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Quantum corrections to the polarizability and dephasing in isolated disordered metals
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We study the quantum corrections to the polarizability of isolated metallic mesoscopic systems using the loop
expansion in diffusive propagators. We show that the difference between connected (grand-canonical ensemble)
and isolated (canonical ensemble) systems appears only in subleading terms of the expansion, and can be
neglected if the frequency of the external field, ω, is of the order of (or even slightly smaller than) the mean
level spacing, �. If ω � �, the two-loop correction becomes important. We calculate it by systematically
evaluating the ballistic parts (the Hikami boxes) of the corresponding diagrams and exploiting electroneutrality.
Our theory allows one to take into account a finite dephasing rate, γ , generated by electron interactions, and it is
complementary to the nonperturbative results obtained from a combination of random matrix theory (RMT) and
the σ -model, valid at γ → 0. Remarkably, we find that the two-loop result for isolated systems with moderately
weak dephasing, γ ∼ �, is similar to the result of the RMT + σ -model even in the limit ω → 0. For smaller γ ,
we discuss the possibility to interpolate between the perturbative and the nonperturbative results. We compare our
results for the temperature dependence of the polarizability of isolated rings to the experimental data of Deblock
et al. [Phys. Rev. Lett. 84, 5379 (2000); Phys. Rev. B 65, 075301 (2002)], and we argue that the elusive 0D regime
of dephasing might have manifested itself in the observed magneto-oscillations. Besides, we thoroughly discuss
possible future measurements of the polarizability, which could aim to reveal the existence of 0D dephasing and
the role of the Pauli blocking at small temperatures.
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I. INTRODUCTION

Interference phenomena in mesoscopic electronic systems
require phase coherence, which is cut beyond the so-called
dephasing time τφ . At low temperatures T � 1 K, where
phonons are frozen out, dephasing is caused mainly by
electron interactions, which lead to a finite dephasing rate1

γ ≡ 1/τφ . In large systems with a small Thouless energy,
ETh � T , dephasing crucially depends on dimensionality and
geometry.2 However, if the system is finite and T � ETh,
spatial coordinates become unimportant and a 0D regime of
rather weak dephasing is expected to occur.3 This regime is
characterized by a universal temperature dependence of the
dephasing rate, γ0D ∼ �T 2/E2

Th, where � is the mean-level
spacing. This T dependence of γ can be explained by
simple power counting: Pauli blocking restricts the number
of available final scattering states of the electrons; therefore
both the energy transfer and the available phase space are ∝T ,
similar to the standard result for a clean Fermi liquid. However,
despite the fundamental nature and the physical importance
of 0D dephasing, attempts to observe it experimentally in
mesoscopic systems have been unsuccessful so far.

In transport experiments, the 0D regime is generally diffi-
cult to observe, since quantum transport is almost insensitive to
γ at T � ETh. For example, the weak localization correction
to the classical dc conductivity is cut mainly by the dwell time,
τdw � 1/γ0D; see Ref. 4 for a detailed discussion. This is an
unavoidable problem which occurs in any open system even if
the coupling to leads is weak.

In this work, we concentrate on interference phenomena in
isolated systems, where τdw → ∞ and where 0D dephasing
is not masked by the coupling to the environment. Deeply

in the 0D regime at γ � � , the spectrum of the isolated
system is discrete5,6 and, in the absence of other mechanisms
of dephasing, random matrix theory (RMT) can be used as
a starting point for an effective low-energy theory at E �
ETh.7,8 Unfortunately, RMT is not appropriate for a systematic
account of dephasing.

If one is interested in the (almost 0D) regime γ � �,
where the spectrum is not yet discrete, the usual mesoscopic
perturbation theory9 can be used, which is able to take into
account dephasing in all regimes. However, the description
of quantum effects in isolated systems provides a further
technical challenge. Namely, the usual perturbation theory
is well developed for a fixed chemical potential μ; i.e., it
describes systems in the grand-canonical ensemble (GCE).
Realizing the canonical ensemble (CE), where the number of
particles is fixed instead, can be rather tricky; see, e.g., Ref. 10.
In the following, we assume that a description in terms of the
so-called Fermi-level pinning ensemble introduced in Refs. 11
and 12 is applicable.13

The dephasing rate of an isolated mesoscopic system can
be explored, for instance, by measuring quantum components
of the electrical polarizability α at a given frequency ω:

α(ω) = d(ω) · E(ω)/|E(ω)|2. (1)

Here E is a spatially homogeneous electric field and d is the
total induced dipole moment in the sample.

Gorkov and Eliashberg studied the polarizability in the
seminal work Ref. 14 by using results from RMT and found
very large quantum corrections. Later, it was shown in Ref. 15
that the corrections are significantly reduced if screening is
taken into account correctly.16 Efetov reconsidered Gorkov and
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Eliashberg’s calculation in Ref. 17 and derived a formula which
accounts for screening in the random phase approximation
(RPA) and expresses the quantum corrections to α in terms of
correlation functions of the wave functions and energy levels
of the system. Noat et al.18 used a simple model supported by
numerical simulations to analyze the difference between the
GCE and the CE, and established that the quantum corrections
are always small for systems with a large dimensionless
conductance. Subsequently, Mirlin and Blanter8 studied the
polarizability using a combination of RMT and the diffusive
σ -model. In particular, they have calculated ω dependence of
α at ω � ETh for the case of the CE at γ = 0. Thus, neither
the temperature nor the magnetic field dependence of α has
been described until now.

Besides the progress made in theory, experimental mea-
surements of the quantum corrections have been reported in
Refs. 19 and 20. The authors measured the T dependence
of the polarizability of small metallic rings placed in a
superconducting resonator (with a fixed frequency ω) in
a perpendicular magnetic field and tried to extract the T

dependence of τφ by using an empirical fitting equation. A
fingerprint of 0D dephasing was found at low temperatures,
though a reliable identification of the temperature dependence
of τϕ calls for a more rigorous theory.

Motivated by the experimental results, we develop a
perturbative theory for the quantum corrections �α to the
polarizability by using the mesoscopic “loop expansion”
in diffusons and Cooperons, where γ plays the role of a
Cooperon mass. We have chosen the experimentally relevant
parameter range max(ω,γ ) � � . Generically, the difference
between the GCE and the CE can be important up to energies
substantially exceeding �; see the discussion in Ref. 10. To
check whether this statement also applies for �α, we calculate
leading and subleading corrections in the Fermi-level pinning
ensemble. The former corresponds solely to the one-loop
answer of the GCE while the latter includes the two-loop
answer of the GCE and additional terms generated by fixing
the number of particles in the CE. We show that within our
approach, the leading term of the perturbative expansion for
�α suffices for its theoretical description in the experimentally
relevant parameter range of Refs. 19 and 20. This important
result of the present paper allows us to find the dependence
of �α on temperature and on magnetic field. Our theoretical
results are in good qualitative agreement with the experiments,
though we show that the present experimental data are
not sufficient for a reliable identification of 0D dephasing.
We suggest repeating the experimental measurements with
higher precision and lower frequencies and using the fitting
procedures which we propose in the present paper. We have
good hopes that the elusive 0D regime of dephasing may be
detectable in this manner in the near future.

