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Fermionic and bosonic ac conductivities at strong disorder
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We study the ac conduction in a system of fermions or bosons strongly localized in a disordered array of sites
with short-range interactions at frequencies larger than the intersite tunneling but smaller than the characteristic
fluctuation of the on-site energy. While the main contribution σ0(ω) to the conductivity comes from local
dipole-type excitations on close pairs of sites, coherent processes on three or more sites lead to an interference
correction σ1(ω), which depends on the statistics of the charge carriers and can be suppressed by a magnetic field.
For bosons the correction is always positive, while for fermions it can be positive or negative depending on whether
the conduction is dominated by effective single-particle or single-hole processes. We calculate the conductivity
explicitly assuming a constant density of states of single-site excitations. Independently of the statistics, σ0(ω) =
const. For bosons, σ1(ω) ∝ log(C/ω). For fermions, σ1(ω) ∝ log[max(A,ω)/ω] − log[max(B,ω)/ω], where the
first and the second term are, respectively, the particle and hole contributions, A and B being the particle and
hole energy cutoffs. The ac magnetoresistance has the same sign as σ1(ω).
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Interestingly, interference and many-body phenomena in
strongly disordered insulators may be comparable to or even
greater than those in clean materials. Long ago fermionic
many-body cotunneling at strong disorder had been addressed
in the context of variable-range hopping in semiconductors.1

The advent of modern cold-atom techniques2 and recent
experiments on disordered superconductive films3–5 offered
ample new opportunities to observe interference and many-
body effects at strong disorder, yet to access them in both
fermionic and bosonic systems. Recently it was shown in
Ref. 6 and later discussed in Ref. 7 that interference effects in
bosonic systems are particularly strong due to the constructive
interference between all low-energy single- and many-boson
cotunneling processes, which leads, e.g., to a huge positive
magnetoresistance8,9 and broadens the superfluid phase of the
bosons.

The dc transport at strong disorder requires inelastic
hopping of charge carriers through the whole sample, as-
sisted by absorption and emission of neutral excitations,
e.g., phonons.10,11 The ac conductivity may come from
local excitations and does not vanish even in the limit of
infinitesimal dissipation.12 The simplest local excitation is
a particle-antiparticle dipole created by an external field on
a pair of neighboring sites13—impurities or quasilocalized
states. To study ac magnetoresistance and the Hall effect
in hopping insulators14–17 one has to consider processes on
three or more sites.13 So far studies of magnetotransport
and interference phenomena have concerned fermionic charge
carriers (electrons) and have not addressed the influence of
quantum statistics.

In this Rapid Communication we calculate the ac conductiv-
ity of strongly disordered fermionic and bosonic insulators at
zero temperature. We demonstrate that the coherent processes
on three or more sites cause the interference correction to
the conductivity, which depends on the statistics of the charge
carriers. For bosons the correction is always positive, while for
fermions it may be positive or negative if the conductivity is

dominated by particles or holes, respectively. The latter holds
even in the case of noninteracting fermions. We calculate
the conductivity explicitly for sufficiently large frequencies,
assuming that the density of the charge carrier states is constant
at respective energies.

Our results apply equally to charged particles in disordered
media and to neutral cold atoms in optical lattices. In the latter
case the conductivity should be understood as a response to a
tilt of external potential.

Model. A strongly disordered insulator may be modeled as
an array of random-energy sites, e.g., electron puddles, grains,
impurities, quasilocalized states, with weak intersite tunneling.
We assume that the tunneling conserves particle spin and that
the characteristic on-site interactions significantly exceed the
characteristic energies of conducting excitations. Then one
may consider spinless particles, multiplying the conductivity
by the spin degeneracy in the end. The generic Hamiltonian of
the charge carriers reads

Ĥ =
∑

r

Ur(nr) −
∑
r�=r′

trr′ b̂†rb̂r′ , (1)

where b̂
†
r and b̂r are the (bosonic or fermionic) particle creation

and annihilation operators on site r, trr′ is the intersite tunneling
element, and Ur(nr) is the energy of nr = b̂

†
rb̂r particles on

site r, a large random function of nr, which accounts for the
interaction of particles and a random potential. In particular,
these energies prevent superfluidity in the case of bosonic
particles. The disorder manifests itself in the fluctuations of
the on-site energies Ur(nr), intersite couplings trr′ , and random
locations of the sites.

