ω1

ω1

+ +

p2,Ω + ω2

ω2

Figure 3.2.: The series of ladder diagrams

Using our momentum-independent interaction, their calculation is simple since all
integrals just factorize. Fixing the signs with Wick’s theorem, the resulting contribution
of an n-th order ladder diagram reads:

Π
(n)
Ladder(ε) = γ0ρ · (−g)n log

(
−ε− i0+

ξ

)n+1

. (3.11)

A first guess for the absorption can be obtained by just taking into account the series
of ladder diagrams, as was first done by Mahan [45]. Accordingly, this Ansatz is called
ladder approximation. Keeping the decay rate 0+ finite troughout the ladder summation,
one arrives at the following expression for the absorption:

ALadder(ε) = −=

[ ∞∑
n=0

Π
(n)
Ladder(ε)

]
=

γ0ρB

(1 + gC)2 + (gB)2
, (3.12)

where

B(δ) =
(
π/2 + arctan

( ε

0+

))
and C(ε) =

1

2
log

(
ε2 + (0+)2

ξ2

)
. (3.13)

One can check that ALadder(ε) has a singularity below treshold for

ε = −ξ exp(−1/g) =: −EB . (3.14)

This pole corresponds to a bound state and is a remainder of the Wannier-excitons in
our simplified interaction. It is called Mahan-exciton in the literature. Furthermore,
ALadder(ε) has a a continuous onset at ε > 0. A typical plot of ALadder is shown in Fig.
3.3.

ALadder(ε)/γ0ρπ

ε

0EB

1

Figure 3.3.: Absorption in the ladder approximation.
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One should compare this plot to the Wannier-exciton case shown in Fig. 1.8.
For nonzero µ, keeping only the ladder diagrams is unphysical: As was discussed in

section 1.5, the ladder diagrams only contain CB electrons propagating forwards in time,
thus no particle-hole excitations of the CB Fermi-sea are taken into account. As µ is
increased, these scatterings become more and more important, blurring the thresholds;
therefore, the frequency space between the Mahan-exciton and the continuous threshold
is gradually filled in. This is sketched in Fig. 3.4.

ALadder(ε)/γ0ρπ

ε

0EB

1

Figure 3.4.: Qualitative change of the absorption as µ is increased. The threshold shift
is disregarded. This picture was adapted from Ref. [40].

Finally, in the FER, which corresponds to µ� EB, one can expect that no remainder
of two separate thresholds is left, and the exciton pole is turned into a power law, in the
same way as was the case for infinite mass holes.

A detailed discussion of the absorption in the presence of an exciton in an intermediate
regime µ ' EB is found in Ref. [40] .

Due to it’s simplicity, the ladder approximation is sometimes used for the calculation
of finite hole mass absorption spectra even for large chemical potentials (c.f. Refs. [46],
[47]). However, in the FER this procedure is questionable, since excitonic effects are
strongly overestimated (see also below).

Let us now extend the treatment beyond the ladder approximation. From (3.11) we
infer that the quantity controlling the perturbative expansion is

g log

(
−ε− i0+

ξ

)
=: gL , (3.15)

which is divergent as ε→ 0.
Mahan [6] proposed the following procedure, called leading log summation: In the calcu-
lation of Π(ε) for small ε, to each given order in the interaction we keep only the terms
of the largest appearing power in gL: In n-th order, these will be of the form

(gL)n · L . (3.16)
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3. Absorption in the Fermi-edge regime: Mahan approach

As elucidated in the first of the three seminal papers by Nozières [7], such a procedure
can only be valid in a strict sense for not to small ε s.t. gL ' 1. Namely, for gL� 1, i.e
L� 1/g, a quantity like e.g. g3L3 can be of the same order as gL2, s.t. disregarding it
makes no sense. An extension of the leading-log summation all the way down to ε = 0
was accomplished in the second paper by Nozières, [8], via a consistent treatment of
unknown divergent parameters. We will, however, not employ this method here.

Assuming gL ' 1 and keeping only the leading terms already excludes VB self-energy
diagrams: As shown in the previous chapter in second order, c.f. (2.51), the contribution
of the self-energy diagram of Fig. 2.15 is g2L · ε, which is subleading as compared to
the term ε that appears in the denominator of the VB-Green’s function. This statement
also holds to all orders [7]. Therefore, within the Mahan treatment we only take into
account vertex corrections.

Lastly, we remark that in the leading-log summation it is difficult to keep track of the
phases of the complex logarithm, since calculations are done with logarithmic accuracy;
However, the phases can be restored (which we will do implicitly) using the same argu-
ments as were discussed starting from (2.54) ff.

Let us apply the leading-log summation. The first diagram that contributes as (gL)n·L
and is not a ladder diagram, is the so-called crossed diagram shown in Fig. 3.5. It
corresponds to the standard hole-hole channel.

k1,Ω + ω1

k2,Ω + ω2

k3,Ω + ω3

ω1 ω3

ω1 + ω3 − ω2

Figure 3.5.: Second order crossed diagram.

Since the interactions are instantaneous, in the time-domain it is straightforwardly
seen that this diagram contains a CB hole; Thus, the crossed diagram involves a CB
Fermi-sea electron-hole excitation, which is also called Fermi-sea shakeup.

This diagram can be calculated with logarithmic accurracy, as will be shown for the
finite mass case in appendix A. In this calculation, one crucial technical trick is employed:
When dealing with logarithms of the form log(x+y), x, y > 0, with logarithmic accuracy
one can write:

log(x+ y) ' log(max(x, y)) , (3.17)

which significantly simplifies all integrals. With this simplification, the contribution of
the crossed diagram is found to be:

Πcross(ε) = −1

3
γ0ρ · g2L3 , (3.18)

which is (−1/3) times the contribution of the second order ladder diagram.
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3. Absorption in the Fermi-edge regime: Mahan approach

Now we have obtained all diagrams that contribute to second order. Following Mahan
(he actually also calculated the third order), we can guess the full series for Π(ε) from
these terms:

Π(ε) =
γ0ρ

g
·
(
gL− (gL)2 + 2/3 · (gL)3 + ...

) guess
=

γ0ρ

2g
(1− exp(−2gL)) . (3.19)

In the series of papers by Nozières and by many other authors it was later found that
this guess is indeed correct. For later use, let us explicitly denote the real part:

< [Π] (ε) =
γ0ρ

2g

(
1−

(
|ε|
ξ

)−2g
)
. (3.20)

The absorption, as found from (3.19), then reads:

A(ε) = −=[Π](ε) =
γ0ρ

2g
· exp [−2g log (ε/ξ)] · sin(2πg) · θ(ε) ' γ0ρπ (ε/ξ)−2g · θ(ε) .

(3.21)

As expected, the exciton pole has been turned into a power law, and the two thresholds
(bound state and continuous onset) have merged. This power law is commonly referred
to as Fermi-edge singularity.

3.3. Mahan approach for the finite mass case

3.3.1. VB Green’s function renormalization

Let us now discuss the finite mass case. A first possible modification is to take into
account the renormalization of the VB electron propagator. This is also consistent with
the leading-log scheme: For finite momenta, the self-energy at the pole of the VB Green’s
function will not vanish, and thus will be the leading term.

As apparent e.g. from the integral in (3.7), the Fermi-edge absorption is dominated
by momenta close to kF . Thus, the results of section 2.2.3 are of relevance. As simplest
Ansatz, we can substitute the formula (2.130) as inverse lifetime:

iΓ = ig2βµ , (3.22)

where we have disregarded the numerical prefactors, and a change of sign occurs due to
the switch to the electron picture. Within this simple treatment, higher order self-energy
diagrams can only further modify the lifetime with prefactors that are at least O(g3),
s.t. the Ansatz (3.22) will be sufficient for us.

Let us also recall that the Ansatz (3.22) is only reliable for |g2 log(β)| � 1. (see
discussion on page 57).

Substituting iΓ into the general formula for Green’s functions (1.42), we obtain:

Gv(k, ω) =
1− nF (ω)

ω + EG + Ek + iΓ
+

nF (ω)

ω + EG + Ek − iΓ
. (3.23)

(3.23) has a retarded and advanced component; however, as remarked before, Gv should
be purely advanced.
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3. Absorption in the Fermi-edge regime: Mahan approach

Introducing a small but finite constant hole self-energy iΓ violates this property. But
this violation is only negligibly small. Namely the retarded part

GR
v (k, ω) =

1− nF (ω)

ω + EG + Ek + iΓ
(3.24)

consists of two factors. Firstly 1−nF (ω) = θ(ω−µ). Secondly we have (ω + EG + Ek + iΓ)−1.
It’s absolute value reads:

Abs(ω) :=
∣∣∣(ω + EG + Ek + iΓ)−1

∣∣∣ =
1√

(ω + EG + Ek)2 + Γ2

, (3.25)

which is peaked in the interval [−EG − Ek − Γ,−EG − Ek + Γ]. We have

Γ� µ, ξ � EG .

Hence, we can savely ignore the retarded part alltogether, since the support of the two
factors is practically disjunct (see Fig. 3.6 below).

ω0 µ−EG − Ek

Γ

Abs(ω)

1− n(ω)

Figure 3.6.: Sketch of the factors Abs(ω) and 1− nF (ω) appearing in GRv .

By the same argument we can set nF (ω) = 1 in the advanced part of Gv, obtaining:

Gv(k, ω) ' GAv (k, ω) ' 1

ω + EG + Ek − iΓ
. (3.26)

Using this formula, we can first calculate the basic bubble of Fig. 3.1. Since the external
momentum is zero, the CB and VB electron must have the same momentum, s.t. the
momentum angular integration is again trivial. As a result, we obtain the following
expression:

Π(0)(Ω) ' γ0ρ log

(
Ω− µ(1 + β)− EG + iΓ

Ω− ξ(1 + β)− EG + iΓ

)
, (3.27)

where we have disregarded a prefactor of 1/(1 + β).
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3. Absorption in the Fermi-edge regime: Mahan approach

We now observe that the real part of the logarithm will be maximal for

Ω = EG + µ(1 + β) := ΩD , (3.28)

with the direct threshold ΩD, also called Burstein-edge [48].
The appearance of this direct threshold has to be understood as follows: If we let

the decay rate Γ go to zero, the noninteracting absorption will set in for Ω = ΩD due
to Pauli-blocking of the electron lifted to the CB. This means that, in a noninteracting
picture, the lowest possible momentum of the VB hole created via photon absorption
is Q = kF . However, due to scatterings, such a VB hole will decay into holes with
lower momentum and low-energy CB electron-hole excitations, as was discussed in the
previous chapter. This decay actually lowers the threshold for the absorption to

Ω = EG + µ := ΩI , (3.29)

which is therefore called the indirect threshold ΩI , analogous to the hole propagator case.
A sketch of these thresholds is shown in Fig. 3.7.

k

ΩD

βµ

ΩI

kF

ω

Figure 3.7.: Sketch of the two thresholds of the absorption.

However, within our present treatment with a constant self-energy, we will not recover
the onset of the absorption at ΩI ; this will be left to the more refined method of the
next chapter. Our current simple approach will only yield the correct behaviour near
ΩD. Thus, in this section it will be convenient to measure energies in terms of the small
detuning from ΩD:

Ω = ΩD + ν , ν � ξ . (3.30)

In terms of this detuning, the zeroth order absorption coming from (3.27) reads (by
zeroth order we of course actually mean zeroth order vertex correction):

A(0)(ν) = γ0ρ
(π

2
+ arctan

(ν
Γ

))
=: γ0ρπ · θΓ(ν) . (3.31)

It is a θ-function of width Γ. A plot of this function will be shown in Fig. 3.11.

3.3.2. Regimes of the coupling constant

We can now continue with the calculation of the ladder diagrams. Since the integrations
again simply factorize, we immediately obtain:

Π
(n)
Ladder(ν) = γ0ρ · (−g)n log

(
−ν − iΓ

ξ

)n+1

. (3.32)
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3. Absorption in the Fermi-edge regime: Mahan approach

This expression shows that the maximal value of the parameter controlling the leading-
log summation is now

g log
(
βµg2/ξ

)
' g log

(
βg2
)
, (3.33)

as opposed to the infinite mass case, where the logarithms are divergent at the threshold.
Let us consider different regimes of this parameter. A similar discussion is also found

in Ref. [27]. There are three cases of interest:

•
∣∣g log(βg2)

∣∣� 1 corresponds to a perturbative regime: We do not have to sum up
series of diagrams, just the lowest order diagrams will suffice.

• In the case
∣∣g log(βg2)

∣∣ ' 1 , however, a consistent summation of diagrams is
needed, i.e. we are in a nonperturbative regime.

• Lastly, in the regime where g| log
(
βg2
)
| � 1, the absorption behaviour at the

direct threshold is not within our reach, since in this regime the comparison of
orders of g is meaningless, as discussed in the infinite mass case. We will then be
limited to detunings ν � g2βµ s.t. |g log(ν/ξ)| & 1. To enlarge the spectral range
under control, one could attempt an analysis as in the second paper by Nozières
[8], which however seems difficult for finite masses.

We now regard β as a fixed parameter, and see what happens as we increase g. Exper-
imentally, g can be be tuned by a change of the chemical potential or by a variation of
the external screening in the system.

The two regimes under control are therefore separated by a value of the coupling
constant g1(β) s.t

|g1 log(βg1
2)| = 1 ⇒ β = exp(−1/g1)/g2

1 . (3.34)

g1(β) can be found numerically as depicted in Fig. 3.8.

g

exp(−1/g)/g2

0.05

0.1

β

g1(β)

Figure 3.8.: Evaluation of the separating value g1(β).

This leads to a function g1(β) as shown in Fig. 3.9.
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3. Absorption in the Fermi-edge regime: Mahan approach

β

g1(β)

0.01 0.02 0.03 0.04

0.04

0.08

0.12

Figure 3.9.: Plot of g1(β) for very small values of β.

Thus, a sketch of the different regimes looks as follows:

g0 g1(β)

perturbative nonperturbative

Figure 3.10.: The two regimes under consideration.

Clearly, the larger β, the larger the range g < g1(β) where a perturbative treatment
is applicable: the appearing logarithmic singularities are renormalized by the hole decay
rate Γ, which increases for increasing β.