The rest of this paper is organized as follows:
Section II: We derive a general expression for the polariz-

ability as a functional of the density response function in the
RPA.

Section III: We calculate the leading quantum corrections
of the density response function for connected as well as
isolated disordered metals. This part of the paper is rather
formal and technical. Readers who are not interested in details
of the calculations can safely skip it, paying attention only to

our key results, which we list here. First, we derive the one-
and two-loop quantum corrections for the GCE which are
presented in Eqs. (17) and (18) of Sec. III A. A “naive” loop
expansion for the GCE suffers from a double-counting problem
of some diagrams which leads to a violation of the particle
conservation law (electroneutrality) accompanied by artificial
UV divergences. We suggest an algorithm of constructing the
diagrams which allows one to avoid all these problems. Our
method can be straightforwardly checked for the one-loop
calculations, see Fig. 2, and we extend it to the much more
cumbersome two-loop diagrams shown in Fig. 3. Second, we
calculate the leading diagrams which appear due to fixing the
Fermi level in the CE. Their contribution is given by Eq. (24)
of Sec. III B.

Section IV: We use the results from Sec. III to derive a
general equation for the quantum corrections �α.

Section V: We compare our findings to the results obtained
from a combination of the RMT and the σ -model. We
show that the diagrammatic result in the limit of a large
conductance, Eq. (30), qualitatively reproduces all features
of the nonperturbative answers for almost 0D systems at
0 � ω < ETh; see Fig. 7.

Section VI: We apply our results for �α to the ring
geometry, present a comparison with previous experiments,
and discuss possible future measurements which can reliably
confirm the existence of 0D dephasing.

II. POLARIZABILITY

The polarizability (1) is governed by the induced dipole
moment in the sample,

d(ω) =
∫

V

d3x [x · nind(x,ω)], (2)

where nind is the induced charge density. In the case of a good
metal, screening should be taken into account in the random
phase approximation (RPA), which results in the following
expressions for the Fourier transform of nind:21

nind(q,ω) = −2e2 χ (q,ω)

ε(q,ω)
φext(q,ω). (3)

Here φext(x,ω) = −E(ω) · x is the external electric potential,
ε(q,ω) = 1 − 2U (q)χ (q,ω) is the dielectric function, U is the
bare Coulomb potential, and χ is the density response function
per spin. By using the Kubo formula, χ can be expressed in
terms of the commutator of the density operators n̂:

χ (q,ω) = i

∫
V

d3x
∫ ∞

0
dt 〈[n̂(x,t),n̂(0,0)]〉e−i(qx−ωt). (4)

We assume spatial homogeneity of the system, which is
restored after disorder averaging.

Inserting Eqs. (2) and (3) in Eq. (1), we find the following
expression for the polarizability:

α(ω) = 2e2

|E(ω)|2
1

V

∑
q 
=0

φext(q,ω)
χ (q,ω)

ε(q,ω)
φext(−q,ω). (5)
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Note that the zero mode does not contribute to α because of
electroneutrality of the sample:

χ (q ≡ 0,ω) = 0. (6)

For a clean metal at ω � vFq (vF is the Fermi velocity), χ

is local and is given by the density of states at the Fermi level:

χ (q,ω → 0) = ρ0. (7)

The same equation holds true for a disordered (classical)
metal at ω � Dq2 (D is the diffusion constant); see Sec. III.
Equations (5) and (7) yield the “classical” polarizability α0 of
the disordered sample.

III. DENSITY RESPONSE FUNCTION

In this section, we consider the density response function
of the disordered metal which is needed to calculate the
polarizability, Eq. (5). We will start with the loop expansion
of the disorder-averaged χ in the GCE: χ |μ=const ≡ χμ. It
is relevant for the polarizability of the connected system.
Besides, the two-loop contribution to χμ is needed to study
the difference between the answers in the GCE and the CE.
The latter is described in the second part of the present section.

We consider only weakly interacting disordered systems at
small temperatures. The main role of the electron interaction is
to generate a finite T -dependent dephasing rate for Cooperons.
Therefore, we derive the density response function for the
noninteracting system at T = 0 and take into account γ (T )
at the end of the calculations.

A. Grand-canonical ensemble

Simplifying Eq. (4) for the noninteracting system at
T = 0 and fixed μ, χμ can be presented in terms of
retarded/advanced (GR/A) Green’s functions (GFs):9

χμ(x,y,ω) = −
∫ 0

−∞
dε

(
ρμ+ε(x,y)GA

μ+ε−ω(y,x)

+GR
μ+ε+ω(x,y)ρμ+ε(y,x)

)
. (8)

Here we have introduced the spectral function (or the nonlocal
density of states):

ρε(x,y) ≡ i

2π

[
GR

ε (x,y) − GA
ε (x,y)

]
. (9)

In the presence of a random Gaussian white-noise disorder
potential V (x) with correlation function

V (x)V (y) = 1

2πρ0τ
δ(x − y), (10)

the disorder-averaged GFs are given by

G
R/A

ε (k) = 1

ε − εk ± i/2τ
, (11)

where τ is the impurity scattering time and εk is the particle
dispersion relation.

The disorder average of Eq. (8) can be calculated with the
help of the usual diagrammatic methods,1 which yield the loop
expansion:

χμ(q,ω) = χ0(q,ω) +
∑

j

δχ
(j )
GCE. (12)

FIG. 1. (a) One-loop correction to the density response function
in the GCE. Retarded (advanced) GFs are denoted by solid (dashed)
lines. Impurity lines, corresponding to the correlation function (10),
are denoted by dotted crossed lines. Diffusive propagators are
represented by wavy double lines. They denote impurity ladders
between the corresponding GFs of opposite retardation either in the
particle-particle (Cooperon, Pc) or in the particle-hole (diffuson, Pd )
channel. (b) and (c) Dressed 4- and 6-point Hikami boxes which
include diagrams with one or two additional impurity lines connecting
GFs of the same retardation.

Here j is the number of loops built from impurity ladder
diagrams which include ladders in the particle-hole channel
(diffuson propagators) or in the particle-particle channel
(Cooperon propagators). The leading (classical) term is well
known:1

χ0(q,ω) = ρ0
Dq2

Dq2 − iω
. (13)

It obeys the fundamental requirement of electroneutrality,
Eq. (6), and reduces to Eq. (7) at ω � Dq2.

