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5.5 Magnetic field range of the well-definedness of the energy scale h∗. . . . . . 80

5.6 Energy scale h∗ for a saddle-point constriction model in a non-interacting
systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Three-dimensional graph of log(h∗/τ) as a function of the potential height
and the interaction for data generated with the fRG approach including
nearest neighbour vertex flow [3] and U ′ = U/10. . . . . . . . . . . . . . . 82

5.8 Three-dimensional graph of log(h∗/τ) as a function of the potential height
and the curvature for data generated with the fRG approach including near-
est neighbour vertex flow [3] and U ′ = U/10. . . . . . . . . . . . . . . . . . 83

5.9 Analysis of the exponential growth exp(−f1Vg) for data generated with the
fRG approach including nearest neighbour vertex flow [3] and U ′ = U/10. . 84

5.10 Analysis of the exponential growth exp(−f2Ṽg) for data generated with the
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Chapter 1

Introduction

The topic of this thesis is ”the conduction anomalies in quantum point contacts” which
can be assigned to the field of quantum transport. This branch of physics deals with the
transport properties that can’t be explained by classical physics and that are independent
of the specific atomic structure. Previously, most of this research branch was attributed
to mesoscopic physics which deals with quantum mechanical behaviours within the scope
of semi-classical transport. The mesoscopic physics was named after its operating length-
scale, the mesosscale. After extensive experimental research, results showed, that there
is no strict borderline between the meso- and microscale. Therefore, the term quantum
transport is more accurate. We refer to Nazarov & Blanter [38].

Quantum transport provides a vast amount of models and theories to successfully ex-
plain and predict experiments in nanophysics. But, experiments in nanophysics also pro-
vide many stimulations for further fields of study and also challenges existing theories in
quantum transport by the discovery of new and unexpected phenomena. One of these
phenomena are the unexplained conductance anomalies in quantum point contacts, which
we are going to study in this thesis.

In 1988 the conductance quantization - probably the most important matter of fact
within the scope of electron transport - was the first time experimentally confirmed by
van Wees et al. [53] and Wharham et al. [54] using a constriction between two electron
reservoirs within the nanometer regime, called quantum point contact (QPC). Besides
this quantization, additional properties were found and further experiments revealed their
generic nature. The most striking ones are an additional intermediate step at around
0.7 × G0, the 0.7 anomaly, an anomalous temperature and magnetic field dependence.
These phenomena are highly in contrast to the non-interacting behaviour and, hence, we
call them conductance anomalies, following [14]. Experimental and theoretical physicists
made great effort to explain its physical origin. But until now, there exists no microscopic
model which inherits all observable behaviour. The difficulties to explain these anomalies
is in clear contrast to its structural simplicity and its meaning as a key element of more
involved nanostructures. Therefore, it is adjusted to speak of a ”Mesoscopic Mystery” [36].
At least, there is an scientific consensus that these conductance anomalies are caused by a
many-body phenomena.
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In 2008, Florian Bauer successfully managed use the functional Renormalization group
(fRG) to study an one-dimensional extended interaction region for T = 0K with a poten-
tial barrier modelling the QPC. He found several striking agreements with experiments,
including the anomalous magnetic field behaviour.

In this thesis, we will proceed this promising approach and extend it towards two-
dimensional systems. This will enable us to investigate additional subbmodes with higher
energies. The extension is desirable, because the higher conductance steps reveal a quite
different conductance behaviour in experiments compared to the first one. Our hope is not
only to find a reason of this deviations but in fact to get useful hints of the physical origin
of these anomalous conductance phenomena.

The outline of this thesis is a follows.

• In chapter 2, we give a brief introduction of fRG for an interacting Fermi system in
the one-particle irreducible (1PI) scheme and state a static truncation approach for
its practical implementation.

• In chapter 3, we show how the fRG approach can be applied to a 2D Hubbard model
with a static potential applied to it. Therefore, we review basic features of tight-
binding chains, and we introduce numerical methods to compute the required Green
functions. Furthermore, we explain how the linear conductance can be computed
within this fRG approach.

• In chapter 4, we discuss general features of quantum point contacts and go into its
anomalous conduction behaviour occurring in experiments.

• In chapter 5, we investigate zero temperature linear conductance properties in inter-
acting QPC geometries by using a saddle point constriction potential. We present a
minute analysis of the functional dependence of the low energy scale h∗ on potential
curvatures and interaction energy within a 1D system. Furthermore, we give first
results for magnetic field behaviour of higher conductance steps.

• In chapter 6, we conclude this thesis by giving a summary of the most important
results and an outlook for further research possibilities.



Chapter 2

Functional renormalization group
(fRG)

In this chapter we give a brief introduction of the functional renormalization group (fRG)
for an interacting Fermi system in the one-particle irreducible (1PI) scheme, based on
Meden [32] and Karrasch [20]. We derive the fRG flow equations for the vertex functions
by introducing an infrared cutoff Λ in the free propagator and differentiating their generating
functional with respect to this parameter. These equations are a hierarchy of infinitely many
coupled differential equations, which describe the flow from a static to the full interacting
system by successively including lower energy modes. For the practical implementation we
discuss how to truncate this system. We will especially consider the case T = 0 and use
a sharp cutoff to obtain the final form of the flow equations for the static self-energy and
effective interaction. In the end we briefly introduce alternative fRG schemes, based on
Enss [13].

2.1 Introduction

A lot of interesting effects exist in many-body physics which lead to divergencies in certain
classes of Feynman diagrams or which are caused by processes acting on different energy
scales. In general, these phenomena can’t be treated using ordinary perturbation theory.
An example is the Kondo effect where the energy scale TK , the Kondo temperature, is
exponentially small in the charging energy U and hence leads to a huge diversity of this
energy scale. To encounter such problems one needs other methods besides standard
perturbation theory.

The functional renormalization group (fRG) is such an alternative method. It is based
on the idea of Wilson’s renormalization group (RG). Within the RG approach of Wilson,
the different energy scales are taken into account by successively integrating over certain
energy degrees of freedom. For this purpose, a RG transformation is constructed which
maps the original action of the microscopic model, by integrating over the corresponding
modes, to an effective action. This leads to an effective theory for the remaining energy
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scales and often provides an efficient description of the underlying physics.
The functional renormalization group is a variant of this renormalization group idea

for interacting many-particle systems which is formulated in the language of functional
integrals. In this implementation, low energy scales are excluded by inserting a param-
eter Λ in the free propagator, the so called infrared cutoff. Then the flow equation of
a certain generating functional can be obtained by taking the derivative with respect to
this parameter. In the one-particle irreducible (1PI) scheme, we consider the generating
functional of the vertex functions Γ. Expanding the functional flow equation d/dΛ ΓΛ

in the Λ-independent Grassmann fields leads to a hierarchy of infinitely many coupled
differential equations for the expansion coefficients, the vertex functions. This hierarchy
describes the evolution (flow) from the microscopic model to the effective action which is
parametrized by the cutoff parameter Λ. The flow starts at the microscopic model and
develops by successively including lower energy scales, to the effective action of the full in-
teracting system which contains all physical relevant informations. This approach enables
to control infrared singularities and competing instabilities. Furthermore, it often leads to
non-divergent results due to appropriate resummation of Feynman diagrams. For practical
implementation, one needs to introduce a suitable parametrization of the vertex functions
and to introduce an appropriate truncation of this hierarchy of infinitely many coupled
equations. This truncation proceeding will be justified by assuming weak renormalized
interactions. But comparison with exact results shows that this perturbative truncation is
remarkably accurate even for stronger interactions. And even in systems that don’t suffer
breakdown of perturbation theory, this method goes beyond a simple perturbative treat-
ment. Because of this and the perturbative truncation with respect to the interaction, the
fRG approach is also called renormalization group enhanced perturbation theory [32]. Also
compare [1, 20, 2].

In the following we derive flow equations for the vertex functions describing an inter-
acting system of fermions in the one-particle irreducible (1PI) scheme. We will follow the
master thesis of Karrasch [20] which is based on the pedagogical introduction of Meden
[32]. This proceeding can also be found in Bauer [3]. Therefore, we will keep the deriva-
tion rather sketchy and refer to these works for details of the calculations. A self-contained
introduction of the functional integral formulation of the many-body theory, which is used
throughout this chapter, can be found in Negele & Orland [39, chap. 1.5].

2.2 Many-particle Green functions

Our starting point is a system of interacting fermions described by the action functional

S[ψ̄, ψ] =
(
ψ̄,
[
G0
]−1

ψ
)
− V [ψ̄, ψ], (2.1)

where ψ̄ = {ψ̄k}, ψ = {ψk} denote Grassmann variables which are associated to cre-
ation and annihilation operators. Here, we used the abbreviation

(
ψ̄, ψ

)
:=
∑

k ψ̄kψk
and

(
ψ̄,Xψ

)
:=
∑

k,k′ ψ̄kXk,k′ψk′ for the inner products. In the following, we denote by
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k := (iwn, l) a multi-index which collects the Matsubara frequency wn and the quantum
number of a single-particle basis l. We assume that this basis diagonalizes the Hamilto-
nian of the non-interacting system. With respect to such a basis, the one-particle Green
function of the non-interacting system G0

1 reads

G0
1(k) =

1

iwn − ξl
, (2.2)

where ξl := εl − µ are the eigenenergies relative to the chemical potential. For the free
propagator, we also use the notation G0

l (iwn) := G0
1(k). The functional V [ψ̄, ψ] describes

an arbitrary two-particle interaction

V
[
ψ̄, ψ

]
=

1

4

∑

k′1,k
′
2,k1,k2

v̄k′1,k′2,k1,k2
ψ̄k′1ψ̄k′2ψk2ψk1 , (2.3)

where we implicitly assume frequency conservation. Furthermore, we assume a factor β−1

to be absorbed in the anti-symmetrized tensor v̄k′1,k′2;k2,k1
of the two particle interaction.

The grand canonical partition function of this interacting Fermi system is

Z =

∫
Dψ̄ψ eS[ψ̄,ψ], (2.4)

where
∫
Dψ̄ψ stands for

∫ ∏
k dψkdψ̄k.

2.2.1 Green functions - generating functionals

First of all, we introduce the generating functional W [η̄, η] of the m-particle Green func-
tions

W [η̄, η] =
1

Z

∫
Dψ̄ψ eS[ψ̄,ψ]−(ψ̄,η)−(η̄,ψ), (2.5)

where the partition function Z acts as a normalization factor. It cancels out all non-
interacting vacuum diagrams such thatW [η̄ ≡ 0, η ≡ 0] = 1. Using the functionalW [η̄, η],
we can obtain the m-particle Green function Gm by taking m-times the derivative with
respect to the source fields η̄, η evaluated at vanishing source fields, in explicit terms

Gm(k′1, . . . , k
′
m; k1, . . . , km) : = (−1)m〈ψk′1 . . . ψk′mψ̄k1 . . . ψ̄km〉

=
1

Z

∫
Dψ̄ψeS[ψ̄,ψ] ψk′1 . . . ψk′mψ̄k1 . . . ψ̄km

=
δm

δη̄k′1 . . . δη̄k′m

δm

δηk1 . . . δηkm
W [η̄, η]

∣∣∣∣
η̄=η=0

.

(2.6)

The generating functional of the connected m-particle Green function Wc is given by the
logarithm of W [39]

Wc [η̄, η] = ln (W [η̄, η]) . (2.7)
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Analogously to (2.6), we can obtain the m-particle connected Green function Gc
m fromWc

via

Gc
m(k′1, . . . , k

′
m; k1, . . . , km) : = (−1)m〈ψk′1 . . . ψk′mψ̄k1 . . . ψ̄km〉c

=
δm

δη̄k′1 . . . δη̄k′m

δm

δηk1 . . . δηkm
Wc [η̄, η]

∣∣∣∣
η̄=η=0

,
(2.8)

where 〈. . .〉c denotes the connected average of the product of Grassmann variables between
the brackets.

Now we are going to introduce the m-particle vertex functions γm. They can be de-
fined, in a diagrammatical way, as the sum of all one-particle irreducible diagrams with
2m amputated legs, where a one-particle irreducible diagram is a diagram that cannot
be disconnected by removing a single internal propagator. In the following, we want to
use an alternative definition by introducing their generating functional Γ, the so called
effective action. This generating functional can be obtained by the modified Legendre
transformation

Γ
[
φ̄, φ

]
= −Wc [η̄, η]−

(
φ̄, η
)
− (η̄, φ) +

(
φ̄, [G0]−1φ

)
, (2.9)

where we define the independent Grassmann fields φ = {φk}, φ̄ = {φ̄k} via

φ̄k :=
δ

δηk
Wc [η̄, η] , φk := − δ

δη̄k
Wc [η̄, η] . (2.10)

Compared to standard Legendre transformations, the additional term
(
φ̄, [G0]−1φ

)
was

added in the transformation (2.9). This term has no influence on the vertex functions but
for neglecting this term it follows γ1 = G−1

1 . Within this Legendre transformation the
additional Therefore, we obtain a definition of the vertex functions γm analogously to the
other Green functions, and within the functional integral formalism

γm(k′1, . . . , k
′
m; k1, . . . , km) :=

δ

δφ̄k′1 . . . δφ̄k′m

δ

δφk1 . . . φkm
Γ
[
φ̄, φ

]
∣∣∣∣∣
φ̄=φ=0

. (2.11)

Using this definition, it can be shown that the vertex functions are indeed one-particle
irreducible, and that the connected Green functions can be obtained from these functions by
using only tree diagrams, compare Negele & Orland [39]. These are the two characteristic
properties of the vertex functions. We are going to show this feature, at least for the one-
particle vertex function γ1, which will lead to the Dyson equation and the identification of
the one-particle vertex function with the self-energy.

2.2.2 Dyson equation and self-energy

To derive a relation between the connected Green functions and the vertex functions, we
state (

δ2Γ
δφ̄δφ

+ [G0]−1 δ2Γ
δφ̄δφ̄

δ2Γ
δφδφ

δ2Γ
δφδφ̄
− [[G0]−1]

T

)(
δ2Wc

δη̄δη
− δ2Wc

δη̄δη̄

− δ2Wc

δηδη
δ2Wc

δηδη̄

)
= 1, (2.12)
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see [32, p. 10], which connects the corresponding generating functionals Wc and Γ. In
this matrix equation, every entry itself is a matrix, for example δ2Γ

δφδφ
is the Hessian matrix

δ2Γ
δφiδφj

. The derivation of this equation is long and rather straightforward. One hast to

keep in mind that φ, φ̄ are independent variables, implying δφk
δφ̄k′

= δφ̄k
δφk′

= 0, and that the

derivatives with respect to Grassmann fields are anticommutive.
In the proceeding derivation of the fRG flow equations in section 2.3.2, we will need

the equation (2.12) once again and especially the matrix

A
[
φ̄, φ

]
:=

(
δ2Γ
δφ̄δφ

+ [G0]−1 δ2Γ
δφ̄δφ̄

δ2Γ
δφδφ

δ2Γ
δφδφ̄
− [[G0]−1]

T

)−1

. (2.13)

We assume that we are not in a phase of broken symmetry. Therefore, all Green
functions with an unequal number of creation and annihilation operators vanish. Hence,
the diagonal entries of A are zero and we can derive

G1(k′; k) = Gc
1(k′; k) :=

δ2Wc

δη̄k′δηk

∣∣∣∣
η̄=η=0

=

[
δ2Γ

δφ̄δφ

∣∣∣∣
φ̄=φ=0

+ [G0]−1

]−1

k′,k

. (2.14)

The equality G1 = Gc
1 holds by the linked cluster theorem. The latter equation is equivalent

to the well-known Dyson equation. The function G1 is the one-particle Green function of
the interacting system and we can identify the one-particle irreducible vertex function up
to a sign with the self-energy Σ, in explicit terms

γ1 :=
δ2Γ

δφ̄δφ

∣∣∣∣
φ̄=φ=0

= −Σ, (2.15)

In the following, we will also use the notation

G :=
1

[G0]−1 + γ1

, (2.16)

in analogy to G0 for the one-particle propagator of the non-interacting system. It is well
known that the self-energy is one-particle irreducible. Therefore, this also holds for the
one-particle vertex function. The connected Green function of the full interacting system
can be obtained by the Dyson equation. In Meden [32] the mentioned properties are also
shown for the two-particle vertex function.

Physically, the vertex functions can be interpreted in a similar manner as the self-energy.
It is well known that Σ specifies an effective one-body potential for a particle propagating
in a many-particle system. The influence of all other particles is taken into account by this
self-energy. Analogously the m-particle vertex function γm describes an effective m-particle
interaction, which takes the many-particle medium into account. Therefore, we will call γ2

also effective two-particle interaction or just effective interaction.
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2.3 Functional renormalization group approach

In the previous section, we showed how the different Green functions of a fermionic many-
body system can be defined via their generating functionals. Furthermore, we stated
a matrix equation which connects Wc and Γ. By this equation, we derived the Dyson
equation for the one-particle vertex function. Using these preparations, we will continue
in this section to determine the fRG flow equations for the vertex functions.

2.3.1 General proceeding

Before we delve into the details of the derivation, we give a sketch of the general proceeding,
compare [20, chap. 2.2]. The first step is to introduce a parameter Λ in the bare propagator
G0, in explicit terms

G0 −→ G0,Λ, (2.17)

where later we will always assume Λ to be an cut-off parameter. The exact Λ-dependence
of the bare propagator is irrelevant for the derivation of the general form of the fRG flow
equations. We just assume that for some value Λi the free propagator is zero 1, and for
another value Λf we obtain the ordinary free propagator, in explicit terms

G0,Λi = 0, G0,Λf = G0. (2.18)

Now the flow equation for any physical quantity XΛ (x1, . . . , xn) := X
(
G0,Λ, x1, . . . , xn

)

can be obtained by taking the derivative with respect to Λ

d

dΛ
XΛ (x1, . . . , xn) = YΛ

(
XΛ, x1, . . . xn

)
. (2.19)

Because we claimed G0,Λi = 0, it is likely that XΛi (x1, . . . , xn) can easily be calculated.
Hence, we can integrate (2.19) from the initial Λ = Λi to the final value Λ = Λf , and obtain
the desired quantity XΛf (x1, . . . , xn) = X (G0, x1, . . . , xn) for the full interacting system.
In general X depends on some Λ-independent variables {x1, . . . , xn}. A Taylor expansion
with respect to these variable is considerable if the corresponding coefficients are of physical
interest. Because, this leads to a hierarchy of flow equations for the expansion coefficients.
In the 1PI scheme X = Γ and it can be assumed that the fields φ̄, φ are Λ-independent. In
this case the corresponding expansion coefficients are the vertex functions γm. Solving the
differential equations for the coefficients is equivalent to solving the original functional flow
equation (2.19). Unfortunately, the resulting differential equations are in general coupled
and not finite. Therefore, it is necessary to truncate this hierarchy of infinitely many
differential equations at some point. To be able to a physically motivated truncation, it is
important to make a suitable choice of the quantity X and the Λ-dependence.

1It is sufficient to demand that G0,Λi can easily be calculated.
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2.3.2 fRG flow equations

Now we apply this general proceeding to the generating functional Γ and derive the fRG
flow equations for the vertex functions γm, which reveal to be the expansion coefficients of
the Grassmann fields φ̄ and φ.

We assume that we have inserted a cutoff parameter Λ with the properties (2.18) into
the bare propagator. Therefore, all introduced functionals become also Λ-dependent and
the single-particle propagator of the interacting system becomes

GΛ =
1

[G0,Λ]−1 + γΛ
1

. (2.20)

Before we derive the functional flow equation of the generating functional of the vertex
functions Γ, we recall their definition by the Legendre transformation (2.9). Because we
want that the fields φ, φ̄ to be Λ-independent and because the generating functionalWc is
Λ-dependent, the fields η, η̄ must also be Λ-dependent, which follows from the definition
(2.10). Therefore, the Legendre transformation reads

ΓΛ[φ̄, φ] = −Wc,Λ[η̄Λ, ηΛ]− (φ̄, ηΛ)−
(
ηΛ, φ

)
+
(
φ̄, [G0,Λ]−1φ

)
(2.21)

after introducing the cutoff-parameter. Using this expression of ΓΛ[φ̄, φ] it is easy to show
that the effective action satisfies the following functional flow equation [32]

d

dΛ
ΓΛ[φ̄, φ] = Tr

(
G0,Λ∂Λ[G0,Λ]−1

)
− Tr

(
∂Λ[G0,Λ]−1 δ

2Wc,Λ

δη̄δη

)

= Tr
(
G0,Λ∂Λ

[
G0,Λ

]−1
)
− Tr

(
∂Λ

[
G0,Λ

]−1AΛ
1,1

[
φ̄, φ

])
.

(2.22)

For this calculation, it is convenient to replace the grand canonical partition function of
the interacting system Z (2.4) in the definition of Wc (2.7) by the partition function of
the non-interacting system Z0, where

Z0 :=

∫
Dψ̄ψ e(ψ̄,[G

0]−1ψ). (2.23)

This replacement changes Wc and Γ only by a constant. Therefore, it has no influence on
the m-particle Green functions for m ≥ 1. In the following, we want to concentrate on
equation (2.22). We expand the left and right-hand side in the Λ-independent fields φ̄ and
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φ. For this purpose we rewrite

AΛ
[
φ̄, φ

]
=

(
δ2ΓΛ

δφ̄δφ
+ [G0,Λ]−1 δ2ΓΛ

δφ̄δφ̄
δ2ΓΛ

δφδφ
δ2ΓΛ

δφδφ̄
−
[
[G0,Λ]−1

]T
)−1

=

(
UΛ + [GΛ]−1 δ2ΓΛ

δφ̄δφ̄
δ2ΓΛ

δφδφ
−UΛ −

[
[GΛ]−1

]T
)−1

=




1 −
(
−GΛ 0

0 [GΛ]T

)
·
(
UΛ δ2ΓΛ

δφ̄δφ̄
δ2ΓΛ

δφδφ
−UΛ

)

︸ ︷︷ ︸
=:AΛ[φ̄,φ]




−1

︸ ︷︷ ︸
=:ÃΛ[φ̄,φ]

·
(
GΛ 0

0 −[GΛ]T

)
.

