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Kevin Jägering

Master’s Thesis
Theoretical and Mathematical Physics

Chair of Theoretical Solid State Physics
Faculty of Physics

Ludwig-Maximilians-University Munich

Supervisor: Prof. Jan von Delft

November 19, 2014



Contents

0 Abstract 4

1 Introduction 5

2 A Model for Quantum Wires and Quantum Point Contacts 7
2.1 Getting to a Discrete Model of a Quantum Wire . . . . . . . . . . . . . . . . . . . . 9
2.2 Deriving the Green’s Function and Local Density of State . . . . . . . . . . . . . . . 11
2.3 Model of a Quantum Point Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Adding Semi-Infinite Leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Linear Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Spin Orbit Interaction and Magnetic Field 25
3.1 Spin Orbit Term and Zeeman Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Hamiltonian Matrix with Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Effects on LDoS and Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Efficient Calculation of the Diagonal Entries of the Green’s Function . . . . . . . . . 37
3.6 Higher Order SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Majorana Fermions 43
4.1 History of Majorana Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Kitaev Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Realizing a Kitaev Model in Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Other Proposed Realizations of Majorana Fermions . . . . . . . . . . . . . . . . . . . 50

5 Modeling Superconducting Systems 51
5.1 The Generating Functional for the System . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Calculating the Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Derivation of the Conductance Formula . . . . . . . . . . . . . . . . . . . . . . . . . 58

2



CONTENTS 3

6 Appearance of Majorana Fermions in the Model 65
6.1 The Quantum Wire with Superconducting Region . . . . . . . . . . . . . . . . . . . 65
6.2 Localized States at the Potential Barrier inside the Gap . . . . . . . . . . . . . . . . 69
6.3 Non-Abelian Exchange Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Zero-Bias Peak as Experimental Signature of MFs 76
7.1 Existing Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Comparison of our Calculations with the Experimental Data . . . . . . . . . . . . . 79
7.3 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Chapter 0

Abstract

The appearance of Majorana fermions in one dimensional p-wave superconductors was first pre-
dicted by A. Kitaev in his well known paper [Kitaev, 2000]. One expected signature of such
zero-energy states is a zero-bias peak (ZBP) in the differential conductance. Recent experiments
([Mourik et al., 2012] and [Das et al., 2012]) claim to have found this ZBP, but they had to add a
quantum point contact (QPC) to the system and use a fine tuned method of emulating the p-wave
behavior in their experimental wires with strong spin-orbit interactions, external magnetic field and
proximity induced s-wave superconductivity. This raises the question whether the ZBP from the
experiments, which had to include explicit geometry in form of the QPC, corresponds to the pre-
diction from the Kitaev model, which does not include any geometry. The ansatz of this work is to
explicitly include the non-trivial geometry of the quantum point contact into the Kitaev model. To
this end the Keldysh formalism in a one dimensional tight binding model is employed. We are then
able to qualitatively reproduce a ZBP as seen in the experiments, but observe a strong dependence
on the geometrical details of the QPC which we do not understand. We need to fine tune the shape
of the QPC with the width and height of the superconducting gap to achieve the ZBP in our model.
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Chapter 1

Introduction

This thesis is divided into two major parts. In the first part, a basic spinless model for a quantum
wire and then a quantum point contact in second quantization formulation will be introduced and
then expanded to include spins and magnetic field effects.

To this end we start in chapter 2 with a basic definition of a quantum wire. Since we are interested
in the low energy physics, we start with the approximation of a continuous one-dimensional electron
gas useful for analytical descriptions and then discretize to a lattice/chain formulation of second
quantized electrons hopping on effective lattice sites consisting of many ions, which is necessary for
computer calculations. We will see how we can write the Hamiltonian that describes the system as a
matrix to calculate the Green’s function and local density of state and then add a potential barrier
that shifts the chemical potential to also include quantum point contacts into our model. Finally,
we have to get from a finite piece of quantum wire to an infinite system to be able to describe
conductance through the system. This can be achieved by adding infinite leads and then replacing
them with a self-energy term.

So far we have considered a spinless wire. When adding the spin degree of freedom in chapter 3,
the two important new effects coupled to the spin are the spin-orbit-interaction and Zeeman splitting
from external magnetic fields. Although we will not directly include these effects in most of our
calculations, their qualitative effect will turn out to be very important to understand the physics
that appears in later chapters. Hence we will observe the change in LDoS and conductance to get
an intuition for their effects. Spin-orbit terms are generally only taken into account in their lowest
order, which we will confirm to be a good approximation in the last section, where higher order
terms are added to the Hamiltonian and found to be insignificant for reasonable effect strength.

Then follows the second part of this thesis, in which the concept of Majorana Fermions is
introduced. They were first predicted in 1937 by Ettore Majorana ([Majorana, 1937]) as fermions
which are their own antiparticle. In a short historic introduction in chapter 4, we will see that after
many decades they still survive as a concept for fundamental particles, even though no experimental
verification of their existence has been found yet. Instead, we will see that they can be realized as
quasi-particles in solid state physics, in particular in one-dimensional semiconductor wires (“Kitaev
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CHAPTER 1. INTRODUCTION 6

model”), making a connection to the first part of the thesis.
One of the major components of the Kitaev model is a p-wave superconducting term in the

Hamiltonian. In chapter 5 we will expand our model from the first chapter to include this new term
and make use of the Keldysh formalism of quantum field theory to deduce a formula for the Green’s
function and conductance of a Kitaev model.

We then apply our new formulas in chapter 6 to observe how we can manipulate the Majorana
fermions in the Kitaev model. The Majorana bound states are located at domain walls between
wire regions with a topological and normal superconducting phase - and this phase can be tuned
surprisingly simply by applying external potentials to shift the chemical potential. It turns out that
this easy way of manipulating and thereby exchanging Majorana fermions, together with their very
uncommon property of being non-Abelian anyons, allows one to build a quantum computer based
on the exchange of Majorana modes, called topological quantum computer. This makes Majorana
fermions and their various realizations in solid state physics a currently very active research topic.

In the final chapter 7 we have a look at the experimental verification of these theoretically pre-
dicted quasi-particles. Although the existence of Majorana fermions is generally seen as not yet
definitely proven, recent experimental results ([Mourik et al., 2012] and [Das et al., 2012]) claim to
have found clear signatures of Majorana fermions in form of zero-bias peaks in differential conduc-
tance measurements. We can use our formulas to describe a similar setup of the Kitaev model
and get a qualitatively agreeing zero-bias peak in the calculated differential conductance. But this
comparisons has to be taken with caution, because the experiments can not directly implement a
Kitaev model since there are no p-wave superconducting materials yet. Instead, a clever setup of a
normal semi-conducting wire with high spin-orbit interaction, external magnetic field and proximity
induced s-wave superconductivity can be tuned to behave similar to a p-wave superconductor and
hence emulate the Kitaev model. We end with a final conclusion and outlook. While our calcula-
tions seem to confirm the experimental results being signatures of Majorana fermions, the logical
next step is to include spin-orbit effects and external magnetic fields into the formulas we developed.
Then one could try to directly describe the experimental setups instead of just the Kitaev model
that the experiments are tuned to hopefully behave like.



Chapter 2

A Model for Quantum Wires and
Quantum Point Contacts

A quantum wire is a system of electrons that are constricted to move in only one dimension. It
is an approximation to a real wire that gets so thin, that the electron-wavefunctions in the other
two space dimensions get quantized. The quantization is then assumed to be big enough, or the
energy chosen carefully enough, that only the lowest of these energy levels gets excited, leaving the
position and momentum in wire direction as the only free parameters of the electrons.

The aim of this chapter is to work out a simple model Hamiltonian to describe such a one
dimensional wire. A physical wire will usually be made out of metal, i.e. crystalline solids which
are described by lattices. In the language of solid state physics this can be formalized by using a
tight-binding model approach in which we assume that the wave functions of the electrons in the
metal are superpositions of strongly localized wave-functions of electrons at the atomic sites. But
to describe every atom in a wire of an experimentally relevant size by its own site would make the
calculations of relevant quantities introduced in section 2.2 impossible to perform since the required
matrix sizes would be beyond technical limitations.

Since we are ultimately interested in the low energy physics of the wire, which is dominated
by the shape of the lower band edge, we can use the approximation of a free one-dimensional
electron gas. This works well, since after choosing the correct effective mass, the relevant lower
edge of the quadratic dispersion relation can be brought into the same shape as the lower edge of
the periodic dispersion relation of the lattice. In section 2.1 we begin at this point and see how
to discretize the electron gas again, but this time with effective lattice sites that are much bigger
than the corresponding physical atoms in the wire to end up with a model suitable for computer
calculations. We can then introduce 2nd quantization operators ci and c†i describing the creation
or annihilation of electrons at one such effective site labeled i and from that point on use this 2nd
quantized tight binding approach as the language for all the Hamiltonians that will appear in this
thesis. For simplicity, the lattice size will in the following be normalized to a = 1.
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CHAPTER 2. A MODEL FOR QUANTUM WIRES AND QUANTUM POINT CONTACTS 8

Ωx Ωy

Figure 2.1: The measured conductance curve ([van Wees et al., 1988]) of a QPC in a two dimen-
sional electron gas. The red marks Ωx and Ωy are added to show how information about the shape
of the constricting potential barrier of the QPC can be extracted from the diagram as explained in
the text.

At this point it is easy to get from a quantum wire to a quantum point contact. In general,
a quantum point contact is a metallic contact that is small enough to again have quantization of
electron-wavefunctions in two of the three space dimensions and a potential barrier that the electrons
have to cross in the remaining one. It can be realized either with a gate in a two dimensional electron
gas or by taking a real thin wire and adding a potential barrier to it.

Often one is interested in the conductance behavior of such contacts, as this both gives a lot of
information about the structure and behavior of the system and is also one of the easiest to measure
quantities experimentally. As the chemical potential is increased or equivalently the constriction
is decreased, additional energy levels called modes become available for transport through the
constriction. The major feature of quantum point contacts is the fact that each such conductance
mode contributes a quantized amount of conductance of the size of the so called conductance
quantum 2e2

h . This gives the conductance curve a characteristic and well known staircase shape



CHAPTER 2. A MODEL FOR QUANTUM WIRES AND QUANTUM POINT CONTACTS 9

(figure 2.1), with each step increasing the conductance by one quanta as a new mode becomes
available. Let us see from the example of the conductance ladder how much information conductance
contains. The width of the step, called Ωx in figure 2.1, corresponds to the curvature of the potential
barrier in conductance direction, as we will also see in figure 2.7 in section 2.5. The distance of the
steps (Ωy) corresponds to the energy distance of the different modes that result from the quantization
in the direction that is orthogonal to the conductance direction, but still lies inside the 2D electron
gas for the non-wire case. Measuring Ωy for the different steps therefore also gives information
about the shape of the constricting potential in this direction, together showing us the potential
shape inside the device just from the conductance measurement alone.

Nevertheless, we will limit ourselves to wires and quantum point contacts consisting of only a
single conductance band in this thesis, so only a single step of the ladder can be realized.

Adjusting our model to allow for a quantum point contact simple means allowing for an addi-
tional potential barrier in the wire, which in turn can just be seen as a modulation of the chemical
potential. So we just need to add a site dependent term to the so far constant chemical potential
and choose a shape for the potential (section 2.3).

Up to this point our description of discrete wires will be limited to finite wires. To get back to
an infinite model, which is in particular necessary to make sense of conductance through the wire
(section 2.5), we can add two semi-infinite leads to the system to make the wire infinite - and then
integrate them out again (section 2.4) to get back to an (now effective) finite model so that we have
finite matrices to calculate with.

2.1 Getting to a Discrete Model of a Quantum Wire

We begin by considering a one dimensional homogeneous electron gas in a quantum field theory (see
for example [Negele and Orland, 1988], [Altland and Simons, 2010]). In the scope of this thesis the
considered systems will always remain non-interacting with independent electrons, which is a major
but necessary limitation, since dealing with interactions requires additional methods (like functional
renormalization group, [Bauer et al., 2013]) that would add their own significant challenges.

Note that contrary to the cited books, we will explicitly not work in momentum space, which
is preferable for homogeneous systems, but instead stay in a real space formulation which allows us
to include explicit spatial structure into our wires. This is necessary since we will be interested in
wires with potential barriers (section 2.3) and later superconducting regions (chapter 5), both of
which break translational symmetry.

The Hamiltonian of such a system is then finally given by

H =

∫ ∞
−∞

dxΨ†(x)

[
p2

2m
− µ

]
Ψ(x) (2.1)

with the first term for the kinetic energy of the electrons and the second one being the chemical
potential µ of the wire. The field operators Ψ† (Ψ) create (annihilate) an electron at point x in the
one dimensional and for the moment infinite wire.
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Our first aim is to get from the continuous back to a discrete model. We assume that a tight-
binding approach is applicable in which the wave functions of the electrons are approximated as
superpositions of localized wave-functions at equidistant sites along the wire. These sites do not
correspond to the atomic positions along a crystalline lattice but can be seen as effective sites which
are much bigger. In terms of the Hamiltonian this corresponds to the field operators Ψ†j (Ψj) now
creating (annihilating) electrons at discrete sites j, which have a lattice distance a between them
(mostly set to a = 1). This gives the new Hamiltonian

H =
∞∑

j=−∞
Ψ†j

[
p2

2m
− µ

]
Ψj . (2.2)

The quantum mechanical momentum operator p acts as p = −i~ d
dx so p2 corresponds to a

second derivative. Now that the system is discrete, the second derivative operator also has to be
discretized. There is no unique discretization, since taking further away sites into consideration
makes the result more and more exact (see ’finite difference methods’ in mathematics), but for our
purposes it suffices to take the simplest symmetric form:∑

j

d2

dx2
Ψj =

∑
j

d

dx

[
Ψj+1 −Ψj

a

]
=
∑
j

Ψj+2 − 2Ψj+1 + Ψj

a2
=
∑
j

Ψj+1 − 2Ψj + Ψj−1

a2
. (2.3)

So equation (2.2) becomes

H =

∞∑
j=−∞

[
Ψ†j

p2

2m
Ψj − µΨ†jΨj

]
=

∞∑
j=−∞

[
−Ψ†j

~2

2ma2︸ ︷︷ ︸
=:t

Ψj+1 − 2Ψj + Ψj−1

1
− µΨ†jΨj

]

=

∞∑
j=−∞

[
(2t− µ)Ψ†jΨj − t(Ψ†jΨj+1 + Ψ†j+1Ψj)

] (2.4)

and we have the desired discrete model of a wire. The last terms annihilate an electron and create a
new one at a neighboring site, so they effectively allow movement (or ’hopping’) of electrons along
the wire. Hence these terms are called the hopping terms with a corresponding hopping amplitude
t. Since t gives a natural energy scale for the wire, we will normalize it to t = 1 for most of the
rest of this thesis and express other energies in terms of multiples of t. The 2t summand in the first
term is often neglected as it is just a constant shift of the chemical potential.

For ease of notation the field operators Ψ†, Ψ can in the following be replaced by 2nd quantization
creation and annihilation operators c†, c and hence the Hamiltonian to remember for future chapters
is given by

H = −t
∞∑

j=−∞
(c†jcj+1 + h.c.)− µ

∞∑
j=−∞

c†jcj (2.5)

where the 2t has been absorbed into the µ.
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Before we continue, let us quickly review how the discretization changes the dispersion relation
of the system. This will be relevant in the following chapter 3 about spin-orbit-interaction and is a
good exercise to get used to this model. Beginning with the time dependent Schrödinger equation
EkΦn = HΦn = (p2/2m− µ)Φn and with an ansatz of Φn = eik(na) for the wave function at a site
n (and hence at position na) we get

EkΦn = −t(Φn+1 − 2Φn + Φn−1)− µΦn = −t
(
−2Φn + eikaΦn + e−ikaΦn

)
− µΦn. (2.6)

Dividing by Φn we get the expected result

Ek = (2t− µ)− t(eika + e−ika) = (2t− µ)− 2t cos(ka). (2.7)

Instead of the ∝ k2 dispersion relation of the free electron gas, we have a band of allowed energies
of width 2t and periodic in k as it is typical for crystalline solids. But of course we have an effective
lattice with sites consisting of many ions. To make the relevant lower band edge agree, a fitting
effective mass for the electrons has to be chosen. Of course the constant term in the energy just
corresponds to a shift of the zero-point, so it does not matter.

At the moment the wire we are considering is infinite. In the next chapter we will temporarily
work with a finite wire to naturally introduce a matrix form of the Hamiltonian. That is just a
detour allowing us to separately introduce the lead-eigenenergy in the end which leads us back to a
description of an infinite wire in the matrix form. It would of course also be possible to do this in
one step and directly integrate out all the lead degrees of freedom.

2.2 Deriving the Green’s Function and Local Density of State

Now that we have a Hamiltonian for a simple wire from the last chapter, in this section we will look
at how properties of the system can be extracted from it. The first step is to write the Hamiltonian
as a matrix, as we expect the systems to get too complex for easy analytical results soon and
are dependent on a numerical way of calculation. From there, the Green’s function of the system
becomes accessible by essentially inverting our Hamiltonian matrix. There is then a simple formula
for the local density of states of the system and in section 2.5 we will see how transport properties in
form of the conductance are also accessible through the Green’s function. In later chapters we will
then reuse and refine these methods to deal with more complicated cases where potential barriers,
spin-orbit-interaction, magnetic fields and superconductivity are included.

We want to write the Hamiltonian (2.5) as a matrix in which each row or column correspond
to one lattice site. Until now we have considered an infinite wire, which makes that clearly not
possible. So at first it seems as if there is no choice but to confine ourselves to finite systems from
now on. Luckily, the systems we are interested in have their important features (QPC or regions
that become superconducting) in a relatively small area that we will term central region from now
on, while we expect nothing exciting to happen in the two infinite remaining parts of the wire that
will be named leads. As it turns out, it is enough to only describe the interesting central region
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explicitly in the Hamiltonian matrix and deal with the infinite but boring leads with a method
discussed in section 2.4. Basically, we can add the leads to the system but then ’integrate’ them out
again, gaining a self-energy term which catches the full effect of the leads on the system without
increasing the dimension of the matrix. As a result, we are able to fully describe an infinite wire
with a finite matrix.

We reduce the sum in (2.5) to the central region by only allowing sites between j = 1 and j = N
and can then write

H = −t
N−1∑
j=1

(c†jcj+1 + h.c.)− µ
N∑
j=1

c†jcj (2.8)

into a matrix by defining a vector Ψ† = (c†1, c
†
2, ..., c

†
N ). We can now find a matrix that, when

inserted between Ψ vectors, reproduces the Hamiltonian above:

H = Ψ†HΨ = Ψ†



−µ −t 0
−t −µ −t
0 −t −µ

. . .

−µ −t 0
−t −µ −t
0 −t −µ


Ψ. (2.9)

This H is our Hamiltonian matrix.
As a first little remark, we have access to the eigenenergies of the system by simply diagonalizing

the matrix (2.9). For the simple system we consider right now this of course just produces a number
of discrete energies that follow the dispersion relation (2.7) with energies varying over an interval
of 4t and a global shift given by the chemical potential µ. By looking at the coefficients of the
corresponding eigenvectors, we can see how much amplitude, or probability density after squaring
it, of the wavefunctions of the states are concentrated at which sites. Later, when the leads are added
and integrated out again, this has to be used with caution, since the eigenenergies and eigenvectors
can not know about the leads and only show the results for an isolated central region.

To visualize the band structure and its changes under adding different features to the system
and adjusting their parameters, we will next have a look at the local density of states (LDoS), which
up to a 2π factor corresponds to the diagonal entries of the spectral function (see (2.12)) when the
lattice distance is set to one. The general formula to get from a Hamiltonian H̄ to the (retarded)
Green’s function is given by [Datta, 1995, chapter 3]

GR(ω) =
1

ω − H̄ + i0
(2.10)

with a positive infinitesimal term i0 making sure that the retarded Green’s function is analytic in
the upper complex plane as it should be.
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For the operator H being the Hamiltonian matrix (2.9) this formula is still valid and can be
understood as

GR(ω) = (ω1−H + i01)−1 (2.11)

where 1 is the unit matrix. The Green’s function GR is now itself a matrix in the same basis as
H and could be returned to its full form as a sum over creation/annihilation operators at all sites

by taking Ψ†GΨ with Ψ† = (a†1, a
†
2, ..., a

†
N ). The entries of the Green’s function tell us about the

correlations of different parts of the system at an energy ω, hence they carry transport information
that we will access later and information about the spatial structure of the energy states that can
be extracted and visualized as follows.

