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A phase transition indicates a sudden change in the properties of a large system. For temperature-
driven phase transitions this is related to non-analytic behavior of the free energy density at the
critical temperature: The knowledge of the free energy density in one phase is insufficient to predict
the properties of the other phase. In this paper we show that a close analogue of this behavior can
occur in the real time evolution of quantum systems, namely non-analytic behavior at a critical time.
We denote such behavior a dynamical phase transition and explore its properties in the transverse
field Ising model. Specifically, we show that the equilibrium quantum phase transition and the
dynamical phase transition in this model are intimately related.

Phase transitions are one of the most remarkable phe-
nomena occurring in many-particle systems. At a phase
transition a system undergoes a non-analytic change of
its properties, for example the density at a tempera-
ture driven liquid-gas transition, or the magnetization
at a paramagnet-ferromagnet transition. What makes
the theory of such equilibrium phase transitions particu-
larly fascinating is the observation that a perfectly well-
behaved microscopic Hamiltonian without any singular
interactions can lead to non-analytic behavior in the ther-
modynamic limit of the many-particle system. In fact,
the occurrence of equilibrium phase transitions was ini-
tially a puzzling problem because one can easily verify
no go theorems for finite systems, therefore the thermo-
dynamic limit is essential [1].

Today the theory of equilibrium phase transitions is
well established, especially for classical systems under-
going continuous transitions, where the powerful tool of
renormalization theory bridges the gap from microscopic
Hamiltonian to universal macroscopic behavior. On the
other hand, the behavior of non-equilibrium quantum
many-body systems is by far less well understood. Recent
experimental advances have triggered a lot of activity in
this field [2], like the beautiful experiments on the real
time evolution of essentially closed quantum systems in
cold atomic gases [3, 4]. The experimental setup is typi-
cally a quantum quench, that is a sudden change of some
parameter in the Hamiltonian. Therefore the system is
initially prepared in a non-thermal superposition of the
eigenstates of the Hamiltonian which drives its time evo-
lution.

From a formal point of view, there is a very suggestive
similarity between the canonical partition function of an

equilibrium system

Z(β) = Tr e−βH (1)

and the overlap amplitude of some time-evolved initial
quantum state |Ψi〉 with itself

G(t) = 〈Ψi|e−iHt|Ψi〉 (2)

This leads to the question whether some analogue of tem-
perature (β)-driven equilibrium phase transitions in (1)
exists in real time evolution problems. In the theory of
equilibrium phase transitions it is well established that
the breakdown of the high-temperature (small β) ex-
pansion indicates a temperature-driven phase transition.
Likewise, we propose the term dynamical phase transition
for non-analytic behavior in time, that is the breakdown
of a short time expansion in the thermodynamic limit at
a critical time.

In this paper we study this notion of dynamical phase
transition in the one dimensional transverse field Ising
model, which serves as a paradigm for one dimensional
quantum phase transitions [5]. It can be solved exactly,
which permits us to establish the existence of dynam-
ical phase transitions that are intimately related to the
equilibrium quantum phase transition in this model. Our
results in this specific model lead to numerous intriguing
follow up questions like the existence of dynamical phase
transition in other models, and which concepts from the
theory of equilibrium phase transitions can be carried
over to dynamical phase transitions.
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RESULTS

The key quantity of interest in this work is the parti-
tion function

Z(z) = 〈Ψi| e−zH |Ψi〉 (3)

in the complex plane z ∈ C. For imaginary z = it this
just describes the overlap amplitude (2). For real z = R
it can be interpreted as the partition function of the
field theory described by H with boundaries described
by boundary states |Ψi〉 separated by R [6]. In the ther-
modynamic limit one defines the free energy (apart from
a different normalization)

f(z) = − lim
N→∞

1

N
ln Z(z) (4)

where N is the number of degrees of freedom. Now sub-
ject to a few technical conditions one can show that the
partition function (3) is an entire function of z since in-
serting an eigenbasis of H yields sums of terms e−zEj ,
which are entire functions of z. According to the Weier-
strass factorization theorem an entire function with ze-
roes zj ∈ C can be written as