3.3.3. Perturbative regime

For g � g1, i.e. for very weak interactions, we have g
∣∣log(βg2)

∣∣ � 1. Restoring µ, ξ in
(3.34), we can also phrase this as

g2βµ� ξ exp(−1/g) = EB . (3.35)

This means that the scattering-induced linewidth of the hole is much larger than the
binding energy EB of the Mahan exciton. It will therefore immediately decay, and no
peak-structure is left. Since EB is exponentially small in g, this will be the case for weak
interactions.

A good approximation to the absorption in the perturbative regime Ap(ν) is already
given by the zeroth order result (3.31). A typical plot is shown in Fig. 3.11.
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3. Absorption in the Fermi-edge regime: Mahan approach

Ap(ν)/γ0ρπ

ν/βµg2

1

−1

Figure 3.11.: Absorption in the perturbative regime in the Mahan approach.

3.3.4. Non-perturbative regime

Let us now continue with the second regime under control, where |g log(βg2)| ' 1 re-
spectively g ' g1, i.e. strong interactions. This regime is of course in perfect agreement
with the assumption g2 log(β)� 1 used for the definition of Γ.

We aim to reuse our leading-log approach. Thus, we have to calculate the crossed
diagram. It is redrawn for finite mass in Fig. 3.12.

k1,Ω + ω1

k2,Ω + ω2

k3,Ω + ω3

k1, ω1 k3, ω3

k, ω

k = k1 + k3 − k2

ω = ω1 + ω3 − ω2

Figure 3.12.: Crossed diagram for finite hole mass. The dressed hole propagator is shown
as a double line.

The three frequency integrals are easily calculated. As a result one obtains:

Πcross(Ω) =
−γ0V

2
0

(2π)6

∫
dk1

∫
dk2

∫
dk3 (1− nF (k1))nF (k2) (1− nF (k3)) (3.36)

· 1

(Ω + iΓ− ΩI − (εk1 − µ)− Ek1) (Ω + iΓ− ΩI − (εk3 − µ)− Ek3)

· 1

(Ω + iΓ− ΩI − (εk1 − µ)− (εk3 − µ) + (εk2 − µ)− Ek1+k3−k2)
.

We notice that the k2-integration runs over the occupied states, which again shows why
this diagram was absent for a vanishing chemical potential µ.

The actual calculation of the crossed diagram is complicated due to the termEk1+k3−k2 .
It is presented in appendix A. As an intermediate result, calculating the k2 integral and
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3. Absorption in the Fermi-edge regime: Mahan approach

the two non-trivial angular integrals, one obtains a logarithm of the form:

log

(
ν − (εk1 − µ)− (εk3 − µ) + iβµ

−µ

)
, (3.37)

again in terms of detuning ν.
The major difference in comparison to the ladder diagrams discussed before is the

different type of cutoff for the logarithm: βµ instead of Γ = g2βµ. The reason for this
new, stronger cutoff is the term Ek1+k3−k2 ; a logarithm which is only cut off by Γ would
require this term to be of order Γ for most angles, which is clearly not the case.

The maximal value of the logarithm (3.37), for k1 = k3 = kF and ν = 0, therefore
reads log(β). The logarithms of the ladder diagrams, however, took the maximal value
log(βg2) at the direct treshold. To procede analogous to the infinite mass case, we need
the two cutoffs to coincide. This will be the case with logarithmic accuracy as long as
β � g2. Thus, for a simple Mahan-type argument to work, we also need

g �
√
β = g2(β) , (3.38)

in addition to g ' g1.

In principle, for g1(β) ' g � g2(β), the ladder diagrams will be dominant as com-
pared to the crossed diagrams in a narrow spectral range ν ' g2βµ; for ν ' βµ the
diagrams will again be of the same order. To describe this regime, one could attempt
a ladder approximation for small ν which continuously crosses over to the full series for
larger ν. Let us call this method consistent ladder approximation (CLA). However, it
will be shown below that the range of applicability for this method is very limited.

The discussed lower bounds and a rough sketch of the accessible regimes is shown in
Fig. 3.13:

perturbative regime β

g

g1(β)

g2(β)

βr

0.05 0.1 0.15

0.2

0.4

0.6

CLA?

controlled

regime: limited
non-perturbative

spectral range

controlled

regime: full
non-perturbative

spectral range

Figure 3.13.: Lower bounds on g. The blue dashed line corresponds to g1(β), the full
yellow line to g2(β). βr ' 0.14 corresponds to a realistic value of β in
high-mobility GaAs samples.
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3. Absorption in the Fermi-edge regime: Mahan approach

If g � g1(β), we are in the perturbative regime discussed before. If g1(β) ' g � g2(β),
the CLA could be applied. However, as seen from Fig. 3.13, there is actually no clear
theoretical regime for this method.

If g1(β), g2(β) ' g, the Mahan approach will be limited to frequencies ν > βµ, for
which the ladder and crossed diagrams are of the same order. This ”trivial” regime, in
which we effectively cannot account for mass effects, is not depicted in Fig. 3.13.

If g1(β) ' g � g2(β), we can apply the Mahan approach in the whole spectral range.
Finally, if g1(β), g2(β) � g, the Mahan approach will be limited to frequencies ν s.t.
|g log(ν/ξ)| ' 1.

It should be noted that we do not face any problems as long as g is small enough.

Unfortunately, the full range of applicability of the Mahan approach does not extend
to realistic values of β ' βr in high-mobility GaAs samples as indicated in Fig (3.13).
However, one can argue that there are several effects we have disregarded, which will
further decrease the VB hole life-time. Among these are ([21], page 605):

• Auger processes: An electron from a higher band falls into the VB hole, transferring
it’s excess energy to other electrons.

• photo-recombination: Again the hole is filled by a higher band electron, but ac-
companied by the emission of a photon.

• temperature effects, especially phonon-coupling.

We can assume that this extra life-time decrease will enlarge the range of applicability of
the perturbative regime; furthermore, for a smaller lifetime and thus higher self-energy
Γ, one can expect that the cutoffs of the ladder and crossed diagrams coincide in a larger
region in g-space, thus also increasing the suitable range for the Mahan approach.

Let us now continue with the regime where Mahan’s approach does work, meaning
that log(βg2) ' log(β). In this regime we can carry out the remaining integrals over
k1, k3 in (3.36) without further difficulties. This calculation, shown in appendix A, leads
to

Πcross(ν) = −γ0ρg
2 · 1

3
log3

(
−ν − iβµ

ξ

)
. (3.39)

We can then proceed in line with the infinite mass approach. As a result, the non-
perturbative absorption Anp reads:

Anp(ν) =
γ0ρ

2g

(
ξ√

ν2 + (βµ)2

)2g

sin

[
2g

(
π

2
+ arctan

(
ν

βµ

))]
(3.40)

' γ0ρπ

 ξ/(βµ)√
(ν/βµ)2 + 1

2g

· θβµ(ν) .

Thus, we find that in the non-perturbative regime where the Mahan exciton binding
energy is larger than the scattering induced linewidth Γ, an absoprtion peak remains,
which is cut off by the typical hole kinetic energy βµ. An exemplary plot of Anp(ν) is
shown in Fig. 3.14:
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ν/βξ

Anp(ν)/γ0ρπ

1

−10 0

Figure 3.14.: Absorption as given by (3.40). Used parameters: β = 0.01, g = 0.2, ξ = µ
.

It should be noticed that on the ν-axis the scale is much larger that in Fig. 3.11.
Furthermore, we want to emphasize again that the behaviour for ν < 0 is inaccurate due
to our choice of the constant hole self-energy. Therefore, we will postpone further plots
to the next chapter where this inaccuracy will be corrected .

Let us make a final remark concerning the dimensional dependence: Actually, in the
Mahan approach all calculations are independent of the space dimension except for the
parameter g. This can be checked elementarily in the perturbative regime. In the non-
perturbative regime under control, this is also seen easily: We proceeded as in the infinite
mass problem, which is effectively one-dimensional, only taking into account the final
hole linewidth. With logarithmic accuracy, the latter is proportional to βµ ' ER, i.e.
the recoil energy, which is again independent of the dimension.
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Nozières approach

Let us now improve on the simplistic Mahan approach, carrying over the treatment of
Ref. [27] to 2D. This will involve two major points: First, we will compute the behaviour
of the absorption near the indirect threshold EG + µ, which can be done perturbatively.
For the absorption A this will yield a smeared theta-function with the correct asymptotic
behaviour near the indirect threshold ΩI : A(Ω) ∼ g2(Ω− ΩI)

3.
Second, we will actually calculate the power law at the direct threshold EG+µ(1+β),

solving a Bethe-Salpeter vertex equation.

4.1. Perturbative regime

The distinction between the perturbative and non-perturbative regimes made in the last
chapter is still valid: our constant self-energy iΓ was correct near the direct threshold,
and, therefore, the maximal value attained by the logarithms which we used to distin-
guish the regimes is correct.

Let us first consider the perturbative-regime Γ � EB, where no exciton-like peak
remains. Near the direct threshold ΩD, the only diagram contributing is the basic
bubble with the VB propagator dressed with the self-energy of Fig. 2.15, for it contains
the minimal number of occurences of the small parameter g log(βg2). Near the indirect
threshold ΩI , in leading order g2, also the bare crossed diagram of Fig. 3.5 has to be
taken into account.

4.1.1. Absorption close to the indirect theshold

To begin with, we consider energies very close to ΩI . In terms of detuning ε from ΩI ,
we thus aim to find the leading behaviour of A(ε) in ε for ε � βµ. Similar calculations
were also performed in [42], in 3D and 2D, where also electron-electron interactions were
taken into account. Their contribution is found to be smaller by a factor of β, which
allows us to disregard them.

There are two relevant diagrams. First, we have the crossed diagram with bare VB
electron lines. Computing the frequency integrals, we obtain (3.36) with iΓ replaced by
i0+.

The second contribution comes from the diagram shown in Fig. 4.1.
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k1,Ω + ω1

k1, ω1 k1, ω1

k2, ω2

k, ω

k3, ω3

ω = ω1 + ω3 − ω2

k = k1 + k3 − k2

Figure 4.1.: Self-energy-type diagram contributing to the absorbtion at the indirect
threshold. The green ellipsis marks the self-energy part.

For later reference we first denote the self-energy part, which is the same as in (2.120),
except for the general incoming momentum k1 and the fact that we are working in the
electron picture now. After two frequency integrations, it reads:

Σ(k1, ω1) =
2V 2

0

(2π)4

∫ ∫
dk2 dk3

(1− nF (εk3))nF (εk2)

ω1 + Ek + EG + εk3 − εk2 − i0+
. (4.1)

Then, performing the last frequency integral, for the contribution of the whole diagram
we obtain:

Πself(Ω) =
2γ0V

2
0

(2π)6

∫ ∫ ∫
dk1 dk2 dk3

(1− nF (εk1)) · (1− nF (εk3))

(Ω + i0+ − ΩI − (εk1 − µ)− Ek1)2 (4.2)

· nF (εk2)

(Ω + i0+ − ΩI − (εk1 − µ)− (εk3 − µ) + (εk2 − µ)− Ek)
.

We now introduce the notation:

B+(ki) =
1

ε+ i0+ − (εki − µ)− Eki

, ε = Ω− ΩI � βµ . (4.3)

Then we can combine the two relevant diagrams as follows:

Π(ε) =
γ0V

2
0

(2π)6

∫ ∫ ∫
dk1 dk2 dk3

[
2B+(k1)2 −B+(k1)B+(k3)

]
(4.4)

· (1− nF (εk1)) · (1− nF (εk3)) · nF (εk2)

(ε+ i0+ − (εk1 − µ)− (εk3 − µ) + (εk2 − µ)− Ek)
. (4.5)

We want to calculate the leading behaviour in ε of AI(ε) = −=[Π](ε). In our energy
regime of interest the only contribution will come from the product of the real parts of
the factors in (4.4) and of the imaginary part of (4.5). This can be seen as follows:

=
[
B+(ki) (1− nF (εki))

]
= −iπδ (ε− (εk1 − µ)− Eki) θ(εki − µ) (4.6)
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4. Absorption in the Fermi-edge regime: Nozières approach

Due to the θ-function, (εki − µ) > 0 and Eki > βµ, hence the δ-function will necessarily
vanish for ε < βµ. Only the imaginary part of (4.5) describes a Fermi-sea shake-up and
contributes to the absorption at the indirect threshold.

With this consideration, and using the notation:

B(ki) =
1

ε− (εki − µ)− Eki

, (4.7)

we obtain:

AI(ε) = P πγ0V
2

0

(2π)6

∫
dk1

∫
dk2

∫
dk3

[
2B(k1)2 −B(k1)B(k3)

]
· (4.8)

θ(εk1 − µ)θ(εk3 − µ)θ(µ− εk2) · δ (ε− (εk1 − µ)− (εk3 − µ) + (εk2 − µ)− Ek) .
(4.9)

Since all summands in the delta-function are negative, AI(ε) vanishes at ε = 0, as
expected.

The principal value P in (4.8) can actually be dropped since the factors do not have
poles. Furthermore, the δ-function in (4.9) shows that ki ' kF , i = 1, 2, 3. Therefore,
in leading order in ε, we can write:

B(ki) '
1

−βµ
. (4.10)

This leads to:

AI(ε) '
πγ0V

2
0

(2π)6(βµ)2

∫
dk1

∫
dk2

∫
dk3 (4.11)

θ(εk1 − µ)θ(εk3 − µ)θ(µ− εk2) · δ (ε− (εk1 − µ)− (εk3 − µ) + (εk2 − µ)− Ek) .

We substitute

x =
k1√
2m

, y =
k3√
2m

, z =
k2√
2m

. (4.12)

This results in:

AI(ε) =
ρ3

π2

γ0V
2

0

(βµ)2

∫
x2>µ

dx

∫
y2>µ

dy

∫
z2<µ

dz (4.13)

δ
(
ε−

(
x2 − µ

)
−
(
y2 − µ

)
+
(
z2 − µ

)
− β (x + y− z)2

)
.

In the δ-function in (4.11) all summands are negative and cannot cancel each other. Thus,
each summand must be individually smaller than ε, which simplifies the calculation: We
can evaluate the integral step by step, keeping all but one summands fixed to values
of O(ε). With this kind of approach we will not be able to correctly account for the
numerical prefactor of AI(ε), which is only of minor importance.