As the name suggests, the local density of states (LDoS) ρj(ω) gives us the added up contribution
of all the states of the system at a certain energy and site. Adding up its values for all the central
sites will then naturally lead back to the normal density of states. Since the LDoS corresponds to
the diagonal elements of the spectral function A, we can also get the density of states by taking the
trace of the spectral function. To calculate ρj(ω), we have to evaluate the imaginary part of the
diagonal elements of the Green’s function as can be seen in the following way ([Datta, 1995, p.155],
[Rickayzen, 1980, p.34])

ρj(ω) =
1

2π
Ajj(ω)

A=i[GR−GA]
=

i

2π

[
GRjj(ω)− (GRjj)

∗(ω)
]

= − 1

π
Im
(
GRjj(ω)

)
. (2.12)

For a finite dimensional system at zero temperature the LDoS/spectral function will be a series of
δ-peaks located at the eigenenergies of the system in its dependence on ω ([Rickayzen, 1980, p.35]).
When we try to access the LDoS in this case numerically with formula 2.12, we will generally miss
most of its features since the spectral function is zero unless the argument ω exactly hits the energy
of one of the δ-peaks. To see how to avoid this problem, note that in the case of a finite system that
gets weakly coupled to the environment, the spectral function still shows peaks in its ω dependence,
but those are not necessarily δ-peaks. Instead, these peaks have a finite width of 2Σ at the half-
maximum-value, where Σ is the lifetime of the corresponding eigenstate of the system with the
energy at which the peak is located ([Rickayzen, 1980, p.38]). In a finite system with temperature
T = 0 the states can not decay, so their lifetime is infinite and hence the peaks must be δ-peaks.

In later sections we will attach leads to the system, making it infinite, so that the lifetime of
states which have a chance to escape into the leads becomes finite. This gives the density peaks a
finite width that makes them visible on plots of the LDoS using (2.12) numerically. In the formula,
this corresponds to the leads adding a finite imaginary term to (2.11) besides the infinitesimal +i0,
which can only produce the δ-peaks in the imaginary part of the Green’s function.

Even after we add leads, this problem will only be solved for peaks that correspond to states
which are allowed to escape from the central region into the leads. Not only might we be interested
in the LDoS even in the case when no leads are attached to the system, but in 6.2 we will also
encounter interesting localized states in the central region that do not get a finite lifetime even with
leads attached and want to be able to see those in the LDoS as well. The solution is to replace the
infinitesimal +i01 with a small but finite +iε1 when calculating the Green’s function with (2.11).
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This gives all the states in the system an artificial finite lifetime, which corresponds to a finite peak
width, making them visible in LDoS plots. This is demonstrated in figure 2.2, which shows the
LDoS of our simple wire as colors, plotted over the effective site in the wire on the x-axis and the
energy on the y-axis with different ε values between ε = 2

N (left plot) and ε = 20
N (right plot) where

N is the total number of sites in the central region. It can be seen that a good middle ground
for the choice of ε must be found. For small ε = 2

N there are still artifacts visible in x-direction
(the horizontal bright/dark lines in the left plot of figure 2.2) coming from the finite size of the
central region, while choosing a bigger ε makes these artifacts disappear at the cost of washing out
any peaks in y-direction that might be relevant. For ε = 4

N there are no artifacts visible and a
structure appears with a clear maximum of the density of states at the border of the band, called
van-Hove singularity. The presence of such peaks at the border of the band becomes obvious from
the dispersion relation Ek = −2t cos(ka) we calculated in (2.7). The cosine has a slope ∂Ek/∂k of 0
at k values that belong to the highest and lowest energies, i.e. the band borders. So if we inversely
ask for the number of k-vectors that correspond to a certain energy this is ∝ (∂Ek/∂k)−1 and hence
diverges at the borders. With ε = 20

N this important structure at the band edges washes out and
details are lost. An LDoS plot with ε = 0 is not shown, since it just shows constant 0 everywhere as
no δ-peaks are hit in a computer calculation of the Green’s function. We see an additional curved
structure at the left and right end of the wire. The electrons are reflected at these points and
standing waves emerge. The allowed momenta are limited by the dispersion relation in a lattice,
resulting in the Friedel-oscillations visible in the LDoS plots.
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Figure 2.2: LDoS for a wire with chemical potential, shown as color according to the scale on the
right over the site in the wire on the x-axis an the energy on the y-axis. A system is considered
with µ = 0 and hopping term t = 1 for ε = 2/500 (left side), ε = 4/500 (middle) and ε = 20/500
(right side).
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2.3 Model of a Quantum Point Contact

To make the Quantum Wire into a Quantum Point Contact a constriction has to be added in
the central region, which requires the electrons to have a certain energy to pass through. We can
equivalently see this as either making the chemical potential site dependent and letting it follow
an additional bump compared to the bulk value or leaving the chemical potential constant and
explicitly adding an additional potential term that is 0 everywhere except for the bump region. We
choose the second way and gain a new term

Hpot =

N∑
j=1

V (j)c†jcj (2.13)

in the Hamiltonian. The choice of the Potential V (j) and in particular the curvature at the apex
of the bump turn out to be more important than one might naively expect. It has a considerable
effect on the LDoS and hence the conductance curves (see for example [Bauer et al., 2013]). But
that is not the main topic of this work, so we will choose one reasonable potential of the form

V (x) = f · e
−x2

1−x2 (2.14)

where x takes values between −1 and 1. The prefactor f determines the height of the potential
barrier, corresponding to the width of the constriction that makes up the quantum point contact.
To use this Potential to create a barrier with a width of d sites, we have to scale it correctly by
using d equidistant variables xj distributed in such a way that the first site corresponds to x1 = −1
and the last site to xd = 1.

The new term (2.13) only changes the diagonal of our Hamiltonian matrix (2.9) and the LDoS
of the wire with quantum point contact can be plotted as figure 2.3 by using (2.12) and introducing
a small ε as discussed in the previous section.

In the plot it can be seen that the additional potential shifts the whole band upwards, following
the potential shape. The van Hove singularity at the border of the band gets shifted upwards along
with it, but shows a broadening at the apex of the potential barrier. This shape, called van Hove
ridge in [Bauer et al., 2013], gets even more emphasized when interactions are considered and is
important for the detailed shape of the conductance step in this system. Nevertheless, we will
remain in the non-interacting electron case in this thesis and be content with using the stronger
simplification to be able to look at systems with more complicated features instead. Near the slopes
of the barrier there are again Friedel-oscillations visible as discussed in the previous section.

The main effect of such a barrier is restricting the electrons that can pass through the wire
to those with a high enough energy. That is exactly what is caught by a measurement of the
conductance of such a system. As was already mentioned in the beginning of this chapter, the
conductance is expected to have a step shape (just a single step for this single band model) which
carries a lot of information about the system. So naturally, our next aim is to work towards gaining
a formula for the conductance. For that, it is necessary to deal with the lead regions to get back to
a description of an infinite wire, so that it even makes sense to talk about conductance.
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Figure 2.3: LDoS for a wire with a potential barrier of the shape (2.14) modeling a QPC. Parameters
N = 500 sites, f = 2.0 (barrier height) and ε = 4/N .

2.4 Adding Semi-Infinite Leads

So far an isolated system without any connection to the environment has been considered. In a
later chapter, we will have one case where such a description of an isolated wire is interesting (in
chapter 6), but for all other considered systems infinite leads coupled to the central region will be
needed.

Instead of a real, thin wire with a gate to induce a potential barrier, quantum point contacts in
experiments are often realized as a two-dimensional electron gas being constricted by a gate such
that there is only a very small connection between the left and right bulk system left. The small
connection is effectively one dimensional, as long as the gate voltage is high enough to strongly
constrict the electrons and can then be described with our wire Hamiltonian.

From there, we can think of continuing the wires on both sides to infinity and identify these
semi-infinite wires we call leads as the bulk systems. Since the relevant physics happens at the
constriction where the system is one dimensional, this is an acceptable model [Bauer et al., 2013].

No matter which physical realization we describe with our model, we are left with the Hamil-
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g1g2

Figure 2.4: A semi infinite lead to the left with a Green’s function g1/g2 at the right border if a site
is added/not added. This means it is implied that the electron sites (black bars) continue infinitely
to the left side, but stop at the right site, first at g2 and then at g1 after one more site is added.
The main idea is that g1 and g2 in absense of g1 must be identical.

tonian of an infinite chain of hopping electrons that can clearly not be written as a matrix in the
way described above.

The trick around this is to “project out” the semi-infinite leads which just behave like a wire
with no special features. This means to replace them with an additional self-energy term in the
calculation of the Green’s function. This term has to effectively catch the effect of allowing electrons
at the border of the potential region to hop outside into one of the leads, propagate with a Green’s
function (which has to be determined) at the end of the semi-infinite lead and then hop back in.
As the result, we can invert the finite Hamiltonian of the central region plus the extra self-energy
term for the lead contributions and end up with the full Green’s function for the infinite system.

The basic idea [Karrasch, 2006] to determine the needed semi-infinite lead Green’s function is
to come up with a consistency relation that this Green’s function has to fulfill and then choose
the physically sensible solutions to this equation. Since the leads are supposed to be infinitely
long, the Green’s function at the border must be independent of making them one site shorter or
longer (see figure 2.4). Setting those two possible Green’s functions equal will give the consistency
relation, as will be shown in the following. Note that the potential barrier for the QPC is chosen
such that it drops to 0 where the leads begin, so only the constant chemical potential and hopping
has to be considered for the leads, while all interesting behavior remains in the central region. The
retarded Green’s functions we have used so far are also the propagators of the systems, describing
the movement (propagation) of the electrons. For the following consideration it is useful to think
of them as propagators.

The Hamiltonian matrix of one single isolated site is simply given by H0 = −µ. So we can
calculate the Green’s function of this isolated site to be G0(ω) = 1

ω−H0
. We now connect this single

site, indexed as site 1, with a semi-infinite lead (going from site 2 to ∞) that has the still unknown
propagator gL and call the full propagator of the resulting system gF . It then makes sense to write
down the following Dyson equation for the entry of the full propagator gF that begins at the newly
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added site 1 and ends at the same site 1:

gF11 = G0
11 +G0

11tg
L
22tg

F
11. (2.15)

This equation can be understood in the following simple way. An electron of the full system that
begins and ends in the site 1 either has stayed there (left term G0

11) or after some time (right term
G0

11) it has hopped (t) to site 2 at some point and propagated with the lead Green’s function gL22,
returning to site 2 since it must hop (t) back to site 1. After that it could have hopped into the
lead and back arbitrarily often which is included in the full propagator gF11 at the end.

The equation can be solved for gF11 and gives us

gF11(ω) =
1

(G0
11(ω))−1 − tgL22(ω)t

=
1

ω −H0 − t2gL22

(2.16)

But seeing this another way, adding the additional site has just made the lead one site longer.
This new site is identical to all the infinite sites already contained in it, so the new full system is
actually identical to the lead we had before adding a site. This means that gF11 and gL22 are both
the Green’s function at the border of a semi-infinite lead, hence they must be identical. So we can
set gF11 = gL22 =: gL and get the consistency relation we are looking for:

gL =
1

ω + µ− t2gL
⇒g−1

L = ω + µ− t2gL
⇒1 = (ω + µ)gL − t2g2

L

⇒gL =
1

2t2

(
ω + µ±

√
(ω + µ)2 − 4t2

)
.

(2.17)

There are two choices for the sign in front of the square root and for each value of ω and µ the
correct one must be chosen. To do this, use the physical constraints that firstly the Green’s function
should be continuous under a small change of µ or ω, secondly that the imaginary part always has
to be negative and finally use that limω→∞ gL(ω) = 0. All this together leaves a unique solution
given by

gL =

{
1

2t2
(ω + µ+ i

√
4t2 − (ω + µ)2) if ω + µ > 2t

1
2t2

(ω + µ− i
√

4t2 − (ω + µ)2) else.
(2.18)

The real and imaginary part of the resulting Green’s function are plotted in figure 2.5. In
particular, we can see a finite negative imaginary part for energies that lie in the energy band of
the lead between −2t and +2t. This corresponds to the earlier discussion of the leads giving a finite
lifetime to states in the central region by allowing them to escape into the leads. It makes sense
that this is limited to states which have an energy that fits into the lead band, hence the imaginary
part only for energies in an interval of 4t.

With finding this entry gL of the lead Green’s function at the border of the lead, the main
work to find the full retarded Green’s function G for the central region with both leads attached is
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Figure 2.5: Real and imaginary part of the leads Green’s function gL determined in (2.18) by the
consistency relation and physical constraints. Parameters set to t = 1 and µ = 0.

already done. Labeling the propagator of the isolated central region as Gcentral we can again write a
Dyson equation, this time for the G we are ultimately interested in. With the site indices explicitly
written and a sum over double indices implied, it reads

Gij = Gcentral
ij +Gcentral

ik ΣklGlj , (2.19)

where we have introduced a self-energy matrix Σ that allows electrons to hop from the central region
into a lead, propagate with gL and hop back into the central region. Since only the two border sites
of the central regions are connected to leads, it is

Σ11(ω) = ΣNN (ω) = tgL(ω)t (2.20)

and Σij = 0 for all other entries. The last step to get our final formula for the total Green’s function
matrix G is to solve the Dyson equation, giving us

G(ω) =
1

(Gcentral(ω))−1 − Σ(ω)
=

1

ω −H − Σ(ω) + i0
. (2.21)
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Figure 2.6: The Local Density of States of a wire with a potential barrier of height f = 2.0 with
N = 200 sites connected to two semi-infinite leads with ε = 0 (left side) and ε = 4/N (right side).

The whole effect of adding two infinitely long leads is a self-energy correction of just two diagonal
entries in the matrix we have to invert to get the Green’s function. Even when one adds interactions
between the electrons to this system, the Green’s function is still given by equation (2.21), but with a
more complicated self-energy Σ that includes not only the leads but also the effect of the interactions
and has to be determined with methods such as functional renormalization group (see for example
[Bauer, 2008]).

We can now use our result (2.21) to calculate the LDoS with formula (2.12). In the resulting
figure 2.6, we can see on the left side how the states that are lifted above the band edge of the leads
are not visible. As discussed earlier, these are bound state that do not get a finite lifetime from
being able to escape into the leads, so they remain δ-peaks that are not hit by the sampled energies
for the plot. For the right side the finite ε correction has been employed to broaden the δ-peaks,
making them visible in the figure. To make sure not to miss interesting structure in the LDoS, we
will use the correction as shown on the right from now on.

2.5 Linear Conductance

With the leads taken care of, we now have everything in place to finally calculate the linear con-
ductance through the quantum wire or quantum point contact. Linear conductance in this case
means the conductance through our system when an infinitesimal voltage difference is applied. In
the regime of such a small perturbation, the system is assumed to give a linear response to it, i.e. a
current proportional to the infinitesimal voltage. This is different from the differential conductance
considered later in chapter 5, which also expresses the answer of the system to a voltage perturbation
on top of a finite voltage difference.

There are different formalisms one can use to express conductance. A rather elementary one is
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the Landauer formula [Datta, 1995, p.57-59]

Gc =
2e2

h
T (2.22)

which expresses the conductance in terms of the conductance quantum e2

h and a transmission func-
tion T taking values between 0 and 1 that describes how easily electrons can pass through the central
region for a given system. The factor 2 comes from the spin degeneracy we have assumed so far
- in the next chapter spin-orbit interactions will be considered and the spin will become relevant.
This formula is directly related to the conductance staircase mentioned earlier as the 2e2

h is the
conductance carried by one mode and the transmission T tells us how fully this mode contributes
to conductance. For a multi-mode wire, the conductance would be the sum over many such terms,
each with their own T for the modes that become conducting one after the other.

The assumptions used to derive the Landauer formula are reflectionless contacts between the
leads and the central region and a system at zero temperature, both of which are given for our
case so far. The conductance is called Gc to differentiate it from the Green’s function G. The
Transmission function T can be expressed in terms of the Scattering matrix which in term can be
written in terms of the Green’s function G =: GR (that we know from the previous chapter) by
[Datta, 1995, p.148]

T = Tr
[
ΓLGRΓRGA

]
(2.23)

where GA := (GR)† is the advanced Green’s function. The lead coupling matrices Γ are defined as
Γk = i[ΣR

k − (ΣR
k )†] with k ∈ {R,L} for left and right lead.

Since the self-energy matrices for just one lead and hence also the coupling matrices have only
one nonzero entry each, the trace is easily evaluated to be

T = ΓL11G
R
1NΓRNN (GRN1)†. (2.24)

This is further simplified by ΓL11 = ΓRNN = −2ImΣR = −2t2gL which gives a final result for the
transmission function of

T (ω) =
∣∣2 im(gL(ω))t2G1N (ω)

∣∣2 . (2.25)

The linear conductance at zero temperature considers all the conductance electrons to live
exactly at the chemical potential of the system. Since our energy ω is measured relative to the
chemical potential µ, we need to take the transmission at ω = 0. With Im(gL(0)) = −1 for t = 1
we end up with a conductance of

Gc =
2e2

h
T (0) =

2e2

h

∣∣2t2G1N (0)
∣∣2 . (2.26)

The important result here is that the linear conductance is proportional to the square of the
absolute value of just the top right corner entry of the Green’s function matrix. This entry is readily
available from the preceding calculation. It should be noted that the conductance of course only
depends on states in the central region which can connect to the leads and have a finite lifetime, so
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we should not include the small but finite ε summand when calculating the Green’s function to use
it in 2.26 - it could only make the results worse.

At this point, we have just cited the main results (2.22) and (2.23) without a derivation. This
is done due to chapter 5 containing a very explicit derivation of differential conductance in a more
general formulation that contains (2.26) as a special case, so there would be not much benefit in
giving a simplified version of the same calculation here.

The usual parameter that is tuned to look at conductance of such 1D wires is to shift the height
of the potential barrier, lowering it from just above the chemical potential to below or vice versa. In
similarity to experiments, we call this height parameter Vg for gate voltage - but note that contrary
to experiments, our Vg will have the unit of energy instead of voltage, since it describes a shift of
the potential barrier height.

We expect the conductance to change from 0 to 1 (conductance quanta) as the chemical potential
is crossed, so the interesting feature will be the conductance step between these values. It was
mentioned earlier how the width and shape of the potential actually makes a considerable difference
in the conductance, so the step is plotted in figure 2.7 for different values of barrier width to show
this effect and to show a typical conductance plot in general.

The influence of the width of the barrier, which changes the curvature of the potential, can clearly
be seen: The wider the potential barrier and hence the smaller the curvature of the potential at its
apex, the steeper the conductance curve will be. In fact, one can use the curvature at the top of
a potential of width d to define an energy scale Ωx = 4

√
2/d, and when the gate-voltages Vg are

expressed in these units all the curves from figure 2.7 now collapse into a single one in figure 2.8
([Büttiker, 1990]).

As a side remark, with our one band wire we of course can only get access to the very first
step of the conductance ladder mentioned in the introduction. But the first one happens to be
the particularly interesting one as it contains the 0.7 anomaly that has enjoyed some controversy
([Reilly et al., 2002]) about whether its origin is of Kondo nature ([Meir et al., 2002]) and is likely
explained in [Bauer et al., 2013].
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Figure 2.7: The conductance Gc through a quantum point contact (y-axis) as the apex of a potential
barrier is shifted over the chemical potential µ = 0 (x-axis) by a height Vg for different potential
barrier width from d = 100 to d = 500.
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Figure 2.8: The conductance through a quantum point contact when the apex of the potential
barrier is shifted over the chemical potential µ = 0 by a height Vg expressed in units of the energy
scale Ωx describing the curvature of the potential at its apex. All the conductance curves for
different barrier width collapse into one graph now.



Chapter 3

Spin Orbit Interaction and Magnetic
Field

So far we have made the approximation not to explicitly include a spin degree of freedom and just
assumed that, measuring in any direction, both spin species will be degenerate. The only resulting
effect was a factor 2 from the implied sum over both spin directions in the conductance formula
(2.22). In the following chapters about Majorana fermions, we will mostly consider a model (4.2)
that does not see the spins as degenerate, but explicitly requires only one of the spin species to be
present. For that case, a spinless description as we have used so far is sufficient and introducing
spins would not be necessary.