Z(z) = eh(z)
∏
j

(
1− z

zj

)
(5)

with an entire function h(z). Thus

f(z) = − lim
N→∞

1

N

h(z) +
∑
j

ln

(
1− z

zj

) (6)

and the non-analytic part of the free energy is solely de-
termined by the zeroes zj . A similar observation was
originally made by M. E. Fisher [1], who pointed out that
the partition function (1) is an entire function in the com-
plex temperature plane. This observation is analogous to
the Lee-Yang analysis of equilibrium phase transitions in
the complex magnetic field plane [7]. For example in the
2d Ising model the Fisher zeroes in the complex temper-
ature plane approach the real axis at the critical temper-
ature z = βc in the thermodynamic limit, indicating its
phase transition [8].

We now work out these analytic properties explicitly for
the one dimensional transverse field Ising model

H(g) = −
N−1∑
i=1

σzi σ
z
i+1 + g

N∑
i=1

σxi (7)

For magnetic field g < 1 the system is ferromagnetically
ordered at zero temperature, and a paramagnet for g > 1
[5]. These two phases are separated by a quantum critical

Figure 1: Left: Phase diagram of the transverse field Ising
model. ∆ = |g − 1| is the excitation (mass) gap, which van-
ishes at the quantum critical point. Right: A quench across
the quantum critical point (green arrow) generates a new non-
equilibrium energy scale εk∗ (10), which is plotted here for a
quench starting at g0 = 0.
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Figure 2: Lines of Fisher zeroes for a quench within the same
phase g0 = 0.4 → g1 = 0.8 (left) and across the quantum
critical point g0 = 0.4 → g1 = 1.3 (right). Notice that
the Fisher zeroes cut the time axis for the quench across the
quantum critical point, giving rise to non-analytic behavior
at t∗n (the times t∗n are marked with dots in the plot).

point at g = gc = 1 (Fig. 1). The Hamiltonian (7) can be
mapped to to a free fermion model [9–11] with dispersion

relation εk(g) =
√

(g − cos k)2 + sin2 k. In a quantum

quench experiment the system is prepared in the ground
state at magnetic field g0, |Ψi〉 = |ΨGS(g0)〉, while its
time evolution is driven with a Hamiltonian H(g1) with
a different magnetic field g1. Partition function (3) and
free energy (4) describing this sudden quench g0 → g1
can be calculated analytically [12] (see Methods).

In the thermodynamic limit the zeroes zj of the parti-
tion function in the complex plane coalesce on a family
of lines, which are depicted in Fig. 2 for a quench within
the same phase or across the quantum critical point. As
expected there are no cuts across the real axis, other-
wise one would have an equilibrium phase transition for
a certain boundary separation. However, for a quench
across the quantum critical point there are unavoidably
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non-analyticities on the time axis due to the limiting be-
havior of the lines of Fisher zeroes for R→ ±∞.

Now the free energy (4) is just the rate function of the
return amplitude (2)

G(t) = 〈Ψi|Ψi(t)〉 = 〈Ψi|e−iH(g1)t|Ψi〉 = e−N f(it) (8)

Likewise for the return probability (Loschmidt echo)

L(t)
def
= |G(t)|2 = exp(−N l(t)) one has l(t) = f(it) +

f(−it). The behavior of the Fisher zeroes for quenches
across the quantum critical point therefore translates into
non-analytic behavior of the rate functions for return am-
plitude and probability at certain times t∗n. For sudden
quenches one can work out these times easily

t∗n = t∗
(
n+

1

2

)
, n = 0, 1, 2, . . . (9)

with t∗ = π/εk∗(g1) and k∗ determined by

cos k∗ =
1 + g0 g1
g0 + g1

(10)