We shortly sketch the main points of the calculation, which is performed in detail in
appendix B : In the argument of the delta function of (4.13) we have the summands
(x2 − µ), (y2 − µ), (z2 − µ). All of these contribute a factor of ε to AI . One factor is
fixed by the δ-function, s.t. we obtain ε2. In addition, we have the term β (x + y− z)2.
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4. Absorption in the Fermi-edge regime: Nozières approach

For this to be of order ε, the angles φ = ](x + y, z) and θ = ](x,y) have to be fixed as
depicted in Fig. 4.2.

φ ' 0

x + yε

x y
−z

θ ' 2π/3

ε
−z

Figure 4.2.: Angles contributing to the indirect threshold. The ε-circles indicate small-
ness in ε, but not the exact power law or prefactor.

It is shown in appendix B that in 2D each angle-restriction gives an additional factor
of
√
ε, s.t. in total we obtain AI ∼ ε3. The calculation also gives the 3D result, which

is found to be AI ∼ ε7/2. Restoring the correct non-numerical prefactors as obtained in
appendix B, the results read:

AI(ε) ∼ γ0ρg
2

(
ε

βµ

)3

· θ(ε) in 2D (4.14)

AI(ε) ∼ γ0ρg
2

(
ε

βµ

)7/2

· θ(ε) in 3D , (4.15)

which conicides with the findings in Ref. [42], c.f. formulas (7a), (7b) .
It should be noted that this behaviour is not restricted to the perturbative regime;

however, in the non-perturbative regime the range of applicability for these power laws
will be very small, since higher order diagrams can no longer be disregarded.

4.1.2. Calculation of the dressed bubble

Having obtained the absorption at ΩI , let us calculate the dressed bubble shown in Fig
4.3, again specializing to 2D.

k1,Ω + ω1

k1, ω1

Figure 4.3.: The CB-VB bubble, where the VB Green’s function is dressed with the
self-energy Σ(k1, ω1) shown in Fig. 4.1.

Close to ΩI , this diagram reduces to the diagram of Fig. 4.1. Since we have seen in
(4.8) - (4.11) that the absorption is given by 1/2 times the contribution of the diagram
4.1, a detailed evaluation of the dressed bubble in principle also gives the prefactor for
the absorption; however, since the prefactor is not of interest to us, we will not further
pursue this point.
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4. Absorption in the Fermi-edge regime: Nozières approach

Close to ΩD, the absorption in the perturbative regime is solely determined by the
dressed bubble.

Let us start the evaluation. The contribution of the dressed bubble reads:

Πdb(Ω) = (4.16)

−iγ0

(2π)3

∫
dω1 dk1

1

Ω + ω1 − εk1 + i0+sign(εk1 − µ)
· 1

ω1 + Ek1 + EG − i= [Σ] (k1, ω1)
,

where we have disregarded <[Σ](k1, ε) as was discussed on page 57. Closing the contour
gives, in terms of detuning:

Πdb(ε) =
γ0

(2π)2

∫
dk1

1− nF (εk1)

ε− (εk1 − µ)− Ek1 + i= [Σ] (k1,−ε− ΩI + εk1)
. (4.17)

Thus, we only need to calculate :

Σ(k1, ω̃1) with ω̃1 = −ε− ΩI + εk1 . (4.18)

Inserting this into (4.1), and substituting momenta k3 = k2 + q, we obtain:

=[Σ](k1, ω̃1] =
2V 2

0

(2π)4

∫
dq

∫
dk2 nF (εk2) · (1− nF (εk2+q))· (4.19)

δ(ε− Ek1+q − (εk1 − µ)− εk2+q + εk2) .

We can now proceed in analogy to the Lindhard-type evaluation of (2.121) ff. The only
difference is that now the energy-argument of the Lindhard-function reads ε− Ek1+q −
(εk1 − µ). Using k1 > kF as seen from (4.17), and for ε < βµ , we obtain:

=[Σ](k1, ω̃1) ' θ(α) · 1√
3
g2βµ

α2

(βµ)2
, α = ε− (εk1 − µ) , (4.20)

which holds exactly in the limit ε → 0, and has the correct order of magnitude for
ε . βµ. Having obtained the self-energy, we can evaluate (4.17), starting from the real
part. It reads:

< [Πdb] (ε) =
γ0

(2π)2

∫
k1>kF

dk1
ε− (εk1 − µ)− Ek1

(ε− (εk1 − µ)− Ek1)2 + (= [Σ] (k1, ω̃1))2 . (4.21)

This integral will be dominated by momenta close to kF for 0 < ε < βµ. This allows us
to replace k1 by kF in the term = [Σ] (k1, ω̃1). In this way we obtain:

< [Πdb] (ε) ' ργ0

2
log

(ε− βµ)2 +
(

1√
3
g2βµ ε2

(βµ)2

)2

ξ2

 . (4.22)

We can further simplify this expression substituting ε = βµ in the g2-term. This will be
inaccurate near ε = 0, but there the summand (ε−βµ)2 is much larger than the g2-term
anyway. Therefore, we arrive at:

< [Πdb] (ε) ' ργ0

2
log

(ε− βµ)2 +
(

1√
3
g2βµ

)2

ξ2

 . (4.23)
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4. Absorption in the Fermi-edge regime: Nozières approach

It should be noted that with logarithmic accuracy this is exactly the logarithm cut by
g2βµ we have used in the previous chapter. (4.23) will serve as the real part of the
photon self-energy in the perturbative regime.

Let us continue with the imaginary part of (4.17): Again simplifying =[Σ](k1, ω̃1) in
the denominator, and switching to an energy-integration, we obtain:

=[Πdb](ε) = − γ0ρg
2

√
3βµ

∫ ε

0
dx

(ε− x)2

(ε− x(1 + β)− βµ)2 + ( g2√
3βµ
· ε2)2

, (4.24)

x = εk1 − µ .

For ε� βµ we can approximate the denominator of (4.24) by (βµ)2, which leads to:

=[Πdb](ε) ' − γ0ρg
2

3
√

3(βµ)3
· ε3 · θ(ε) , ε� βµ . (4.25)

As discussed in the beginning of this section, −=[Πdb] coincides with the absorption
close to ε = 0 except for numerical prefactors (c.f. (4.14)).

For ε . βµ, integrating (4.24) and keeping only the leading terms in g and β results
in:

=[Πdb](ε) ' −γ0ρ(βµ)2

ε2
arctan

(
g2

√
3βµ

· ε2

βµ− ε

)
, ε . βµ . (4.26)

We now combine both limits into a form that has the correct power law for ε� βµ and
is of the correct order for ε . βµ. Introducing the dimensionless variable

y =
ε

βµ
, (4.27)

we arrive at:

=[Πdb](y) ' −γ0ρ · y · arctan

(
g2

√
3
· y2

1− y

)
· θ(y) , 0 < y < 1 . (4.28)

To approximately find the behaviour for y > 1, we can invoke the following arguments:
To begin with, for ε� ER ' βµ, we should recover the infinite mass behaviour, which is
simply −γ0ρπ, as found in (3.10) (Note that the absorption is given by −=[Π]). We also
disregard the cutoff at scales ε > ξ. Furthermore, in the limit g → 0, =[Πdb](y) should
approximate −γ0ρπ · θ(y − 1). The simplest way to take these points into account, is
just to attach a ”mirrored” form of (4.28) at y = 1, which also gives a smooth extension.
For now, this will be sufficient for us. As a result, we obtain:

=[Πdb(y)] ' −γ0ρ · f(y) (4.29)

f(y) = θ(2− y) · [g(y) + θ(y − 1) · (−g(2− y) + π)] + π · θ(y − 2) (4.30)

g(y) = y · arctan

(
g2

√
3
· y2

1− y

)
· θ(y) . (4.31)

The perturbative absorption Ap(y) resulting from (4.29) is then approximately correct
in the whole spectral range, except for the prefactor at small y. A plot for two values of
g is shown in Fig. 4.4.
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4. Absorption in the Fermi-edge regime: Nozières approach

y

Ap(y)/γ0ρπ

1

1

0

g = 0.1

g = 0.4

∼ y3

Figure 4.4.: Absorption in the perturbative regime for two values of g. The large value of
g = 0.4, beyond the perturbative regime, is shown for illustrative purposes.
This result was obtained by computing the contribution of the diagram of
Fig. 4.3 only.

Essentially we have recovered the smeared θ-function we had found with the Mahan
approach (c.f. Fig. 3.11); in addition, we have obtained the correct behaviour near ΩI .

4.2. Non-perturbative regime

4.2.1. Nozières infinite mass treatement

Let us now consider the controlled non-perturbative regime, i.e g ' g1(β) and g � g2(β).
We want to reproduce the findings of section 3.3.4, but without ”guessing” as in the
Mahan-approach. This can be achieved by solving a Bethe-Salpeter equation for the
vertex.

To begin with, we will very shortly sketch the main points of the infinite mass treat-
ment that will be necessary for us, as found in Refs. [7], [8]. A summary is furthermore
presented in Ref. [28], section 26 VII.

The main idea of the Nozières approach is again to sum the leading logarithmic dia-
grams contributing as (gL)n ·L, as discussed on page 63. There are several simplifications
for infinite hole mass. First of all, only the CB Green’s functions are momentum de-
pendent. One can integrate these over the internal momenta, which leads to effective
CB Green’s functions which only depend on frequency, as well as all other objects. This
again shows that the infinite mass problem is effectively one-dimensional. Futhermore,
as discussed on page 64, the self-energy diagrams can be disregarded. Thus, one needs
to find the full frequency-dependent vertex function γ, shown in Fig. 4.5.
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4. Absorption in the Fermi-edge regime: Nozières approach

γ(Ω, ω1, ω2)

Ω + ω1 Ω + ω2

ω2ω1

Figure 4.5.: Full frequency-dependent vertex function. Full lines represent effective CB
propagators, dashed lines VB propagators. Amputated propagators are
shown in blue.

Inserting γ, the diagrams representing the photon self-energy Π(Ω) are those shown
in Fig. 4.6.

γ

Ω + ω1 Ω + ω2

ω2ω1

Ω + ω1

ω1

+=Π(Ω)

Figure 4.6.: The photon self-energy Π(Ω) in terms of the full vertex γ.

The basic ingredients for γ are the ladder and crossed diagrams. The ladder diagrams
are formed by bubbles of antiparallel lines; In accordance with Ref. [7] we will call this
channel 2. By contrast, the crossed diagrams comprise parallel bubbles. This is easiest
seen twisting the interaction lines of the standard second order crossed diagram, which
results in Fig. 4.7.

Figure 4.7.: Twisted version of the crossed diagram that contains a bubble with parallel
lines, marked by the green ellipsis.

Bubbles with parallel lines will be called channel 1.
The key concept of the treatment by Nozières is the reducibility: A diagram is called

reducible in channel 1(2), if it splits into two parts upon cutting two parallel (antiparallel)
VB-CB-lines. The set of all reducible vertex diagrams of channel i will be called γi, while
the irreducible diagrams will be called Ii. The first obvious equation resulting from these
definitions is

γ = γ1 + I1 = γ2 + I2 , (4.32)
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4. Absorption in the Fermi-edge regime: Nozières approach

since every diagram is either reducible or irreducible.
One can write down two coupled Bethe-Salpeter equations for the reducible vertices

γi. We will content ourselves with the diagrammatic representation, shown in Fig. 4.8
for channel 2:

γ

Ω + ω2

I2=γ2

Ω + ω1 Ω + ω3Ω + ω1 Ω + ω2

ω1 ω2 ω1 ω3 ω2

Figure 4.8.: Bethe-Salpeter equation for channel 2.

The equation for channel 1 looks analogous, only with parallel lines in the intermediate
bubble of the right hand side.

It is important to notice that there is no diagram simultaneously reducible in channel
1 and 2:

γ1 ∩ γ2 = ∅ . (4.33)

Essentially every such diagram would violate particle conservation. Introducing the
totally irreducible interaction R = I1 ∩ I2, we have the following vertex relations:

I1 = R+ γ2 (4.34)

I2 = R+ γ1

γ = R+ γ1 + γ2 ,

where (4.33) is necessary to avoid double counting of diagrams.
Together with the two Bethe-Salpeter equations, one of which was represented in Fig.

4.8, (4.34) form the so-called parquet equations. An approximate solution for these can
be found relying on the leading logarithmic approximation. The latter allows to simplify
the irreducible interaction R to the bare vertex:

R ' V0. (4.35)

The reason for this enormous simplfication is that higher order vertex diagrams which
are totally irreducible only contribute subleading logarithms and therefore can be dis-
regarded. The lowest order diagram which is ruled out in this manner is shown in Fig.
4.9.

Figure 4.9.: Third order irreducible vertex diagram, contributing as V0g
2L, which is sub-

leading.
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4. Absorption in the Fermi-edge regime: Nozières approach

Within the approximation (4.35) all graphs are summed, where a single vertex is
replaced by parallel or antiparallel bubbles any number of times. These diagrams are
called parquet graphs.

Essentially, these approximations are sufficient to solve the parquet-equations, which
however still is a highly non-trivial task. For the purpose of illustration we will present
an exemplary solution of a finite-mass Bethe-Salpeter equation in Appendix C. For the
moment, let us just quote an intermediate result of Ref. [7] which is of relevance for
us: It is found that the reducible vertex γ1 involved in the calculation of Π(Ω) is just
given by the single parallel bubble marked in Fig. 4.7. This means that in all diagrams
contributing to Π(Ω) no more than two interaction lines cross. All other diagrams cancel
each other. In third order, this statement can already be found in Mahan’s original paper
[6]: He showed that the sum of the leading logarithms of the diagrams presented in Fig.
4.10 vanishes.

Figure 4.10.: Third order diagrams where more than two interaction lines cross, canceling
each other.

The reducible vertex γ2, however, has a complicated non-perturbative form. With
these vertices found, Π(Ω) can then be calculated, reproducing Mahan’s infinite mass
result (3.40).

4.2.2. Finite mass treatement

Let us now advance to the finite mass calculation, carrying over the calculations of Ref.
[27] to 2D. As in the infinite mass case, we have to find the vertex function, but now
with VB propagators dressed by the self-energy of (4.1). Since now the momentum
dependence will be nontrivial again, from the momentum-integrated CB propagators of
the last section we switch to normal ones. It will furthermore be convenient to use a
different type of vertex function with only two legs, which we will call Λ(k,Ω, ω1). In
terms of Λ, Π(Ω) is shown in Fig. (4.11).