(2.24)

Here, we defined

UΛ[φ̄, φ] :=
δ2ΓΛ

δφ̄δφ
− δ2ΓΛ

δφ̄δφ

∣∣∣∣
φ̄=φ=0

=
δ2ΓΛ

δφ̄δφ
− γΛ

1 (2.25)

as the difference between the second derivative of Γ and the one-particle vertex function.
With this equation and the definition of ÃΛ, the identity AΛ

1,1 = ÃΛ
1,1GΛ holds. We insert

this identity into the functional flow equation 2.22 of ΓΛ and obtain

d

dΛ
ΓΛ[φ̄, φ] = Tr

(
G0,Λ∂Λ

[
G0,Λ

]−1
)
− Tr

(
GΛ∂Λ

[
G0,Λ

]−1 ÃΛ
1,1

[
φ̄, φ

])
. (2.26)

This new functional ÃΛ
[
φ̄, φ

]
can be expanded with respect to AΛ

ÃΛ = [1 + AΛ]−1 = 1 +
∞∑

k=1

(
−AΛ

)k
. (2.27)

After truncating at second order the entry (1, 1) of ÃΛ reads

ÃΛ
1,1 = 1− GΛUΛ + GΛUΛGΛUΛ − GΛ δ

2ΓΛ

δφ̄δφ̄

[
GΛ
]T δ2ΓΛ

δφδφ
+ . . . . (2.28)

Inserting ÃΛ
1,1 in (2.26), we are left to expand ΓΛ and UΛ in the fields φ̄, φ. By the definition

of γΛ
m (2.11) the expansion of ΓΛ reads

ΓΛ[φ̄, φ] =
∞∑

m=0

(−1)m

(m!)2

∑

k′1,...,k
′
m

∑

k1,...,km

γΛ
m (k′1, . . . k

′
m; k1, . . . km) φ̄k′1 . . . φ̄k′mφkm . . . φk1 (2.29)

The minus sign emerges from the commutation of the derivatives with respect to the
Grassmann fields. The expansion of UΛ which reads

[
UΛ
[
φ̄, φ

]]
q′,q

=
∞∑

m=1

(−1)m

(m!)2

∑

k′1,...,k
′
m

∑

k1,...,km

γΛ
m+1 (k′1, . . . , k

′
m, q

′; k1, . . . , km, q) φ̄k′1 . . . φ̄k′mφkm . . . φk1 .

(2.30)
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follows from equation (2.25). Using the equations (2.28), (2.29) and (2.30), we can finally
obtain an expansion of the left and right-hand side of (2.26) with respect to φ̄, φ and
acquire ordinary differential equations for the expansion coefficients γΛ

m.

Flow equations for γ0

We collect all terms on the right and left-hand side of the flow equation of ΓΛ (2.26) which
don’t depend on φ̄, φ and obtain the flow equations for γ0, given by

d

dΛ
γΛ

0 = Tr
(
G0,Λ∂Λ[G0,Λ]−1

)
− Tr

(
GΛ∂Λ[G0,Λ]−1

)
. (2.31)

Flow equations for γ1

In order to derive the flow equations for the one-particle vertex function, we define, for
notational simplicity, the so called single-scale propagator, which reads

SΛ := GΛ∂Λ[G0,Λ]−1GΛ. (2.32)

With this definition we obtain, by collecting all terms with equal powers in φ̄φ, the differ-
ential equations which determine the one-particle vertex function

d

dΛ
γΛ

1 (k′; k) = Tr
(
SΛγΛ

2 (k′, · ; k, · )
)
. (2.33)

Here γΛ
2 (k′, · ; k, · ) is an abbreviation for the matrix

[
γΛ

2 (k′, · ; k, · )
]
q,q′

:= γΛ
2 (k′, q ; k, q′).

Flow equations for γ2

The flow equations for the two-particle vertex function can be obtained by finding all terms
on the left and right-hand side of (2.26) containing equal powers in φ̄φ̄φφ. By comparison
of coefficients we obtain

d

dΛ
γΛ

2 (k′1, k
′
2; k1, k2) = Tr

(
SΛ γΛ

3 (k′1, k
′
2, · ; k1, k2, · )

)

− Tr
(
SΛ γΛ

2 ( · , · ; k1, k2) [GΛ]T γΛ
2 (k′1, k

′
2; · , · )

)

− Tr
(
SΛ γΛ

2 (k′1, · ; k1, · ) GΛ γΛ
2 (k′2, · ; k2, · )

)

− Tr
(
SΛ γΛ

2 (k′2, · ; k2, · ) GΛ γΛ
2 (k′1, · ; k1, · )

)

+ Tr
(
SΛ γΛ

2 (k′2, · ; k1, ·) GΛ γΛ
2 (k′1, · ; k2, · )

)

+ Tr
(
SΛ γΛ

2 (k′1, · ; k2, · ) GΛ γΛ
2 (k′2, · ; k1, · )

)
.

(2.34)

At this point we stop writing down the flow equations for higher ordered vertex func-
tions. But it should have become clear how we could obtain the differential equations for
the m-particle vertex functions for m > 2.
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Figure 2.1: Graphical representation of the fRG flow equations for the self-energy ΣΛ, the
two-particle vertex γΛ

2 and the three-particle vertex function γΛ
3 [2].

Diagramatical representation

A rather efficient way of remembering and thinking of the fRG flow equations are to
visualize them by diagrams. We follow the diagramatical representation used in [13, 1]. A
m-particle vertex function is symbolized by a big dot with 2m external lines, the single-
scale propagator by a crossed out line and GΛ by a single line. Furthermore, the derivative
is visualized by a partial derivative in front of the vertex function. Using these symbols
the fRG flow equations in the 1PI scheme of the self-energy, the one-particle and two-
particle vertex functions have the diagramatic illustration shown in figure 2.1. Each of the
connecting lines can represent a propagating particle or a propagating hole. For example
the last diagram of the second equation and the second diagram of the right-hand side of the
last equation includes, besides a particle-particle bubble, also a particle-hole bubble. For
a more detailed diagramatic representation, which is important for considerations about
symmetries and spin conservation, we refer to [32] or [3]. But the diagrams in figure 2.1
are sufficient to exemplify the general structure of fRG flow equations.
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Structure of the flow equations

First of all, lets have a look on the flow of γ0 (2.31). This is a special case, because it’s
the vertex function with lowest order. The right-hand side of the differential equation only
depends on the vertex function γ1 via G. This dependency on γ1 holds for flow equations of
all vertex functions, and hence we call this dependency natural. The right-hand side of the
differential equation of the next higher vertex function, γ1, depends on the vertex function
γ2, besides the natural dependency (2.33). Therefore, we say it’s generated by γ2. The flow
of the two-particle vertex function γ2 is generated by γ3 and γ2 (2.34). Proceeding in this
way, we could easily convince ourselves that γm is generated by γm+1 and γm−1, γm−2, . . . , γ2.
We see that the fRG flow equations for the vertex functions define a hierarchy of infinitely
many coupled ordinary differential equations. To solve this system of coupled differential
equations, it is necessary to make a good approximation that reduces the hierarchy to a
system of finitely many coupled differential equations. This approximation should be good
in the sense that the solution of the resulting system is as close as possible to the exact
solution. In this graphical representation of the flow equations, we can further observe
that the right-hand side just consists of one-loop terms (no tree terms appear). During the
fRG flow diagrams with a higher number of loops are generated.

Initial conditions

Up to now, we have managed to derive the fRG flow equations for the vertex functions.
To obtain well defined solutions, we have to determine the initial conditions. They can be
derived analytically [32] and read

γΛi
2 (k′1, k

′
2; k1, k2) = v̄k′1,k′2;k1,k2

γΛi
m ≡ 0 for m 6= 2.

(2.35)

This from of the initial conditions can be understood by the following diagrammatically
consideration. For the initial value of the cut-off parameter we set G0,Λi = 0 and hence,
all diagrams with a bare propagator vanish and only the diagram that represents the bare
interaction survives.

Symmetries within the flow equations

For a specific implementation of fRG, the flow equations can be greatly simplified using
the following symmetries of the two-particle vertex function

γ2(k′1, k
′
2; k1, k2) = −γ2(k′2, k

′
1; k1, k2)

= −γ2(k′1, k
′
2; k2, k1)

= +γ2(k1, k2; k′1, k
′
2).

(2.36)

It is antisymmetric under change of the first and second two entries and symmetric under
change of the first and the second two entries. This follows by the definition of the two-
particle vertex function as the amputed two-particle connected Green function, in explicit
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terms

γ2(k′1, k
′
2; k1, k2) = −

∑

q′1,q
′
2;q1,q2

[G]−1
k′1,q

′
1

[G]−1
k′2,q

′
2

[G]−1
q2,k2

[G]−1
q1,k1

Gc
2(q′1, q

′
2; q1, q2). (2.37)

The latter equation can be derived by the generating functional of the vertex function (2.9)
and the matrix equation (2.12).

In the following considerations the one-particle quantum numbers and hence k will also
include a spin index. This leads to spin-conserving vertex functions for a spin-conserving
bare interaction and a spin-conserving free propagator

2.4 Specification of the truncation and the cutoff

In the previous section we derived the fRG flow equations for the vertex functions in a
very general way by inserting an unspecified cutoff parameter Λ in the bare propagator.
We also observed the need to truncate this hierarchy of infinitely many coupled differential
equations in order to obtain a solvable system. In this section we give a practical imple-
mentation of this general concept in the limit T = 0 and specify, in particular, the cutoff
and the truncation scheme.

2.4.1 Truncation scheme

The flow equations for the vertex functions is a hierarchy of infinitely many coupled or-
dinary differential equations. For solving these differential equations numerically, we have
to truncate this hierarchy at some point. In the 1PI scheme, this can be done in a pertur-
bative sense under the condition that the interaction is small. In the following, we assume
that this condition holds.

Since the m-particle vertex function consists of diagrams that are at least of order m
in the interaction, the m-particle vertex is also at least of order m in the interaction. And
we can perform a perturbative truncation by neglecting the flow of vertices of order higher
than some critical value mc, in explicit terms

d

dΛ
γm = 0 for m ≥ mc. (2.38)

We emphasize that γΛ
mc ≡ γΛi

mc and we are left with a system of coupled differential equa-
tions consisting of the vertices γ1, . . . , γmc−1. This approach, of setting small terms in a
differential equation to zero, is of course not exact and might biases the results strongly.
But, it can be justified in the following way using a fRG argument. At the beginning of
the flow all vertex functions are zero, except γ2, which is equal to the bare two-particle
interaction. Under the additional assumption that γΛ

2 stays small during the fRG flow
Λi → Λf , we can argue that all higher vertices are initially generated in third or higher
order by γΛi

2 = v̄ and therefore also stay small.
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In the following we will set mc = 3 and obtain a system of differential equations
consisting of the one- and two-particle vertex functions and equations (2.33) and (2.34).
We choose this critical value because of numerical reasons. The vertex function γm is a
tensor of rank 2m in the variables k = (iwn, l) and even if we only take γ1 and γ2 into
account, we have to perform additional approximations in chapter 3 to be able to solve the
occurring differential equations.

Frequency independent vertex functions

We already mentioned, the vertex functions are complicated quantities depending on a
huge set of variables. Beside the dependency on the one-particle quantum number, we also
have to take infinitely many Matsubara frequencies into account.

At the beginning of the fRG flow the two-particle vertex function is the bare interaction,
and its frequency dependency is the Matsubara frequency conservation. A non trivial
dependency is generated during the fRG flow by the bare propagator. To be able to solve
the differential flow equations at all, we have to reduce somehow the number of frequencies
that the vertex functions depend on. We will do this by assuming that γ2 is frequency-
independent, despite Matsubara frequency conservation, in explicit terms

γΛ
2 (k′1,

′ k′2; k1, k2) ≡ δw1+w2,w′1+w′2
γΛ

2 (l′1, l
′
2; l1, l2). (2.39)

This approach immediately implies that we will only be able to calculate observable for zero
Matsubara frequencies and hence for zero temperature. The extension to finite frequencies
is very complicated and is a direction of proceeding studies.

Using this approximation the one-particle vertex function also becomes frequency inde-
pendent. The whole influence of the interaction is contained in the frequency independent

self-energy ΣΛf = −γΛf
1 . Besides the focus on zero frequency, we also perform the pre-

viously described truncation of neglecting all higher ordered vertices and hence we define
this zero frequency self-energy as effective self-energy, in explicit terms

Σeff := ΣΛf = −γΛf
1 (2.40)

that we obtain by solving the truncated fRG flow equations. Therefore, we end up with
an effective non-interacting model described by the quadratic effective action

Seff
[
ψ̄, ψ

]
=
(
ψ̄, [Geff ]−1 ψ

)
with Geff =

1

G0 − Σeff

. (2.41)

Because we can’t control the influence of these approximations on the desired results, we
hope that this effective model describes the exact fully interacting system well.

We summarize, by this truncation scheme, also called static fRG, the functional renor-
malization group method maps the interacting system to an effective non-interacting sys-
tem. The whole influence of the interaction is taken into account by the static self-energy
Σeff . This effective self-energy is obtained by solving the fRG flow equations, which is
a coupled system of differential equations consisting of the one- and two-particle vertex
functions.
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Figure 2.2: Illustration of the sharp cutoff function CΛ(iwn) = Θ (|wn| − Λ) and the direction
of the fRG flow.

2.4.2 Cutoff insertion

In the following, we focus on a physical system that is not translational invariant. Hence,
the cutoff in momentum space is less efficient, and we choose an implemention in frequency
space. This is done by multiplying the bare propagator in the action by a cutoff function
CΛ(iwn). For this cutoff function holds CΛi ≡ 0, CΛf ≡ 1 to fulfil (2.18) and in addition
it should cut out the low-energy (soft) modes below Λ. The simplest implementation is a
sharp cutoff function CΛ(iwn) = Θ (|wn| − Λ), visualized in figure 2.2. This leads to the
regularized bare propagator

G0,Λ(iwn) = Θ(|wn| − Λ) G0(iwn), (2.42)

where
Λi :=∞ and Λf := 0, (2.43)

and Θ is the Heaviside step function. At this point it is not clear that such a discontinuous
behaviour of the Green function in Λ provides well-defined results. But, we will see, in
case T = 0, the sharp cutoff will greatly simplify the proceeding calculations. Therefore,
this cutoff is the first choice in the case T = 0. Whereas, for treating finite temperatures,
one has to use a smooth cutoff function [13].

2.4.3 Resulting flow equations

Using the specification of the infrared cutoff Λ and the truncation scheme, we can set
up the final form of the functional renormalization group flow equations for the one and
two-particle vertex functions. First of all, one can use that for the sharp cutoff (2.42) the
scaling propagator becomes [20]

SΛ = δ(|w| − Λ)∂ΘGΛ. (2.44)

This propagator is proportional to δ(|w| − Λ) and will simplify the summation over the
Matsubara frequencies included in the trace of the flow equations (2.33) and (2.34). In the
limit T → 0K the summation becomes an integral, in explicit terms

∑
iwn
→ (2π)−1

∫
dw.

Using Morris lemma [37], that states

δε(x− Λ)f (Θε(x− Λ))
ε→0−−→ δ(x− Λ)

∫ 1

0

dt f(t),



2.4 Specification of the truncation and the cutoff 17

where δε, Θε are sequences of functions δε(x)
ε→0−−→ δ(x) and Θε(x)

ε→0−−→ Θ(x), we can derive
the final version of the flow equations for the one-particle vertex function. Which, for the
one-particle vertex function, is given by

d

dΛ
γΛ

1 (k′; k) =
1

2π

∑

w=±Λ

∑

q,q′

G̃Λ
q,q′(iw)γΛ

2 (k′, q′; k, q) (2.46)

and the two particle vertex function

d

dΛ
γΛ

2 (k′1, k
′
2; k1, k2) =

1

2π

∑

w=±Λ

∑

q,q′;s,s′

[
− 1

2
G̃Λ
q,q′(iw)γΛ

2 (q′, s′; k1, k2)G̃Λ
s,s′(−iw)γΛ

2 (k′1, k
′
2; s, q)

− G̃Λ
q,q′(iw)γΛ

2 (k′1, q
′; k1, s)G̃Λ

s,s′(iw)γΛ
2 (k′2, s

′; k2, q)

+ G̃Λ
q,q′(iw)γΛ

2 (k′2, q
′; k1, s)G̃Λ

s,s′(iw)γΛ
2 (k′1, s

′; k2, q)
]
.

(2.47)

Here, we introduced the modified Green function which is defined by

G̃Λ :=
1

[G0]−1 + γΛ
1

(2.48)

and depends on Λ only via γΛ
1 . Hence, it has no step in w = ±Λ, opposed to GΛ (2.20). The

detailed derivation of the fRG flow equations can be found in Karrasch [20] or Bauer [3].
These two equations are the starting point of our further calculations and after introducing
a specific model, we will come back to these equations.

2.4.4 Modified initial conditions

We return to the initial conditions of section 2.3.2, where we stated that all vertex func-
tions are zero for Λi, despite the two-particle vertex that is given by the bare two-particle
interaction. This is still true. But the problem is that we neglected all convergence factors
eiw0+ that occur in a precise derivation, starting with the partition function in the contin-
uous version of the functional integral. Such a derivation would show that the quadratic
action S0, describing the non-interacting system, has the form

S0 =
∑

l

∑

iwn

eiwn0+ψ̄(iwn)[G0
l (iwn)]−1ψl(iwn), (2.49)

in contrast to (2.1), where we have neglected the convergence factor. The influence is taken
into account by calculating the contribution of the convergence factor eiw0+

in the limit
Λ→∞. This can be done by calculating

1

2π
lim

Λ0→∞
lim
ε→0

∫ Λ0

∞
dΛ

∑

w=±Λ

∑

q,q′

eiwεG̃Λ(iw)γΛ
2 (l′, q′; l, q) = −1

2

∑

q

v̄l′,q,l,q, (2.50)
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compare [20], which is the difference in the flow equation for the one-particle vertex func-
tion, if we perform the limit 0+ before Λ0 → ∞. Therefore, neglecting this convergence
factor in our numerical implementation leads to a modification of the initial conditions

γΛ̃i
1 (l′; l) = −1

2

∑

q

vl′,q;l,q (2.51)

γΛ̃i
2 (l′1, l

′
2; l1, l2) = v̄l′1,l′2;l1,l2 (2.52)

γΛ̃i
m ≡ 0 for m > 2, (2.53)

where Λ̃i is a very high number, greater than all energy scales.

2.5 Alternative RG schemes

In the previous derivations, we restricted ourselves to the one-particle irreducible (1PI)
scheme of the fRG method with a regularization parameter Λ that cuts out low-energy
modes in the Matsubara frequency space. To get a deeper understanding of this proceeding
and an overview over alternative methods, we want to give a brief introduction to other
RG schemes, namely the Polchinski and the Wick-ordered scheme. This overview will be
based on the pedagogic introduction of Enss [13].

In some physical systems perturbation theory leads to infrared divergences, as a con-
sequence of phase transitions, or as an artefact of the perturbative treatment. This diver-
gences can be regularized by an infrared cutoff Λ in the bare propagator G0, which excludes
all low-energy modes. This cutoff can be performed in the momentum or frequency space.
Alternative regularization parameters are the temperature, the coupling strength or the
system size. They are inserted into the action in such a way, that only the quadratic part
of the action depends on the regularization parameter.

In the temperature flow approach, where the quadratic and the quartic part depend
on T (Squad ∝ T , Squar ∝ T 4), the fields are rescaled as ψ̃ := T 3/4ψ to eliminate the
temperature dependence in the quartic part. Performing the fRG flow on the resulting
action S̃ leads to a flow equation of the Green function GT

m in terms of the new fields. At
the end of the flow, GT

m is rescaled to obtain the usual Green function.
The interaction flow is based on rescaling the bare propagator just by a number g,

in explicit G0 → g G0, with g ∈ [0, 1]. Hence the weight of all Feynman diagrams are
shifted by the global factor gm, where m is the number of internal lines in this particular
diagram. Including g G0 into the action, we can set up a fRG flow of the Green functions
Gg
m starting from g = 0 to g = 1. By rescaling the fields ψ̃ = g−1/2ψ, one can show

that this proceeding is equivalent to performing a flow in the bare two-particle interaction

g2V
g→0−−→ V . Therefore, this RG approach is called interaction flow approach.

Starting from such an insertion of a regularization parameter into the quadratic part of
the action, different flow schemes can be obtained by considering the functional differential
flow equations of different generating functionals. In the 1PI scheme, we described in



2.5 Alternative RG schemes 19

the previous sections, we differentiated the generating functional of the vertex function ΓΛ

with respect to our regularization parameter Λ and obtained the renormalization group flow
equations for the one-particle irreducible connected amputated Green functions, the vertex
functions. In the Polchinski scheme, the same proceeding for the generating functional of
the connected amputated Green function, which are defined by

V [χ̄, χ] =Wc [η̄, η]−
(
η̄,G0η

)
, (2.54)

where χ := G0η and χ̄ := [G0]
T
η̄, provides a fRG flow of the connected amputated m-

particle Green functions

Vm (k′1, . . . , k
′
m; k1, . . . , km) :=

δm

δχ̄k′1 . . . δχ̄k′m

δm

δχk1 . . . δχkm
V [χ̄, χ] . (2.55)

The resulting flow equations have the same structure as the connected Green functions GΛ

and contain tadpole and tree diagrams. They are obtained by expanding the generating
functional VΛ [χ̄, χ] with respect to the Λ-independent source fields χ̄, χ.

An alternative ansatz is the expansion of VΛ [χ̄, χ] with respect to Wick-ordered poly-
nomials of the source fields χ and χ̄, leading to flow equations for different expansion
coefficients, the Wick-ordered m-particle Green functions Wm. Therefore, this approach is
called Wick-ordered Green function flow. The right-hand side of this flow equation is bilin-
ear in the vertices Wm and consists either of tree diagrams or loop diagrams. The higher
loop diagrams are build by the soft-mode propagator that includes all energy modes below
Λ. Therefore, the coupling function can be parametrized, for a cutoff in momentum space,
by the momenta projected onto the Fermi surface.

The 1PI scheme has the advantage that the internal propagators are full propagators
GΛ, including the influence of the self-energy up to the energy-scale Λ. Therefore, the
most appropriately way to take the corrections of the self-energy into account is this 1PI
approach.

Solving the exact renormalization group flow equations for the different fRG schemes
lead to the same and exact results of the full interacting model. The different implemen-
tations come into play if we perform a certain truncation of these flow equations. If we
compare, for example, the Polchinski with the Wick-ordered scheme, the only difference
is that the generating functional VΛ [χ̄, χ] is expanded in different orthogonal polynomial
sets. Truncating these expansions above a certain coefficient may lead to a drastic dis-
crepancy of the resulting approximations of VΛ for each polynomial set. Therefore, the
quality of the approximated results depend on the fRG scheme for a certain truncation.
In addition, the possibility of an efficient parametrization of the generating functional by
a manageable set of variables depends on this choice. We conclude that the appropriate
fRG scheme depends on the physical system we want to describe.
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Chapter 3

fRG applied to a 2D Hubbard model

In this chapter we derive the static flow equations of the self-energy and the effective in-
teraction for a two-dimensional Hubbard model, representing a contact/interaction region
coupled to two semi-infinite leads. This derivation is based on chapter 2 and is analogue
to the 1D approach of Bauer [3]. Assuming a quasi-1D system, we use the recursive Green
function (RGF) algorithm [47] to compute the diagonal elements of the modified Green
functions, which are needed to solve the differential system. By extending the calculation
of Karrasch [20], we show that the vertex correction of the linear conductance for the result-
ing effective system also disappears in 2D, and that the famous non-interacting Landauer
formula [11] is applicable. At the end we show how to calculate the local density formulated
as an energy integral of the Green function over the imaginary axis.

3.1 Introduction

In the previous chapter we have introduced the functional renormalization group in the
1PI scheme for an interacting Fermi system and derived a closed system of coupled differ-
ential equations for the static self-energy and static effective interaction under the physical
assumption of vanishing temperature and weak interaction. The solution of this differen-
tial system provides a static self-energy for the fully interacting system, which leads to an
effective non-interacting system.