The leading quantum correction δχ
(1)
GCE describes the

weak-localization correction to the diffusion constant22 and,
therefore, is also well known. Nevertheless, we would like to
recall the basic steps of its derivation, which will be important
to find the more complicated subleading term δχ

(2)
GCE.

The one-loop diagram, which yields δχ
(1)
GCE, is shown in

Fig. 1(a). It includes two diffuson propagators Pd and one
Cooperon propagator Pc, which are given by

Pd (q,ω) = 1

Dq2 − iω
, Pc(Q,ω) = 1

DQ2 − iω + γ
. (14)

The (ballistic) part of the diagram which connects the diffusive
propagators is known as a 4-point Hikami box.23 It consists
of three diagrams of the same order in (εFτ )−1 shown in
Fig. 1(b) and labeled by {0}, {A}, and {B}, which are obtained
by inserting additional impurity lines between GFs of the
same retardation (“dressing” the Hikami box). The Hikami
box should be calculated by expanding the GFs in each of the
three diagrams in the transferred momenta and energies. A
direct summation of the three diagrams gives

H
(direct sum)
4 = 4πρ0τ

4[Dq2 + DQ2 − iω]. (15)

The second and third terms in parentheses are manifestly
incorrect as they violate electroneutrality, Eq. (6), and lead to
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an unphysical UV divergence in δχ
(1)
GCE. The incorrect terms

originate from a double-counting problem: The diagram with
a single impurity line, which contributes (via the diffuson)
to the classical result of Eq. (13), is also included in the
quantum correction δχ

(1)
GCE via the Cooperon attached to

the “undressed” part of the Hikami box—the empty square
{0}. One can eliminate unphysical UV divergent diagrams
in the framework of the nonlinear σ -model by choosing an
appropriate parametrization of the matrix field.24,25 How-
ever, to the best of our knowledge a consistent procedure
of their elimination in the framework of straightforward
diagram techniques was not described in literature. As this
is rather important for any calculation beyond the one-loop
order, we give a detailed description of such a procedure
below.

To avoid the double counting, the Cooperon ladder of
Fig. 1(a) should start with two impurity lines when attached
to the undressed box, while it should still start with one
impurity line when attached to the dressed box. Thus, there
is an ambiguity in the independent definition of the Hikami
boxes and the ladder diagrams. We suggest a general algorithm
which allows us to overcome this ambiguity and generate all
properly dressed Hikami boxes obeying electroneutrality.25,26

FIG. 2. (a) The “skeleton diagram,” which we use to generate the
dressings {A} and {B} of the Hikami box shown in Fig. 1(b). The
arrows with labels {A} and {B} indicate how the (diffuson attached)
external vertex has to be moved to generate the corresponding dressed
boxes. (b) The resulting diagrams with the undressed, {0}, and two
dressed boxed can be summed up directly, since no double-counting
problem appears. To leading order in the transferred momenta and
energies, (Dq2τ,DQ2τ,ωτ ) � 1, the sum of the three diagrams in (b)
is 4πρτ 4Dq2. (c) Dressing the Hikami box by moving the external
vertex guarantees that the answer vanishes at q → 0, since the 3
diagrams either cancel each other exactly (at any Q and ω), or are
small in this limit. This can be seen immediately after using the
identity (16) and redrawing the boxes {0}, {A}, and {B} as the 6
diagrams shown in the last line.

Let us consider the 4-point Hikami box shown in Fig. 2(a)
to illustrate the method. Figure 2(a) is obtained from Fig. 1(a)
by “borrowing” two impurity lines to the undressed Hikami
box from the attached Cooperon. We use this undressed box in
Fig. 2(a) as a “skeleton diagram” which generates the dressings
{A} and {B} of Fig. 1(b) by moving one of the external vertices
(with diffuson attached) past one of the borrowed impurity
lines. Two possible movements of the left external vertex are
indicated by arrows with labels {A} and {B} in Fig. 2(a).
Figure 2(b) shows all three components of the fully dressed
Hikami box: two generated boxes, {A} and {B}, and the
undressed box, {0}, where the external vertex is not moved.
Dressing the Hikami box in this way removes the ambiguity,
since all the Cooperon ladders attached to each of the
boxes start with two impurity lines, thus avoiding the double
counting. Furthermore, using the identity26

G
R

ε+ω(k + q)G
A

ε (k)
q→0−→ iτ

1 − iτω

[
G

R

ε+ω(k) − G
A

ε (k)
]
,

(16)

we illustrate in Fig. 2(c) that in the limit q → 0 the generated
diagrams automatically cancel each other [to leading order in
(εFτ )−1 � 1] at any Q and ω, thus ensuring electroneutrality
and the absence of the UV divergence.

Summing up the 3 diagrams drawn in Fig. 2(b) and using
the resulting expression to calculate the diagram shown in
Fig. 1(a), we obtain the well-known result22

δχ
(1)
GCE(q,ω) = 1

πV

Dq2iω

(Dq2 − iω)2

∑
Q

Pc(Q,ω). (17)

Note that δχ
(1)
GCE/χ0 ∼ O(�/ max(ω,γ )), where � ≡ 1/

(ρ0V ). Thus, Eq. (17) describes the dominating quantum
correction to χμ if max(ω,γ ) � �.

To calculate the subleading quantum corrections, one has to
consider the two-loop diagrams shown in Fig. 3, which contain
momentum sums over diffuson or Cooperon propagators,
or both. Thus, their contribution is subleading in either
(�/ max(ω,γ )), (�/ω), or (�/Dq2). Note that the diagrams
containing only diffusons are not relevant for the experiments,
since they are magnetic field independent. We have used the
algorithm described above to calculate the 4-point Hikami-
boxes H

(a)−(g1)
4 of Fig. 3 avoiding double counting and

maintaining electroneutrality, Eq. (6). The “inner” Hikami
box of Fig. 3(g), H

(g2)
4 , is of a different nature because it is

connected to two internal Cooperons. Nevertheless, the same
double-counting problem appears and can be overcome with
the help of dressing this box by moving the vertices with
the attached Cooperons. As a result, electroneutrality does
not necessarily apply for H

(g2)
4 , which is reflected by its γ

dependence; see the next paragraph. Besides, the diagrams
shown in Figs. 3(b)–3(d) contain 6-point Hikami boxes. Their
dressing is more subtle because of two issues; see the example
shown in Fig. 4, which corresponds to the Hikami box
H

(b)
6 of Fig. 3(b). First, starting with the undressed diagram

and moving vertices into the attached diffusons, one cannot
generate all required 15 dressings shown in Fig. 1(c). Instead,
only 8 dressings can be obtained for the 6-point Hikami box; cf.
Fig. 4(a). That problem can be solved by considering two more
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FIG. 3. Diagrams contributing to the two-loop correction
χ

(2)
GCE. Answers for the Hikami boxes read H

(a,g1)
4 = Dq2, H

(b,c)
6 =

−τ 2Dq2, H
(d1,d2)
6 = 0, H

(e1)
4 × H

(e2)
4 = {D[q(q + Q1 + Q2)]}2,

H
(f1)
4 × H

(f2)
4 = H

(f3)
4 × H

(f4)
4 = 2D2(qQ1)(qQ2), and H

(g2)
4 = D

(Q1
2 + γ /D); see the main text for details. Here D = 4πρτ 4D.