Λ(k1, ω1,Ω)

k1, ω1

k1,Ω + ω1

Figure 4.11.: Π(Ω) in terms of the full two-legged vertex Λ. The double dashed line
respresents the dressed VB propagator.
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4. Absorption in the Fermi-edge regime: Nozières approach

The corresponding formula reads

Π(Ω) = − iγ0

(2π)3

∫
dω1 dk1 Λ(k1,Ω, ω1) Gc(k1,Ω + ω1) Gv(k1, ω1) . (4.36)

From the fact that Π(Ω) is retarted we can conclude that also Λ is retarded in both
frequency variables. Thus, we can carry out the ω1-integral, which results in:

Π(Ω) = − γ0

(2π)2

∫
k1>kF

dk1 Λ(k1,Ω, ω̃1) Gv(k1, ω̃1) (4.37)

ω̃1 = −Ω + εk1 , (4.38)

which shows that it is sufficient to find Λ(k1,Ω, ω̃1). To this aim, we write down a
Bethe-Salpeter-equation for Λ, phrasing everything in terms of channel 2 as defined in
the previous section. Diagrammatically, it is shown in Fig. 4.12.

=Λ + Λ

k3,Ω + ω3

k3, ω3

k1,Ω + ω̃1

k1, ω̃1

k1,Ω + ω̃1

k1, ω̃1

k1, ω̃1

k1,Ω + ω̃1

I2

Figure 4.12.: Bethe-Salpeter equation for the two-legged vertex Λ. We have written ω3

rather than ω2 to match earlier notations.

We aim to solve this equation with logarithmic accuracy. Expressing it mathematically,
we obtain:

Λ(k1,Ω, ω̃1) = 1 +
i

(2π)3

∫
dk3

∫
dω3 I2(k1,k3,Ω, ω̃1, ω3) · (4.39)

Gc(k3,Ω + ω3) Gv(k3, ω3) Λ(k3,Ω, ω3) .

With the same argument as above, we can take the ω3-integral, which yields:

Λ(k1,Ω, ω̃1) = 1 +
1

(2π)2

∫
k3>kF

dk3 I2(k1,k3,Ω, ω̃1, ω̃3) Gv(k3, ω̃3) Λ(k3,Ω, ω̃3) =

1 +
1

(2π)2

∫
k3>kF

k3 dk3 Gv(k3, ω̃3) Λ(k3,Ω, ω̃3)

∫ 2π

0
dθ I2(k1, k3, θ,Ω, ω̃1, ω̃3)

(4.40)

ω̃3 = −Ω + εk3 , θ = ](k1,k3) . (4.41)

We now use the relation I2 = R+ γ1 from (4.34) in combination with the simple results
of the infinite mass treatement for R and γ1. In our current regime where gL ' 1, we
can assume that these results are still valid. Therefore, we have

I2 ' V0 + γ0
1 , (4.42)
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4. Absorption in the Fermi-edge regime: Nozières approach

where γ0
1 is the diagram redrawn in Fig. 4.13.

k1,Ω + ω̃1 k3,Ω + ω̃3

k1, ω̃1 k3, ω̃3

k2,Ω + ω2

k, ω

ω = ω̃1 + ω̃3 − ω2

k = k1 + k3 − k2

Figure 4.13.: Channel 1 reducible vertex γ0
1 .

The diagram γ0
1 is just a part of the second order crossed diagram, and we have already

calculated it, c.f. Appendix A, using a constant self-energy. This remains correct with
logarithmic accuracy. The angular integral over γ0

1 appearing in (4.40) was evaluated as
well, with the result (A.14) up to prefactors V0, 2π. Introducing the notation:

xi = ΩD − Ω +
k2
i

2m
− µ , i = 1, 2 , (4.43)

and restoring the correct prefactors, we can then rewrite (4.40) as:

Λ(x1,Ω) = 1 +

∫ ξ

ΩD−Ω
dx3 I2(x1, x3,Ω) Gv(x3,Ω) Λ(x3,Ω) (4.44)

Gv(x3,Ω) =
1

(1 + β)x3 + β(Ω− ΩD)− Σ(x3,Ω)
(4.45)

I2(x1, x3,Ω) = g + g2 log

(
max

{
|x1 + x3 + Ω− ΩD|

ξ
, β

})
, (4.46)

where we have also modified (A.14) with logarithmic accuracy. Again with logarithmic
accuracy, eq. (4.44) - (4.46) coincide with the intermediate results given in Ref. [27], c.f.
(22)f., s.t. we can continue in line with their further calculations. The only dimensional
dependence is contained in the parameter g, exactly as discussed for the Mahan approach
on page 73.

To have a complete description, let us sketch the remaining steps of the calculation.
To begin with, the self-energy appearing in (4.45) is inserted from (4.20):

Σ(x3,Ω) = Σ(k3, ω̃3) ' i= [Σ] (k3, ω̃3) ' iθ(βµ− x3) · 1√
3
g2 (βµ− x3)2

(βµ)
. (4.47)

From (4.45) it is seen that, accounting for the leading behaviour only, Σ(x3,Ω) is only
relevant for x3 < g2βµ. Thus, the correct leading behaviour of (4.44) is reproduced by
the simplified form:

Λ(x1,Ω) ' 1 +

∫ ξ

max{|Ω−ΩD|,g2βµ}
dx3

1

x3
I2(x1, x3,Ω) Λ(x3,Ω) . (4.48)

Since I2 can only grow logarithmically, the lower boundary of (4.48) will show up in the
argument of a logarithm. In our energy regime under control where g � g2(β), we can
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thus replace g2βµ by βµ. Applying the same manipulations on (4.37) results in

Π(Ω) = −γ0ρ

∫ ξ

max{|Ω−ΩD|,βµ}
dx1

1

x1
Λ(x1,Ω) . (4.49)

These equations are solved in Ref. [27]. We will only present the calculation in the
simplest case, c.f. Appendix C. As a result, in terms of detuning from the indirect
treshold ε, one finds:

Π(ε) ' −γ0ρ

2g

(
exp

[
−2g log

(
max{|ε− βµ|, βµ}

ξ

)]
− 1

)
(4.50)

= −γ0ρ

2g

((
ξ

max{|ε− βµ|, βµ}

)2g

− 1

)
.

Of course, with logarithmic accuracy we have actually only found <[Π](ε). In principle,
we can recover =[Π](ε), adding the relevant imaginary part to the logarithm appearing
in (4.50) with help of Kramers-Kronig relations. Alas, in a strict mathematical sense
this procedure is obviously flawed, since the analytical continuation of a locally constant
function is a constant. This means that just the logarithmic-accuracy result (4.50) is
not sufficient for the determination of =[Π](ε). We can, however, invoke the following
additional arguments:

1. In the infinite mass limit, the full logarithm appearing in the exponent was the
contribution of one basic electron-hole bubble. This should be still fulfilled in the
non-perturbative finite mass calculation, since the two limits should be continu-
ously connected. The basic self-energy dressed bubble was calculated in section
4.1.2. Comparing with (4.23), we see that with logarithmic accuracy it’s real part
<[Πdb] conincides with the logarithm of (4.50) in our energy regime of interest
except for the prefactor ργ0. Thus, as relevant imaginary part we should add the
expression =[Πdb] respectively f(y) given in (4.29), (4.30).

2. This choice will also lead to the correct power law behaviour of the absorption
close to the indirect threshold as found in section 4.1.1.

Proceeding in this manner, and furthermore rewriting <[Π] as a smooth function, in
terms of renormalized detuning y = ε/βµ our final result reads:

<[Π](y) = −γ0ρ

2g

( ξ/βµ√
1 + (y − 1)2

)2g

− 1

 (4.51)

=[Π](y) = −γ0ρ

(
ξ/βµ√

1 + (y − 1)2

)2g

· f(y) , (4.52)

where f(y) is given in (4.30). In the limit β → 0 these formulas correctly reduce to the
infinite mass result (3.20), (3.21).

A plot of the corresponding non-perturbative absorption Anp(y) for a small value of
β and three different values of g is shown in Fig. 4.14.

86



4. Absorption in the Fermi-edge regime: Nozières approach

Anp(y)/γ0ρπ

y0

1

1

g = 0.1

g = 0.2

g = 0.3

Figure 4.14.: Non-perturbative absorption for different values of g. This result was ob-
tained by solving the Bethe-Salpeter equation of Fig. 4.12 with logarithmic
accuracy, using a VB Green’s function dressed by the conribution of Fig.
2.15. Used parameters: β = 0.01, ξ = µ.

It is clearly seen how the absorption develops from a step-like function reminiscent of
the perturbative regime for small values of g to a cut-off singularity for larger values of
g.

Finally, Fig. 4.15 shows a comparison of two absorption curves for a realistic high-
mobility value of βr ' 0.14. As was discussed on pages 71 f., for such small hole masses
the whole spectral range of the non-perturbative regime is only within our reach if we
invoke additional arguments beyond our theory.

0

1

1

Anp(y)/γ0ρπ

y

g = 0.1

g = 0.3

Figure 4.15.: Non-perturbative absorption for two different values of g for a realistic
value of βr = 0.14 and ξ = µ.
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5. Polariton properties

Having obtained the photon self-energy, we can now evaluate polariton properties. To
begin with, let us give a short overview over recent theoretical treatments of Fermi-edge
polaritons.

First results were obtained by Averkiev and Glazov [49] (2007), who treated polaritons
semiclassically, calculating the optical susceptibility of the QW instead of the photon self-
energy. The Fermi-edge singularity was taken into account heuristically as enhancement
of the optical matrix element near the threshold. They also discussed the case where
the absorption becomes non-singular at the theshold, which in principle is similar to
our findings for finite hole mass. However, in Ref. [49] no microscopical explanation for
this outcome was presented, except for a phenomenological attribution to a dominant
Anderson orthogonality exponent (c.f. (3.3)).

Further discussions can be found in two mostly numerical papers by Baeten and
Wouters [47] (2013), [50] (2014), who calculated the photon self-energy similar to us.
In the first paper, a finite hole mass was considered, in addition to further effects like a
more realistic electron-hole interaction. The polariton spectral function was then studied
as a function of electron density. However, all calculations were done within the ladder
approximation in the whole spectral region, which strongly overestimates excitonic fea-
tures. As a result, a clear polariton splitting was found for all shown densities, which
seems inconsistent with the experimental results of Ref. [1].

In the second paper, an elaborate numerical treatement going back to the method
by Combescot and Nozières [40] was employed, again concentrating on the density-
dependence of the polariton spectral function, but the hole mass was disregarded allto-
gether.

5.1. Polariton spectral function: theoretical results

Let us now discuss the spectral function of Fermi-edge polaritons. We start with zero
momentum polaritons. Most important features can then be extracted from a density
plot of the polariton spectral function as function of energy and cavity detuning, which
will also be convenient for comparison to the experiment. Similar plots can be found in
[49], where they are phrased as cavity transmission coefficients.

5.1.1. Exciton regime

To familiarize ourselves with the physics, let us first regress to excitons, and consider
the same simple exciton-polariton model as in section 1.6:

Gep(ε, δ) =
1

ε− δ + iΓc −Πep(ε)
(5.1)

Πep(ε) = g2
ep ·

1

ε+ i0+
. (5.2)
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Here, δ is the detuning of the cavity energy from the exciton pole as defined in (1.68),
and ε is the energy measured from the exciton pole. Matching a realistic setup, the
cavity mode has a linewidth (which we define as 1/2 FWHM) Γc e.g. due to cavity loss,
while the exciton linewidth is disregarded. gep is the exciton-photon coupling defined in
(1.67).

The resulting spectral function Aep(ε) then has the following general form:

Aep(ε, δ) = −2= [Gep] (ε, δ) =
2 (Γc −=[Πep](ε))

(ε− δ −<[Πep(ε))2 + (Γc −=[Πep](ε))2 . (5.3)

A typical density plot of Aep is shown in Fig. 5.1.

Aep(ε, δ) · Γc/2

δ/Γc

ε/Γc

Figure 5.1.: Exciton-Polariton spectral function. The dashed yellow lines show the bare
photon and exciton modes, respectively. Used parameter: gep = Γc.

In this and forthcoming graphs we choose the parameters approximately as in Ref. [1]
if possible, measuring energies in units of Γc. For Γc = 1 meV as in Ref. [1], in this way
we effectively mimic meV as energy unit.

Fig. 5.1 has a transparent interpretation: The exciton mode (which would correspond
to the yellow vertical line at ε = 0) and the cavity photon mode (corresponding to the
yellow diagonal line) repell each other, resulting in an avoided crossing, and the formation
of two polariton modes. In the simplified exciton model, evaluating the maxima of the
spectral function, the polariton mode maxima as a function of detuning are found to be
(as in (1.65)):

εUP/LP =
1

2
(δ ±

√
δ2 + 4g2

ep) . (5.4)

It is clearly seen that the upper polariton approaches the exciton branch ε = 0 at large
negative detunings, i.e. is matter-like, and the photon branch ε = δ at large positive
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detunings, i.e. is light-like. For the lower polariton one has the exact opposite behaviour.
An evaluation of Hopfield coefficents via spectral integration can be found in Ref. [50].

At zero detuning the polaritons are half-light-half-matter. Their linewidth is found to
be Γc/2, i.e. the average of photon and exciton linewidth. The splitting of the polaritons
at zero detuning, called normal mode splitting, is 2gep. Thus, with the parameters of the
plot above we are clearly in the strong coupling regime.

For strong detunings, the linewidth of the photon-like branch approaches Γc while the
linewidth of the exciton-like branch approaches zero.

It should be noted, that within this simple treatment the lower and upper polariton are
perfectly symmetric. In reality this of course is not quite true even in a pure excitonic
regime, since the upper polariton can decay in the lower one, thus having a larger
linewidth.