In the proceeding chapter we want to use this fRG method to study low-temperature
electron transport phenomena in interacting two-dimensional nanostructures. We focus on
constrained structures that exhibit only a few open transport channels. In these systems,
the charge tends to accumulate at the sample, and the flow of electrons become strongly
correlated due to Coulomb interaction and spin-dependent correlations. Hence, the interac-
tion plays a crucial role in the transport behaviour and the Landauer-Büettiker formalism
is no longer applicable. In the low-temperature limit, many of these systems cross over to
a strong coupling regime where perturbation theory breaks down. A parade example is
the Kondo effect in quantum dots or magnetic impurities, where the conductance diverges
logarithmically for temperatures below the Kondo temperature TK . For this example, the
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functional renormalization group theory provides good results for equilibrium properties
in Anderson models [20, 2]. In the proceeding text, we use this very successful method to
study alternative low-dimensional systems, although it is not clear whether these system
suffer from a break down of perturbation theory or not.

For this purpose, we use a standard model of transport studies in mesoscopic physics,
namely an interacting sample connected to the left and right through non-interacting leads
to extended electron reservoirs. To be able to handle this system numerically, we discretise
the continuous two-dimensional space using the method of finite differences [11] and restrict
ourselves to on-site interaction. This leads to a 2D Hubbard model. The resulting fRG
flow equations can be derived from the differential system d/dΛ γΛ

1 and d/dΛ γΛ
2 of section

2.4.3, where we parametrize the vertex functions by the site indices of the discrete space
and the spin of the electrons. An example of an alternative parametrization proceeding in
momentum space for a one-dimensional system modelling a single impurity can be found
in Andergassen [1]. Due to the complex structure of the vertex functions with respect to
the site indices and the resulting computational costs, we have to reduce the dependencies
of the vertex functions in the differential flow equations and consider only on-site elements.
Therefore, we neglect all long range effects of the interaction in the system, for example
Friedel oscillations. For solving these flow equations, we have to compute the diagonal
elements of the modified Green function G̃Λ of the contact region. In our discrete space
and by using the projection method [11], this task is equivalent to compute the diagonal
of the inverse of a huge sparse matrix. We compute these elements with the recursive
Green function (RGF) algorithm [47]. Finally, the solution of this static fRG approach
provides an effective non-interacting system with T = 0. Therefore, we can show that the
vertex correction of the linear conductance is zero, and thus it can be calculated with the
Landauer-Büttiker formula. At the end of this chapter we show how another interesting
physical observable, the local density of the electrons, can be computed in an efficient way.

3.2 2D Hubbard model

At first, we introduce our theoretical model which we want to use for our transport studies.
We already mentioned that we consider a contact/interaction region coupled to the left
and right to two extended electron reservoirs, which are connected to the sample through
non-interacting leads. The purpose of these reservoirs are to provide the system with
electrons in equilibrium. Meaning, if an electron enters one of them, it thermalizes at the
temperature and chemical potential of the reservoir before it returns to the sample. This
is equivalent to the requirement that the electron reservoirs are reflectionless. Therefore,
an alternative approach is to dismiss the extended reservoirs at all and just to make the
leads reflectionless. We do this by extending the unconnected ends of the leads to infinity,
and we obtain semi-infinite leads.

We implement this setup with a two-dimensional Hubbard model, defined on a lat-
tice space, and compute it’s Green function on the contact region with the projection
method and the surface Green function of the semi-infinite leads. The connection between
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this discrete model and a real nanostructure should be revealed by the method of finite
differences.

3.2.1 Method of finite differences

The Hamiltonian of a spinless electron in an one-dimensional system, with an arbitrary
potential V (x), reads

H = − ~2

2m

d2

dx2
+ V (x), (3.1)

We discretize this model by replacing the continuous one-dimensional space R by a lattice,
which is isomorphic to Z. Every grid point n of this lattice corresponds to a position x
of continuous space. We choose an equidistant discretisation with a lattice parameter a,
which has the unit of length, and x = n a with n ∈ Z. Now, we obtain the discretised
model by projecting the operators and functions onto this lattice {x = na|n ∈ Z}. The
derivation operator d/dx becomes

df(x)

dx
=
f(x+ a/2)− f(x− a/2)

a
, (3.2)

where f is an arbitrary differentiable R-function. An equation for the second derivative
d2/d2x follows directly from the first derivative, and we obtain [11, 3.5.5, 3.5.6]

(Hf)|x=ia = (2τ + Vi) fi − τfi−1 − τfi+1 with τ =
~2

2ma2
, (3.3)

where fi = f(x= ia) and analogous Vi. This is equivalent, see [11, 3.5.7], to (Hf) |x=ia =
∑

j Hi,jfj
with

(Hf)
∣∣∣
x=ia

=
∑

j

Hi,jfj with Hi,j := (Vi + 2τ) δi,j − τ (δi,j+1 + δi,j−1) . (3.4)

The extension to a higher-dimensional space or to a N -particle Hamiltonian for spinful
electrons, including a particle-particle interaction, is straightforward.

In the following, we start straightaway with such a discretised model, namely a two-
dimensional Hubbard model. For comparison between our results and approaches in con-
tinuous space it is important to keep this translation, especially the formula for τ , in mind.
We will always assume that the units in our discretised model are chosen in such a way
that a = 1.

3.2.2 2D Hubbard model Hamiltonian

We want to model a contact region coupled to the left and right to semi-infinite leads using
a two-dimensional Hubbard model in second quantisation. Therefore, our Hamiltonian
consists of three main parts

H = Hcontact +Hcontact−leads +Hleads, (3.5)
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contact region right leadleft lead

N

M+2

y

x

Figure 3.1: Illustration of the 2D Hubbard model. The contact/interaction region is connected
to the left and right to semi-infinite leads. The contact region consists of N = |NR − NL| sites
in x-direction and M+2 sites in y-direction. We consider fixed boundary conditions. Hence, the
sites (n, 0), (n,M+1) of the contact and (n, 0, s), (n,M+1, s) of the leads are fixed, and the
effective width of our system, and the number of transversal modes is M . In blue, we illustrated
our notation for some characteristic sites.

where Hcontact describes the contact region, Hleads the left and right semi-infinite leads and
Hcontact−leads the tunneling Hamiltonian between these two subsystems, see figure 3.1. The
Hamiltonian of the contact region can itself be separated into three parts

Hcontact = H0
contact +Hint

contact = H1P
contact +Hhop

contact +Hint
contact, (3.6)

where H1P
contact is the one-particle part, Hhop

contact the hopping between different sites in the
contact and Hint

contact the interaction within the contact region. Furthermore, the one-
particle and hopping part can be summarized to a non-interacting Hamiltonian H0

contact.
The quadratic part of the contact Hamiltonian is

H1P
contact =

∑

σ=↑,↓

NR∑

n=NL

M+1∑

m=0

εn,m,σd
+
n,m,σdn,m,σ, (3.7)

where d+
n,m,σ, dn,m,σ denote respectively the creation and annihilation operators of an elec-

tron localized at site (n,m) in the contact region with spin σ and the one-particle energy
εn,m,σ. In the following, we consider the one-particle energies to be

εn,m,σ = −µ+ Vn,m + g
σ

2
hn,m, (3.8)

where µ is the chemical potential and Vn,m, hn,m the site-dependent potential, magnetic
field evaluated at site (n,m). The last term in (3.8), the Zeeman term, describes the
influence of a magnetic field applied to the contact region in direction of the electron
current flow. Here g is the dimensionless g-factor and σ the spin projection with respect to
the magnetic field, where σ = +/− 1 denotes a parallel/antiparallel orientation. We also
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use the notation σ =↑ /↓ for σ = +/− 1. Because the concrete numbering of the sites is
arbitrary, we denote the right and left end of the contact as NR, NL (we assume NL < NR),
which provides a very compact form of writing down the Hamiltonian. For more details we
refer to figure 3.1. The hopping between sites in the contact region is taken into account
by the hopping term

Hhop
contact = −

∑

σ=↑,↓

[
τx

NR−1∑

n=NL

M+1∑

m=0

(
d+
n+1,m,σdn,m,σ + d+

n,m,σdn+1,m,σ

)

+ τy

NR∑

n=NL

M∑

m=0

(
d+
n,m+1,σdn,m,σ + d+

n,m,σdn,m+1,σ

) ]
,

(3.9)

where τx, τy are hopping-matrix elements with respect to longitudinal and transversal
transitions. In the following we assume τx and τy to be real numbers. We implement
the Coulomb interaction in the model by inserting a repulsive on-site density-density-
interaction

Hint
contact =

NR∑

n=NL

M+1∑

m=0

Un,mnn,m,↑nn,m,↓, (3.10)

where nn,m,σ = d+
n,m,σdn,m,σ is the spin-resolved local density operator and Un,m the on-site

interaction energy. The contact/interaction region is coupled to the non-interacting leads
by the tunneling Hamiltonian

Hcontact−leads = −
∑

s=L,R

∑

σ=↑,↓

M+1∑

m=0

τx
(
c+

0,m,σ,sdNs,m,σ + d+
Ns,m,σ

c0,m,σ,s

)
, (3.11)

where the operators c+
n,m,σ,s, cn,m,σ,s are respectively creation and annihilation operators of

an electron localized at site (n,m) of the right or left lead (s = R,L) with spin σ. The sites
(0,m,R/L) describe the first sites of the right/left lead with respect to the longitudinal
direction. Now we are left with the Hamiltonian of the leads, which reads

Hleads = −
∑

s=L,R

∑

σ=↑,↓

∞∑

n=0

M+1∑

m=0

[
µ c+

n,m,σ,scn,m,σ,s + τx
(
c+
n+1,m,σ,scn,m,σ,s + c+

n,m,σ,scn+1,m,σ,s

)

+ τy
(
c+
n,m+1,σ,scn,m,σ,s + c+

n,m,σ,scn,m+1,σ,s

) ]
.

(3.12)

The first term is the one-particle term of the lead Hamiltonian, with the chemical potential
of the leads µ, and the second and third term describes the hopping in longitudinal and
transversal direction. Here we assume that the hopping elements in the leads are equivalent
to the hopping elements in the contact.

Up to now, we formulated the Hamiltonian including the sites (n,M + 1, s), (n, 0, s)
and (n,M+1), (n, 0). In the following, we assume fixed boundary conditions, in particular
that the local electron density of these site is zero. Therefore, no dynamical processes takes
place on these site and we will neglect those sites in the proceeding calculations.
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3.2.3 Green function of the contact - projection method

The different Green functions of the contact region are important in two ways. First, for
solving the fRG flow equations the modified Green function of the contact region G̃Λ is
a central quantity. Here, we only have to consider the restriction to the contact region,
because the interaction between the electrons is limited to this area. Second, after we
obtain the solution, we still have to compute the desired physical observables, for example
the conductance or the local density, of our new effective system. Conceptually, there exists
no difference between the calculation of these two classes of Green functions, because only
the Hamiltonian of the interaction region changes.

In this subsection we want to derive a numeric evaluable formula for the Green function
of the contact region by using the projection method. This approach culminates in the
analytically computation of the self-energy Σleads, which describes the influence of the leads
on the contact region.

For a finite-dimensional non-interacting Hubbard model, the corresponding Green func-
tion can be calculated under the assumption of a finite dimensional Hilbert space with

G(z) = [z1 −H]−1 , (3.13)

where z is a complex number and H the corresponding matrix representation, compare
[11, chap. 3.3.8]. For our model (3.5), this approach is not directly applicable, because
of the infinite dimension of the underlying Hilbert space. Recall, we want to describe a
mesoscopic sample coupled to semi-infinite leads. However, we are only interested in the
Green function of the contact region, and hence we can use the projection method [11, chap.
3.5] to project the influence of the infinite dimensional leads onto the contact region. The
result is an effective Hamiltonian of the finite interaction region which takes the influence
of the leads into account. And finally the desired Green function can be calculated using
(3.13).

To derive this effective Hamiltonian, we define the projection operators P and Q via

P =

NR∑

n=NL

M∑

m=1

∑

σ=↑,↓
|n,m, σ〉〈n,m, σ|, (3.14)

Q =
∑

s=L,R

∞∑

n=1

M∑

m=1

∑

σ=↑,↓
|n,m, σ, s〉〈n,m, σ, s|. (3.15)

These operators project the states onto the subspace of Hilbert space which describes
electrons localized at sites in the contact region or in the leads. The following formulas for
the projection operators

P 2 = P, Q2 = Q, P +Q = 1, PQ = QP = 0 (3.16)

hold. We introduce the useful abbreviation AXY := XAY and AX := XAX with A, X, Y
arbitrary operators. Now we can split the Hamiltonian into the following parts

HP = Hcontact, HQ = Hleads and Hcontact−leads = HPQ +HQP , (3.17)
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where HPQ, HQP describes the lead-contact, contact-lead hopping. Furthermore, we used
the notation H... for the corresponding single-particle Hamiltonian of H..., which was for-
mulated in second quantisation. Using these definitions, equation (3.13) is equivalent to

G(z) =

[
z1 −

(
HP HPQ

HQP HQ

)]−1

. (3.18)

Analogously, we can split the Green function G(z) and rearrange the formula in the fol-
lowing way (

zP −Hp −HPQ

−HQP zQ−HQ

)(
GP (z) GPQ(z)

GQP (z) GQ(z)

)
= 1. (3.19)

This matrix equation includes, among others,

(zP −HP )GP (z)−HPQGQP (z) = 1, (3.20)

and
−HQPGP (z) + (zQ−HQ)GQP (z) = 0. (3.21)

By using equation (3.21) follows

GQP =
1

zQ−HQ

HQPGP (z), (3.22)

and with equation (3.20) we already get our main result, the Green function of the contact
region

GP (z) =
1

zP −HP −HPQ
1

zQ−HQHQP

=
1

zP −HP − Σleads

,

(3.23)

where we defined the self-energy as follows

Σleads(z) := HPQ
1

zQ−HQ

HQP . (3.24)

If we compare this result with the naive approach of just neglecting the leads, we can
observe that the whole influence of the leads is given by the replacement of the contact
Hamiltonian HP → HP +Σleads. Because we still have to compute the inverse of an infinite-
dimensional matrix to obtain Σleads, the question might occur what benefit we have gained
with this reformulation. Fortunately, we can derive an analytical formula for Σleads(z) for
most of the commonly used lead geometries, including the leads of our model.

For the computation of the conduction in section 3.4.1, we need analogous equations
for GPQ(z) and GQ(z). We don’t present this tedious derivation at this point and refer to
appendix A instead. The results are

GPQ(z) = GP (z)HPQ
1

zQ−HQ

, (3.25)



28 3. fRG applied to a 2D Hubbard model

and

GQ(z) =
1

zQ−HQ

+
1

zQ−HQ

HQPGP (z)HPQ
1

zQ−HQ

. (3.26)

Now we want to derive an analytical formula of the self-energy Σleads for our model.
At first we express the self energy in a more suitable form by using the equation (3.14),
(3.15),

Σleads(z) = HPQ
1

zQ−HQ

HQP

=
∑

s,s′

∑

n,n′

∑

m,m′

∑

σ,σ′

(
τ 2
x |Ns,m, σ〉〈1,m, σ, s|(zQ−HQ)−1|1,m′, σ′, s′〉〈Ns′ ,m

′, σ′|
)

=
∑

s

∑

n,n′

∑

m,m′

∑

σ

(
τ 2
x |Ns,m, σ〉〈1,m, σ, s|(zQ−HQ)−1|1,m′, σ, s〉〈Ns,m

′, σ|
)
.

(3.27)

The last equation holds, because the two leads are not connected and the Hamiltonian is
diagonal in spin space, therefore 〈n,m, σ, s|H|n′,m′, σ′, s′〉 ∝ δs,s′δσ,σ′ . We can identify the
surface Green function of the right and left lead respectively, which are defined by

gσ,s1,m,1,m′(z) := 〈1,m, σ, s|(zQ−HQ)−1|1,m′, σ, s〉, (3.28)

where we use the abbreviation gσ,sm,m′(z) := gσ,s1,m,1,m′(z). The corresponding matrix elements
of Σleads are as follows

[Σleads]
σ
n,m;n′,m′ (z) : = 〈n,m, σ|Σleads(z)|n′,m′, σ〉

=
∑

s

δn,Nsδn′,Ns〈Ns,m, σ|Σleads(z)|Ns,m
′, σ〉

=
∑

s

δn,Nsδn′,Ns τ
2
x g

σ,s
m,m′(z)

(3.29)

and we define
[Σlead]

σ,s
n,m;n′,m′ (z) := δn,Nsδn′,Ns τ

2
x g

σ,s
m,m′(z). (3.30)

This is the main result of the projection method. This enables us to eliminate the infinite
leads and expressed the Green function in terms of quantities that are defined inside the
contact region. Even the self-energy Σleads, describing the effect of the leads, is evaluated
at the points (Ns,m), (Ns,m

′) that are located inside the contact region. Therefore, we are
left to calculate the surface Green functions of the leads to determine the Green function
of the contact region.

Calculation of the surface Green function of the leads

In the following, we want to derive an explicit expression for the surface Green function
of the leads, which is the Green function of the leads evaluated at the sites that connect
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the leads with the contact region. For this purpose, we use the well known fact that every
Green function can be expanded in a set of complete eigenfunctions, compare [11, equ.
3.3.17, 3.3.20],

G(r, r′; z) =
∑

α

ψα(r)ψ∗α(r′)

z − Eα
, (3.31)

where Hψα = Eαψα and z is a complex number. In our case, treating a discrete space,
the continuous variables r, r′ are integers describing certain grid points in our lattice.
This ansatz is very useful to derive a formula of the desired Green function, because the
leads are assumed to be non-interacting and the geometry is well treatable. Hence, the
eigenfunctions of the leads are easily accessible, and we are left to perform the summation
in the latter equation.

For our system the leads are wires with a constant width. As a consequence the x- and
y-direction are independent and the eigenfunctions are separable. This comes from the fact,
that the Hamiltonian Hleads can be expressed as a tensor product Hleads = Hx

leads ⊗Hy
leads,

where H
x/y
leads describes the x/y−direction of the leads separately. So we have to provide the

eigenfunctions of a tight-binding chain with semi-infinite and finite extension, in explicit
terms, we have to solve Hx

leadsψx,α = Ex,αψx,α and Hy
leadsψy,β = Ey,βψy,β. Then

gσ,sn,m,n′,m′(z) =
∑

α

∑

β

ψx,α(n)ψy,β(m)ψ∗x,α(n′)ψ∗y,β(m′)

z − Ex,α − Ey,β
(3.32)

evaluated at n = n′ = 1 gives the desired result for the Green function of the leads on the
surface to the contact region gσ,sm,m′

1. In our model, the left and right leads are identical,
and hence, the index s is meaningless for the surface Green function. The same holds for
the spin index σ, because we apply a magnetic field only to the contact region, and hence,
the self-energy/surface Green functions of the leads for spin up and spin down electrons
are equivalent. Therefore, we skip these two indexes in the following.

First of all, we solve this problem for a semi-infinite tight-binding chain that leads
to the Green function of a one dimensional semi-infinite tight-binding chain, denoted g̃,
evaluated at the last site. This Green function can be obtained very fast by a vague
symmetry argument which exploits the infinite extension of the chain, see for example [13,
p. 55 ff.]. In this thesis, we will stick to the general proceeding and use the expansion
of the Green function in eigenfunctions (3.31), compare [31, app. 1c] and [12, ch. 5.3.1].
Therefore, we use that the eigenvalues of a tight-binding chain of the form

HTB = −µ
N+1∑

n=0

|n〉〈n| − τ
N∑

n=0

(|n〉〈n+ 1|+ |n+ 1〉〈n|) (3.33)

with length N + 1 are given by

Ekα = −µ− 2τ cos(kα) with kα =
απ

N + 1
, (3.34)

1At this point we would like to remind of the abbreviation gσ,sm,m′ := gσ,s1,m;1m′ for the surface Green
function of the leads.
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see [22, equ. 5.11, 5.12], and the associated eigenfunctions are given by

ψkα(n) =

√
2

N + 1
sin(kαn), α ∈ {1, . . . , N} (3.35)

for fixed boundary conditions, in explicit terms ψkα(0) = ψkα(N + 1) = 0. We choose fixed
boundary conditions, because we can argue that the concrete values of the eigenfunctions
at the boundary of a chain with infinite length shouldn’t influence the physics and, hence,
the Green function of this chain at all. By this choice, the arising integrals become easier
to solve. In the limit N → ∞ the wave vector kα becomes a continuous variable and the
summation (3.31) an integral

g̃n,n′(z) =
2

π

∫ π

0

dk
sin(kn) sin(kn′)

z + 2τ cos(k) + µ

n=n′=1
=

1

4πτ

∫ π

−π
dξ

1− e2iξ

χ+ cos(ξ)
,

(3.36)

where ξ = kn and χ = (z + µ)/2τ . Here we restricted ourselves to the case n = n′ = 1,
because we are only interested in the values at the boundary, hence at the first site of the
chain. The arising integral can be solved by it’s transformation to a contour integral in
the complex plain along the unit circle S1

g̃(z) =
1

4πτ

∫

S1

dυ

iυ

1− υ2

χ+ 1
2

(
υ + 1

υ

) , (3.37)

where we used the substitution υ = eiξ. The resulting integrand has simple poles at
υ1/2 = −χ±

√
χ2 − 1, where the square root sign is chosen in such a way that the sign of

Im{
√
χ2 − 1} is equivalent to the sign of Im{χ}. The poles fulfil the relation υ1 · υ2 = 1

and it can quite easily be shown, we refer to appendix B, that in the case Im{z} 6= 0 the
inequalities |υ1| < 1 and |υ2| > 1 hold. Therefore, the poles v1/2 don’t lie on the contour
S1, and we can apply the residue theorem. For a vanishing imaginary part Im{χ}, we can
evaluate the integral by performing a limit z + i0±. A short calculation shows that the
residues of f(z) := (1− υ2) /2πτai (υ2 + 2χυ + 1) are

Res
z=υ1/2

[f(z)] =
1

2πiτ

(
χ∓

√
χ2 − 1

)
, (3.38)

and the residue theorem provides

g̃(z) =
1

τ

(
χ−

√
χ2 − 1

)
, (3.39)

where we emphasize that the square root sign depends on Im{χ}. An equivalent expression
for g̃(z), if Im{χ} 6= 0, can be obtain by defining the poles v± := −χ±

√
χ2 − 1, and the
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Figure 3.2: Retarded and advanced surface Green functions versus energy over half-bandwidth
2τ for a 1D semi-infinite chain.

residue theorem provides 2

g̃(z) =
1

τ

(
χ∓

√
χ2 − 1

)
if |− χ±

√
χ2 − 1| < 1, (3.40)

where
√

denotes the positive square root. Another widely used formula for the surface
Green function of the 1D semi-infinite leads is

≈
g (z) =





1
τ

(
χ− i

√
1− χ2

)
, if Im{χ} > 0

1
τ

(
χ+ i

√
1− χ2

)
, if Im{χ} < 0

, (3.41)

compare [13, 20, equ. 4.2, 3.17], where
√

denotes the positive square root. The equiva-
lence between (3.41) and (3.39) is shown in appendix B.