“skeleton diagrams” with one, Fig. 4(b), and two, Fig. 4(c),
additional impurity lines between GFs of the same retardation.
All of the missing dressings can be obtained by applying the
above described algorithm similar to Fig. 4(a). Second, by
moving the vertices of the diagrams in Figs. 4(b) and 4(c)
new diagrams of the same order in (εFτ )−1 � 1 are generated,
which look like products of two dressed or undressed 4-point
Hikami boxes with a few-impurity ladder in between. Several
examples are highlighted by gray boxes in Figs. 4(b) and 4(c).
It is not a priori clear whether such diagrams belong to the
diagram shown in Fig. 3(b) or Fig. 3(e). However, keeping
them only in the diagram Fig. 3(b) allows us to maintain the
electroneutrality in all two-loop diagrams. The total result for
H

(b)
6 is obtained by summing 40 generated diagrams. The 6-

point Hikami boxes of Figs. 3(c) and 3(d) can be calculated
analogously.

Before presenting the final answer, we would like to discuss
how to reinstate the finite dephasing rate in the equations.
First, γ must be included as a mass term in all Cooperon
propagators. Second, when calculating the Hikami box H

(g2)
4

of Fig. 3(g), only the number of coherent modes has to be
conserved. The latter is in contrast to all other Hikami boxes,

FIG. 4. Dressing of the 6-point Hikami box of Fig. 3(b) using the
algorithm introduced in Fig. 2. (a) Only 8 of the 15 dressings are
generated by moving the vertices. The other dressings are generated
by adding one (b) or two (c) impurity lines, followed by repeating the
procedure. This algorithm also generates products of 4-point Hikami
boxes, indicated by a gray box. Summing up all 40 diagrams yields
−12πρτ 6Dq2.

which obey the usual electroneutrality condition, i.e., the
conservation of the total number of particles. Hence, H

(g2)
4

is the only Hikami box of the two-loop calculations which is
sensitive to dephasing of the Cooperons. This statement can
be checked directly with the help of the model of magnetic
impurities. Introducing a slightly reduced scattering rate for
all elastic collisions in the particle-particle channel, 1/τ →
1/τ − γmi, where γmi � 1/τ , and keeping 1/τ for collisions
in the particle-hole channel, we observe that the Cooperon
acquires the mass γmi since magnetic scattering breaks time-
reversal symmetry. Hence, magnetic scattering rate is similar
to the dephasing rate; they both provide consistent infrared
cutoffs for Cooperons. Applying the algorithm described
above, we find that, among all the two-loop diagrams in Fig. 3,
the rate γmi appears only in the expressions for Cooperons and
in the Hikami box H

(g2)
4 . In the latter case, it leads to changing

DQ1
2 to DQ1

2 + γmi. Using the analogy between magnetic
scattering and dephasing, we conclude that γ enters H

(g2)
4 in

the same way.
Omitting lengthy and tedious algebra which will be

published elsewhere, together with a detailed proof of the
validity of our method and an analysis of the IR cutoff in
systems with magnetic impurities, the answer for δχ

(2)
GCE
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reads

δχ
(2)
GCE(q,ω) = 1

(2π )2ρ0V 2

2iωDq2

(Dq2 − iω)2

∑
Q1,Q2

[
Pc(Q1,ω)Pc(Q2,ω)

(
Dq2 + iω

Dq2 − iω
+ 4D(qQ1)(qQ2)/q2

D(q + Q1 + Q2)2 − iω

)

+Pd (Q1,ω)Pd (Q2,ω)

(
2D[q(q + Q1 + Q2)]2/q2

D(q + Q1 + Q2)2 − iω
− 1

)
+ Pc(Q1,ω)Pd (Q2,ω)(2 + 2iω Pc(Q1,ω))

]
. (18)

To conclude this section, we would like to note that
our method of dressing the Hikami boxes goes far beyond
the initial ideas of Ref. 26. It is a very powerful and
generic working tool which can be extended to even more
complicated diagrams, including higher loop corrections, and
nontrivial physical problems. For example, our method can
be straightforwardly used to describe mesoscopic systems in
the ballistic regime; cf. Ref. 27. Therefore, the diagrammatic
approach presented above is complimentary to the diffusive
nonlinear σ -model which fails to yield ballistic results.
One can invent alternative diagrammatic tricks which help
to avoid the complexity of the Hikami boxes with scalar
vertices. For instance, the density response function can
be obtained by calculating the current response function
(averaged conductivity) first and then using the continuity
equation. In the latter approach, the dressed scalar vertices are
replaced by undressed vector ones, which greatly simplifies
the calculation.28 However, this method cannot describe the
full q dependence of χ , which is crucial for the polarizability.
We have checked that both approaches give the same results
in the small-q limit.

B. Canonical ensemble

In this section, we study the disorder average of the density
response function χ in the CE, where the number of particles
N is fixed in each sample. Let us first discuss the properties of
the statistical ensemble which corresponds to the experimental
measurements of the polarizability, such as the experiment
discussed in Sec. VI. We are mainly interested in the behavior
close to the 0D regime, where due to τϕ � 1/ETh, there is
no self-averaging. Instead, the disorder average is usually
realized by an ensemble average. The samples from the
ensemble differ in impurity configuration and can have slightly
different particle number. At T = 0 (in the ground state) all
single-particle levels below the Fermi level εF are occupied.
However, one cannot fix εF for the whole ensemble due to
randomness of the energy levels and due to the fluctuations
of N from sample to sample. This can be taken into account
by introducing an εF which fluctuates around the typical value
μ0 (Ref. 11); μ0 fixes the mean value of N in the entire
ensemble. It has been shown that such ensembles of isolated
disordered samples with fluctuating εF can be described by the
so-called Fermi-level pinning ensemble,11,12 which is realized
as follows: (i) The Fermi energy is pinned to an energy level
εk, such that εF = εk + 0. (ii) The level εk is sampled from
a weight function P (εk), which is centered at μ 0 and is
normalized:

∫
P (ε)dε = 1. The support of P (εk) should be

much smaller than μ 0 but much larger than �. The correlations
resulting from fixing N in the given sample are subsequently

reduced to the additional correlations induced by disorder with
the help of the following procedure: The expression for the
density response function averaged over the fluctuating Fermi
energies and over disorder reads

χ (q,ω) = 1∑
k P (εk)

∑
k

P (εk)χεk (q,ω) . (19)

In Eq. (19) we have assumed that the numerator and denom-
inator can be averaged over disorder independently; see the
discussion in Ref. 11. Since the averaged density of states
depends only weakly on disorder9 and is almost constant on
the support of P , the denominator of Eq. (19) can be simplified

∑
k

P (εk) = V

∫ +∞

−∞
dE P (E)ρE ≈ ρ0V. (20)

Inserting Eqs. (8) and (20) into Eq. (19), we find the disorder-
averaged density response function in the CE:

χ (q,ω) = 1

ρ0

∫ +∞

−∞
dE P (E)ρE χE(q,ω) = χμ + δχCE.