The intersite interactions are assumed to be negligible,
which corresponds to a system of neutral cold atoms,2 a
Josephson network with large self-capacitances,18 and can
be also justified in systems with weak Coulomb interactions,
provided all relevant energies sufficiently exceed the Coulomb
gap.11 We assume that each occupation number nr uniquely
determines the many-particle state on site r because of
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sufficiently strong on-site interactions, leading to large energy
gaps between different orbital states of the nr particles.
Equation (1) is a generic Hamiltonian that describes, for
instance, the Anderson model or the disordered Bose-Hubbard
model in the case of fermions or bosons, respectively.

The strongly insulating regime requires the tunneling trr′ to
be small compared to the fluctuations of the on-site energies
and to sufficiently quickly decay with distance. Thus, the
ground state of the Hamiltonian (1) is close to the ground state
of the on-site energies, which corresponds to the configuration
of integers n0

r minimizing the first term on the right-hand
side of Eq. (1).6 At low temperatures and frequencies only
the lowest-energy excitations are important on each site,6

corresponding to the occupation numbers n0
r + 1 and n0

r − 1,
which will be referred to as particle and hole excitations on
site r, respectively, both in the case of bosons and fermions.

In the case of fermions the important lowest-energy
excitations correspond to only one orbital state on each site, the
interaction with the other electrons being equivalent to a static
potential, and, without loss of generality, we may assume that
the occupation numbers take only values nr = 0 and nr = 1. In
the case of bosons we assume n0

r � 1 for simplicity; however,
the conclusions of this Rapid Communication hold at arbitrary
average characteristic occupation numbers.

We calculate the conductivity assuming that on each site the
density of states ν is constant up to the characteristic cutoffs
Ep and Eh of the particle and hole excitation energies, and
that the frequency exceeds the characteristic matrix elements
of the intersite couplings but is smaller than the characteristic
excitation energies,

Jrr′ � ω � ν−1, max(Ep,Eh), (2)

where Jrr′ = trr′ for fermionic charge carriers, while for
bosons Jrr′ = trr′(n0

rn
0
r′)1/2.

A uniform external field E(ω) induces a current I12(ω) on
each pair of sites 1 and 2, which at low temperatures can be
expressed through the retarded correlator of I12 and currents
Irr′ on all the other pairs of sites using the Kubo formula:

I12(ω) = i(2ω)−1
∑
r,r′

�12,rr′ (ω)Urr′, (3)

�12,rr′ (ω) = −i

∫ ∞

0
〈[Î12(t),Îrr′(0)]〉eiωtdt. (4)

Here Îrr′ = iq(tr′rb̂
†
r′ b̂r − trr′ b̂

†
rb̂r′ ) and Urr′ = (r′ − r)E are

the current operator and the effective voltage drop between
sites r and r′, q is the particle charge, and E is the uniform
amplitude of the electric field. In the absence of an external
magnetic field the average current density evaluates

j = 1

2
n2

∫
〈Irr′Urr′ 〉dis|E|−1dd (r′ − r), (5)

with n being the concentration of the sites, and 〈· · · 〉dis is our
convention for the disorder averaging.

Two-site conduction. At infinitesimal dissipation the con-
duction comes from the resonant absorption of the electromag-
netic field quanta ω by local particle-antiparticle excitations on
sparse pairs of sites.13 Creating more complicated excitations

is suppressed by the smallness of the tunneling,

α ≡
〈
ν

∑
r′

Jrr′

〉
dis

= nν

∫
〈Jrr′ 〉disdr′ � 1. (6)

Clearly, the particle hopping between the two sites is not
affected by quantum statistics, except maybe for the value
of the coefficient before the hopping rate. We evaluate first
the contribution of these trivial two-site processes to the
conductivity before analyzing the interference and many-body
corrections to it. We consider the limit of low temperatures
T � ω.

Two-site processes correspond to the terms with r = 1(2),
r′ = 2(1) in Eq. (3). Evaluating the correlator of the current I12

with itself we obtain the real part of the two-site conductance:

G12 = πq2ω−1|J12|2δ(E2 − E1 − ω), (7)

where E1 and E2 are the energies of the particle on the
respective sites, the ground state being close to the particle
residing on site 1. The delta function in Eq. (7) reflects
the resonant absorption. Actually, in the presence of a finite
weak dissipation it should be ascribed a certain width γ ,
the concentration of resonant pairs of sites ∼nγ ν being very
small. Unless quenched disorder is long correlated, the intersite
couplings J12 = J|r2−r1| and the on-site energies E1,2 fluctuate
independently.