For the computation of the retarded and advanced Green function, formula (3.39) is
more useful. We can use Im{

√
χ2 − 1} = 2 Im{χ}Re{χ} for the positive square root and

the representation of the square root in cartesian coordinates [50, chap. 1.2.2 formula 9],
to write g̃ into the following form

g̃(z) =
1

τ

(
χ− χr
|χr|

√
1/2 (χr + |χ|)− i χi|χi|

√
1/2 (−χr + |χ|)

)
, (3.42)

where χ = χr + iχi with χr, χi ∈ R. After performing the limit g̃(w + i0±), we obtain the
retarded and advanced surface Green functions of the 1D semi-infinite leads

g̃ret/adv(w) =
1

τ

(
χr −

χr
|χr|

√
χ2
r − 1 Θ

(
χ2
r − 1

)
∓ i
√

1− χ2
r Θ
(
1− χ2

r

))
, (3.43)

where χr = (w + µ)/2τ . Figure 3.2 shows the imaginary and real part of the retarded and
advanced Green functions.

2Under the assumption Imχ 6= 0, the inequalities |υ+| ≶ 1 and |υ−| ≷ 1 follows directly from |υ1| < 1
and |υ2| > 1.
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Figure 3.3: Retarded and advanced surface Green functions versus energy over half-
subbandwidth 2τ for a 2D semi-infinite chain. The constant effective width M of the chain
changes from left to right, where M = 2, 6 and 20. In the upper panels we plotted the element
(M/2,M/2) and in the bottom panels (1,M).

With this result the main goal, namely to calculate the surface Green function of the 2D
semi-infinite leads with finite effective width M , is easily attainable. We have to perform
the summation

gm,m′(z) =
∑

β

∑

α

ψx,α(1)ψ∗x,α(1)

z − Ex,α − Ey,β
︸ ︷︷ ︸

g̃(z̃β)

ψβ,y(m)ψ∗y,β(m′), (3.44)

over the transversal eigenfunctions ψy,β(m) = ψkβ(m) of a finite tight-binding chain with
fixed boundary conditions and its corresponding eigenvalues Ey,β = Ekβ

3 , see equation
(3.35) and (3.34). Here, we defined z̃β := z −Ey,β = z + µ+ 2τ cos(kβ). Finally, this leads
to

gm,m′(z) =
2

M + 1

M∑

β=1

g̃(z + 2τy cos(kβ)) sin(kβm) sin(kβm
′). (3.45)

With the result of the retarded and advanced Green functions g̃ret/adv, we immediately

3For alternative boundary conditions or transversal confinements, instead of the hard-wall potential,
we have to perform the sum in equation (3.44) with respect to the corresponding ψβ,y and Ey,β .
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obtain the corresponding retarded and advanced Green functions

g
ret/adv
m,m′ (w) =

2

M + 1

M∑

β=1

g̃ret/adv(w + 2τy cos(kβ)) sin(kβm) sin(kβm
′). (3.46)

In figure 3.3, we plotted the retarded and advanced Green function gm,m′ for various effec-
tive widths M , in each case for a diagonal and an off-diagonal element.

We conclude this part by giving the final formula of the matrix elements for the self-
energy of the two semi-infinite leads with finite effective width M

[Σleads]
σ
m,m′(z) =

∑

s

[Σlead]
σ,s
m,m′ (z) =

∑

s

δn,Nsδn′,Nsτ
2
x g

σ,s
m,m′(z)

=
∑

s

δn,Nsδn′,Nsτ
2
x

2

M + 1

M∑

β=1

g̃(z + 2τy cos(kβ)) sin(kβm) sin(kβm
′),

(3.47)

compare equation (3.29) and (3.30). Using this result, we can easily compute the Green
function of the contact region by applying the projection method and equation (3.23).

Physical interpretation of the self-energy

Before we conclude this section, we want to give a short physical interpretation of the
self-energy based on [11, chap. 3.6] and [7, chap. 9.2].

By using the projection method, we mapped the influence of the leads onto the contact
region and obtained a modified contact Hamiltonian Hcontact+Σleads, where the self-energy
Σleads describes the influence of the leads. This self-energy is in general not hermitian, and
therefore the eigenvalues in general not real, which is in contrast to the contact Hamil-
tonian. We denote the eigenstates of the modified contact Hamiltonian |ψα〉 and the
corresponding eigenvalues εα, ςα by

Hcontact|ψα〉 = εα|ψα〉 and Σleads|ψα〉 = −ςα|ψα〉. (3.47)

By using the definition ςα = ςrα + iς iα with ςrα, ς iα ∈ R, the Green function of the contact
region becomes

Gα,α(z) =
1

z − (εα − ςrα) + iς iα
, (3.48)

and the spectral function [11, equ. 3.6.3]

Aα,α(w) = −2 Im{Gret
α,α(w)} =

2ς iα
(w − εα + ςrα)2 + (ς iα)2 . (3.49)

We observe, the poles zpα of the Green function change zpα → zpα − ςα and may become
considerable imaginary. Therefore, the energy levels are shifted by −ςrα and the spectral
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function broadens, where the width of this broadening is ς iα. It is common to describe this
broadening with the matrix Γlead, defined as follows

[
Γlead

]σ,s
n,m;n′,m′

(z) := i
([

Σlead

]σ,s
n,m;n′,m′

(z)−
[
Σ†lead

]σ,s
n,m;n′,m′

(z)
)
, (3.50)

which we will use in section 3.4.1 more extensively. In the time domain, we can determine
the time evolution of the eigenstate |ψα〉, that yields

|ψα(t)〉 = e−i/~ (εα−ςrα)te−ς
i
α/~ t |ψα(0)〉 (3.51)

under the assumption of a time-independent Hamiltonian. The imaginary part of ςα leads
to an exponential decrease of the probability density |ψα|2 and, hence, reflects a finite
lifetime of this eigenstate. In a more vivid sense, this can be understood as the possibility
of an electron in the contact region to escape into one of the leads. In the case of an
effective width M > 1, the self-energy has off-diagonal entries with respect to the sites
on the surface to the left or right lead. This can be understood by the possibility of an
electron to propagate through a lead from one site of the surface to another.

3.2.4 Infinite tight-binding chain

Before we explain how the fRG approach can be implemented to study the influence of a
repulsive interaction in a two-dimensional system, we want to discuss the non-interacting
case. Our main concern is to understand the band structure of our model, which shouldn’t
change too much for small interaction strengths and which is essential for all electronic
transport properties.

In the following, we set Un,m to zero and neglect the Zeeman term in our Hamiltonian
(3.5). Therefore, the spin-up and spin-down electrons are degenerated and we dismiss this
quantum number in the further calculations of the spectral function and the density of
states. Including the spin would only lead to an overall factor of two. In the last section
we have calculated the surface Green function/self-energy of a semi-infinite lead with finite
width, see equation (3.46), and discussed the projection method to calculate the Green
function of the contact region. Starting from this point, it is easy to obtain the spectral
function by using [11, equ. 3.6.3]

A(w) = i
[
Gret(w)−Gadv(w)

]
= −2 Im{Gret(w)}, (3.52)

where the retarded Green function of the contact region is denoted Gret, and the density
of states (DOS) by using [11, equ. 3.6.12]

D(w) =
1

2π
Tr{A(w)}. (3.53)

At first we want to consider a translational invariant infinite tight-binding chain with no
external potential applied to it and discuss the influence of a potential on the density of
states and the conductance afterwards.
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Figure 3.4: Density of states versus energy over half-bandwidth 2τ for a 1D infinite translational
invariant tight-binding chain.

Translational invariant infinite tight-binding chain

In the case of a translational invariant infinite tight-binding chain with no external potential
applied to it, we can easily calculate an analytical formula for the spectral function and
the density of states. Due to the translational invariance of the system, we can define any
subsystem as the contact region and choose the smallest invariant part, which is for M = 1
a single site and for M > 1 a stripe of transversal oriented sites. For M = 1 the retarded
Green function of an arbitrary site reads

Gret(w) =
1

w + i0+ + µ− 2τ 2g̃ret(w)︸ ︷︷ ︸
Σleads(w+i0+)

. (3.54)

After a short calculation we obtain the spectral function of an one-dimensional infinite
translational invariant tight-binding chain

A1D(w) =
1

τ

1√
1− χ2

r

Θ
(
1− χ2

r

)
with χr =

w + µ

2τ
. (3.55)

The corresponding density of states D1D = 1/2πA1D can be seen in figure 3.4, and its
structure can be understood as follows. With equation (3.35) we have already calculated
the eigenvalues of a finite tight-binding chain with N sites, where the corresponding N
eigenvalues are discrete and located between −µ − 2τ and −µ + 2τ . For an increasing
number of sites, the eigenvalues become more and more dense in this interval, and, in the
limit N →∞ we end up with the continuous spectrum [−µ− 2τ,−µ + 2τ ], as can be see
in the latter figure.

For a tight-binding chain with an effective width M > 1, we choose a stripe of transver-
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Figure 3.5: Normalized density of states versus energy over half-subbandwidth 2τx for a 2D
infinite tight-binding chain. Here the longitudinal hopping is always one, τx = 1. Upper panels:
the effective width M increases from left to right, with M = 2, 6 and 50, for fixed ratio τy/τx = 1.
The red line in the right panel is the DOS for a pure two-dimensional system, compare [18, equ.
7.10]. Bottom panels: the effective width M = 2 is fixed and the ratio τy/τx increases from left
to right, with τy/τx = 0.5, 1.5 and 2.0.

sal oriented sites, represented by the Hamiltonian

Hstripe =




−µ −τy
−τy . . . . . .

. . . . . . −τy
−τy −µ



. (3.56)

The retarded Green function of such a cross-section of the chain yields

Gret(w) =
1

(w + i0+)1 −Hstripe − 2τ 2
x g

ret(w)︸ ︷︷ ︸
Σleads(w+i0+)

, (3.57)

and, with the spectral function of a one-dimensional chain, we can easily calculate the spec-
tral function of the two-dimensional system by performing a simple basis transformation
to the transversal eigenfunctions, we refer to appendix C. Thereby we obtain the spectral
function of an infinite translational invariant tight-binding chain with finite effective width
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M , which reads

A2D
m,m′(w) =

1

τx

2

M + 1

M∑

β=1

1√
1− χ̃2

r,β

Θ
(
1− χ̃2

r,β

)
sin (kβm) sin (kβm

′) , (3.58)

where

χ̃r,β :=
w + µ

2τx
+
τy
τx

cos(kβ) and kβ =
βπ

M + 1
. (3.59)

The corresponding normalized density of states, for various widths and changing ratios of
hopping elements, can be seen in figure 3.5. The effective width, and hence the number
of transversal modes is obviously equivalent to the number of occurring subbands. These
subbands are ranging from −µ − 2τy cos(kβ) − 2τx to −µ − 2τy cos(kβ) + 2τx, where the
subband bandwidth is 4τx and β ∈ {1, . . . ,M}. Whether those are overlapping or not
depends on the relative subband-index β/(M + 1) and the ratio τy/τx.

In the limit τy/τx → 0, the single one-dimensional infinite tight-binding chains are
completely decoupled, no transversal hopping occurs, and each subband provides the one-
dimensional spectral function A1D. In the other limit, τy/τx → ∞, the difference of
eigenenergies of the transversal modes is so huge, that the bandwidth 4τx becomes in-
finitesimal small with respect to the energy splitting and we end up with an effective
discrete spectrum. This limit corresponds to the case of decoupled transversal finite tight-
binding chains. For a rather wide chain M � 1, see the upper right panel of figure 3.5
for M = 200, we are far away from a pure two-dimensional system with a constant DOS,
this even holds for M > 1000. For implementing such a system, we would have to add
additional leads in transversal direction.

Non-translational invariant tight-binding chain

Now, we apply an external smooth potential with a hard-wall potential in transversal
direction to the contact region of our infinite tight-binding chain. In this case, it is much
more involved to derive an analytical expression of the spectral function, and hence we
compute it only numerically. Due to the potential, the bandstructure of the contact region
bands along the direction of the potential. For an one-dimensional chain the bandstructure
along the contact region becomes just a tube where the DOS of every site n has the form
1/2πA1D centered around µ+ Vn, see the upper panels a) - c) of figure 3.6 or [3, fig. 4.3].
For finite widths M > 1, the behaviour of the bandstructure is the same, see the bottom
panels d) - f) of figure 3.6. The two overlapping bands are just following the smooth
potential, and every cross-section n of the chain has the same DOS, D2D, shifted by the
local potential Vn.

With these bandstructures, we can easily understand the influence of an external po-
tential on the conductance, compare [3, chap. 4.1.1]. We restrict ourselves to the case of
zero temperature, zero bias voltage and no other excitations. Therefore, the band is filled
up to the Fermi energy −µ, and only electrons with w = −µ contribute to the conduc-
tance. By applying a potential to the contact region, the bandstructure curves along the
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Figure 3.6: Normalized density of states as a function of energy over 1D half-bandwidth 2τ and
transversal position n for an infinite tight-binding chain with a smooth potential applied to the
contact region, compare [3, fig. 4.3]. The black line denotes the chemical potential −µ and the
blue line the potential Vn applied to the contact region, which spreads over n = 1 to n = 500. In
the upper, bottom panels the width M = 1, 2 is fixed and the potential height Ṽg varies. The
hopping elements in transversal and longitudinal direction are equivalent τ := τx = τy = 1.

potential, and, for a certain height Ṽ
0,(β)
g , the lower band edge of the subband β gets over

the Fermi energy, such that no states are left to mediate the electron current flow in this
region and the subband doesn’t contribute any longer to the conductance. Because the
bandstructure has this nice property with respect to the potential, we explained above, the
critical height, where the band β doesn’t contribute any longer to the conductance, is the
half-subbandwidth

Ṽ 0,(β)
g = µ+ 2τx + 2τy cos(kβ), (3.60)

which becomes 2τx for M = 1. In the panels c), e) and f) of figure 3.6, we plotted the DOS

at the corresponding critical values Ṽ
0,(β)
g for M = 1 and M = 2. But be careful, in the

panels d) - f) represents the red, orange region in the middle not a subband. It is only the
region, where the two subbands overlap. But, the end of this region is also the end of one
of the overlapping subbands.

3.3 fRG flow equations

In this section we want to apply the functional Renormalization group to take the repulsive
interaction between electrons in the contact region of our two-dimensional Hubbard model
into account. Therefore, the main goal is to to set up the fRG flow equations for our special
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problem and to show how these equations can be solved in a numerically efficient way. In
these equations the Green functions of the contact region, we discussed how to calculate
them in the last section, and its numerical computation plays a central role.

The differential equations for an one-dimensional extended Hubbard model was already
derived in the master thesis of Bauer [3]. We will follow this derivation and show how this
approach can be modulated for a two-dimensional system. To be able to treat a system
with a great number of grid points, we restrict ourselves to on-site interaction in our
model. But we will go even further and demand, by neglecting all other vertex functions,
that the effective two-particle interaction between two electrons propagating in our many-
body system is also just an on-site interaction. In other words, we will neglect all long
range effects of the interaction that are mediated by other electrons in the system, for
example Friedel oscillations. This approximation will greatly simplify the structure of the
flow equations and strongly reduce the computational costs.

To solve the arising differential equations we need to compute the diagonal parts of the
modified Green function of the contact region in an efficient way. We will show how this
can be done using the recursive Green function technique.

3.3.1 Resulting fRG flow equations

With the differential equations (2.46), (2.47) and the initial conditions (2.51), (2.52) in
chapter 2, we have derived general expressions for the zero-frequency fRG flow equations
in the 1PI scheme for an arbitrary two-particle interaction. To obtain these results, we
have assumed that the interaction is small and neglected all vertex functions that are of
order three or higher in the interaction.

To apply our fRG approach to the 2D Hubbard model, we have to substantiate the
parametrization of the vertex functions. We choose, analogously to [3], l = (j, σ) for the
single-particle quantum number of the resulting flow equations, see section 2.4.3, where
j := (n,m) denotes the position of the sites and σ the spin orientation. By using this
parametrization, we have to perform additional simplifications, because we want to de-
scribe an interacting system with a huge extension. Consequently, the vertex functions
depend on a huge set of variables. The vertex functions γ1, γ2 are tensors of rank two and
four, where each index has 2NM different values. This leads to a system of differential
equations of order one and dimension O (N4M4) (neglecting symmetries). To be able to
solve the occurring differential equations in an acceptable time period, we need to make
more approximations. Therefore, we consider only on-site contributions of the two-prticle
vertex function, in explicit elements with the structure γ2(jσ, jσ̄; jσ, jσ̄), and set all other
parts to zero. The structure of the spin indices are just reflecting the spin conservation of
the interacting electrons and the Pauli-principle. This can also be derived by the general
symmetry relation of the two-particle vertex function, compare section 2.3.2, which is in
general very useful for setting up the fRG flow equations. From this relation it also follows
immediately that γ2(j ↑, j ↓; j ↑, j ↓) = γ2(j ↓, j ↑; j ↓, j ↑) and, hence, we are left with
only NM non-zero element of the two-particle vertex function. By using (2.46), for the
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one-particle vertex function we obtain the following equation

d

dΛ
γΛ

1 (j, σ; j, σ) =
1

2π

∑

w=±Λ

[
G̃Λ
j,j;σ̄(iw) γΛ

2 (j ↑, j ↓; j ↑, j ↓)
]
, (3.61)

And using G(−iw) = [G(iw)]∗, this can be rewritten into the final form of the differential
flow equation for the one-particle vertex function

d

dΛ
γΛ

1 (j ↑, j ↑) =
1

π
Re{G̃Λ

jj;↓(iΛ)} γΛ
2 (j ↑, j ↓; j ↑, j ↓), (3.62)

d

dΛ
γΛ

1 (j, ↓; j ↓) =
1

π
Re{G̃Λ

jj;↑(iΛ)} γΛ
2 (j ↑, j ↓; j ↑, j ↓). (3.63)

For the two-particle vertex function we get, after a short calculation by using (2.47), the
following final form of the differential flow equation

d

dΛ
γΛ

2 (j ↑, j ↓; j ↑, j ↓)

=
1

π

[
Re{G̃Λ

jj;↓(iΛ)G̃Λ
jj;↓(iΛ)∗}+ Re{G̃Λ

jj;↑(iΛ)G̃Λ
jj;↓(iΛ)}

]
γΛ

2 (j ↑, j ↓; j ↑, j ↓)2.

(3.64)

Using equations (3.62), (3.63) and (3.64), we reduced the system of differential equations
to the dimension 3NM . Here the index j denotes the site position (n,m) in our two-
dimensional lattice, but the structure of the flow equations reveal that this approach is
also applicable to a one-dimensional or three-dimensional systems 4.

Due to technical reasons, we don’t implement these equations, but rather reformulate
them, analogously to [3], by defining

HΛ
eff = H0

contact − γΛ
1 (3.65)

and setting up the differential equations with respect to this effective Λ-dependent Hamil-
tonian. Consequently, the flow equation for γ1 slightly changes to

d

dΛ
HΛ
eff = − d

dΛ
γ1(Λ), (3.66)

and the initial condition, compare (2.51), becomes

HΛinitial
eff = H0

contact +
1

2

∑

q

v̄·,q;·,q. (3.67)

After the fRG flow, we obtain

H
Λfinal
eff = H0

contact − γ
Λfinal
1 = Heff , (3.68)

4These flow equations were already implemented for a one-dimensional system by Florian Bauer within
the framework of his master thesis [3].
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which is the desired effective non-interacting Hamiltonian of the contact region which takes
the interaction into account. With this solution the corresponding Green function of the
interacting region reads

Geff (iw) =
1

iw1 −H0
contact + γ

Λfinal
1︸ ︷︷ ︸

=−Heff

−Σleads

, (3.69)

which we use in section 3.4 to calculate the desired physical quantities, especially the
conductance.

3.3.2 Efficient Computation of certain elements of the Green
function

In the latter subsection we derived the fRG flow equations for our two-dimensional model
with some far reaching approximations. Now we want to come to a special problem for
solving these equations in higher dimensions, namely, the problem to compute the modified
Green functions G̃Λ(iΛ) in an efficient way. This is a crucial part in dealing with the system
of differential equations, because we use a standard Runge-Kutta algorithm [42, chap. 17.1]
to find it’s solution. And this algorithm evaluates the right hand side of the differential
equations and therefore the Green function for different Λ about a thousand of times to
obtain a satisfying accuracy.

To bring this problem into a mathematical context, we recapitulate that calculating
the modified Green function of the contact region is, in our discrete lattice space, nothing
else as computing the inverse of the huge matrix

[
G̃Λ(iΛ)

]−1

= iΛ1 −H0
contact − Σleads + γΛ

1 . (3.70)

We visualize the structure of this matrix, which is equivalent to the structure of H0
contact +

Σleads, in figure 3.7 . It is dominated by the non-interacting Hamiltonian of the contact
region. The one-particle vertex function γ1 lives only on the diagonal part, because we
just take on-site contributions of the vertex functions into account. The self-energy of the
leads gives a contribution to the first and last diagonal-block of the matrix and provides
hopping between arbitrary sites on the surface to the leads. For a one-dimensional systems
is H0

contact + Σleads just tridiagonal and becomes block-tridiagonal for M > 1, where the
blocks are M ×M matrices.

As we already said, this matrix is huge. For example,
[
G̃Λ
]−1

is a 20000×20000 matrix
with about 108 entries for a system with N = 1000 and M = 20. But most of the elements
are zero. If we consider a typical system we are dealing with, including M � N , then
the number of non-trivial entries is of order O (NM), in contrast to (NM)2 elements of
the matrix. This means for our example, only 0.02% of the elements are non-zero. Such
matrices where almost all elements are zero are called sparse matrices. Unfortunately, the
inverse of such a sparse matrix is in general a full matrix. The naive approach to compute
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Figure 3.7: Matrix structure of
[
G̃Λ
]−1

, H0
contact+Σleads, for a one- and two-dimensional system

with N = 5, M = 1 (upper panels) and N = 5, M = 4 (bottom panels). The black and red dots
represent the diagonal elements, where the reds are modified due to Σleads. The blue lines/dots
represent the hopping elements in x-direction and the green and brown lines/dots the hopping
elements in y-direction, where the browns are modified or generated due to Σleads. In the left
panels we use a mesh for the graphical representation of the matrix, where the lines describe
off-diagonal elements, and in the right panels a standard matrix representation.

the whole inverse using Gaussian elimination method is far to slow and requires a huge
amount of memory. All this data is just unnecessary, having a look on the differential
equations (3.62), (3.63) and (3.64), we can observe that we don’t need the whole modified
Green function. In fact, we only have to compute the diagonal elements, because we
restricted ourself to an on-site effective interaction. We conclude that we need a fast
algorithm to compute the diagonal elements of a sparse matrix.

In the following we want to introduce two algorithms for this purpose, the recur-
sive Green function (RGF) algorithm, that is the state-of art method to tackle quasi
one-dimensional systems, and the algorithm, called Fast Inverse using Nested Dissection
(FIND), that is a new and efficient approach for 2D and 3D systems. Due to computa-
tional costs, we will restrict ourselves to systems with small widths and implement the
RGF approach. At first, we give a short introduction of the RGF algorithm and state the
prime results, for more details and explicit derivations we refer to appendix D. Afterwards,
we also give a short introduction of FIND, to show how our approach could be extended
to vast 2D problems.
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Recursive Green function algorithm

The recursive Green function algorithm was developed by Klimeck and Svinzhenko et al.
[47, 27]. It’s an efficient method to compute certain elements of the inverse of a sparse
matrix. It can be shown that this algorithm is the most efficient algorithm for quasi
one-dimensional systems [27], where a quasi one-dimensional system is a system whose
extension is vast in one direction and thin in the other direction. The running time of this
algorithm is O(NM3) and the memory cost O(NM2) [28], where N and M are the grid
points in the transverse and longitudinal direction. Therefore, this approach is favourable
if M is very small.