(21)

The loop expansion of χμ was calculated in the previous
section. The quantity δχCE describes additional contributions
resulting from fluctuations of εF. It is governed by the
irreducible part of the integrand:

δχCE ≡ 1

ρ0

∫ +∞

−∞
dE P (E)(ρE χE(q,ω) − ρE χE(q,ω))

 1

ρ0
(ρE χE(q,ω) − ρ0 χE(q,ω)). (22)

In Eq. (22), we have assumed that the disorder-averaged
quantities are (almost) independent of the absolute values of
the particle energies. As a result, the exact form of the weight
function P (εk) is not important. Let us now derive the leading
contribution to δχCE .

Diagrammatically, the additional factor ρE in Eq. (22) is
represented as a closed fermionic loop with a vertex between
two (disorder averaged in further calculations) GFs which
have the same retardation, energy, and momentum; see Fig. 5.

FIG. 5. Diagrammatic representation of the term ρE χE(q,ω)
from Eq. (22) before impurity averaging; cf. Eqs. (8) and (9).
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FIG. 6. One-loop diagrams which contribute to the disorder-
averaged δχCE , Eq. (22), before taking the derivative ∂/∂λ; cf.
Eq. (23). Both 4-point Hikami boxes in (a) are given by H

(CE)
4 =

2πρ0τ
4(Dq2 − iω).

Following Ref. 29, we greatly reduce the number of possible
diagrams in Eq. (22) by generating this vertex with the help of
an additional energy derivative:

G
R/A

ε (k)2 = − lim
λ→0

∂

∂λ
G

R/A

ε+λ (k). (23)

After disorder averaging, we find two types of one-loop
diagrams which contribute to δχCE , see Fig. 6: (i) The
diagrams in Fig. 6(a) are obtained by pairing the closed
loop with the GRGA terms of χE (first term of the second
line of Fig. 5); (ii) the diagrams of Fig. 6(b) result form
pairing with the GRGR/GAGA terms (second and third term).
Furthermore, 4 more diagrams can be constructed where
Cooperon propagators are replaced by diffuson ones.

The double-counting problem does not appear in the
diagrams in Fig. 6(a), which contain 4-point Hikami boxes.
Therefore, the method which we used for the GCE diagrams
is not needed here. The only subtle issue in their calculation is
that the diagrams are small if the closed loop, ρE , is connected
to the bubble, χE , by only one single impurity line. Thus,
at least two such connections must be taken into account
either in the ladder (which starts then from two impurities)
or in the ladder (which can start from one impurity) and the
particular dressing of the Hikami box which connects ρE to
χE . Furthermore, the 4-point Hikami box in Fig. 6(a) does
not acquire a dependence on dephasing rate γ , which can be
checked with the help of the model of magnetic impurities
discussed before Eq. (18). As a result, γ has to be included
only as a mass term in the connected Cooperon.

Summing up all parts and calculating the auxiliary deriva-
tive, Eq. (23), we obtain the one-loop answer for δχCE :

δχ
(1)
CE(q,ω) = 2

(2π )2ρ0V 2

×
∑

α=c,d

∑
Q

[
iω

Dq2 − iω
Pα(Q,ω)Pα(Q,0)

+Pα(Q + q,ω)Pα(Q,0)

]
. (24)

Electroneutrality is restored in Eq. (24) after summing all
the diagrams of Fig. 6. Thus, all contributions, Eqs. (17),
(18), and (24), obey the electroneutrality condition; therefore,
χ (q = 0,ω) = 0.

Note that the one-loop contribution δχ
(1)
CE , Eq. (24), is of the

same order in (�/ max(ω,γ )), (�/ω), or (�/Dq2) as the two-
loop contribution δχ

(2)
GCE , Eq. (18). As a result, the differences

between GCE and CE disappear at large frequencies ω � �,
in agreement with Ref. 18. At smaller frequencies and weak
dephasing, max(ω,γ ) � �, δχ

(2)
GCE is needed to analyze the

difference between the GCE and the CE for energies of the
order of O(�). In the following, we will often refer to
δχ

(1)
GCE as the result from “first-order” perturbation theory,

and δχ
(1)
GCE + δχ

(2)
GCE + δχ

(1)
CE (or δχ

(1)
GCE + δχ

(2)
GCE) as the

result from “second-order” perturbation theory for isolated
(or connected) systems.

IV. QUANTUM CORRECTIONS
TO THE POLARIZABILITY

The quantum corrections to α can be found after inserting
the decomposition χ = χ0 + δχ into Eq. (5) and expanding
the density response function in the RPA, χ/ε, in δχ . Note
that the latter can contain δχ

(1,2)
GCE and δχ

(1)
CE depending on the

ensemble which we consider and on the accuracy of the loop
expansion. This expansion up to terms of order O(δχ )2 yields

χ (q,ω)

ε(q,ω)
≈ χ0(q,ω)

ε0(q,ω)

[
1 + 1

ε0(q,ω)

δχ (q,ω)

χ0(q,ω)

+ 1 − ε0(q,ω)

ε0(q,ω)2

(
δχ (q,ω)

χ0(q,ω)

)2]
, (25)

where ε0(q,ω) = 1 − 2U (q)χ0(q,ω). To separate the fre-
quency dependence due to classical diffusive screening from
the frequency dependence of the quantum corrections, it is
convenient to rewrite Eq. (25) as follows:

χ (q,ω)

ε(q,ω)
≈ ρ0S(q,ω)

[
1 + 2

S(q,ω)

g(|q|−1)
F (q,ω)

+ 8 U (q)χ0(q,ω)
S(q,ω)2

g(|q|−1)2
F (q,ω)2

]
. (26)

Here we have introduced two dimensionless functions:

S(q,ω) ≡
(

1 − 2U (q)ρ0 − iω

Dq2

)−1

, (27)

which describes classical diffusive screening, and

F (q,ω) ≡ (Dq2−iω)2

Dq2 πV δχ (q,ω), (28)

which describes the quantum corrections to χ . g(L) denotes
the dimensionless conductance of a diffusive system of size L:

g(L) ≡ 2π ETh(L)/�, ETh(L) = D/L2. (29)

Equations (26)–(28) together with Eqs. (17), (18), and (24) are
the first major results of this paper. The quantum corrections
�α are obtained by substituting the terms ∼F and ∼F 2 of
Eq. (26) into Eq. (5) and summing over q. We remind the reader
that the zero mode does not contribute to the polarizability due
to electroneutrality χ (0,ω) = 0 and, therefore, we can assume
|q| 
= 0 in Eq. (26). The typical momenta which govern the
sum in Eq. (5) are |q| ∼ 1/L since the external potential φext
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varies on the scale of the sample size L. But we will keep q
below for generality.