The conductances (7) between pairs of sites lead to the
conductivity

σ0 = πn2q2(2ωd)−1
∫ 〈

J 2
ξ

〉
disξ

2νdip(ω,ξ )ddξ , (8)

with νdip(ω,ξ ) = 2〈δ(E2 − E1 − ω)〉dis being the density of
states of dipole excitations, particle-hole pairs of size ξ , factor
2 accounting for the two possible polarizations of a dipole at
the same E1 and E2.

For a constant density of states ν of the single-site particle
and hole excitations considered in this Rapid Communication,
we find νdip = 2ν2ω, which yields a frequency-independent
conductivity

σ0 = πn2ν2q2d−1
∫ 〈

J 2
ξ

〉
disξ

2ddξ . (9)

Let us emphasize that the conductivity σ0(ω) is constant
only in the frequency range under consideration. At higher
frequencies, violating the second of inequalities (2), the
conductivity decays due to the lack of sufficiently high-energy
states. At smaller frequencies, when the first of inequalities (2)
no longer holds, the conductivity is described by the famous
Mott’s formula12,19 and decreases ∝ω2.

Frequency-independent conductivity, Eq. (9), can be un-
derstood from the Mott’s formula as follows. A small voltage
V , applied to a resonant pair of sites, E1 − E2 = ω, with a
small intersite coupling J � ω, makes a perturbation with
the off-diagonal entry ∼qV J/(E1 − E2) ∝ ω−1. The Mott’s
formula, on the opposite, applies when the typical coupling
exceeds the frequency, ω � 〈J 〉dis. Then the matrix element
of the intersite transitions is nonperturbative in J/ω and does
not depend on frequency (except, maybe, for a logarithmic
factor). Because the conductivity is quadratic in the matrix
element, σ (ω) ∝ σMott(ω)ω−2 = const at high frequencies
under consideration, ω � 〈J 〉dis.
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Three close sites is the smallest cluster of sites that accounts
for the interference and nontrivial quantum statistics effects.
The contribution of larger clusters to the conductivity is
suppressed due to the smallness of the intersite tunneling,
Eq. (6).

There are two possibilities for the lowest-energy single-site
excitations in a cluster of three sites: (1) A hole can occur on
one site and an extra particle on each of the other two, or, vice
versa, (2) a particle excitation can occur on one site and a hole
on each of the other two.

In the first case the dynamics of the three sites is equivalent
to the hopping of a single particle between these sites,
described, both in the case of bosons and fermions, by the
effective Hamiltonian

H
particle
3 =

⎛
⎝ E1 −J12 −J13

−J21 E2 −J23

−J31 −J32 E3

⎞
⎠ , (10)

where Er is the energy of the particle on site r, E1 < E2,E3.
The three-site Hamiltonian in the form (10) has been used in
a number of works (cf., e.g., Refs. 14, 15, and 20) to study the
Hall effect in hopping insulators.

Single-hole hopping. In the second case the dynamics of the
three sites is equivalent to the hopping of a lack of a particle
between these sites. However, the effective Hamiltonian will
depend dramatically on the statistics of the charge carriers.

Indeed, the state of several fermions on several sites
is antisymmetric with respect to the permutations of the
fermions, which makes the sign of the tunneling element
between two sites depend on the occupation numbers of the

other sites, 〈1i0k|b̂†i b̂k|0i1k〉 = (−1)
∑k−1

j=i+1 nj for i � k − 2.21

For bosons all the signs are the same. From Eq. (1) we find the
effective Hamiltonian which describes the hopping of a hole
on three sites:

H hole
3 =

⎛
⎝ E1 −J21 ∓J31

−J12 E2 −J32

∓J13 −J23 E3

⎞
⎠ , (11)

where the upper and lower signs apply to bosons and fermions,
respectively, and Er is the energy of a state with a hole on site
r, E1 < E2,E3.

The hopping of a single particle or hole is not a many-body
problem effectively. Nevertheless, Eqs. (10) and (11) show
that the parameters of the respective single-body Hamitonian
qualitatively depend on the statistics: for bosons (particles
and holes) and fermionic particles the signs of all tunneling
elements are the same, while for a fermionic hole the sign
is alternating. Below we demonstrate that this difference
manifests itself, under certain conditions, in the sign of the
interference correction to the ac conductivity.

