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Abstract

In this Bachelor thesis we provide a first consistency check for a Lindblad approach in
the context of nonequilibrium transport in quantum impurity models with local inter-
actions. To this end we discuss the derivation and steady-state properties of quantum
master equations (QME) in Lindblad form for different noninteracting fermionic toy-
models. In particular, we investigate the transport properties of the considered systems.
These range from a simple resonant level with Lindblad drive to a central level coupled
to two explicitly modeled leads of up to 140 modes each of which is stabilized by its
respective Lindblad baths.

Starting with an iterated Liouville-von Neumann equation for the reduced density
matrix of the system we find that a Born-Markov approximation yields a QME in
Lindblad form that describes the steady-state properties of the resonant level model
properly. For two levels this approximation is found to be still valid whereas we do not
directly obtain a Lindblad QME.

Therefore, we consider two different approximation schemes. It was found that a
derivation in the eigenbasis of the Hamiltonian requires a secular approximation in
order to arrive at a Lindblad QME. This can be understood as an effective averaging
over the intersubsystem coupling and we always find a vanishing particle current for
this approach. However, occupation numbers are reproduced correctly in equilibrium.
Introducing a local approximation we obtain a different Lindblad QME with separate
contributions for each level plus bath subsystem in the dissipator. For this approach
we find a finite current which qualitatively agrees with the Keldysh results in a certain
parameter regime. Furthermore we show that for a simple Aharanov-Bohm geometry
phase coherence of the steady-state current is preserved.

In the end we consider a central level coupled to two leads with explicitly modeled
modes in the local approximation. We numerically investigate the transport properties
of this model for up to 140 lead modes and find an excellent agreement with the Keldysh
results in the wide-band limit and the regime of strong intersubsystem coupling.





1. Introduction

The standard tool for describing nonequilibrium steady-state transport through a quan-
tum system coupled to two leads with different chemical potentials is the Keldysh for-
malism [1]. However, when the quantum system is interacting, the treatment of interac-
tions within the Keldysh formalism is difficult: a perturbative expansion is inadequate
for some applications (e.g. involving the Kondo effect), and numerical treatments of
the interaction in the Keldysh formalism are very cumbersome.

Therefore, it is of interest to explore theoretical frameworks other than the Keldysh
approach for dealing with nonequilibrium steady-state transport. One possibility is
to use a Liouville equation with Lindblad driving terms that are designed to stabilize
the nonequilibrium occupations of the states in the two leads. Such an approach
has potential for describing nonequilibrium steady-state transport in the context of
quantum impurity models with local interactions [2].

An important consistency check for such a Lindblad approach is that its results should
coincide with those of the Keldysh approach. While such a check is, in general, difficult
for interacting models, it is also important and relevant for noninteracting ones, where
it can be performed explicitly.

In this Bachelor thesis we therefore explore the microscopic derivation of Lindblad
drives for several different toy-models, all of which are noninteracting. We analyze
their basic properties which makes a first comparison to the exact Keldysh results
possible. The promising results might lead the way towards an application of Lindblad
drives in more complicated interacting systems.

This thesis is organized as follows.

In a first theoretical part we give a short general introduction to open quantum sys-
tems and turn to their description by means of Markovian quantum master equations
(QME). These give rise to the so-called Lindblad form of QME and we state their
most important properties. Their microscopic derivation is outlined and the necessary
approximations are introduced.

After this we consider specific models and derive the Lindblad QMEs describing their
dynamics. First we discuss the simplest case of just one level coupled to a Lindblad
bath. We then consider the cases of two lead levels coupled to each other or to a
small system. Where applicable we compare the results for the current between the
lead modes to the exact expression. Furthermore we explore whether phase coherence
is preserved for an Aharanov-Bohm like geometry. Having discussed these simple ex-
amples we turn to the more complicated case of a single level coupled to up to 140
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explicitly modeled lead levels each of which is coupled to its respective Lindblad bath.
We derive implicit expressions for the occupations and tunneling terms in the steady
state and compare the current through the single level with the exact result.

More explicit calculations and derivations as well as a description of the numerical
implementation can be found in the Appendix which will frequently be referred to.



2. Prerequisites

In this chapter we shall restate some of the basic results of quantummechanics for closed
quantum systems in order to compare them to the open system approach outlined in
the next chapter. The fermionic operators which will be used to describe our models
are introduced. As this is standard textbook material we shall closely follow [3, 4, 5]
in both, content and notation. We also use this chapter to establish the notation used
throughout this thesis.

2.1. Unitary Evolution of Closed Quantum Systems

Following [4] we denote by a closed quantum system a system that is closed in the
sense that it does not interchange any information with another system (i.e. energy,
particles, etc.). We reserve the term isolated to closed systems whose Hamiltonian is
time independent1. We will work in units of ~ = 1.

The time evolution of a pure state |ψ(t)〉 ∈ H generated by the Hamiltonian H(t) is
determined by the Schrödinger equation (2.1):

d

dt
|ψ(t)〉 = −iH(t) |ψ(t)〉 , (2.1)

whereas the time evolution of a mixed state ρ(t) ∈ O1(H)2 is determined by the
Liouville-von Neumann equation (2.2):

d

dt
ρ(t) = −i [H(t), ρ(t)] . (2.2)

Due to the linearity of the Schrödinger equation its solution is given by an evolution
family U(t, t0) such that

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (2.3)

where U(t0, t0) = 1 and U(t, t0) is a unitary operator.

The time evolution operator is determined by the Hamiltonian of the system in question
and can formally be written as

U(t, t0) = T e−i
∫ t
t0
H(τ)dτ

, (2.4)
1An example for a closed but not isolated system is an atom in an external classical electromagnetic
field

2O1(H) = {ρ ∈ B(H) s.th. trρ <∞} is the space of all trace-class operators in the space of bounded
linear operators on H
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where T denotes the time ordering operator. For a time-independent Hamiltonian
H 6= H(t) this simplifies to

U(t, t0) = e−iH(t−t0). (2.5)

The time evolution of the density matrix can similarly be expressed in terms of the
same evolution family and is given by:

ρ(t) = U(t, t0)ρ(t0)U †(t, t0) (2.6)

This can be expressed in terms of an operator Ut,t0 acting on the space of density
matrices [5]:

ρ(t) = Ut,t0ρ(t0), (2.7)

where
Ut,t0 [·] = U(t, t0)[·]U †(t, t0). (2.8)

Upon deriving equation (2.2) and formally integrating it we arrive at the generator Lτ
of

Ut,t0 [·] = T e
∫ t
t0
Lτdτ [·] (2.9)

which is also called Liouvillian [5]:

Lt[·] = −i [H(t), ·] (2.10)

In the following we will only deal with time-independent generators so that the integral
in the exponent simplifies to the difference t − t0. We shall refer to operators such as
Lτ or Ut,t0 which act upon other operators as superoperators.

2.2. Schrödinger, Heisenberg and Interaction Picture

So far we have worked in the Schrödinger picture in which the states evolve in time
whereas the operators remain constant. As is well known [3] we can also consider
the operators to be time-dependent with the state-vectors remaining constant. This
formulation of quantummechanics is calledHeisenberg picture3. When the Hamiltonian
of the system can be separated into a free part and an interaction one can introduce a
third formulation, the so-called interaction picture4. We shall briefly introduce these
different approaches and quote some basic properties and relations between them in
Tab. 2.1 (where H(t) = H0 +HI(t)).

In our studies we will mostly be concerned with the Schrödinger and the interaction
picture. The relation between the density matrix in these pictures can be made more

3In the following we shall denote Heisenberg operators by an index H
4In the following we shall denote interaction picture operators by a tilde. The index S will – with
the exception of this section – denote system and not Schrödinger.
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Schrödinger picture Heisenberg picture Interaction picture

U(t, t0) = T e−i
∫
Hdτ U(t, t0) = T e−i

∫
Hdτ U0(t, t0) = e−iH0(t−t0)

|ψS(t)〉 = U(t, t0) |ψS(t0)〉 |ψ〉 = |ψS(t0)〉
∣∣∣ψ̃(t)

〉
= U †0(t, t0) |ψS(t)〉

ρS(t) = U(t, t0)ρS(t0)U †(t, t0) ρH = ρS(t0) ρ̃(t) = U †0(t, t0)ρS(t)U0(t, t0)

AS = AH(t0) AH(t) = U †(t, t0)A(t0)U(t, t0) Ã(t) = U †0(t, t0)ASU0(t, t0)

ρ̇S(t) = −i [H, ρS(t)] ȦH(t) = i [H,AH(t)] ˙̃ρ(t) = −i
[
H̃I(t), ρ̃(t)

]
Table 2.1.: Relations between the different formulations of quantum mechanics

explicit than in Tab. 2.1. In appendix A.3 we derive the following relation:

ρ̇S(t) = − i
~

[H0, ρS(t)] + U0(t, t0) ˙̃ρ(t)U †0(t, t0)

= − i
~

[H, ρS(t)] + U0(t, t0)Dρ̃(t)U †0(t, t0), (2.11)

where Dρ̃(t) is the dissipative (i.e. non-Hamiltonian) part of the master equation (e.g.
Lindblad operators).

2.3. Fermionic Creation and Annihilation Operators

In this thesis we deal with models consisting of discrete fermionic levels which we will
describe using second quantization, i.e. fermionic creation and annihilation operators
creating and destroying a particle in their respective level.

The operators corresponding to the ith system level will be denoted by di and d†i ,
whereas we shall denote operators regarding the qth environmental mode belonging to
the ith bath as ci,q c†i,q.

The operators fulfill the following anticommutation relations:

{di, dj} = 0 {ci,q, cj,p} = 0

{di, c†j,q} = 0 {di, cj,q} = 0

{di, d†j} = δij {ci,q, c†j,p} = δijδqp

(2.12)

For general properties of commutators and anticommutators for fermionic operators
refer to appendix A.1. For the interaction picture representation of these operators
refer to appendix A.2.





3. Quantum Master Equations

In this chapter we discuss the time evolution of open quantum systems. To this end we
first define what we mean by the term open quantum system. We will then introduce
the concepts of dynamical maps and Markovian dynamics and concentrate on the
class of universal dynamical maps (UDMs). Finally we will introduce quantum master
equations (QME) and the Lindblad form which holds some remarkable properties.

As this is also standard textbook material we will only give a brief overview of the
most important results and refer to the literature where appropriate. In our presenta-
tion we will closely follow [4, Chap. 3] for the general concepts and [5] for the more
mathematical parts and also adopt their notation.

3.1. Open Quantum Systems

An open quantum system is a quantum system S (hereafter simply referred to as
system) which is coupled to a second quantum system B called the environment [4].
We assume that both systems together form a closed system that can be described by
unitary dynamics as presented in the last chapter. Their combined Hilbert space H
is given by the tensor product of their respective Hilbert spaces H = HS ⊗ HB and
their state is characterized by the combined density matrix ρ(t) (see figure 3.1). The
Hamiltonian governing its time evolution is chosen to have to following form:

H(t) = HS ⊗ 1B + 1S ⊗HB +HI(t), (3.1)

where Hα(α = S,B) describes the internal dynamics of system and environment
respectively and HI(t) describes the coupling between the two parts. The dynamics
of the system S is therefore due to its internal dynamics and the interaction with
the environment. The interaction will, in general, give rise to system-environment-
correlations even though we might have started with a product-state. It is due to
this fact that the time evolution of the system alone cannot be described in terms of
Hamiltonian dynamics anymore.

The reduced state of the system (i.e. without accounting for the degrees of freedom of
the environment) is obtained by taking the partial trace over the environment:

ρS(t) = trBρ(t) (3.2)

Due to this operation the reduced density matrix ρS(t) can (and in general will) be in
a mixed state, even if the total system ρ(t) is in a pure state.
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(S +B,HS ⊗HB, ρ)

Environment (B,HB, ρB)

System (S,HS, ρS)

Figure 3.1.: Picture of an open quantum system. The arrows indicate different cou-
plings of the bath to the environment.
After [4, Fig. 3.1]

3.2. Time Evolution and Dynamical Maps

As has been stated before, the time evolution of the reduced system can, in general, not
be described by unitary time evolution. We can, however, determine its time evolution
by considering the unitary evolution of the entire system and tracing over the degrees
of freedom of the environment:

ρS(t1) = trB[U(t1, t0)ρ(t0)U †(t1, t0)], (3.3)

where U(t1, t0) is the unitary evolution generated by the Hamiltonian H(t) of the entire
system.
This equation can be rewritten in terms of a dynamical map acting only on the Hilbert
space of the reduced system:

Et1,t0 : ρS(t0)→ ρS(t1) (3.4)

ρ(t0) ρ(t1)

ρS(t0) ρS(t1)

U(t1, t0)

Et1,t0

trB trB

Figure 3.2.: Dynamical maps and their relation to unitary evolution of the entire sys-
tem.
After [5, Chap. 4, Fig. 2]

This map will, in general, depend on the global unitary evolution, on the properties
of the environment B and those of the reduced system S. It can, however, be shown,
that there exist so-called universal dynamical maps (UDMs) which are defined to be
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dynamical maps that are independent of the state they act upon [5]. We quote the
following theorem whose proof can also be found in the stated reference.

Theorem 1 (cf. [5, Thm. 4.3]). A dynamical map is a UDM iff it is induced from an
extended system with the initial condition ρ(t0) = ρS(t0)⊗ ρB(t0) where ρB(t0) is fixed
for any ρS(t0)

Therefore, if we are able to choose the state of the system and the environment to be
uncorrelated for an initial time t0, the dynamical map describing the evolution of the
reduced system from that point in time to any later time t1, will be independent of the
initial state of the reduced system. This is, however, only exactly true for this specific
t0 as for times t with t > t0 correlations arise such that the global state does not
factorize anymore. It might, however, be possible that for weak system-environment
interactions the global state still factorizes approximately for later times. This prop-
erty is called Markovianity and can be defined as follows [5]:

Definition 1 (cf. [5, Def. 4.1]). We will say that a quantum system undergoes a
Markovian evolution if it is described by a contractive evolution family1 on B and
satisfies the law of composition for the UDMs:

Et2,t0 = Et2,t1Et1,t0 (3.5)

The conditions under which this Markovian assumption holds will be discussed further
when we discuss the microscopic derivations of quantum master equations.

With the Markovian property at hand we can now introduce the concept of a master-
equation mathematically [5, Sect. 5.2]:

Definition 2. A linear differential equation for ρ(t) is called a master equation with
generator Lt where

d

dt
ρ(t) = lim

ε→0+

ρ(t+ ε)− ρ(t)

ε
= lim

ε→0+

Et+ε,t − 1
ε

ρ(t) ≡ Ltρ(t) (3.6)

Note that if the UDMs only depend on time differences, Et2,t1 = Eτ with τ = t2 − t1,
they form a one-parameter semigroup. These semigroups can have an important prop-
erty (from a physical point of view): the existence of a steady state.