To show how to compute certain elements of an inverse with this approach, we consider
the following matrix

A =




A1 B1,2

B2,1 A2
. . .

. . . . . . BN−1,N

BN,N−1 AN



, (3.71)

where the diagonal and off-diagonal elements Ai, Bi,j are complex numbers or complex
quadratic matrices and the remaining elements are just zero. Then the recursive Green
function method enables us to compute the diagonal elements of D := A−1 by computing
recursively two sequences. The forward recursion calculates the quantities dLi,i with i =
1, . . . , N via

dL1,1 = (A1)−1

dL2,2 =
(
A2 −B2,1d

L
1,1B1,2

)−1

...

dLN,N =
(
AN −BN,N−1d

L
N−1,N−1BN−1,N

)−1
.

(3.72)

The quantities dL are also called left connected Green functions, if the desired inverse D
is a Green function. The last element/block dLN,N is special, because it’s the exact solution
of the last diagonal element/block of the inverse

dLN,N ≡ DN,N . (3.73)

The second sequence, the backward recursion is defined in decreasing order as follows

DN,N = dLN,N

DN−1,N−1 = dLN−1,N−1

(
1 +BN−1,NDN,NBN,N−1d

L
N−1,N−1

)

...

D1,1 = dL1,1
(
1 +B1,2D2,2B2,1d

L
1,1

)
(3.74)

and provides us with the desired diagonal elements Di,i. To analyse this recursion relations,
we consider our application, where the elements Ai and Bi,j of the matrix A are M ×M
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matrices. The forward recursion includes N -times the inverse of these blocks and hence,
the running time scales as O (NM3). This is in contrast to the backward recursion, which
includes only simple block multiplications and scales as O (NM2). Therefore, the forward
recursion is slower by a factor of M .

Although, we need only the diagonal elements of the modified Green functions for
solving the fRG flow equations, we also show how to calculate the off-diagonal element
D1,N with the RGF approach. For our purposes this becomes important in section 3.4.1,
where we will see that the conductance of our sample can be calculated via the block
[Geff ]1,N of the final Green function after the fRG flow. It can be shown that the following
relations hold

Di,j|i<j = −dLi,iBi,i+1Di+1,j, (3.75)

Di,j|j<i = −Dj,i+1Bi+1,id
L
i,i. (3.76)

Using 3.75 and the forward recursion, we can compute the D1,N element/block by

D1,N = (−1)N+1

(
N−1∏

i=1

dLi,iBi,i+1

)
DN,N . (3.77)

For the computation of the conductance we have to perform the forward recursion and
then we are left with some simple multiplications, see (3.77). Therefore, this computation
scales similar to the forward recursion. But, all together, the computational costs of the
conductance is negligible, because this includes just the computation of [Geff ]1,N once after

solving the flow equations. In contrast to thousand of times computing G̃Λ(iΛ) needed to
solve the flow equations.

FIND algorithm

The Fast Inverse algorithm using Nested Dissection (FIND) was developed by Li and
Klimeck et al. [27, 28]. This algorithm is much more involved compared to RGF and we
will restrict ourselves to a very short description based on [27, sec. 4] and [28, chap. 2].

The FIND algorithm is based on computing certain elements of the inverse by succes-
sively performing LU factorizations 5 and reusing them in an efficient manner. It can be
used for any 2D or 3D device with arbitrary geometry and boundary condition. The only
requirement is that the matrix is the result of a discretization procedure and hence the
sites are only connected to neighbouring sites within a certain radius. With every single
LU factorization it is possible to compute one diagonal element via DNN = 1/UNN , where
U is the upper-triangular matrix. After the computation of one diagonal element of the
inverse, the matrix is reordered and another LU factorization is performed to obtain an-
other element. These factorizations can be made faster by reordering the matrix in such a
way that most of the sparsity of the original matrix is preserved. To minimize unwanted

5For an introduction of the method of LU decomposition for computing the inverse of a matrix we refer
to [42, chap. 2.3].
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fill-ins, the method of nested dissection of George et al. is used. It is obvious that the com-
putation of these factorizations significantly overlap. Therefore, partial LU factorizations
are determined, which can be computed independently and are used for the factorization
of several different orders of the matrix. With this approach the running time and memory
costs can be reduced considerably. For an optimal implementation the running time scales
as O(NM2) and the memory cost O(NM log(M)).

Therefore, the running time and memory cost of the FIND algorithm scales a lot better
as the RGF algorithm. But this scaling of the FIND algorithm only pays off for extended
two-dimensional systems. For quasi-one-dimensional system the RGF algorithm is still
favourable, as can be seen in figure 3.8.

such transistors, short channel effects typical for their bulk counterparts are minimized, while the absence of dopants in the
channel maximizes the mobility and hence drive current density. The ‘‘active” device consists of two gate stacks (gate con-
tact and SiO2 gate dielectric) above and below a thin silicon film. The thickness of the silicon film is 5 nm. Using a thicker
body reduces the series resistance and the effect of process variation but it also degrades the short channel effects. The
top and bottom gate insulator thickness is 1 nm, which is expected to be near the scaling limit for SiO2. For the gate contact,
a metal gate with tunable work function, /G, is assumed, where /G is adjusted to 4.4227 to provide a specified off-current
value of 4 lA/lm. The background doping of the silicon film is taken to be intrinsic, however, to take into account the dif-
fusion of the dopant ions; the doping profile from the heavily doped S/D extensions to the intrinsic channel is graded with a
coefficient of g which equals to 1 dec/nm. The doping of the S/D regions equals 1 ! 1020 cm"3. According to the ITRS road
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Fig. 14. Density-of-states (DOS) and electron density plots from RGF and FIND.
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Figure 3.8: Comparison of the running time of the FIND and RGF algorithms, where the
width is fixed and the length is varied, taken from [27]. In this figure the width of the system
is M = Nx and the length is N = Ny. The data come from the computation of non-equilibrium
Green’s functions (NEGF) for a system modelling a metal-oxide-semiconductor field-effect tran-
sistor (MOSFET).

3.4 Physical observables

In the previous section we showed how the functional Renormalization Group can be used
to take a repulsive two-particle interaction in a 2D Hubbard model into account. In this
section, we will discuss how the linear conductance and the spin-resolved local density of
electrons can be derived in this static fRG approach. This will be based on the effective
Green function Geff of the non-interacting effective Hamiltonian Heff , which we obtain
after the fRG flow. We will show that for the conductance the vertex correction vanishes
and, therefore, the conductance can be calculated by using the non-interacting Landauer
formula. For the computation of the local density, we derive an modified energy integral
over the Green function along the imaginary axis, which is numerically favourable.

In the following section, we will neglect the label eff and define the alternative notation
Gσj,j := Gj,j,σ to save space and improve the overview.
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3.4.1 Computation of the conductance

The main goal of this thesis is to study low-temperature electron transport phenomena
in interacting nanostructures. Hence, the conductance is the most important physical
quantity throughout this thesis. We investigate the conductance in the limit of zero bias
voltage with linear response theory. The generalization to finite bias voltages, by using
Keldysh formalism, is a direction of proceeding studies. In the following section, we want to
define this quantity and derive an evaluable expression for the linear response conductance
in terms of our fRG approach.

The linear response conductance G of a sample is defined as the proportionality coef-
ficient between the infinitesimal current dI when an infinitesimal voltage dV is applied to
it,

dI = G · dV. (3.78)

Therefore, the conductance is in contrast to the conductivity, which is an intrinsic property
of the material, a sample specific quantity. The conductance in a non-interacting meso-
scopic system can be calculated with the Landauer-Büttiker formalism, see for example [7,
chap. 7.1 & 7.2]. The main idea of this approach is to understand the conductance as a
scattering process of quantum mechanical waves. This concept culminates, for T = 0, in
the famous Landauer formula [7, equ. 7.33]

G = G0

∑

n

Tnn (µ) , (3.79)

where G0 = 2e2/h is the conductance quantum and Tnn(µ ) the eigenvalues of the trans-
mission matrix at Fermi energy µ. Here, we assumed that the spin quantum number is
degenerate. We want to study the linear conductance in an interacting system. Thus
it’s not clear, whether we can apply the Landauer-Büttiker formalism or not. But closer
look shows that in our static fRG scheme the interacting system is mapped onto an ef-
fective non-interacting system we refer to section 2.4.1 and 3.3.1, where the static flow
equations provide us with a frequency-independent self-energy, describing the influence of
the interaction. Therefore, we should be able to compute the conductance of this effective
non-interacting system with equation (3.79). For reasons of consistency, we don’t just ap-
ply it, but rather compute G in linear response by using the Kubo formalism. We show
that the vertex correction vanishes and the resulting conduction formula is equivalent to
the Landauer formula applied to our effective non-interacting system.

This was already proven in the case of a one dimensional system in [13, chap. 4.4]
and [20, chap. 3.2.2]. We follow these works, especially [20], and extend it to our two
dimensional approach. But before we go into the details of this calculation, we want to
recapitulate the Kubo formula for conductance based on [7, chap. 6].

Kubo formula for conductance

The fundamental concept of linear response theory is the assumption that the response
of a system to a weak external perturbation is proportional to this perturbation itself.
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Neglecting all higher orders of the external perturbation in the response of the system
leads to the main result, the well known Kubo formula [7, equ. 6.7]

〈A(t)〉 = 〈A(t)〉0 −
∫ ∞

t0

dt′ Cret
AH′(t, t

′), (3.80)

which gives the linear response in terms of the retarded response function

Cret
AH′(t, t

′) := −iθ(t− t′) 〈[A(t), H ′(t′)]〉0 , (3.81)

where A is the operator describing the desired physical quantity, 〈. . .〉0 the equilibrium
average with respect to non-perturbed time-independent Hamiltonian H0 and 〈. . .〉 the
equilibrium average with respect to the perturbed Hamiltonian H(t) = H0 + Θ(t− t0)H ′.

This formalism applied to a system of charged particles with an electromagnetic field
as perturbation leads to the retarded response function

σαβ(r, r′, w) =
ie2

w
Cret
jα(r)jβ(r′)(w), (3.82)

the conductivity tensor (here in frequency domain). In this equation the quantity jα(r)
is the component α of the current density operator j(r) for the perturbed system, where
the contribution of the term proportional to the product Eext · Aext of external fields is
neglected. In the latter formula (3.82) we just stated the so called paramagnetic term,
because we are only interested in the dissipative effect of the electromagnetic field. The
conductivity tensor describes the current response in direction eα with respect to an electric
field component parallel to eβ, which reads

jα(r, w) =

∫
dr′

∑

β

σα,β(r, r′, w)Eβ(r′, w). (3.83)

The current operator J through the sample is obtained by
the current density in terms of the conductivity tensor along a cross section of the sample.
The precise implementation of this integration is arbitrary, due to current conservation.
Although, the smartest way to perform it is to integrate along an equipotential cross
section. The voltage enters by integrating orthogonal to the equipotential lines over the
electrical field. It can be shown that this leads to the desired and well-known Kubo formula
for the DC conductance

G =
e2

~
lim
w→0

Re

{
ie2

~
Cret
JJ (w)

w

}
, (3.84)

compare [7, equ. 6.34]. At this point we introduced the retarded current-current correlation
function, which reads

Cret
JJ (t− t′) = −iΘ(t− t′) 〈[J(t), J(t′)]〉 . (3.85)

in time domain. Therefore, the computation of the conductance is reduced to the calcula-
tion of the w-linear imaginary part of the current-current correlation function. We perform
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this calculation in Matsubara frequency space and obtain Πret(w) via the analytical con-
tinuation iqn → w+ i0+ to the real axis. The retarded current-current correlation function
in Matsubara formalism is

CJJ(iqn) = −
∫ β

0

dτ eiqnτ 〈Tτ J(τ)J(0)〉. (3.86)

We adopt the notation of Bruus & Flensberg [7] and denote qn for bosonic Matsubara
frequencies wn = 2nπ/β, and kn for fermionic frequencies wn = (2n + 1)π/β. We choose
J(τ) = JR(τ), and J(0) = JL(0) for the evaluation of the current-current correlation
function and introduce the abbreviation Π := −CJR,JL , which simplifies the comparison to
[13, 20]. Here, the current operators Jα with α = L, R are equivalent to the change of
particle numbers NL, NR in the left, right lead

JL := −ṄL = −i
∑

σ

∑

m

[
τxc
†
0,m,σ,LdNL,m,σ − τ ∗xd†NL,m,σc0,m,σ,L

]
, (3.87)

JR := ṄR = i
∑

σ

∑

m

[
τxc
†
0,m,σ,RdNR,m,σ − τ ∗xd†NR,m,σc0,m,σ,R

]
. (3.88)

The operator JL describes the current flowing from the left lead into the contact region
and JR the current flowing from the contact region into the right lead. The order of L and
R is arbitrary, due to the time-reversal symmetry of H. In the following, we use that the
hopping matrix elements are real, we assumed this in 3.2.2, and don’t distinguish between
τx/y and τ ∗x/y in the proceeding calculations.

The Matsubara retarded current-current correlation function can be separated into two
parts [13, chap. 4.4.1]

Π(iqn) = Π(a)(iqn) + Π(b)(iqn), (3.89)

illustrated diagrammatically in figure 3.9. This can be seen in the following way. If we
think of evaluating the thermal average 〈...〉 = Tr

[
... e−βH

]
/Tr

[
e−βH

]
in a perturbation

series, then the first part Π(a) includes all diagrams that consist of two separated diagrams
and the second part Π(b) includes all other diagrams, which form an overall connected
diagram.

Calculation of Π(a)

At first, we want to calculate the contribution Π(a) and show that this leads to a conduc-
tance formula which is equivalent to the Landauer formula for non-interacting systems.
We have already mentioned that Π(a) includes all diagrams consisting of two unconnected
subdiagrams. We can obtain all these diagrams by treating the possible pairings of creation
and annihilation operators emerging in the four point function JR(τ)JL(0) as uncorrelated.
And we perform the thermal average for each of these two possible pairings separately. We
can now easily convince ourselves that this proceeding produces all diagrams consisting of
two unconnected parts. And knowing, that all contractions at equal times vanish ,due to
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Figure 3.9: Diagramatical representation of the two contributions Π(a) and Π(b) to the current-
current correlation function ΠRL(iqn), compare [13, fig. 4.3]. In the left diagram of the vertex

correction the shaded box represents the two-particle vertex function Γσ,σ
′

c2,c3;c1,c4(ikn, ik
′
n+iqn; ikn+

iqn, ik
′
n).

time-translation invariance of the Hamiltonian, we obtain the following equation

Π(a)(iqn) =
∑

m,m′
σ,σ′

∫ β

0

dτ eiqnττ 2
x

[
− 〈Tτ dNR,m′,σ′(τ) c†0,m,σ,L(0)〉〈Tτ dNL,m,σ(0) c†0,m′,σ′,R(τ)〉
+ 〈Tτ c0,m′,σ′,R(τ) c†0,m,σ,L(0)〉〈Tτ dNL,m,σ(0) d†NR,m′,σ′(τ)〉
+ 〈Tτ dNR,m′,σ′(τ) d†NL,m,σ(0)〉〈Tτ c0,m,σ,L(0) c†0,m′,σ′,R(τ)〉
−〈Tτ c0,m′,σ′,R(τ) d†NL,m,σ(0)〉〈Tτ c0,m,σ,L(0) dNR,m′,σ′(τ)〉

]
.

(3.90)
Because of the time invariance and consequential the conservation of Matsubara frequen-
cies, switching to frequency space via the Fourier transformation

Gσ(τ, τ ′) =
1

β

∑

ikn

Gσ(ikn)e−ikn(τ−τ ′) (3.91)

is favourable. In this representation one Matsubara summation becomes trivial, the same
holds for one spin index, and we obtain

Π(a)(iqn) =
∑

σ

∑

m,m′

∑

ikn

1

β
τ 2
x

[
− GσNR,m;0,m′,L(ikn+iqn)GσNL,m′;0,m,R(ikn)

+ Gσ0,m,R;0,m′,L(ikn+iqn)GσNL,m′;NR,m(ikn)

+ GσNR,m;NL,m′
(ikn+iqn)Gσ0,m′,L;0,m,R(ikn)

−Gσ0,m,R;NL,m′
(ikn+iqn)Gσ0,m′,L;NR,m

(ikn)
]
.

(3.92)

The projection method, especially equation (3.25) and (3.26), enables us to express the
Green functions with indexes of the leads through Green functions with indexes of the
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contact region

Gσ0,m,L;0,m′,R(z) =
∑

m′′,m′′′

τ 2
x g

σ,L
m,m′′(z)GσNL,m′′;NR,m′′′(z) gσ,Rm′′′,m′(z), (3.93)

Gσ0,m,R;c(z) = −
∑

m′

τx g
σ,R
m,m′(z)GσNR,m′;c(z), (3.94)

Gσc;0,m,L(z) = −
∑

m′

τx Gσc;NL,m′(z) gσ,Lm′,m(z), (3.95)

where c denotes an arbitrary site of the contact region. The other Green functions in (3.92)
can be obtained by interchanging L ↔ R in these equations. This leads to the following
formula

Π(a)(iqn) =
∑

σ

∑

m,...,m′′′

∑

ikn

1

β
τ 4
x

[

− GσNR,m;NL,m′
(ikn+iqn) gσ,Lm′,m′′(ikn+iqn)GσNL,m′′;NR,m′′′(ikn) gσ,Rm′′′,m(ikn)

+ gσ,Rm,m′(ikn+iqn)GσNR,m′;NL,m′′(ikn+iqn) gσ,Lm′′,m′′′(ikn+iqn)GσNL,m′′′;NR,m(ikn)

+ GσNR,m;NL,m′
(ikn+iqn) gσ,Lm′,m′′(ikn)GσNL,m′′;NR,m′′′(ikn) gσ,Rm′′′,m(ikn)

− gσ,Rm,m′(ikn+iqn)GσNR,m′;NL,m′′(ikn+iqn) gσ,Lm′′,m′′′(ikn)GσNL,m′′′;NR,m(ikn)
]
,

(3.96)

which can be greatly simplified using the abbreviation

fσ,sm,m′(iwn, iw
′
n) := iτ 2

x

(
gσ,sm,m′(iwn)− gσ,sm,m′(iw′n)

)
, (3.97)

and we obtain the compact relation

Π(a)(iqn) = −
∑

σ

∑

m,...,m′′′

∑

ikn

1

β

[

GσNR,m;NL,m′
(ikn+iqn) fσ,Lm′,m′′(ikn, ikn+iqn)GσNL,m′′;NR,m′′′(ikn) fσ,Rm′′′,m(ikn, ikn+iqn)

]
.

(3.98)

The summation over the Matsubara frequencies are preformed by using contour integration
and the residue theorem, explained in [7, chap. 11.4]. This procedure can be summarized
by the replacement

1

β

∑

ikn

F (ikn) → − 1

2πi

∫

C
dz F (z)nF (z), (3.99)

where the function F (z) should have a number of simple poles 6 and vanishes for |z| → ∞.
Here nF (z) = 1/(eβz + 1) is the Fermi function, which has simple poles at the fermionic
Matsubara frequencies and residues Res [nF (z)]z=ikn = −1/β.

6Therefore, the function F (z) is analytical elsewhere in the complex plain C.
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Figure 3.10: Parted contour used for the Matsubara frequency summation in equation (3.98),
compare [7, fig. 16.1]. The red lines denote the branch cuts at z = ε and z = ε − iqn of the
integrand.

In our case, the two Green functions, which are evaluated at different frequencies, lead
to two branch cuts of the integrand. One branch cut goes along the horizontal line z = ε
and the other along z = ε− iqn with ε ∈ R. Therefore, we have to separate the contour into
three parts, illustrated in figure 3.10. Because the Fermi function goes to zero exponentially
for Re{z} → ∞ and to 1 for Re{z} → −∞ and the Green function decays G(z) → 1/z
for |z| → ∞, the circular parts of the contour C doesn’t contribute, and we are left with
the integration parallel to the branch cuts and obtain a summation over the following four
terms

Π(a)(iqn) =
∑

σ

∑

m,...,m′′′

∫ ∞

−∞
dε

nF (ε)

2πi

[

+ GσNR,m;NL,m′
(ε+iqn) fσ,Lm′,m′′(ε+i0

+, ε+iqn)GσNL,m′′;NR,m′′′(ε+i0+) fσ,Rm′′′,m(ε+i0+, ε+iqn)

− GσNR,m;NL,m′
(ε+iqn) fσ,Lm′,m′′(ε−i0+, ε+iqn)GσNL,m′′;NR,m′′′(ε−i0+) fσ,Rm′′′,m(ε−i0+, ε+iqn)

+ GσNR,m;NL,m′
(ε+i0+) fσ,Lm′,m′′(ε−iqn, ε+i0+)GNL,m′′;NR,m′′′(ε−iqn) fσ,Rm′′′,m(ε−iqn, ε+i0+)

− GσNR,m;NL,m′
(ε−i0+) fσ,Lm′,m′′(ε−iqn, ε−i0+)GσNL,m′′;NR,m′′′(ε−iqn) fσ,Rm′′′,m(ε−iqn, ε−i0+)

]
.

(3.100)

We have already stated, that only the imaginary w-linear part of Π contributes to the
conductance. Following the argument of [20, p. 38 ff.], we can show that the terms
containing the functions fR/L evaluated at frequencies on the same side of a brunch cut
are of order O(w2) and, hence, don’t contribute to G. This can be seen by having a closer
look on the surface Green function for an one-dimensional semi-infinite lead g̃(z). We can
show that for an infinitesimal number δ ∈ R the equality

g̃(ε± iδ) = g̃(ε± i0+) +O(δ) (3.101)

holds. Because the corresponding Green function for a semi-infinite lead gσ,s with finite
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width is just a superposition of g̃, see equation (3.45), it immediately follows that

gσ,s(ε± iδ) = gσ,s(ε± i0+) +O(δ). (3.102)

To determine the w-linear contribution, we perform the limit δ → 0, that provides

fσ,s(ε± iδ, ε± i0+) = O(δ), (3.103)

and
fσ,s(ε− i0+, ε+ iδ) = fσ,s(ε± i0+, ε∓ i0+) +O(δ). (3.104)

We can conclude, the first and fourth term of integral (3.100) are of order O(w2), hence
they don’t contribute to the conductance and we neglect them in the proceeding calcula-
tions. Now, we perform the analytical continuation iqn → w + i0+ and, after shifting the
integration variable ε→ ε+ w of one of the terms, we obtain

Π(a)(w) =
∑

σ

∑

m,...,m′′′

∫ ∞

−∞
dε

1

2πi
(nF (ε+w)− nF (ε))

[
GσNR,m;NL,m′

(ε+w+i0+)

× fσ,Lm′,m′′(ε−i0+, ε+w+i0+)GσNL,m′′;NR,m′′′(ε−i0+) fσ,Rm′′′,m(ε−i0+, ε+w+i0+)
]
.

