
PHYSICAL REVIEW E 86, 021136 (2012)
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We employ the method of virial expansion to compute the retarded density correlation function (generalized
diffusion propagator) in the critical random matrix ensemble in the limit of strong multifractality. We find that
the long-range nature of the Hamiltonian is a common root of both multifractality and Lévy flights, which show
up in the power-law intermediate- and long-distance behaviors, respectively, of the density correlation function.
We review certain models of classical random walks on fractals and show the similarity of the density correlation
function in them to that for the quantum problem described by the random critical long-range Hamiltonians.
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I. INTRODUCTION

Multifractality of critical wave functions [1] has recently
emerged as a subject of not only fundamental theoretical
interest [2] but also experimental activities at a frontier of
technological achievements [3–5] in surface imaging, sound
propagation, and driven cold atom systems. It could also be an
important issue in describing the superconductor (superfluid)
to insulator transitions in condensed matter and systems
of cold atoms [6], the Kondo effect in strongly disordered
metals [7], and other interactions and nonlinear phenomena
in systems with strong disorder. Multifractal correlations are
a property of wave functions near the Anderson localization
transition in three-dimensional (3D) systems with short-range
Hamiltonians as well as in systems with long-range |Hr,r ′ | ∼
|r − r ′|−d hopping [8–11] (d is the space dimension). In the
latter systems critical correlations of wave functions may be
realized in a broad range of parameters.

Usually multifractality is studied by considering the mo-
ments of the local density of states at a given energy ε or the
correlation functions of such moments at different energies.
However, it may show up also in the density correlation
function

D̃r,r ′ (ω) =
〈∑

n,m

ψn(r ′)ψ∗
n (r)ψm(r)ψ∗

m(r ′)
(ε − εn + i0)(ε − εm − ω − i0)

〉
. (1)

In Eq. (1) we denote by ψn(r) the exact nth wave function at
a site r , which corresponds to the energy εn, ε is the fixed
energy (which we set to zero throughout this paper). The
symbol 〈· · · 〉 stands for the ensemble averaging. The Fourier
transform D̂r,r ′ (t) of this correlation function (generalized
diffusion propagator) describes spreading of the wave packet
in space and time and is a direct generalization of the pure
classical object: the probability density to find a random walker
at a point r at a time t after the beginning of a random walk
from the originr ′ = 0. The possibility of both a classical and a
quantum formulation of the density correlation function makes
this object convenient for a quantum-to-classical comparison.

The successor of the generalized diffusion propagator is the
survival probability or the return probability P (t),

2πρ0P (t) = D̂r,r (t), (2)

where ρ0 is the averaged density of states (DOS). This is the
probability of a wave packet surviving for a time t at a point
where it was created at t = 0 or the probability of a random
walker being found at the origin at a time t . For extended
states P (t) decreases with time, albeit differently for the truly
extended states and the critical multifractal states [13,14]:

P (t) ∝
{
t−d/2 for extended states
t−d2/d for critical states.

(3)

In Eq. (3), d2 < d is the nontrivial critical exponent, the
correlation fractal dimension, that determines the inverse
participation ratio in a critical system of the size L:

I2 =
〈∑

r

|ψ(r)|4
〉

∝ L−d2 . (4)

A general form of the density correlation function D(κ,ω) was
suggested by Chalker in the momentum-frequency represen-
tation [13,15]. In the region of critical states it can be written
as follows:

D(κ,ω) = 2πρ0

(−iω + 0)[f (|κ| L−iω) + 1]
, (5)

where ρ0 = N−1 ∑N
n=0〈δ(ε − εn)〉|ε=0 is the averaged density

of states at ε = 0.
The key element of this prediction is that at criticality (in

the classical Dyson symmetry classes) there is only one scale
1/Lω ∝ ω1/d , which separates small- and large-momentum
behavior, both of them being different limits of one and
the same analytic function f (x). The combination L−iω ∝
(−iω + 0)−d in Eq. (5) is dictated by the retarded character of
the correlation function, which should be a regular function in
the upper half plane of complex ω.

Note that the original idea of Chalker was that of rec-
onciling the one-parameter scaling of Abrahams, Anderson,
Licciardello, and Ramakrishnan [16] with the multifractal
behavior. The one-parameter scaling is encoded in Eq. (5): The
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r~t1/d

FIG. 1. (Color online) Generalized diffusion propagator (density
correlation function) for critical eigenstates of long-range Hamil-
tonians (12) with strong multifractality d2 � d . The multifractality
is encoded in the intermediate-distance [1 � r/	0 � (E0t)1/d ] de-
pendence r−d+d2 while the Lévy flights appear in the long-distance
[r/	0 	 (E0t)1/d ] tails r−2d ; 	0 and E0 are the lower length scale
and the upper energy scale of multifractality [12], respectively. The
overall functional form of the density correlation function obeys the
scaling law r−dS(rd/t).

counterpart ofD(κ,ω) in the coordinate-time domain obeys the
scaling law

rdD̂r,0(t) = S(rd/t), (6)

where S(x) is the scaling function.
According to Chalker’s conjecture, the multifractality

exhibits itself in the asymptotic form of the function f (x)
at |x| 	 1:

f (x) = cxd2 , |x| 	 1. (7)

Here d2 is the same correlation fractal dimension defined by
Eq. (4), which appears also in Eq. (3) as well as in the local
density of states correlation function [14]. It determines the
multifractal regime of the density correlation function (see
Fig. 1), where

D̂r,0(t) ∝ r−d

(
rd

t

)d2/d

(t > rd ). (8)

At small |x| � 1, the function f (x) is small as the probability
conservation ∑

r ′
D̂r,r ′ (t) = 2πρ0θ (t) (9)

requires

f (x = 0) = 0. (10)

Assuming that x = 0 is the regular point of the analytic
function f (x), one can expand

f (x) = c1x + c2x
2 + c3x

3 + · · · (x = |κ| L−iω). (11)

Note, however, that the regular expansion in x [Eq. (11)] does
not mean analyticity in the momentum domain. For instance,
the term linear in x contains the nonanalytic term |κ|. Terms
nonanalytic in κ arise from any odd power of x. These terms
imply power-law tails of the density correlation function in

the coordinate domain. Namely, if the leading odd term in
Eq. (11) is x2m−1, the density correlation function acquires a
power-law tail proportional to r−(2m−1+d) at large r . In analogy
with classical random walks, we will refer to such tails as the
Lévy flights.