Definition 3 (cf. [5, Def. 5.3]). A semigroup Eτ is relaxing if there exists a unique
(steady) state ρSS such that Eτ (ρSS) = ρSS for all τ and

lim
τ→∞

(ρ) = ρSS (3.7)

for every initial state ρ

Having introduced these properties one may ask which semigroups are relaxing and

1i.e. ‖E‖1 ≤ 1, where ‖ · ‖1 is the induced trace norm in B∗
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what are their generators. The answer to both questions will concern us in the next
section and will lead us to the introduction of the so-called Lindblad master equa-
tion.

3.3. The Lindblad Quantum Master Equation

In this section we introduce the Lindblad form of a master equation and quote two
central theorems that underline the importance of the Lindblad form in describing
dissipative dynamics.

The general ([4]) Lindblad form of a master equation is given by equation (3.8), where
H is a (Hermitian) Hamiltonian and {Vk}k are so-called Lindblad operators such that
for every operator its hermitian conjugate is also in the set labeled by k. The constants
γk ≥ 0 are called decay constants.

d

dt
ρ(t) = −i [H, ρ(t)] +

∑
k

γk

[
Vkρ(t)V †k −

1

2
{V †k Vk, ρ(t)}

]
(3.8)

Introducing superoperators as for the unitary evolution of closed quantum systems (cf.
section 2.1) we can write the Lindblad QME in short as

Lρ(t) ≡ −i [H, ρ(t)] +Dρ(t), (3.9)

where L is called Lindbladian and D is the dissipator of the QME.

We quote two theorems underlining the importance of the Lindblad form from [5]. A
sketch of their proofs as well as further references can be found in the cited literature.

Theorem 2 (cf. [5, Thm. 5.1]). A differential equation is a Markovian master equation
iff it can be written in the form

d

dt
ρ(t) = −i [H(t), ρ(t)] +

∑
k

γk(t)

[
Vk(t)ρ(t)V †k (t)− 1

2
{V †k (t)Vk(t), ρ(t)}

]
(3.10)

where H(t) and Vk(t) are time-dependent operators, with H(t) self-adjoint and γk(t) ≥ 0
for every k and every t.

Theorem 3 (Spohn, cf. [5, Thm. 5.5]). Consider a completely positive semigroup,
Eτ = eLτ , with generator

L[·] = −i [H(t), ·] +
∑
k∈I

γk

[
Vk[·]V †k −

1

2
{V †k Vk, ·}

]
(3.11)

for some set of indices I. Provided that the set {Vk, k ∈ I} is self-adjoint (this is, the
adjoint of every element of the set is inside of the set) and the only operators commuting
with all of them are proportional to the identity, the semigroup Eτ is relaxing.
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To summarize, the Lindblad master equation has the following important proper-
ties:

• It is relaxing (see above)

• It preserves hermicity and positivity (see above)

• It preserves the trace of the density matrix

Proof.

trρ̇ = tr(Lρ)

= tr

(
−i [H(t), ρ] +

∑
k∈I

γk

[
VkρV

†
k −

1

2
{V †k Vk, ρ}

])
= 0

Where the last equality holds due to the cyclic property of the trace.

• It is invariant under unitary transformations U [4, Eq. (3.72)]

√
γkVk →

√
γ′kV

′
k =

N2−1∑
j=1

Ukj
√
γjVj,

where Uij is a unitary matrix

• It is invariant under the following inhomogeneous transformation [4, Eq. (3.73)]

Vk → V ′k = Vk + ak

H → H ′ = H +
1

2i

∑
k

γk(a
∗
kVk − akV

†
k ) + b,

where ak ∈ C, b ∈ R.

Due to this property we can always choose the Lindblad operators to be traceless.





4. General Derivation from
Microsopic Models

In this chapter we outline the general procedure to derive a Lindblad master equation
from a microscopic model. Again we closely follow [4, Chap. 3] and [5] and part of the
notation as well as of the calculations has been taken from [6, Sec 7.2 and 7.3].

As has been stated before, the Hilbert space of the entire system we consider is given
by

H = HS ⊗HB, (4.1)

and its dynamics is described by a Hamiltonian of the form (3.1)

Htotal = H0 + αHI = HS +HB + αHI , (4.2)

where H0 denotes the free evolution of the system and the environment. α is a pa-
rameter determining the strength of the interaction which will later on be used as an
expansion parameter. In the models we consider α will be the coupling strength of the
levels to the Lindblad drive.

4.1. Properties of the Baths

In our models we will assume the environment to consist of different baths each coupled
to, in general, various system levels. Each bath i consists of infinitely many modes q
and we assume it to be in the stationary thermal state with respect to its temperature
Ti:

ρ̃B,i(t) = ρB,i(0) ≡ ρ0,i =
exp(−HB,i/kT )

trBi exp(−HB,i/kTi)
, (4.3)

where the Hamiltonian of the bath will in general be given by:

HB =
∑
q

ωqc
†
qcq (4.4)

In order to characterize the bath we introduce the spectral density J(ω) such that
the sum over all modes q can be replaced by an integral over the entire frequency
space:

HB =

∫ ∞
−∞

dωρ(ω)c†ωcωω (4.5)
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with density of states
ρ(ω) =

∑
q

δ(ω − ωq). (4.6)

As it will become useful later on, we introduce the spectral density J(ω) as fol-
lows:

J(ω) = V 2
∑
q

δ(ω − ωq) (4.7)

In our models we assume that the bath modes are equally spaced and consider the
wide-band limit such that we can assume a constant spectral density

J(ω) = V 2ρ(ω) ≡ V 2ρ. (4.8)

In Chap. 7 we will introduce the level width function Γ which, under our assumptions,
is also constant and given by:

Γ(ω)

2
= πJ(ω) ≡ πJ (4.9)

Moreover, as the bath is in the stationary thermal state, the following two properties
will – at least for the models we consider – be true, for the interaction Hamiltonian
contains only one bath creation or annihilation operator (Eq. 4.10) and the thermal
state is diagonal in the basis of HB (Eq. 4.11).

trB

(
H̃I(t)ρ0

)
= 0 (4.10)

[HB, ρ0] = 0 (4.11)

4.2. Projection Operator Method

We shall now derive a master equation in what is referred to in the literature as Born
approximation [4, Chap. 3.3], using projection operator methods. This method is
named after Nakajima and Zwanzig and outlined in [5] and [7] whose derivation we
shall follow closely. For further details and references refer to them. Note, that there is
another possibility to derive this equation without making use of projection operators.
We shall present this derivation in appendix A.4.

Let as start by defining two orthogonal projection operators on H:

Pρ = trB(ρ)⊗ ρ0 (4.12)
Qρ = (1− P)ρ (4.13)

For the Liouville-von Neumann equation in the interaction picture (see Tab. 2.1) we
introduce the following notation:

d

dt
ρ̃ = −iα

[
H̃I(t), ρ̃(t)

]
≡ αV(t)ρ̃(t) (4.14)
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The equilibrium property (4.10) of the bath thus reads

PV(t)P = 0 (4.15)

Introducing the identity 1 = P + Q into the Liouville-von Neumann equation leads
to

d

dt
P ρ̃(t) = αPV(t)P ρ̃(t) + αPV(t)Qρ̃(t) (4.16)

d

dt
Qρ̃(t) = αQV(t)P ρ̃(t) + αQV(t)Qρ̃(t) (4.17)

The formal solution of (4.17) is given by:

Qρ̃(t) = G(t, t0)Qρ̃(t0) + α

∫ t

t0

dsG(t, s)QV(s)P ρ̃(s) (4.18)

Where the propagator of the homogeneous equation is given by:

G(t, s) = T exp

(
α

∫ t

s

dτQV(τ)

)
(4.19)

Inserting this into equation (4.16) yields:

d

dt
P ρ̃(t) = αPV(t)P ρ̃(t) + αPV(t)G(t, t0)Qρ̃(t0) + α2

∫ t

t0

dsPV(t)G(t, s)QV(s)P ρ̃(s)

(4.20)
We now make the assumption (see Thm. 1) that the state factorizes at time t0, an
assumption that is necessary for the evolution to be a universal dynamical map: ρ(t0) =
ρS(t0) ⊗ ρ0(t0). This gives by definition Qρ(t0) = 0 and by using the equilibrium
property of the bath (4.15) we arrive at:

d

dt
P ρ̃(t) =

∫ t

t0

dsK(t, s)P ρ̃(s) (4.21)

with kernel
K(t, s) = α2PV(t)G(t, s)QV(s)P . (4.22)

In the weak coupling limit we expand the kernel to lowest order in α which finally leads
to:

d

dt
P ρ̃(t) = α2

∫ t

t0

dsPV(t)V(s)P ρ̃(s) (4.23)

= −α2

∫ t

t0

dstrB

[
H̃I(t),

[
H̃I(s), ρ̃S(s)⊗ ρ0

]]
⊗ ρ0 (4.24)

Replacing s by t− s and setting t0 = 0 we finally arrive at:

d

dt
ρ̃S(t) = −α2

∫ t

0

dstrB

[
H̃I(t),

[
H̃I(t− s), ρ̃S(t− s)⊗ ρ0

]]
(4.25)
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Note that a similar derivation can be done for the case of several baths. We shall
comment on this later on. Note further, that we only made the factoring assumption
for the initial time t0 and its prevalence for later times t > t0 arises merely due to
our expansion to lowest order in the interaction. For the alternative derivation (cf.
appendix A.4) the factoring assumption has to be extended for later times by argument
and it is for this reason that we stated the projection operator method.

4.3. Bath Correlation Functions

In order to evaluate the above integral we have to invoke a final approximation, the so-
called Markov approximation, which will be introduced in the next section. In order to
justify this approximation we now consider the bath correlation function and calculate
its decay over time using the residue theorem.

The bath correlation function will be denoted by C(t, t′) and is defined as:

C(t, t′) = trB

{∑
q,q′

c̃†q(t)c̃q′(t
′)ρ0

}
(4.26)

Due to properties (4.10) and (4.11) of the bath the correlation function only depends
on the difference τ = t− t′ and only terms with q = q′ contribute:

C(t, t′) = trB

{∑
q,q′

c̃†q(t)c̃q′(t
′)ρ0δqq′

}
(4.11)
= trB

{∑
q

c̃†q(t− t′)cq′ρ0

}
≡ C(t− t′)
≡ C(τ)

(4.27)

Using the residue theorem and the interaction picture representation of the operators
we obtain1:

C(τ) = trB

{∑
q

c̃†q(τ)cqρ0

}
=

∫ ∞
−∞

dωeiωτf(ω)ρ(ω) (4.28)

= ρ

∫ ∞
−∞

dω
eiωτ

eω/T + 1
(4.29)

= −ρiT 1

sinh (πTτ)
, (4.30)

where f(ω) denotes the Fermi-Dirac-distribution with respect to the temperature T of
the bath.

The bath correlation function is therefore peaked around τ = t − t′ = 0 and decays
on a timescale proportional to the inverse temperature. It is this property that will
allow us to invoke the Markov assumption to our problems so that the evolution of the

1For a detailed derivation refer to appendix A.5
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system does no longer depend on its past but only on its current state. If the density
matrix evolves on a timescale Γ−1 this Markov approximation is valid for the regime
Γ/T � 1 as for these timescales there will not be any memory effects.

4.4. The Markov Approximation

The master equation in Born approximation (4.25) cannot be solved easily due to two
reasons: First, it is not local in time as the reduced density matrix still depends on the
entire history of the problem (as its time-argument on the right hand side still depends
on s). Second, the integration runs to time t.

Both these problems can be resolved by imposing the Markov assumption onto our
system. This, as has been quoted in Thm. 2, is a necessary condition to arrive at a
QME in Lindblad form. In physical terms the Markov approximation is the assumption
that memory effects do not play an important role and that therefore the evolution of
the reduced density matrix only depends on its current state and not on its past [4,
Sec. 3.2].

We will see (cf. for example Eq. 5.3) that the interaction Hamiltonian appearing in
Eq. (4.25) separates in two parts: a bath correlation function and a part containing
system operators and the reduced density matrix. As has been shown above the bath
correlation function C(τ) is sharply peaked around the value τ = t − t′ = 0 where
the width of the peak δτ is much smaller than the timescale τR on which the reduced
density matrix changes substantially (δτ � τR). Following [4, 8] we therefore invoke
the following approximations to equation (4.25): First, the reduced density matrix
on the right can be made local in time by replacing (t − s) by t due to its slow
evolution compared to the bath correlation functions. Only small times (of order δτ)
will contribute to the integral and on this timescale the reduced density matrix can be
viewed as a constant. Note, that this assumption has to be checked for the different
models at hand and that the argument given here is only strictly valid for the resonant
level model discussed in the next section. Second, the integration can be extended to
infinity as times larger than the bath-correlation time will not contribute to the integral.
We finally obtain the quantum master equation in Born-Markov approximation which
will be the starting point for our later derivations:

d

dt
ρ̃S(t) = −

∫ ∞
0

dstrB

[
H̃I(t),

[
H̃I(t− s), ρS(t)⊗ ρ0

]]
(4.31)

Expanding the double commutator and regrouping the terms we arrive at a form which
will become useful in the following2:

d

dt
ρ̃S(t) = −

∫ ∞
0

dstrB

{
H̃I(t)H̃I(t− s)ρ̃S(t)ρ0 − H̃I(t− s)ρ̃S(t)ρ0H̃I(t) + h.c.

}
(4.32)

Note, that from this point on we drop the tensor product symbol in order to simplify

2For a short derivation see appendix A.6

vondelft
Linien
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notation. So far we still deal with interaction picture operators. After plugging in
concrete examples for the interaction we will eventually go back to the Schrödinger
picture.



5. The Resonant Level Model

In this and the following chapters we will use the general procedure outlined before in
order to derive quantum master equations in Lindblad form for different fermionic open
quantum systems. The general approach and part of the notation have been inspired
by [4, Sec. 3.3], [5], [6, Sec. 7.1 ff.] and [7], where the authors consider bosonic systems
that are similar to ours.

5.1. Description of the Model

As a first example we will consider an easy model consisting of one level of energy Ω
coupled to an environment consisting of an infinite number of levels q with energy ωq.
In the following we shall assume the coupling to the bath-modes to be homogeneous
and will choose the coupling-constant V to be real. The Hamiltonian for this so-called
resonant level model is given by equation (5.1) and a graphical illustration of the model
is shown in Fig. 5.1.