(3.105)

Thus the conductance G(a), which arises from the first part of the retarded current-current
correlation function, yields

G(a)(µ) :=
e2

~
lim
w→0

Im

{
Π(a)(w)

w

}
= −e

2

h

∑

σ

∑

m,...,m′′′

∫ ∞

−∞
dε n′F (ε)

[

GσNR,m;NL,m′
(ε+i0+) fσ,Lm′,m′′(ε−i0+, ε+i0+)GσNL,m′′;NR,m′′′(ε−i0+) fσ,Rm′′′,m(ε−i0+, ε+i0+)

]
.

(3.106)

In the limit of vanishing temperature, the Fermi function is equivalent to the delta function
with opposite sign, n′F (ε) = −δ(µ), and the energy integral becomes trivial. In this case,
we can rewrite the conductance into the following form

G(a)(µ) =
e2

h

∑

σ

Tr
{
Gσ,ret(µ) Γσ,Rlead(µ)Gσ,adv(µ) Γσ,Llead(µ)

}
, (3.107)

where we defined

[Γσ,slead]n,m;n′,m′ (z) := [Γlead]
σ,s
n,m;n′,m′ (z), (3.108)

compare equation (3.50), and used the relation

[Γlead]
σ,s
n,m;n′,m′ (ε) = δn,Nsδn′,Ns iτ

2
x

( [
gret
]σ,s
m,m′

(ε)−
[
gadv

]σ,s
m,m′

(ε)
)

︸ ︷︷ ︸
=fσ,s

m,m′(ε+i0
+,ε−i0+)

.
(3.109)

The formula (3.107) for the conductance is an alternative representation of the Landauer
formula for T = 0 and is more convenient for numerical calculations. For an alternative
derivation of equation (3.107) we refer to [11, chap. 3.5].
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Vertex Correction

In the following subsection, we want to calculate the contribution of the second part Π(b)

of the current-current correlation function. This can be done by performing the same steps
as we did for the calculation of Π(a). First of all, we can convince ourselves, for example
by expanding (3.86) in a perturbation series, that the line-crossing diagrams are given by
the formula

Π(b)(iqn) =
1

β2

∑

σ,σ′

∑

m,m′

∑

c1,...,c4

∑

ikn,ik′n

[

(
Gσ′c1;NL,m

(ikn+iqn)Gσ′0,m,L;c2
(ikn)− Gσ′c1;0,m,L(ikn+iqn)Gσ′NL,m;c2

(ikn)
)

×Γσ,σ
′

c2,c3;c1,c4
(ikn, ik

′
n+iqn; ikn+iqn, ik

′
n)

×
(
GσNR,m′;c3(ik′n+iqn)Gσc4;0,m′,R(ik′n)− Gσ0,m′,R;c3

(ik′n+iqn)Gσc4;NR,m′
(ik′n)

)]
,

(3.110)

where the indices c1, . . . , c4 denote sites of the contact region. For this derivation we
used that Γ conserves Matsubara frequencies. This truncated line-crossing diagram Γ is
obviously equivalent to the two-particle vertex function γ2, defined in equation (2.11),
where the correspondence

Γσ,σ
′

c1,c2;c3,c4
(iw1, iw2; iw3, iw4) = γ2 ({k1, σ}, {k2, σ

′}; {k3, σ
′}, {k4, σ}) (3.111)

with kl = {cl, iwl} holds. We choose this modified notation for the vertex corrections of
G, because it is much more commonly used throughout the literature, see for example
[13, chap. 4.4] or [7, chap. 16]. Once again, we apply the projection method, especially
equations (3.25) and (3.26), to rewrite the Green functions with indices on the leads in the
latter equation and obtain

Π(b)(iqn) =
1

β2

∑

σ,σ′

∑

ikn,ik′n

∑

m,...,m′′′

∑

c1,...,c4

τ 4
x

[

(
− Gσ′c1;NL,m

(ikn+iqn) gσ,Lm,m′′(ikn)Gσ′NL,m′′;c2(ikn)

+ Gσ′c1;NL,m′′
(ikn+iqn) gσ,Lm′′,m(ikn+iqn)Gσ′NL,m;c2

(ikn)
)

× Γσ,σ
′

c2,c3;c1,c4
(ikn, ik

′
n+iqn; ikn+iqn, ik

′
n)

×
(
− GσNR,m′;c3(ik′n+iqn)Gσc4;NR,m′′′

(ik′n) gσ,Rm′′′,m′(ik
′
n)

+ gσ,Rm′,m′′′(ik
′
n+iqn)GNR,m′′′;c3(ik′n+iqn)Gσc4;NR,m′

(ik′n)
) ]

.

(3.112)
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Using the definition of fσ,s, see equation (3.97), we can rewrite this equation in a more
compact way

Π(b)(iqn) =
1

β2

∑

σ,σ′

∑

ikn,ik′n

∑

m,...,m′′′

[
Gσ′c1;NL,m

(ikn+iqn) fσ
′,R

m,m′′(ikn+iqn, ikn)Gσ′NL,m′′;c2(ikn)

×Γσ,σ
′

c2,c3;c1,c4
(ikn, ik

′
n+iqn; ikn+iqn, ik

′
n)

×Gσc4;NR,m′
(ik′n) fσ

′,L
m′,m′′′(ik

′
n+iqn, ik

′
n)GσNR,m′′′;c3(ikn+iqn)

]
.

(3.113)

Now we define the quantity

Λσ
c1,c2

(ikn, iqn) :=
∑

σ′

∑

ik′n

∑

m′,m′′′

∑

c3,c4

Γσ,σ
′

c2,c3;c1,c4
(ikn, ik

′
n+iqn; ikn+iqn, ik

′
n)

× Gσc4;NR,m′
(ik′n) fσ

′,L
m′,m′′′(ik

′
n+iqn, ik

′
n)GσNR,m′′′;c3(ik′n + iqn),

(3.114)

where Π(b) becomes

Π(b)(iqn) =
1

β2

∑

σ

∑

ikn

∑

m,m′′

∑

c1,c2

Gσ′c1;NL,m
(ikn+iqn) fσ,Rm,m′′(ikn+iqn, ikn)GσNL,m′′;c2(ikn) Λσ′

c1,c2
(ikn, iqn).

(3.115)

This equation for the vertex correction to the linear conductance is generally valid, but
unfortunately its evaluation is very complicated for interacting systems. At this point, the
properties of our static fRG approach come into play. The solution of the flow equations
provides us with a frequency-independent two-particle vertex Γ and, hence, the Matsubara
summations can be evaluated similar to Π(a), compare [13, 20].

In the following we focus on Λσ
c1,c2

and replace its Matsubara summation by a contour
integral analogue to equation (3.100), we obtain

Λσ
c1,c2

(ikn, iqn) =−
∑

σ′

∑

m,m′′

∑

c3,c4

Γσ,σ
′

c2,c3;c1,c4
τ 2
x

∫ ∞

−∞
dε

nF (ε)

2πi

[

+ Gσc4;NR,m
(ε+i0+) fσ,Rm,m′′(ε+iqn, ε+i0

+)GσNR,m′′;c3(ε+iqn)

− Gσc4;NR,m
(ε−i0+) fσ,Rm,m′′(ε+iqn, ε−i0+)GσNR,m′′;c3(ε+iqn)

+ Gσc4;NR,m
(ε−iqn) fσ,Rm,m′′(ε+i0

+, ε−iqn)GσNR,m′′;c3(ε+i0+)

− Gσc4;NR,m
(ε−iqn) fσ,Rm,m′′(ε−i0+, ε−iqn)GσNR,m′′;c3(ε−i0+)

]
.

(3.116)

Again we can use that fσ,s evaluated at the same side of a branch cut is of order O(w)
and evaluated at different sides of order O(1). Therefore, it is sufficient to show that Π(b)

vanishes for the second and third term of (3.116), and we can neglect the other terms in
the following. After performing the analytical continuation iqn → w+ i0+ and shifting the
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integration variable of one term, we obtain the formula

Λσ
c1,c2

(ikn, w+i0+) = −
∑

σ′

∑

m,m′′

∑

c3,c4

Γσ,σ
′

c2,c3;c1,c4
τ 2
x

∫ ∞

−∞
dε

1

2πi
[nF (ε+w)− nF (ε)]

× Gσc4;NR,m
(ε−i0+) fσ,Rm′′′,m′(ε+w+i0+, ε−i0+)GσNR,m′′′;c3(ε+w+i0+).

(3.117)

Using nF (ε + δ) − nF (ε) = O(δ), we conclude that (3.117) is of order O(w). It is also
independent of the Matsubara frequency kn and we can exclude this factor in the frequency
summation of (3.115). In the addend (3.115), fσ,s occurs with arguments on the same side
of a branch cut and, hence, provides an additional order of w. Therefore, Π(b)(w) is of
order O(w2), if w tends to zero, and we finally obtain

G(b) =
e2

h
lim
w→0

O(w2)

w
= 0. (3.118)

We conclude, the vertex correction of the linear conductance vanishes in the fRG approach
of frequency-independent vertex functions, and we can apply the conductance formula
(3.107) for zero temperatures.

3.4.2 Spin-resolved local density

Another intersting quantity in our system is the spin-resolved local density within the
contact region. It is defined as the average of the occupation number operator

nj,σ := 〈nj,σ〉 = 〈c†j,σcj,σ〉, (3.119)

where j = (n,m) collects the site indexes. At first, we want to express the local density in
the standard form as an energy integral of the spectral function, where we follow [7, chap.
11.4.2]. For the derivation we use the Matsubara formalism. In this approach the average
of the number operator over the grand canonical ensembles can be calculated as follows

nj,σ =
〈
cj,σc

†
j,σ

〉
= −

〈
Tτ c

†
j,σ(0)cj,σ(0−)

〉
= Gσj;j(0−), (3.120)

where we inserted the convergence factor 0−, which enables us to insert the complex time
ordering operator Tτ and express nj,σ via the complex Green function G. The corresponding
Fourrier transformation reads

nj,σ = Gσj;j(0−) =
1

β

∑

ikn

Gσj;j(ikn)e−ikn0− , (3.121)

where kn are the fermionice Matsubara frequencies. The evaluation of the Matsubara
summation is performed by using a contour integral and the residue theorem. The standard
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contour with a closed half-circle in the upper half-plain and bottom half-plain, see [7, fig.
11.3], provides

nj,σ = − 1

2πi

∫

C1+C2
dz nF (z) Gσj;j(z)ez0

+

= − 1

2πi

∫ ∞

∞
dw nF (w)

[
Gσj,j(w + i0+)− Gσj,j(w + i0−)

]
ew0+

= − 1

2π

∫ ∞

−∞
dw nF (w) 2 Im{Gσ,retj,j (w)},

(3.122)

where we used that the contribution of the circular parts goes to zero as |z| → 0, which
can be seen by

ez0
+

nF (z) =
ez0

+

1 + eβz
∝




e(0+−β)Re{z} |z|→∞−−−−→ 0 if Re{z} > 0

e0+Re{z} |z|→∞−−−−→ 0 if Re{z} < 0
, (3.123)

and only the parts parallel to the real axis contribute. Furthermore, we used Gret(w) =[
Gadv(w)

]∗
. Using the relation between the Green function and the spectral function

Aσj;j(w) = −2Im{Gσ,retj;j (w)}, (3.124)

we finally obtain the well-known equation

nj;σ =
1

2π

∫ ∞

−∞
dw nF (w)Aσj;j(w)

T=0
=

1

2π

∫ µ

−∞
dw Aσj;j(w).

(3.125)

In this formula, the spin-resolved local density, which is equivalent to the occupation of
the single-particle quantum state |j;σ〉, is the energy integral over the spectral density for
this state weighted by the Fermi function.

The functional Renormalization group provides us with the Green function Geff of
the effective system, which hopefully describes the interacting system well, and we could
use equation (3.125) and (3.124) for the numerical calculation of the local density. But
this proceeding has the disadvantage that we would have to integrate along the real axis
over a function which has many poles near the real axis. These poles are especially close,
if excitations with long lifetimes exist. Hence, we can expect that the Green function
has a restless analytical structure for real values and, therefore, the numerical calculation
along the imaginary axis in the sense of (3.121) is favourable. So let’s go back to this
equation. In the limit T = 0 the Matsubara summation 1/β

∑
kn

becomes the integral
1/2π

∫
dw over all real frequencies, and we are left with an integral along the imaginary

axis. We want to evaluate this equation numerically and, therefore, we have to deal with
the convergence factor e−w0− similar to section 2.4.4. But, neglecting the convergence
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factor of the right hand side of equation (3.121) modifies the equation only slightly, as we
will see in the following. We can calculate the occurring summation analogously to (3.122),
but we see from (3.123) that by setting eikn0− to zero the circular part with Re{w} < 0
now contributes, and we obtain

1

β

∑

ikn

Gσj;j(ikn) = − 1

2πi

∫

C1+C2
dz nF (z)Gσj;j(z)

= − 1

2πi

∫

C1+C2
dz nF (z)Gσj;j(z)ez0

+

︸ ︷︷ ︸
nj;σ

− 1

2πi

∫

C◦1+C◦2
dz nF (z)Gσj;j(z),

(3.126)

where C◦1 and C◦2 denote the circular parts of C1 and C2. The contribution of the second
term can be determined easily using nF (z)G(z)→ 1/z for |z| → ∞ and Re{z} < 0

∫

C◦1+C◦2
dz

1

z
=

(∫ π

π/2

+

∫ 3π/2

π

)
dΘ e−iΘieiΘ = iπ, (3.127)

and we obtain

nj;σ =
1

β

∑

ikn

Gσj;j(ikn) +
1

2
=

1

β

∑

ikn
kn>0

2Re{Gσj;j(ikn)}+
1

2
, (3.128)

where we used G(−iwn) = G(iwn)∗. In the limit T = 0 we finally get

nj;σ
T=0
=

1

π

∫ µ

−∞
dw Re{Gσj;j(w)}+

1

2
(3.129)

with the chemical potential µ of our system. This is the main result of this subsection and
in the following, we will use this approach for calculating the spin-resolved local density.
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Chapter 4

Quantum point contacts

In this chapter we want to discuss some general features of quantum point contacts and
introduce a common experimental realization, the split gate geometry. This will be based
on [14, chap. 5]. The most striking phenomena is the conductance quantization, that
will be explained with the non-interacting adiabatic transport model. It shows a charac-
teristic dependence on the constriction potential, we consider a saddle point potential, the
magnetic field and the temperature. For interacting QPCs an abnormal and unexplained
magnetic field and temperature behaviour of the conductance, including an additional step
at around 0.7 × G0 is observable. We introduce various experimental researches in this
field, including studies of Thomas, Kirstensen, Cronenwett, Koop and Komijani et al.
and discuss peculiarities of higher spin-degenerate subbands. At the end we introduce the
Kondo-related model of Meir et al. and the model of Lunde et al., which is based on
two-electron momentum-non-conserving scattering processes.

4.1 Introduction

One of the most striking transport phenomena in mesoscopic physics is the conductance
quantization, meaning that the conductance of every perfect transmitting mode is g0 =
e2/h, the spin-resolved conductance quantum. This quantization was predicted in 1957 by
Landauer and his famous Landauer formalism [7, chap. 7.1 & 7.2]. The first experiments
confirming the quantization were independently done by van Wees et al. [53] and Wharam
et al. [54] in 1988. For their measurements, they used one of the simplest structures in
nanophysics, a quantum point contact (QPC). This is a constriction between two extended
electron reservoirs on the length scale of nanometers. Such a constriction can experimen-
tally be realized by a split gate geometry, where a negative voltage is applied to two gates
on top of a two-dimensional electron gas. The strong transversal confinement leads to a
measurable energy splitting of the transmission modes. The lateral confinement and con-
sequently the number of transversing electron modes can be controlled by the gate voltage.
This leads to the observed staircase of conductance in units of G0 = 2g0 with respect to
the gate voltage, see figure 4.2. An important requirement for this observation is that
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the current flow of electrons between the reservoirs is ballistic, which demands that the
extension of the constriction is smaller than the coherence length of the electrons. To fulfil
this requirement for measurements in semiconductors, the temperature has to be adjusted
in Kelvin regime (T . 5K).

Besides this fundamental phenomena of conductance quantization G = N ×G0, which
can be understood in a non-interacting model, additional unexplained features arise in
experimental measurements. This includes an abnormal magnetic field dependence and an
additional intermediate step at around 0.7×G0, which becomes stronger if the temperature
increases. This shoulder like structure in the conductance trace is called 0.7 anomaly and
has already been observed in the experiments of van Wees et al. in 1988, see figure 4.2.
But, they didn’t comment on this feature and it took some time until the 0.7 anomaly
was mentioned by Patel et al. [41] in 1991. The first detailed study was done in 1996 by
Thomas et al. [49]. Many experimental measurements followed, showing that this non-
integer conductance step is a generic effect. Since that time, experimental and theoretical
physicists made a great effort to explain its physical origin. But, until now, there exists
no microscopic model which can explain all phenomena. The difficulties to explain this
anomaly is in clear contrast to its simplicity and its meaning as a key element for more
involved nanostructures. Therefore it is adjusted to speak of a ”Mesoscopic Mystery” [36].
At least, there is a scientific consensus that these conductance anomalies are caused by a
many-body phenomena. And most of the theoretical approaches assume an enhanced role
of the electron-electron interaction.

4.2 Experimental setup

One of the most common experimental manufacturing method of such quantum point
contacts is the split gate technique [14]. The basis of this technique is a two dimen-
sional electron gas (2DEG) created on the interface of two semiconductors, for example
GaAs/GaAlAs. Such heterostructures can be fabricated with atomic precision using molec-
ular beam epitaxy (MBE). The advantage of a 2DEG in a semiconductor is the long mean
free path of the electrons (< 10µm). These are comparable to the extension of the created
structures and therefore ballistic transport becomes possible. Two ohmic contacts are con-

Figure 4.1: Schematic cross-section of a split
gate geometry modelling a QPC, taken from
[52]. Between the GaAs/AlGaAs semiconduc-
tor heterostructure a two-dimensional electron gas
(2DEG) forms. By applying a negative voltage on
the gates, the electrons are depleted and a quasi-
one-dimensional gas forms between the gates. This
is the operating point for QPC studies. Transport
measurements are done by applying a bias voltage
on the ohmic contacts.
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nected on the left and right of the 2DEG, so that a voltage can be applied to it. To set
a narrow constriction on the electron current flow, two metallic gate-electrodes are put on
top. A schematic illustration of this setup can be seen in figure 4.1. By applying a negative
voltage Vg to these gates, the 2DEG underneath and around the gates are depleted and a
constriction potential develops. The width of this constriction can accurately be controlled
via the gate voltage Vg. Also, its length is influenced by the voltage and becomes longer if
Vg is more negative. For sufficient high values a quasi one-dimensional electron gas forms
between the gates. Often, an additional gate, which spans over the whole 2DEG, is in-
stalled on top or back 1. By the applied voltage on this top/back gate, the electron density
of the electron gas is controlled.

4.3 Conductance quantization

In this experimental setup a staircase of the conductance in units of G0 with respect to
the applied gate voltage can be observed for sufficient low temperatures and sufficient
negative gate voltages. In figure 4.2 we can see the experimental measurements of van
Wees [53] revealing the staircase of G. The simplest theoretical model which inherits this
phenomena is the non-interacting adiabatic transport model [7, 14, chap. 7.3.1, 5.1.1]. The
general structure of the conductance steps can also be understood in this non-interacting
model, under the assumption of a saddle point form of the constriction potential. And
experiments with split gate geometries show good agreements for this potential form [14].
For a better understanding of the experimental observations in section 4.4, we will also
discuss the magnetic field and temperature dependence in the non-interacting model.

Figure 4.2: Point-contact conduc-
tance as a function of the gate volt-
age measured by van Wees et al. [53].
With increasing negative gate volt-
age and decreasing width of the con-
striction, the transmitting transver-
sal eigenmodes are successively sup-
pressed. For each suppressed transmis-
sion mode the conductance lowers by
the conductance quantum G0.

1The additional top/back gate isn’t illustrated in figure 4.1.
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4.3.1 Adiabatic transport model

We consider coherent non-interacting electrons in a two-dimensional space, propagating
through a constriction described by the potential Vcstr(x, y). The corresponding two-
dimensional stationary Schrödinger equation is

[
− 1

2m

(
∂2
x + ∂2

y

)
+ Vcstr(x, y)

]
ψ(x, y) = E ψ(x, y). (4.1)

We assume that ψ can be expanded in longitudinal and transversal eigenfunctions, such
that ψ (x, y) =

∑
n φn(x)χn,x(y) holds, where the transversal eigenfunctions χn,x(y) and its

eigenvalues εn(x) depend on the longitudinal position x. Inserting this expansion into the
Schrödinger equation and using the completeness of χn,x provides

∫
dy χ∗n,x(y)

[
− 1

2m

(
∂2
x + ∂2

y

)
+ Vcstr(x, y)

]∑

m

φm(x)χm,x(y) = Eφn(x), (4.2)

⇐⇒
[
− 1

2m
∂2
x + εn(x)

]
φn(x) +

∑

m

Bnmφm(x) = Eφn(x), (4.3)

where the operator Bnm consists of two terms proportional to the first and second deriva-
tives of χm,x(y) with respect to x. This operator induces intersubband transitions of the
longitudinal modes. In this model the possible transitions are neglected and, hence, the
operator is set to zero, Bnm ≡ 0, which reproduces good results if ∂xχm,x(y) ≈ 0. Consid-
ering the example of a hard-wall potential in transversal direction, in explicit Vcstr (x, y) =
limV→∞ VΘ (|y| − d(x)/2), the approximation is equivalent to d′(x)� 1. We conclude the
underlying assumption of this approximation is an in longitudinal direction weak varying
constriction potential Vcstr, such that the transversal eigenstates χn,x evolve smoothly into
the eigenstates χn,x′ without any transitions. With this, so called adiabatic approximation,
we obtain an effective 1D problem of decoupled modes

[
− 1

2m
∂2
x + εn(x)

]
φn(x) = Eφn(x). (4.4)

The influence of the transversal part of our system has been absorbed into an effective
barrier εn(x). In our previous example of a hard-wall potential in transversal direction,
this is [7, equ. 7.54]

εn(x) =
~2π2

2m[d(x)]2
n2. (4.5)

Assuming a smooth potential along the x-direction, so that a WKB-approximation for the
longitudinal eigenstates of the form

φn(x) ≈ φWKB
n (x) =

1√
p(x)

exp

(
i

∫ x

−∞
dx′ k(x′)

)
with k(x) =

√
2m(EF − εn(x)) (4.6)
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are possible. One can show that the transmission amplitude is one, if the Fermi energy
EF is greater than the maximal value εmaxn of the effective potential barrier εn(x). Other-
wise only tunneling processes are possible, and the transmission probability of this mode is
strongly suppressed. If the energy difference is strongly negative, in explicit EF−εmaxn � 0,
the transmission probability of this mode is just zero and doesn’t contribute any longer
to the conductance. Neglecting tunneling processes, only subbands with an effective en-
ergy barrier smaller then EF contribute with G0 to the conductance. And we obtain the
following formula

G = G0

∑

n

Θ(EF − εmaxn ). (4.7)

The width of the constriction can be changed by the gate voltage Vg and, thereby, εmaxn of
every subband n. If Vg is made less negative, the width becomes larger and, hence, εmaxn

becomes smaller. At some point εmaxn < EF holds and this mode begins to transmit. This
leads to the conductance staircase in units of G0 with respect to the gate voltage.