The simplest class of critical systems, where such non-
analytic terms are present, includes the systems with long-
range resonance hopping where the hopping terms of the
Hamiltonian decrease with distance as

|Ĥr,r ′ | ∝ |r − r ′|−d . (12)

However, the situation depends a great deal on the dimen-
sionality d. As we will show below, the Lévy flights in such
systems are characterized by a power-law tail:

D̂r,0(t) ∝ r−d

(
t

rd

)
(t < rd ). (13)

For d = 3, the second moment 〈r2〉 does exist, so we have in
Eq. (11) that c1 = 0 and c2 is finite. The terms nonanalytic in
κ appear starting from x3, which, however, is subleading at
small x. The role of analyticity is greatly enhanced at d = 1
where c1 
= 0. Here the leading term in Eq. (11) is analytic in
κ . The case d = 2 is special [11]. In this case even criticality
is not guaranteed by Eq. (12) and the answer may depend on
the particular symmetry class and details of the Hamiltonian.

In this paper we concentrate on the simplest system that
belongs to the class of long-range random Hamiltonians (12)
with d = 1. This is the ensemble of Hermitian critical
power-law banded random matrices [8] (CPLBRM) where the
multifractality can be continuously tuned from weak to strong
by changing only one parameter 0 < b < ∞:

〈Hnm〉 = 0, 〈|Hnm|2〉 =
{

β−1, n = m
1

2
[

1+
(

n−m
b

)2] , n 
= m, (14)

where β = 1,2,4 is the Dyson symmetry number.
We consider the limit of strong multifractality b � 1 and

demonstrate the validity of Eqs. (5), (7), (8), (11), and (13),
which are the key relationships for the description of Lévy
flights and multifractality. Furthermore, we will find the
function f (x) explicitly for the Gaussian orthogonal ensemble
(GOE) and the Gaussian unitary ensemble (GUE), thereby
unifying both concepts of multifractality and Lévy flights in
the single analytic function.

One of the purposes of this paper is to compare the density
correlation function for random critical states of a long-range
Hamiltonian with that for the classical random walks on a
fractal. For a classical random walk with a constant step
length on a lattice, the density correlation function decreases
exponentially at large distances D̂r,r ′ (t) ∝ e−r2/2Dt and thus all
moments 〈r2m〉 are well defined. A peculiar class of random
walks called Lévy flights is realized in the models with variable
step length. If the probability of having a long step is heavily
tailed, the probability distribution of random walks may have
power-law tails at large distances and thus the moments 〈r2m〉
may diverge [17]. Similar power-law tails may appear in
a classical random walk on hierarchical manifolds [18–20],
where fractality is built in their geometry.

We will demonstrate that certain models of a classical
random walk on a fractal result in the same regimes of the
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density correlation function as for the quantum critical long-
range Hamiltonians of Eq. (12). Namely, the two principle
regimes (8) and (13) described in Fig. 1 have their counter-
parts for the classical diffusion, with the correlation fractal
dimension d2 being replaced by the Hausdorff dimension
dh and the dimensionality of space d being replaced by
the walk dimension. Moreover, we will see that the critical
exponent 2/d of subdiffusion 〈r2〉 ∝ t2/d for critical random
Hamiltonians in d > 2 dimensions appears to have the same
relationship with the exponent −d of Lévy flights rd D̂0,r (t) ≡
S(r,t) ∝ r−d for the quantum problem with long-range random
Hamiltonians (12) and for the certain classical random walks
on fractals [18–20].

The paper is organized as follows. In Sec. II we review
the method of virial expansion in the number of resonant
levels and give general expressions for the density correlation
function (effective diffusion) for any almost diagonal Gaussian
random matrix theory (RMT). In Sec. III we apply these
expressions to compute the density correlation function for
the specific CPLBRM in the coordinate-time representation
and uncover multifractality and Lévy flights as consequences
of the long-range nature of the Hamiltonian (14). In Sec. IV
we compute the density correlation function in the coordinate-
frequency representation. Sections V and VI are devoted to
verification of the key relationships (5), (7), and (11) due to
multifractality and Lévy flights as seen in the momentum-
frequency representation of the density correlation function.
We explain a perturbative derivation of Lévy flights for strong
multifractality and the Wigner-Dyson limit of the CPLBRM
in Secs. VII and VIII, respectively. In Sec. IX we present
numerical results for the critical RMT with weak and strong
multifractality. In Sec. X we discuss the classical random walks
on fractals and show that in certain models they have the same
phenomenology as their quantum counterpart. In Sec. XI we
summarize the main results of the paper and discuss their
applicability to the Anderson transition in 3D systems.

II. VIRIAL EXPANSION METHOD

In order to check the validity of Eqs. (5), (7), (8) (11),
and (13) for the ensemble of CPLBRM (14) at strong multi-
fractality b � 1 we exploit the method of virial expansion in
the number of resonant levels [21,22]. This method is a certain
resummation of the locator expansion [23] in the hopping
matrix element hnm:

h2
nm = 〈|Hn
=m|2〉 = 1

2

b2

(n − m)2
. (15)

The summation is organized so that any correlation function
C(κ,ω) is represented as a series in b � 1:

C(κ,ω) = ωη

∞∑
m=1

bm−1C(m)(κLω), (16)

where the length scale Lω is itself b dependent,

Lω = 2
√

2b

ωβ
, (17)

and η is specific to a particular correlation function.

The advantage of this representation is that Eq. (16) is a
functional series, each function C(m)(κLω) adding details of
correlations that emerge from the resonant interaction of m

states. These states have energy levels εm anomalously close
to each other within the interval of order b � 1. At small
b, such a multiple collision of levels has small probability.
Therefore, even the few first terms in the series (16) give a
very good approximation of the correlation function.