H = HS +HB +HI = Ωd†d+
∑
q

ωqc
†c+

∑
q

(
Vqc
†
qd+ V ∗q d

†cq
)

≡ Ωd†d+
∑
q

ωqc
†c+ V

∑
q

(
c†qd+ d†cq

) (5.1)

Ω

{ωq}q

≡ Ω T, J(ω)

Figure 5.1.: Two schematic pictures of the resonant level model. All the bath modes
are combined to a bath with temperature T and spectral density J(ω)

5.2. Quantum Master Equation

On deriving the Lindblad master equation for the resonant level model we shall start
from the QME in the Born-Markov approximation. This approximation has already
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been discussed for this simple model in the previous chapters.

The interaction-picture representation1 of the above operators is given by2

d̃†(t) = eiΩtd† d̃(t) = e−iΩtd
c̃q(t) = e−iωqtcq c̃†q(t) = eiωqtc†q

(5.2)

Upon substituting these operators into QME (4.32) we arrive at:

d

dt
ρ̃S(t) = −

∫ ∞
0

dstrB

{
H̃I(t)H̃I(t− s)ρ̃S(t)ρ0 − H̃I(t− s)ρ̃S(t)ρ0H̃I(t) + h.c.

}
= −V 2

∑
q,q′

∫ ∞
0

dstrB

{
c̃†q(t)c̃q′(t− s)d̃(t)d̃†(t− s)ρ̃S(t)ρ0

+ c̃q(t)c̃
†
q′(t− s)d̃

†(t)d̃(t− s)ρ̃S(t)ρ0

− c̃†q′(t− s)ρ0c̃q(t)d̃(t− s)ρ̃S(t)d̃†(t)

− c̃q′(t− s)ρ0c̃
†
q(t)d̃

†(t− s)ρ̃S(t)d̃(t) + h.c.
}

= −V 2
∑

q,q′

∫ ∞
0

ds
{

trB
(
c̃†q(s)c̃q′ρ0

) (
d̃(t)d̃†(t− s)ρ̃S(t)− d̃†(t− s)ρ̃S(t)d̃(t)

)
+ trB

(
c̃q(s)c̃

†
q′ρ0

)(
d̃†(t)d̃(t− s)ρ̃S(t)− d̃†(t)ρ̃S(t)d̃(t− s)

)
+ h.c.}

(5.3)

At this point we introduce the spectral density defined above (4.7) and use the explicit
form of the operators in the interaction picture and the bath correlation functions to
finally obtain:

d

dt
ρ̃S(t) = −

∫ ∞
−∞

J(ω)dω

{
f(ω)

∫ ∞
0

dse−i(Ω−ω)s
(
d̃(t)d̃†(t)ρ̃S(t)− d̃†(t)ρ̃S(t)d̃(t)

)
+ (1− f(ω))

∫ ∞
0

dsei(Ω−ω)s
(
d̃†(t)d̃(t)ρ̃S(t)− d̃†(t)ρ̃S(t)d̃(t)

)
+ h.c.

}
(5.4)

We now make use of the following formula (see for example [9, Note 1.2]) in order to
evaluate the integration with respect to s∫ ∞

0

dke±ikx = πδ(x)± iP
(

1

x

)
, (5.5)

where P denotes the principal value.

1By interaction picture we mean the interaction picture with respect to the free evolution of the
system- and bath-modes

2For a derivation cf. appendix (A.2)
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After some algebra and having gone back to the Schrödinger picture (cf. 2.11) we
obtain the following master equation which is in Lindblad form.

d

dt
ρS(t) = −i(Ω +

P
∫∞
−∞ dω

J(ω)
Ω−ω︷ ︸︸ ︷

∆− −∆+ )
[
d†d, ρS(t)

]
+ γ−

(
2dρS(t)d† − d†dρS(t)− ρS(t)d†d

)
+ γ+

(
2d†ρS(t)d− dd†ρS(t)− ρS(t)dd†

)
,

(5.6)

where
γ− = πJ(Ω)(1− f(Ω)) ∆− = P

∫∞
−∞ dω

J(ω)(1−f(ω))
Ω−ω

γ+ = πJ(Ω)f(Ω) ∆+ = −P
∫∞
−∞ dω

J(ω)f(ω)
Ω−ω

(5.7)

The principal value integral in the Hamiltonian part of the QME is usually referred to
as Lamb-Shift [8] and can be shown to vanish in our model:

lim
D→∞

P
∫ D

−D
dω

J(ω)

Ω− ω
= J lim

D→∞
ln

(
|Ω−D|
|Ω +D|

)
= 0, (5.8)

where we have assumed that J is constant.

5.3. Equilibrium Properties: Thermalization
Behavior

In the following we shall discuss the equilibrium dynamics of the derived QME. Let us
calculate the evolution of the expectation value of the occupation number:

d

dt

〈
d†d
〉

= trS(d†dLρS(t))

= −2(γ− + γ+)
〈
d†d
〉

+ 2γ+

(5.9)

In the steady state, this time derivative has to vanish. This gives rise to the mean
occupation number in the steady state:〈

d†d
〉

SS =
γ+

γ− + γ+

= f(Ω) (5.10)

where all the prefactors cancel and we are left with the Fermi distribution function
evaluated at the energy Ω of the level. The single level coupled to an infinite number
of bath modes therefore correctly thermalizes to its thermal occupation according to
the temperature of the bath:

ρSS =

(
f(Ω, T ) 0

0 1− f(Ω, T )

)
(5.11)

We note that this steady state is a mixed state that shows no coherence, i.e. the
off-diagonal terms in (5.11) are zero. Even if the system was initially in a pure state
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ρS(t = 0) = |ψ〉 〈ψ| with, for example, |ψ〉 = 1√
2
|0〉+ i√

2
|1〉 the correlations would die

out and the system would reach the mixed steady state.

The time evolution for the coherences can be derived similarly to the occupation:

d

dt
〈d〉 = trS(dLρS(t))

= −(γ− + γ+) 〈d〉 − iΩ 〈d〉
(5.12)

From the two differential equations (5.9) and (5.12) we arrive at the following equations
of motion:

〈d〉 (t) = 〈d〉 (0)e−iΩt−γt (5.13)
〈N〉 (t) = (〈N〉 (0)− f(Ω, T )) e−2γt + f(Ω, T ), (5.14)

where we introduce γ = γ+ + γ− = πJ .

A numerical simulation for the dynamics of the initial state mentioned above under
the influence of the Lindblad bath is shown in Fig. 5.2. We can clearly see the
exponential decay towards the steady state. The occupation decays with rate 2γ−1

(where 2γ = 2πV 2ρ) and the coherences with half this rate. For unitary evolution,
i.e. without the presence of the bath, the radius of the circle in Fig. 5.2 would stay
constant.

0 5 10 15 20

0.25

0.3

0.35

0.4

0.45

0.5

0

time t · Ω

〈N
〉

(a) Expectation value of the occupation N =
d†d. It decays exponentially from its ini-
tial value 0.5 towards f(Ω, T ) (dotted line)
with inverse decay constant 2γ = 2πV 2ρ

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0

0

<〈d1〉

=
〈d
〉

(b) Expectation value of the coherence d. It
decays to 0 with decay constant γ = πV 2ρ.
The separation between two adjacent dots
is 0.1 time units.

Figure 5.2.: Dynamics of the state ρS(t = 0) = |ψ〉 〈ψ| with |ψ〉 = 1√
2
|0〉+ i√

2
|1〉 under

Lindblad drive. The parameters used are Ω = 1, T = 1Ω, V = 0.2Ω.
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In this chapter an extension of the Resonant Level Model (cf. 5) will be considered.
Two hybridized levels with energies Ω1 and Ω2 are coupled to a thermal bath via the
second level. The system is depicted in Fig. 6.1 and the Hamiltonian is given by Eq.
(6.1).

H = HS +HB +HI (6.1)

where

HS = H1 +H2 +H12 = Ω1d
†
1d1 + Ω2d

†
2d2 + g

(
d†1d2 + d†2d1

)
HB =

∑
q

ωqc
†
qcq

HI = V
∑
q

(
d†2cq + c†qd2

) (6.2)

Ω1

Ω2

{ωq}q

≡
Ω1

Ω2
T, J(ω)

Figure 6.1.: Two schematic pictures of the considered model. All the bath modes are
combined to a bath with temperature T and spectral density J(ω)

Due to the coupling between the two system levels new dynamics arises and for a
correct description we have to include Lindblad terms for the first level as well, as it is
coupled to and thermalizes through the second system level. Similar bosonic systems
are discussed for example by [8, 7]. As there, we have to decide how to deal with the
coupling of the two levels as the Hamiltonian of the system is no longer diagonal in
the basis chosen above1. In this chapter we therefore consider two different approaches
to derive QMEs in Lindblad form and study their behavior. To this end we assume
the Born-Markov approximation to hold also for our composite model and discuss this
assumption at the end of the chapter.

1We will refer to this basis in the following as “local basis”



24 6. Two Coupled Levels, one Bath

6.1. Quantum Master Equation in the Eigenbasis

In the following we derive a QME for the dynamics of the coupled subsystems described
byHS. As suggested in [5, Sect. 6.4] we include the coupling into the generating Hamil-
tonian of the interaction picture and derive the QME in the eigenbasis of the system
Hamiltonian including this coupling. To this end we first diagonalize the Hamiltonian
and derive creation and annihilation operators for the new eigenstates. The coupling of
the second level to the bath via HI is then expressed in terms of these new creation and
annihilation operators (and those of the bath). In the new basis the interaction picture
creation and annihilation operators will take a particularly simple form whereas the
interaction picture operators corresponding to the original single level operators are
very hard to calculate except for special cases (i.e. when the levels are degenerate in
energy). Using similar techniques as before the QME is then calculated in the Born-
Markov-approximation. In the end the coupled creation and annihilation operators are
re-expressed by those of the individual subsystems.

The straightforward diagonalization of the problem is performed in appendix A.7.
There we obtain the relation between the creation and annihilation operators in the
eigenbasis and those of the local basis to be2:

(
D†+
D†−

)
=

 1√
1+η2

+

η+√
1+η2

+
1√

1+η2
−

η−√
1+η2

−


︸ ︷︷ ︸

=: A

(
d†1
d†2

)
(6.3)

where

η± =
Ω2 − Ω1

2g
±

√
1 +

(
Ω2 − Ω1

2g

)2

(6.4)

The interaction with the bath (6.2) can be rewritten so that it takes the same form as
for the resonant model discussed before with an additional sum over n.

HI = V
∑
q

(
c†qd2 + d†2cq

)
= V

∑
q

∑
n=±

(
c†q (An2Dn) +

(
An2D

†
n

)
cq
)

=
∑
n=±

(
An2D

†
n

)
︸ ︷︷ ︸

S1

⊗V
∑
q

cq︸ ︷︷ ︸
B1

+V
∑
q

c†q︸ ︷︷ ︸
B2

⊗
∑
n=±

(An2Dn)︸ ︷︷ ︸
S2

(6.5)

2For the components of the matrix A we from now on adapt the following notation:

A =

(
A+1 A+2

A−1 A−2

)
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Starting from equation (4.32) and using exactly the same steps as before3 we finally
arrive at an equation that looks similar to the QME of the resonant level model.

d

dt
ρ̃S(t) = −

∑
n,n′=±

{
An2An′2 (γ−(Ωn′) + i∆−(Ωn′)) e

i(Ωn−Ωn′ )t
(
D†nDn′ ρ̃s(t)−Dn′ ρ̃s(t)D

†
n

)
+ An2An′2 (γ+(Ωn′) + i∆+(Ωn′)) e

i(Ωn′−Ωn)t
(
DnD

†
n′ ρ̃s(t)−D

†
n′ ρ̃s(t)Dn

)
+h.c.} ,

(6.6)

where

γ−(Ωn) = π (1− f(Ωn)) J(Ωn) ∆−(Ωn) = P
∫
dω (1−f(ω))J(ω)

Ωn−ω
γ+(Ωn) = πf(Ωn)J(Ωn) ∆+(Ωn) = −P

∫
dω f(ω)J(ω)

Ωn−ω
(6.7)

However, due to the sum over n and n′ it cannot be written in Lindblad form as
the operator premultiplying the density matrix in the Lindblad term has to be the
hermitian conjugate of the operator postmultiplying it. Note that the exponential
terms would vanish when going back to the Schrödinger picture whereas the sums over
n and n′ remain.

In order to obtain a Lindblad form a further approximation has to be introduced which
is referred to as secular approximation in the literature (cf. [8, Appendix], [7, chap.
3.2.2]). The exponentials with non-vanishing exponent in (6.6) evolve with frequencies
±(Ω+ − Ω−) = ±2

√
g2 + (Ω1 − Ω2)2/4 ≥ 2g. If this oscillation occurs on timescales

much shorter than those induced by the coupling of the second subsystem to the bath
(g � V ) these fast-oscillating terms can be neglected and only terms with n = n′

remain. This approximation is therefore only valid in the strong-coupling regime where
the intersubsystem-coupling is (much) stronger than the coupling to the bath. Note
that due to this averaging process the master equation obtained will no longer be able
to describe the dynamics on timescales of the intersubsystem coupling [8].

The QME in the interaction picture in the coupled basis is hence given by:

d

dt
ρ̃S(t) = −

∑
n=±

{
A2
n2 (γ−(Ωn) + i∆−(Ωn))

(
D†nDnρ̃s(t)−Dnρ̃s(t)D

†
n

)
+ A2

n2 (γ+(Ωn) + i∆+(Ωn))
(
DnD

†
nρ̃s(t)−D†nρ̃s(t)Dn

)
+ h.c.}

(6.8)

As has been the case for the resonant level model, the complex terms (containing
the expressions ∆±) will contribute to the unitary evolution of the state whereas the
real terms (containing the expressions γ±) will contribute to the dissipative dynamics.

3Plug in the interaction Hamiltonian in the interaction picture and collect all the terms for the bath-
modes that will finally give rise to the bath correlation functions. Invoke the result (5.5) from
distribution theory
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Equation (6.8) can be written in Lindblad-form due to the secular approximation.
Going back to the Schrödinger picture we obtain the Lindblad QME in the coupled
basis:

d

dt
ρS(t) = −i

[
Ω+D

†
+D+ + Ω−D

†
−D−, ρS(t)

]
+
∑
n=±

A2
n2γ−(Ωn)

(
2DnρS(t)D†n − ρS(t)D†nDn −D†nDnρS(t)

)
(6.9)

+
∑
n=±

A2
n2γ+(Ωn)

(
2D†nρS(t)Dn − ρS(t)DnD

†
n −DnD

†
nρS(t)

)
,

where the decay rates γ± are defined as above and we have used the fact that the
Lamb-Shift is zero for our model.