The WKB-approximation breaks down when EF = εmaxn and a new channel opens.
For higher gate voltages, tunneling through the constriction potential takes place and a
smooth crossing from one conductance step to another is observed. The exact form of this
transition is in contrast to the height of the step not universal and depends on the specific
form of the constriction potential. In the following section, we will use a saddle point
potential and discuss in which way the transition depends on the potential parameters.

4.3.2 Saddle point model of the constriction

To determine the exact potential form of the constriction Vcstr we would have to solve a
complicated three-dimensional Poisson equation including electrostatic effects of the gates.
This equation was solved, under the assumption of a dielectric material, and leads to
a complicated functional dependence of Vcstr with respect to the width and gap of the
electrodes and their vertical distance to the two dimensional electron gas. But its solution
shows that for appropriate bias voltages the constriction has the form of a saddle point,
compare [14, p. 251 ff.]. An alternative justification of such a model provides a Taylor
expansion in the middle of the constriction. If we neglect higher orders, the expansion has
a saddle-point form due to the symmetry of the QPC geometry. Therefore, we consider
the constriction potential

Vcstr(x, y) = Ṽg +
1

2
mw2

yy
2 − 1

2
mw2

xx
2, (4.8)

where Ṽg is the height of the potential at the center (0, 0). The electrons are confined in
transversal direction by a harmonic potential, and in longitudinal direction they have to
pass a parabolic barrier. The potential Vcstr depends smoothly on Ṽg, which is related to
the gate voltage via Ṽg = −γ|e|Vg, where γ is the capacitive coupling between the gates
and the QPC. If we make the gate voltage more negative, the width of the constriction
becomes smaller, the minimum of the saddle point potential raises and the whole constric-
tion becomes longer. The subband energies in a non-interacting system with a saddle point
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Figure 4.3: Influence of the ratio wy/wx on the linear conductance of a non-interacting saddle-
point model, taken from [9]. In the figure is V0 = Ṽg. Left panel: Single-channel transmission
probabilities Tnn and the conductance G =

∑
n Tnn as function of (E − Ṽg)/~wx for a ratio of

wy/wx = 3. Right panel: Conductance as a function of (E − Ṽg)/~wx for different ratios wy/wx
from 0 up to 5 in increments of 0.25.

potential are given by

En(x) =

[
n+

1

2

]
~wy +

~2k(x)2

2m
. (4.9)

The oscillator frequency wy determines the subband splitting and, hence, the averaged
distance between two conductance steps, see the left panel of figure 4.10. The quantity
wx determines the curvature of the parabolic barrier and the width for a fixed Ṽg. If wx
is large, then the barrier is very narrow around the Fermi energy and tunneling processes
have a great influence on the conductance. In this case the steps are greatly smeared out
and the staircase may even become a straight line. Quantitatively, this behaviour can be
seen by the calculated transmission probability of the saddle point model [9]

Tnn(E) =
1

e−2πẼn/~wx + 1
with Ẽn = E − ~wy (n+

1

2
)− Ṽg, (4.10)

which has the form of a Fermi function. The resulting conductance G = G0

∑
n Tnn is

plotted in figure 4.10 versus (E − Ṽg)/~wx. In the right panel we can observe that the
proportion between the width of a conductance plateau and the transition of the plateaus
is determined by the ratio wy/wx. In these plots the transition width is fixed due to the
energy scaling. Therefore, the basic structure of this conductance staircase is defined by
this ratio.
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4.3.3 Magnetic field dependence

In the following section we want to consider a magnetic field B applied in longitudinal
direction, parallel to the current flow. Therefore, no orbital effects occur and the magnetic
field shifts the energy of the electrons, due to Zeeman splitting. The spin-dependent
Zeeman term reads

∆H = σgµBB/2, (4.11)

where µB = ~/2mc is the Bohr magneton and g the g-factor. Depending on the spin direc-
tion and the g-factor, the electron energy is either increased or lowered. For electrons in
vacuum g = 2 holds. But the g-factor is not a universal constant, in fact, in semiconductor
heterostructures, it varies widely, due to quantum mechanical addition of spin and angular
momenta. The g-factor can also be negative, an example is g = −0.44 for bulk GaAs [14,
p. 114]. In the following, we assume a negative factor. Therefore, the energy of electrons
with parallel/antiparallel (σ = ±1) spin projection with respect to the magnetic field are
shifted by ∓|g|µBB/2. Using the adiabatic non-interacting model, this means that the
electrons in each transport channel feels a shifted effective potential, see (4.5),

εn,σ(x) = εn(x)− σ |g|µBB
2

. (4.12)

Therefore, the spin-down electron of a certain transmission mode can pass the barrier before
the spin-up electron. We conclude, every conductance plateau evolves into two spin-non-
degenerate plateaus by applying a parallel magnetic field. Where the position of these
spin-non-degenerate plateaus are symmetric around the pinch-off of the spin-degenerate
plateau with an energy splitting of ∆Vg = σ|g|µBB/2.

4.3.4 Temperature dependence

The last feature we want to discuss in the non-interacting model is the temperature de-
pendence of the conductance quantization. The temperature behaviour can be understood
by the well-known Landauer formula [11, equ. 2.5.7]

I = G0

∫ ∞

−∞
dE

∑

n

Tnn(E) (f(E − µ1)− f(E − µ2)) , (4.13)

where f is the quasi-equilibrium distribution function. We assume that this function can
be approximated by the Fermi function, f ≡ nF . For calculating the conductance in linear
response with G = limµ1→µ2 I/(µ1 − µ2), we can use that

lim
µ1→µ2

nF (E − µ1)− nF (E − µ2)

µ1 − µ2

= −dnF (E)

dE
(4.14)

holds. And considering a transmission coefficient of the form Tnn(E) = Θ(E − Emin
n ),

where Emin
n is the minimum of the subband n, this provides

G = G0

∑

n

1

e−(EF−Eminn )/kBT + 1
Θ
(
EF − Emin

n

)
. (4.15)
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Figure 4.4: Temperature and magnetic field dependence of the 0.7 anomaly, taken from [49].
Left panel: Linear conductance as a function of the gate voltage for four temperatures in the
range of T = 0.07− 1.5K. Right panel: Linear conductance as a function of the gate voltage for
B = 0− 13T in intermediate steps of 1T .

Therefore, the contribution of all modes to the conductance is just modified by the Fermi
function nF (Emin

n ). The temperature leads to a smearing of the conductance steps and
they disappear if the thermal energy kBT becomes equivalent to the subband splitting.
Comparing (4.10) with (4.15) reveals the same functional structure of G, where kBT =̂
~wx/2π and Emin

n =̂ ~wy (n + 1/2) − Ṽg. And we conclude that the effect of temperature
is the same as the effect of tunneling processes through a saddle point potential.

4.4 Conductance Anomalies

Besides these fundamental non-interacting phenomena, we explained in the last section,
additional unexplained features arise in experimental measurements. The most striking
ones are an additional intermediate step at around 0.7 × G0, which becomes more pro-
nounced for evaluated temperatures, and an anomalous magnetic field dependence, where
the spin-degenerate plateaus evolve from above into the spin-resolved plateaus for increas-
ing magnetic fields. These experimentally observed phenomena are highly in contrast to the
behaviour in a non-interacting system and, until now, they are not understood. Therefore,
we call them conductance anomalies.

4.4.1 Experimental Observations

The assumption of an enhanced role of the electron-electron interaction in quantum point
contact geometries is strengthened by the experiments of Thomas et al. [49, 48]. The au-
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Figure 4.5: Influence of the electron density
of the 2DEG on the 0.7 anomaly, taken from
[48]. In the upper panel (a) the temperature
is fixed T = 60mK and the 2DEG density is
reduced from left to right from 1.4×1011cm−2

to 1.1× 1011cm−2 in steps of 1.8× 109cm−2.
In the bottom panels (b) and (c) the 2DEG
density is fixed and the temperature is varied
from 100mK to 1.2K in steps of 0.1K.

thors showed that a decreasing electron density of the 2DEG strengthens the 0.7 anomaly,
see figure 4.5. For a decreasing electron density the electron-electron interaction becomes
stronger, due to a reduction of the screening. They also found that with increasing tem-
perature the intermediate step becomes more pronounced, see left pattern of figure 4.4,
which is in clear contrast to the non-interacting case and most mesoscopic phenomena, like
Coulomb blockade or quantum interference [14]. They also investigated the influence of
a large in-plane magnetic field. Their measurements shows that the 0.7 anomaly evolves
smoothly from above into the first spin-resolved conductance plateau 0.5 × G0, compare
figure 4.4 right pattern. This behaviour stands highly in contrast to the non-interacting
case we described in 4.3.3. Therefore, the authors suggested that the 0.7 anomaly may be
induced by a symmetry breaking of spin-up and spin-down electrons persistent even for
B = 0.

Numerous experiments on the physical origin of the conductance anomaly followed.
Kirstensen et al. [21] investigated the anomalous temperature dependence in more details
and obtained experimental evidence that the 0.7 anomaly is associated with an electron
density-dependent energy difference between the chemical potential and an anomalous
subband edge, which is of order of some Kelvin. The authors suggested that this energy
gap may be the consequence of a possible breaking of spin degeneracy in the QPC. Based
on this assumption, Reilly et al. introduced a phenomenological model that describes the
detailed shape and position of the 0.7 anomaly by the rate at which this spin gap opens for
decreasing gate voltage [44, 43]. This model is in striking agreement with the experimental
dependence on temperature, magnetic field, source-drain bias and potential profile.

Graham et al. reported on experimental measurements of the QPC conductance in
high in-plane magnetic fields, such that the Zeeman energy is equal to the 1D subband
spacing [16]. This means the spin-split subbands of two neighbouring spin-degenerate
subbands intersects, for example 1 ↑ with 2 ↓. In this intersection region they found a
spontaneous spin splitting giving rise to an additional ”0.7 anomaly”-like structure in the
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Figure 4.6: Influence of a perpendicu-
lar magnetic field on the conductance and
differential conductance of a hole QPC,
taken from [24]. Upper panel: Linear con-
ductance G as a function of Vg for different
perpendicular mangetic fields, from B =
0T to B = 13T , for (a) T = 800mK and
(b) T = 100mK. Bottom panel: Differen-
tial conductance dI/dVsg at T = 100mK
for (c) B = 2T [third trace from the top
of the panel (b)] and (d) B = 10T [third
trace from the bottom on the panel (b)].
Note the different color scales for the bot-
tom panels.

conductance, which evolves from the 1.5G0 plateau. Hence, the authors suggested that
such a spontaneous spin splitting occurs whenever two subbands of opposite spin cross.

The experimental work of Cronenwett et al. [10] gives a different viewpoint of the
anomalous conductance behaviour. Their measurements exhibit several coinciding char-
acteristics of the 0.7 anomaly and the Kondo effect in quantum dots. This includes a
zero-bias peak in the differential conductance, which splits in an in-plane magnetic field
equivalent to a Kondo system out of equilibrium [51]. The authors further demonstrated
the possibility to scale the temperature dependence of the QPC to a modified Kondo form

G = G0
1

1/2 f(T/TK) + 1/2
with f ∼

[
1 + (21/s − 1) (T/TK)2

]−0.22

, (4.16)

by introducing an appropriate Kondo temperature TK . This behaviour is surprising, be-
cause for Kondo-like physics one would expect some sort of localized magnetic moment in
the QPC.

Recent experiments with QPCs have also been performed in two dimensional hole
gases (2DHG). These p-doped systems have the advantage that the Coulomb interaction
between the carriers are stronger compared to n-doped systems. The reason is the much
higher effective mass of holes compared to electrons.

Komijani et al. performed experiments in such a hole QPC with a magnetic field applied
perpendicular to the 2DHG [24]. There are only a few publications about QPC studies
using a perpendicular magnetic field orientation. Besides the energy splitting of the spin
subbands, the authors emphasize the effect of this field orientation by two processes. First,
the orbital part of the resonant wavefunctions shrinks and, second, the amplitude of the
carrier density around the bare QPC potential is largely enhanced in high fields. In their
measurements, the authors found a ”0.7 anomaly”-structure which evolves smoothly into
a Coulomb resonance-like peak at high perpendicular magnetic fields, see figure 4.6 upper
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Figure 4.7: Energy splittings as a function of
the magnetic field, taken from [26]. Left/right
panel: Energy splittings ∆E versus magnetic field
B at T = 200mK for a QPC with length L =
300/250nm and width W = 400/350nm for sub-
bands N = 1, 2, 3. Inset: Micrograph of one QPC
out of a device containing 8. L is defined as the
width of the gate electrodes and W as the space
between them.

panel. This evolution is accompanied by a Coulomb blockade diamond 2 in the finite bias
conductivity, see figure 4.6 bottom panel. These experimental observations are robust with
respect to a lateral electric field and thermal cycling. Komijani et al. interpreted these
results as an evidence of the importance of a quasi-localized state in the QPC and Coulomb
blockade physics for the origin of the 0.7 anomaly.

4.4.2 Higher conductance plateaus

Up to now, we have concentrated on the 0.7 anomaly occurring at around 0.7 × G0. In
the following subsection, we want to rise our attention to higher spin-degenerate subbands
N > 1, where N labels the subbands and starts with the lowest subband.

The presented results are based on the studies of Koop et al. [25, 26], who investigated
the influence of device geometry on the many-body effects in quantum point contacts.
Therefore, QPCs with different widths L and distances W of the split gates were used,
see the inset of figure 4.7. Koop et al. studied among others the energy splitting ∆E
between spin-up and spin-down levels, see figure 4.7, which can be determined by the
gate voltage difference of the peaks in the transconductance traces dG/dVg, where a peak
indicates the onset of transport through a subband, compare figure 4.9 bottom panel. For
the lowest subband N = 1 an energy offset ∆E0.7 (≈ 0.5meV ) at zero-magnetic field
is observable, which indicates the appearance of the 0.7 anomaly. This is in contrast to
higher submodes. For N = 2, 3, no clear zero-field splitting occurs and only a slightly
flatter conductance trace, compared to the expectations for a non-interacting model, is
observable. Other researches report about an analogous 1.7 anomaly around 1.7×G0 for
certain QPCs devices [45], which are based on experimental measurements where a finite
zero-field splitting was reported [48]. But also these measurements don’t show a second
peak in the transconductance trace of the second spin-degenerate subbmode for B = 0T ,
as can be seen in the right panel of figure 4.8. For the third subband N = 3 the zero-field
splitting is strictly zero.

Another difference of the first and higher conductance plateaus is the temperature de-
pendence. In figure 4.9, the linear conductance G and transconductance dG/dVg versus Vg

2An introduction of Coulomb diamonds in a single-electron transistor can be found in [38] chapter 3.2.2.
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transconductance dG/dVg �obtained by numerical differen-
tiation of the conductance� at the gate voltage where there is
a step in G(Vg). There is a crossing of adjacent transconduc-
tance peaks when eVsd��EN ,N�1, where �EN ,N�1 is the
energy separation between the N and N�1 subbands.18 A
doubling of the transconductance peaks can also be brought
about using a strong in-plane magnetic field to lift the spin
degeneracy of the 1D subbands. The g-factor can be deter-
mined by comparing the voltage Vsd required to produce the
same amount of splitting as the magnetic field, and compar-
ing the two energy scales14

eVsd�2g ��BB �S . �1�

This technique is valid if the transconductance peak split-
tings are linear in both B � and Vsd .
All conductance characteristics have been corrected for a

series resistance (RS) that is typically less than 2 k�; this
includes contributions from the 2DEG, the contact resis-
tances between the Ohmic contacts and the 2DEG, and the
wires down the probe. Series resistance corrections have also
been applied to the source-drain measurements.

IV. RESULTS

A. Zero-field conductance characteristics

Figure 1 shows the gate characteristics G(Vg) of sample
C at 60 mK. As the gate voltage Vg is made negative the
2DEG beneath the split-gates is depleted at Vg��0.9 V,
giving a sharp drop in the conductance shown in the overall
characteristics in Fig. 1�b�. Once the 1D channel is defined,
further decreases of Vg narrow the channel and reduce the
carrier density in the vicinity of the constriction; as a result
the 1D subbands are depopulated and the conductance de-
creases in steps of 2e2/h . The constriction pinches off at
Vg��5.75 V, when all the 1D subbands are depopulated.
Overall, there are 25 well-resolved conductance plateaus; the
last 15 are shown in the main figure, after correction for a
series resistance of RS�703 � . The plateaus are quantized
at N(2e2/h) to within 1% accuracy.
In addition to the usual quantized conductance plateaus,

there is a structure at 0.7(2e2/h), seen in all samples. This is
shown in Fig. 2 for two devices, one based on a quantum
well �sample F�, and the other on a standard heterojunction
�sample D� measured at T�1.5 K. The 0.7 structure is not as
precisely quantized as the conductance plateau at 2e2/h , but
is observed in the range 0.65�0.75(2e2/h).
The 0.7 structure has distinctive dependences on carrier

density and temperature. Figure 3�a� shows the gate charac-
teristics G(Vg) of sample E for different 2D carrier densities.
As n2D is decreased from 1.4 to 1.1�1011 cm�2 using the
back gate, the pinch-off voltage becomes more positive. At
the highest density, shown in the left hand trace, the 0.7
structure is visible only as a weak knee in the gate charac-
teristics, which develops into a stronger structure as n2D is
reduced. Figure 3�b� shows the conductance G(Vg) at
n2D�1.3�1011 cm�2 as the temperature is raised from 0.1
to 1.2 K in steps of 0.1 K. The pinch-off voltage remains
independent of temperature. The plateau at 2e2/h becomes
thermally smeared at the highest temperature, whereas the
0.7 structure becomes stronger, in agreement with previous

measurements4 of sample B. Figure 3�c� shows the tempera-
ture dependence at n2D�1.0�1011 cm�2; at this lower elec-
tron density the more prominent 0.7 structure is less sensitive
to temperature. At higher temperatures, T�10 K, the 0.7
structure disappears; we tentatively ascribe to the structure a
characteristic energy of order 1 meV.
By applying different voltages to the two arms of the

split-gate the 1D channel can be moved laterally,19,20 allow-
ing the electrostatic potential landscape between the split-
gates to be scanned. Figure 4 shows the conductance charac-
teristics obtained when the two arms of the split-gate are
swept together, but maintaining a constant voltage difference
�Vg between them. A change of �Vg from 0 to 1.3 V moves
the channel by 80 nm; the plateau at 2e2/h is unaffected by
the shift �as are the higher index plateaus� showing that the
constriction is free of impurities. In this sample the 0.7 struc-
ture occurs at 0.65(2e2/h), and is also unchanged by the
lateral shift of the channel.

FIG. 2. Conductance characteristics of 1D constrictions defined
in �a� a quantum well, and �b� a conventional heterostructure.

FIG. 3. �a� The 0.7 structure in sample E at 60 mK going from
left to right n2D is reduced from 1.4�1011 cm�2 (Vbg�60 V� to
1.1�1011 cm�2 (Vbg��110 V� in steps of 1.8�109 cm�2. The
temperature dependence of the 0.7 structure, in steps of 0.1 K, at �b�
n2D�1.3�1011 cm�2 and �c� 1.0�1011 cm�2.
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B. Magnetic field dependence

A strong in-plane magnetic field B � lifts the spin degen-
eracy of the 1D subbands giving conductance plateaus quan-
tized in units of e2/h . Figure 5 shows how the transconduc-
tance peaks in sample D split as B � is increased in steps of 1
T. As previously observed4 in sample A, there is an overall
parabolic shift of the gate characteristics with B � that can be
attributed to a diamagnetic shift of both the 1D and 2D sub-
band edges.21 Satellite peaks, marked with an asterisk (*)
and a solid bullet (�), corresponding to the conductance
structures at 0.7(2e2/h) and 1.7(2e2/h), grow out of the
right hand shoulders of the zero-field transconductance
peaks. At the highest magnetic field, B ��16 T, the transcon-
ductance peaks have roughly equal integrated areas, with the
zeros between them corresponding to the conductance pla-
teaus quantized in units of e2/h . The Fig. 5 inset shows the

voltage splitting �Vg(B �) for the first three subbands. The
Zeeman splittings are linear in B � , and at zero field the peak
separation �Vg(0) is finite for both N�1 and 2; this dem-
onstrates that the zero-field 0.7 structures evolve continu-
ously into spin-split half-plateaus as the magnetic field is
increased. By comparing �Vg(0) to a Vsd-induced splitting,
we estimate the zero-field energy gap as �1�1.1 meV for
the lowest subband, and �2�0.43 meV for N�2. In our
previous measurements4 of sample A we measured a zero-
field gap �1�1 meV. In measurements of samples A and D
the energy �1 is comparable to the temperature at which the
0.7 structure smears out.
From the splitting of the transconductance peaks in B � and

Vsd , Eq. �1� is used to determine the g factors for all 1D
subbands.22 Figure 6 shows g � measured as a function of
subband index N for three different samples, as well as
showing results for sample A at two different magnetic
fields. When the channel is wide and there are many 1D
subbands, the measured g � is close to the bulk GaAs value23
�g��0.4. As the number of occupied 1D subbands decreases
there is an enhancement of g � .

C. The effect of a source-drain voltage Vsd
The effect of a source-drain voltage Vsd on the conduc-

tance characteristics G(Vg) has been studied in detail in Ref.
14. As Vsd is increased, half-plateaus appear at
(N� 1

2 )2e2/h for G�2e2/h , whereas Vsd-induced structures
appear at 0.85(2e2/h) and 0.3(2e2/h) for G�2e2/h . The
gate voltage scale is a smooth measure of the 1D confine-
ment energy, so a greyscale plot of the transconductance
�similar to those presented in Ref. 17� allows us to follow the
energy shifts of subband features. Figure 7�a� shows how the
gate voltage positions of transconductance features for the
lowest three subbands move as a function of Vsd at T�1.4
K. The dark lines show transitions between plateaus and the
white regions are the conductance plateaus �where the num-
bers denote the conductance in units of 2e2/h). Features
moving to the right �left� with increasing Vsd do so as the
electrochemical potential of the source �drain� crosses a sub-
band edge, and if the subband energies were independent of
their occupation we would expect a linear evolution of the

FIG. 4. Lateral shifting of the channel in sample B at T�60
mK, using an offset voltage �Vg between the two arms of the
split-gate. Each time �Vg is incremented by 0.1 V, the center of the
1D channel is shifted by 6.2 nm.

FIG. 5. The transconductance dG/dVg of the first three sub-
bands of sample D as B � is incremented in steps of 1 T. The peaks
indicated with an asterisk (*) and a solid bullet (�) show the
conductance features at 0.7(2e2/h) and 1.7(2e2/h) at B ��0 T. The
inset shows the magnetic field induced gate voltage splittings,
�Vg(B �), for subband indices N�1, 2, and 3. The solid lines are
least-squares linear fits to the data.