5.1.2. Fermi-edge regime

Let us now proceed with the Fermi-edge regime. To begin with, we consider the case of
infinite mass. As photon self-energy Π(ε) we insert the formulas (3.20), (3.21) into the
spectral function (5.3) instead of Πep. ε, δ are now measured from the indirect threshold
EG + µ. We introduce the effective Fermi-edge-photon coupling:

gfp = γ0ρ . (5.5)

where γ0 is the light-matter coupling strength for zero momentum photons as defined in
(1.53). gfp and the exciton-photon coupling gep used in the last section are the prefactors
of the photon self-energy in the different regimes. Effectively, they measure the weight of
the pole in absorption, and are different due to the different models used in the derivation
of the Wannier-exciton and the Fermi-edge singularity (e.g. gep is proportional to the
hydrogenic-type eigenfunction of Wannier excitons). We will fix these couplings in such
a way that the normal mode splitting of the polariton branches has the right order of
magnitude as compared to the measurements of Ref. [1].

To summarize, our parameters for Π[ε] are gfp, ξ and g. For the following plot, we fix
these as follows:

1. In our model, ξ ' µ. In [1], the low-mobility sample roughly fulfills µ ' 4 meV. In
energy units of Γc (in [1], Γc ' 1 meV), we thus use ξ = 4.

2. For illustrative purposes we will use the large value g = 0.5, which will also simplify
evaluations since the Fermi-edge power law reads −2g. In addition, this value is
approximately correct for the description of [1] where µ ' E0 (c.f (2.17)). We will
comment on the g-dependence below.

3. We will fix gfp = 1/3, which will result in a lower polariton branch detuned from
the threshold by Γc (as in the exciton case), as shown below.

We again want to emphasize that these choices shall only reproduce a realistic order
of magnitude, we do not attempt to fit the parameters precisely to [1]. The resulting
infinite mass Fermi-edge polariton spectral function A∞ is shown in Fig. 5.2.

In this plot, the lower polariton is still seen as a well defined quasi-particle, it looks
very similar to the exciton-polariton case: Since the light-matter interaction pulls the
polariton below the absorption threshold, no decay into matter excitations is possible.
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At δ = 0, the lower polariton peak for g = 0.5 is detuned from the threshold to
1/2 · (gfp −

√
gfp · (gfp + 4ξ)). We used this fact to fix gfp = 1/3, s.t. the detuning is Γc.

For larger (smaller) values of g this detuning is larger (smaller). Thus, the red-shift of
the lower polariton mode as compared to the photonic mode increases with increasing
weight of the Fermi-edge close to the threshold, i.e. when the Fermi-edge is exciton-like,
and with larger light-matter interactions. In other words, the larger the weight of the
the excitonic pole, the stronger the photon-exciton repulsion.

The linewidth of the lower polariton also roughly behaves as in the exciton case,
determined mostly by the photonic content of the lower polariton.

A∞(ε, δ) · Γc/2

δ/Γc

ε/Γc

Figure 5.2.: Fermi-edge polariton spectral function for infinite hole mass. This plot was
generated by inserting the infinite hole mass photon self-energy of (3.20),
(3.21) into the spectral function of (5.3). The full/dashed red lines indicate
the spectral ranges shown in detail in Fig. 5.3/Fig 5.5. The dashed yellow
line shows the bare photon mode. Used parameters: gfp = 0.33Γc, ξ =
4Γc, g = 0.5.

However, the behaviour of the upper polariton has completely changed in comparison
to the exciton case: Since the photon can decay into the incoherent continuum of matter
excitations for ε > 0, the effective linewidth of the upper polariton is strongly increased.

The spectral weight of the upper polariton is determined by the absorption =[Π](ε)
at the maximum of A∞(ε, δ) defining the polariton. For negative cavity detunings,
δ < 0, the maximum lies at ε & 0. Since =[Π](ε & 0) is infinite (c.f. (3.21)), the upper
polariton never has a significant spectral weight for negative detunings. As δ increases,
the polariton pole gets shifted to larger ε as well. Due to the power law absorption decay,
the polariton spectral weight increases. Finally, at large positive detunings, when the
absorption is cut off by finite bandwidth-effects (contained in the decay of =[Π](ε)), the
photonic mode with full spectral weight reappears with in the spectrum (as seen in the
upper right corner of Fig. 5.2).
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For smaller values of g, when changing the detuning δ from negative to positive values,
the spectral weight of the polariton increases faster for δ < ξ (and slower for δ > ξ, but
the behaviour beyond the UV cut-off is of course not within our reach).

The infinite mass spectral function A∞ contains a clear trace of the Fermi-edge power
law, as seen from it’s general form (5.3): For any detuning, for ε & 0 the power laws
contained in <[Π], =[Π] will dominate, and A∞ is found to behave like

A∞(ε, δ) ' 2π

gfp (2g−2 + π2)︸ ︷︷ ︸
:=α1

·
(
ε

ξ

)2g

, ε� ξ · (Γc/gfp)−2g, ξ · (δ/gfp)−2g . (5.6)

This statement is born out in Fig. 5.3 , which shows a double logarithmics plot of (5.6),
and A∞(ε, 0) along the cut indicated by the full red line in Fig. 5.2.

ε/Γc

A∞ · Γc/2
α1 · (ε/ξ)2g

A∞(ε, 0)

Figure 5.3.: Comparison of the power law formula (5.6), and A∞(ε, 0). Parameters as in
Fig. 5.2.

We continue with the finite mass regime. The additional parameters are now β, µ.
For the plots we will use µ = ξ (half-filling), and a value of β = 0.14. To begin with, we
will keep the other parameters (especially gfp) as for the previous plots, and consider the
non-perturbative regime, i.e use (4.51), (4.52) for the photon self-energy. In doing so,
we overestimate the range of applicability of the non-perturbative regime, in the same
spirit as in Fig. 4.15. A plot of the resulting spectral function Anp(ε, δ) is shown in Fig.
5.4.
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Anp(ε, δ) · Γc/2

δ/Γc

ε/Γc

Figure 5.4.: Fermi-edge polariton spectral function Anp(ε, δ) for finite masses, and in
the non-perturbative regime. This plot was generated by inserting the non-
perturbative photon self-energy for finite hole masses of (4.51), (4.52) into
the spectral function of (5.3). The dashed red line indicates the spectral
range shown in detail in Fig. 5.5. The dashed yellow line shows the bare
photon mode. Used parameters: gfp = 0.33Γc, ξ = 4Γc, g = 0.5, µ = ξ,
β = 0.14.

One can see in comparison to the infinite mass case of Fig. 5.2, that the lower polariton
branch is more similar to the bare photon mode; especially the exciton-like behaviour of
the lower polariton at large positive detunings δ is cut off. This is further visualized in
Fig. 5.5, where the infinite mass and the finite mass spectra at a fixed cavity detuning
of δ = 3 are compared.

93



5. Polariton properties

A(ε, 3) · Γc/2

A∞(ε, 3)

Anp(ε, 3)

ε/Γc

Figure 5.5.: Cut trough Figs. 5.2, 5.4, comparing the polariton spectral functions for the
infinite and the finite mass cases at a fixed cavity detuning of δ = 3.

It is seen that the lower, exciton-like polariton peak is sizeably broadened and cut.
The reason for this behaviour is transparent: Since for finite masses excitonic features
are washed out in the absorption, they are also blurred in the polariton spectral function.

In addition, the spectral weight inbetween the polariton maxima is increased, as clearly
seen in Fig. 5.5. Again, this is due to the absorption cut-off. As a result, the effective
splitting between the polariton branches is reduced.

Furthermore, one can see that the boundary between the polaritons is shifted from
the indirect threshold ε = 0 to the direct threshold ε = βµ, which is 0.56 · Γc for the
chosen parameters.

We continue with the perturbative regime, decreasing g. We will set g = 0.1. Actually,
for such a small value of g the spectral plots of the finite mass case and of the infinite mass
case look very similar, only slightly dependent ot the concrete photon self-energy. To be
consistent with our previous evaluations, let us use the perturbative photon self-energy
expressions (4.23), (4.29), and keep all other parameters unchanged. The resulting
perturbative spectral function Ap(ε, δ) is shown in Fig. 5.6.
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Ap(ε, δ) · Γc/2

δ/Γc

ε/Γc

Figure 5.6.: Fermi-edge polariton spectral function Ap(ε, δ) for finite masses, and in the
perturbative regime. This plot was generated by inserting the perturbative
photon self-energy for finite hole masses of (4.23), (4.29) into the spectral
function of (5.3). The dashed yellow line shows the bare photon mode,
the red line indicates the spectral range shown in detail in Fig. 5.7. Used
parameters: gfp = 0.33Γc, ξ = 4Γc, g = 0.1, µ = ξ, β = 0.14.

Since the excitonic enhancement of the absorption is completely cut off by the small-
ness of g and the finite mass, the lower polariton is almost not red-shifted anymore, it
is practically photon-like. The upper polariton has approximately the same weight for
all ε > 0. Effectively, it is just a photon with an increased linewidth, which stems from
the decay into the continuum of matter excitations. As a result, the mode splitting has
practically vanished.

Similar to the infinite mass case, one can also try to recover the dimensional-dependent
power law at the indirect threshold from Fig. 5.6. Studying the numerator of (5.3), it is
however seen that the cavity linewidth Γc will dominate over the term =[Π], containing
the power law, which is at most of order g2gfp in the regime where the power law is valid
(c.f. (4.25)). Thus, extracting the power law directly from Ap would require Γc � g2gfp,
which is far off our current parameter regime (and also far beyond the experimental state
of the art). However, we can overcome this difficulty by subtracting

2Γc

(ε− δ −<[Π](ε))2 + (Γc −=[Π](ε))2

from Ap. The resulting function Ã(ε, δ) is a polariton spectral function adjusted for the
photon width. For large detunings δ and small energies ε, it will effectively probe the
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absorption, behaving as

Ã(ε, δ) '
2g2 · gfp√

3 · δ2︸ ︷︷ ︸
:=α2

·
(
ε

βµ

)3

, for ε� βµ , δ � Γc,<[Π](ε) . (5.7)

A visualization of this fact with a double logarithmic plot for the value δ = 5Γc is shown
in Fig. 5.7.

ε/Γc

α2 · (ε/βµ)3

Ã(ε, 5Γc) · Γc/2

Ã(ε, 5Γc)

Figure 5.7.: Comparison of the power law (5.7) and the function Ã(ε, 5Γc).

As can be seen from Fig. 5.7, the adjusted absorption Ã(ε, 5Γc) behaves as a power
law close to the indirect treshold ε & 0. The kink for ε ' βµ is a trace of the step-like
behaviour near the direct treshold.

For very small energies ε, this power law should also be found in the non-perturbative
regime.

5.2. Polariton spectral function: experimental results

The spectral plots shown in the last section can be compared to experimental data. We
will only consider the measurements found in Ref. [1]; the main data of Ref. [5] in
principle look similar, but are far less detailed.

In Ref. [1], the spectral properties were studied with a differential reflection (dR)
measurement (see [1], supplementary material): One illuminates the cavity with white
light and measures the reflection, once tuning the cavity into resonance with the QW-
transitions, and once strongly detuning it. The dR data are then given by the difference
of the two measurements.

Two samples were analysed. The first one, called sample A, is a low-mobility sample,
with µ ' 4 meV. The experimental data are shown in Fig. 5.8.
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Figure 5.8.: dR measurement of the low-mobility sample A of Ref. [1].

For sample A, an infinite mass description seems to be reasonable. Furthermore, since
µ is of order E0(GaAs) ' 4 meV, we assess it to be between the exciton regime and the
FER, slightly closer to the exciton regime, since in 2D the exciton binding energy is 4E0.

This expectation is also confirmed by comparison with Figs. 5.1, 5.2: The measure-
ment looks more exciton-like (Fig. 5.1), but with a substantial broadening of the upper
polariton branch as in the FER case (Fig. 5.2).

The second measured sample (sample B) is a high-mobility one. The chemical potential
is increased to roughly 6 meV. The data are presented in Fig. 5.9

Figure 5.9.: dR measurement of the high-mobility sample B of Ref. [1].
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The mode splitting is seen to vanish almost completely; the data are strongly remin-
iscent of the perturbative FER regime, see Fig. 5.6.
Certainly, since µ is still of order E0, we cannot hope for a quantitative agreement with
our results, and the parameters of sample B are not quite in the perturbative FER re-
gime. However, we believe that the general trend of a vanishing mode splitting, observed
when changing from sample A to sample B, is contained in our results, since:

• The chemical potential is increased as compared to sample A, leading to a larger
value in the argument of the relevant logarithmic parameter l := |g log(g2βµ/ξ)|
(c.f. 3.33)), and thus to a smaller value of l.

• This increase of µ also leads to a smaller value of g (c.f. (2.17)), which is actually
the dominant effect regarding polariton spectra.

• One can assume that β changes from 0 (where the logarithms are always diverging
at the treshold, thus no perturbative regime exists) to 0.14, which will further
increase the cutoff of the logarithm.

All these modifications decrease l, in an extremal case resulting in a perturbative spec-
trum as in Fig. 5.6.

5.3. Polariton dispersion: theoretical results

Further physical information can be extracted from plots of the polariton dipersion,
allowing for a finite photon momentum. Disregarding the momentum for the photon
self-energy as was discussed on page 25, and restricting ourselves to small momenta, the
only momentum-dependence is then contained in an additional term k2/2mcav in the
denominator of the photon Green’s function, where mcav is the cavity mass (c.f. (1.7)).

5.3.1. Exciton regime

To begin with, let us first present a plot of the dispersion in the exciton regime. We use
the formulas and parameters of section 5.1.1, including the momentum term. Following
Ref. [1], we plot the exciton-polariton spectral function Aep(k, ε, 0), tuning the cavity
into resonance with the exciton mode, i.e. δ = 0. The photon momentum k is plotted
in units of

k0 :=
√

2mcavΓc , (5.8)

For typical cavities (restoring a factor of 1/~2), k0 ' 1/µm. The resulting plot is shown
in Fig. 5.10.
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Aep(k, ε, 0) · Γc/2

ε/Γc

k/k0

Figure 5.10.: Exciton-polariton dispersion spectrum Aep(k, ε, 0). The unit k0 is defined
in (5.8).

Two distinct polariton branches are seen, split by 2gep. It can be infered from Fig. 5.10
that the effective mass of the polaritons close to k = 0 is approximately 2mcav, as already
apparent from the polariton energies (1.65). For large momenta, where the photon mode
is strongly blue-detuned w.r.t. the exciton mode, the lower polariton becomes exciton-
like, i.e. flat and with a vanishing linewidth. By contrast, the upper polariton becomes
light-like, approaching a parabola with effective mass mcav, and photon linewidth.