V. COMPARISON TO RMT + σ -MODEL

Let us now compare the results of our perturbative cal-
culations with those of Ref. 8 which are obtained from a
combination of the RMT approach and the nonlinear σ -model.
The latter will be referred to as “RMT + σ -model.” This
comparison requires an assumption ETh(L) � max(�,ω,γ )
which in particular means g(L) → ∞. In this limit, the term
∼F 2 in Eq. (26) acquires an additional smallness [which
can be estimated as O(1/g(L))] and can be neglected while
the term ∼F 1 becomes independent of q. Next, we keep
only the zero-mode contributions in all sums over internal
momenta in the expressions for χ

(1,2)
GCE and δχ

(1)
CE and consider

the difference of F calculated for unitary and orthogonal
ensembles: δBF (ω) = F (ω,B → ∞) − F (ω,0), where B is
the strength of an external magnetic field. The terms which
contain only diffusons are canceled in δBF .

Using Eqs. (17), (18), and (24), we obtain

δBF (ω,g → ∞) = − iω

γ − iω︸ ︷︷ ︸
δχ

(1)
GCE

− �

2π

[
iω − 2γ

(γ − iω)2︸ ︷︷ ︸
δχ

(2)
GCE

+ 2γ

γ (γ − iω)︸ ︷︷ ︸
δχ

(1)
CE

]
.

(30)

Subscripts under the braces explain the origin of the corre-
sponding terms. The last term must be taken into account
only in the CE. The counterpart of Eq. (30) obtained from
RMT + σ -model in Ref. 8 reads:

RMT + σ : δBF (ω)

= 1 +
∫ ∞

+0

dε

�

(
1

ε − ω
+ 1

ε + ω

)

×
[ CE︷ ︸︸ ︷

ε δBR2(ε)︸ ︷︷ ︸
GCE

+�δBR2(ε) +
∫ ε−0

+0
dε1 δBR̃3(ε,ε1)

]
.

(31)

Here R2,3 are the usual (dimensionless) two- and three-level
spectral correlation functions, R̃3(ε,ε1) = R3(ε,ε1) − R2(ε) ,
and δBR2,3 denotes the difference of the correlation functions
without and with time-reversal symmetry. We have marked in
Eq. (31) the relevance of different terms for the GCE and the
CE.

We remind the reader that the RMT + σ -model results
are valid for γ = 0 and cannot straightforwardly describe
a γ dependence, while our perturbative result, Eq. (30),
is valid only if � � max(γ,ω). To resolve this issue,
one should set in Eq. (30) γ ∼ �. Equation (30) yields
δBF (ω → 0,g → ∞) = �/(πγ ) for the GCE. Therefore,
we have chosen γ = �/π to ensure the correct limit
δBF (ω → 0,g → ∞)

∣∣
GCE

= 1.
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FIG. 7. (Color online) The quantum corrections to the polarizabil-
ity in the limit ETh(L) � max(�,ω,γ ) for the GCE (upper panel)
and the CE (lower panel). We compare real (solid lines) and imag-
inary (dashed lines) parts the function δBF obtained from second-
order perturbation theory, Eq. (30), and from the RMT + σ -model,
Eq. (31).

The comparison of the results obtained from RMT + σ -
model and from the perturbative calculations are shown in
Fig. 7 for the GCE and the CE. Apart from the oscillations
in the RMT + σ -curves, whose origin is nonperturbative,
the agreement is excellent. The asymptotic limits are fully
recovered in the perturbative calculations: (i) δBF (ω � �,

g → ∞) → 1 for the both ensembles; (ii) δBF (ω → 0,

g → ∞) → 0 in the CE due to cancellation of δχ
(2)
GCE and

δχ
(1)
CE . The latter property of the CE holds true at any γ in

first- and second-order perturbation theory. In the GCE, on the
other hand, the quantum corrections remain finite for ω → 0 in
second-order perturbation theory, [30] in full agreement with
the nonperturbative results of Ref. 8.

We conclude this section by noting that the perturbation
theory is able to reproduce the results of the RMT + σ -model
with good qualitative agreement, which is the second major
result of our work.

VI. POLARIZABILITY OF AN ENSEMBLE OF RINGS

The experiments described in Refs. 19 and 20 were done
on a large number of disordered metallic rings. The rings
were etched on a 2D substrate and were placed on the
capacitative part of a superconducting resonator, where a
spatially homogeneous in-plane electric field E(ω) acted on
them. In terms of the coordinate along the ring, x ∈ [0,2πR],
where R is the ring radius, the external electric potential of this
field is φext(x,ω) = |E(ω)|R cos(x/R) + φ

(0)
ext, and its Fourier

transform reads

φext(q,ω) = −|E(ω)|R2π [δq,1/R + δq,−1/R] + φ
(0)
ext · δq,0.

(32)
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The constant shift of the potential φ
(0)
ext does not contribute to

the polarizability. Therefore, the sum in Eq. (5) involves only
two modes, q = 1/R and q = −1/R, which yield

α(ω) = 4e2

|E(ω)|2
1

2πR
φ2

ext(q,ω)
χ (q,ω)

ε(q,ω)

∣∣∣∣
q=1/R

= 2πe2R3 χ (1/R,ω)

ε(1/R,ω)
. (33)

In Eq. (33), we have taken into account the symmetry of the
summand under the inversion q → −q.

The Coulomb potential in quasi-1D is given by

U (q) = 2e2 ln(|qW |), |qW | � 1, (34)

where W � R is the width of the ring. Inserting Eq. (34) into
Eq. (27), we find the screening function of the quasi-1D ring
at q = 1/R:

S(1/R,ω) =
(

1 + (κW ) ln(R/W )/π − iω

ETh(R)

)−1

(35)

κW�1≈ π

(κW ) ln(R/W )
≡ S0 � 1. (36)

We have introduced the 2D Thomas-Fermi screening vector,
κ = 4πe2ρ0/W with ρ0 being the quasi-1D density of states,
see e.g. Ref. 9, and assumed sufficiently strong screening,
κW � 1, such that S reduces to the ω-independent constant
S0. This agrees with the experiment where one can estimate
(κW ) ln(R/W ) ≈ 18. Therefore, we focus below only on the
limit of strong screening. Note that in this limit, the product
U (1/R,ω)S(1/R,ω) can be also simplified:

U (1/R,ω) S(1/R,ω) ≈ −1/2ρ0. (37)

The classical part of the polarizability comes from inserting
the leading term of the expansion (26) into Eq. (33):

α0  2πe2R3 ρ0S0 = πR3

2 ln(R/W )
. (38)

Using Eqs. (13) and (37) in Eq. (26), and inserting the
result into Eq. (33), we obtain the quantum corrections to
the polarizability up to the term ∼(F/g)2:

�α(ω)

2S0α0
≈ F (R−1,ω)

g(R)
− 2

ETh(R)

ETh(R) − iω

(
F (R−1,ω)

g(R)

)2

.