Before we discuss the properties of this master equation further, we express it in terms
of single-level creation and annihilation operators. The resulting equation will still be
in Lindblad form as the two bases are connected by a unitary transformation and,
as has been stated in section 3.3, the Lindblad form is invariant under unitary trans-
formations. Replacing the coupled creation and annihilation operators by those of
the subsystems we arrive after some algebra at the following master equation for the
single-level operators. It contains the Lindblad-terms containing only operators for one
subsystem (given by Ki

nn) and those containing cross-terms:

d

dt
ρS(t) =− i

[
Ω1d

†
1d1 + Ω2d

†
2d2 + g

(
d†1d2 + d†2d1

)
, ρS(t)

]
−

2∑
m,m′=1

K1
mm′

(
d†mdm′ρS(t) + ρS(t)d†mdm′ − 2dm′ρS(t)d†m

)
−

2∑
m,m′=1

K2
mm′

(
dm′d

†
mρS(t) + ρS(t)dm′d

†
m − 2d†mρS(t)dm′

)
,

(6.10)

where

Ω1 = Ω1 +A2
+2A

2
+1P (Ω+) +A2

−2A
2
−1P (Ω−) (6.11)

Ω2 = Ω2 +A4
+2P (Ω+) +A4

−2P (Ω−) (6.12)

g = g +A3
+2A+1P (Ω+) +A3

−2A−1P (Ω−) (6.13)

K1
mm′ = A2

+2A+mA+m′γ−(Ω+) +A2
−2A−mA−m′γ−(Ω−) (6.14)

K2
mm′ = A2

+2A+mA+m′γ+(Ω+) +A2
−2A−mA−m′γ+(Ω−) (6.15)

P (Ω±) =

∫
dω

J(ω)

Ω± − ω
→ 0 (6.16)

The Lamb-Shift in our model is zero so that the Hamiltonian part is just given by the
system Hamiltonian. As equation (6.10) is quite cumbersome we shall only use the
quantum master equation in the coupled basis for further discussions.
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6.2. Quantum Master Equation in the Local Basis

In this section we derive another master equation in Lindblad form without invoking
the secular approximation.

In this section we will make a somewhat different approach and neglect the subsystem
interaction in the exponentials transforming an operator to the interaction picture (see
Eq. (6.17)). We will, however, retain the interaction term in the Hamiltonian part of
the QME.

Õ(t) = eiHStOe−iHSt ≈ eiH0tOe−iH0t, (6.17)

where HS = H0 +H12 = Ω1d
†
1d1 +Ω2d

†
2d2 +g

(
d†1d2 + d†2d1

)
as has been defined before.

This approximation is for example suggested in [10]. [5, Sect. 6.4] also arrive at this
approach by employing a projection operator ansatz and assuming weak intersubsystem
coupling (g . V ). They refer to [7] where it was found that even for larger g the
obtained QME might yield good results under certain conditions.

With approximation (6.17) the interaction picture representation of the creation and
annihilation operators in the local basis can easily be calculated as in appendix A.2.
Starting from the QME in Born-Markov approximation (cf. Eq (4.32)) we therefore
arrive at exactly the same Lindblad terms for the second level coupled to the bath as
for the resonant level model in the last chapter. The first system level only enters the
Hamiltonian part of the master equation which then reads:

d

dt
ρS(t) =− i

[
Ω1d

†
1d1 + Ω2d

†
2d2 + g

(
d†1d2 + d†2d1

)
, ρS(t)

]
+ γ−

(
2d2ρS(t)d†2 − d

†
2d2ρS(t)− ρS(t)d†2d2

)
+ γ+

(
2d†2ρS(t)d2 − d2d

†
2ρS(t)− ρS(t)d2d

†
2

)
,

(6.18)

where we have again introduced

γ− = πJ(Ω2)(1− f(Ω2, T )) (6.19)
γ+ = πJ(Ω2)f(Ω2, T ), (6.20)

where f(Ω, T ) denotes the Fermi-Dirac-function, J(Ω) the spectral density (which is
assumed to be constant) and T the temperature of the bath.

6.3. Comparison

Coupled Basis

First, we derive the steady state for the density matrix in the coupled basis QME
(6.9). The QME looks similar to the master equation of the resonant level model
with a second level added. The levels in the new basis are not coupled anymore and
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are both affected by their respective dissipative terms where the decay constants are
proportional to the Fermi-functions of the levels’ energies. We write the steady state
solution in analogy to the resonant level model as4:

ρSS =

(
f(Ω+, T ) 0

0 1− f(Ω+, T )

)
⊗
(
f(Ω−, T ) 0

0 1− f(Ω−, T )

)
(6.21)

= f(Ω+)f(Ω−)D†+D+D
†
−D− + (1− f(Ω+))f(Ω−)D+D

†
+D

†
−D− (6.22)

+ f(Ω+)(1− f(Ω−))D†+D+D−D
†
− + (1− f(Ω+))(1− f(Ω−))D+D

†
+D−D

†
−

Note that the steady state is diagonal in the eigenbasis and corresponds to the correct
thermal (i.e. Boltzmann) occupation of the system levels with respect to the temper-
ature T of the bath. That this is indeed the steady state can easily be verified by
calculation.

Local Basis

Let us now consider the QME (6.18) and determine the occupation number of the levels
in the steady state. We therefore consider the equations:〈

Ṅ1

〉
= 0 and

〈
Ṅ2

〉
= 0, (6.23)

where for a general operator O the time derivative of the expectation value
〈
Ȯ
〉

is
given by: 〈

Ȯ
〉

= trS(Oρ̇S) (6.24)

= trS(OLρ) (6.25)
= −itrS(O [H, ρS]) + trS(ODρS) (6.26)

Using equation (6.25) we find an inhomogeneous system of coupled differential equa-
tions of first order for the occupations and the tunneling-terms:

〈
Ṅ1

〉〈
Ṅ2

〉〈
˙

d†1d2

〉〈
˙

d†2d1

〉

 =


0 0 −ig ig
0 −2γ ig −ig
−ig ig −iΩ− γ 0
ig −ig 0 iΩ− γ

 ·

〈N1〉
〈N2〉〈
d†1d2

〉〈
d†2d1

〉
+


0

2γ+

0
0

 (6.27)

where we have introduced Ω = Ω2 − Ω1 and γ = γ+ + γ− = Jπ.

In the steady state, the occupation numbers will not change. Also, the hopping-rate
will not change. The above equation therefore simplifies to a simple algebraic equation

4The tensor product is here with respect to the eigenbasis where the Hilbert space of the system is
given by H = H+ ⊗H−.
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where the vector on the left hand side is set equal to zero. We obtain the steady-state
expectation values:

〈N1〉SS = 〈N2〉SS =
γ+

γ+ + γ−
= f(Ω1, T ) (6.28)〈

d†1d2

〉
SS

=
〈
d†2d1

〉
SS

= 0, (6.29)

where for the last equality in (6.28) we used the definition of γ± (see remark below
6.18).

We obtain a somewhat startling result for the steady state: The occupation number of
the first level will be exactly the same as for the second regardless of their respective
energies. Also, the correlations between the two levels will be completely destroyed such
that no hopping between the two levels will occur. We explain this as follows.

As for the resonant level model discussed in the previous chapter the Lindblad terms
in the QME try to drive the second level into its thermal state given by Eq. (5.11).
If the coupling to the first level was zero the dynamics would be exactly the same
as for the resonant level model with the second level ending up in a mixed state (see
dashed line in Fig. 6.2). Choosing a finite coupling will, in general, allow for some
tunneling of particles between the two levels. Once an electron occupies the second
level, it can, however, not only tunnel to the first level but also to the bath. Due to
the effective description of this process via Lindblad drive the Hamiltonian dynamics
is disrupted. Part of the occupation of the second level incoherently decays into the
bath and is incoherently put back until the second level has been completely driven
into its thermal state. A formerly pure state becomes a mixed state. This extraction
and insertion is governed by the same process as for the resonant level model and will
therefore take place on a timescale γ−1 = (πV 2ρ)−1 (again, cf. dashed line in Fig.
6.2). The tunneling between the two levels occurs on a timescale that is induced by
the eigenenergies of the hybridized system as it is similar (at least for short times and
weak coupling of the second level to the bath) to the unitary evolution of the free
double well potential (cf. oscillations with different frequencies in Fig. 6.2b and 6.2c
with respect to 6.2a).

We note that the strength of the current decreases as the levels are detuned with respect
to each other. Therefore, the time until the first level reaches its steady state increases
(see blue solid line in 6.2c). This is in complete analogy to the only partial transfer of
occupation from one level to the other for detuned levels in a unitary evolution. The
second level almost purely decays into its thermal state (compare the black dashed and
the red solid line in Fig. 6.2c). The occupation of the first level still increases until it
reaches the occupancy of the second as for unequal occupations the current operator
still yields a finite contribution: Occupation is transported from the fuller (second) to
the emptier (first) level. The current does not invert its direction (as would be expected
for unitary evolution) due to the incoherent dissipative dynamics acting on the second
level which in turn disrupts the correlations between the two levels. The second level
is, so to say, constantly “reset” into a mixed state close to its thermal state which allows
for current to the first level.
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Note that the steady state does not depend on the coupling-strength V so that changing
V merely effects the time until the unitary dynamics dies out and the steady state is
reached.

As we have seen, equilibrium properties are best described in the coupled basis as the
local QME gives the wrong behavior by completely neglecting the effect of the bath
on the first level. In the next chapter we will consider the case where a second bath
has been introduced which is coupled to the first level. As we will see, neglecting
the intersubsystem coupling in the interaction picture is basically a weak-coupling
approximation in g and therefore valid as long as the first level is coupled to a bath of
its own. If, as is the case for the above model, there is no second bath present we can
not neglect the dissipative effects on the first level which are transmitted through the
second level as there are no other “stronger” effects present.

6.4. Discussion of the Born-Markov Approximation

We had started the derivation of the QMEs in this chapter by introducing the Born-
Markov approximation. In chapter 4 we have justified this approximation for the case
of a simple system evolving on a timescale τR in the interaction-picture. An example
for such a simple system is the resonant level model discussed in the the previous
chapter. [8] raise the question whether this approximation is still valid when considering
composite systems as there arises a new timescale due to the intersubsystem coupling
g.

For the application of the Markov approximation to be valid the existence of two
distinct timescales has been crucial: Only when the reduced density matrix varies
slowly compared to the timescale τB on which the bath correlation functions decay,
we can make it local in time. A physical explanation for this is given in [9, Sec.
1.3.3]. There the author argues that the nonlocality in time stems from an imprinting
of the system’s state onto the environment which then influences the system’s future
evolution. It is further argued that this effect can, however, be neglected once the
memory time in the bath (and hence its correlation time) is short.

We arrived at the Born approximation by making use of projection operator methods.
It was found that the factorization of the density matrix for times t > t0 is the result of
the small-coupling approximation of the system to the bath which remains valid also
for our composite system.

As we have included the intersubsystem coupling in the generator of the interaction
picture the reduced density matrix in the interaction picture only evolves due to the
coupling to the bath which we assumed to be small. For the derivation in the eigenbasis
there do, however, arise fast-oscillating terms. Due to the secular approximation which
can be understood as an averaging over the internal coupling time g−1 [8] they can be
eliminated such that the Markov approximation is valid. Similarly, for the derivation
in the local basis the internal coupling is dropped from the generator of the interaction
picture such that no fast-oscillating terms arise.
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(a) Dynamics for degenerate energies of the two levels Ω1 = Ω2 = 2Ω.
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(b) Dynamics for slightly off-resonant energies of the two levels Ω1 = 2.15Ω,Ω2 = 2Ω.
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(c) Dynamics for off-resonant energies of the two levels Ω1 = 3Ω,Ω2 = 2Ω.

Figure 6.2.: Comparison of the dynamics of the occupation for different values of Ω1

and Ω2. The dynamics of a single resonant level (see blue line,〈N2〉(g = 0))
is compared to the case when the first level is coupled to it. In the steady
state both states have the same occupancy. The parameters used are:
g = 0.1Ω, V = 0.1Ω, T = 3Ω, ρbath = 1/Ω, ρ(t = 0) = |00〉 〈00|, where we
have introduced the energy scale Ω and density of states in the bath ρbath.





7. Two Coupled Levels with two
Taths

We now consider a model with two levels coupled to each other and to two baths with
temperatures T1 and T2 respectively. A schematic representation is depicted in Fig.
7.1 and the entire Hamiltonian is given by Eq. (7.1):

H = HS +HB1 +HB2 +HI1 +HI2, (7.1)

where the different parts of the Hamiltonian are given by:

HS =
(
d†1 d†2

)(Ω1 g
g Ω2

)(
d1 d2

)
HBi =

∑
q

ωiqc
†
iqciq (i ∈ {1, 2})

HIi = Vi
∑
q

(
d†iciq + c†iqdi

) (7.2)

V1
V2g

Ω1

Ω2
T1, J1(ω) T2, J2(ω)

Figure 7.1.: Schematic depiction of two levels coupled to two baths. All the bath modes
are combined to a bath with temperature Ti and spectral density Ji(ω)

As before we want to find an appropriate QME (in Lindblad form) that describes the
dynamics of the system. We have seen in the last chapter that working in the eigenbasis
of the hybridized system yields a QME that describes the steady state correctly. For
the model considered in this section we can also discuss nonequilibrium properties
such as steady state particle current which arises, for example, from different bath
temperatures T1 6= T2. Again we have to introduce a secular approximation in order
to arrive at an equation that is in Lindblad form. We will see that this QME then
always yields a vanishing particle current in the steady state independent of the bath
temperatures.

We therefore also consider the QME in the local basis (although it does not yield the
correct steady state occupation number) which yields a finite current in the steady
state. We will compare this to the correct current which can be obtained exactly using
Keldysh formalism.
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7.1. Exact Current using Keldysh Formalism

In this section we quote an expression for the current in the steady state (for the
model given above) that is outlined and derived in [1, Chap. 12] by means of Keldysh
formalism. It is beyond the scope of this Bachelor thesis to derive it or explain the
underlying formalism. The current J is related to the transmission probability T (ε)
via the equation

J =
e

~

∫
dε

2π
T (ε) [fL(ε)− fR(ε)] , (7.3)

where T (ε) is given by

T (ε) = tr{ΓL(ε)Gr(ε)ΓR(ε)Ga(ε)}, (7.4)

and fL and fR denote the Fermi-Dirac-distribution for the left and right bath respec-
tively.