5.3.2. Fermi-edge regime

We proceed to the FER. To begin with, we consider the infinite mass case, using the
parameters of Fig. 5.2. The resulting plot is shown in Fig. 5.11.

As for the detuning spectra, the lower polaritons in the exciton regime and the infinite
mass FER regime look very similar. The upper polariton, however, is not seen as a
well defined quasiparticle for small momenta. As discussed before, this is due to the
incoherent decay into matter excitations, which manifests itself in a large value of the
absorption for ε & 0.

For large momenta respectively large energies, where the absorption decays as a power
law, the photonic mass-parabola revives in the spectrum.
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A∞(k, ε, 0) · Γc/2

ε/Γc

k/k0

Figure 5.11.: Fermi-edge polariton dispersion spectrum A∞(k, ε, 0) for infinite hole mass

Switching on a finite mass (β = 0.14) in the non-perturbative regime, with the para-
meters of Fig. 5.4, and tuning the photon mode to the direct threshold at δ = βµ,
produces the spectral function Anp(k, ε, βµ) shown in Fig. 5.12.

Anp(k, ε, βµ) · Γc/2

k/k0

ε/Γc

Figure 5.12.: Fermi-edge polariton dispersion spectrum Anp(k, ε, βµ) for finite masses,
and in the non-perturbative regime.

In comparison to Fig 5.11 one can clearly see a threshold shift; furthermore, since the
absorption peak is less pronounced compared to the infinite mass case, one observes a
sligthly reduced mode-splitting. In addition, the narrow exciton-type tail of the lower
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polariton is washed out.
Finally, Fig. 5.13 shows a plot of the polariton dispersion in the perturbative regime,

using the parameters of Fig. 5.6.

Ap(k, ε, βµ) · Γc/2

ε/Γc

k/k0

Figure 5.13.: Fermi-edge polariton dispersion spectrumAp(k, ε, βµ) for finite masses, and
in the perturbative regime.

The mode splitting has practically vanished; the spectrum is turned into a single mass
parabola, but with increased linewidth above the indirect threshold. As distinct from
the previous dispersion plots, the upper polariton linewidth is not seen to approach the
photon linewidth at large energies, but this is an artefact of our theta-like perturbative
self-energy, which is not cut off by finite bandwidth-effects.

5.4. Polariton dispersion: experimental results

We can also compare the dispersion plots to the results of Ref. [1]. Experimentally, the
photon momentum can be modified tilting the light-source w.r.t. the quantum well.

The measurement was conducted for the low-mobility sample A only. The data are
shown in Fig. 5.8.
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Figure 5.14.: dR dispersion measurement of the low-mobility sample A of Ref. [1].

As discussed on page 97, sample A is expected to be inbetween the exciton and infinite
mass FER regime. Comparing the dispersion plot of Fig. 5.14 with Figs. 5.10, 5.11
further confirms this statement. The measurement looks slightly more exciton-like (Fig.
5.10); however, the upper polariton is also washed out for small momenta (as seen in the
”hole” of the upper parabola), similar to the FER of Fig. 5.11.

In [1], also the polariton mass is deduced from the measurement, and it is indeed found
to be approximately 2mcav.
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We have investigated the properties of Fermi-edge polaritons in heavily doped semicon-
ductor quantum wells. Our focal point of interest was the description of high-mobililty
samples, corresponding to a finite mass of the valence band electrons.

To begin with, we have identified the photon self-energy as the quantity determining
the optical properties of the microcavities under consideration. It’s imaginary part is of
special interest, since it allows one to derive the absorption of the quantum well.

We restricted ourselves to the calculation of the self-energy in linear response, relating
it to the dressed electron-hole bubble.

To properly describe heavily doped systems, we considered the theoretical regime of a
large Fermi energy, called Fermi-edge regime. In this regime, the effective electron-hole
interaction coupling constant g was found to be small, thus allowing for perturbation
theory in g.

As a preliminary step in the evaluation of the photon self-energy in the Fermi-edge
regime, we then calculated the Green’s function of valence band hole for finite hole
mass. Two diagrammatical methods were presented and compared: the linked-cluster
expansion and the standard Dyson equation. We have used the first method to obtain
the spectral function Ah of the valence band hole for zero hole momentum. Ah was
shown to have an unusual shape, consisting of a coherent and an incoherent part. This
result is in agreement with previous works [35].

We identified the phase space function for conduction band electron-hole scattering
processes as the main quantity determining the shape of Ah. This allowed for a trans-
parent physical interpretation of our results. Qualitatively, a reduced scattering phase
space results in narrower, particle-like spectral features.

The Dyson equation was used to calculate the hole spectral function for incoming
Fermi-momentum. We showed that, due to an enlarged scattering phase space, the hole
has a finite lifetime.

After these steps, we were in a position to calculate the photon self-energy in the
Fermi-edge regime for finite hole mass. To obtain a first understanding, an approach
suggested by Mahan [6] was used, guessing the full series from second order in g. The
finite hole mass resulted in different cutoffs of logarithms, and in the appearance of two
thresholds, the direct and indirect one. We assessed the range of validity for our theory
by analysing the cutoffs. In the parametric range of control, the self-energy was then
found to have the form of a cut-off power law for energies near the direct threshold ΩD,
which is a consequence of the finite hole lifetime.

We further investigated this result in the following analysis, which was based on a work
by Gavoret, Nozières et al. [27]. We computed the behaviour of the photon self-energy
near ΩD, solving a Bethe-Salpeter equation with logarithmic accuracy. Furthermore,
the self-energy close to the indirect threshold ΩI was obtained. It was shown that =[Π]
vanishes at ΩI with a dimensional-dependent power law, reproducing the results found
in Ref. [42].
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As the final step, we evaluated polariton properties. Inserting the computed photon
self-energy into the photon Greens function, the polariton spectral function A was eval-
uated. The physical discussion was developed based on plots of A as a function of the
energy and the cavity detuning. We have found that the resulting two polariton branches
are of a completely different nature in the Fermi-edge regime. While the lower polariton
is always particle-like, the upper polariton is strongly smeared due to the decay of the
photonic mode into the incoherent continuum of matter excitations. Furthermore, the
peak splitting between the polaritons was shown to depend strongly on the light-matter-
interaction, the electron-hole-interaction, and the hole mass. For a high-mobility sample
at high electron densities resulting in weak electron hole interaction, the peak splitting
was seen to vanish almost completely. Comparing our results to the experimental data
of Ref. [1], we found evidence for such a behaviour.

We also analysed dispersions plots of A at zero detuning, finding them to support our
previous statements.

Our work is only as a first step towards a complete theory of Fermi-edge polaritons.
Many further improvements are conceivable. For example, one can try to extend our
analysis to a larger parameter range. This could be accomplished via a calculation of first
order diagrams beyond logarithmic accuracy, or a consistent ladder approximation (see
discussion on page 71). One could also try to go beyond linear response for the photon
self-energy and include other classes of diagrams in addition to the dressed electron-hole
bubble.

Furthermore, one could attempt to include more realistic electronic interactions. Po-
tential improvements are electron-electron interactions, and a screened Coulombic electron-
hole interaction.

A numerical evaluation seems promising to check the analytical results and to gain
insight into spectral regions far from the thresholds. We have already made a first step
in this direction, applying the method of functional renormalization group; however, we
will not present it here.

As we have discussed in detail, the experiment of Ref. [1] does not quite belong to the
Fermi-edge regime. If this limitation is removed, our statements can be checked directly,
especially in cavities with a smaller photon linewidth. One could also use samples based
on materials with a different mass ratio β, in order to analyse the hole mass dependence
in detail.

Finally, one could attempt to go beyond the FER analytically. Even if the conduction
band is only sligthly populated (i.e. in a pure exciton regime), taking into account the
Fermi-sea shake-up in a consistent manner is difficult. Although some results on this are
reported in Refs. [40], [51], to our knowledge the mass dependence was not yet taken
into consideration in a satisfactory fashion. A first attempt of a perturbative treatment
in this regime is presented as a supplement, c.f. chapter 7.

If the implications of the Fermi-sea shake-up for the polariton formation are under-
stood, one could proceed exploring polariton interaction effects, and properties resulting
from the quasi-bosonic nature of the polariton. This could open up a wide field of future
research.
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7. Supplement: calculations in the exciton
regime

We will now briefly present a first step in the calculation of spectral properties in the
exciton regime, without showing calculations in detail. This part is work in progress,
and the results are only preliminary.

Retaining the contact interaction model, the exciton regime is defined by

EB � µ , (7.1)

where EB is the binding energy of the Mahan exciton (c.f. (3.14)). An equivalent
statement would be

1/a0 � kF , (7.2)

where a0 is the excitonic Bohr radius. Restricting ourselves to spinless particles for
simplicity, the coupling constant g reads: (c.f. (1.71)):

g =
1

a0(kF + 1/a0)
. 1 . (7.3)

Thus, perturbation theory in g is meaningless, since higher order diagrams contribute
equally. Following a suggestion by Moshe Goldstein [52], in the following we will show a
way to circumvent this obstacle.

To recover the exciton, we have to sum up the series of ladder diagrams, and consider
energies close to the exciton binding energy −EB.

+= +

Figure 7.1.: The exciton ladder.

7.1. Exciton spectral function for infinite hole mass

To begin with, we consider the case of infinite hole mass. Disregarding the optical matrix
element, a ladder diagram with n interaction lines reads (c.f. (3.11)):

Π
(n)
Ladder(ε) = ρ(−g)n log

(
−ε− iΓ

ξ

)(n+1)

, (7.4)
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7. Supplement: calculations in the exciton regime

where ε is the detuning from ΩI = EG + µ, and Γ is the linewidth which we will let to
zero in the end of the calculation. On the other hand, in crossed diagrams, terms of the
form

Πc = log

(
−ε− iΓ
µ− ε

)
(7.5)

appear. Distinct from the FER regime, now the scales read

ξ � EB � µ . (7.6)

Thus, we do not have to take the crossed diagrams into account for energies close to
the exciton binding energy −EB. Summing the whole ladder, we obtain the following
expression:

ΠLadder(ε) '
ρEB
g2︸ ︷︷ ︸
:=α

· 1

ε+ EB + iΓ
. (7.7)

This expression is valid for ε ' −EB. It especially breaks down for ε > 0, where for the
absorption we recover the continuum of states corresponding to a smeared theta-function.
The factor α will appear as global prefactor in all diagrams.

We now measure the energy ω from −EB, and define the exciton Green’s function:

Gexc(ω) =
1

ω + iΓ
. (7.8)

The infinite mass of the hole carries over to the exciton (it’s mass is just the sum of
electron and hole mass), s.t. the excitons in this section are momentum independent.
For a nonvanishing µ, we expect that in the energy regime ω < µ the delta function
spectrum corresponding to (7.8) will be turned into a power law by scaterrings with CB
electrons. In the following we will restrict ourselves to such small detunings ω < µ� EB.

The powerlaw exponent was calculated in terms of electron scattering phase shift δ in
Ref. [40] and can also be deduced from Hopfield’s rule of thumb. Let us recall it in this
context: The behaviour of spectral functions A(ω) in the infinite mass case is

A(ω) ∼ ωγ2−1 , γ = δ/π − 1; (7.9)

γ represents the number of electrons moved from infinity to a finite volume around the
local potential, described by δ/π, minus the number of electrons added to the Fermi sea
in the process of the hole-potential creation. In the usual picture, the creation of a hole
comes with one additional electron in the Fermi sea, thus γ = (δ/π − 1). In the limit
g → 0 one has δ/π = g, which leads to the standard Fermi-edge singularity.

In the excitonic picture, one exciton and no addional electron is created. In terms of
the phase shift δexc of electrons scattering off an exciton, thus γ = δexc/π.

Now we aim to do perturbation theory in the exciton picture, in terms of an effective
exciton-electron interaction gexc. Regarding (7.9) as a spectral function for an infinite
mass exciton, we expect gexc = δexc/π = δ/π − 1. As an Ansatz, we can replace δ/π by
g, which leads to:

gexc = g − 1 , (7.10)
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7. Supplement: calculations in the exciton regime

which is a small quantity which we can treat in a perturbative way. Of course, this is not
fully accurate, since for g . 1 the replacement of δ/π by g is incorrect. We regard (7.10)
as a first step which will show how in the presence of a Fermi-sea the particle-spectrum
of (7.8) is converted into a powerlaw; the detailed form of gexc as function of g remains
to be found.

Let us try to recover the relation (7.10) diagrammatically. The following two diagrams
are relevant:

Gc(k1, ν1) Gc(k2, ν2)

g

ω ω + ν1 − ν2

a)

Gc(k1, ν1) Gc(k2, ν2)

ω ω + ν1 − ν2

b)

g-type

exchange

Figure 7.2.: Relevant diagrams for the effective electron-exciton interaction. To emphas-
ize that the first diagram involves an electron-hole interaction, we will call
it g-type.

We computed these diagrams, assuming that the electron energies fulfill ν1, ν2 � EB.
The CB Green’s functions factor out, and the exciton part reads

a) − g · αGexc(ω)Gexc(ω + ν1 − ν2) (7.11)

b) αGexc(ω)Gexc(ω + ν1 − ν2) . (7.12)

These expressions can be combined to give an electron-exciton interaction with the coup-
ling constant gexc = g − 1. A sketch of this is shown in Fig. 7.3.

Gc(k1, ν1) Gc(k2, ν2)

Gexc(ω) Gexc(ω + ν1 − ν2)gexc

Figure 7.3.: Exciton-electron interaction. The double line represents an exciton.

We will now show that the higher order ladder diagrams correctly reproduce the
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7. Supplement: calculations in the exciton regime

spectral function

Aexc(ω) ∼ ωg2exc−1 (7.13)

to lowest order. Aexc is nothing but the absorption close to the exciton pole.
As was the case for holes (c.f. chapter 2), the first order contribution simply shifts

EB, and the contribution responsible for the Anderson orthogonality arises from second
order. Extending the diagrams of Fig. 7.2 to second order and closing the electron loops
gives three diagrams. The first one is shown in Fig 7.4.