Nevertheless, there are two good reasons for us to concern ourselves with the spin degrees of
freedom in this chapter. Firstly, both external magnetic fields and internal magnetic fields from
so called spin-orbit-interaction (section 3.1) act on and differentiate between the spins and as we
will see have a noticeable impact on the behavior of quantum wires and QPC, so including them
is a sensible extension to the model introduced in the first chapter, allowing for a more accurate
description in many situations. Secondly, even though we consider a single spin model in the
following chapters, the wires in experimental realizations will in the beginning contain electrons of
both spins. As will be explained in more detail in the next chapter, one has to go to great length
to fully polarize the electrons in an experimental setup in a way that makes the system effectively
behave like the theoretical single spin model ([Alicea, 2012]) and the main ingredients to achieve
this are exactly the two effects we introduce in this chapter: spin-orbit-interaction and Zeeman
effect. Hence looking at those effects and their influence on the behavior of the system (section 3.4)
will be important to understand the connection between theory and experiment in the following
chapters.

After considering these results, the chapter closes with two short sections about technical de-
tails. First we have a look at a more efficient approach to calculate the relevant entries of the
Green’s function for the LDoS (section 3.5) since the matrices we have to invert get twice as big
by introducing spin and fully inverting them could take unnecessarily long. The same approach

25
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is applicable in the case of a superconducting wire, which doubles the matrix dimensions as well.
Finally, we justify the implicit approximation to only take spin-orbit terms up to lowest order into
account. The effect of higher order terms are briefly considered (section 3.6) and it becomes clear
that they are very small and hence rightfully neglected.

3.1 Spin Orbit Term and Zeeman Term

We begin by introducing an external magnetic field to our model. The electrons carry a spin, giving
them a spin-magnetic-moment which feels this magnetic field. So from now on we can no longer
assume the electron states for both possible spin directions to be degenerate and instead have to
account for the spins of the electrons as an additional degree of freedom. The interaction of the
magnetic field B with the spin of the electrons can be described by a Zeeman term

HZ = γB · σ (3.1)

where γ gives the interaction strength and σ is a vector consisting of the three Pauli-matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(3.2)

which act on spin-space. For convenience we can set γ = −1 and only vary the strength of B.
Now that the electrons carry a spin, another effect can also be taken into account: the interaction

of the spin-magnetic-moment with a magnetic field that is induced by the motion of the electrons
in their surrounding electrical field, called spin-orbit-interaction (SOI). Depending on the origin
of the electrical field we distinguish between Rashba SOI ([Bychkov and Rashba, 1984]) when it
comes from the potential that confines our system to effectively one dimension and Dresselhaus
SOI ([Dresselhaus, 1955]) when asymmetries in the lattice are the origin ([Goulko et al., 2014],
[Winkler, 2003]).

The relevant effect for us will be the Rashba SOI. Its form can be determined ([Birkholz, 2008,
chapter 2]) to be

HSOI = −α0 σ · (E× p) (3.3)

where α0 = e~
4m2c2

contains the physical constants, E is the electric field given by the gradient of
the potential that confines our system to a wire and σ is again the vector of Pauli-matrices.

To simplify this term we can w.l.o.g. assume the wire or QPC in our model to lie along the
x-direction. Then the momentum is limited to having a contribution in this direction, p = (px, 0, 0),
so (3.3) simplifies to

HSOI = −α0σ ·

 0
Ezpx
−Eypx

 = −α0Ez︸ ︷︷ ︸
αz

σypx + α0Ey︸ ︷︷ ︸
αy

σzpx. (3.4)
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To include these new terms into the numerical approach from the previous chapter, we need to
express them as a matrix Hamiltonian similar to what we did in section 2.1. The difference this
time is the spin as an explicit index for the creation and annihilation operators, so we will need
a matrix with twice the rows/columns to take this additional degree of freedom into account. To

attain this matrix, first define a vector Ψ†j =
(
c†j↑, c

†
j↓

)
for each of the sites j. We can then begin to

rewrite the Hamiltonian in terms of creation and annihilation operators as used at the beginning of
the second chapter and get

HSOI =
∑
j

Ψ†jHSOIΨj =
∑
j

(
c†j↑, c

†
j↓

)(αyσz − αzσy) (−i~)
d

dx︸ ︷︷ ︸
px

( cj↑
cj↓

)

= −i~
∑
j

(
c†j↑, c

†
j↓

)
(αyσz − αzσy)

1

2a

(
cj+1↑ − cj−1↑
cj+1↓ − cj−1↓

)

= − ~
2a

∑
j

[
αy

(
c†j↑, c

†
j↓

)( icj+1↑ − icj−1↑
−icj+1↓ + icj−1↓

)
− αz

(
c†j↑, c

†
j↓

)( cj+1↓ − cj−1↓
−cj+1↑ + cj−1↑

)]

=− ~
2a
αy
∑
j

[
ic†j↑cj+1↑ − ic†j↑cj−1↑ − ic†j↓cj+1↓ + ic†j↓cj−1↓

]
+

~
2a
αz
∑
j

[
c†j↑cj+1↓ − c†j↑cj−1↓ − c†j↓cj+1↓ + c†j↑cj−1↑

] (3.5)

where we have discretized the derivative in the momentum operator in the second line. Absorbing
the prefactors into the αy and αz and shifting some summation indices, the SOI Rashba term is
finally given by

HSOI =αy

N−1∑
j=1

(ic†j+1↑cj↑ − ic
†
j+1↓cj↓ + h.c.)− αz

N−1∑
j=1

(c†j+1↑cj↓ − c
†
j+1↓cj↑ + h.c.), (3.6)

so we have additional spin-keeping and spin-flipping hopping terms with different prefactors.
In a similar way we can bring the Zeeman term (3.1) into this form. We express the external

magnetic field B in spherical coordinates (θ, φ,B = |B|) and rewrite (3.1) with the same approach
as

HZ = γ

N∑
j=1

(c†j↑c
†
j↓)

 B sin(θ) cos(φ)
B sin(θ) sin(φ)

B cos(θ)

 · σ
( cj↑

cj↓

)

= Bγ
N∑
j=1

[
sin(θ) cos(φ)(c†j↑c

†
j↓)
(
cj↓
cj↑

)
+ sin(θ) sin(φ)(c†j↑c

†
j↓)
(
−icj↓
icj↑

)
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+ cos(θ)(c†j↑c
†
j↓)
(

cj↑
−cj↓

)]

= Bγ
N∑
j=1

(
sin(θ) cos(φ)c†j↑cj↓ − i sin(θ) sin(φ)c†j↑cj↓

+ cos(θ)(c†j↑cj↑ − c
†
j↓cj↓) + h.c.

)
.

(3.7)

This term is valid for a completely arbitrary direction of the external magnetic field, given by the
angles θ and φ, which is more general than we will actually need.

As we know from section 2.4, a QPC structure is often a constriction introduced into a two
dimensional electron gas due to a gate structure ([Bauer et al., 2013]), but there are also experiments
dealing with actual very thin wires that have gates below them to induce an external potential
barrier ([Das et al., 2012], [Mourik et al., 2012]). Either way, we assume the effective or real wire to
lie along the x-axis. We want to be able to realize an arbitrary angle between the external and SOI
magnetic fields and choose to put both magnetic fields into the xy-plane. Therefore the Rashba SOI
field is considered in y-direction, since a SOI in x-direction would only be present in Dresselhaus
SOI from asymmetries in the lattice which we do not consider here.

The external field in the xy-plane will mostly be taken orthogonal to the SOI field, so we have
B = (B, 0, 0), which corresponds to θ = π

2 and φ = 0. This simplifies the Zeeman term considerably
to

HZ = Bγ

N∑
j=1

(
c†j↑cj↓ + c†j↓cj↑

)
. (3.8)

These conventions mostly follow [Goulko et al., 2014] where the same kind of system is considered
without and even with interactions included.

So in summary, the external magnetic field gives us a term (3.8) that allows for on-site spin-flips
while the spin-orbit-interaction (3.6) modifies the hopping amplitudes (αy term) and creates a new
spin-flip hopping term (αz term).

3.2 Dispersion Relation

Before we include these new terms in our approach from the previous chapter, we can investigate
their effects on a bare wire by examining how they change the dispersion relation of the system.
We go back to the continuous one dimensional electron gas, which has the same band shape as our
effective lattice model in the important low energy regime. Since a bare wire is considered for the
moment, we can stay in momentum space this time and easily extract the dispersion relation. The
Hamiltonian we want is given by

H =
p2

2m
− µ+ αpσz +B‖σz +B⊥σx. (3.9)
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Figure 3.1: Dispersion relation of the wire for various SOI strength and external magnetic fields.
(A) Dispersion relation with no spin effects. (B) Rashba SOI term splits the bands in momentum.
(C,D) B-field in any direction splits the spin bands in energy. (E) Parallel magnetic field adds both
effects and splits bands both in momentum in energy. (F) Orthogonal B-field allow spin flipping
and hence lead to avoided crossing as both spin bands are allowed to mix.

The direction of (E×p) is called the z-direction and taken as the quantization direction for the spins
in this short section. Then the Rashba SOI term (3.3) is proportional to our one dimensional p with
some factor α which we use to set the strength of the spin-orbit-interaction and the Pauli-matrix
σz. Up to the momentum dependence the term resembles a Zeeman term with a magnetic field
in this z-direction. For that reason the SOI is sometimes described by an effective magnetic field
in said direction. For the external magnetic field it is enough to consider a term parallel and one
perpendicular to the z-direction since rotating the field around the z-axis changes nothing.

Writing (3.9) as a 2x2 matrix in spin-space and diagonalizing it gives us the dispersion relation
plotted in figure 3.1. Without any terms that couple to spin the bands are degenerate and lie on
top of each other (diagram A). The SOI term with its p-dependence splits the bands in momentum
direction (diagram B) while an external magnetic field splits the bands in energy direction by
distinguishing between spins parallel and antiparallel to the field (diagram C and D). Both effects
together, with an external magnetic field chosen parallel to the z-direction, just give a shift of both
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bands in momentum and energy (diagram E). The interesting case is shown in diagram F with a
field perpendicular to the z-direction. The magnetic field allows the spins to be flipped between
both bands, leading to an avoided crossing at the intersection point and creating a gap of a width
∼ 2B⊥ at p = 0. From now on we will mostly consider this case of an external field perpendicular
to the effective SOI magnetic field.

3.3 Hamiltonian Matrix with Spin

In the following we want to use our approach from the previous chapter to observe the changes in
the system when we take the new terms into consideration. The full Hamiltonian is given by

H =
∑

σ={↑,↓}

N∑
j=1

εjc
†
jσcjσ − t

∑
σ={↑,↓}

N−1∑
j=1

(
c†j+1σcjσ + h.c.

)
+ HZ + HSOI (3.10)

with εj = −µ+V (j). It is straight forward to write this into a Hamiltonian matrix H by introducing
a doubled basis Ψ = (a1↑, a1↓, a2↑, a2↓, ..., aN↑, aN↓)T for spin-up and spin-down electrons. The
resulting matrix is given by

H = Ψ†



−µ+ V1 Bγ −iαy − t αz 0 0 0
Bγ −µ+ V1 −αz +iαy − t 0 0 0

iαy − t −αz −µ+ V2 Bγ −iαy − t αz 0
αz −iαy − t Bγ −µ+ V2 −αz +iαy − t 0
0 0 iαy − t −αz −µ+ V3 Bγ · · ·
0 0 αz −iαy − t Bγ −µ+ V3 · · ·

0 0 0 0
...

...
. . .


Ψ. (3.11)

The next step is to calculate the Green’s function by formula (2.21), which mainly involves taking
the inverse of this matrix modified by the self-energy from the leads. To get this self-energy, we
now have to decide what leads we want to connect to this central region.

In the previous chapter we had leads with neither external magnetic field nor spin-orbit effects.
Since adding these effects to the leads mainly changes the band-edges and has very little impact on
the middle of the band where the chemical potential lies, we can expect even the bare self-energy
(2.20) from the previous chapter to be a good, although lazy approximation.

Adding the spin-orbit-effect to the leads is possible, but it requires a numerical solution of the
consistency relation that was necessary to get the leads Green’s function (see section 2.4) instead of
an analytic solution. This is included in [Goulko et al., 2014], but the resulting conductance curves
are indistinguishable from the results we will get (figure 3.4) with the much simpler analytic term,
so we conclude that it is negligible. Instead we will include SOI only in the central region, but let
its strength smoothly drop towards the leads.

Giving the leads an external magnetic field on the other hand can easily be done. For the central
region, we have chosen a spin-quantization in z-direction; call a vector in this spin basis Ψ↑↓. But
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our leads are assumed to only feel the external magnetic field, so it is convenient to choose this
direction for spin-quantization with vectors Ψ↗↙ = (Ψ↗,Ψ↙)T . The self-energy from such a lead is
very simple in this basis and just given by

Σ̃ = Ψ†↗↙Σ̃Ψ↗↙ = (Ψ†↗Ψ†↙)

(
t2gL(ω − γB

2 ) 0

0 t2gL(ω + γB
2 )

)(
Ψ↗
Ψ↙

)
(3.12)

where the site index is left out for now but can easily be added back later - these 4 entries are of
course the ones corresponding to either the first or last site of the central region. Such vectors in spin-

basis can be rotated around a direction n̂ by an angle β by a rotation operator R(n̂, β) = e−
i
2
βn̂·σ,

so we know that
Ψ↑↓ = R(êy, θ)R(êz,−φ)Ψ↗↙ =: RΨ↗↙ (3.13)

where θ and φ describe the external magnetic field direction as defined earlier. Now we can transform
the self-energy matrix into the spin-basis of our central region

Σ̃ = Ψ†↗↙R†R︸ ︷︷ ︸
1

Σ̃ R†R︸ ︷︷ ︸
1

Ψ↗↙ = Ψ†↑↓RΣ̃R†︸ ︷︷ ︸
Σ

Ψ↑↓ (3.14)

and get

Σ = RΣ̃R† =

(
t2g−L cos2(θ/2) + t2g+

L sin2(θ/2) t2(g−L − g
+
L ) sin(θ/2) cos(θ/2)

t2(g−L − g
+
L ) sin(θ/2) cos(θ/2) t2g−L sin2(θ/2) + t2g+

L cos2(θ/2)

)
(3.15)

with g−L = gL(ω − γB
2 ) and g+

L = gL(ω + γB
2 ). As one would expect, the result is independent of

φ, since only the relative angle between external magnetic field and z-direction matters, which is
given by θ. The full self-energy matrix we need adds this 2x2 matrix to the top left and bottom
right block of 3.11.

The diagonal elements of the Green’s function then give us the LDoS (2.12) where we now have
a separate density for spin-up and spin-down electrons. Of course, inverting this (with dimensions
2Nx2N possibly quite big) matrix when we only need the diagonal of the inverse is very inefficient,
especially since we have to redo it for many energies for an LDoS plot. There is a way to get only
the diagonal entries of the Green’s function much more efficiently, which will be briefly explained
in section 3.5.

Before we look at some numerical results, first a little note about the hopping amplitude t. The
new SOI terms that we have introduced also give an additional hopping term, thus changing the
amplitude of the hopping, depending on the direction in which we consider spin orbit interaction.
But the hopping amplitude influences the dispersion relation, and the curvature at the minimum
of the dispersion relation in term determines the effective mass. So depending on the SOI term
we might actually consider a physically slightly different systems, which makes them harder to
compare. In the presence of spins the hopping between two sites is given by a 2x2 matrix to include
the spin-flip hopping. Without the SOI terms, we had a hopping of t = 1 which corresponds to this
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matrix having a determinant of one. Now it is given by

det

(
−iαy − t αz
−αz iαy − t

)
= t2 + α2

y + α2
z, (3.16)

which equals 1 when we adjust the value of t to be

t =
√

1− α2
y − α2

z. (3.17)

3.4 Effects on LDoS and Conductance

So let us now investigate the effect of the different new terms in the Hamiltonian on the LDoS and
conductance. We start with an external magnetic field in different directions. Since our Hamiltonian
is set up with creation and annihilation operators for electrons with spin in z-direction up or down,
a magnetic field in z-direction directly increases/lowers the band relative to the chemical potential,
and hence change the effective barrier that the two kinds of electrons can see. This is shown in
the middle diagram in figure 3.2 where the LDoS of the spin-up/down electrons can be seen on the
left/right half of each of the diagrams. The spin-up electrons see a lower barrier since their magnetic
moment tries to align itself anti-parallel to the magnetic field. When the external magnetic field is
chosen perpendicular to the spin-quantization, both spin species get split up equally into two partly
overlapping bands, since the electrons now have no preference for their spin in the magnetic field
direction. This case is shown in the right diagram in figure 3.2 for the example of a magnetic field
in x-direction.

Now let us explore the spin-orbit-interaction terms. We want a SOI magnetic field in y-direction,
which is the αz 6= 0 and αy = 0 case in (3.6), since the z direction of αz corresponds to the electric
field that constrains the electrons in the wire, while the resulting effective magnetic field is in y-
direction (as can be seen from this term containing the σy Pauli-matrix). The result is a sideways
shift in the dispersion relation (figure 3.1) which is not visible in the LDoS and a small widening
of the band from the increased hopping amplitude (see middle diagram of figure 3.3) and hence
an energy shift which gets corrected by our adjustment (3.17) of the hopping amplitude as can be
seen in the right diagram of figure 3.3. The same behavior can be found for SOI magnetic field in
z-direction (αy 6= 0).

For the conductance through the system, we first return to the convenient energy unit Ωx

introduced in section 2.5, which makes the conductance curves independent of the width of the
potential barrier. The interesting parameters to vary are the strength of the magnetic field (in
x-direction) and the strength of the SOI (taken in y direction, αz 6= 0 case). Just changing one of
them at a time has the effect one would expect. The magnetic field creates an additional shoulder in
the middle of the conductance step (figure 3.4 top left) from splitting the electrons into two bands
that cross the barrier energy separately. The SOI alone on the other hand does not change the
conductance, as it already did not change the LDoS (figure 3.3), as long as we employ the hopping
adjustment (3.17) to keep the width of the band constant. The much more interesting and complex
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Figure 3.2: Local density of state of the system described by 3.10 with αy = αz = 0 and B-field
in various directions. The x-axis shows the sites in the wire: 1-300 correspond to the LDoS of the
spin-up electrons in the wire; 301-600 are again the same 300 sites but show the spin-down LDoS
instead. N = 300, ε = 4/200, potential height f = 2.0, barrier width d = 200.
(Left plot) No magnetic field. Both spins show equal LDoS.
(Middle plot) Magnetic field B=0.25 in z-direction (θ = 0, φ = 0).
(Right plot) Magnetic field B=0.25 in x-direction (θ = π/2, φ = 0).
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Figure 3.3: LDoS with SOI but no external magnetic field. N = 300, ε = 4/200, f = 2.0, barrier
width d = 200. Again, the first 300 sites correspond to the spin-up electrons, the sites 301-600 give
the density on the same 300 sites but for the spin-down electrons.
(Left plot) No SOI.
(Middle plot) αz = 0.5 with t = 1 constant hopping. It can be seen how the band widens from the
leads towards the center, resulting in an effectively lower potential barrier for the electrons at the
chemical potential.
(Right plot) αz = 0.5 and t adjusted by (3.17). The adjustment of t counteracts the widening from
the SOI term, giving the same LDoS as for no SOI present.



CHAPTER 3. SPIN ORBIT INTERACTION AND MAGNETIC FIELD 34

behavior comes up when one looks at the interplay of both effects, as can be seen in the remaining
plots in figure 3.4. A detailed analysis of these structures can be found in [Goulko et al., 2014], an
important feature is that the symmetry of the shape of the step is very much destroyed.

So far we have only considered the total conductance of any electrons through the system, which
is now actually a sum of four contributions. It can be split up into the spin-up to spin-up, spin-up
to spin-down, spin-down to spin-down and spin-down to spin-up conductance. To calculate each of
these values, we have to put the correct entry of the Green’s functions into the conductance formula
(2.26), in particular we can think of the matrix Hamiltonian and hence the Green’s function as
consisting of many 2x2 matrices each representing one site or the hopping/interaction between two
particular sites. The top right 2x2 matrix gives the ’hopping’ from the first to the last site with one
entry for each of the 4 cases.