We conclude that for any quench across the quantum crit-
ical point the short time expansion for the rate function
of the return amplitude and probability breaks down in
the thermodynamic limit, analogous to the breakdown of
the high-temperature expansion at an equilibrium phase
transition. In fact, the non-analytic behavior of l(t)
at the times tn has already been derived by Pollmann
et al. [13] for slow ramping across the quantum critical
point. For a slow ramping protocol εk∗(g1) becomes the
mass gap m(g1) = |g1−1| of the final Hamiltonian, but in
general it is a new energy scale generated by the quench
and depending on the ramping protocol. In the universal
limit for a quench across but very close to the quantum
critical point, g1 = 1 + δ, |δ| � 1 and fixed g0, one finds
εk∗(g1)/m(g1) ∝ 1/

√
|δ|. Hence in this limit the non-

equilibrium energy scale εk∗ becomes very different from
the mass gap, which is the only equilibrium energy scale
of the final Hamiltonian (compare Fig. 1).

The interpretation of the mode k∗ follows from the
observation n(k∗) = 1/2 (see methods), where n(k) is
the occupation of the excited state in the momentum
k-mode in the basis of the final Hamiltonian Hf (g1).
Modes k > k∗ have thermal occupation n(k) < 1/2, while
modes k < k∗ have inverted population n(k) > 1/2 and
therefore formally negative effective temperature. The
mode k∗ corresponds to infinite temperature. In fact,
the existence of this infinite temperature mode and thus
of the Fisher zeroes cutting the time axis periodically
is guaranteed for arbitrary ramping protocols across the
quantum critical point. For example, for slow ramping
across the quantum critical point the existence of this
mode and the negative temperature region in relation to
spatial correlations was discussed in Ref. [23].
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Figure 3: The bottom plot shows the work distribution func-
tion r(w, t) for a double quench across the quantum critical
point (g0 = 0.5, g1 = 2.0). The dashed line depicts the ex-
pectation value of the work performed, r(w, t) = 0. The top
plot shows various cuts for fixed values of the work density w.
The line w = 0 is just the Loschmidt echo: Its non-analytic
behavior at t∗n becomes smooth for w > 0, but traces of the
non-analytic behavior extend into the work density plane.

One measurable quantity in which the non-analytic be-
havior generated by the Fisher zeroes appears naturally
is the work distribution function of a double quench ex-
periment: We prepare the system in the ground state of
H(g0), then quench to H(g1) at time t = 0, and then
quench back to H(g0) at time t. The amount of work W
performed follows from the distribution function

P (W, t) =
∑
j

δ (W − (Ej − EGS(g0))) |〈Ej |Ψi(t)〉|2

(11)
where the sum runs over all eigenstates |Ej〉 of the initial
Hamiltonian H(g0). P (W, t) obeys a large deviation form
[14]

P (W, t) ∼ e−N r(w,t) (12)

with a rate function r(w, t) ≥ 0 depending on the work
density w = W/N . In the thermodynamic limit one can
derive an exact result for r(w, t) (Methods section). Its
behavior for a quench across the quantum critical point is
shown in Fig. 3. For w = 0 the rate function just gives the
return probability to the ground state, r(w = 0, t) = l(t),
therefore the non-analytic behavior at the Fisher zeroes
shows up as non-analytic behavior in the work distribu-
tion function. However, from Fig. 3 one can see that these
non-analyticities at w = 0 also dominate the behavior for
w > 0 at t∗n, corresponding to more likely values of the
performed work. The suggestive similarity to the phase
diagram of a quantum critical point, with temperature
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Figure 4: Dynamics of the magnetization after the quench.
The bottom plot shows the longitudinal magnetization for
various quenches across the quantum critical point. The time
axis is shifted by a fit parameter tϕ and one can see that the
period of the oscillations is the time scale t∗ (9). The upper
plots show the magnetization dynamics in the y−z-plane for a
quench across the quantum critical point g0 = 0.3 → g1 = 1.4
(left) and a quench in the ordered phase g0 = 0.3 → g1 = 0.8
(right). For better visibility the magnetization is normalized

to unit length: ŝy,z(t)
def
= sy,z(t)/

√
s2y(t) + s2z(t). Notice the

Lamor precession for the quench across the quantum critical
point, while the dynamics for the quench in the ordered phase
is asymptotically just an exponential decay [16].

being replaced by the work density w, motivates us to
call this behavior dynamical quantum phase transitions.