(39)

Let us regroup the terms in Eq. (39) to single out the terms of
first- and second-order perturbation theory:

�α(ω)

2S0α0
≈ 1

g(R) (F
(1)(1/R,ω) + F (2)(1/R,ω)) (40)

with

F (1)(1/R,ω) = (2π2R)
[ETh(R) − iω]2

ETh(R)
δχ

(1)
GCE(1/R,ω)

(41)

and

F (2)(1/R,ω) = (2π2R)
[ETh(R) − iω]2

ETh(R)

× (
δχ

(2)
GCE(1/R,ω) + δχ

(1)
CE(1/R,ω)

)
+ 2

g(R)
(2π2R)2 [ETh(R) − iω]3

ETh(R)

× (
δχ

(1)
GCE(1/R,ω)

)2
. (42)

We emphasize that all three parts of the density response
function, δχ

(1,2)
GCE and δχ

(1)
CE , are generically important for the

theoretical description of the experimental data with the help
of Eq. (40) if the rings are isolated. Having obtained Eqs. (17),
(18), and (24) [and Eq. (30) for the limit g → ∞] and
Eqs. (39)–(42), we are now in the position to analyze different
options to fit the experimental data. References 19 and 20
focused on the T dependence of the real part of the quantum
corrections; thus, in the following we will concentrate on
Re�α.

The crossover to 0D dephasing occurs when γ decreases
below �. We expect that the ideal parameter range to study
this crossover experimentally in the CE is ω < � < ETh.
However, it is important that the conductance should be only
moderately large, since �α is suppressed in the case of
extremely large g, cf. Eq. (39); and the frequency should not be
too small, since the quantum corrections to the polarizability
of isolated systems are suppressed in the static limit, see
Fig. 7. Let us first discuss our general expectations for this
parameter range, which are illustrated in Fig. 8. The simplest
regime is 1 � γ /� � g where the loop expansion can be
justified and the difference between the GCE and the CE is
negligible. Keeping only the leading term, we obtain a power
law for the dependence of �α on γ . This power law can
be derived straightforwardly after noting that, in the range
(γ,ω)/� � g, one can use the approximation Eq. (30) and
find Re�α ∼ ReδBF (ω) ∼ ω2/γ 2 for ω � γ .

The subleading terms, which in particular describe the
difference of the GCE and the CE, are able to improve
the theoretical answer for γ being slightly smaller than
�. However, ReδBF (2) (and, correspondingly, the difference
between the ensembles) is small at any γ for moderately
small frequencies; see the example ω = 0.4� in Fig. 9.
Therefore, δBF (1) suffices to fit the experiment at ω �
0.4�. The T dependence of �α saturates to the value
predicted by the RMT+σ -model at γ � ω which makes the
range of pronounced 0D dephasing (ω � γ � �) too narrow
even at ω  0.4�; thus, smaller frequencies are needed. Of
course, the perturbation theory is no longer valid if both
ω and γ are small. In particular, when F (2) becomes of
order of F (1) it can lead to changing the overall sign of
ReδB(F (1) + F (2)); see the cut of the lines in Fig. 8 marked
“pert. theory breaks down”. We believe that this sign change
is unphysical and, moreover, it contradicts the prediction of
the RMT + σ -model. Nevertheless, our calculations show that
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FIG. 8. (Color online) Comparison of perturbative first-order,
δBF (1), second-order, δBF (1) + δBF (2), and interpolated (to the
RMT + σ -model limit) results for the quantum corrections to the
polarizability in the parameter range ω < � < ETh.

the power law, which is obtained in the perturbative region
from the leading correction, can be extended well into the
nonperturbative region ω � γ � �. This provides us with the
unique possibility to detect the crossover to 0D dephasing
directly from the amplitude of �α. It is in sharp contrast to the
quantum corrections to the conductivity, which always saturate
at γ � �.4,31

Let us illustrate our unexpected statement with the help of
Fig. 8: We know the exact value of �α in the limit γ → 0 from
the RMT + σ -model and the correct behavior of �α for γ

being of order of (and slightly below) �. Using these reference
points, one can interpolate the dependence δα(γ ) for the
whole region 0 < γ � �. Since the slope of the interpolated
curve is only slightly different from the perturbative one
for γ � 0.3�, the leading answer of perturbation theory
can be used to detect the crossover to 0D dephasing. If the
range γ � 0.3� is not sufficient for unambiguously fitting the
experiment, the whole interpolated curve can be used instead.

The authors of Refs. 19 and 20 used a superconducting res-
onator with fixed frequency ω  0.2�  17 mK to measure
�α(T ) of the rings. In the following we will apply our theory
to explain the experimental results of these papers. We note that
the qualitative difference in the slope of the curves obtained
from the three options for fitting—(i) the interpolated curve,
(ii) the result of second-order perturbation theory, and (iii) the
leading perturbative result—becomes rather insignificant at
ω  0.2� and γ � 0.3�; see Fig. 9(a). The main difference
between (i) and (iii) is that the saturation originates at slightly
larger γ than the leading perturbative result would suggest.
Thus we can safely keep F (1) and neglect F (2) to fit the data,
which makes our task simpler.32

0.001

0.01

0.1

1

0.1 1 10

solid/dashed: one-loop/two-loop pert. theory

(a)

0.01

0.1

1

0.1 1 10

(b)

FIG. 9. (Color online) Comparison of perturbative first-order,
δBF (1), second-order, δBF (1) + δBF (2), and interpolated (to the
RMT + σ -model limit) results for the quantum corrections to the
polarizability (a) as a function of γ for different values of ω and (b)
as a function of ω for different values of γ .