The currents between three sites may be found, using
Eqs. (3) and (4), straightforwardly from the Hamiltonians
(10) and (11). Because the interference correction to the
conductivity has a relative smallness α, Eq. (6), compared
to the two-site contribution (9), it is sufficient to find the
currents up to the third order in the small couplings J ,
corresponding to the first-order-in-α correction to the two-site
current I12 = G12U12, Eq. (7).

Again, conduction requires some resonant excitation be
present on the three sites. Below we assume that sites 1 and 2

in the cluster under consideration are resonant, i.e., E2 − E1 ≈
ω. The probability of finding one more resonant pair in the
same cluster ∼γ ν is negligible.

In the absence of an external magnetic field all the
couplings may be chosen to be real and positive, Jrr′ = |Jrr′ |.
Diagonalizing the Hamiltonians (10) and (11), and evaluating
the correlators of the currents, from Eqs. (3) and (4) we find
the currents due to the hopping of particles and holes on three
sites:

I12 = πq2ω−1δ(E2 − E1 − ω)

{
|J12|2U12

± J12J23J13

[
U13

E3 − E2
+ U32

E3 − E1

] }
, (12)

I13 = ±πq2ω−1δ(E2 − E1 − ω)J12J23J13
U12

E3 − E2
, (13)

I23 = ±πq2ω−1δ(E2 − E1 − ω)J12J23J13
U12

E3 − E1
, (14)

where the upper signs apply to fermionic particles and to
bosonic particles and holes, and the lower signs to fermionic
holes only.

The first line of Eq. (12) is the current due to the processes
on the two resonant sites, while the second line of Eq. (12) and
Eqs. (13) and (14) are, respectively, the interference correction
to the two-site current and the extra currents due to the presence
of the third site.

Bosonic interference correction. In most three-site clusters
under consideration, the excitation energy E3 on the third site
greatly exceeds the energies E1,E2 ∼ ω on the two resonant
sites due to the condition (2).

In the case of bosons the direct current between sites
1 and 2 is increased by the presence of the third site at
E3 � E1,E2, yet the extra current I13 ≈ I32, flowing through
the third site, additionally enhances transport between sites
1 and 2. This reflects the general principle that all low-
energy cotunneling processes in a bosonic system interfere
constructively, effectively enhancing low-energy transport.6,22

To find the conductivity it is convenient to average first
the currents in a three-site cluster with respect to the energy
of the excitation on site 3. The positions of sites fluctuate
independently of the couplings and can be averaged sepa-
rately. Using Eqs. (5) and (12)–(14) we find the interference
correction to the conductivity σ0, Eq. (9), for a bosonic system
with a constant density of states of single-site excitations
at ω � Ep,h:

σ1(ω) = A log(Ep/ω) + A log(Eh/ω), (15)

A = 2πd−1n3ν3
∫

〈Jζ JξJ|ξ−ζ |〉disξ
2ddξddζ . (16)

The logarithms in Eq. (15) come from integrating Eqs. (12)–
(14) with respect to the third-site energies at ω � E3 � Ep,h

and must be smaller than α−1 to ensure the validity of the
perturbation theory. The frequency ω serves as an effective
low-energy cutoff due to the saturation of the average current
corrections at small energies on the third site, 0 < E3 − E1 �
E2 − E1 = ω. If the frequency ω exceeds the energy cutoffs
Ep or Eh of the particle or hole excitations, the respective
contribution in Eq. (15) vanishes.
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Equations (15) and (16) show that in a bosonic system both
particle and hole contributions to the interference correction
to the conductivity are positive.

Fermionic interference correction. The single-particle and
single-hole processes contribute to the interference correction
with different signs in the case of fermions:

σ1 = A log[max(Ep,ω)/ω] − A log[max(Eh,ω)/ω], (17)

where constant A is defined by Eq. (16). The cutoffs Ep

and Eh depend on the level of doping of the insulator. If the
band of the localized states is nearly empty, then Ep � Eh,
and the interference correction to the conductivity is positive.
An almost filled band corresponds to Ep � Eh, leading to a
negative correction (17).

In the whole frequency range, Eq. (2), the correction is posi-
tive or negative if the conduction is dominated, respectively, by
particles or holes. At sufficiently small frequencies, ω � Ep,h,
the correction is frequency independent, σ1 = A log(Ep/Eh).
Despite this, it can be separated from the trivial two-site
contribution σ0 using the suppression of interference by the
magnetic field, as we discuss below. If the frequency lies
between the two cutoffs, Ep,h � ω � Eh,p, the conduction
is dominated by the excitations with the higher cutoff, σ1 =
±A log(Ep,h/ω). Let us notice that in the latter regime of
an effectively one type of fermionic charge carriers, the
frequency dependency of σ1 is the same as for bosons,
Eq. (15), but has a different sign if the charge carriers are
holes.