Note that the density of states ρE ≈
√

β

2π
e−βE2/2 corre-

sponding to CPLBRM (14) has negligible variation at a scale
E ∼ b � 1 [24]. We will neglect such variations throughout
the paper and approximate ρ(E) ≈ ρ(0) = ρ0. With such ac-
curacy we obtain for the retarded density correlation function

D̃r,r ′ (ω) = 2πρ0

−iω + 0

[
δr,r ′ + D̃(2)

r,r ′ (ω) + D̃(3)
r,r ′ (ω) + · · · ]. (18)

In Eq. (18) we denote

2πρ0D̃(2,3)
r,r ′ (ω) =

∫ ∞

0
eiωt ∂tD̂(2,3)

r,r ′ (t)dt. (19)

The density correlation function in the time domain is
given by

D̂r,r ′ (t) � [
2πρ0δr,r ′ + D̂(2)

r,r ′ (t) + D̂(3)
r,r ′ (t)

]
θ (t). (20)

To simplify formulas, we assume below that t > 0 and
omit θ (t).

Calculating leading terms of the virial expansion, we obtain
the expressions for β = 1 (GOE),

D̂(2)
r 
=r ′ (t) = 2πh2

r,r ′ te
−(hr,r′ t)2

I0[(hr,r ′ t)2], (21)

and for β = 2 (GUE),

D̂(2)
r 
=r ′ (t) = 2π

[
h2

r,r ′ te
−(hr,r′ t)2 +

√
π

2
hr,r ′erf(hr,r ′ t)

]
, (22)

where hr,r ′ is defined in Eq. (15); Ij (· · · ) is the modified Bessel
function of the first kind. Answers for subleading terms of the
virial expansion are more lengthy and we will discuss them
elsewhere [25].

Equations (18)–(22) are valid for any Gaussian RMT with
an arbitrary variance h2

r,r ′ of the hopping matrix elements that
is parametrically smaller than the variance of the diagonal
ones (almost diagonal Gaussian RMT). Remarkably, D̂(2,3)

r,r ′ (t)

at r = r ′ is expressed in terms of D̂(2,3)
r 
=r ′ (t) as follows:

D̂(m)
r,r (t) = −

∑
r 
=r ′

D̂(m)
r,r ′ (t), m = 2,3. (23)

This is a consequence of the particle conservation, which
requires ∑

r

D̂r,r ′ (t) = 2πρ0. (24)

As this relation is already fulfilled by the first term in Eq. (18),
all other terms proportional to D(m)

r,r ′ (m � 2) should obey
Eq. (23).
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III. DENSITY CORRELATION FUNCTION IN THE TIME
DOMAIN AND RETURN PROBABILITY

An inspection of Eqs. (21) and (22) shows that for the
CPLBRM with b � 1 the asymptotic behavior of the effective
diffusion D̂r,r ′ (t) = ρ−1

0 D̂(2)
r,r ′ (t) is given by

D̂r,r ′ (t) = 2πρ0

{ √
2b

2|r−r ′ | (GOE)
πb

2
√

2|r−r ′| (GUE)
(25)

for |r − r ′| � bt and

D̂r,r ′ (t) = πβb2t

|r − r ′|2 , |r − r ′| 	 bt. (26)

In a more general case of long-range Hamiltonians obeying
Eq. (12) one should replace |r − r ′| by |r − r ′|d to obtain the
large-distance tail (13), which is the hallmark of the Lévy
flights.

The small-distance behavior D̂r,r ′ (t) ∝ |r − r ′|−d is also
remarkable. By applying Eq. (23) one obtains for the survival
probability (2)

P (t) = 1 − d2

d
ln(bt) ≈ (bt)−d2/d (27)

(see Ref. [14] for more details) where for the CPLBRM one
finds [2]

d2

d
�

{√
2b (GOE)

πb√
2

(GUE)
(28)

for b � 1. Thus Eq. (27) shows that the asymptotic behavior
|r − r ′|−d is a signature of (strong) multifractality with the
correlation dimension given by Eq. (28).

We conclude this section by emphasizing once again
that the multifractality and Lévy flights for the long-range
Hamiltonians (12) have the same root and cannot exist without
each other.

IV. DENSITY CORRELATION FUNCTION IN
THE FREQUENCY DOMAIN

One can invert Eq. (19) and obtain

D̃r 
=r ′ (ω) =
√

2πβ3/2πβ−1

4

i

z
�(β)(z), (29)

where

z = (|r − r ′|/Lω)d ∝ ω|r − r ′|d, (30)

d = 1 for CPLBRM, Lω is given by Eq. (17), and expressions
for � read

�(GOE)(z) = z2e−z2{[K0(z2) + K1(z2)]

+πi sgn(z)[I0(z2) − I1(z2)]} (GOE, β = 1),

(31)

�(GUE)(z) =
(

z2 + 1

2

)
e−z2

×
[

1 + i

(
erfi(z) − zez2

√
π

(
z2 + 1

2

))]
(GUE, β = 2); (32)

z

Real part
1

2

3 2 1 1 2 3

0.2

0.4

0.6

0.8

1.0

FIG. 2. (Color online) Real part of the functions �(GOE)(z) in
Eq. (31) (blue, β = 1) and �(GUE)(z) in Eq. (32) (red, β = 2).
They describe the ω dependence of the corrections D̃(2)

r,r ′ to the
retarded density correlation function at a fixed r 
= r ′. Note that these
corrections are caused by the extended nature of wave functions.

Kj (· · · ) is the modified Bessel function of the second kind.
The functions �(β)(z) in Eqs. (31) and (32) are qualitatively
very similar for the orthogonal and unitary ensembles (see
Figs. 2 and 3). Their real parts are even functions of z,
which exponentially decrease like |z|βe−2z2/β at |z| 	 1. The
imaginary parts are odd functions of z, which behave like z−1

at large |z|. Correspondingly, the density correlation function
in the coordinate-frequency representation behaves at |z| 	 1
(large distances or frequencies) like

Im[D̃r 
=r ′ (ω)] ∼ sgn(z)|z|β−1e−2z2/β, (33)

Re[D̃r 
=r ′ (ω)] ∼ − 1

z2
. (34)

Note that the correlation function D̃r 
=r ′ (ω) for |r − r ′| 	 Lω

has a power-law tail. This is another manifestation of Lévy
flights in the r − ω domain.