The Dyson equation for Gr/a(ε) is given by:

Gr/a(ε) = gr/a(ε) + gr/a(ε)Σr/a(ε)Gr/a(ε) (7.5)

from which we find by matrix inversion:

(Gr/a(ε))−1 = (gr/a(ε))−1 −Σr/a(ε), (7.6)

where gr/a(ε) is given by (with η infinitesimally positive)

(gr/a(ε))−1 = ε−H ± iη. (7.7)

The tunneling self-energy Σ = ΣR + ΣL is given by (α ∈ {R,L})

Σr/a
α,mn(ε) =

∑
k

V ∗αk,mg
r/a
αk (ε)Vαk,n = Λα

mn(ε)∓ i

2
Γαmn(ε) (7.8)

with
g
r/a
k (ε) = lim

η→0+

1

ε− εk ± iη
(7.9)

and level-width function Γ = ΓL + ΓR which is defined by (α ∈ {R,L}):

(Γα(εk))mn = 2πρα(εk)Vα,n(εk)V
∗
α,m(εk). (7.10)

Using the above definitions we therefore find for our model

Σr/a(ε) ≡ Σr/a =

(
∓iπV 2ρ 0

0 ∓iπV 2ρ

)
= ∓ i

2
Γ (7.11)

ΓL = 2πρV 2

(
1 0
0 0

)
≡ ΓL

(
1 0
0 0

)
and ΓR = 2πρV 2

(
0 0
0 1

)
≡ ΓR

(
0 0
0 1

)
(7.12)
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This yields

Gr/a(ω) =

(
ω − Ω1 − Σ

r/a
11 −g

−g ω − Ω2 − Σ
r/a
22

)−1

(7.13)

which finally leads to the following expression for the particle current:

J =
e

~

∫
dω

2π
ΓLΓRGr

12(ω)Ga
21(ω)[fL(ω)− fR(ω)] (7.14)

Using these explicit expressions (7.11) to (7.13) we can calculate the prefactor in front
of the difference of the Fermi functions a plot of which can be found in Fig. 7.2:

1

2π

4g2π2ρ2V 4

(g2 − (ω − Ω1)(ω − Ω2))2 + (2g2 + 2ω2 + Ω2
1 + Ω2

2 − 2ω(Ω1 + Ω2))π2ρ2V 4 + π4ρ4V 8)
(7.15)
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Figure 7.2.: Plot of the prefactor of the difference of the Fermi functions in equation
(7.14). The parameters used are Ω1 = 3Ω,Ω2 = 2Ω, g = 0.1Ω, V = 0.1Ω,
ρ = 1Ω−1, where we have introduced the energy scale Ω.

The function falls of to zero for large energies and has two distinct maxima whose width
is determined by the parameter V . The maxima are at the following positions:

ωmax,1/2 =
Ω1 + Ω2

2
± 1

2

√
4g2 + (Ω1 − Ω2)2 − 4π2V 4) (7.16)

This yields the following height of the peaks in Fig 7.2:

height(ωmax,1/2) =
1

2π

4g2

4g2 + (Ω1 − Ω2)2
. (7.17)

The width of these peaks is proportional to ρV 2 so that we can very roughly estimate
the current to be1:

J ∝ ρV 2 1

2π

4g2

4g2 + (Ω1 − Ω2)2
(fL(ωmax,1)−fR(ωmax,1)+fL(ωmax,2)−fR(ωmax,2)) (7.18)

1We assume that the width of the peaks is much smaller than their distance and the Fermi function
does not change much in one peak.
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The integral involved in calculating the exact current (7.14) can, however, not be
evaluated analytically so that we have to defer to numerical integration. This is done
in the Sec. 7.4 using the function quadgk built in to matlab which allows for an infinite
range of integration.

In the following we will again give derivations for two different QME in Lindblad form.
As has been noted in [7] our derivations correspond to a strong coupling approximation
(derivation in the eigenbasis) and a weak coupling approximation (derivation in the
local basis). Weak and strong refer to the strength of the intersubsystem coupling with
respect to the coupling to the baths.

7.2. QME in the Eigenbasis

Using a similar projection operator method as before (for a detailed derivation see [7,
Appendix B.2]) it was found that the QME in Born-approximation for the reduced
density matrix gives separate Lindblad terms for the two baths. Assuming Markovian
dynamics we arrive at the QME in Born-Markov-approximation in the interaction
picture:

d

dt
ρ̃S(t) = −

∫ ∞
0

ds
{

trB1

[
H̃I1(t),

[
H̃I1(t− s), ρ̃S(t)⊗ ρth1

]]
+ trB2

[
H̃I2(t),

[
H̃I2(t− s), ρ̃S(t)⊗ ρth2

]]} (7.19)

Note, that there do not appear any crossterms between HI1 and HI2 as can be seen
from the detailed derivation. Due to this we can calculate the two contributions to
the QME separately. Following the steps from chapter 6 we diagonalize the system
and express the system-bath-couplings in terms of the new creation and annihilation
operators of the coupled basis (cf. appendix A.7). There, the interaction Hamiltonian
reads as follows:

HIj =
∑
n=±

(
AnjD

†
n

)
︸ ︷︷ ︸

S1j

⊗Vj
∑
q

cqj︸ ︷︷ ︸
B1j

+Vj
∑
q

c†qj︸ ︷︷ ︸
B2j

⊗
∑
n=±

(AnjDn)︸ ︷︷ ︸
S2j

(7.20)

As the contributions from the different baths can be calculated separately (see above)
we arrive at two expressions that are similar to Eq.(6.5) so that we will merely copy
the results obtained before. For the contribution of the first bath we obtain2:

D1ρ̃S(t) = −
∑
n=±

A2
n1

{
(γ−(Ωn′) + i∆−(Ωn′)) e

i(Ωn−Ωn′ )t
(
D†nDn′ ρ̃s(t)−Dn′ ρ̃s(t)D

†
n

)
+ (γ+(Ωn′) + i∆+(Ωn′)) e

i(Ωn′−Ωn)t
(
DnD

†
n′ ρ̃s(t)−D

†
n′ ρ̃s(t)Dn

)
+ h.c.} (7.21)

2We will skip the index 1 indicating “contribution of the first bath”
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A similar contribution arises for the second bath. Note that the γ- and ∆-functions
introduced in Eq. (6.7) will now depend on the respective temperatures of the corre-
sponding bath.

As before we have to introduce a secular approximation in order to arrive at a Lindblad-
equation. Neglecting the fast-rotating terms (cf. the discussion above Eq. (6.8)) we can
drop one index of the double-sum and are left with (after going back to the Schrödinger
picture) the Lindblad master equation for the entire system3:

d

dt
ρS = −i[HS , ρS ]+

∑
n=±

(
γ

(1,n)
− A2

n1 + γ
(2,n)
− A2

n2

)(
2DnρSD

†
n −D†nDnρS − ρSD†nDn

)
+
∑
n=±

(
γ

(1,n)
+ A2

n1 + γ
(2,n)
+ A2

n2

)(
2D†nρSDn −DnD

†
nρS − ρSDnD

†
n

)
,

(7.22)

where we have again introduced

γ
(i,n)
− = πJi(Ωn)(1− f(Ωn, Ti)) (7.23)

γ
(i,n)
+ = πJi(Ωn)f(Ωn, Ti) (7.24)

and have used the fact that the Lamb Shift vanishes for our model (cf. Eq. (5.8)).

For further use we rewrite the decay-constants of the dissipative terms using the relation
between An1 and An2 (cf. equation (A.46)),

A2
n1 + A2

n2 = 1,

and assuming that the spectral density J is independent of temperature. This is
possible for constant density of states and equal baths. We thus arrive at:

γ
(1)
+ (Ωn)A2

n1 + γ
(2)
+ (Ωn)A2

n2 = πJ(Ωn)
{
f(Ωn, T1) + A2

n2 [f(Ωn, T2)− f(Ωn, T1)]
}

≡ πJ(Ωn)xn (7.25)

γ
(1)
− (Ωn)A2

n1 + γ
(2)
− (Ωn)A2

n2 = πJ(Ωn)
{

1− f(Ωn, T1)− A2
n2 [f(Ωn, T2)− f(Ωn, T1)]

}
= πJ(Ωn)−

[
γ

(1)
+ (Ωn)A2

n1 + γ
(2)
+ (Ωn)A2

n2

]
∝ 1−

{
f(Ωn, T1) + A2

n2 [f(Ωn, T2)− f(Ωn, T1)]
}

≡ πJ(Ωn)(1− xn) (7.26)

For the case of equal bath temperatures T1 = T2 = T this can be simplified further to
yield:

γ
(1)
+ (Ωn)A2

n1 + γ
(2)
+ (Ωn)A2

n2 = πJ(Ωn)f(Ωn, T ) (7.27)

γ
(1)
− (Ωn)A2

n1 + γ
(2)
− (Ωn)A2

n2 = πJ(Ωn) [1− f(Ωn, T )] . (7.28)

3We have dropped the time-argument of the reduced density matrix in order to simplify notation.
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7.3. QME in the Local Basis

Again we will also derive a master equation in the local basis. As in the last section
the derivation of the two levels can be done separately and in complete analogy to our
previous calculations (starting with the QME in Born-Markov approximation from [7,
Appendix B.1] which implies approximation (6.17) as before). The master equation we
finally obtain is the following4:

d

dt
ρS = −i [HS, ρS] +

∑
i=1,2

γ
(i)
− (Ωi)

(
2diρSd

†
i − d

†
idiρS − ρSd

†
idi

)
+ γ

(i)
+ (Ωi)

(
2d†iρSdi − did

†
iρS − ρSdid

†
i ,
) (7.29)

where the γ(i)
± (Ωi) are defined as above but with i ∈ {1, 2} rather than {+,−}:

γ
(i)
− = πJ(Ωi)(1− f(Ωi, Ti)) (7.30)

γ
(i)
+ = πJ(Ωi)f(Ωi, Ti) (7.31)

7.4. Comparison

Coupled Basis

For the coupled basis it is again easy to write down the steady-state solution as the
Hamiltonian is that of two uncoupled levels. Making use of the special form of the
decay constants (see Eq. (7.25) and (7.26)) the steady-state can be written as5:

ρSS =

(
x+ 0
0 1− x+

)
⊗
(
x− 0
0 1− x−

)
(7.32)

= x+x−D
†
+D+D

†
−D− + (1− x+)x−D+D

†
+D

†
−D−

+ x+(1− x−)D†+D+D−D
†
− + (1− x+)(1− x−)D+D

†
+D−D

†
− (7.33)

where x± = f(Ω±, T1) + A2
±2 [f(Ω±, T2)− f(Ω±, T1)]. Note that tr(ρSS) = 1 and that

d
dt
ρSS = 0 can be verified by simple calculation.

For the case of equal bath temperatures the steady state is by construction the thermal
state of the system (including the coupling) with respect to the joint bath temperature.
We also note that in the steady state there will be no current. This can be seen by the
following argument: In order for the expectation value of the current operator6

J =
g

i

(
d†2d1 − d†1d2

)
(7.34)

4again we drop the time argument of ρS(t)
5The tensor product is here with respect to the eigenbasis where the Hilbert space of the system is
given by H = H+ ⊗H−.

6For a derivation of the current operator refer to appendix A.8.1
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to attain a non-zero value, the density matrix of the system needs to have complex
entries as all real contributions will be canceled due to the sign in the current operator
and the hermicity condition of the density matrix. The steady state given above is,
however, real valued so that it yields a vanishing net particle current between the two
levels. A similar result has been found for the energy current in a spin-chain [10] where
the authors attribute the vanishing energy current to the diagonal form of the steady
state density matrix in the energy eigenbasis after invoking a secular approximation. As
there, we find that the QME in the secular approximation is inappropriate to describe
non-equilibrium dynamics.

Local Basis

For the QME in the local basis the steady state can be derived exactly as for the
system with just one bath (cf. Sec. 6.3). Following the same procedure we arrive at
the following differential equation for the expectation values:

〈
Ṅ1

〉〈
Ṅ2

〉
〈

˙
d†1d2

〉
〈

˙
d†2d1

〉

 =


−2γ(1) 0 −ig ig

0 −2γ(2) ig −ig
−ig ig −iΩ− γ 0
ig −ig 0 iΩ− γ

 ·

〈N1〉
〈N2〉〈
d†1d2

〉〈
d†2d1

〉
+


2γ

(1)
+

2γ
(2)
+

0
0

 (7.35)

where we have introduced γ = (γ(1) +γ(2)) and γ(i) = γ
(i)
+ +γ

(i)
− and Ω = Ω2−Ω1.

Solving the equation for the steady state using Mathematica we obtain7:

〈N1〉SS =
2f(Ω2, T2)g2 + f(Ω1, T1)(2g2 + 4(πJ)2 + (Ω2 − Ω1)2)

4(g2 + (πJ)2) + (Ω2 − Ω1)2
(7.36)

〈N2〉SS =
2f(Ω1, T1)g2 + f(Ω2, T2)(2g2 + 4(πJ)2 + (Ω2 − Ω1)2)

4(g2 + (πJ)2) + (Ω2 − Ω1)2
(7.37)〈

d†1d2

〉
SS

=
g[f(Ω2, T2)− f(Ω1, T1)](Ω2 − Ω1 + 2iπJ)

4g2 + 4π2J2 + (Ω2 − Ω1)2
(7.38)〈

d†2d1

〉
SS

=
g[f(Ω2, T2)− f(Ω1, T1)](Ω2 − Ω1 − 2iπJ)

4g2 + 4π2J2 + (Ω2 − Ω1)2
(7.39)

We first note that the correlations both depend on the difference of the Fermi functions
evaluated at the respective energies and temperatures and do not, in general, vanish
as has been the case for the previous model. This can be understood as follows: The
newly introduced bath tries to drive its level into the mixed thermal state according
to its temperature T1. Without the coupling between the two levels the steady state
would just be the product state of the two respective thermal states:(

f1 0
0 1− f1

)
⊗
(
f2 0
0 1− f2

)
(7.40)

7We again assume that the spectral densities are the same for both baths. This leads to γ(1) =
γ(2) = πJ
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For f1 6= f2 this state yields a finite contribution for the coupling term in the Hamil-
tonian part of the QME (7.29) which gives rise to complex-valued off-diagonal terms
in the density matrix. These terms yield finite expectation values for the coherences
(7.38) and (7.39) and the current operator. To summarize, the dissipative terms drive
the system towards a diagonal state whereas the Hamiltonian term counteracts this
and produces complex off-diagonal terms. In the steady state these two actions equili-
brate. For the previous case of just one bath the Hamiltonian part of the QME yields
no contribution in the thermal state so that the system ends up there.