Interestingly, the non-equilibrium time scale (9) also
plays a role in the dynamics of a local observable after
the quench. We have calculated the longitudinal magne-
tization (which is the equilibrium order parameter of the
transverse field Ising model)

sz(t) =
1

N

N∑
j=1

〈Ψi(t)|σzj |Ψi(t)〉 (13)

by numerical evaluation of Pfaffians [15] (for details see
the Methods section). For quenches within the ordered
phase it is known analytically [16, 17] that the order pa-
rameter decays exponentially as a function of time, which
is expected since in equilibrium one only finds long range
order at zero temperature (g < 1). For a quench across
the quantum critical point an additional oscillatory be-
havior is superimposed on this exponential decay, see
Fig. 4. Notice that the behavior of the magnetization
remains perfectly analytic, but the period of its oscilla-
tions agrees exactly (within numerical accuracy) with the

period t∗ of Fisher times. We have no proof for this obser-
vation, but have verified it numerically in many different
quenches across the quantum critical point (a conjecture
consistent with our observation was also formulated in
Ref. [18]). A better understanding of this observation
will be the topic of future work.

CONCLUSIONS

We have shown that ramping across the quantum crit-
ical point of the transverse field Ising model generates
periodic non-analytic behavior at certain times t∗n. This
breakdown of the short time expansion for the rate func-
tion of the return amplitude is reminiscent of the break-
down of a high temperature expansion for the free energy
at an equilibrium phase transition. We have therefore
denoted this behavior dynamical phase transition. No-
tice that there are other related but not identical notions
of dynamical phase transitions, for example a sudden
change of the dynamical behavior of an observable as a
function of some control parameter [19, 20], or qualitative
changes in the ensemble of trajectories as a function of
the conjugate field of a dynamical order parameter [21].
Our definition implies non-analytic behavior at some crit-
ical time, which comes about due to the distribution of
Fisher zeroes in the complex plane.

For quenches within the same phase (including to/from
the quantum critical point) the lines of Fisher zeroes lie
in the negative half plane, Re zj(k) ≤ 0 (Fig. 2). Hence
the knowledge of the equilibrium free energy f(R) on the
positive real axis completely determines the time evolu-
tion by a simple Wick rotation. This is no longer true
for a quench/ramping protocol across the quantum crit-
ical point since then the lines of Fisher zeroes cut the
complex plane into disconnected stripes, Fig. 2: Know-
ing f(R) for R ≥ 0 does not determine the time evolution
for t > t∗0. In this sense non-equilibrium time evolution
is no longer described by equilibrium properties, at least
for the return amplitude. We conjecture that this is due
to the athermal mode occupation for k < k∗ that cannot
be achieved by any equilibrium Gibbs state with positive
temperature. A related observation was recently made
in Ref. [23] regarding negative spatial correlations which
are not possible in any thermal state.

The key question for future work will be the robustness
of the dynamical quantum phase transition with respect
to perturbations; specifically perturbations which are ir-
relevant in the renormalization sense, but break the inte-
grability of the model. At present it is unclear whether
some concept of universality can be carried over from the
theory of equilibrium phase transitions. Also one would
like to study other models to see what kind of quantum
quenches can give rise to dynamical phase transitions.