V. FREQUENCY-MOMENTUM REPRESENTATION

Now we compute the retarded density correlation function
D(κ,ω) in the momentum-frequency representation. This

z

Imaginary part
2

1

3 2 1 1 2 3

0.4

0.2

0.2

0.4

FIG. 3. (Color online) Imaginary part of the functions �(GOE)(z)
in Eq. (31) (blue, β = 1) and �(GUE)(z) in Eq. (32) (red, β = 2).
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allows us to make contact with Eq. (5) to check Chalker’s
conjecture on the effect of multifractality (7) and to detect the
terms analytic in κ in Eq. (11), which is a signature of Lévy
flights.

To this end we define

D(2)(κ,ω) = 1

N

∑
r,r ′

D̃(2)
r,r ′ (ω)eiκ(r−r ′), (35)

where N × N is the size of the matrix. We assume this size to
be larger than all the relevant length scales of the system. If
in addition κ � 1, one can switch from the sum to integral in
Eq. (35) to implement the continuous approximation, which is
valid at |Lω| 	 1.

Before proceeding with calculations, let us note that
Eq. (23) implies

D(2)(κ = 0,ω) = 0. (36)

Thus one can do the Fourier transform of D̃(2)
r,r ′ (ω) at |r − r ′| 
=

0 and then subtract the κ = 0 value of the result obtained. Thus
we obtain from Eqs. (31) and (32)

D(κ,ω) = 2πρ0

−iω + 0
+ |Lω|G(κ̄), (37)

where κ̄ = κ Lω. One can easily see that Eq. (37) is con-
sistent with Eq. (5) in the limit b log(k̄) � 1, with f (x) =
i(

√
2/πβρ0)bG(k̄). The retarded character of the correlation

function is encoded in real and imaginary parts of G(k̄), which
obey the Kramers-Kronig relationship. The expressions for
them read, for the GOE, with β = 1,

Re[G(GOE)(κ̄)] = (2π )2

32
|κ̄|e−κ̄2/16I0

(
κ̄2

16

)
, (38)

Im[G(GOE)(κ̄)]

= −sgn(ω)

√
2π

4

[
1 + κ̄2

3
pFq

(
{1,1,3},

{
3

2
,2,

5

2

}
, − κ̄2

8

)

−pFq

(
{1,1},

{
1

2
,
3

2

}
, − κ̄2

8

)]
(39)

and for the GUE, with β = 2,

Re[G(GUE)(κ̄)] = π2

2

[
|κ̄|e−κ̄2/4 − √

π erf

(
κ̄

2

)]
, (40)

Im[G(GUE)(κ̄)] = −sgn(ω)
π3/2

4

[
2
√

πe−κ̄2/4κ̄ erfi

(
κ̄

2

)

+κ̄2
pFq

(
{1,1},

{
3

2
,2

}
, − κ̄2

4

)]
. (41)

Here γ is the Euler constant and pFq(· · · ) is the hypergeomet-
ric function. We discuss these results in the following section.

VI. COMPARISON WITH CHALKER’S CONJECTURE

The asymptotic behavior of the functions GGOE(κ̄) and
GGUE(κ̄) is very similar. At small κ̄ � 1,

Re[G(κ̄)] =
{

1
2π2|κ̄|, β = 1

π2 |κ̄|, β = 2,
(42)

Im[G(κ̄)] =
{

− 1
4

√
π
2 κ̄2, β = 1

− 3
8 κ̄2, β = 2.

(43)

This is consistent with Eq. (11) (at d = 1) where all ci ∼ b.
In particular, the analytic behavior proportional to |κ̄| caused
by the Lévy flights is confirmed by Eq. (42). Equation (43)
corresponds to corrections proportional to c2 x2 in Eq. (11).

More interesting is the asymptotic behavior of G(k̄) at large
|κ̄| 	 1. While Re[G(κ̄)] tends to a constant

Re[G(κ̄)] =
{

π3/2

2
√

2
, β = 1

π5/2

2 , β = 2
(44)

for |κ̄| 	 1, |Im[G(κ̄)]| increases logarithmically

Im[G(κ̄)] =
{

−
√

2π
2 ln(|κ̄|) + const, β = 1

− 1
2 ln(|κ̄|) + const, β = 2.

(45)

Such a behavior is fully consistent with Eq. (7), in which a
subleading term is added:

f (x) = cxd2 − c. (46)

For very large x 	 exp(1/b), Eq. (46) reduces to Eq. (7),
while in the intermediate region 1 � x � exp(1/b), which is
present only at small b � 1, one obtains

f (x) � cd2ln(x).

Thus we confirm Chalker’s conjecture for the density correla-
tion function to first order in the small parameter b � 1.

In order to illustrate the similarity of the density correlation
functions conjectured in Eqs. (5), (7), and (11) and obtained
analytically for the CPLBRM (14), we plot in Figs. 4 and 5
the real and imaginary parts of G(κ̄) together with the
asymptotic behavior (7) at small d2 = 0.01. The choice of
only one constant c = 1 + O(b) ensures both the right leading
logarithmic behavior of Im[G(κ̄)] and the correct limit of
Re[G(κ̄)] as κ̄ → ∞. It is also seen that upon a proper
rescaling of x and y coordinates the shape of GGOE(κ̄) and
GGUE(κ̄) is very similar. We conclude therefore that the
shape of the G(κ̄) dependence is dictated mostly by criticality
encoded in Chalker’s conjecture and not by the symmetry of
the Hamiltonian.