Let us also note that, due to the hybridization in the Hamiltonian part of the master
equation, the steady state is not the product state of the thermal states as the occupa-
tion of the left level does depend on the occupation of the right level and vice versa (see
Eq. (7.37))8. Due to the form of the dissipative terms the occupations are, however,
also not the thermal state occupations of the system one would expect for an equation
taking into account the coupling properly (i.e. also in the dissipative terms such as the
QME in the eigenbasis).

Let us now turn to the comparison of the particle current between our QME and
the exact formula obtained from Keldysh formalism and start by stating the exact
results.

For equal bath temperatures T1 = T2 a vanishing particle current is obtained as the
difference of the Fermi-function in Eq. (7.3) is then always zero. When increasing the
temperature of the left bath the difference of the Fermi functions is, in general, not
zero. An example is plotted in Fig. 7.3.

Ω1
Ω2

hotT1 cold T2

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.1

0

0.1

0

0

energy ω/Ω

f L
(ω

)
−
f R

(ω
)

Figure 7.3.: Difference of the two Fermi-functions in Eq. (7.3) with respect to the en-
ergy ω.
The parameters used are T1 = 2Ω, T2 = 1Ω, where we have again intro-
duced the energy scale Ω

As we can see from equations (7.3) and (7.14) both, magnitude and direction of the
current, will also depend on the energy-dependent prefactor plotted in Fig. 7.2. For

8If we take the limit of vanishing coupling, g → 0, we obtain the thermal product state (7.40)
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the case depicted in Fig. 7.3 the current flows towards the left when the prefactor’s
contribution is larger for negative energies, and towards the right if its contribution is
larger for positive energies. The first is for example the case for negative Ω1 and Ω2,
while the latter happens for positive Ωi (also cf. Eq. (7.16)).

Let us now turn to the results of our QME and its simulation. Evaluating Eq. (7.34)
using the above expectation values in the steady state, we find:

g

i

〈
d†2d1 − d†1d2

〉
SS

= g2Jπ
4 [f(Ω1, T1)− f(Ω2, T2)]

4g2 + 4π2J2 + (Ω2 − Ω1)2
(7.41)

This expression looks very similar to the expression we had found when roughly es-
timating the current from the exact result in Eq. (7.18). However, there the Fermi
functions were evaluated at the shifted peak positions ωmax,1/2 rather than Ω1/2 as we
have found it here for Eq. (7.41). This, as will also be discussed below, is assumed to
be a consequence of the approximation we have introduced before.

We also see that the particle current does not directly depend on the temperatures of
the baths but on the respective ratios Ω1/T1 and Ω2/T2 at which the Fermi functions are
evaluated. This has drastic consequences which we summarize for the case9 Ω1,Ω2 ≥ 0
and T1 > T2 (see cartoon10 in Fig. 7.4).

Ω2

T2
< Ω1

T1

Ω2

T2
= Ω1

T1

Ω2

T2
> Ω1

T1

exact −→ −→ −→
simulation ←− 0 −→

Table 7.1.: Direction of the current

In Tab. 7.1 we give the direction of the current for the three possible regimes of Ω2/T2.
We see that only in the regime Ω2

T2
> Ω1

T1
⇔ T1

T2
> Ω1

Ω2
the QME yields the correct

direction of the current (and therefore the same qualitative behavior). We attribute
this to approximation (6.17) that we have introduced in order to arrive at the QME
in Lindblad form. Due to neglecting the intersubsystem coupling for the generator of
the interaction picture, the two Lindblad drives only “see” the level they are directly
coupled to and do not affect the other one. Their insertion and extraction of particles
therefore only depends on the occupation of that level and not on the state of the system
as a whole. In order to obtain a qualitatively better QME a different approximation
scheme would have to be introduced. From a more quantitative analysis (cf. Fig. 7.4)
we see that even though it yields the wrong direction for Ω2

T2
< Ω1

T1
, it is only slightly

negative.

This being “slightly wrong” is determined by the strength of the coupling g with respect
to the energies of the levels Ωi (cf. also Eq. (7.41)). The coupling strength to the baths
V merely determines the magnitude of the current as a whole. The relative error (form
of the plots) stays, however, roughly the same.

9The other cases can be discussed analogously.
10In the following we illustrate the considered situations in little cartoons where dashed arrows will

indicate continuous change of a quantity whereas colors will indicate different discrete values.
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Figure 7.4.: Current from the left to the right level with respect to the energy of the
second level (see cartoon). The parameters used are: g = 0.1Ω, V =
0.01Ω,Ω1 = 1Ω, T1 = 2Ω, T2 = 1Ω

From Fig. 7.4 we see that the simulation yields the same result as the exact formula
for Ω2 = Ω1. For this situation it is clear that the QME will always at least get the
direction correct as for T1 = T2 the QME will also yield a vanishing current, and for
Tα > Tβ the current will flow from α to β (for Ωα > 0, else from β to α).

In Fig. 7.5 we present evidence that for Ω1 = Ω2 the QME yields very good results as
long as g � T2.
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Figure 7.5.: Current from the left to the right level with respect to the energy of the
second level (see cartoon).
The parameters used are: V = 0.02Ω, T1 = 2Ω, T2 = 1Ω

For non-resonant energies the agreement between exact and simulated result is not so
good as we have seen in Fig. 7.4 and only qualitatively correct for Ω2

T2
> Ω1

T1
. In Fig. 7.6

we show how the current changes when we change the temperature of the first bath.
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Note that from the exact results the current always vanishes for T1 = T2. We find that
for degenerate energies of the levels (blue dots) the simulation and the exact result
agree perfectly whereas for off-resonant energies (red and black dots) the agreement is
again qualitatively correct for Ω2

T2
> Ω1

T1
. For off-resonant energies the amplitude of the

current is also much smaller than for the resonant case.
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Figure 7.6.: Current from the left to the right level with respect to the temperature of
the first bath for three different values of Ω2 (see cartoon).
The parameters used are: V = 0.01T2, g = 0.1T2,Ω1 = 2T2, T2 = 1. T2 is
varied from 0 to 8T2.





8. Aharanov-Bohm like Problems

In this chapter we will analyze how the Lindblad terms effect phase coherence. For
this we consider a system of four levels coupled to each other and to two baths. The
geometry is shown in Fig. 8.1 and we will denote the levels by left, right, first and
second. The coupling constants between the levels are chosen to be equal with the
exception indicated in the figure where an additional phase factor is acquired when
tunneling from the left to the first level. As this looks similar to the system considered
by Aharanov and Bohm (cf. [11]) we shall call our model accordingly.

The Hamiltonian is given by:

H = HS +HB1 +HB2 +HI1 +HI2 (8.1)

HS =
∑

j=1,2,L,R

Ωjd
†
jdj +

[
g
(
eiφd†Ld1 + d†Ld2 + d†Rd1 + d†Rd2

)
+ h.c.

]
HBi =

∑
q

ωiqc
†
iqciq (i ∈ {1, 2})

HIi = Vi
∑
q

(
d†iciq + c†iqdi

) (8.2)

ΩL

Ω1

Ω2

ΩR

eiφ

T1, J1(ω) T2, J2(ω)

Figure 8.1.: Schematic depiction of the Aharanov-Bohm ring. The coupling constants
between the levels are the same except for the coupling between ΩL and
Ω1 for which an additional phase is acquired. All the bath modes are
combined to a bath with temperature Ti and spectral density Ji(ω)



46 8. Aharanov-Bohm like Problems

8.1. Unitary Evolution without Coupling to External
Baths

We will first consider the unitary evolution of the closed system without coupling to an
external bath. Let us put an electron in the left level and set φ = 0. It will tunnel to the
first and second level, with the amplitudes depending on the respective energies. From
there it will either tunnel to the right level or back to the left. We therefore expect
an oscillation of the electron through the system where the occupation probability is
again determined by the relative energies of the four levels.

If we now change φ to a non-zero value and choose Ω1 = Ω2 we expect interference
effects to change the average occupation of the rightmost level. For φ = π we expect
destructive interference such that the right level will always be unoccupied: there will
not be any net current onto the right level. Tuning the ratio between Ω1 and Ω2

away from unity we expect only partial occurance of destructive interference such that
the occupation of the right level will return, even for φ = π. For the case of non-
degenerate system energies, the occupation varies between zero and a maximal value
which is determined by the energy of the rightmost level and the phase φ. All our
expectations can be met by numerical simulations. Figures 8.3 and 8.2 present two
examples for the current onto or from the rightmost level which was initially empty.
The current operator is in this case given by Eq. (8.3) a derivation of which can be
found in appendix A.8.2.

d

dt
NR =

g

i

(
d†Rd1 − d†1dR + d†Rd2 − d†2dR

)
(8.3)

8.2. QME in the Local Basis

As we have seen the Lindblad master equation derived in the eigenbasis of the system
by use of the Secular Approximation yields a vanishing particle current and is therefore
inappropriate to describe the problem we consider. We will therefore use the master
equation in the local basis. For each level coupled to a bath we obtain, as for the
resonant level model, two dissipative terms whereas the other levels and the intersub-
system coupling only occur in the Hamiltonian part of the master equation. As the
phase factor is part of the Hamiltonian we expect the existence of a coherent current
that will be effected by interference effects.

The QME is given by1:

d

dt
ρS = −i [HS, ρS] +

∑
i=L,R

γ
(i)
− (Ωi)

(
2diρSd

†
i − d

†
idiρS − ρSd

†
idi

)
+ γ

(i)
+ (Ωi)

(
2d†iρSdi − did

†
iρS − ρSdid

†
i ,
) (8.4)

1We have dropped the time argument of ρS(t).
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Figure 8.2.: Unitary time evolution of the expectation value of the current (in units of
Ω) onto the rightmost level for different magnetic fluxes φ ∈ [π/2, 3π/2].
The two levels are degenerate in energy. For φ = π there is no current due
to destructive interference.
The parameters used are: Ω1 ≡ Ω2 ≡ ΩL ≡ ΩR = 1Ω, g = 0.2Ω. At time
t = 0 there is one electron in the left level.

where the dynamics different from the model with just two levels and two baths arises
solely from the Hamiltonian HS. The decay constants are again given by:

γ
(i)
− = πJ(Ωi)(1− f(Ωi, Ti)) (8.5)

γ
(i)
+ = πJ(Ωi)f(Ωi, Ti) (8.6)

8.3. Aharanov-Bohm Oscillations

In order to check the phase coherence of the current in the steady state which we
obtain from the QME in Lindblad form we again defer to numerical simulations. The
rightmost level will now also be populated by its bath. Due to the coupling in the
Hamiltonian part of the QME the steady state occupancy of the rightmost level will,
however, not only be determined by its bath but also by the current from the other
levels which will in turn depend on the acquired phase φ. This is, of course, if phase
coherence is preserved. If this was not the case we would obtain a current which would
be independent of φ.

Figures 8.4 and 8.5 show the time evolution of the flux onto (positive) or from (negative)
the rightmost level in the steady state in dependence on the phase acquired by coupling
from the leftmost to the first level. As expected, the current vanishes completely for a
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Figure 8.3.: Unitary time evolution of the expectation value of the current (in units of
Ω) onto the rightmost level for different magnetic fluxes φ ∈ [π/2, 3π/2].
Now the two energy levels are no longer degenerate so that even for φ = π
there exists a finite current as the two currents from the first and second
level do not cancel exactly anymore. The parameters used are: Ω1 ≡ ΩL ≡
ΩR = 1Ω,Ω2 = 1.2Ω, g = 0.2Ω. At time t = 0 there is one electron in the
left level.

phase φ = π and energies Ω1 = Ω2 (see Fig. 8.4) due to destructive interference. For
the case Ω1 6= Ω2 there is only partially destructive interference such that the current
does not vanish for φ = π.

In conclusion, the QME for the Aharanov-Bohm ring yields phase coherence.
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Figure 8.4.: Dependence of the current on the phase angle φ for Ω1 = Ω2. For φ = π
the steady-state current vanishes.
The parameters used are: Ω1 ≡ Ω2 ≡ Ω3 ≡ Ω4 = 1Ω, g = 0.2Ω, V = 0.02Ω.

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

3.72

3.72

3.72

·10−5

φ

cu
rr
en
t
〈J
〉 S
S
/Ω

Figure 8.5.: Dependence of the current on the phase angle φ for Ω1 6= Ω2. For φ = π
the current is still minimal but clearly non-zero.
The parameters used are: Ω1 ≡ Ω3 ≡ Ω4 = 1Ω,Ω2 = 1.2Ω, g = 0.2Ω, V =
0.02Ω.





9. Central Level Coupled to two
Explicitly Modeled Leads

In this chapter we consider more complicated systems where there are not one or two
lead levels but (ideally) infinitely many. From the last chapters we know how to write
down the master equation for the system consisting of two lead levels and we will
generalize this to the case of many lead levels. It is our aim to derive properties of the
steady state, especially an expression for the particle current through the central level.
We hope that for the wide-band limit of a large number of equally spaced lead levels
we recover an approximation of the exact result for a single level which is coupled to
two leads.

This chapter is organized as follows: After introducing the model we first quote the
exact result from the literature. We then state the explicit formula of the QME and
determine implicit expressions for the steady state properties of the occupations and
the tunneling terms. These are derived similarly to the case with just two levels and
two baths (cf. chapter 7). The case of up to 70 lead levels on each side is calculated
numerically for the case of equal level spacing in the leads. In the end we compare these
results to the exact expression for the current obtained from Keldysh formalism.

The model we consider is the following: A central level of energy Ω is coupled to two
leads each consisting of many lead levels q of energy ωα,q (α ∈ {L,R}) via a tunneling
term of uniform strength g. Every lead level is in turn coupled to its respective bath
of temperature Tα where the coupling strength is described by the (also uniform)
parameter V . A generic system is shown in Fig. 9.1. As we want to study the
systems numerically we have to limit the number of modeled lead modes N = NL+NR

and assume them to be equally spaced over their entire bandwidth D such that ωq ∈
[−D,D]. For the simple models considered in previous chapters we have used a constant
density of states ρ = 1/Ω (where Ω was an energy scale of the problem) in the level
width function Γ. However, we now have to distinguish between the quantities of the
baths and the leads. We therefore adopt the following notation summarized in Tab
9.1.

Level spacing in leads ∆lead = 2D/NL

Density of states in the leads ρlead = ∆−1
lead

Density of states in the baths ρbath

Level width fct. of central level Γ = 2πg2ρlead

Level width fct. of lead levels Γlead = 2πV 2ρbath

Table 9.1.: Notation adopted in this chapter
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{ωL,q}q {ωR,q}q

ΩTL, ρbath TR, ρbath

∆lead

2D

Figure 9.1.: Depiction of the general scheme we consider in this chapter. The central
mode is coupled to two leads consisting of many modes q each of which is
coupled to its respective bath. All the baths on the left (right) side have
the same temperature TL (TR).