First, take an external magnetic field only in z-direction and no SOI. There are no terms con-
necting the spin sectors, so spin-changing conductance is impossible in this case. As was seen in
the LDoS in the middle plot in figure 3.2, the two spin sectors see different height potentials which
now correspond to a conductance step at different gate voltages in figure 3.5. Eventually as the
magnetic field gets strong enough to fully separate both steps, an additional shoulder of the total
conductance appears.

When we change the external magnetic field into the x-direction, the occurring magnetic term in
the Hamiltonian makes spin-changing conductance possible (top row in figure 3.6). The oscillation
between a dominating spin-change and a spin-keeping conductance for an increasing magnetic field
is due to Larmor precession of the spins in the external magnetic field and is independent of having a
barrier potential. The spin direction oscillates in the y-z-plane with the Larmor-frequency ω = −γ̃B,
so after the length of the barrier region has been crossed, the spin will more likely have the original
direction or the opposite one, depending on B.

As was noted in section 3.2, the SOI term can be seen as an effective magnetic field, and in
case of αz 6= 0, αy = 0 this effective field points in the y-direction and is also perpendicular to
the spin-quantization direction z. Hence it also causes a Larmor precession, as can be seen in the
bottom row of figure 3.6 in the left plot where the spin-changing conductance rises and finally the
middle picture where the effective SOI magnetic field nearly only allows spin-changing conductance
through the central region. The final plot in 3.6 shows how one of the conductance curves from
figure 3.4 (bottom right plot) with both external magnetic field and SOI is resolved into its spin
components. At the conductance step the lower band edge crosses the chemical potential, and as we
have seen in figure 3.2 (F) the combination of perpendicular external magnetic field and SOI effect
has a major influence on the shape of the lower band edge, explaining why a complicated structure
appears in our spin resolved conductance plot.

These matters are further inspected in [Goulko et al., 2014] where additionally the interactions
of electrons are taken into account with the functional renormalization group method that ultimately
gives an additional self-energy matrix to include in the Green’s function calculation.
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Figure 3.4: The conductance step as the potential barrier (width d = 500 sites, unperturbed height
f = 2.0) gets shifted below the chemical potential. Each of the 4 diagrams has a different but fixed
SOI strength αz, the colored graphs represent the varying magnetic field values. Ωx = 0.0113.
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etc.. Ωx = 0.0113.
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3.5 Efficient Calculation of the Diagonal Entries of the Green’s
Function

The systems we consider in this thesis consist of a central region of N sites connected to two infinite
leads, which can be conveniently traced out to just give a self-energy correction as described in
section 2.4. So calculating the Green’s function by formula 2.21

G(ω) =
1

ω −H − Σ + iε
= ((ω + iε)1−H − Σ)−1 (3.18)

comes down to inverting a slightly modified Hamiltonian matrix H. For the most simple wire (2.9)
H is a NxN matrix. Adding either superconductivity (chapter 5) or Spins (section 3.1) to the
system required a doubling of the Hamiltonian matrix to account for either the superconducting
term (see later chapter) or the different spin species, making H a 2Nx2N matrix up to 4Nx4N
if both is considered at once. This matrix has to be inverted once for every energy parameter for
which the Green’s function is needed, for example for the local density of state diagrams like figure
2.6. On a modern computer this is still doable reasonably fast, even up to a few hundred or a
thousand sites. But this step still takes by far the longest of the calculations presented here, so the
considerably faster optimization presented in the following is useful.

We began with an infinitely big system that has been made finite by tracing out the two infinite
leads, leaving only the central region of N sites which determines the size of the matrix that has
to be inverted. The idea is to systematically interpret more and more sites as belonging to the
leads and to repeatedly calculate new leads Green’s functions of these growing leads until in the
end there is only one single site left in the central region. Depending on spin or superconductivity
in the system, a single site can be described by a matrix Hamiltonian of dimension 1x1 to at most
4x4 while all the information of the rest of the system is contained in the self-energy term coming
from the new leads. Getting the Green’s function now only needs the inversion of this one small
matrix and the diagonal entries of the resulting 1x1 to 4x4 dimensional local Green’s function matrix
contains diagonal entries of the total Green’s function of the central region that we are looking for.
To get all the diagonal entries this has to be repeated for every site in the central region, but for
a central region consisting of more than about 60 sites that is already faster than inverting the big
Hamiltonian matrix just once. For about 300 sites it is faster by a factor of 10.

We write the Hamiltonian matrix in a basis which puts all entries belonging to one site together.
Since there are no long range interactions considered, the resulting matrix will be a band matrix
with the exact number of occupied bands depending on how often the Hamiltonian was doubled to
account for superconductivity and spin.

H =


H11 H12 0 0 · · ·
H21 H22 H23 0 · · ·

0 H32 H33 H34 · · ·
0 0 H43 H44 · · ·
...

...
...

...
. . .

 (3.19)
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Now we consider only the first site alone, described by H11, and connect it only to the lead on the
left. We can get the Green’s function of this system from 3.18 to be

gL1 (ω) =
1

ω −H11 −H10gL(ω)H01
(3.20)

where gL is the lead Green’s function calculated in 2.18, H10 and H01 give the connection of site 1
to the leads and can be taken as H10 = H21,H01 = H12 since the first site of the central region is
still the same as a lead site for a big enough central region. The self-energy term can be visualized
as hopping to the lead, propagating by the Green’s function at the border of the lead and hopping
back to site 1. Now gL1 can be interpreted as the Green’s function at the border of a new lead that
contains the site 1 as the last site.

This process can be iterated for all other sites in the central region to get

gLi (ω) =
1

ω −Hii −Hii−1gLi−1(ω)Hi−1i
(3.21)

and then repeated starting from the right side of the central region for the right lead by taking

gRi (ω) =
1

ω −Hii −Hii+1gRi+1(ω)Hi+1i
. (3.22)

With this intermediate result in our hands, the total Green’s function at any of the sites is
finally given by

Gii(ω) =
1

ω −Hii −Hii−1gLi−1(ω)Hi−1i −Hii+1gRi+1(ω)Hi+1i
. (3.23)

and all the diagonal elements which are needed for the LDoS have been calculated only through
inverting small matrices.

This procedure can be used even when next-nearest neighbor hopping is considered (which will
come up in the following section 3.6). To avoid having H13 terms, we can put all the sites into
groups of two and consider H11 as a matrix of double the dimensions, describing the first and
second site. Then even the next nearest neighbor interactions are caught in the H12 matrices and
the same ansatz as above can be used. Being limited to even numbers of sites in the central region
is a small price to pay for the speed advantage.

3.6 Higher Order SOI

So far we have only considered SOI of the form

HSOI = − e~
4m2c2

σ · (E × p) (3.24)
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which is just the first order of SOI, proportional to p. Higher order terms also exist but are usually
neglected, for example in [Goulko et al., 2014] which was mostly followed in this chapter. To check
that this is justified, let us have a brief look at the next highest order terms, which are ∝ p3, and
see how strong they would have to be to make a considerable difference. The possible next highest
order terms of the Spin-Orbit-Interaction are then given by

HSOI3 = (γxσxp
3 + γyσyp

3 + γzσzp
3) (3.25)

with three unknown coefficients γx/y/z. After discretizing the third derivative from the momentum
operators, this can be expressed in the creation annihilation operator formulation and corresponds
to

HSOI3 =γx

N∑
j=1

(ic†j↑cj+2↓ − ic†j+2↑cj↓ − 2ic†j↑cj+1↓ + 2ic†j+1↑cj↓ + h.c.)

+ γy

N∑
j=1

(c†j↑cj+2↓ − c†j+2↑cj↓ − 2c†j↑cj+1↓ + 2c†j+1↑cj↓ + h.c.)

+ γz

N∑
j=1

(ic†j↑cj+2↑ − ic†j+2↑cj↑ − 2ic†j↑cj+1↑ + 2ic†j+1↑cj↑ + h.c.).

(3.26)

We are interested in how high the effect strengths γx/γy/γz have to become before these terms make
a difference in the total conductance of the system. It turns out that these terms do not change the
total conductance of the system at all up to a critical value close to γx/y/z = 0.5, which is several
times larger than a reasonable strength for the normal SOI term (see figure 3.4, the SOI has already
a major effect around αz ≈ 0.2). This can be seen in figure 3.7. The γx term (same for γy term, not
shown) allows spin-flip hopping and have the effect of an effective magnetic field that lets the two
kinds of conductance oscillate, even for small amplitudes of the higher order SOI term - but this
does not influence the total conductance (top left of figure 3.7). The onset of a change in the total
conductance happens very abruptly at much higher γx values between γx = 0.49 (top middle) and
γx = 0.50 (top right). The γz term does not induce spin-flip conductance, but shows an equally late
onset of an effect on the total conductance between γz = 0.49 (bottom left) and γz = 0.50 (bottom
middle).

As we remember from earlier in this chapter, the lowest order SOI term did also not change the
total conductance until an orthogonal magnetic field was turned on as well. To check if the higher
order term has similar behavior, the bottom right plot of figure 3.7 shows the total conductance
of a system with lower order SOI term αz = 0.135, external magnetic field Bx = 0.05 and three
different values for γx. Again the total conductance remains unchanged by the higher order SOI,
until the same critical value is crossed and a sudden shift appears.

In summary, the higher order terms can safely be ignored. To have a major effect on the total
conductance, its prefactor has to be several times bigger than the lower order SOI prefactor, when
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in general one expects it to be smaller. But even if these terms would become important in some
situations, they cause a sudden and drastic change in the total conductance instead of a subtle one,
which would make their effect easy to recognize in measurements.

It becomes clearer what causes this sudden effect for high values of γx/y/z when we look at the
dispersion relation of the system. So take the Hamiltonian

H =
p2

2m
− µ+ α · σp+ γ · σp3 −B · σ (3.27)

and follow the steps before equation (2.7) in section 2.1. Diagonalizing finally gives the dispersion
relation of the two spin-bands plotted in figure 3.8 for the example of α = 0, B = 0, γy = γz = 0
and γx 6= 0 in the top and for a situation with external magnetic field (B 6= 0) and lower order
SOI (α 6= 0) present in the bottom. The shape of the dispersion near the minimum, which is the
important point for the low energy excitations, does not change much through the third order term.
But once γx reaches the amplitude for which the conductance abruptly changes (γx ≈ 0.5), we see
a new local minimum emerge in the dispersion relation, explaining a large change in the behavior
of the system.
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Chapter 4

Majorana Fermions

So far we have introduced a rather basic model to describe wires and quantum point contact systems
in general. Now that we have the theory, we are ready to approach the interesting (as will become
clear in this chapter) appearance of the so called Majorana fermions (MFs). We will begin by giving
the definition and having a brief look at their history as an introduction in section 4.1.

Despite their origin as an idea for fundamental particles, much later a possible realization in
the form of quasi-particles in solid state systems was found. In section 4.2 we will look at the
simplest model realizing these quasi-particles in one dimension, the so called Kitaev model named
after Alexei Kitaev who first proposed the idea ([Kitaev, 2000]). As this is a one-dimensional lattice
model it strongly resembles the model we have developed in the preceding chapters. The new
ingredient is an unusual (since p-wave) superconducting term in the Hamiltonian. Including those
into a Hamiltonian matrix formalism and deducing the Green’s function will be the focus of chapter
5. Kitaev immediately points out the possible usage of such MFs as qubits in quantum computation,
in particular because of their non-Abelian exchange statistics that we will briefly consider in chapter
6.3.

We will further see in section 4.3 that it is problematic to directly realize the Kitaev model in
an experiment, as it has been conceived as a minimal example for the MFs to appear. Nevertheless,
there has been some success in finding setups for more complicated systems that effectively behave
like the simple wire with its unusual superconducting term that make up the Kitaev model, following
an idea by [Fu and Kane, 2008] that allows using the much more common s-wave superconductors.
Later in chapter 7 we will be able to qualitatively compare our results from the calculations with
the Kitaev Model with the actual measurements done with devices build according to those setups.

Other realizations of Majorana fermions in solid state systems have been proposed and first
experiments claim to have found signatures of those quasi-particles. There will be a brief overview
over those approaches in section 4.4. For the remainder of this thesis we will stay with the Kitaev
model though.

43
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4.1 History of Majorana Fermions

The term Majorana fermion (MF) is used to denote a fermionic particle that is its own antiparticle.
The idea first came up in the 1937 paper [Majorana, 1937] by Ettore Majorana, in which he proposed
to describe neutral spin-1/2 fermions as a solution to a Dirac’s equation modified in the following
way ([Wilczek, 2009]).

The normal Dirac’s equation for a four-component spinor reads

(iγµ∂µ −m)Φ = 0 (4.1)

with the γ matrices being complex 4x4 matrices fulfilling a Clifford algebra ([Dirac, 1928]) and
µ ∈ {0, 1, 2, 3}. Furthermore γ0 must be Hermitian and the other three anti-Hermitian. The
solutions to this equation are then also complex fields, which in quantum field theory have the
meaning of creating a particle and destroying the corresponding antiparticle while the complex
conjugate field does the opposite. A particle and antiparticle are identical if they are created by
the same field, which clearly requires Φ = Φ∗. Majorana was able to find such real field solutions
by making the equation completely real. To that end he found purely imaginary matrices γ̃ that
still fulfill the Clifford algebra:

γ̃0 = σy ⊗ σx γ̃1 = iσx ⊗ 1 γ̃2 = iσz ⊗ 1 γ̃3 = iσy ⊗ σy. (4.2)

We then have the Majorana equation

(iγ̃µ∂µ −m)Φ = 0 (4.3)

having only real field solutions and hence describing particles that are their own antiparticles. Of
course just from this equation it is not clear whether there actually exist any particles described by
the Majorana equation.

Since antiparticles have the same mass but opposite charge compared to their counterpart, it
is apparent that only neutral particles can come into consideration for being their own antipar-
ticles. For bosons like photons this property is well known, but for fermions this concept was
new and even today it is not settled whether any fermions actually have it. Majorana himself
had neutrons and neutrinos in mind when he got his idea, for the former of which it was quickly
disproven while the later at that time where themselves still unobserved theory. When measure-
ments finally followed, his idea was again seen as disproven by anti-neutrinos behaving differently
than neutrinos ([Cowan et al., 1956]) and the idea of Majorana fermions was forgotten for decades
([Wilczek, 2009]).

His idea became relevant again when weakening the constraint of lepton-conservation and pre-
dictions of unified field theories made neutrinos a possible Majorana fermion candidate again
([Wilczek, 2009]). Furthermore, supersymmetry introduced the idea of additional, more exotic
Majorana fermions that might exist ([Weinberg, 2000]).

How is any of this relevant to solid state physics, which deals with lattices made of electrons
and ions? So far we have talked about MFs in the context of high energy physics and fundamental
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particles, but solid state physics has its own particle zoo - in form of more or less exotic quasi-
particles. It turns out that it is possible, but not trivial, to find theoretical models in which
quasi-particles with the Majorana property of being their own antiparticle appear. One of the
first such models is the one dimensional Kitaev model ([Kitaev, 2000]) found in 2000, which we
will concentrate on and discuss in the following section. The new interest and quick development
of further ideas to realize MF in solids was sparked not only by theoretical interest but also by
a possible application that was pointed out by Kitaev: Such states could be used as particularly
decoherence resistant qubits for quantum computers and furthermore show non-Abelian exchange
statistics (see chapter 6.3) which could be used for quantum computations. A quantum computer
following this concept is called topological quantum computer [Alicea, 2012].

Still, in the beginning his model was purely theoretical and it took more than a decade of further
research to find promising experimental realizations. We will see the difficulties involved in that
search in section 4.3, after some general properties of the Kitaev model have been introduced.

4.2 Kitaev Model

The Kitaev model, which was the first model realizing MF in a one dimensional lattice, is given
by a Hamiltonian that mostly consists of the finite case of the wire Hamiltonian we used in the
first chapter with the addition of a term that induces a superconducting gap ∆ in the wire. In
[Kitaev, 2000] it is presented as

H = −t
N−1∑
j=1

(c†jcj+1 + h.c.)− µ
N∑
j=1

c†jcj +
N−1∑
j=1

(
∆cjcj+1 + ∆∗c†j+1c

†
j

)
. (4.4)

The new term at the end allows, at an energy cost ∆, the creation or annihilation of a pair
of electrons on neighboring sites. We will need a more detailed look at the origin of this term in
the following chapter 5 when we try to rewrite this expression as a matrix Hamiltonian, so we can
proceed to calculate the LDoS and conductance from the Green’s function with the tools developed
in the previous chapter. For now, we can see that such a term makes sense as a description of the
formation or destruction of Cooper pairs, which are not explicitly included as degrees of freedom.
Since spins are not considered in the Kitaev model, the electron pairs have to live on neighboring sites
instead of the same one to not break the Pauli exclusion principle. This connection of neighboring
sites corresponds to a discretized derivative of a momentum operator and shows a momentum
dependency in the superconducting term. So we know that we do not have the common s-wave
superconductivity, which must be isotropic and hence independent of momentum. Instead, we have
much rarer p-wave superconductivity.

In his original paper [Kitaev, 2000] Kitaev himself describes this model as a toy model. It
picks the basic necessary ingredients to realize Majorana fermions, knowing that the result is not
an accurate description of an arbitrary real wire. Providing an experimental setup for a wire or
different system that would behave similar to this toy Hamiltonian is a challenge he leaves open.
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But he offers some speculation on possible approaches, and both the possible use of Josephson
junctions (section 4.4) and usage of an external magnetic field to break time reversal symmetry is
already mentioned, the later of which is a key to the physical realizations in the recent experiments
that claim to have build a setup that effectively behaves like this Kitaev model and contains MFs
(see review [Alicea, 2012], experimental papers [Mourik et al., 2012] and [Das et al., 2012]).

Of course we want to understand how exactly the Majorana quasi-particles appear in the Kitaev
model. This can be seen best after rewriting the Hamiltonian (4.4) in a slightly different way. We

split the electron operators cj into two half-fermions di that fulfill the Majorana condition di = d†i
and can then recombine them differently to get other full fermions c̃j :

cj =
1

2
(d2j + id2j+1) c̃j =

1

2
(d2j + id2j−1)

c†j =
1

2
(d2j − id2j+1) c̃†j =

1

2
(d2j − id2j−1).

(4.5)

This replacement will be executed in more detail in chapter 6 in a bit more general case (see in
particular figure 6.7), but for now we will be content with its result and its implications. For
the qualitative picture, we simplify by taking the t = |∆| case and end up with a Hamiltonian
([Kitaev, 2000, following (7)])

H = 2t
N−1∑
j=1

(
c̃†j c̃j −

1

2

)
(4.6)

which remarkably does not include the first and last Majorana operators d1 and d2N . These two
together can be thought of as an additional, non local fermionic state - a quasiparticle connecting
the first with the last site. This leads to the system having two orthogonal ground states, one with
the two unpaired Majorana fermions at the ends and one without. As shown in [Kitaev, 2000], for
the case

|µ| < 2t (4.7)

which we will want to consider in the following, the ground state with MFs is realized. For this
reason, the system is also called a topological superconductor with a topological phase |µ| < 2t,
which shows qualitatively different behavior from the trivial phase |µ| > 2t without Majorana
fermions.

We have now understood how the Majorana state comes up and what is meant by it being non-
local. Since our quasi-particle fermion is made up of half-fermion operators belonging to distant
sites, and perturbation operators containing only a single Majorana fermion are not expected, a
perturbation is unlikely to affect the Majorana state as it would have to act on both ends of the
wire at once. This means quantum information stored in this state is particularly well protected,
making them an interesting prospect for quantum memory. Together with the non-Abelian statistics
(chapter 6) this might make quantum computation by moving and ultimately braiding such MF
feasible ([Alicea, 2012], [Beenakker, 2012], [Leijnse and Flensberg, 2012]).
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The next step will be to express the system in the formalism we have used so far to deduct the
Green’s function of the central region and the conductance through it. Including the superconduct-
ing term turns out to be more involved than the simple doubling that was necessary for the spin in
chapter 3 and will take all of the following chapter 5.

The superconductivity has a major effect on the shape of the band and the conductance through
it, both of which we will be visible in the LDoS and differential conductance plots respectively.
Through the superconducting gap term ∆ the electron band will acquire, as the name suggests, a
gap in the density of states - an energy interval centered around a fixed chemical potential of the
superconductor in which no conducting electron states can live as it would be energetically favorable
to create a Cooper pair instead (compare figure 6.1). Hence a linear conductance, which happens
solely around the chemical potential, is expected to quickly drop as the superconducting region gets
too wide for electrons to tunnel through.