Suppression by gauge fields. In presence of a magnetic
field the tunneling elements of the charged particles acquire
phases

Jrr′ = |Jrr′ | exp

(
iqc−1

∫ r′

r
A(ξ )dξ

)
, (18)

where A is the vector potential, related to the magnetic
field, and we neglected the modification of the on-site wave
functions. In the case of neutral atoms in optical lattices, the
role of the magnetic field may be played by artificial gauge
fields, induced by rotation or the Berry phases of atomic
levels.2

The phase factors fluctuate randomly, due to the random
relative positions of the sites. This does not affect the two-site
contribution to the conductivity σ0 but destroys the interference
corrections to it if the magnetic flux through a characteristic
three-site cluster exceeds one flux quantum,6 qBλ2 � 1,
where λ is the characteristic radius of the coupling Jrr′ .

Charge carriers with spin projections sz acquire additional
energies −szB in the magnetic field, which has a negligible
effect on the conductivity provided |szB| � Ep,h. Thus, the
interference correction determines the sign of the magne-
toresistance: positive for bosons, and positive or negative for
fermions depending on the doping level.

Discussion. We studied ac transport in strongly disor-
dered systems. The conductivity is dominated by statistics-
independent processes on pairs of sites, while larger site
clusters give rise to the interference correction, which is

always positive for bosons and can have either sign for
fermions.

Indeed, different commutation rules for bosonic and
fermionic variables lead to a different character of the inter-
ference effects.22 All low-energy bosonic processes interfere
constructively, effectively enhancing transport6 and leading to
a positive bosonic interference correction.

Fermionic many-body processes can have different signs.
We have shown that particle-dominated fermionic processes
give a positive correction, which is hole dominated—negative,
even in the case of noninteracting fermions. At first glance,
the transport of noninteracting particles and holes is a
single-body problem and should not depend on the statis-
tics of the charge carriers. Nevertheless, the parameters
of the effective single-body Hamiltonians depend on the
statistics, which in the case of fermions manifests itself
in the alternating signs of the effective intersite couplings,
Eq. (11).

We have calculated the conductivity explicitly, Eqs. (9),
(15), and (17), under the assumptions of a constant density
of states, low temperature, and negligible intersite interactions
at relevant energies. However, our qualitative conclusions for
the sign of the ac magnetoresistance are valid for arbitrary
interactions, densities of states, and temperatures smaller
than the on-site energy fluctuations. Experimentally one can
suppress the interference correction by the magnetic field or
artificial gauge fields and thus verify its sign. In a strong
fermionic insulator the interference contribution to the ac
magnetoresistance changes sign when changing the doping
level.

Our results can be tested straightforwardly in experiments
on spin-polarized fermionic23 and bosonic24 cold atoms
localized in incommensurate optical lattices25 or in a random
potential.23,24 The interactions in these systems are short
ranged, yet the disorder and the interaction strength are easily
controlled.2 These systems may be in the insulating state,
which implies the smallness of the intersite coupling compared
to the fluctuations of the on-site energies. The respective
frequencies [cf. Eq. (2)] lie in an easily accessible kilohertz
range and exceed the typical temperatures T � 10 nK. Thus,
all the assumptions of this Rapid Communication are fulfilled
in such experiments, which allows one to verify not only
our qualitative conclusions for the signs of magnetoresistance
but also the explicit dependencies of the conductivity on
frequency.

The discussed effects can be observed also in disordered
superconductive films in the insulating state. Again, strong
insulation indicates the smallness of the tunneling. The char-
acteristic frequencies used in the recent experiments, Refs. 26
and 27, ω ∼ 10–100 GHz, significantly exceed achievable
temperatures T ∼ 0.1 K ∼ 1 GHz. The behavior of the ac
conductivity in magnetic field would help one to identify which
charge carriers, electrons or Cooper pairs, dominate transport
in those materials.

We appreciate insightful discussions with B. L. Altshuler,
D. M. Basko, and V. E. Kravtsov. We are particularly indebted
to Yu. M. Galperin for valuable discussions and suggestions
on improving the manuscript. This work has been financially
supported by SFB Transregio 12.
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