9.1. Exact Result from Keldysh Formalism

Before we derive an approximate result via a master equation approach we quote the
exact result for a single level which is coupled to two leads of temperatures TL and TR
from [1, Chapt. 12]. The exact result for the particle current with continuous spectral
density of the leads is1

J =

∫
dω

2π

ΓLΓR

(ω − Ω)2 + (Γ/2)2
(fL(ω)− fR(ω)) (9.1)

where fα(ω) are the respective Fermi-Dirac distributions and Γ = ΓL + ΓR is the level
width function of the central level introduced in Tab. 9.1.

From Eq. (9.1) we see that the difference of the Fermi functions is multiplied by
an energy-dependent prefactor which has a Lorentzian shape the width of which is
determined by the level width function and therefore by the coupling constant g.

9.2. Master Equation and Steady State Expectation
Values

It is straight forward to generalize the QMEs we have obtained in previous chapters to
the case of more than two lead levels as in the local approximation there is a separate
dissipative contribution for each lead level. The Hamiltonian of the central level and
the two leads is given by:

HS = Ωd†d+
∑
α,q

ωα,qd
†
α,qdα,q +

∑
α,q

(
gd†dα,q + h.c.

)
(9.2)

1Note that we have changed their notation to ours introduced in Tab. 9.1 and Fig. 9.1.
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The QME for the reduced density matrix of the system therefore reads:

d

dt
ρS(t) ≡ LρS(t) = −i [HS, ρS(t)] +

∑
α,q

Dα,qρS(t), (9.3)

where the respective dissipators Dα,q are given by the Lindblad terms for the lead level
(α, q):

Dα,q [·] = γ−(ωα,q, Tα)
{

2dα,q[·]d†α,q − d†α,qdα,q[·]− [·]d†α,qdα,q
}

+ γ+(ωα,q, Tα)
{

2d†α,q[·]dα,q − dα,qd†α,q[·]− [·]dα,qd†α,q
} (9.4)

The decay constants can be expressed in terms of the Fermi functions at the respective
energies and temperatures and are given by:

γ−(ωα,q, Tα) = (1− fα(ωα,q))Γlead/2 (9.5)
γ+(ωα,q, Tα) = fα(ωα,q)Γlead/2 (9.6)

In order to determine the expectation value of an operator in the steady state we use
the same method as before, namely calculate its time derivative according to equation
(6.25) and set it equal to zero. As the resulting expression will, in general, include
expectation values of other operators we will have to calculate their steady state values
as well using the same procedure.

The operator describing the particle current from the left lead to the central level can
be derived in complete analogy to the Aharanov-Bohm-ring (cf. Eq. (8.3)) and is given
by the following expression2:

J =
g

i

∑
q

(
d†dL,q − d†L,qd

)
(9.7)

For the case of the current operator we therefore have to calculate the expectation
values for all possible pairs of creation and annihilation operators. Doing so we arrive
at the following coupled equations3:

d

dt

〈
d†d
〉

= ig
∑
α,q

(〈
d†α,qd

〉
−
〈
d†dα,q

〉)
(9.8)

d

dt

〈
d†α,qdα,q

〉
= −2γ

〈
d†α,qdα,q

〉
+ ig

(〈
d†dα,q

〉
−
〈
d†α,qd

〉)
+ 2γ+

α,q (9.9)

d

dt

〈
d†dα,q

〉
= − [i(ωα,q − Ω) + γ]

〈
d†dα,q

〉
+ ig

∑
β,q′

〈
d†β,q′dα,q

〉
−
〈
d†d
〉 (9.10)

d

dt

〈
d†α,qdβ,q′

〉
= −

[
i
(
ωβ,q′ − ωα,q

)
+ 2γ

] 〈
d†α,qdβ,q′

〉
+ ig

(〈
d†dβ,q′

〉
−
〈
d†α,qd

〉)
, (9.11)

where γ = γ+ + γ− = Γlead

2
, α, β ∈ {L,R} and in the last line we assume (β, q′) 6=

(α, q).

2With this choice of sign in the definition of the current operator, positive current flows to the right
3Note, that the creation and annihilation operators belonging to different levels anticommute.
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In the steady state the time derivatives on the left hand side vanish such that we obtain
a system of coupled algebraic equations relating the different steady state expectation
values. Due to the constant term in Eq. (9.9) the system of equations is inhomogeneous
and we can solve it (and thereby obtain the expectation values) by inverting its coeffi-
cient matrix. Note that the size of the coefficient matrix scales as (N + 1)2× (N + 1)2

where N is the total number of lead modes.

The master equation involves the parameter γ = Γlead

2
= πρbathV

2 determining the
coupling strength between the lead mode and its bath. This parameter does not occur
in the exact model.

9.3. Exact Treatment of Several Lead Levels

In order to compare the results from the master equation approach to the exact result,
we first want to show that they are in agreement with Eq. (9.1). To this ends we keep
the Fermi functions as symbolic variables while we numerically perform the inversion
of the coefficient matrix which is independent of the temperature. For the case of not
too many lead levels (50 to 90 on each side) the coefficient matrix is inverted using
mathematica. As described above we leave the inhomogeneous part of the equation,
i.e. the vector containing the Fermi functions evaluated at the energies of the respective
lead modes, as a symbolic expression.

Furthermore, we make the following assumptions regarding the quantities introduced
in Tab. 9.1.

• The density of states of the baths is much larger than of the leads: ρbath � ρlead.
We introduce the ratio n = ρbath/ρlead � 1.

• The level width function of the central level should be much larger than the width
functions of the leads: Γ� Γlead

• The level spacing in the leads should be of the order of the level width function
of the leads: ∆lead . Γlead

With this we find the following relations:

V &
1√

2πρleadn
(9.12)

g � V n (9.13)

Due to computational complexity we limit the total number of lead modes to 100.

The particle current in the steady state is obtained by simply plugging in the expec-
tation values for the different terms in Eq. (9.7) obtained by inverting the coefficient
matrix . By doing so we arrive at an expression of the form

J =
∑
α,q

Cα,qfα,q, (9.14)
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where fα,q again denotes the Fermi function evaluated for the lead mode (α, q) and
Cα,q is its coefficient which is independent of the temperature but may still be different
for left and right lead.

Via numerical analysis we find that, to very high accuracy, the prefactors of the Fermi
functions belonging to the same energy are indeed the same except for a sign. We
therefore obtain

J =
∑
q

Cq(fL,q − fR,q), (9.15)

where Cq is now the joint coefficient for the Fermi function of energy ωq which is
independent of the temperature and the index α.

−30 −20 −10 0 10 20 30

−5

0

5
·10−15

0

0

Energy ω/Ω

re
la
ti
ve

di
ffe

re
nc
e

Figure 9.2.: Relative difference between CL,q and −CR,q. The extra minus sign comes
in as all CR,q are negative whereas all CL,q are positive. The parameters
used are Ntot = 100, D = 25Ω,Ω = 1, ρbath = 10Ω−1, ρlead = 1Ω−1,Γlead =
0.2Ω,Γ = 2πΩ

How good this agreement is can of course be quantified. In Fig. 9.2 we give an
example for the distribution of the relative difference. For different parameters we
obtain qualitatively the same behavior where the relative difference was always found
to be smaller than 10−13. We attribute this difference to numerical errors in the matrix
inversion.

With this we can compare our numerical results to the exact formula (9.1). We plot
the coefficients Cq in equation (9.15) and obtain a Lorentzian distribution. Due to the
limited bandwidth we obtain large errors once the distribution does not fall off to zero
fast enough in the tails. This can well be seen in Fig. 9.4 where for the blue and black
curves one tail fits well with the exact curve whereas the other one is further off then
for the red curve. Furthermore, in Fig. 9.3 the black curve is completely wrong due to
these finite size effects. That this problem can indeed be overcome is shown in Fig. 9.5
where we have increased the number of lead levels to 140 (which took about 10 times
longer to calculate).

We find that its width depends on g (cf. Fig. 9.3) and is centered around Ω (cf.
Fig. 9.4) as is expected from the exact result. We find that for smaller values of the
intersubsystem coupling g respectively the level width function Γ the numerical results
fit the exact ones better. We partly attribute this to the finite size effects discussed



56 9. Central Level Coupled to two Explicitly Modeled Leads

above. For a specific choice of parameters we give a refined plot with 180 lead levels in
Fig. 9.6 which agrees better with the exact curve. However, the peak height does not
fit the exact result. This may also be due to the fact that we have neglected the energy
shifts of the lead levels due to the coupling to the central level via g (see discussion
below Eq. (7.41)). We expect this effect to decrease when increasing the number of
levels further.

In conclusion, we find that for the parameter regime considered the QME is in good
agreement with the exact results from Keldysh formalism as long as the bandwidth –
and therefore the number of lead levels – is chosen large enough.

In order to increase the number of levels beyond 150 it might be useful to introduce an
approximation scheme as not all expectation values are equally significant. Especially
terms of the form

〈
d†α,qdβ,q′

〉
with q 6= q′ might be good candidates for such an approx-

imation. Performing the matrix inversion with specialized algorithms in C++ instead of
mathematica might also yield a speed-up that would allow for a larger number of lead
modes.
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Figure 9.3.: Plot of the coefficient function Cω for different values of g. The parameters
used are Ntot = 100, D = 25Ω,Ω = 1, ρbath = 10Ω−1, ρlead = 1Ω−1,Γlead =
0.2Ω. The dots are numerical values whereas the solid lines are exact
formulae.
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Figure 9.4.: Plot of the coefficient function Cω for different values of Ω. The param-
eters used are Ntot = 100, D = 25Ω, ρbath = 10Ω

−1
, ρlead = 1Ω

−1
,Γlead =

0.2Ω,Γ = 2πΩ.
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Figure 9.5.: Plot of the coefficient function Cω for different values of N and D. Due to
the limited number of lead modes the simulation produces large errors for
too large values of Γ. For an increasing number of lead modes and a larger
bandwidth the results improve.
The parameters used are ρbath = 10Ω−1, ρlead = 1Ω−1,Ω = 1,Γlead =
0.2Ω,Γ = 4.5πΩ.
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Figure 9.6.: Plot of the coefficient function Cω for different values of N and D. We see
that increasing the number of lead modes slightly improves the results. The
parameters used are ρbath = 10Ω−1, ρlead = 1Ω−1,Ω = 1,Γlead = 0.2Ω,Γ =
2πΩ.



10. Conclusion and Outlook

In this thesis, we have discussed the derivation and steady-state properties of quantum
master equations in Lindblad form for different noninteracting fermionic toy-models,
both in equilibrium and nonequilibrum. In particular, the transport properties of the
considered systems, ranging from two simple resonant levels to two explicitly modeled
leads of up to 180 modes, have been investigated and compared to the results obtained
from Keldysh formalism which they yield a good agreement to. We were therefore able
to provide an explicit consistency check for a Lindblad approach that has potential for
describing nonequilibrium steady-state transport in the context of quantum impurity
models with local interactions.

We have started by considering the simplest building block of the more complicated
systems, the resonant level model, in Chap. 5. Commencing with the Liouville-von
Neumann equation in the interaction picture we have applied the Born-Markov ap-
proximation in order to arrive at a Lindblad QME for the reduced density matrix of
the single level. We have justified the Markov assumption for Γ/T � 1 by explicitly
calculating the bath correlation time. We find that the Lindblad bath of temperature
T drives the level into its mixed thermal state with respect to the T .

For a composite system of two coupled levels coupled to one or two Lindblad baths,
we have found the Born-Markov approximation to be valid when including the inter-
subsystem coupling in the generator of the interaction picture. We have considered
two different approximation schemes in order to arrive at two different QMEs in Lind-
blad form. In the eigenbasis of the coupled system we derive a QME in the secular
approximation which yields, in equilibrium, the correct thermal steady state, whereas
it predicts a vanishing particle current for nonequilibrium situations. Therefore, we
also have derived a QME in the local basis, by means of neglecting the intersubsystem
coupling in the generator of the interaction picture. Due to this the QME lacks the
correct description of the steady state in equilibrium. However, introducing a finite
temperature gradient, we have obtained a finite current that agrees qualitatively with
the exact Keldysh result in a certain parameter regime. We have attributed this to
neglecting the intersubsystem coupling in the dissipative terms of the QME.

In Chap. 8 we have used an Aharanov-Bohm like geometry in order to show that
the Lindblad QME preserves phase coherence of particle current in the steady state.
Introducing a phase shift φ for one of the two paths from the left to the right Lindblad
bath, we have observed destructive interference of the current for resonant or off-
resonant energies of the two paths respectively.

In the last Chap. we have turned to the more complicated system of a single central level
coupled to two leads, the levels of which were explicitly modeled, with each coupled to
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its respective Lindblad drive. Using a local Lindblad QME we have derived an implicit
expression for the expectation value of the particle current operator in the steady state.
The expression has numerically been evaluated by means of inverting the coefficient
matrix of an inhomogeneous system of algebraic equations, and is found to be in good
agreement with the exact Keldysh result for certain parameter regimes.

As has been stressed in Sec. 9.3 the extend to which we have explored this agree-
ment between Lindblad and Keldysh approach is, however, limited as of now. Further
possible approaches may include:

• An extension of the number of lead levels for the model which we have considered
in Chap. 9. To this end a possible approximation scheme should take into account
the fact that not all terms in the above stated system of equations are equally
significant.

• The introduction of a second central level, in order to investigate the coherence
properties of the particle current by means of Aharanov-Bohm like interference
effects similar to those considered in Chap. 8.

• The adoption of yet another approximation scheme for dealing with the QME
in the Born-Markov approximation which takes the intersubsystem coupling into
account properly. The resulting Lindblad QME would then include the coupling
not only in the Hamiltonian part but also in the dissipative terms.



A. Derivations

In this chapter we give the details of derivations and calculations we have omitted in
the main part of this thesis.

A.1. Commutation and Anticommutation Relations

As we frequently have to calculate the commutators and anticommutators of prod-
ucts of operators we state here some basic identities which can be verified by simple
calculations:

[A,BC] = [A,B]C +B [A,C] (A.1)
[AB,C] = A [B,C] + [A,C]B (A.2)
[A,BC] = {A,B}C −B{A,C} (A.3)
[AB,C] = A{B,C} − {A,C}B (A.4)

A.2. Interaction Picture Operators

In this section we derive the interaction picture representation for the creation and
annihilation operators frequently used in this thesis.

Let O be an operator in the Schrödinger picture. Then the corresponding operator
Õ(t) in the interaction picture is defined via the equation

Õ(t) = eiH0tOe−iH0t. (A.5)

H0 is the free Hamiltonian describing the system- and bath-modes. It will in general
be given by the following equation:

H0 =
∑
n

Ωnd
†
ndn +

∑
n,k

Vn,kc
†
n,kcn,k (A.6)

where n labels the system-modes and n, k labels the bath-mode k of the nth bath.
Note that hybridizing terms can be included into the above Hamiltonian (A.6) by first
diagonalizing the system Hamiltonian.