Gc(k2, ν2)

Gc(k1, ν1)

A

Figure 7.4.: Second order diagram coming from the combination of two g-type diagrams.
We will call this diagram A.

The frequency integrals are simple contour integrals. The part relevant for the ima-
ginary part of the exciton self-energy contains two momentum integrals:

= [ΣA] (ω) ∼
∫ ξ

0
dε1

∫ 0

−µ
dε2 = [Gexc(ω + ε2 − ε1)] (7.14)

εi =
k2
i

2m
. (7.15)

This expression shows that it was correct to assume that the electronic energies (which
are essentially ε1, ε2) are much smaller than EB: For ε2 this is obvious, and for ε1 > ω,
= [Gexc] will vanish.

For ω � EB we can use (7.8), and obtain as a result:

= [ΣA] (ω) = −παg2θ(ω) · ω . (7.16)

The remaining two diagrams are shown in Fig. 7.5.
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Gc(k2, ν2)

Gc(k1, ν1)

B C

Gc(k2, ν2)Gc(k1, ν1)

g

Figure 7.5.: Remaining second order diagrams. Diagram B is a combination of two
exchange-diagrams, diagram C is a combination of one g-type and one ex-
change diagram.

The contributions of Fig. 7.5 are calculated in the same way as for diagram A. They
read:

= [ΣB] (ω) = −παθ(ω) · ω (7.17)

= [ΣC ] (ω) = +παgθ(ω) · ω . (7.18)

Combining all three diagrams, and noting that there are two diagrams of type C, leads
to:

= [Σ] (ω) = −π(gexc)
2αθ(ω) · ω . (7.19)

Recovering the real part using Kramers-Kronig relations gives:

< [Σ] (ω) = α(gexc)
2ω log(ω/µ) . (7.20)

This corresponds to the result for the real part of hole self-energy in lowest order (c.f.
(2.51)), except for a spin-factor of 2. The main difference is that the full quantity
controlling the expansion now reads g2

exc · log(ω/µ) instead of g2 log(ω/ξ).
For the time being, our understanding of the exciton diagrammatic expansion is the

following: An n-th order exciton diagram corresponds to a diagram with n distinct
ladders. We expect that these diagrams cancel and add up in such a way that a global
factor of (gexc)

n can be extracted, which we have shown to second order. An extension
of this statement to higher orders or even a general proof remains to be accomplished.

7.2. Exciton spectral function for finite hole mass

Let us advance to the case of finite hole mass. For external momentum Q, the basic
logarithm of the ladder diagrams now reads

log

(
−ν +Q2/2M+ − iΓ +O(βµ/EB ·Q2/2M+)

ξ(1 + β)

)
, (7.21)
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where M+ = m + M , and ν is measured from the direct threshold EG + µ(1 + β).
Disregarding the terms smaller by the factor (βµ/EB), we obtain for the exciton Green’s
function in terms of detuning from −EB:

Gexc(Q,ω) =
1

ω −Q2/2M+ + iΓ
. (7.22)

7.2.1. Exciton momentum Q = 0

To begin with, we consider zero external momentum for the excitons. Proceeding in the
same fashion as in the previous section, the relevant self-energy part coming from the
diagram A reads:

= [ΣA(0, ω)] ∼
∫
k1>kF

dk1

∫
k2<kF

dk2 δ(ω − ε1 + ε2 − q2/2M+) (7.23)

q = k1 − k2 , εi = (ki)
2/2m . (7.24)

The leading order in ω of this integral can be calculated in a similar way as shown in
section. 4.1.1. To repeat things shortly, in all subsequent calculations k1 and k2 have
to be close to kF , which gives a factor of ω. Additional factors pile up due to the
restriction of angles in order for q to be small. As a result, for ω � βµ, we obtain for a
d-dimensional system:

= [ΣA(0, ω)] ∼ −αg2ω ·
(
ω

βµ

)(d−1)/2

· θ(ω) , d = 2, 3 . (7.25)

up to factors of order 1. We also do not distinguish between β and m/M+ = β+O(β2).
For the other two diagrams the calculation is analogous, s.t. in total we arrive at:

= [Σ(0, ω)] ∼ −αg2
exc ω ·

(
ω

βµ

)(d−1)/2

· θ(ω) . (7.26)

In all following evaluations we will only take into account =[Σ], disregarding the real
part. This approximation will certainly be correct in the limit ω → 0; in other frequency
regimes, it’s validity remains to be examined.

In this way, for the exciton spectral function Aexc we obtain:

Aexc(0, ω) ∼ αg2
exc ·

1

ω

(
ω

βµ

)(d−1)/2

· θ(ω) , ω � βµ . (7.27)

The result (7.27) coincides with the (Q = 0) behaviour of the VB hole as found for 2D in
section 2.2.2; in 3D it can be checked against the results of Ref. [35]. In 2D we can also
expect the spectral function to have a quasi-particle delta peak with the weight missing
by the change of the powerlaw from g2

exc − 1 & −1 to −1/2.
In the opposite limit ω � βµ, i.e. for energies much larger than the characteristic

exciton kinetic energy, we recover the infinite mass powerlaw, as is also obvious from
(7.23). Again specializing to 2D from now on, a sketch of the (Q = 0) spectral function
is shown in Fig. 7.6:
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∼ 1/
√
ω

ω0 βµ µ EB

∼ ωg2exc−1

Aexc(0, ω)

α · g
2
exc
βµ

Figure 7.6.: Sketch of the (Q = 0) exciton spectral function.

7.2.2. Exciton momentum 0 < Q� kF

In this case, the relevant self-energy is found to be:

= [ΣA(Q,ω)] ∼
∫
k1>kF

dk1

∫
k2<kF

dk2 δ(ω − ε1 + ε2 − (Q− q)2/2M+) . (7.28)

Now a new regime opens up: ω < Q2/2M+. We also recover the notion of a direct
threshold ωD = Q2/2M+ (not to be confused with the direct threshold for the absorption
at ω = EB), and of an indirect threshold ωI = 0: The lowest energy required to create
an exciton with momentum Q is just EB, since the momentum can be tranferred to an
electron-hole excitation of the Fermi sea at no energy cost. A sketch of the thresholds is
shown in Fig. 7.7.

k

k2/2M+
ω

Q

ωD

ωI

Spectrum extended by scatterings

Figure 7.7.: Sketch of the two thresholds for external exciton momentum Q.

For the imaginary part of the self-energy we obtain:

= [Σ(Q,ω)] ∼ −αg2
exc ω ·

√
ω

Q2/2M+

√
ω

βµ
· θ(ω) ω � Q2/2M+ . (7.29)
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This leads to a spectral function that behaves like

Aexc(Q,ω) ∼ αg2
exc ·

ω2

(Q2/2M+)5/2
√
βµ
· θ(ω) , ω � Q2/2M+ . (7.30)

In the energy range Q2/2M+ � ω � βµ we can disregard the Q-term in (7.28), and
thus recover the (Q = 0) behaviour.

Finally, for ω � βµ we recover the (M =∞) behaviour.
Another property of interest is the linewidth of the Q-exciton, i.e. =

[
Σ(Q,Q2/2M+)

]
.

Using the Lindhard-funciton as given in Ref. [37], we are able to calculate it exactly, and
find that inserting ω = Q2/2M+ into (7.29) reproduces the correct order of magnitude:

=
[
Σ(Q,Q2/2M+)

]
∼ −αg2

excQ
2/2M+ ·Q/kF . (7.31)

This extra suppression by the factor Q/kF comes from the fact that a small incoming
momentum Q strongly rectricts the momentum transfer q in a scattering process: The
energy of the scattered exciton with momentum Q− q must be smaller than the energy
of the exciton with momentum Q. Alltogether, we obtain a spectral function as shown
in Fig. 7.8:

ω

∼ ω2

∼ 1/
√
ω

∼ ωg2exc−1

Aexc(Q,ω)

∼ g2
excQ

2/2M+ ·Q/kF

Q2/2M+ βµ µ0

α
g2excQ

2/2M+Q/kF

Figure 7.8.: Sketch of the exciton spectral function for Q� kF .

7.2.3. Exciton momentum kF � Q� kF/
√
β

In this regime, if we consider two-particle processes only, the indirect threshold is shifted
from ωI = 0 to ωI = (Q − 2kF )2/2M+. The reason for this is the following: The
maximal momentum of a Fermi-sea electron-hole pair with zero energy is 2kF . Thus,
the full momentum of the exciton can no longer be transferred to the Fermi-sea at no
energy cost. A sketch of the resulting two thresholds is shown in Fig. 7.9.
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k

k2/2M+

ω

Q

ωD

ωI

(k − 2kF )2/2M+

Figure 7.9.: Sketch of the two thresholds for Q� kF .

We will disregard higher order scattering processes: These will extend the threshold
all the way down to ω = 0, but with a prefactor at least of order O(g4

exc).
Studying (7.28) for small detunings ε from ωI , we obtain:

= [Σ(Q, ε)] = −αg2
exc

ε2√
βµ ·Q2/2M+

· θ(ε) , ε� (Q− 2kF )2/M+ . (7.32)

We estimate the inverse lifetime as:

=
[
Σ(Q,Q2/2M+)

]
∼ −αg2

excQ
2/2M+ · kF /Q . (7.33)

The additonal suppression by kF /Q is easily seen from (7.28): For Q � kF , the angle
between Q and q is not strongly restricted, such that the inverse lifetime is proportional
to Q2/2M+− (Q− kF )2/2M+, i.e. the typical change of energy of an exciton as a result
of a scattering.

The region where =[Σ] ∼ ω3/2 will be absent, and for Q2/2M+ � ω � µ we recover
the (M =∞) powerlaw.

The resulting spectrum is sketched in Fig. 7.10.
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ω

∼ (ω − ωI)2

∼ ωg2exc−1

Aexc(Q,ω)

∼ g2
excQ

2/2M+ · kF /Q

Q2/2M+ µωI0

α
g2excQ

2/2M+kF /Q

Figure 7.10.: Sketch of the spectrum for kF � Q� kF /
√
β.

7.2.4. Exciton momentum Q� kF/
√
β

This regime is slightly academic for the exciton, but it is of relevance for the polariton
where the mass ratio is very large instead of very small. The low-energy behaviour
should be the same as in the previous case. For the inverse lifetime we only obtain
µ, independent of Q – basically, in a scattering the incoming electron can come from
anywhere in the Fermi sea.

Since now Q2/2M+ � µ, no Anderson orthogonality powerlaw is left in any energy
region.

7.3. Outlook on polaritons

Using a bare photon line as self-energy for the exciton, and disregarding the photon
linewidth, we obtain the exciton-polariton:

α ·Gep(Q,ω) ≡ 1

α−1Gexc(Q,ω)−1 − γ0 (ω − δ −Q2/2mcav + i0+)−1 , (7.34)

where δ is the detuning of the cavity mode from EG + µ(1 + β) − EB, and γ0 is the
light-matter coupling (c.f. (1.53)). We specialize on a situation as in Ref. [1], where the
cavity is exactly tuned to the exciton resonance, i.e. δ = 0.

Rewriting (7.34) in the standard Green’s function form, we obtain two polariton
branches, split by 2gep, where

gep =
√
γ0α . (7.35)

We now consider energies close to the lower polariton, ω ' −gep, which is a well defined
quasiparticle. By contrast, the lifetime of the upper polariton is relatively small since it
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can decay into the lower polariton and also in the continuum of electron hole states if
gep > EB.

Assuming that Q2/2mcav � gep, we obtain for the lower polariton:

Glp(Q,ω) ' 1

2
· 1

ω + gep −Q2/2mp + iδ
, (7.36)

where mp = mcav/2 is the polariton mass.
If gep is sufficiently large, the quasiparticle interacting with the Fermi sea is no longer

an exciton, but rather a polariton. To obtain the power laws for the polariton spectral
function, we should then replace all ladders by ladders dressed by photon lines, i.e.
replace Gexc by Glp. In principle the calculation of self-energies then proceeds completely
analogous to the exciton case, leading to expressions like (7.28). One only has to replace
β by

κ = m/mp , (7.37)

which is a very large instead of a small factor. In the calculation of the self-energy, for
very small energies, ω + gep � Q2/κm we expect the same results as in the exciton
case; for larger energies, factors subleading in ω that get multiplied with κ need to be
considered consistently. These calculations remain to be accomplished.
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A. Calculation of the crossed diagram with
constant self-energy

In this appendix, we will show how to compute the momentum integrals for the crossed
diagram of Fig. 3.12. We start from expression (3.36):

Πcross(Ω) = − γ0V
2

0

(2π)6

∫
dk1

∫
dk2

∫
dk3 (1− nF (k1))nF (k2) (1− nF (k3)) (A.1)

· 1

(Ω + iΓ− ΩI − (εk1 − µ)− Ek1) (Ω + iΓ− ΩI − (εk3 − µ)− Ek3)

· 1

(Ω + iΓ− ΩI − (εk1 − µ)− (εk3 − µ) + (εk2 − µ)− Ek1+k3−k2)
.

First, we will carry out the integral over k2 and the two nontrivial angle integrals, showing
that the resulting logarithm has the form

log

(
Ω− ΩD − (εk1 − µ)− (εk3 − µ) + iβµ

−µ

)
. (A.2)

We switch to a dimensionless integration and introduce the following notations:

q = k1 + k3 , φ = ] (q,k2) , x =
k2

2

2m
/µ (A.3)

γ =
Ω + iΓ− ΩI − (εk1 − µ)− (εk3 − µ)

µ
.

With these, we obtain for the k2-integral:

ρ

2π

∫ 2π

0
dφ

∫ 1

0

dx

γ − q2

2Mµ − 1 + (1− β)x−
√
x · qkFMµ cos(φ)

. (A.4)

To begin with, we analyse the parameter γ. We are mostly interested in the energy range
Ω ∈ [ΩI ,ΩI + βµ] (recall that ΩD = EG + µ(1 + β) = ΩI + βµ). Hence, we can assume
Ω − ΩI ∈ O(βµ). Furthermore, the integrals over k1,k3 in (A.1) will be dominated by
the region where εk1 − µ, εk3 − µ ∈ O(βµ). Finally, Γ = g2βµ.