Chalker’s Ansatz
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FIG. 4. (Color online) Real part of G(k̄) for GOE (blue, β = 1)
and GUE (red, β = 2). The dashed lines are the asymptotic behavior
given by Eq. (11) (red) and Eq. (7) (black) at d2 = 0.01 and c = 1 +
O(b). For better comparison the GUE curve is given in the rescaled
coordinates so that the asymptotic behavior at small and large κ

coincides with that of the GOE curve.
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Chalker’s Ansatz
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FIG. 5. (Color online) Imaginary part of G(k̄) for GOE (blue,
β = 1) and GUE (red, β = 2). The latter curve is given in the
rescaled coordinates as in Fig. 4. The black dashed line represents
the asymptotic behavior (7) for the proper choice of the coefficient
c = 1 + 0.90b and d2 = 0.01.

VII. LÉVY FLIGHTS FOR STRONG MULTIFRACTALITY:
A POOR-MEN DERIVATION

In this section we exploit another expression for the density
correlation function (at a fixed energy of the wave packet ε,
which has been reinstated in this section) in the time domain,
which is equivalent to Eq. (1) provided that ω � B or t 	
1/B, where B is the energy bandwidth:

D̂r,r ′ (t) = 2π
∑
n,m

〈δ(ε − εn)eit(εm−εn)

×ψn(r)ψ∗
n (r + R)ψm(r + R)ψ∗

m(r)〉. (47)

Note that D̂r 
=r ′ (t = 0) = 0 due to completeness of the set
of normalized wave functions. Therefore, one can replace
eit(εn−εm) by eit(εn−εm) − 1 without changing the result.

Let us consider very strong multifractality and very large
distances R = r − r ′. Then the wave function can be approx-
imated as

ψn(r 
= n) ≈ Hn,r

εn − εr

, ψn(r = n) ≈ 1, (48)

where Hnm is an off-diagonal entry of the matrix Hamiltonian
and εn ≡ Hnn is the diagonal entry. In the case of very
small b, when the wave function normalization is almost
completely concentrated at one site n (center of localization),
the eigenenergy of a state εn is almost equal to the on-site
energy Hnn.

The main contribution to Eq. (47) is given by two terms
m = r and n = r + R or n = r and m = r + R. In both cases
the combination of wave functions is equal to

− |Hr,r+R|2
(εr − εr+R)2

.

Now we average over disorder. For a Gaussian ensemble, the
averaging over εn = Hnn and over the hopping matrix elements
Hnm are independent from each other. Therefore, we replace
|Hnm|2 by its average 〈|Hnm|2〉 given by Eq. (14) and reduce
averaging over εn to the energy integral with the help of the

spectral correlation function R(ε,ε′) = 〈ρ(ε) ρ(ε′)〉:

D̂r,r+R(t) ≈
∫ +∞

−∞
dε′R(ε,ε′)

1 − eit(ε−ε′)

(ε − ε′)2

2πb2

R2
. (49)

Note that due to level repulsion R(ε,ε) = 0, the integral in
Eq. (49) is convergent at ε′ = ε. However, at t being smaller
than the Heisenberg time t � tH = Nρ0 (or ω 	 � ∼ B/N),
the region of level repulsion is very narrow, so one can replace
R(ε,ε′) ≈ ρ(ε)ρ(ε′), where ρ(ε) is the averaged DOS. Using
also the symmetric form of the averaged DOS ρ(ε) = ρ(−ε),
we obtain at ε = 0

D̂r,r+R(t) ≈ 4πρ0b
2

R2

∫ +∞

0
dε′ρ(ε′)

1 − cos(tε′)
ε′2 . (50)

At t 	 1/B, the integral in Eq. (50) is dominated by ε′ � B

and one can replace ρ(ε′) ≈ ρ0 and obtain

D̂r,r+R(t) ≈ 4πρ2
0b2

R2
t

∫ +∞

0
dx

1 − cos(x)

x2
= 2π2ρ2

0b2

R2
t.

(51)

This is exactly the result (26) obtained in the corresponding
limit R 	 bt from general formulas of the virial expansion.

Note, however, that Eq. (51) does not describe the behavior
of the correlation function (47) at smallest t � ρ0 ∼ 1/B. In
this case, one can expand the exponent in Eq. (50) and arrive at

D̂r,r+R(t) ≈ 2πρ0b
2

R2
t2

∫ +∞

0
dxρ(x) = πρ0b

2

R2
t2. (52)

The two asymptotes (51) and (52) match each other at t ∼ ρ0.
They both describe the Lévy flights. However, Eq. (51) has
the scaling form R−d (t/R−d ) (at d = 1), while Eq. (52) is the
fully perturbative result that violates the critical scaling law
D̂r,r+R(t) = R−dS(Rd/t). In the macroscopic thermodynamic
limit, when R → ∞, with t/Rd fixed but R/L → 0, the
perturbative region plotted as a function t/Rd shrinks to zero.

VIII. DENSITY CORRELATION FUNCTION IN THE
WIGNER-DYSON LIMIT b → ∞

One can consider another limit when the size of the system
L = N is fixed and the parameter b in Eq. (14) is increasing.
The limit b → ∞ corresponds to the Wigner-Dyson RMT. In
this limit, the system becomes effectively zero dimensional and
is no longer critical. Nevertheless, we derive and briefly review
its density correlation function for the sake of completeness.

We start with the same equation (47) as in the preceding
section but employ the independent averaging over eigenvalues
and eigenfunctions. The former is given by the famous
Wigner-Dyson statistics [26], while the latter is described by
the Porter-Thomas statistics. The simplest case is β = 2 when
the eigenfunction ψn(r) ≡ Unr is uniformly distributed over
the unitary group U(N ). The averages of the products of ψ

functions are well known, e.g.,〈
Unr1U

∗
n′r2

Umr ′
2
U ∗

m′r ′
1

〉
= 1

N2 − 1

(
δnn′δr1r2δmm′δr ′

1r
′
2
+ δnm′δr1r

′
1
δmn′δr2r

′
2

)
− 1

N (N2 − 1)

(
δnn′δr1r

′
1
δmm′δr ′

2r2+δnm′δr1r2δmn′δr ′
2r

′
1

)
. (53)
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Using Eq. (53), we obtain

(2πρ0)−1D̂r,r+R(t) = δR,0 + [K(t) − N ]
δR,0N − 1

N2 − 1
, (54)

where K(t) is the spectral form factor

K(t) = 1

Nρ0

∑
n,m

〈δ(ε − εn) eit(εm−εm)〉. (55)

At t = 0, summations over n and m are independent and one
finds K(t = 0) = N , while at large t → ∞ only terms with
n = m survive and K(t → ∞) = 1. However, the behavior of
K(t) at small times is highly uneven: K(t) drops to almost
zero for a very short time of the order of the inverse bandwidth
ρ0 ∼ 1/B ∝ 1/

√
N and then it recovers to unity; for example,

in the unitary ensemble [26] K = t/tH for ρ0 � t < tH and
K = 1 for t > tH ; we recall that the Heisenberg time is
tH = Nρ0.