When we look at the differential conductance, which allows for a finite bias voltage and hence
electrons away from the chemical potential of the superconductor, for certain setups with an addi-
tional potential barrier we can see an unexpected zero-bias peak appear in the conductance, i.e. an
increased conductance through a region that at first glance should not contain electron states (left
side of figure 7.3).

This is caused by the zero-energy Majorana state we have just found living at the ends of the
wire. We will see these Majorana states in LDoS plots of isolated wires (figure 6.1) and we can see
a clear exponential localization at the edges (figure 6.3). Attaching the leads again, the Majorana
fermions on the ends of the superconducting region spread into the leads, making them invisible on
LDoS plots. But after localizing one of them again with a potential barrier, these mid-gap state
can then explain the zero-bias conductance peak we observed - a state living on both sides of the
gap region enables conductance through it without tunneling.

It should be mentioned that while for an infinitely long wire we would indeed have zero-energy
(relative to the chemical potential of the SC) states, these half-fermion states have a deviation
from the chemical potential of the SC since there is a hybridization between them. This effect
exponentially decays with the width of the superconducting region as their overlap gets small. It
decays quickly enough that this is not a big concern for our results.

We will further see in chapter 6 that a potential barrier in the superconducting region causes the
appearance of many more states inside the gap, most of which are different quasi-particle localized
states that are not of Majorana type and that are not contributing to conductance. But as soon
as the barrier crosses the chemical potential an additional pair of Majorana fermions appear at the
intersections of the two. The reason becomes more clear when we think of the potential barrier as
a as a shift of the chemical potential. Lifting it above the band width will break the condition 4.7
for a topological phase in a small region, creating two new phase transitions to trivial phase along
the wire which also carry a MF each. This is a basic way to create and manipulate MFs simply by
turning on gates along such a superconducting wire in topological phase.
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4.3 Realizing a Kitaev Model in Experiment

Of course, getting from this toy model to an experimental setup that behaves according to this
unusual superconducting term and allows the measurement and manipulation of Majorana fermions
is another big hurdle. Let us examine where the difficulties arise. In the context of a solid state
physics lattice, the antiparticle that belongs to an electron is a hole. So the basic idea is to realise
a particle that is its own antiparticle as a superposition of electrons and holes.

Such particles are not completely new - they are already known in the context of superconduc-
tivity. There we have Cooper-pairs made up of a pair of electrons, which can be broken up into two
Bogoliubov quasiparticles that are a superposition of electrons and holes with different spins and in
general not equal prefactors. We can write the corresponding creation operator as b† = a1c↓+ a2c

†
↑.

To have a Majorana quasiparticle, this operator would have to be Hermitian, so we need prefactors
that are complex conjugate to each other and have equal spin in both terms: m = ac↓ + a∗c†↓.
Such quasiparticles with same spins are not typical, they correspond to a Superconductors with
p-wave pairing in 1D or px ± ipy in 2D ([Leijnse and Flensberg, 2012]). Unfortunately, no ele-
mentary p-wave superconductor has been found yet. A theoretical candidate is given by Sr2RuO4

([Sarma et al., 2006]), but the superconductivity seems to be too sensitive to impurities and has not
been measured yet. So again, we have just shifted the problem to finding a p-wave superconductor.

The situation was saved when L. Fu and C. L. Kane published their discovery [Fu and Kane, 2008]
that it was possible to achieve px + ipy pairing on the surface of 3D topological insulator when
three key ingredients were brought together. They needed an s-wave superconductor that induces
superconductivity by proximity effect, a strong spin orbit interaction in the topological insula-
tor and on top of this a Zeeman splitting from a magnetic insulator to lift Kramers degeneracy
([Leijnse and Flensberg, 2012]). This approach was then further simplified by the realization that
instead of a topological insulator, 2 dimensional semiconductors quantum wells could also be used
([Sau et al., 2010]), which then make it possible to use an external magnetic field for the Zeeman
effect ([Alicea, 2010]). Finally, it turned out that all these ingredients could be applied to a one-
dimensional semiconducting wire as well ([Oreg et al., 2010] and [Lutchyn et al., ]), bringing us back
close to the Kitaev model.

Let us try to understand in the 1D case what each of these ingredients is necessary for (see
also [Leijnse and Flensberg, 2012, Figure 5], [Das et al., 2012, Figure 1]). This can be best seen
when considering the band structure E(px) of the wire. In the most simple case with no additional
terms (and without discretizing the model) it is given by the basic parabolic dispersion (figure 4.1
top left). Spin orbit interaction ∝ E × p splits the two spin bands horizontally into two parabolas
(figure 4.1 top right). Turning on a strong enough external magnetic field orthogonal to the spin-
orbit effective magnetic field allows the two spin bands to interact and leads to avoided crossing at
the intersection of both parabolas at p = 0 (figure 4.1 bottom left). Now there is an energy interval
for the chemical potential for which only the lower band is filled so only a single spin direction
is left, that unfortunately still depends on momentum. Using a stronger external field, the lower
band will polarize more along one direction and increasing the width of the energy interval in which
spin-degeneracy is broken.
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Figure 4.1: Dispersion relation of the wire with SOI strength α, external magnetic field B⊥ orthog-
onal to the SOI direction and a superconducting gap ∆.

Now the chemical potential has to be tuned to lie exactly in this energy interval. We want to
use an s-wave superconductor to proximity induce spinless superconductivity in our wire. While the
stronger external magnetic field makes it easier to tune the chemical potential to a bigger spinless
regime, the stronger alignment of electrons in the lower band make the proximity effect coupling
weaker (see [Alicea, 2012], proximity effect of an s-wave superconductor couples to opposite spin
electron pairs) and external field is further limited by the critical field strength of the s-wave
superconductor - all together making delicate tuning necessary.

Due to the particle-hole symmetry, there are additional hole bands with a flipped sign of the
energies, corresponding to the electron bands mirrored along the x-axis. A superconducting term
allows both types to interact and again leads to avoided crossing, now creating a completely gapped
system (figure 4.1 bottom right). The gaps away from p = 0 are governed by the ∆ amplitude
of the induced superconductivity, while the gap at p = 0 depends on both the external magnetic
field B and ∆ and differentiates between the two phases of the topological superconductor in the
following way: For small ∆ <

√
|B|2 − µ2 the superconductor is in the desired topological phase

including the Majorana bound states at the domain walls to the trivial phase (which can be just
given by the end of the wire if no other phases are present). With increasing ∆ the gap at p = 0
shrinks again until it is fully closed at ∆ =

√
|B|2 − µ2. With ∆ >

√
|B|2 − µ2 the system is in a

trivial superconducting phase that does not contain Majorana fermions.
These step-by-step instructions of building a 1D topological superconductor did not make

their realization trivial, but at least feasible. In 2012 the first experimental papers have been
published that claim to have realized and measured MFs with the approach described above in
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[Mourik et al., 2012], [Das et al., 2012] and [Deng et al., 2012]. We will have a more detailed look
at the first two of those in chapter 7 and compare their results with our predictions made from the
Kitaev model. To detect the Majorana fermions, the prediction of an increased differential conduc-
tance around zero-bias voltage due to the Majorana mid-gap states was checked - and indeed such
a zero-bias peak was found.

4.4 Other Proposed Realizations of Majorana Fermions

Although this paper solely focuses on the realization of Majorana fermions in one dimensional
systems according to the Kitaev model, there have been many other theoretical proposals and
even some experiments to realize MFs in solid state physics ([Leijnse and Flensberg, 2012]). The
following can be seen as a brief and certainly not complete overview over some of those approaches.

The first one to mention should be [Deng et al., 2012], which does use the same one dimensional
wire approach as above, but realizes a Josephson junction with two separate topological supercon-
ducting regions instead of only one region next to a quantum point contact as the two papers we
will have a closer look at. Again a zero-bias peak is detected and explained by bound Majorana
states. In principle our model, extended to superconducting systems in the next chapter, should
be able to describe this situation as well, but we will concentrate on the situation of the former
mentioned two papers.

The alternative proposition to probe Majorana fermions in Josephson junctions was already
made in [Kitaev, 2000]. Some unusual characteristics compared to a conventional Josephson junc-
tion were predicted, among others the change from 2e to e as the unit of conductance, as now pairs
of Majorana fermions could allow single electron conductance instead of just cooper pair conduc-
tance. Such a change of the conductance unit was measured in [Rokhinson et al., 2012] and further
predicted transport properties have been measured in [Williams et al., 2012]. Both of these papers
explain their results with the presence of Majorana modes in their devices.

Another way to get 1D systems is the idea to use edges of 2D topological insulators, which the al-
ready mentioned important papers by Fu and Kane ([Fu and Kane, 2008] and [Fu and Kane, 2009])
belongs to. Despite being called insulators, these materials have conducting edge states with the
special property of being spin filtered depending on their direction. Adding an s-wave supercon-
ductor will again lead to a topological superconductor (see [Alicea, 2012]). In a similar way, the
surface of 3D topological insulators can be used to get vortices with the Majorana property.

Further proposals include usage of cold atomic gases ([Tewari et al., 2007]), carbon nanotubes
([Egger and Flensberg, 2012]) and chains of quantum dots ([Sau and Sarma, 2012]) - all of which
we will not further concern ourselves with. A very extensive list with further references can be
found in the detailed review by Alicea [Alicea, 2012].



Chapter 5

Modeling Superconducting Systems

After the Majorana Fermions were introduced in the last chapter, we now want to find a model that
allows us to calculate some basic transport properties of systems with these special quasi-particles.
The simplest model that allows for this is the Kitaev Model introduced in section 4.2, but going
further than his original paper [Kitaev, 2000], we want to be able to numerically visualize the local
density of states and calculate the differential conductance of systems with both superconducting
and normal conducting regions as well as potential barriers (quantum point contacts). To achieve
this, we have to generalize our wire model from the first chapter by adding the superconducting
terms from the Kitaev model of the form

HSC =

N−1∑
j=1

(
∆cjcj+1 + ∆∗c†j+1c

†
j

)
(5.1)

to the Hamiltonian. The general idea will be to use the so called ’doubling trick’, according to
which we introduce Nambu-spinors that allow us to write the Hamiltonian as a matrix with twice
the dimensions. As a result, the terms with two creation or annihilation operators can be seen as
an interaction of the two sectors from the doubling.

Note that we are back to a spin-free system as opposed to the third chapter where a spin-full
model was introduced. While the experimental setups work with spin-full systems using strong
spin-orbit-interaction, Zeeman splitting due to external magnetic fields and conventional s-wave
superconductors, they tune all those ingredients in such a way that the system effectively behaves
like the Kitaev model. For that reason, we will be content with following the rather simple Kitaev
model, which considers a (in reality rather rare) p-wave superconductor populated by electrons of
only a single spin-species.

5.1 The Generating Functional for the System

All the information we want to get about the system in the end, i.e. local density of states and linear
as well as differential conductance, is contained in the Green’s function of the system. The naive
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−∞ +∞
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Figure 5.1: In our convention for the Keldysh contour the upper contour is denoted as − and the
lower one as +.

way to proceed would be to try to double the Hamiltonian from the second chapter (2.5 and 2.13)
and continue in a similar way. It turns out that there are subtle problems with this approach, in
particular with how exactly to add in the self-energy from the integrated out leads in the correct way
in a doubled Hamiltonian and how to deal with the chemical potentials when describing differential
conductance where each lead has its own chemical potential.

Instead we will use the more general Keldysh formalism [Keldysh, 1965] of quantum field theory
to be able to describe differential conductance. An introduction into the Keldysh formalism can
be found in the book [Kamenev, 2001] and a detailed introduction to using it to describe 1D wires
can be found in [Jakobs, 2009]. Some basic knowledge about the method will be assumed in the
following.

Of the several different conventions that are used for the Keldysh formalism, this text will
utilize the following ones from [Jakobs, 2009]. The Green’s function will be defined in terms of
the correlators as G(t, t′)abij = (−i)〈Tc cai(t)c†bj(t′)〉 (the indices are explained in the following
paragraph) and the Keldysh contours are indexed as seen in figure 5.1 with the upper one being
the − contour and the lower one +.

We begin by writing down the generating functional from which all desired correlators of the
system, in particular the Green’s functions, can be deduced.

Z[J ] =

∫
D{c} exp

[
i
∑
a

∫ ∞
−∞

dω (−a)
(
c† ai (µs + ω)(µs + ω + εi)c

a
i (µs + ω)

+ t c† ai (µs + ω)cai+1(µs + ω) + t∗ c† ai+1(µs + ω)cai (µs + ω)

+ ∆ cai+1(µs + ω)cai (µs − ω) + ∆∗c† ai (µs − ω)c† ai+1(µs + ω)

+ J† ai (µs + ω)cai (µs + ω) + c† ai (µs + ω)Jai (µs + ω)

−c† ai (µs + ω)Σab
ij(µs + ω)cbj(µs + ω)

)]
.

(5.2)

First a few notes about notation. The indices a, b = {+,−} are used to denote Keldysh contours
and the indices i, j are site indices along the wire, going from 1 to N since the infinite leads have
been summed out and their effect on the system is now represented by a self-energy term Σ.
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After the rotation to Keldysh space, the contour indices will be replaced by Keldysh components
α, β = {1, 2} with 1 being the quantum component and 2 the classical component. A summation
over all appearing double indices of these kinds is implied, even if not written explicitly. A Keldysh
index ᾱ takes the value that α does not have.

The c and c† are again the creation and annihilation operators for single electrons at a site i.
The term εi is the site dependent potential barrier to model a QPC. The one energy ω which is
a summand instead of an argument in the first line comes from the action S of the system being
written as S =

∫
dω(ω −H(ω)) in energy representation and the (−a) in the first line corresponds

to the lower Keldysh contour going from +∞ to −∞, so the energy integral gets a sign from the
integration limits being the wrong way around.

This leaves the energy constant µs and the gap term ∆ coming from the Kitaev model super-
conducting term (5.1) to be explained. The first thing to note here is that the superconducting gap
∆ itself is not written with an explicit Keldysh index unlike most other terms. Instead, they are
assumed to have the same Keldysh structure as the hopping amplitude t, an approximation that
is introduced in detail in [Larkin and Ovchinnikov, 1977]. It is assumed that the superconducting
term in the Kitaev model is induced into the wire by proximity effect from a nearby bulk supercon-
ductor. The main approximation is that the thermodynamic properties (chemical potential µs and
temperature) of this bulk superconductor are independent of the thermodynamic properties of the
wire. Instead, the superconductor can only change the density of states in the wire by creating a
gap inside the band around the energy µs, which is therefore not treated as a chemical potential in
the Keldysh formalism, but as a fixed independent energy instead.

Expressing all the energies ω relative to this energy µs shows an important subtlety that easily
leads to mistakes: Some of the operators in the superconducting terms in the third line of (5.2)
need to have arguments µs − ω. To understand the origin of this peculiarity we again have to look
back at where the superconducting term in the Kitaev model is taken from. While more detail is
given in [Larkin and Ovchinnikov, 1977], as a simplified model we can say that a superconductor
in the description of the BCS theory originates from an attractive force between electrons. This
interaction can then be treated with a mean-field approach to get back to a Gaussian theory.

Hatt = Vω1ω2ω3ω4c
†
ω1
c†ω2

cω3cω4 ≈ 0.5Vω1−4〈cω3cω4〉︸ ︷︷ ︸
∆

c†ω1
c†ω2

+ 0.5Vω1−4〈c†ω1
c†ω2
〉︸ ︷︷ ︸

∆∗

cω3cω4 (5.3)

Since this is an interaction of electrons in a metal at reasonably low temperatures, all the electrons
can be assumed to have energies close to the chemical potential µs, so both the ingoing and the
outgoing electrons add up to an energy of about 2µs.

ω1 + ω2 ≈ ω3 + ω4 ≈ 2µs (5.4)

Giving one of the energy arguments in the superconducting term in (5.2) an additional sign in front
of the ω now assures that the energies properly add up to 2µs, even for big ω, which would otherwise
not be the case.
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Normally the effect of the chemical potential in the Keldysh formalism for a free theory is
encoded in the Keldysh component alone. The µs can only appear in the way it does since we do
not treat it as a normal chemical potential and it instead results from the approximation described
above.

5.2 Calculating the Green’s Function

Now that the origin of (5.2) has been explained, we have to proceed by performing the Keldysh
rotation and changing into the doubled spinor basis, such that the exponent of the generating
functional acquires a matrix structure. At that point the Gaussian integral can be calculated and
we can then proceed to take the derivatives with respect to the Grassmann variables J to gain the
Green’s functions.

So let us now perform the Keldysh rotation. Most terms in (5.2) (all except the self-energy) live
solely on either the upper or the lower contour, no mixing occurs. For the moment let T stand for
any such term, then it is T++ = −T−− =: T , so writing this as a matrix in contour space we get(

T++ 0
0 T−−

)
=

(
T 0
0 −T

)
. (5.5)

We can get from the contour space to Keldysh space with the rotation [Keldysh, 1965]

R =
1√
2

(
1 1
−1 1

)
(5.6)

so that (
0 T 12

T 21 T 22

)
= R−1

(
T++ 0

0 T−−

)
R =

1

2

(
0 2T

2T 0

)
= T

(
0 1
1 0

)
︸ ︷︷ ︸

A

. (5.7)

Then we can write the generating functional in Keldysh space as

Z[J ] =

∫
D{c} exp

[
i

∫ ∞
0

dω
(
c†αi (µs + ω)(µs + ω + εi)A

αβcβi (µs + ω)

+ t c†αi (µs + ω)Aαβcβi+1(µs + ω) + t∗ c†αi+1(µs + ω)Aαβcβi (µs + ω)

+ ∆ cαi+1(µs + ω)Aαβcβi (µs − ω) + ∆∗c†αi (µs − ω)Aαβc†βi+1(µs + ω)

+ J†αi (µs + ω)Aαβcβi (µs + ω) + c†αi (µs + ω)AαβJβi (µs + ω)

− c†αi (µs + ω)Σαβ
ij(µs + ω)cβj (µs + ω) + {ω → −ω}

)]
(5.8)

where we have also put the lower integration limit to 0 at the cost of adding all the terms a second
time with ω being replaced by −ω.
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It might seem that the self-energy Σ from the integrated out leads and especially its full Keldysh
structure are still unknown at this point. But since the leads are Gaussian, the self-energy depends
only on the leads and is independent of what happens in the central region, so at least its retarded
component ΣR = Σ12 is given by the same formula that was determined earlier in (2.18).

Σ12
11 = Σ12

NN (ω) = t2gL(ω) = t2
{

1
2t2

(ω + i
√

4t2 − ω2) if ω > 2t
1

2t2
(ω − i

√
4t2 − ω2) else.

(5.9)

Therefore also the advanced component is known to be Σ21 = Σ† 12. In addition, the leads can
be assumed to be in equilibrium (unlike the central region, which in the non-equilibrium Keldysh
method does not need to be) so the fluctuation dissipation theorem gives the Keldysh component
as Σ11 = (1− 2nF )(Σ12 − Σ21). Hence the full structure of the self-energy matrix is known.