62 A. Derivations

In order to evaluate equation (A.5) we make use of the Baker-Hausdorff formula
[12]:

exp(A)B exp(−A) = B + [A,B] +
1

2
[A, [A,B]] + . . . (A.7)

Upon using the canonical anticommutation-relations for the fermionic creation and
annihilation operators we arrive at

[H0, dn] = Ωn

[
d†ndn, dn

]
= Ωnd

†
n{dn, dn} − Ωn{d†n, dn}dn

= −Ωndn

which gives rise to the interaction-picture annihilation operator:

d̃n(t) = e−iΩntdn. (A.8)

We see that in the interaction picture the annihilation operator merely acquires an
additional time-dependent phase. This is due to the fact, that the commutator of dn
with the free Hamiltonian H0 is again proportional to dn. This derivation generalizes
to all operators that have this property.
We derive the interaction-picture representation of the other operators:

d̃n(t) = e−iΩntdn (A.9)

d̃†n(t) = eiΩntd†n (A.10)
c̃n,k(t) = e−iωn,ktcn,k (A.11)

c̃†n,k(t) = eiωn,ktc†n,k (A.12)

As we have seen before, the reduced density matrix is obtained by integrating out the
degrees of freedom of the environment. This property is conserved when going to the
interaction picture.

Proof.

ρ̃A(t) = trBρ̃(t) = trB
[
ei(HA+HB)tρ(t)e−i(HA+HB)t

]
(A.13)

= eiHAttrB
[
eiHBtρ(t)e−iHBt

]
e−iHAt (A.14)

= eiHAttrB[ρ(t)]e−iHAt (A.15)
= eiHAtρA(t)e−iHAt

Note, that for this proof it is essential that the free Hamiltonian operators commute
with each other. This is, however, fulfilled in all the cases we consider as for our models
the free Hamiltonians are of second order in the level-operators and the anticommuta-
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tors for operators belonging to different levels vanish:[
d†1d1, c

†
qcq

]
= d†1

[
d1, c

†
qcq
]

+
[
d†1, c

†
qcq

]
d1 (A.16)

= d†1{d1, c
†
q}cq − d

†
1c
†
q{d1, cq}+ · · · (A.17)

= 0 (A.18)

A.3. Density Matrix in the Interaction Picture

In Tab. 2.1 we quoted the relation between the density matrix in the Schrödinger and
the interaction picture to be:

ρ̃(t) = U †0(t, t0)ρS(t)U0(t, t0)

From that we arrive at:

˙̃ρ(t) =
d

dt

[
U †0(t, t0)ρS(t)U0(t, t0)

]
(A.19)

=
i

~

[
H0, U

†
0(t, t0)ρS(t)U0(t, t0)

]
+ U †0(t, t0)ρ̇S(t)U0(t, t0) (A.20)

=
i

~
U †0(t, t0) [H0, ρS(t)]U0(t, t0) + U †0(t, t0)ρ̇S(t)U0(t, t0) (A.21)

This is equivalent to:

ρ̇S(t) = − i
~

[H0, ρS(t)] + U0(t, t0) ˙̃ρ(t)U †0(t, t0) (A.22)

= − i
~

[H, ρS(t)] + U0(t, t0)Dρ̃(t)U †0(t, t0), (A.23)

where D is the dissipative part (i.e. Lindblad-operators) of the master equation.

A.4. Alternate Derivation of QME in
Born-Approximation

In this section we give an alternate derivation of the QME in the Born-approximation.
We will very closely follow [4]. We again start from the Liouville-von Neumann equation
in the interaction picture

d

dt
ρ̃ = −i

[
H̃I(t), ρ̃(t)

]
which we can integrate formally in the case that the coupling is not explicitly time-
dependent:

ρ̃(t) = ρ(t0)− i
∫ t

t0

dt′
[
H̃I(t

′), ρ̃(t′)
]
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We now plug this result into the right hand side of the Liouville-von Neumann equation
and obtain:

d

dt
ρ̃(t) = −i

[
H̃I(t), ρ̃(t0)

]
−
∫ t

t0

dt′
[
H̃I(t),

[
H̃I(t

′), ρ̃(t′)
]]

(A.24)

In order to arrive at an equation for the reduced density matrix we trace over the
degrees of freedom of the environment and again invoke the factoring assumption of
the density matrix at an initial time t0: ρ̃(t0) = ρ̃S(t0) ⊗ ρ0. Note, however, that we
now also have to assume that this factorization will prevail for later times t > t0. In the
literature (cf. for example [4]) it is argued that this is approximately the case for weak
couplings and for the case that the environment is so large that it does not change due
to the coupling to the system. This then yields:

d

dt
ρ̃S(t) = −itrB

[
H̃I(t), ρ̃S(t0)⊗ ρ0

]
−
∫ t

t0

dt′trB

[
H̃I(t),

[
H̃I(t

′), ρ̃S(t′)⊗ ρ0

]]
, (A.25)

which simplifies for the case of a thermal bath1 and after changing the integration
variable to the equation we obtained above using projection operator methods:

d

dt
ρ̃S(t) = −

∫ t

0

dstrB

[
H̃I(t),

[
H̃I(t− s), ρ(t− s)⊗ ρ0

]]
(A.26)

As we have noted before, the assumption that the factorization of system and bath
prevails is an effective second order approximation in the coupling strength to the
bath.

A.5. Bath Correlation Function

In order to calculate the integral in Eq. (4.28) we make use of the residue theorem (see
for example [12]) ∮

C

f(z)dz = 2πi
∑
z0

Res(f(z), z0) (A.27)

Where the sum runs over all roots z0 of f(z) in the complex plane enclosed by the
contour C and Res(f(z), z0) denotes the residue of f(z) at z0.
For a pole of first order the residue is given by:

Res(f(z), z0) = lim
z→z0

(z − z0)f(z) (A.28)

For the above integral we choose the contour to describe a semicircle in the upper
half-plane. The function f(z) is in our case given by

f(z) =
eizt

ecz + 1

1trB(H̃I(t)ρ̃S(t)⊗ ρ0) = 0. This is equivalent to eq. (4.15)
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whose complex roots in the upper half plane are z0n = iπ
c

(2n+ 1), n ∈ N0. Expanding
the exponential in the denominator and factoring out the complex root yields:

f(z) = − 1

z − iπ
c

(2n+ 1)

eizt

c+ 1
2!
c2(z − iπ

c
(2n+ 1)) + · · ·

(A.29)

Thus with use of formula (A.28) we calculate the residue:

Res

(
eiωt

ecω + 1
,
iπ

c
(2n+ 1)

)
= lim

z→iπ/c(2n+1)
(z − iπ

c
(2n+ 1))

eiωt

ecω + 1
(A.30)

= lim
z→iπ/c(2n+1)

− eiωt

c+ 1
2!
c2(z − iπ

c
(2n+ 1)) + · · ·

(A.31)

= −1

c
e−

π
c

(2n+1)t (A.32)

and obtain for the bath correlation function

C(τ) = ρ

∫ ∞
−∞

dω
eiωτ

eω/T + 1
(A.33)

= 2πiρ
∑
n≥0

Res

(
eiωτ

eω/T + 1
, iπT (2n+ 1)

)
(A.34)

= 2πiρT
∑
n≥0

e−πT (2n+1)τ (A.35)

= 2πiρTe−πTτ
1

1− e−2πTτ
(A.36)

= −iπρT 1

sinh (πTτ)
(A.37)

A.6. Born-Markov Approximation

We give a short derivation of Eq. (4.32)

d

dt
ρ̃S(t) = −

∫ ∞
0

dstrB

[
H̃I(t),

[
H̃I(t− s), ρ(t)⊗ ρ0

]]
(A.38)

= −
∫ ∞

0

dstrB

{
H̃I(t)H̃I(t− s)ρ̃S(t)ρ0 − H̃I(t)ρ̃S(t)ρ0H̃I(t− s) (A.39)

− H̃I(t− s)ρ̃S(t)ρ0H̃I(t) + ρ̃S(t)ρ0H̃I(t− s)H̃I(t)
}

(A.40)

= −
∫ ∞

0

dstrB

{
H̃I(t)H̃I(t− s)ρ̃S(t)ρ0 − H̃I(t− s)ρ̃S(t)ρ0H̃I(t) + h.c.

}
(A.41)
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A.7. Diagonalization of two Coupled Levels

In this section we diagonalize the closed quantum system consisting of two levels of
different energies Ω1 and Ω2 coupled to each other with coupling strength g (see Fig.
A.1). We then introduce new creation and annihilation operators in the eigenbasis and
express them in terms of the old operators.

The system Hamiltonian HS can be written as a quadratic form as follows:

HS =
(
d†1 d†2

)(Ω1 g
g Ω2

)(
d1 d2

)
(A.42)

g

Ω1

Ω2

Figure A.1.: Schematic depiction of two levels coupled to each other with coupling
strength g.

Straightforward diagonalization gives rise to the two eigenvalues of the above ma-
trix:

Ω± =
Ω1 + Ω2

2
±

√
g2 +

(
Ω1 − Ω2

2

)2

(A.43)

The new creation and annihilation operators of the combined subsystems are denoted
by D†± and D± respectively and are assumed to be eigenoperators of HS:[

HS, D
†
±

]
= Ω±D

†
± (A.44)

Furthermore by imposing the normalization condition

〈±| ±〉 = 〈0|D±D†± |0〉 = 1 (A.45)

we can finally express these new operators in terms of those of the subsystems:

(
D†+
D†−

)
=

 1√
1+η2

+

η+√
1+η2

+
1√

1+η2
−

η−√
1+η2

−


︸ ︷︷ ︸

=: A

(
d†1
d†2

)
(A.46)

where

η± =
Ω2 − Ω1

2g
±

√
1 +

(
Ω2 − Ω1

2g

)2

(A.47)

As can easily be checked, the above matrix (A.46) is unitary with real entries. It
will hereafter be denoted by Aij. Note that in this new coupled basis, the system
Hamiltonian (including the intersubsystem-coupling) is diagonal and can be written as
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follows:
HS =

∑
n=±

ΩnD
†
nDn (A.48)

Moreover, as the matrix A is unitary, its inverse is given by its hermitian conjugate
(here: transpose, as A is chosen to have real entries), such that the creation and
annihilation operators of the uncoupled basis are given by:

d†i =
∑
n

(A−1)inD
†
n =

∑
n

(A†)inD
†
n =

∑
n

A∗niD
†
n (A.49)

A.8. Derivation of the Current Operator

A.8.1. Two Coupled Levels

We give a short derivation of the operator describing the current between two coupled
levels. For this we calculate the time derivative of the occupation number operator
with respect to the Hamiltonian dynamics using the Heisenberg equation of motion
(cf. table 2.1). The Hamiltonian is given by

HS = Ω1d
†
1d1 + Ω2d

†
2d2 + g

(
d†1d2 + d†2d1

)
, (A.50)

which gives rise to the current between the two levels2:

d

dt
N1 = i [HS, N1] (A.51)

=
g

i

(
d†2d1 − d†1d2

)
(A.52)

A.8.2. Aharanov-Bohm like Problems

For the case of the Aharanov-Bohm like system the Hamiltonian dynamics is similar
to the case of two coupled levels. The current-operator can be calculated analogously
using the Heisenberg equation. Again we only include the Hamiltonian dynamics in
the calculation, i.e. the particle current from or to the first and second level3. For the
Hamiltonian

HS =
∑

j=1,2,L,R

Ωjd
†
jdj +

[
g
(
eiφd†Ld1 + d†Ld2 + d†Rd1 + d†Rd2

)
+ h.c.

]
(A.53)

2sign-convention: positive current flows towards the right
3for the nomenclature of the levels refer to the description at the beginning of chapter 8.
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the Heisenberg equation yields:

d

dt
NR = i [HS, NR]

=
g

i

(
d†Rd1 − d†1dR + d†Rd2 − d†2dR

) (A.54)

This, again, gives the net particle current onto the rightmost level. The current due to
the coupling to the bath-modes is not accounted for by this current operator.
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In this chapter we account for how the numerical results of this thesis have been
obtained.

The calculations have been done employing matlab and making use of some predefined
functions from the Quantum Optics Toolbox for matlab that has been written by
Sze Meng Tan from Auckland University [13]. The current version can be found on
http://qwiki.stanford.edu/index.php/Quantum_Optics_Toolbox.

Further calculations (mostly matrix inversions and symbolic calculations) have been
performed using mathematica.

B.1. Quantum Optics Toolbox

The Quantum Optics Toolbox comes equipped with a series of classes and functions
that make it easy to implement quantummechanical operators and equations and to, for
example, integrate the equations of motion of density matrices. A detailed description
of the capabilities and their implementations can be found in the manual.

When implementing the operators for the different fermionic levels one has to define the
state |1 · · · 1〉 by stating the order in which the fermions are put into their respective
level. This fixes the explicit form of the operators which have to fulfill the stated
anticommutation relations (cf. section 2.3).

The implementation of superoperators such as the Liouvillian (cf. eq. (2.10)) or the
Lindbladian are particularly easy as the toolbox internally treats an N × N density
matrix as a column vector of length N2 and superoperators as matrices of size N2×N2.
Using the built-in commands spre(M) and spost(M) meaning pre- and postmultipli-
cation with a matrix M the Lindblad quantum master equation is easily implemented.
For further details on how this is done internally and in practice refer to the man-
ual.

Expectation values of an operator O in the state ρ(t) can be calculated using the
command expect(O,rho(t)).

http://qwiki.stanford.edu/index.php/Quantum_Optics_Toolbox
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B.2. Calculation of the Steady State

After a quantum master equation is implemented we want to calculate its steady state.
There exists a built-in function steady(L) that solves the equation

LρSS = 0 (B.1)

for ρSS. The algorithm is explained in the manual. For simple superoperators this
equation can be solved by calculating its kernel (or nullspace).

B.3. Time-evolution of the Density Matrix,
Integration of the Master Equation

The Quantum Optics Toolbox can also integrate the equations of motion of a density
matrix

d

dt
ρ(t) = Lρ(t) (B.2)

with boundary condition ρ(t = 0) = ρ0. The command to achieve this is called
rhoES=ode2es(L,rho0) and calculates the time-evolution for the eigenvectors of L and
the expansion of rho0 in this basis. It returns a matrix exponential series that expects
a time-argument in order to calculate ρ(t). This evaluation at time t is performed using
the command esval(rhoES,t).
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