One can immediately see that at t = 0 Eq. (54) is the
discrete δ function δR,0 and that the sum rule (9) is fulfilled at
any t . Furthermore, the density correlation function remains
a combination of a δ function and a flat background at any t .
The weight of the δ function determines the return probability

P (t) = 1 − N

N2 − 1
[N − K(t)]. (56)

The monotonic behavior of K(t) results in the similar behavior
of the return probability: For a short time t ∼ ρ0 ∼ 1/

√
N , the

wave packet leaves the origin almost completely. However, at
later times it accumulates again in the origin, reaching the
value P (t) = 1

N+1 at t > tH . Such an echo behavior is typical
for a chaotic quantum system of finite size.

The flat background behaves with time as

2πρ0D̂r,r+R(t) = N − K(t)

N2 − 1
(R > 0). (57)

It rapidly grows at small times, then decreases a bit, and reaches
the constant limit 1/(N + 1) at t > tH .

Despite all unevenness of the behavior discussed above,
there is one rough feature: At finite R the flat background is
always small like N−1. Given that the critical Hamiltonian (12)
approaches the Wigner-Dyson RMT at b → N , one expects
the density correlation function to decrease at constant (large)
system size N as the parameter b > 1 increases.

IX. NUMERICAL RESULTS

In order to check the analytical results of the preceding
sections and, more importantly, to verify their robustness for
long-range critical random matrix models with weak multi-
fractality, we performed a statistical analysis of eigenvalues
and eigenfunctions obtained by direct diagonalization of large
matrices drawn from the Gaussian orthogonal ensemble (14)
with β = 1. The results are summarized in Figs. 6 and 7.

In Fig. 6 we demonstrate the scaling (6) in the two main
scaling regimes (8) and (13) for the case of strong multi-
fractality b = 0.1. Both the multifractal regime of Chalker
and the Lévy flights proportional to t/r2 can be seen clearly
and the scaling (6) is confirmed by a collapse of curves
for several values of the distances r to the single scaling
curve. The scaling (6) is violated at very small t < ρ0 where
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FIG. 6. (Color online) Scaling function S = rD̂r ′,r ′+r (t) averaged
over r ′ for different fixed r = 100,200,500,1000 for the long-range
critical random matrix ensemble (14) with β = 1, b = 0.1, and matrix
size N = 104. The curves for the multifractal regime (8) and for the
Lévy flights (13) collapse to the single scaling curve. The perturbative
Lévy flights (52) at the smallest t do not obey the scaling.

inhomogeneity of the spectrum (finite-size effects in the energy
space) should be taken into account and Eq. (52) stands for
Eq. (13). Another possible source of violation of scaling is the
finite-size effects in the coordinate space that appear as the
corrections in the parameter rd/N � 1 and are important at
not very small rd/N .

In Fig. 7 we show the critical density correlation function
for weak multifractality in the case b > 1. Besides the scaling
and Chalker’s ansatz for the power-law behavior (8) in the
multifractal region, the focus of our study was the power-law
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FIG. 7. (Color online) Scaling function S = rD̂r ′,r ′+r (t) averaged
over r ′ for different fixed r for the long-range critical random matrix
ensemble (14) with β = 1, b = 5, and matrix size N = 104. In
the main plot r = 200,500,1000. The region of Lévy flights with
scaling (13) shrinks compared to the case of small b = 0.1. The
region of perturbative Lévy flights (52) increases with decreasing r .
The inset shows the same scaling function for small r = 5,10,20 and
larger values of t/r . The multifractal regime (8) can be seen clearly
and it crosses over directly to the perturbative Lévy flights (52) at
small t/r .
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tail at small t/r that describes the Lévy flights. It can be
seen that the region of the scaling Lévy flights (13) is much
more narrow for b > 1 compared to the case of small b and is
shrinking as r decreases. However, the exponent p of the power
law in the scaling function S(x) ∝ x−p (x 	 1) stays constant
p = 1 and independent of the strength of multifractality, i.e.,
of the parameter b. This result is not obvious for large b where
the arguments behind the derivation of Eq. (51) no longer
apply. It was also verified analytically by considering the next
order in the virial expansion [25]. In the following section we
will consider the classical analog of such a behavior.

X. RANDOM WALKS OVER A HIERARCHICAL
MANIFOLD WITH A LEVEL-DEPENDENT

ASYMMETRIC RATE

In Ref. [18] Wegner and Grossmann suggested a classical
random walk process on a hierarchical structure that is
rich enough to mimic many relevant regimes in transport
in disordered systems and in fluid turbulence. Its rigorous
definition is given in the original work. Here we illustrate
this process for the 2D Sierpinski gasket (see Fig. 8). As any
regular fractal, the Sierpinski gasket is characterized by the
hierarchy of self-similar clusters, each containing z clusters of
the next generation (level). For the Sierpinski gasket of Fig. 8,
z = 3. Another important parameter of the fractal geometry
is the space scaling factor μ > 1, which is the ratio of linear
sizes of the clusters of the kth and the (k + 1)th levels. For the
Sierpinski gasket of Fig. 8, μ = 2. As in the original work [18],
we assume that there is a smallest level k = 0 with the size of
triangle equal to 1. Then the size of the triangle of the largest
level k = l is L = μl and there are zl white triangles of the
smallest level in it. The parameters z and μ determine the
Hausdorff fractal dimension, i.e., the exponent dh that governs
the scaling S ∝ Ldh of the total area of white triangles as the
size of the largest triangle L increases. Given that S ∝ zl , one