The experimental results for the ring polarizability can be
distorted because of a parasitic contribution from the resonator.
The latter has been filtered out in the experiment with the help
of an additional weak magnetic field B applied perpendicular
to the rings, such that �α becomes a periodic function of the
magnetic flux through the ring. Measuring the T dependence
of the φ0/2 oscillations, cf. Fig. 9 of Ref. 20, allows one to
focus purely on the response of the rings. Using Eq. (17) in
Eq. (28), we find

�α ∝ F (1)(1/R,ω)

= iω
∑

Q

Pc(Q,ω)

= iωL

∫ ∞

0
dt eiωt

∑
n

1√
4πDt

e−(nL)2/4Dteiθne−γ t ,

(43)

where θ = 4πφ/φ0 and φ is the flux through one ring, and
L = 2πR. Taking the Fourier transform and selecting the φ0/2
signal gives

δφ0/2F
(1)(1/R,ω) = iω exp(−√

(γ − iω)/ETh(L))√
ETh(L)(γ − iω)

. (44)

The function δφ0/2F
(1) is shown in Fig. 10(a). It is similar

to δBF (1), cf. Fig. 8; however, the dependence of δφ0/2F
(1)

on γ is governed by a ∝ γ −3/2 power law in the regime
ω � γ � g�, and in the regime g� � γ , the φ0/2 os-
cillations are exponentially suppressed. The theory predicts
a 0D dephasing rate, γ0D = a�T 2/E2

Th,3 at low tempera-
tures and an ergodic dephasing rate, γerg = b�T/ETh,33,34

at higher temperatures, where a and b are system-specific,
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dimensionless coefficients of order ∼1; see Refs. 31 and 35.
The crossover between the two regimes occurs at a temperature
Tcross = b

a
ETh. We expect that the saturation at γ = ω occurs

in the 0D regime, corresponding to a temperature Tsat =
1√
a
ETh

√
ω/�. Note that the conductance of each ring was

rather small, g(L) ≈ 5.6 , such that the Thouless energy
ETh(L) ≈ 0.9�. Thus, depending on the coefficients a and
b, Tcross and Tsat can be relatively close to each other.

The experimental result for the T dependence of the
φ0/2 oscillations is shown in Fig. 10(b). The measurements
were done in the temperature interval ω  0.2� � T � 4�.
Based on the preceding discussion, we offer the following
interpretation of the data: At low temperatures T � 1.2�, the
quantum corrections depend only weakly on T and are almost
saturated. At intermediate temperatures 1.2� � T � 2.5� the
slope of the data is steep and consistent with 0D dephasing
�α(T ) ∝ γ

−3/2
0D ∝ T −3. At higher temperatures T � 2.5�,

the slope of �α(T ) decreases and is consistent with ergodic
dephasing �α ∝ γ

−3/2
erg ∝ T −3/2. The crossover temperatures,

Tsat  1.2� and Tcross  2.5�, correspond to coefficients
a  0.1 and b  0.3, which are close to the values predicted
in Ref. 31 (a  0.04 and b  1). However, we stress that this
interpretation is based only on very few data points, and we
do not claim that the experiment clearly shows a crossover to
0D dephasing. Further experiments are needed to support this
statement; see Sec. VII.

VII. CONCLUSIONS

Understanding interference phenomena and dephasing in
mesoscopic systems at very low temperatures is a subtle
issue which has provoked controversies between different
theoretical approaches,36 as well as between theory and
experiments.37 Quantum transport experiments cannot give
a certain answer to all questions because of unavoidable
distortions due to the coupling to the environment. The
response of isolated disordered samples, on the other hand,
provides a “cleaner” setup to study dephasing, and gives one
the possibility to settle long-lasting open questions.

We have studied the quantum corrections to the polarizabil-
ity of isolated disordered metallic samples aiming to improve
the explanation of previous experiments (Refs. 19 and 20), and
to suggest new measurements, where the elusive 0D regime
of dephasing can be ultimately detected. Using the standard
strategy of mesoscopic perturbation theory, i.e., the loop
expansion in diffusons and Cooperons, we have developed a
theory which (i) accounts for the difference between connected
(GCE) and isolated (CE) systems, and (ii) is able to describe the
low-frequency response of disordered metals, taking into con-
sideration weak dephasing induced by electron interactions.
We have shown that the difference between the GCE and the
CE appears only in the subleading terms; therefore, we have
extended the calculations up to the second loop. An important
by-product of these calculations is a systematic procedure to
evaluate the Hikami boxes, see Fig. 2 and 4, which is based
on a fundamental conservation law:25 electroneutrality of the
density response function. Our main analytical results for
the quantum corrections to the polarizability are presented
in Eqs. (26)–(28) with Eqs. (17), (18), and (24).

FIG. 10. Amplitude of the φ0/2 oscillations. (a) Expected de-
pendence on γ from our theory, Eq. (44), for the parameter range
ω � � � ETh. (b) Experimentally measured data as a function of
temperature and possible interpretation. Note that the theory (see, e.g.,
Refs. 31 and 35) predicts γ0D ∝ T 2 in the 0D regime, and γerg ∝ T

in the ergodic regime; therefore, the γ −3/2 behavior indicated in
(a) encompasses both the T −3 and T −3/2 behavior seen in (b).

We have demonstrated that in the experimentally relevant
parameter range, the difference between the statistical
ensembles is unimportant and one can fit the measurements by
using the leading term of the perturbation theory. The authors
of Refs. 19 and 20 have tried to find 0D dephasing with
the help of an empirical fitting formula. By using the more
rigorous and reliable Eq. (44), we have confirmed that 0D
dephasing might have manifested itself in the T dependence of
magneto-oscillations at T � ETh. Unfortunately, the T range
of interest here is rather narrow, and only a few experimental
data points are available there. Therefore, we are unable to
claim conclusively that 0D dephasing has been observed in
the experiments. However, we can straightforwardly suggest
several experiments which might yield conclusive evidence
of 0D dephasing: First, one can repeat the measurement of
Refs. 19 and 20, but with a larger number of data points
around the crossover temperature Tcross, see Fig. 10, while
simultaneously improving the measurements’ precision. Since
the theory predicts a drastic increase in slope of the φ0/2
oscillations at the crossover (from T −3/2 to T −3), even such
measurements should be able to reliably confirm the existence
of 0D dephasing, thereby uncovering the role of the Pauli
blocking at low T . Second, it is highly desirable to extend
the T range where the crossover to 0D dephasing is expected
to appear, which can be achieved by decreasing ω and/or
increasing g. However, a very large conductance and ultrasmall
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frequencies are nevertheless undesirable, because in these
limits the quantum corrections to the polarizability are
reduced. Thus, improving the precision of the measurement
is needed anyway. Besides, fitting with the help of the leading
perturbative result fails at very small frequencies; see Fig. 9.
This difficulty can be overcome by taking into account our
two-loop results and/or using an interpolation to the γ → 0
limit from the RMT + σ -model; see Fig. 8.

To summarize, we have shown that the quantum corrections
to the polarizability are an ideal candidate to study dephasing at
low T and the crossover to 0D dephasing. We very much hope

that our theoretical results will stimulate new measurements
in this direction.
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