Let us now introduce Nambu-spinors depending on µs and defined strictly for non-negative
energies ω to be

Ψα
i(ω) =

(
cαi(µs + ω)
c†αi(µs − ω)

)
,Ψ†αi(ω) =

(
c†αi(µs + ω), cαi(µs − ω)

)
. (5.10)

With this, we can exchange all the operators c in the generating functional by their corresponding
Nambu-Spinor entry and then commute all the Ψ† terms to the left side by using Ψα

iΣ
αβ

ijΨ
†β
j =

−Ψ†βj (ΣT )βαjiΨ
α
i = −Ψ†αj (ΣT )αβjiΨ

β
i, where the minus sign comes from the exchange of two

fermionic operators and ΣT is transposed both in Keldysh and in site space. As a result we get

Z[J ] =

∫
D{Ψ} exp

[
i

∫ ∞
0

dω
(

Ψ† 1α
i(ω)(µs + ω + εi)A

αβΨ1β
i −Ψ†2αi(ω)(µs − ω + εi)A

αβΨ2β
i

+ tΨ†1αi(ω)AαβΨ1β
i+1(ω)− tΨ†2αi+1(ω)(AT )αβΨ2β

i(ω) + t∗Ψ†1αi+1(ω)AαβΨ1β
i(ω)

− t∗Ψ†2αi(ω)(AT )αβΨ2β
i+1(ω)−∆Ψ†2αi(ω)(AT )αβΨ1β

i+1(ω) + ∆Ψ†2αi+1(ω)AαβΨ1β
i(ω)

−∆∗Ψ†1αi+1(ω)AαβΨ2β
i+1(ω) + ∆∗Ψ†1αi(ω)AαβΨ2β

i(ω)

−Ψ†1αi(ω)Σαβ
ij(µs + ω)Ψ1β

j(ω) + Ψ†2αi(ω)(ΣT )αβij(µs − ω)Ψ2β
j(ω)

+ J̄αi (µs + ω)AαβΨ1β
i(ω)−Ψ†2αi(ω)(AT )αβ J̄βi (µs − ω)

+Ψ†1αi(ω)AαβJβi (µs + ω)− Jαi (µs − ω)(AT )αβΨ2β
i(ω)

)]
(5.11)

with the indices 1,2 giving either the first of second entry of the Nambu-spinors. We can combine
the summands into matrices in Nambu-space and get
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Z[J ] =

∫
D{Ψ} exp

[
i

∫ ∞
0

dω

(
Ψ†αi (ω)

(
(ω + µs + εi)A

αβ 0
0 (ω − µs − εi)Aαβ

)
Ψβ

i(ω)

+
(

Ψ†1αi,Ψ†1αi+1,Ψ
†2α

i,Ψ
†2α

i+1

)
(ω)


0 tAαβ 0 ∆∗Aαβ

t∗Aαβ 0 −∆∗Aαβ 0
0 −∆Aαβ 0 −t∗Aαβ

∆Aαβ 0 −tAαβ 0




Ψ1β
i

Ψ1β
i+1

Ψ2β
i

Ψ2β
i+1

 (ω)

−Ψ†αi (ω)

(
Σαβ

ij(µs + ω) 0
0 −(ΣT )αβij(µs − ω)

)
Ψβ

j(ω) + {terms with J}
)]

(5.12)

=

∫
D{Ψ} exp

[
i

∫ ∞
0

dω
(

Ψ†αXαβΨβ + {terms with J}
)]

(5.13)

where we have used that A = AT . In the last line

Ψ†α =
(

Ψ†1α1,Ψ
†1α

2, ...,Ψ
†1α

N ,Ψ
†2α

1,Ψ
†2α

2, ...,Ψ
†2α

N

)
and X is the corresponding matrix with all the entries seen in (5.12). Note that X is a matrix in
site space, in Keldysh space and also in Nambu space.

Since this is a Gaussian Integral it can be solved and we have already brought it into a shape
where the solution can be read off using the general solution ([Kamenev, 2001, chap. 9.1])

Z̃[J̄ , J ] =

∫ N∏
j=1

(dΨ†jdΨj) e−Ψ†iXijΨj+Ψ†jJj+J̄jΨj = detX eJ̄i(X
−1)ijJj . (5.14)

With the detX being canceled by adjusting the integration measure D{Ψ} we therefore have

Z[J ] = exp

[
−i
∫ ∞

0
dω
(
J̄i
α(µs + ω),−Jiα(µs − ω)

)
Aαβ(X−1)βγijA

γδ

(
Jδj(µs + ω)
−J̄δj(µs − ω)

)]
= exp

[
−i
∫ ∞

0
dω
(
J̄i
α(µs + ω),−Jiα(µs − ω)

)
(X−1)ᾱβ̄ij

(
Jβj(µs + ω)
−J̄βj(µs − ω)

)] (5.15)

where the A matrices come from the the J-terms, see (5.11). The prefactor −i comes from the
following consideration. To bring (5.13) exactly into the form of (5.14), there is a factor i too much
and the sign of the X matrix term is wrong. Since J and J̄ are arbitrary Grassmann variables we
can put J, J̄ → iJ, iJ̄ and also put X → −iX. The right side of (5.14) has an exponent of J̄X−1J

so all together this gives a prefactor of i2

−i = 1
i = −i.

At this point we can take the derivatives of the generating functional to finally calculate the
Green’s functions of the system. We have defined Nambu-spinors for strictly non-negative energies
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and have to differentiate differently depending on the sign of the energy for which the Green’s
function is determined. For positive energies ω > 0 the Green’s function is given by

Gαβij(ω > 0) = −i〈cαi(µs + ω)c†βj(µs + ω)〉 = −i δ2Z[J ]

δJ̄ ᾱi(µs + ω)δJ β̄ j(µs + ω)
(5.16)

= −iδJ̄ ᾱi+δJ β̄ j+e−iJ̄
ᾱ
i+(X−1)αβ11

ij J β̄ j+ = −iδJ̄ ᾱi+δJ β̄ j+(1− iJ̄ ᾱi+(X−1)αβ11
ij J β̄ j+)

= i(−i)δJ̄ ᾱi+(J̄ ᾱi+(X−1)αβ11
ij ) = (X−1)αβ11

ij

where we have used the shorthand notation J+ for J(µs +ω) and made use of two properties of the
Grassmann variables J . For the exponential function with Grassmann arguments it is exp(J) = 1+J
using the J2 = 0 property and a minus sign in the last line was gained from anti-commuting the
J and J̄ since derivatives act on the leftmost Grassmann variable in our convention. Similarly the
Green’s function for negative energies ω < 0 (with shorthand notation J− = J(µs − |ω|), absolute
value since we considered strictly positive ω for the preceding calculation, but for ω < 0 it is
+ω = −|ω|) must then be given by

Gαβij(ω < 0) = −i〈cαi(µs − |ω|)c†βj(µs − |ω|)〉 = −iδJ̄ ᾱi−δJ β̄ j−(1− iJ β̄ j−(X−1)βα22
ji J ᾱi−) (5.17)

= −i(−i)δJ̄ ᾱi−(X−1)βα22
ji J̄ ᾱi− = −(X−1)βα22

ji ,

so the difference is a relative sign and a transpose both in Keldysh and in site space.
To review the final result, the Green’s functions can be directly gained from the matrix X in

the following way. According to (5.12), the retarded component of X (for simplicity shown for the
concrete example of a system with N = 3 sites) is given by

X21=



ω+−Σ21
11(µs + |ω|) t 0 0 ∆∗ 0
t∗ ω+ t −∆∗ 0 ∆∗

0 t∗ ω+−Σ21
33(µs + |ω|) 0 −∆∗ 0

0 −∆ 0 ω−+Σ12
11(µs − |ω|) −t 0

∆ 0 −∆ −t∗ ω− −t
0 ∆ 0 0 −t ω−+Σ12

33(µs − |ω|)


with the shorthand notation ω+ = |ω|+ µs + εi and ω− = |ω| − µs − εi. Then for positive energies
from (5.16) we have

G21
ij(ω > 0) = (X−1)2111

ij , (5.18)

which means we have to invert the matrix X, then pick the 11 Nambu component which is the
upper left NxN block of X for this example and can then pick the ij component of it.

For negative energies it is

G21
ij(ω < 0) = −(X−1)1222

ji = −(X−1)
2122

ij , (5.19)
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where we switched from the advanced Keldysh component of X−1 to the retarded one by using
that the conjugate transpose of the advanced component equals the retarded one. This can be seen
in (5.12); the only term that differs between retarded and advanced component is the self-energy
term for which this is true. So in fact, we need to calculate the same inverse as for the positive
energy case, take the complex conjugate and finally take the lower right NxN block of the matrix
according to the Nambu indices 22 to pick element ij from.

Now that we have calculated the Green’s function of a superconducting system with normal
leads, the diagonal of the spectral function or local density of states (which are equivalent for lattice
distance set to a = 1) ρi(ω) can be calculated as the imaginary part of the diagonal elements of the
Green’s function as in (2.12), which gives

ρi(ω) = − 1

π
Im(G21

ii). (5.20)

5.3 Derivation of the Conductance Formula

Next we are interested in the transport properties of the system, so we have to calculate the currents
and from there can get to the conductance.

It is not at all clear that the formula (2.26) that was used for conductance in chapter 2 is still
applicable in this case, in particular when we consider that the new additional superconducting
term (5.1) explicitly breaks charge conservation by allowing electron pairs to be created or annihi-
lated. This models the ground state of the superconductor which spontaneously breaks the charge
conservation.

There must first be a non-equilibrium configuration, for example a voltage difference, for a
current to appear in this physical system, so the current is an inherently non-equilibrium property
of the system. Nevertheless, a lot of physics can be done in purely equilibrium considerations thanks
to linear response theory and the Kubo-formula [Datta, 1995]. Linear response theory assumes that
for small perturbations the system gives a linear answer - for our case this would be the linear
conductance as an answer to an infinitesimal voltage. The Kubo-formula is then a tool that allows
access to this non-equilibrium effect without leaving an equilibrium model and should work fine for
our system.

We will again take the more general approach and use the non-equilibrium method of Keldysh
formalism though, as this avoids having to use the Kubo-formula and gives us easy access to the
differential conductance, which is the answer of the system to an infinitesimal voltage perturbation
on top of a finite voltage difference. So we will now use the Keldysh formalism to calculate a current
formula for our doubled system, following the derivation of the (Meir-Wingreen-)current formula
for a non superconducting system [Meir and Wingreen, 1992].

Let us first recall the Hamiltonian of our considered system once more. All together it is given
by

H =
∑

i∈{L,C,R}
εi c
†
ici +

∑
i∈{L,C,R}

(tc†ici+1 + t∗c†i+1ci) +
∑
i∈{C}

[
∆icici+1 + ∆∗ic

†
i+1c

†
i

]
. (5.21)
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Figure 5.2: The two leads L and R are connected to the first and last site of the central region.

Note that the leads have not been projected out yet here so the first two sums include the lead but
the superconducting term in the end only has support in the central region as we consider our leads
to be normal metals.

We want to find an expression for the current that goes from the left lead to the right lead (see
figure 5.2). This will be given by the change of the electron number in the left lead multiplied by
the elemental charge e. So we have

J(t) = −e〈ṅL(t)〉 = − ie
~
〈[H(t), nL(t)]〉 (5.22)

where we have used the Heisenberg equation of motion which says that in the Heisenberg picture
for a not explicitly time dependent operator nL it is ṅL(t) = i

~ [H(t), nL(t)]. Of course nL is just
the sum of the electrons on all the sites of the lead, so it is

nL =
∑

i∈lead L

c†ici (5.23)

and we have to recognize the terms in nL and H for which their commutator does not disappear.
The first term in H consists of particle number operators on the sites just like nL, so those

terms clearly commute and do not contribute. The superconducting term in H only has support
in the central region but all operators in nL live in the left lead, so those terms commute as well.
This only leaves the hopping terms in H to give a contribution. Let us first consider the terms for
hopping to the left (see figure 5.2). Then it is

[
∑
i∈all

tii+1c
†
ici+1,

∑
j∈L

c†jcj ] =
∑
i∈L

j∈{i,i+1}

tii+1[c†ici+1, c
†
jcj ] +

∑
all other i,j

tii+1 [c†ici+1, c
†
jcj ]︸ ︷︷ ︸

= 0 since j 6=i,i+1

=
∑

i∈L\{0}
tii+1

(
c†ici+1c

†
ici︸ ︷︷ ︸

=0

−c†i cic
†
i︸︷︷︸

1−c†i ci

ci+1 + c†i ci+1c
†
i+1︸ ︷︷ ︸

1−c†i+1ci+1

ci+1 − c†i+1ci+1c
†
ici+1︸ ︷︷ ︸

=0

)

+ t01

(
c†0c1c

†
0c0︸ ︷︷ ︸

=0

−c†0 c0c
†
0︸︷︷︸

1−c†0c0

c1

)
=

∑
i∈L\{0}

tii+1(−c†ici+1 + c†ici+1)− t01c
†
0c1

= −t01c
†
0c1.

(5.24)
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The analogous calculation for the right hopping terms gives a similar result so that we can finally
write the current as

J = − ie
~
〈[H(t), nL(t)]〉 = − ie

~

(
t−−01〈c−1(t)c†+0(t)〉 − t−−10〈c−0(t)c†+1(t)〉

)
. (5.25)

In the last step the operators have been put onto Keldysh contours and the colored notation from
the previous section has been introduced again where +,−,a,b (1,2,α,β) stand for contour (Keldysh)
indices and 0,1 are sites. Since there is no superconducting term present this time we can write these
terms as time dependent operators on Keldysh contours without problems, unlike the last section
where the superconducting term had a peculiar energy dependence and hence a nontrivial time
dependence as well. Using the definition of the full Green’s function of [Jakobs, 2009] G(t, t′)abij =
(−i)〈Tc cai(t)c†bj(t′)〉 we can then write

J =
e

~
(t−−10G

−+
01(0, 0)− t−−01G

−+
10(0, 0)) (5.26)

where we have used that our system is time invariant, so we can just calculate the current for t = 0.
Next we need to Fourier-transform to energy space. We can use that

G(0, 0) =
1

(2π)2

∫
dωdω′ e−iω0eiω

′0︸ ︷︷ ︸
1

G(ω, ω′) (5.27)

with a (here irrelevant) different sign in the second exponent because this corresponds to the c†

in the definition of G which should be the adjoint of c, so its Fourier transform gets a sign from
complex conjugating. We will further use that

G(ω, ω′) =

∫
dtdt′eiωte−iω

′t′ G(t, t′)︸ ︷︷ ︸
=G(t−t′)

τ=t′
=

δt=t−t′

∫
dτd(δt)eiω(τ+δt)e−iω

′τG(δt)

=

∫
dτei(ω−ω

′)τ︸ ︷︷ ︸
2πδ(ω−ω′)

∫
d(δt)eiωδtG(δt) = 2πδ(ω − ω′)G(ω)

(5.28)

to get

G(0, 0) =
1

(2π)2

∫
dωdω′2πδ(ω − ω′)G(ω) =

1

2π

∫
dωG(ω). (5.29)

Now we can write the current (5.26) as

J = − e
h

∫ ∞
−∞

dω
(
t−−10G

−+
01(ω)− t−−01G

−+
10(ω)

)
(5.30)

with the factor 1
2π canceled with the bar in ~.

The next step is to make use of Dyson equations to only have Green’s functions left that purely
have site indices either in the center or in a lead. Denote the pure lead Green’s function (i.e. the
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propagator of electrons in an isolated lead that is not coupled to the central region) as g. Now we
have the Dyson equations

G−+
10 = G−a11t

aa
10g

a+
00 (5.31)

G−+
01 = g−a00t

aa
01G

a+
11 (5.32)

which correspond to an electron in the lead propagating in the lead (g term), then necessarily
hopping into the central region at some point (t term) followed by a propagation with the full
propagator of the central region (G term) which of course may contain further hopping into the
leads and back. The reverse case of this gives the the second term. Putting this into 5.30 gives

J =
e

h

∫
dω
(
t−−10g

−a
00(ω)taa01G

a+
11(ω)− t−−01G

−a
11(ω)taa10g

a+
00(ω)

)
. (5.33)

The Keldysh rotation to get to the more convenient Keldysh basis has already been introduced in
the last section. Let t := t−− = −t++ where the additional minus sign comes from the integration
direction on the + contour being the other way around and t being a term that comes from the

Hamiltonian. We then see that tαβ = (R−1)αatabRbβ =

(
0 t
t 0

)
, so t only has terms that mix

Keldysh components. But there are also terms with −+ components in contour space. For an
arbitrary term B from a Hamiltonian, by performing the Keldysh rotation the expression of this
component in terms of Keldysh indices can quickly be checked to be B−+ = 1

2(B22 − B21 + B12).
Both of the summands in (5.33) have this contour structure, so we have

J =
e

h

∫
dω

1

2

(
t21

10g
12

00t
21

01G
12

11 − t21
10g

12
00t

21
01

0︷ ︸︸ ︷
G11

11 +t12
10g

2α
00t

αᾱ
01G

ᾱ2
11

− t21
01G

12
11t

21
10g

12
00 + t21

01G
12

11t
21

10 g
11

00︸ ︷︷ ︸
0

−t12
01G

2α
11t

αᾱ
10g

ᾱ2
00

)
.

(5.34)

The outermost Keldysh indices are given by the Keldysh rotation while the inner ones were deduced
where possible using that t must mix Keldysh indices and that 11 components of Green’s functions
in Keldysh space disappear.

Since the leads are assumed to be in equilibrium, the isolated lead Green’s function g will follow
a fluctuation dissipation theorem stating that g22

00 = (1 − 2nLF )(g21
00 − g12

00) with nLF being the
temperature and chemical potential dependent Fermi-distribution for the left lead. Using this and
the remark above that tij = t12

ij = t21
ij we can rewrite 5.34 to

J =
e

2h

∫
dωt10(g21

00 − g12
00)t01(G22

11 + (1− 2nLF )
(
G12

11 −G21
11)
)
. (5.35)

At this point it is convenient to introduce a hybridization function (or coupling function) for the
left lead as

ΓL(ω) = it10(g21
00(ω)− g12

00(ω))t01. (5.36)



CHAPTER 5. MODELING SUPERCONDUCTING SYSTEMS 62

This is also often seen as a matrix in the space of central sites which has this expression as the ΓL11

entry, since that is the site in the central region that the left lead is coupled to, and is 0 in every
other entry. ΓR is the equivalent expression for the right lead which is then a matrix with only the
ΓRNN entry not zero. Making use of this definition we get

J = − ie
2h

∫
dωΓL11(G22

11 + (1− 2nLF )
(
G12

11 −G21
11)
)
. (5.37)

We keep this result in mind for the moment and proceed by formulating a Dyson equation, this
time for the full propagator inside the central region, which will allow us to replace the Keldysh
component G22 in (5.37) with retarded (G21) and advanced (G12) components, since we have already
found a formula to calculate those in the last section. The Dyson equation reads

Gαβ11 = (gc)αβ11 + (gc)αγ1iΣ
γδ
ijG

δβ
j1 (5.38)

with gc being the Green’s function of the isolated central region. The Keldysh component of gc

has the function of a regularization in a finite isolated system and can therefore be ignored when a
self-energy with finite imaginary part is present.

This Dyson equation can be solved for G and by block matrix inversion we get

G12
ij =

(
(gc)12 − Σ21

)−1

ij
, G21

ij =
(
(gc)21 − Σ12

)−1

ij
(5.39)

G22
ij = G21

ikΣ
11
klG

12
lj = −i(1− 2nLF )G21

ikΓ
L
klG

12
lj − i(1− 2nRF )G21

ikΓ
R
klG

12
lj (5.40)

and putting together the two equations in 5.39 we additionally have

G21 −G12 = G21((G12)−1 − (G21)−1)G12 = G21(( Σ12︸︷︷︸
t12g21t12

)− ( Σ21︸︷︷︸
t21g12t21

))G12

= −iG21(ΓL + ΓR)G12.

(5.41)

Finally putting all these into the current formula 5.37 we get the final result

J =− ie

2h

∫
dωΓL11(−i(1− 2nLF )G21

11ΓL11G
12

11 − i(1− 2nRF )G21
1NΓRNNG

12
N1

+ (1− 2nLF )
(
iG21

11ΓL11G
12

11 + iG21
1NΓRNNG

12
N1

)
=
e

2h

∫
dωΓL11

(
(1− 2nLF )G21

1NΓRNNG
12
N1 − (1− 2nRF )G21

1NΓRNNG
12
N1

)
=
e

h

∫
dω
(
nRF (ω)− nLF (ω)

)
ΓL11(ω)G21

1N (ω)ΓRNN (ω)G12
N1(ω)

=
e

h

∫
dω
(
nRF − nLF

)
Tr[ΓLG21ΓRG12]

(5.42)

which is the Meir-Wingreen formula again. So we now know that we can trust this current
formula even for the superconducting system as ∆ has the same Keldysh-structure as t (see
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[Larkin and Ovchinnikov, 1977]) and ∆ does not have to be treated as a contribution to the self-
energy.

The conductance Gc is defined as the change of the current under an infinitesimal change of the
(possibly large) bias voltage Vb between the two leads:

Gc =
∂J

∂Vb
. (5.43)

To be exact, the bias voltage is defined as the difference of the chemical potentials µR, µL of the
two leads (which have a chemical potential in the first place because they are assumed to be in
equilibrium) and we have eVb = µR − µL. We can choose to make either one or both of the lead
chemical potentials change with Vbias to give them this difference and we get slightly different results
corresponding to slightly different ways to measure this quantity in experiments. The calculation
is similar either way, so for now we choose both of them to change, away from an average potential
µ0, and define µR = µ0 + eVb

2 and µL = µ0 − eVb
2 .