Thus, we see that the dominant contribution to (A.4) comes from |γ| ∈ O(β). Then in

the denominator of (A.4) we have the parameter q2

2Mµ . It is clear that this is at most of
order O(β). Therefore, we conclude that the x−integral will be dominated by it’s upper
boundary. Thus, we can approximate

√
x in the the integral by it’s expansion around 1.

Carrying out the x-integral then gives with logarithmic accuracy:

ρ

2π

∫ 2π

0
dφ log

(
γ − q2

2Mµ
− β − 3

2

qkF
Mµ

cos(φ)

)
, (A.5)
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where we have disregarded a global prefactor of 1
1+β ' 1. Note that the logarithm is

well defined since γ is complex. We now introduce the notations

B = γ − q2

2Mµ
− β , C = −3

2

qkF
Mµ

.

We can distinguish 3 cases:

1. |B| � |C|. Then

ρ

2π

∫ 2π

0
dφ log (B + C cos(φ)) ' ρ log(|B|) . (A.6)

2. |C| � |B|. Then

ρ

2π

∫ 2π

0
dφ log (B + C cos(φ)) ' ρ log(|C|) +

ρ

2π

∫ 2π

0
dφ log(| cos(φ)|)

(A.7)

= ρ log(|C|)− π log(4) ' ρ log(|C|) .

The first estimate of (A.7) of course breaks down for cos(φ) very small. But since
the phase measure of these angles is negligibly small, and all appearing singularities
of type log(| cos(φ)|) are integrable, this does not lead to problems.

3. |C| ' |B|. Then

ρ

2π

∫ 2π

0
dφ log (B + C cos(φ)) ' ρ log(|C|) +

ρ

2π

∫ 2π

0
dφ log(1 + cos(φ))

(A.8)

= ρ log(|C|)− π log(4) ' ρ log(|C|) .

Alltogether we obtain:

ρ log

(
max

{∣∣∣∣γ − q2

2Mµ
− β

∣∣∣∣ , 3

2

qkF
Mµ

})
. (A.9)

Let us proceed with the second nontrivial angular integration. Writing

θ = ](k1,k3) , (A.10)

it reads:∫ 2π

0
dθ log

(
max

{∣∣∣∣γ − q2

2Mµ
− β

∣∣∣∣ , 3

2

qkF
Mµ

})
, (A.11)

with q =
√
k2

1 + k2
3 + 2k1k3 cos(θ).

First we simplify the argument of the logarithm. We need to check two cases:

1. q � kF . Then we can savely replace∣∣∣∣γ − q2

2Mµ
− β

∣∣∣∣ by |γ − β| .
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2. q ' kF , i.e. q2

2Mµ ' β .

Then one can distiguish 3 subcases: |γ| � β, |γ| ' β, |γ| � β, and it is easily seen
that one can always write

max

{
|γ − β| , qkF

Mµ

}
instead of max

{∣∣∣∣γ − q2

2Mµ
− β

∣∣∣∣ , 3

2

qkF
Mµ

}
.

A third case q � kF does not show up because of the UV-cutoff on the k1,k3 - integrals.
Therefore, we are left with

∫ 2π

0
dθ log

(
max

{
|γ − β| , qkF

Mµ

})
'
∫ 2π

0
dθ log

√|γ − β|2 +

(
qkF
Mµ

)2
 .

(A.12)

Now we notice that q =
√
k2

1 + k2
3 + 2k1k3 cos(θ) ' kF

√
2 + 2 cos2(θ) since always

k1, k3 ∈ O(kF ). Hence, we have to compare |γ − β|2 with
(
k2F
Mµ

)2
' β2 analogous to

(A.6) ff. Since again appearing integrands of the type log
(
1 + cos2(θ)

)
will be integrable,

we finally end up with:

2π log (max {|γ − β|, β}) . (A.13)

Inserting γ from (A.3), and restoring the correct phase of the logarithm, we obtain in
terms of detuning ν = Ω− ΩD:

2π log

(
ν − (εk1 − µ)− (εk3 − µ) + iβµ

−µ

)
, (A.14)

as claimed in the beginning.

With this result we can proceed with the calculation of Πcross(Ω) as in (A.1), where
we still have to perform the integrals over k1, k2 and one trivial angular integration,
which gives an addtional factor of 2π. Furthermore, we will now restrict ourselfes to
the non-perturbative regime g � g2(β) (c.f. section 3.3.4), where we can replace g2βµ
by βµ with logarithmic accuracy. Since the remaining denominators of (A.1) will yield
logarithms, we can therefore write iβµ instead of iΓ. Changing variables:

y =
k2

1

2m
− µ , z =

k2
3

2m
− µ , (A.15)

introducing the notation

α = ν + iβµ , (A.16)

and restoring all prefactors, we therefore get:

Πcross(ν) = −γ0ρg
2

∫ ξ

0
dy

∫ ξ

0
dz

1

α− y(1 + β)

1

α− z(1 + β)
· log

(
α− y − z
−µ

)
.

(A.17)
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A. Calculation of the crossed diagram with constant self-energy

We can now replace y(1 + β), z(1 + β) in the denominators by y, z: In doing so, we
modify the argument of the resulting logarithm by β at most, but the the logarithms
will be cut by β anyway. Furthermore, we ignore global prefactors 1/(1 + β). Thus, we
obtain the simpler form

Πcross(ν) = −γ0ρg
2

∫ ξ

0
dy

∫ ξ

0
dz

1

α− y
1

α− z
· log

(
α− y − z
−µ

)
. (A.18)

We now split the z-integration in two parts s.t. in the logarithm the term −y− z just
reads −y or −z with logarithmic accuracy. Then, using that µ ' ξ, we can carry out
the remaining integrals:

Πcross(ν) = −γ0ρg
2

∫ ξ

0
dy

1

α− y
· (A.19){∫ y

0
dz

1

α− z
· log

(
α− y
−ξ

)
+

∫ ξ

y
dz

1

α− z
· log

(
α− z
−ξ

)}
=

− γ0ρg
2

∫ ξ

0
dy

1

α− y
·
{
− log

(
α− y
α

)
log

(
α− y
−ξ

)
+

1

2
log2

(
α− y
−ξ

)}
'

− γ0ρg
2

∫ ξ

0
dy

1

α− y
·
(
− log

(
α− y
−ξ

)
− log

(
−ξ
α

))
· log

(
α− y
−ξ

)
− γ0ρg

2 · 1

6
log3

(
α

−ξ

)
'

γ0ρg
2 · 1

3
log3

(
α

−ξ

)
− γ0ρg

2 · 1

2
log3

(
α

−ξ

)
− γ0ρg

2 · 1

6
log3

(
α

−ξ

)
= −γ0ρg

2 · 1

3
log3

(
α

−ξ

)
.

Writing out α, our final result therefore reads:

Πcross(ν) = −γ0ρg
2 · 1

3
log3

(
−ν − iβµ

ξ

)
. (A.20)
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B. Calculation of the absorption power law
at the indirect threshold

In the following we will present the evaluation of the absorption power law at the indirect
threshold, starting from (4.13):

AI(ε) =
ρ3

π2

γ0V
2

0

(βµ)2

∫
x2>µ

dx

∫
y2>µ

dy

∫
z2<µ

dz (B.1)

δ
(
ε−

(
x2 − µ

)
−
(
y2 − µ

)
+
(
z2 − µ

)
− β (x + y− z)2

)
.

Beginning with the z-integral, we can linearize the dispersion relation, since all contrib-
uting momenta are very close to kF :

z ≡ ez(
√
µ+ γ) ⇒ z2 − µ ' 2

√
µγ . (B.2)

We also introduce the notations:

q = x + y , φ = ](q, z) , c = cos(φ) . (B.3)

For later purpose we see from the fact that β(x + y︸ ︷︷ ︸
q

−z)2 < ε and z ' √µ, that

q ' √µ . (B.4)

See also Fig. 4.2. In terms of the new notation (B.3), the z-integrals reads:

2

∫ 1

−1
dc

1√
1− c2

∫ 0

−√µ
(
√
µ+ γ)dγ (B.5)

δ

ε− (x2 − µ)− (y2 − µ)− βq2 + 2βcq
√
µ− βµ︸ ︷︷ ︸

≡C

+γ (2
√
µ− 2

√
µβ + 2cqβ)︸ ︷︷ ︸
≡D


Since the only contribution to the integral comes from values of γ close to the upper
boundary, we can write:

(
√
µ+ γ) ' √µ . (B.6)

Using D ' 2
√
µ , the integral can then be taken easily, giving:∫ 1

−1
dc

1√
1− c2

· θ(C) . (B.7)

We now rewrite the argument of the θ- function:

θ(ε− (x2 − µ)− (y2 − µ)− βq2 − βµ︸ ︷︷ ︸
≡E

+2βcq
√
µ) = θ(c− (−E/2βq√µ)) . (B.8)
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B. Calculation of the absorption power law at the indirect threshold

Thus, (B.7) reads:

θ(1 + E/2βq
√
µ)

∫ 1

−E/2βq√µ
dc

1√
1− c2︸ ︷︷ ︸

≡I

. (B.9)

Let us concentrate of the integral I. Since we are only interested in the power law, we
can simpify −E/2βq√µ as follows: Firstly, the summands (x2 − µ), (y2 − µ) can be at
most of order ε, or else e.g the θ- functions in (B.8) (or equivalently the δ- functions
appearing before) will vanish. In addition, we can use the statement (B.4): q ' √µ.
Therefore, limiting ourselves to the correct order in ε only, we can write:

−E/2βq√µ ∼ 1− ε

βµ
. (B.10)

Thus, we see that the only contribution to I comes from angles around 0, as was sketched
on the left hand side of Fig. 4.2. With these considerations, one obtains:

I ∼ 0 + Arccos(1− ε

βµ
) '

√
2ε

βµ
, (B.11)

where the last step came from an expansion of Arccos in
√
ε . For later comparison with

the results in [42], let us also consider the 3D case. In 3D we do not have the factor
1/
√

1− c2 in the c-integral, which leads to:

I3D ∼ ε . (B.12)

At this point, in the calculation of (B.1) we are left with the integral:∫
x2>µ

∫
y2>µ

dx dy θ(1 + E/2βq
√
µ) . (B.13)

The condition in the θ-function can be rewritten as:

ε > (x2 − µ) + (y2 − µ) + β(q −√µ)2 . (B.14)

It is clear that the summands (x2−µ), (y2−µ) give a total factor of ε2 to AI . Then the
condition ε > β(q −√µ)2 leads to:

q2 ∈
[
µ− 2

√
µε

β
, µ+ 2

√
µε

β

]
+O(ε) . (B.15)

We further use

q2 = (x + y)2
x,y'√µ
' 2µ(1 + cos(θ)) , θ = ](x,y) . (B.16)

Then (B.15) gives a condition on θ:

cos(θ) ∈
[
−1

2
−
√

ε

βµ
, −1

2
+

√
ε

βµ

]
, (B.17)
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B. Calculation of the absorption power law at the indirect threshold

which results in the phase-space-factor:∫ − 1
2

+
√

ε
βµ

− 1
2
−
√

ε
βµ

dc1
1√

1− c2
1

' 4√
3

√
ε

βµ
, c1 = cos(θ) . (B.18)

We note that the main contribution comes from θ ' 2π/3 as was depicted on the right
hand side of Fig. 4.2. In 3D this factor also goes as

√
ε since the factor 1/

√
1− c2

1 is
nonsingular in the integration domain. Collecting all factors except for those of order 1,
we thus arrive at:

AI(ε) ∼ ρ3V 2
0

(
ε

βµ

)3

. (B.19)

The considerations above also show that in 3D one obtains:

AI(ε) ∼ ρ3V 2
0

(
ε

βµ

)7/2

. (B.20)

due to the higher power law in (B.12) in comparison to (B.11).
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C. Exemplary solution of a Bethe-Salpeter
equation

In this section, we will present the derivation of (4.50) for the simple case |Ω−ΩD| > βµ.
The relevant equations then read:

Λ(x1,Ω) ' 1 +

∫ ξ

|Ω−ΩD|
dx3

1

x3
I2(x1, x3,Ω) Λ(x3,Ω) (C.1)

Π(Ω) = −γ0ρ

∫ ξ

|Ω−ΩD|
dx1

1

x1
Λ(x1,Ω) (C.2)

I2(x1, x3,Ω) = g + g2 log

(
max

{
|x1 + x3 + Ω− ΩD|

ξ
, β

})
. (C.3)

Since x1, x3 > |Ω− ΩD| > βµ, we can simplify I2 as

I2(x1, x3) = g +

{
g2 log(x3/ξ) x1 < x3

g2 log(x1/ξ) x1 > x3

. (C.4)

With the notations

x = x1/ξ , y = x3/ξ , ν = (Ω− ΩD)/ξ , (C.5)

(C.1) then reads:

Λ(x, ν) = 1 +

∫ x

ν

dy

y

[
g + g2 log(x)

]
Λ(y, ν) +

∫ 1

x

dy

y

[
g + g2 log(y)

]
Λ(y, ν) .

(C.6)

Taking the derivative w.r.t. x once gives:

Λ′(x, ν) =
1

x
g2

∫ x

ν

dy

y
Λ(y, ν) , (C.7)

and taking the derivative one more time yields:

xΛ(x, ν)′′ + Λ′(x, ν) =
g2Λ(x, ν)

x
. (C.8)

The general solution to (C.8) reads:

Λ(x, ν) = A(ν)xg +B(ν)x−g A(ν), B(ν) ∈ R . (C.9)

From (C.7) we can deduce the following boundary condition:

Λ′(ν, ν) = 0 , (C.10)
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C. Exemplary solution of a Bethe-Salpeter equation

which leads to

A = B · ν−2g . (C.11)

Furthermore, from (C.6) we can extract the boundary condition:

Λ(1, ν) = 1 +

∫ 1

ν

dy

y
gΛ(y, ν) . (C.12)

Inserting (C.9) and (C.11) into (C.12), we arrive at:

A =
ν−2g

2
, B =

1

2
. (C.13)

Λ(x, ν) is now determined. Inserting it into (C.2) and switching to the detuning from
the indirect threshold ε:

ν =
ε− βµ
ξ

, (C.14)

we obtain the result (4.50) for |ε− βµ| > βµ

Π(Ω) = −γ0ρ

2g

((
ξ

|ε− βµ|

)2g

− 1

)
. (C.15)
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