FIG. 8. (Color online) Example of a 2D hierarchical manifold:
Jumps occur only between the full (colored) triangles of the
neighboring generations (levels) shown by different colors. There
are no jumps between triangles of the same level (size) or jumps
between triangles that are not directly touching each other.

immediately finds that

dh = ln z

ln μ
. (58)

The Wegner-Grossmann (WG) random walk process can
be viewed as jumps over the manifolds of centers of the
full (colored) triangles, each of them being determined by
two numbers (k,i), where k is the level of the triangle and i

enumerates in a certain way (see Fig. 8) all the zk−l triangles
of the given level k. An important rule is that a jump may
occur only by one level up and by one level down. The up
jump may occur from each of z smaller full triangles of the
(k − 1)th level to the single larger triangle of the kth level,
whose smaller triangles touch directly. It happens with the rate

W
(up)
k = sk. (59)

The opposite process of the down jump is supposed to
have a rate

W
(down)
k = sk

zr
. (60)

The presence of z in the denominator is natural as the
down jump happens to one of the z smaller triangles that
touch the larger triangle. The crucial invention of Wegner
and Grossmann is the rate asymmetry parameter r . It is
this parameter that makes the up jumps (down jumps) a
predominant process if r > 1 (< 1).

The rate scaling parameter s is natural on every hierarchical
structure of the type in Fig. 8 in order to compensate for the
increasing length of jumps as the level increases. The normal
case is when s < 1. In this case the Lévy flights cannot occur.
In contrast, if s > 1 and r = 1, all the moments 〈xm〉 (m > 0)
of random walk displacement are divergent at all times. This
is a somewhat flawed model.

The presence of the rate asymmetry parameter allows one
to reach a new regime (regime C in Ref. [19]) at r < 1
where s > 1 but rs < 1. It is exactly the regime where the
density correlation function behaves similarly to that in the
quantum case of the random critical long-range Hamiltonians
of Eq. (12). Note that the case r < 1 and s = 1 would result
in trapping of a random walker on a fractal with no restriction
to the level number from below. Indeed, in this case the bias
towards down jumps would drive the walker to lower and lower
levels of hierarchy without a considerable displacement in the
space. It is not the case in the WG model where the minimal
level of hierarchy does exist, so after reaching it, the walker
must go to the higher level with certainty and thereby may
escape to arbitrary large distance. Thus the coarse-grained WG
model never leads to localization, but only to subdiffusion:

〈x2〉 ∝ t� ≡ t2/dw (� < 1). (61)

In Eq. (61) we introduced the walk dimension dw, which is
essentially the dynamical exponent that determines the relative
scaling of space and time. In the WG model with

s > 1, sr < 1, (62)

it is given by [19]

dw = ln(sr)−1

ln μ
(63)

and leads to a subdiffusion � < 1 if (sr)−1 > μ2.
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The definition (61) is similar to the celebrated critical
subdiffusion 〈x〉2 ∝ t2/d , which is well known from the scaling
theory of Anderson localization [16]. This suggests that dw in
Eq. (61) has the same meaning as the dimensionality of space
in the quantum critical models. Now we show that the WG
random walk with the parameters s and r obeying Eq. (62)
reproduces all the regimes shown in Fig. 1.

First of all, we note that, according to Table 3 of
Ref. [19], the moments 〈|x|m〉 are divergent if μmrs > 1,
which requires m > dw at rs < 1 < s; here dw is given by
Eq. (63) and x is the x coordinate of the displacement vector
R = {x,x1,x2, . . . ,xd−1} in the d-dimensional space in which
the fractal is embedded. This suggests that the probability of
finding a walker at in an interval (x,x + dx) at a time t is
proportional to |x|−(dw+1)dx.

Switching to the radial-angle variables, we find that the
probability of finding the walker at a distance interval {R,R +
dR} within the solid angle interval d� is

P (R,t) ∝ R−dw−1R−d+1Rd−1dR d�

∝ R−dR−dwddR, R → ∞. (64)

In order to find the coefficient of proportionality in Eq. (64)
we use Eq. (4.30) of Ref. [19]. Then we obtain

RdP (R,t) ≡ S(R,t) ≈ q
(l)
l (t) = 1 − e−κ(rs)l t . (65)

Here κ = (1 − r)(1 − rs) and l ≡ l(R) = ln R/ ln μ is the
displacement in the ultrametric space of levels expressed in
terms of the radial displacement in the real space. At large
enough R and sr < 1 the exponent can be expanded and we
obtain

R−dP (R,t) ≡ S(Rdw/t) = κtR−ln(rs)−1/ln μ = κtR−dw . (66)

We see that, in full agreement with the meaning of dw as
an exponent of dynamical scaling, R−dw enters the func-
tion S(R,t) in the scale-invariant combination Rdw/t . Thus
Eq. (66), which describes the Levy flights for the classical
WG random walk, is isomorphic to Eq. (13) for the density
correlation function in the quantum problem of random critical
long-range Hamiltonians provided that

dw → d. (67)

Now consider small distances Rdw � t . At such distances
Eq. (66) no longer applies. In order to find the density
correlation function in this regime we apply the scaling
S(R,t) = S(Rdw/t) and the coarse graining. The latter implies
that the return probability P (t) is proportional to S(1,t) =
S(1/t). So the time dependence of the return probability allows
us (via scaling) to find the entire function

S(R,t) = S(Rdw/t) ∝ P (t/Rdw ). (68)

The return probability in the WG random walk process[regime
Eq. (62)] has been found in Ref. [20]:

P (t) ∝ t−ν, ν = ln z

ln(rs)−1
= dh

dw

, (69)

where dh and dw are the Hausdorff and the walk dimensions
given by Eqs. (58) and (63). Then using Eqs. (64), (68),
and (69), one finds for the density correlation function at

Rdw � t

R−dS(R,t) ∝ R−d

(
Rdw

t

)dh/dw

. (70)

This is a classical counterpart of Eq. (8). Quite naturally, the
correlation fractal dimension d2 is replaced by the Hausdorff
dimension of the classical fractal

dh → d2 (71)

and again the correspondence (67) holds true.
We conclude this section by saying that there is a com-

plete quantum-to-classical analogy in the density correlation
function of the WG random walks and the long-range critical
random Hamiltonians.