From our result (5.42), we get

Gc =
e

h

∫
dω ∂Vb

(
1

eβ(ω−µR) + 1
− 1

eβ(ω−µL) + 1

)
ΓL11(ω)G21

1N (ω)ΓRNN (ω)G12
N1(ω)︸ ︷︷ ︸

=:T̄ (ω)

(5.44)

where β = 1/T corresponds to the temperature of the system. So it might look like we can use our
model for a system at arbitrary temperature, but we have actually already made a low temperature
assumption when we looked in more detail at the mean field approach that leads to the Kitaev model
in the first place in (5.3). The assumption (5.4) that the interaction happens to electrons at exactly
the chemical potential is of course false for finite temperature. So although these formulas are still
a good approximation for low temperatures, they have to be used carefully - to properly take finite
temperatures into account we would have to integrate over temperature broadened energy intervals
around µs and try to adjust the rest of the calculation accordingly.

Luckily, as discussed in the last chapter, the temperature is the smallest energy scale involved
for the experiments we hope to describe, so it is a valid approximation to set T = 0 and hence
β =∞ in the following. For T = 0 the Fermi distribution becomes a step function at the chemical
potential. This simplifies (5.44) significantly to

Gc =
e

h

∫
dω ∂Vb

(
(θ(−ω + µ0 + eVb/2)− θ(−ω + µ0 − eVb/2)

)
T̄ (ω)

=
e

h

∫
dω
(

(
e

2
δ(−ω + µ0 + eVb/2)−

(
−e

2

)
δ(−ω + µ0 − eVb/2)

)
T̄ (ω)

=
e2

2h

[
T̄ (µ0 + eVb/2) + T̄ (µ0 − eVb/2)

]
=
e2

2h

[
ΓL(µ0 + e

Vb

2
)ΓR(µ0 + e

Vb

2
)

∣∣∣∣G21
1N (µ0 + e

Vb

2
)

∣∣∣∣2
+ ΓL(µ0 − e

Vb

2
)ΓR(µ0 − e

Vb

2
)

∣∣∣∣G21
1N (µ0 − e

Vb

2
)

∣∣∣∣2].

(5.45)
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which is a rather standard conductance formula [Datta, 1995]. So in summary, to calculate the
conductance through the system with formula (5.45), the ΓL and ΓR are given according to (5.36),
while the Green’s functions have to be calculated from (5.18) and (5.19) for positive and negative
energies respectively.

With this we now have the tools at hand to start looking at concrete setups of wires with
superconducting areas in the central region and arbitrary potential barriers that can be used to
model quantum point contacts. We have access to the electron states in the system by looking at
the LDoS / spectral function with (5.20) and we can look at the transport properties by calculating
the differential conductance (or, if we want, linear conductance by setting Vb = 0) with (5.45).

First we will use this in the following chapter 6, discussing a system with a potential barrier
inside a superconducting gapped region. We will look at the localized states and in particular
Majorana states that appear at the border of the superconducting gap and inside the gapped region
due to the potential barrier. Then, in chapter 7, we have a look at the differential conductance of
a system with a quantum point contact outside a superconducting region. This approximates the
setups of several recent experiments ([Das et al., 2012] [Mourik et al., 2012]) and we will try to see
how much of their reported zero-bias structure in the differential conductance can be reproduced
by our simple model.



Chapter 6

Appearance of Majorana Fermions in
the Model

Before we try to use our new tools from the last chapter to describe a system that tries to imitate
the experimental setups (see chapter 7), let us first use this chapter to get a better intuition for
what happens in the superconducting regions of the wire. In particular, we will have a quick look at
the bare wire with only a superconducting region but no barrier, first without and then with leads
attached (section 6.1).

Following that, we turn on an additional potential barrier inside the gapped region and examine
the appearing new localized states (section 6.2). In particular it can be seen how such an external
potential, which would just correspond to a gate in an experiment, allows controlled creation and
manipulation of MFs. This could be used to exploit the non-Abelian exchange statistics that
was mentioned earlier to realize quantum computation. To finally see what is meant by that and
appreciate this point, we will have a brief review of non-Abelian statistics in section 6.3.

6.1 The Quantum Wire with Superconducting Region

We now finally use our results from chapter 5 on a wire with a superconducting region. As was
mentioned in chapter 4, the superconducting term creates a gap in the density of states since the
creation of a Cooper pair is more favorable in this region. Furthermore, in an isolated pieces of
superconducting wire in the topological phase, Majorana fermions appear, which are exponentially
localized states at the first and last site. These can clearly be seen in the two strong peaks at
zero energy in figure 6.1 for the case of a finite topological superconducting wire with no leads.
Simply from diagonalizing the Hamiltonian matrix H at this point, we can look at the discrete
energy spectrum (left plot in figure 6.2) to single out the two zero-energy Majorana modes (right
plot in figure 6.2), and then plot the corresponding eigenvectors (figure 6.3). In the logarithmic
plot we see that the wave-functions of the Majorana fermions are indeed exponentially localized at
the first and last site, as it was predicted in [Kitaev, 2000]. From the finite distance of the localized
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Figure 6.1: The LDoS (color scale) of a finite wire consisting only of a superconducting region with
no leads attached to it, plotted over the site (x-axis) and energy (y-axis). N = 300 sites, ∆ = 0.4
SC gap width, ε = 4/N .

states we expect a slight energy shift away from zero-energy by hybridization (section 4.2), but this
shift drops exponentially with their distance and turns out to be smaller than the computational
accuracy for distance bigger than about 200 sites already. Such an isolated wire is illustrative for
the appearance of MF modes, but ultimately we will be interested in the experimental situation
with leads attached to the system to measure conductance. This data would show signatures of
appearing Majorana modes and make them accessible to experiments.

Adding the leads in the way that was worked out in the previous chapter, we get an LDoS that
lacks the signature of strongly localized MFs. Instead the MFs have now spread out into the leads.
We can illustrate this by taking a finite system with some lead sites connected to each site of the
superconducting region. The eigenvectors belonging to the MF now show a spread out amplitude
along the wire parts in the right diagram of figure 6.4. In case of true infinite leads the MFs would
spread out into the whole lead and the local amplitude goes to zero.

With our formula (5.45) we can calculate the differential conductance through this system with
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Figure 6.2: The discrete spectrum of the finite wire, gained by diagonalizing the Hamiltonian. The
left plot shows the whole spectrum of eigenenergies sorted by size from smallest to biggest. The
right plot is zoomed in to the eigenenergies close to zero-energy. There are two zero-energy modes
visible in the right plot (#300 and #301). N = 300 sites, ∆ = 0.4 SC gap.
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Figure 6.3: Plot of the eigenvectors corresponding to the eigenenergies #300 (blue) and #301
(green) from figure 6.2.
Left side: The amplitude of the wave-functions, which are given by the entries of the eigenvectors.
Right side: Logarithmic plot of the squared absolute values of the amplitudes, giving the probability
distribution of the state and indeed showing a perfect exponential localization at the first and last
site.
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Figure 6.4: In the situation of a finite number of lead-sites added to the superconducting region
with a smooth onset of the SC term (LDoS for this situation shown in the left plot, N = 300 sites,
d = 200 sites SC region, ∆ = 0.4), there are still zero-energy modes in the energy spectrum, but
the amplitude of the eigenvectors belonging to these zero-energy Majorana modes (one in blue, one
in green) is now spread into the lead sites (right plot).
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Figure 6.5: Differential conductance through a superconducting region with N = 300 sites connected
to a semi-infinite lead on each border. The x-axis shows the finite potential difference, the y-axis
the conductance, i.e. the current answer of the system to a small voltage perturbation at this offset.
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leads. In the resulting figure 6.5 we see that for bias voltages between -0.8 and 0.8 no conductance
takes place, since the chemical potentials in both the leads hit the superconducting gap. For bigger
bias voltages, the electrons can pass through the unaffected band outside the gap, before the width
of the band is reached at -4 and 4. But the result in figure 6.5 shows that the spread out and no
longer localized MFs are not able to cause a zero-bias peak. To make this signature of the existence
of Majorana modes visible to us we need to localize at least one of the MF modes again, even in
the presence of infinite leads which are necessary to make sense of conductance. We will discuss a
setup in chapter 7 that achieves this with an additional potential barrier in some distance from the
superconducting region.

But before we concern ourselves with the experimental verification of the MFs, let us in the
following section explore our model a bit further to get more insight in the behavior of MFs and
how they can be used in the possible future application as topological quantum computers (section
6.3).

6.2 Localized States at the Potential Barrier inside the Gap

We now turn on a potential barrier inside the gapped region. The barrier height is chosen to be
f = 2.2 and hence above the chemical potential, so as described in chapter 4, we expect a new pair
of Majorana fermions to appear at these boundaries between the topological and trivial phase of
the superconductor. This can be seen in figure 6.6 along with many other localized states inside the
gap. We know those are localized states since they are invisible in the LDoS plot without a finite
ε term (right side of figure 6.6), so they do not get a finite lifetime from the presence of the leads
and hence can not escape.

To understand where these localized states inside the gap in 6.6 come from, we again rewrite
our Kitaev model Hamiltonian

H =
N∑
j=1

εjc
†
jcj +

N−1∑
j=1

(
tc†j+1cj + tc†jcj+1 + ∆cj+1cj + ∆∗c†jc

†
j+1

)
(6.1)

in terms of the Majorana fermions d2j and d2j+1 by defining

cj =
1

2
(d2j + id2j+1)

c†j =
1

2
(d2j − id2j+1)

(6.2)

as Kitaev already did in his original paper [Kitaev, 2000]. The Majorana fermions can be seen as

“half fermions” with the remarkable property of being their own antiparticle, i.e. d2j = d†2j . We put
these definitions into the Hamiltonian and note that the fermionic commutation relations apply to
the Majorana fermion operators, such that four of the terms vanish. Assuming that ∆ is real, we
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Figure 6.6: The LDoS of a wire with a potential barrier of height f = 2.2 inside the gapped region.
Central region with N = 200 sites connected to a lead on either side. ∆ = 0.8.
Left plot: Artificial imaginary term ε = 4/N to make the many localized states inside the gapped
region visible.
Right plot: Comparative plot with ε = 0 to appreciate that the new states we see are localized
states - they are not visible, so they do not get a finite lifetime from the presence of the leads.

are left with

H =
1

4

N∑
j=1

[
εj
(
d2

2j + d2
2j+1

)
+ iεj (d2jd2j+1 − d2j+1d2j)

]
+

1

4

N−1∑
j=1

[2i(∆ + t)d2j+2d2j+1 + 2i(∆− t)d2j+3d2j ] .

(6.3)

We use that d2
2j = 1 (see (6.12)), so that the first term is just a constant in the Hamiltonian which

can be left out. Since we are only interested in the qualitative source of these localized states, we
can constrain ourselves to the case ∆ = t in which the last term disappears too.

So we only have

H =
i

2

N∑
j=1

εjd2jd2j+1 +
i

2

N−1∑
j=1

(∆ + t)︸ ︷︷ ︸
2t

d2j+2d2j+1. (6.4)

Next we want to put the half-fermions back together, but shifted by one, such that two Majorana
fermions coming from neighboring sites get combined together as sketched in figure 6.7. So define

c̃j =
1

2
(d2j + id2j−1)

c̃†j =
1

2
(d2j − id2j−1).

(6.5)
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Figure 6.7: Sketch of the rewriting of the Hamiltonian 6.1 into 6.7. The electron creation operators
c (top) get divided into two Majorana fermions d (middle) which then get recombined into fermionic
operators c̃ (bottom) describing quasi-particle living at neighboring sites. t and t̃ are the hopping
amplitudes of the original and the new sites.

Of course these new creation and annihilation operators do not describe electrons on lattice sites
anymore, but some different quasi-particles excitations. Expressing those through the Majorana
fermions gives

d2j−1 = ic̃†j − ic̃j
d2j = c̃†j + c̃j

(6.6)

and putting these into 6.4 finally leads to

H =− 1

2

N−1∑
j=2

[
εj c̃
†
j c̃
†
j+1 + εj c̃j c̃

†
j+1 − εj c̃

†
j c̃j+1 − εj c̃j c̃j+1

]

+
N−1∑
j=1

2t

c̃†j+1c̃
†
j+1︸ ︷︷ ︸

0

+c̃j+1c̃
†
j+1 − c̃

†
j+1c̃j+1 − c̃j+1c̃j+1︸ ︷︷ ︸

0




=
N−1∑
j=1

2t︸︷︷︸
ε̃j+1

c̃†j+1c̃j+1 +
N−1∑
j=2

εj
2︸︷︷︸
t̃j

(
c̃†j+1c̃j + c̃†j c̃j+1

)
+
N−1∑
j=2

εj
2

(
c̃†j+1c̃

†
j + c̃j c̃j+1

)
.

(6.7)

In this representation of the Hamiltonian, the hopping amplitude and the εj , which contains chemical
potential and barrier potential, have changed places! We can now realize this new Hamiltonian in a
matrix form and calculate the LDoS from it. As we can see in figure (6.8), these new quasi-particles
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Figure 6.8: The LDoS of the quasi-particles described by c̃† and c̃ in the rewritten Hamiltonian
(6.7). It is N = 200 with a SC gap between the 30. and 170. site. f = 2.2, t = 1.0, ∆ = 1.0.

have a very different band shape and can only appear in the region where the normal LDoS showed
a gap.

We have now understood the origin of these localized states. Apart from the possible Majorana
State that might be among them, these states are not connecting to the leads and hence not
important for the conductance, which is the main measurement quantity in today’s MF experiments.
So instead, we will now concentrate on the Majorana states again.

6.3 Non-Abelian Exchange Statistics

As we have seen in the previous section, we can turn additional MFs in the topological superconduc-
tor on and off simply by adding a potential barrier, for example with a tunable gate. In the same
way, moving this barrier moves the MF along with it - which could be realized by putting a whole
“keyboard” ([Alicea et al., 2010]) of tunable gates along the wire. This is particularly interesting
when we consider the maybe most unusual property of Majorana fermions that we have not yet
talked about - their non-Abelian exchange statistics. The meaning is quickly explained. As is well
known, states consisting of bosonic (fermionic) particles gain a prefactor of +1(−1) under exchange
of two particles. This can be generalized to so called (Abelian-)anyons, which are defined by their
property of gaining a different complex phase factor under particle exchange. We will see in this
section that the Majorana fermions go a step further: They not only give a complex phase under
exchange, but can change the (ground-)state of the system entirely, depending on the order of the
exchanges. Such particles are in general called non-Abelian anyons. In this case, the exchanges can
change between different superpositions of the 2l-fold degenerate ground states that result from the
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presence of 2l Majorana fermions in the system, since pairs of MF then make up l fermionic degrees
of freedom which can each either be filled or empty.

This could be used to build a topological quantum computer, based solely on exchanging these
well-protected Majorana modes with each other to carry out calculations. This systematic exchang-
ing of many Majorana modes with each other is called “braiding”. However, the braiding operations
correspond to a π/2 rotation of a single qubit [Leijnse and Flensberg, 2012, section 3.3] and using
them alone is limiting in what calculations would be possible, so it has been considered to combine
the concept with other qubits or operations (for example [Nayak et al., 2008], [Hassler et al., 2010]
and [Leijnse and Flensberg, 2011]) to allow for universal quantum computation.

It is possible to show this non-Abelian anyon behavior analytically from the formalism we have
introduced so far. This has been done for the 1D topological superconducting wire case by J. Alicea
in detail in the supplementary material to [Alicea et al., 2010].

However, there is a simpler picture for the case of MFs as vortices on the surface of a 2D topolog-
ical insulator given in [Leijnse and Flensberg, 2012, section 3.2] following the paper [Ivanov, 2001].
Since the basic concept and the implications of the result are true for all realizations of Majorana
fermions, we will for simplicity follow the later picture in the following paragraphs as an example
of non-Abelian exchange statistics.

First recall from (4.5) how fermionic operators c can be split into two “half-fermion” Majorana
operators d:

ci =
1

2
(d2i−1 + id2i) , c†i =

1

2
(d2i−1 − id2i) . (6.8)

These equations can be inverted to get

d2i−1 = ci + c†i , d2i = i(c†i − ci), (6.9)

where we have used that the Majorana states fulfill d2i = d†2i and d2i−1 = d†2i−1 since they are their
own antiparticle.

At this point we can calculate the commutation relations {dk, dl} of Majorana fermions by
inserting the relations (6.9) and applying the fermionic ones. For example for the case of odd
k = 2i− 1 and odd l = 2j − 1 it follows

{dk, dl} = {d2i−1, d2j−1} = d2i−1d2j−1 + d2j−1d2i−1 = i(c†i − ci)i(c
†
j − cj) + i(c†j − cj)i(c

†
i − ci)

= −(c†ic
†
j − c

†
icj − cic

†
j + cicj)− ( c†jc

†
i︸︷︷︸

−c†i c
†
j

−c†jci − cjc
†
i + cjci︸︷︷︸

−cicj

) = {c†i , cj}+ {c†j , ci} = 2δij .

(6.10)

The same result for the remaining odd/even cases leads to the general conclusion

{dk, dl} = 2δkl. (6.11)

The last important relation we need is
d2
k = 1 (6.12)
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which follows from (6.11) by simply taking 2 = {dk, dk} = 2d2
k. We now know that Majorana modes

do not fulfill a Pauli-principle, since applying the creation operator twice simply is an identity.
Furthermore, it does not even make sense to speak of the occupancy of a Majorana mode in the
usual way, as the regular counting operator nMF

k = d†kdk = d2
k = 1 is also the identity. We can make

sense of this by remembering that a Majorana mode is just half a degree of freedom - it has to be
coupled with another Majorana to be accessible.

We now demonstrate how these modes have non-Abelian statistics in the example of the realiza-
tion as vortices on the surface of 3D topological insulators (see section 4.2 and 4.4) mostly following
the review article [Leijnse and Flensberg, 2012]).

Each vortex corresponds to a winding of the superconducting phase of 2π. We assume the
phase to be constant everywhere except on a branch cut from each vortex to a fixed direction,
which is a simpler picture that reproduces the rigorous results gained on the level of field theories
([Semenoff, 1988] and [Eliezer and Semenoff, 1992]). The vortices can be moved, for example by
magnetic gates, which control where the induced superconductor is in the topological phase. When
two vortices are exchanged adiabatically in this way, exactly one of them will cross the branch cut
of the other vortex, picking up a phase of half of 2π. This is because the superconducting phase is
defined as the phase of cooper pairs consisting of two fermions, while the Majorana fermion in the
vortex contains single fermion operators (6.9). A phase shift of π is exactly a sign change, so one
of the Majorana modes will change signs while the other does not.

This exchange of two modes dk and dl can be described by what is called a “braid operator”

Bkl = (1 + dkdl)
1√
2

(6.13)

which acts as BkldkB
†
kl = (1 + dkdl)dk(1 + dldk)/2 = (dk − 2dl − dk)/2 = −dl and BkldlB

†
kl = dk

using (6.11), (6.12).
Let us begin with the case of only two vortices d1, d2 that can be combined into one fermionic

operator c1 = (d1 + id2)/2. We then have two different states of our system: |0〉 in which the

fermionic mode is not occupied and |1〉 = c†1|0〉. But when we now apply our braiding operator
(6.13) to one of the states to exchange the two MFs

B12|1〉 =
1√
2

(1 + d1d2)(d1 − id2)
1

2
|0〉 =

1

2
√

2
(d1 − id2 − d2 − id1)|0〉

=
1√
2

(1− i) 1

2
(d1 − id2)|0〉︸ ︷︷ ︸

c†1|0〉

=
1√
2

(1− i)|1〉, (6.14)

we see that we only gained a complex phase and have not changed the state of the system. This
is to be expected though, as the two states correspond to an even and odd number of electrons
in the superconductor, which can not be changed by particle exchanges inside it. Changing the
electron number by multiples of 2 instead is possible, since the superconducting Hamiltonian allows
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the creation and annihilation of Cooper-pairs, so let us consider a system with four vortices d1 to
d4 corresponding to two fermionic operators c1 and c3. With |11〉 = c†1c

†
3|00〉 we have

B23|00〉 =
1√
2

(1 + d2d3)|00〉 =
1√
2
|00〉+

1√
2

1

4
d2d3(d3 + id4)(d1 + id2)|11〉

=
1√
2
|00〉+

1

4
√

2
(d2d1 + i+ id2d3d4d1︸ ︷︷ ︸

−id1d2d3d4

−d3d4) |11〉︸︷︷︸
1
4

(d1−id2)(d3−id4)|00〉

=
1√
2
|00〉+

1

4
√

2
(i+ i− i(−i)2 − (−i))|11〉 =

1√
2

[|00〉+ i|11〉] .