The authors would like to thank D. Huse for valuable
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METHODS

Free energy and Fisher zeroes. The analytic solvability
of the transverse field Ising model relies on the Jordan-
Wigner transformation and a Bogoliubov rotation [9–11],
which map the Hamiltonian (7) to a free fermion model

Hf (g) =
∑
k

εk(g)
(
γ†kγk − γ−kγ

†
−k

)
(14)

with dispersion relation εk(g) =
√

(g − cos k)2 + sin2 k

and k = 2πn/N , n = 1 . . . N/2. The key property we
make use of for describing quenches is the simple struc-
ture of the initial ground state |Ψi〉 = |ΨGS(g0)〉 in terms

of eigenoperators γ†k, γk of the final Hamiltonian Hf (g1)
[12]

|ΨGS(g0)〉 =
1

N
exp

(∑
k>0

B(k) γ†kγ
†
−k

)
|0〉 (15)

Here |0〉 is the vacuum of Hf (g1), N a normalization
factor and the coefficients B(k) = i tanφk with the Bo-
goliubov angles φk = θk(g0)− θk(g1),

tan(2θk(g))
def
=

sin k

g − cos k
, θk(g) ∈ [0, π/2] . (16)

Therefore the partition function (3) is

Z(z) =
1

N 2

∏
k>0

(
1 + |B(k)|2 e−2zεk(g1)

)
(17)

leading to the free energy (4)

fg0,g1(z) = −
∫ π

0

dk

2π
ln
(

cos2 φk + sin2 φk e
−2zεk(g1)

)
(18)

Here we have ignored an uninteresting additive contri-
bution z EGS(g1)/N that depends on the ground state
energy of H(g1) (in the notation of (5) one has h(z) =
z EGS(g1)). In the thermodynamic limit the zeroes of
the partition function in the complex plane coalesce to a
family of lines labelled by a number n ∈ Z

zn(k) =
1

2εk(g1)

(
ln tan2 φk + iπ(2n+ 1)

)
(19)

The limiting infrared and ultraviolet behavior of the
Boboliuobv angles

φk=0 =

 0 quench in same phase
π/4 quench to/from quantum critical point
π/2 quench across quantum critical point

φk=π = 0 (20)

immediately shows that the lines of Fisher zeroes cut
the time axis for a quench across the quantum crit-
ical point (Fig. 2) since then limk→0 Re zn(k) = ∞,
limk→π Re zn(k) = −∞. In fact, the limiting behavior
(20) remains unchanged for general ramping protocols
g(t) with g(t = 0) = g0, g(t = τ) = g1: For a general
ramping protocol we define |Ψi〉 = |ψ(τ)〉, where |ψ(t)〉
is the solution of the Schroedinger equation

i
d

dt
|ψ(t)〉 = H(g(t)) |ψ(t)〉 , |ψ(t = 0)〉 = |ΨGS(g0)〉

(21)
Work distribution function. The cumulant generating

function for the work distribution function for the double
quench (11) follows via

C(R, t) =

∫
dW P (W, t) e−RW

= 〈Ψi| eiH(g1)t e−H(g0)R e−iH(g1)t |Ψi〉
= e−N c(R,t) (22)

with

c(R, t) = −
∫ π

0

dk

2π
ln
(

1 + sin2(2φk) sin2(εk(g1)t)

×(e−2εk(g0)R − 1)
)

(23)

According to the Gärtner-Ellis theorem [14] the work dis-
tribution function (11) depicted in Fig. 3 is just the Leg-
endre transform

− r(w, t) = inf
R∈R

(wR− c(R, t)) (24)

Longitudinal magnetization. The local order parame-
ter sz(t) (13) is evaluated from the associated spin-spin
correlation function

ρz(j, j
′) = 〈Ψi(t)|σzj σzj′ |Ψi(t)〉 (25)

for j, j′ away from the boundary of the chain via the
cluster decomposition [22], [sz(t)]

2 = limj−j′→∞ ρz(j, j
′).

Expressing the Pauli matrices in terms of the Jordan-
Wigner fermions, the spin-spin correlation function can
be related to a Pfaffian [9] that can then be evaluated
numerically. For our results in Fig. 4 we typically use
N = 200.
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