XI. CONCLUSION

The following are the main results of this paper.
(i) We have identified two regions with qualitatively differ-

ent behavior of the density correlation function of long-range
critical Hamiltonians (12): the multifractal region where the
power-law behavior (8) predicted by Chalker [13] is valid and
the Lévy flights region with the power-law behavior (13). Both
types of behavior were studied analytically within the virial
expansion method and by a direct numerical diagonalization
of large matrices for the critical random-matrix model (14).

(ii) It appears that for strong multifractality [b � 1 in
Eq. (14)] there is a complete analogy of the density correlation
function in the quantum problem due to emergent fractality of
random critical wave functions and in the classical random
walks on hierarchical structures due to their geometrical
fractality. In both cases, one can find two independent critical
exponents in the density correlation function: Classical random
walks on fractals can be described by the Hausdorff dimension
dh and the walk dimension dw (or the spectral dimension
ds = 2dh/dw). Two corresponding critical exponents of the
quantum problem are the correlation multifractal dimension
d2 and the dimensionality of space d.

(iii) It is remarkable that only the latter determines the
power-law large-distance tail (quantum Levy flights) in the
scaling function S(t � rd ) ∝ t/rd [Eqs. (6) and (13)]. The
exponent −d is independent of b [and hence independent
of d2(b)] at all values of the parameter b in Eq. (14). By
comparing Eqs. (13) and (66), we find that the scaling variable
x = rd/t (quantum critical problem) or x = rdw/t (classical
random walks) enters in the Levy flights power-law tail in
both cases as x−1 with the universal exponent −1, which is
independent of the correlation dimension d2 (quantum critical
problem) or of the Hausdorff dimension dh (classical random
walks). We believe that this universality has a deep physical
origin.

The application of the above results to the critical point
of the Anderson localization transition is a subtle issue
due to the absence of an exact solution to the Anderson
localization problem and due to the limited sizes of 3D systems
amendable to direct numerical diagonalization. Yet it is rather
well established that the multifractal behavior of the density
correlation function (8) is present at the Anderson transition
point in 3D systems. In Fig. 9 we present the results of a
direct numerical diagonalization of the 3D Anderson model at
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FIG. 9. (Color online) Scaling function S = r3D̂r,0(t) vs scaling
variable t/r3 for the 3D Anderson localization model (AM) with
the critical disorder W = 16.5 and the nearest-neighbor hopping
integral V = 1. The plots for three different values of r , r = 31/2,
2 × 31/2, and 3 × 31/2, and the corresponding three sample sizes
L = 10, 20, and 30 collapse (at t > tmax) in the single scaling
curve with the multifractal power-law behavior (r3/t)d2/3, where
d2 ≈ 1.3 is the correlation fractal dimension. The dot-dashed line
represents the corresponding power law. At t < tmax there is a
significant divergence of curves for different r . Given that the ratio
r/L ≈ 0.17 is constant for all the curves, this divergence can only
be explained by a significant role played by a microscopic length
	0 (see Ref. [12]) and the corresponding dimensionless combination
(Lt/	0)3 = tE0 ∼ tV = t . Note that at the maximum of the scaling
curve t = tmax = 1.5, 12, and 40 for the three values of r indicated
above. For the same values of r , the smallest value of the scaling
variable shown on the plot corresponds to t = 0.25, 2.0, and 6.8. The
macroscopic limit Lt/	0 	 1 implies t 	 1. Only in this limit is a
collapse of the curves expected. This condition is obviously violated
for the curve with the smallest r = 31/2 at t < tmax.

critical disorder W = 16.5 and the nearest-neighbor hopping
V = 1. The density correlation function D̂r,0(t) is computed
for three different values of r and the corresponding three
different system sizes such that r/L ≈ 0.17 = const. Thus,
geometrically, the systems are macroscopically similar and
the finite-size corrections of the type r/L, though appreciable,
are the same for all three cases. One can see that for t > tmax

(tmax corresponds to the maximum of the scaling curve)

all three curves for r3D̂r,0(t) collapse to the single scaling
curve S(r3/t) ∼ (r3/t)d2 with rather good accuracy. In this
region they exhibit the power-law behavior that is represented
by Eq. (8), albeit with the power slightly modified by the
finite-size r/L effects.

The situation with the tail at r3 	 t is much worse. The
curves for different r diverge significantly as the scaling
variable t/r3 gets smaller. There is only one reason for such a
behavior: It is the finite-size effects of the type 	0/Lt , where
	0 ∼ (ρ0V )−1/3 is the microscopic length, which has been
introduced in Ref. [12], and L3

t = t/ρ0. Here ρ0 ∼ (a3V W )−1

is the density of states, thus 	0 ∼ aW 1/3 is of the order
of the lattice constant a. The parameter that controls the
smallness of such finite-size effects is (	0/Lt )3 ∼ (tV )−1 =
1/t . Obviously, at small t this parameter is no longer small
and one cannot expect a scaling behavior in the region
t � 1. In contrast, tmax ≈ 0.3r3. So it is only at large r that
one may observe a scaling behavior in a sufficiently wide
interval 1 � t < tmax. We conclude that in order to meet the
requirement 1 � t < tmax and simultaneously to exclude the
finite-size r/L effects one should study really large 3D systems
with L ∼ 100, which is numerically a very hard problem.

In this situation we can only guess what the form of
the scaling function S(r3/t) is at t < tmax at the Anderson
transition point of 3D systems. The most natural assumption
is that it is exponentially small, and thus the Levy flights
are absent, due to the short-range nature of the Anderson
Hamiltonian. A counterscenario in which the Levy flights may
be present is offered [27] by the observation of the explosion
of high-gradient operators in the linear supersymmetric σ

model in 2 + ε dimensions. Unfortunately, this long-standing
controversy remains unresolved.
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