(6.15)

This means that we have changed the state of the system simply by exchanging particles in it. The
non-Abelian exchange statistics can also be seen by calculating the commutator

[B12, B23] =
1

2
(1 + d1d2)(1 + d2d3)− 1

2
(1 + d2d3)(1 + d1d2) =

1

2
d1d2d2d3︸ ︷︷ ︸

d1d3

−1

2
d2d3d1d2︸ ︷︷ ︸
−d1d3

= d1d3 6= 0.

(6.16)
We can finally see non-Abelian anyon behavior for our Majorana states in the example of this

particular realization. As mentioned in the beginning, the same can be done for other proposed
realizations of MFs - see in particular [Alicea et al., 2010, Suplementary material] for the 1D wire
case.

It might seem contradicting that MFs in one-dimensional wires have non-Abelian statistics,
when anyons can only exist in two-dimensional systems. This can be explained by the fact that
adiabatic exchange of such MFs always requires some kind of network of one dimensional wires to
move them past each other while keeping a great distance, making it effectively a 2D system.



Chapter 7

Zero-Bias Peak as Experimental
Signature of MFs

We will now use the tools developed in chapter 5 with a system that is modeled to follow the
experimental setup of [Mourik et al., 2012] and compare the predictions of our method for the
differential conductance with their experimental measurements. To this extend, we will first have
a more detailed look at the published experiments in section 7.1 before deciding on the numerical
model to use in 7.2 and finally compare the results. We close with a short section 7.3 of review
and conclusions and give some outlook on how to proceed and improve upon the work done in this
thesis.

7.1 Existing Experimental Results

As was mentioned in chapter 4, there are several recent experimental papers which claim to have
found strong indications or proof for the existence of Majorana fermions as quasiparticles. Of those,
we are particularly interested in the following two, which make use of the MF realization in one
dimensional semiconducting wires that are tuned to behave like topological superconductors by the
steps described in 4.2. These setups come closest to the original Kitaev model and are hence best
suited to be approximated by and compared to our calculations. In the following, we will have a
brief look at these experiments by [Mourik et al., 2012] and [Das et al., 2012] and their results. A
third experimental paper, [Deng et al., 2012], also claims to have measured MFs in such a wire, but
has a Josephson-junction setup instead of a single superconducting region. Our model might also
be able to describe this case, but it is not attempted here.

The main ingredient of the device used in [Mourik et al., 2012] is an indium antimonide (InSb)
nanowire connected to one one normal-conducting gold and one superconducting NbTiN contact.
This structure is placed over an array of varying gates to manipulate the chemical potential along
the wire. In particular, one narrow gate is used to create a potential barrier in the free hanging
wire part between the two contacts.

76
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An InSb wire was chosen for both the high spin-orbit-interaction and g-factor of this material.
As was explained in section 4.2, the earlier is a requirement to bring the semiconductor wire into
the topological superconductor state and the high g-factor leads to a big Zeeman splitting. That is
necessary since the Meissner effect in the superconducting region shields that part of the wire from
most of the external magnetic field and the remaining field strength must be sufficient to induce the
required Zeeman splitting. This can not be solved by making the external field stronger, since the
s-wave superconductor used to induce the superconductivity has a critical field strength for which
superconductivity is lost.

The result of the differential conductance measurement for varying magnetic fields can be seen
in figure 7.1 from [Mourik et al., 2012, figure 2A]. We see vertically shifted plots of the differential
conductance over the applied bias voltage for many different external magnetic fields. As an impor-
tant common feature there are clear peaks around V = ±250µeV corresponding to the gap-width.
If the absolute bias voltage is smaller, the electrons meet the gapped region which is centered around
the same chemical potential that is used for the V = 0 bias voltage case. The finite conductance
even through the gapped region is attributed to an incompletely formed proximity gap and An-
dreev localized states. But the important structure for us is the smaller peak at zero-bias voltage
appearing for a wide range of magnetic field values. It is claimed that other possible explanations
for a zero-bias peak like weak anti-localization, Kondo effect and reflectionless tunneling do not fit
their measurements and checks, leaving only localized Majorana states as an explanation.

Possible differences between their setups and what we can describe with our model might be given
by the finite temperature and the fact that they admit to not being able to tune the superconductor-
covered section of the wire to a single-band regime, making it harder to describe by our single-band
model.

A few month later in the work of [Das et al., 2012], the main device consists of a suspended in-
dium arsenide nanowire of around 60nm diameter, suspended by two gold pillars serving as contacts
above the substrate on which the structure was grown. The indium arsenide is another material
with strong SOI and high Zeeman splitting ([Beenakker, 2012]), making it easier to fulfill the re-
quirements for a topological superconductor (section 4.2). Between the pillars a gate is added,
then a superconducting aluminium strip to induce a superconducting region in the wire and finally
another gate. While the device is symmetrical with potential barriers and contacts on both side
of the induced superconducting region, the differential conductance measurements were made be-
tween the right contact and the superconducting contact, again reproducing the situation we had
in [Mourik et al., 2012].

The results can be seen in figure (7.2). Again a clear zero-bias peak is visible, embedded in a val-
ley between two much bigger peaks corresponding to the induced superconducting gap. Again other
possible explanations are deemed unlikely in favor of the Majorana fermions, so we can conclude
that this experiment confirms the prior results of [Mourik et al., 2012] as a similar conductance was
found even though a different device design, building method and different materials were used.

A splitting of the zero-bias peak both for high and low external magnetic fields is reported. This
can be explained by our discussion in 4.2 that the MF are zero-energy states which get shifted away
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Figure 7.1: This figure from [Mourik et al., 2012] shows the measured differential conductance (y-
axis) over the applied bias voltage (x-axis) for different magnetic field strength (vertical shift) at
T = 70mK. The green arrows point to the conductance peaks from bias voltages high enough for
the electrons to pass the gapped region. In between those peaks the valley from the (incompletely)
gapped superconducting region is seen. For magnetic field strength between ∼ 100mT and ∼ 400mT
an additional zero-bias peak appears.
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from zero by hybridization if the Majorana states overlap. According to [Das et al., 2012], their
extension is given by a characteristic length ξ = ~vF /Eg with vF being the Fermi-velocity and Eg
being the smallest gap in the dispersion relation. So for a small gap the extension of the MFs and
therefore their overlap gets bigger and splitting of the zero-bias peak appears. We have a small gap
either for a magnetic field too weak to induce the Zeeman splitting gap around p = 0 or big enough
to come close to the critical field of the s-wave superconductor and hence weakening the proximity
induced superconductivity in the wire that is responsible for the gap away from p = 0 (see figure
4.1 bottom right).

7.2 Comparison of our Calculations with the Experimental Data

Of course the interesting question now is if our model can produce similar results. First we have to
decide what exact model parameters we choose to simulate the setups from the experiments. What
turned out to work out best is the following, non-symmetric setting. We take the central region,
connected to a lead on both ends as usual, and turn on an induced superconducting region on the
right side from the lead reaching into the central region. To the left of the SC region, we put an
external potential barrier in roughly the same distance as the width of the SC region (the exact
distance turns out to be irrelevant). This can be seen on the LDoS plot on the right site of figure
7.3 with a clear barrier in the middle and the gapped region from the SC on the right. A similar
experimental setup was used in particular by [Mourik et al., 2012, figure 1C] with a gate on the
wire inducing what they call a tunnel barrier to seperate the normal conducting from the induced
SC part of the wire.

We expect two Majorana fermions in this setup for our model, one for each end of the super-
conducting region. The right end is touched by the right lead, so the MF spreads to the whole
lead. But the one on the left hand can only spread in a very limited area up to the barrier, so we
have localized this Majorana state which makes it accessible for conductance as can be seen in the
following conductance measurements.

The experiments of [Mourik et al., 2012] and [Das et al., 2012] needed to include the external
magnetic field as an additional parameter and used a wire made of InSb and InAs which has a
very high SOI in the first place. This is because, as mentioned earlier in 4.2, a lot of fine-tuning
is necessary to get the topological superconductor behavior necessary for Majorana fermions in an
experimental setup, while we don’t consider spins and magnetic fields in our simplified toy-model
and get the MFs without tuning.

In chapter 5 we have determined a formula (5.45) for the differential conductance from the left
lead through the barrier and the gapped region to the right lead. With increasing bias voltage,
the chemical potentials of the two leads are symmetrically shifted away from the fixed chemical
potential of the superconductor that induces the gap, which is exactly at the energy around which
the gap is centered. A wide valley of zero-conductance is visible in the differential conductance
plots (left side of 7.3), with a width that corresponds to the gap in the density of states. For bias
voltages bigger than this gap the electrons on one side have an energy high enough to easily pass



CHAPTER 7. ZERO-BIAS PEAK AS EXPERIMENTAL SIGNATURE OF MFS 80

Figure 7.2: Figure from [Das et al., 2012] showing the measured differential conductance (y-axis)
over the bias voltage VSD (x-axis) for different external magnetic fields (vertical shift). Again, as
in figure 7.1, a zero-bias peak is visible for certain values of magnetic field (see zoomed in diagram
c on the right). The peak seems to be slightly split into two peaks around 0.
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Figure 7.3: Left side: Plot of the differential conductance calculated with the formalism developed
in chapter 5 with a clear zero-bias peak at Vg = 0. N = 200, f = 2.5, ∆ = 0.8.
Right side: Local density of states in the final setup show the relative size and position of the
gapped region and the QPC. The zero-bias peak appears since the Majorana state spreading from
the left side of the gapped region is stopped by the barrier and hence gets localized in between.

the barrier and not be affected by the gap, so the conductance outside of this valley is much bigger.
At zero-bias voltage in the center of the valley, a single, sharp peak is visible in figure 7.3.

This corresponds to the additional conductance caused by the Majorana fermion state we have
localized between barrier and SC region. This is the same kind of zero-bias peak in the middle of
a conductance valley as was seen in the measured experimental data in 7.1 ([Mourik et al., 2012,
Figure 2A]) and 7.2 ([Das et al., 2012, Figure 4b])! For figure 7.3 a system with N = 200 with a
potential barrier of height f = 2.5 (width 35 sites) and a superconducting gap centered around site
150 (width 40 sites, height ∆ = 0.8) is used. The LDoS is also plotted on the right, since it gives a
good visualization of the setup.

In the following, we will try to further analyze this peak by changing the parameters of the
system. In particular, we want to see how general the appearance of such a peak is for our model.
Maybe we can find out particular details that destroy the peak or make it more emphasized. Com-
paring such predictions with experiment could then further allow one to judge how well this model
agrees with the experimental results.

We have many possible parameters available to change our system. The four we will concentrate
on are the height and width of both the potential barrier and the gap in the gapped region. Another
one that at first glance seems very important is the distance between those two features, but it turns
out that the zero-bias peak shows no change for a wide range of distances, as is demonstrated in
figure 7.5, which shows that with a very different distance but all other parameters changed, the
conductance remains the same. For the remaining four parameters, the striking result is that there
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is a maximum height of the peak of 0.25 conductance quanta which can be reached almost always
by just keeping any three of them constant and tuning the last one. This is demonstrated in the
following table 7.1 showing a value of the four relevant parameters and the resulting zero-bias peak
height in the last column. All other parameters are chosen as for figure 7.3, so for all these choices
the LDoS and the conductance curve (apart from the peak height) look similar to the ones in the
plot. For further illustration the dependance of the gap height on the geometric parameters is shown
in figure 7.4.

Table 7.1: Influence of the geometric parameters of the QPC barrier and SC gap on the ZBP height.

gap width gap height potential width potential height zero-bias peak height
40 0.8 35 2.5 0.16
42 0.8 35 2.5 0.24
40 0.83 35 2.5 0.25
40 0.8 35 2.477 0.25
40 0.8 34 2.5 0.25

45 0.6 40 2.4 0.01
53 0.6 40 2.4 0.25
45 0.701 40 2.4 0.25
45 0.6 40 2.329 0.25
45 0.6 33 2.4 0.24

This is limited by the constrains one would expect, if either the barrier or gap are too short
or shallow then the remaining electron states begin to be able to tunnel through them with ease
and the conductance is no longer governed by the MFs. If on the other hand they get too wide the
conductance drops to zero. But for most of the in-between cases, the described easy tuning of only
one parameter to get a maximum peak height is possible, with the remaining limitation that the
barrier and gap width can only be changed by integer lattice sites and not smoothly in our model.
This is a promising result as it makes it nearly impossible for a device that behaves according to
the Kitaev model to not show traces of MFs as long as one of those four parameters is accessible
for tuning.

A double peak as seen in figure 7.2 can appear when two Majorana fermions are close to each
other and hybridize, moving their energies away from zero. This can be shown when we move the
potential barrier inside the gapped region, creating two additional normal-to-topological supercon-
ductor phase transitions in the gapped region which each carry a localized MF state close to each
other (figure 7.6).

Our conductance peaks in the setup of figure 7.3 appear to be sharp delta peaks and show no
inner structure, while the zero-bias peaks in the experimental papers have a finite width. We observe
that the conductance only happens at exactly the energy of the Majorana modes. This peak could
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Figure 7.4: Height of the zero-bias peak (y-axis) when one of the geometric parameters is changed
(x-axis) while leaving the other three to be constant at gap width 40, gap height ∆ = 0.8, potential
width 35 and potential height f = 2.5. The remaining system parameters are chosen as in figure
7.3.
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Figure 7.5: Decreasing the distance between the potential barrier and the gapped region by 50 sites
compared to figure 7.3 (LDoS plot on the right) while leaving all other system parameters the same
does not change the zero-bias peak (conductance plot on the left). It seems to be in general the
case that the potential barrier position relative to the gap is not an important parameter in this
setup.
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Figure 7.6: Double conductance peak away from zero (left plot) for a setup in which the potential
barrier lies inside the gapped region (see LDoS right plot) and the distance between the Majorana
states is short enough to allow for considerable hybridization.

be broadened either by a finite temperature or by hybridization between the Majorana fermions,
which corresponds to a greater overlap between the Majorana states and hence a finite lifetime.
We can observe the later effect when we decrease the gap width from figure 7.3 to only about 30
sites and choose fitting geometrical parameters to again see a peak in figure 7.7. The hybridization
moves the Majorana modes away from zero energy by about 6∗10−6t, so it is still small, but enough
to give the peak a structure when zoomed in to a bias voltage of order 10−8t (left side of figure 7.7).
As can be seen, the broadening from this effect is rather small. The experimental papers claim
their peak shapes to be consistent with the expected temperature broadening (see in particular
[Das et al., 2012] figure 6b and discussion as well as [Mourik et al., 2012] figure 3D), so that seems
to be the important effect here. As was mentioned in the derivation of our Green’s function in
chapter 5, we have made a zero-temperature assumption when treating the p-wave superconductor
term in (5.4), but for small temperatures it should still be a reasonable approximation. When we
turn on a finite temperature, the zero-bias peak does indeed broaden significantly in our model, as
can be seen in figure 7.8 with T = 30mK as in [Das et al., 2012].

The model we have developed so far is not limited to describing this particular setup which
shows MFs. Another idea that was tried is to connect the second lead not on the right end of the
central region, but to let the barrier and gapped region overlap and connect it weakly to the site
in which the Majorana fermion is localized. In this case the zero-bias peak will appear as well. A
drawback of such setups with the second lead connected not on the border is the “free hanging”
sites in the central region, a finite chain only connected at one side. States can enter this region
and reflect back, obscuring the results with their superposition which gets even more complicated
by a strong odd-even effect that appears - the conductance changes heavily depending on an odd
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or even number of sites in said “free hanging” region.

7.3 Conclusion and Outlook

We have begun by reviewing a tight binding model that allows for a system with explicit geometry in
form of quantum point contacts, first for spinless systems (chapter 2) and then temporarily extended
to spin-full systems in chapter 3. Besides the review of known results, we have in particular included
higher-order terms of the spin-orbit interaction in this thesis in section 3.6 and examined how and
why their effect is negligible compared to the lowest order terms that are usually considered.

The idea of Majorana fermions and the Kitaev model (chapter 4) as well as their special non-
Abelian exchange behavior (section 6.3) was reviewed. We introduced our ansatz of a p-wave
superconducting region to our model, giving us an extended Kitaev model which allows for explicit
geometric structures. To gain the Green’s functions and ultimately the differential conductance
through such a system, the Keldysh formalism was employed in chapter 5. Transitions between a
p-wave superconductor in topological phase and a normal conductor lead to the zero-energy modes
expected from the Kitaev model (compare figure 6.1 with no normal conducting leads and figure
6.4 with leads), but we observe that these zero-energy modes must be localized to contribute to the
conductance in form of a zero-bias peak (compare figure 6.5 and 7.3). In particular in a setup that
follows the experiments with a QPC next to the superconducting region, we get a conductance that
shows the features of the experiments: a wide conductance valley with a single peak at zero-bias
(compare experiment figure 7.1 and our model figure 7.3). Unlike the temperature broadened peak
in the experimental data, the zero-bias peak from our model has a width of exactly one data-point,
since we consider the zero temperature case and the only other effect that could widen this peak
is the hybridization of the two localized zero-energy states, which turns out to be very small and
comparable to the calculation precision unless the width of the gapped region is chosen to be very
short (figure 7.7). But we can use our model at least as an approximation for low temperatures and
then indeed see a broadening similar to the experimental data in figure 7.8.

Unexpectedly, we observed that the height of this peak strongly depends on the geometry of
the QPC in the following way. For a chosen width and height of the QPC barrier, the size of the
superconducting gap in form of its width and height has to be tuned accordingly (or the other way

around) to get a peak of the full height of 0.25 e
2

h . Generally, a bigger QPC barrier requires a bigger
gapped region for the system to develop the conductance peak (see table in section 7.2) and away
from those optimal parameters the conductance quickly drops.

Just like the experimental results, our model also requires careful fine tuning for the zero-bias
peak to appear. Although we do not understand the unexpectedly strong geometry dependence
of the zero-bias peak, its appearance in our geometry including Kitaev model of the experimental
setup is consistent with MFs being a correct interpretation of the experimental results.

The obvious next step for future calculations is to combine our considerations in chapter 3 with
our following calculations in chapter 5. The former of those introduced wires with a spin degree of
freedom while the later told us how to deal with a Hamiltonian containing superconducting terms.
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Together that allows us to make sense of an s-wave superconducting term

Hs-wave SC =
∑
j

(
∆cj↑cj↓ + ∆∗c†j↑c

†
j↓

)
(7.1)

which creates and destroys cooper pairs of electrons on the same site. So far we have only been
able to explicitly consider a p-wave superconducting term, since two electrons on the same site were
forbidden by Pauli exclusion principle.

Instead of arguing that an experimental setup following the outline in 4.2 should effectively
behave according to the Kitaev model, we could instead explicitly model the kind of wire that was
used in experiments (section 7.1) including the spin-orbit effects and external magnetic fields. This
would mean retracing the Green’s function and conductance formula calculation in chapter 5 with
explicit spin indices, making sure that all the steps are still valid. In the end we would gain a
new matrix we have to invert in formula (5.16) and (5.17). On top of that, we have so far always
used the rather crude approximation of independent electrons. Works on QPC indicate that the
interactions seem to have a big influence on the conductance shape (for example [Bauer et al., 2013]),
so including them into our model would be a natural extension. The basic idea for interactions would
be to use a method like functional renormalization group to capture their effect in an additional
self-energy matrix that has to be included when calculating the Green’s function.

All together, this would allow us to have a better understanding of and allow better predictions
about the fine tuning that was necessary in the experiments to get into a topological superconductor
phase containing Majorana fermions. It might then even be possible to compare the differential
conductance results not only qualitatively as we did in the previous section 7.2 but even quantita-
tively.
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(Kevin Jägering)

99