FIG. 6. The in-plane g factor g � as a function of subband index
N . The dashed line at �g��0.44 indicates the g factor for bulk
GaAs.
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Figure 4.8: Transconductance traces and linear conductance as a function of the gate voltage,
measured by Thomas et al. and taken from [48]. Left panel: the conductance trace defined in
a quantum well (a) and a conventional heterostructure (b). Transconductance traces dG/dV for
N = 1, 2, 3 and different in-plane magnetic fields from B = 0T to B = 16T in increments of 1T ,
where the insets show the resulting energy splitting ∆E.

is plotted for different magnetic fields and different temperatures. For increasing temper-
atures, the structure of the spin-degenerate and spin-resolved plateaus weakens, because
of thermal smearing, until they vanish almost completely at T = 2.8K. The opposite
behaviour holds for the intermediate step of the 0.7 anomaly, it strengthens and is the only
surviving structure for T = 2.8K.

The magnetic field behaviour of the different spin-degenerate subbands is quite the
same, the conductance plateaus evolve smoothly from above into the corresponding spin-
resolved plateaus. For higher magnetic fields, ∆E becomes linear in B, equivalent to the
usual Zeeman effect, with the difference of a high-field offset ∆Ehfo if the linearization is
extended to B = 0T . Therefore, an effective g-factor |g∗| can be defined in the high-field
regime via µB|g∗| = d∆E/dB. This effective g-factor is strongly enhanced and has values
up to three times the g-factor for bulk 2DEG material. This enhancement can be explained
by an exchange interaction [19, 40]. Calculations and experiments, see [25] and references
therein, show that the effective g-factor decreases, if the transverse confinement weakens.
This implies that for a harmonic potential |g∗| scales as the subband spacing ~w12. For
higher subband indexes N , the confinement weakens and, hence, the effective g-factor is
supposed to decreases.

The authors also investigated the dependence of ∆E0.7 and ∆Ehfo on the QPC geometry
parameters L and W . They understand the high-field offset ∆Ehfo as determinant of a
”field-independent exchange effect that results from each subband being in a ferromagnetic
spin-polarized state” [25]. They found that these splittings depend irregularly on the
parameters L, W and show a striking correlation for N = 1. This correlation is said
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Fig. 5 a Differential conductance G as a function of gate voltage Vg at
450 mK, for a QPC with L = 300 nm and W = 400 nm. The in-plane
magnetic field is increased from B = 0 T to B = 9 T. b Transcon-
ductance dG/dVg traces (offset vertically for clarity) obtained by

differentiating the data in (a). The conductance G and transconduc-
tance dG/dVg as in (a), (b) are shown for T = 825 mK in (c), (d), for
T = 1.5 K in (e), (f) and for T = 2.8 K in (g), (h)

of magnetic field for temperatures T = 450 mK, 825 mK,
1.5 K and 2.8 K (see also Figs. 1a and 2a for the 200 mK
data). As the temperature is increased the spin-degenerate
plateaus and the spin-resolved plateaus both become less
pronounced due to thermal smearing. In high magnetic
fields, the spin-resolved plateaus increase slightly in conduc-
tance with increasing temperature. At even higher tempera-
tures, the plateau at 0.7(2e2/h) is the last remaining feature
in the differential conductance. Notably, here the 0.7 anom-
aly appears to be present over the whole range of magnetic
fields. The corresponding transconductance traces dG/dVg

are plotted in Fig. 5e–h. As a result of the thermal smear-
ing of the conductance plateaus, the peaks in dG/dVg be-
come broader and decrease in height. The zero-field splitting
in the transconductance peak for N = 1 has been identified
as the 0.7 anomaly. When the temperature is increased, the
0.7 anomaly becomes more pronounced as was shown in
the temperature dependence of the differential conductance
G presented in Fig. 1d. Consequently, the zero-field split-
ting in Fig. 5e–h also increases. For T = 825 mK and 1.5 K
(Fig. 5f, g) even a small zero-field splitting of the N = 2
transconductance peak can be observed, suggesting the ap-
pearance of a 1.7(2e2/h) plateau [6].

Using the temperature dependence of !E data (Fig. 6a),
we find that the correlation between !E0.7 and !Ehfo re-
mains intact at higher temperatures (Fig. 6c). Figure 6b
shows that |g∗| has a very different temperature dependence.

This indicates that the g-factor enhancement and the 0.7
anomaly arise from different many-body effects.

4.3 Kondo Signatures

The appearance of the 0.7 anomaly has been related to a
peak in the differential conductance as a function of source-
drain voltage around zero bias, for G values around e2/h.
Earlier work [13] showed that this zero-bias anomaly
(ZBA), and its temperature and magnetic field depen-
dence, have a very striking similarity with electron transport
through a Kondo impurity that can studied with quantum
dots [31, 32]. For quantum dots, the Kondo effect is a many-
body interaction of the localized electron(s) inside the dot
with the delocalized electrons in the leads connected to the
dot [13, 31–33]. Together these electrons form a spin-singlet
state, effectively screening the local spin on the dot. In con-
trast to a quantum dot, where there is a clear localized state,
a QPC is an open system where the formation of a bound
state is much less obvious. A recent theoretical result [12]
has shown that a self-consistent many-body state can indeed
form inside a QPC, and that this can result in Kondo-like
physics.

In this section, we present the measurements of this ZBA
in our set of QPCs. Most of our QPCs showed a clear ZBA in
nonlinear conductance measurements. The temperature and
magnetic field dependence of this data (Fig. 7a–d) is consis-

Figure 4.9: Linear conductance and transconductance traces as a function of the gate voltage,
taken from [25]. Upper panels: Linear conductance G versus gate voltage Vg for different in-
plane magnetic fields from B = 0T to B = 9T , measured in a QPC with L = 300nm and
W = 400nm . Bottom panels: Transconductance dG/dVg traces derived from the upper panels.
The temperature is varied form the left panels (a), (b) to the right panels (g), (h), with T =
0.45, 0.825, 1.5 and 2.8K.

to provide evidence that the spontaneous splitting of the 0.7 anomaly is dominated by
this exchange splitting, which causes the offset of ∆Ehfo. The same analysis for higher
subbands N = 2, 3 provides a significantly smaller and often almost vanishing high-field
splitting, that is in agreement with the almost completely vanishing zero-field splitting.

The correlation between ∆E0.7 and ∆Ehfo is persistent for higher temperatures and has
a very different temperature behaviour compared to |g∗|. Therefore, the authors concluded,
”this indicates that the g-factor enhancement and the 0.7 anomaly arise from different
many-body effects” [25].

4.4.3 Microscopic models

There are numerous theoretical approaches to explain the physical origin of the anomalous
conductance behaviour in QPC geometries. Most of them are based on the electron-
electron interaction. Several authors suggested a spontaneous spin splitting, which is even
persistent for zero magnetic field [49, 48, 21, 44, 43]. Other microscopic models are based
on electron back-scattering from acoustic phonons [46], the formation of Wigner crystal
formation [30] or a dynamical Coulomb blockade [8]. Just to name a few of them, compare
the introduction of Koop [25]. In the following, we want to introduce two theoretical
approaches more precisely, the Kondo related model of Meir et al. and the model of Lunde
et al., which is based on momentum-non-conserving e-e scattering processes.

The Kondo related model of Meir et al. [34, 45, 33], which is motivated by the work of
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our use of the Anderson model. SDFT is applied within
the local-density approximation [20,21]. The external
potential consists of a clean quantum wire with a para-
bolic confining potential of V0

wire!y" # !1=2"m$!2
yy2 and a

QPC potential

VQPC!x; y" # V!x"=2%m$&V!x"= !h'2y2=2; (6)

where V!x" # V0= cosh2!!x", with ! # !x

!!!!!!!!!!!!!!!!!

m$=2V0

p

. A
contour plot of the QPC potential VQPC!x; y" is shown in
the left inset of Fig. 3(b).

We solve the Kohn-Sham equation [20] using the ma-
terial constants for GaAs, m$ # 0:067m0 and " # 13:1.
The external confinement in the y direction in the wire
is fixed by !h!y # 2:0 meV. The parameters for the
QPC potential are taken to be V0 # 3:0 meV and
!h!x # 1:5 meV.

Figure 3(a) shows the spin-dependent, self-consistent
QPC barriers at T # 0:1 K obtained from SDFT [22].
The local density of states #!$" at the center of the QPC
is shown for both spin-up and spin-down in the right
inset. Figure 3(b) shows the average 1D electron density
through the QPC and the net density of spin-up electrons.
The integrated spin-up density is 0.96 electrons. The data
from SDFT gives strong evidence for a quasibound state
centered at the QPC: there is a resonance in the local
density of states #!$" for spin-up, with a net of one spin

bound in the vicinity of the QPC. The transmission co-
efficient T!$" for electrons in the lowest subband is shown
in the left inset to Fig. 3(a). Transmission for spin-up is
approximately one over a broad range of energies above
the spin-up resonance. This implies an onset of strong
hybridization at energies above the quasibound state. As
the external QPC barrier becomes flatter in the x direc-
tion, the width of the quasibound state, and consequently
the Kondo temperature, decrease [22], consistent with
experimental observations that the ‘‘0.7 plateau’’ de-
creases towards 0.5 with increasing QPC length.

We have presented a microscopic Anderson model,
supported by spin-density-functional theory, for trans-
port through a quantum point contact. The anomalous
0:7!2e2=h" plateau is attributed to a high background
conductance plus a Kondo enhancement. The temperature
scales for these two contributions are decoupled: 0 $ 1
valence transitions account for the background conduc-
tance, while 1 $ 2 valence transitions give the dominant
Kondo effect. Based on this model one can make specific
experimental predictions. A strongly spin-polarized cur-
rent is predicted when the Zeeman splitting exceeds both
kBT and kBTK. The predicted formation of a bound state
(local moment) can be directly tested by measuring
transport through two parallel point contacts, coupled
capacitively, with one of them tuned to G ’ e2=h, i.e., in
the region of maximal sensitivity to its environment.
When the gate voltage controlling the other point contact
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FIG. 2. Differential conductance dI=dV for the Kondo model.
(a) dI=dV versus bias at Fermi energies "F # 0:1; 0:03; 0:01
from the top group to the bottom. For each chemical potential
curves are shown for temperatures T # 0:06; 0:1; 0:2; 0:4 from
top to bottom. All other parameters are the same as in Fig. 1.
Inset: experimental differential conductance [11]. (b) dI=dV in
magnetic fields with Zeeman splitting " # 0; 0:04; 0:07; 0:1 at
T # 0:06, and % # 0:04. Inset: experimental differential con-
ductance at different magnetic fields [11]. (c) Spin conductance
d!I# ( I""=dV as a function of magnetic fields, for several
values of "F.
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FIG. 1. Results of the Kondo model. (a) Conductance at
temperatures T # 0:05; 0:1; 0:2; 0:6 (solid curves, from high
to low) as a function of Fermi energy "F (all energies in units
of j"0j). The parameters are U # 1:45;&V2

1 # 0:12;&V2
2 #

0:015, and ' # 0:02. Right inset: experimental conductance
of QPC at four different temperatures [11]. Center inset:
Schematic of the band structure for our Anderson model.
(b) Conductance in a magnetic field, for Zeeman splitting " #
0; 0:07; 0:12; 0:4 at T # 0:06 (solid curves from top to bottom).
Inset: experimental conductance of QPC at different magnetic
fields [11].
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Figure 4.10: Results of the conductance
for the Kondo-related model of Meir et
al., taken from [34]. (a) Conductance ver-
sus Fermi energy εF for different temper-
atures, T = 0.05, 0.1, 0.2, 0.6 (from high
to low). Right inset: experimental con-
ductance for different temperatures [10].
Center inset: band structure for the An-
derson model. (b) Conductance versus
Fermi energy εF at T = 0.06 for dif-
ferent magnetic fields, Zeeman splitting
∆ = 0, 0.07, 0.12, 0.4 (from top to bot-
tom). Inset: experimental conductance
for different magnetic fields [21].

Cronenwett et al. [10], assumes the formation of a quasi-localized electron state near the
pinch-off in the QPC. This assumption has been corroborated by spin-density functional
theory (SDFT) calculations [33]. The spin-dependent transmission between this localized
state and electrons in the reservoirs leads to a localized dynamic magnetic moment in the
QPC. A configuration equivalent to a localized spin in a quantum dot or on an impurity
develops, and Kondo physics comes into play. In the 0.7-anomaly regime, the conductance
behaviour can be explained by a fully transmitting first subband and Kondo-like physics
for the second subband. Hence, the conductance is mainly carried by one transmission
channel and leads to a reduced shot noise3, which is in agreement with experiments [15].
In this approach the conductance decreases in the 0.7-anomaly regime, due to Coulomb
blockade, and has a value between 0.5 − 1 × G0. When the gate voltage becomes less
negative, the Coulomb blockade can be overcome and the conductance reaches G0. Meir et
al. explain the anomalous temperature behaviour with the Kondo effect of the quasi-bound
electron state in the QPC. If the temperature is below the Kondo temperature, the local
magnetic moment is screened and leads to an enhanced conductance compared to higher
temperatures. This Kondo correlation is destroyed if the strength of an applied magnetic
field reaches the order of the Kondo temperature. In figure 4.10 the results are presented
that are obtained by a generalized Anderson model, describing the localized state, and
perturbation theory. Another statement of the authors is that a quasi-localized state will
also form if the magnetic field is so high that opposite spin-split subbands of two different
neighbouring QPC modes intersect. But, due to the strength of the magnetic field they,
assume that no Kondo physics will occur in this intersection region. The formation of a
quasi-localized state for higher spin-degenerate subbands depends on the parameters of the
QPC, which is in contrast to the first subband. They explain that phenomena as follows.

3A pedagogical introduction of the theory of quantum shot noise can be found in [5], for a brief
introduction see [4].
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b(1) b(2)

Figure 1. Illustration of the two-electron momentum-nonconserving scattering
processes that give rise to a correction to the transport properties at the beginning
of the first plateau. The full (black) lines represent incoming electrons, whereas
the dashed (red) lines are the outgoing electrons. The thick (blue) lines define the
edge of the QPC. Only scattering between different spins is present to leading
order in T/T �

F due to the Pauli principle.

appear to reproduce several essential observations related to the 0.7 anomaly. However, differ-
ent SDFT works also reached different conclusions [11, 15]. Further proposals involve phonon
effects [16]. Several publications have suggested that electron–electron (e–e) interactions alone
may already result in a reduced conductance in a QPC at elevated temperatures, without the
need for additional assumptions of spin polarization or a localized state [17]–[23].

1.1. Main ideas and results

Motivated by this body of experimental and theoretical work, we reconsider the role of e–e
interactions for electronic transport properties in QPCs, starting from the assumption that in the
low-temperature limit, a QPC is well described by a single-particle saddle-point potential. We
then include e–e scattering, and, in particular, all momentum-nonconserving processes, where
the number of left- and right-moving electrons does not have to be conserved in the scattering
process, (see figure 1). These processes are not allowed in infinitely long translationally invariant
(single-mode) quantum wires. However, the lack of translational invariance for a QPC connected
to reservoirs permits such processes here. In other words, momentum is not a good quantum
number for a QPC, and therefore interaction processes can violate momentum conservation.
Momentum-nonconserving processes are most relevant in the low-density regime, where the
Fermi wavelength is comparable to the QPC’s length, which is set by the curvature of the saddle-
point potential and/or the distance to the gate electrodes6. Indeed, our quantitative analysis
of the matrix elements for these processes (see below) shows that the effect of momentum-
nonconserving scattering can be substantial, and implies that the conductance is significantly
reduced at elevated temperatures, where the phase space for inelastic scattering is increased.
We find that the breaking of translational invariance, and hence the backscattering rate, is most
dramatic near the onset of the plateau, and then gradually decreases for larger electron density
in the QPC.

We start from the assumption that the low-temperature limit of a QPC at the first quantized
plateau is well described by a Fermi-liquid picture with propagating single-particle states [24].

6 Note that even in the long-wire limit, an inhomogeneous interaction can cause a resistivity change, see [22].

New Journal of Physics 11 (2009) 023031 (http://www.njp.org/)

Figure 4.11: Illustration of the momentum-non-conserving e-e scattering processes b(1) and
b(2), taken from Lunde et al. [29]. The full/dashed lines represent incoming/outgoing electrons.
The thick blue lines represent the border of the QPC.

The polarization in the second mode induces a partial polarization in the first mode and
leads to high energy costs.

The microscopic model of Lunde et al. [29] explains the conductance abnormality with
electron-electron momentum-non-conserving scattering processes that change the number
of left- and right-moving electrons, see figure 4.11. Such scattering processes are possible,
because the translational invariance of QPC geometries are broken. The authors show, by
computing the corresponding matrix elements with a WKB-ansatz in the regime of T0 ≈ 1
(T0 =̂ zero-temperature transmission probability) and low temperatures T � T lF (kBT

l
F =̂

local Fermi energy), that this non-conserving scattering can lead to a significantly reduced
conductance of the first quantized plateau for increasing temperatures. This temperature
dependence can be understood by a growing phase space for inelastic scattering processes
with temperature. These scattering processes are more relevant, if the Fermi wavelength is
comparable to the extension of the QPC, due to a more dramatic breaking of the transla-
tional invariance. It follows that the momentum-non-conserving scattering processes and,
hence, the conductance reduction is most prominent at the onset of the plateau and then
decreases for larger electron densities. The authors were able to derive a functional depen-
dence of the linear conductance for low temperatures and in the limit T0 = 1, which reads

G = G0

(
1− Ab(πT/T lF )2

)
. (4.17)

Here, the dimensionless coefficients Ab are connected to the momentum-non-conserving
scattering processes b(1) and b(2), which are said to cause the current reduction. The
authors explain the experimentally not observed conductance reduction of the spin-split
plateaus, that evolve in high magnetic fields, by the strong suppression of interaction effects
due to the Pauli principle.
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Chapter 5

fRG studies of quantum point
contacts

In this chapter, we use the fRG approach of chapter 3 to study zero temperature linear
conductance properties in quantum point contacts by applying a saddle point potential to
the contact region. At first, we continue the work of Heyder [17] and extract an absolute
energy scale h∗ within an one-dimensional system. This will be done for data generated with
the fRG approach of [3] (including nearest-neighbour vertex flow) and the fRG approach of
section 3.3.1 (including on-site vertex flow) respectively. Furthermore, we present results
of the magnetic field behaviour of higher conductance steps.

5.1 Introduction

The functional renormalization group was the first time successfully used for studying zero
temperature electron transport properties in quantum point contacts by Florian Bauer in
2008. In his master thesis [3], he set up a static fRG approach in the 1PI scheme which
is able to deal with an extended one-dimensional interaction region and arbitrary static
potentials applied to it. This was achieved by a parametrization of the self-energy and the
effective interaction with respect to the site indices of the extended Hubbard model and
by neglecting all elements without the same or at least neighbouring tensor indices. The
validity of this approach was shown by using an extended quantum dot potential, where
all important features of the Kondo resonance for zero bias voltage could be reproduced.
For the study of quantum point contacts, a potential barrier was applied to the contact
region, and the zero temperature linear conductance, electron g-factor, local density and
shot-noise was investigated. Here, several striking agreements with experiments could be
revealed which are the following ones, the spin-degenerate conductance plateau evolves
from above into the spin-non-degenerate conductance plateaus for increasing magnetic
fields, the pinch-off of this conductance plateau is hardly effected by the magnetic field,
see figure 5.1, the effective g∗-factor is strongly enhanced and the shot-noise is reduced,
see the inset of figure 5.1. These studies were proceeded by Jan Heyder within the scope
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Figure 5.9: Left: Shape of the bare potential (redline) and effective potential at zero
frequency for Vg = 2τ (green line). Right: Conductance as a function of Vg for different
magnetic fields. right inset: shot noise factor versus conductance.

method we use here, since it is restricted to zero temperature. Thus it comes as no surprise
that the conductance as a function of Vg for zero Zeeman energy h = 0 (see figure 5.9 right
panel) does not show an additional feature. However there is another important feature
associated with the 0.7 anomaly, namely the magnetic field dependence of the conductance.
The spin resolved conductivity step due to magnetic field develops from above, as can be
seen in figure 2.5 left panel. Our method nicely reproduces this feature, as can be seen
in figure 5.9. Furthermore this leads to an asymmetric shot noise factor as a function of
conductivity, as can be seen in the inset of figure 2.5 left panel. The agreement with the
measurements (compare figure 2.7 right panel (d)) is remarkable.

In order to make a deeper analysis of the magnetic field dependence, we plotted the total
and spin-resolved conductance for both the noninteracting case (U = 0 figure 5.10 (a-c))
and the interacting case (U = τ , U � = 0.1τ figure 5.10 (d-f)). In the noninteracting case,
all lines of the total conductance go through the point G = 1

2
g0 at Vg = 2τ . The graphs are

symmetric with respect to this point. In the interacting case as well as in measurements,
we do not observe such a behavior. This is due to the fact that the conductivity of the
spin direction with lower energy (namely spin ↓) is strongly suppressed (compare 5.10 (f))
while the other spin direction is hardly affected by the magnetic field (compare 5.10 (e)).
Note that due to the latter the pinch-off value of Vg is hardly changed by magnetic field,
in agreement with experiment.

Furthermore, the step in the total conductivity at high magnetic field is much bigger
than the Zeeman splitting. This was also reported by Koop et al. [9]. They plotted
the separation between the maxima of dG

dVg
versus the applied magnetic field B. For high

magnetic fields this curve tends to a straight line, whose gradient is associated with an
effective g-factor (compare figure 5.11). The offset of this straight line is called ∆Ehfo

Figure 5.1: Linear conduction and shot
noise for zero temperature obtained with
the fRG approach, taken from [3]. Con-
duction as a function of the potential
height, in the figure denoted with Vg, and
shot noise as a function of the conductance
(upper right inset), each for various mag-
netic fields from 0T to 3 10−3T in incre-
ments of 0.25 10−3T .

of his master thesis [17]. He investigated the smooth crossover between a quantum dot
(QD) and a quantum point contact (QPC), by modelling a continuous parametrization
from a potential landscape with two barriers (QD regime) towards a potential with a
single barrier (QPC regime). Within the crossover, he studied the development of the
linear conductance, local charge nn, local magnetization mn, local zero-field susceptibility
χn = ∂hmn|h=0 and the total susceptibility χ̄ =

∑
n χn. He found several signs that the

anomalous magnetic field behaviour of the zero temperature conductance in QPCs is closely
related to the Kondo effect. These indices are the following ones, the linear conductance
evolves smoothly from an odd Kondo plateau, with an odd number of electrons occupying
the QD, to the 0.7-like shoulder of the QPC for intermediate Zeeman energies, the local
susceptibility is strongly enhanced in regions of low charge densities in both regimes and,
furthermore, a low energy scale h∗ with log h∗ ∝ (Ṽg − Ṽ 0

g )/w occurs, which is related to
the total susceptibility during the whole crossover via h∗ = 1/(χ̄− χ0).

In this chapter, we apply the two-dimensional fRG approach of chapter 3 to study zero
temperature zero bias voltage electron transport properties in quantum point contacts.
Where the general theoretical background of quantum point contacts was given in the
previous chapter. We proceed the studies of [17] and try to extract a functional dependence
of the energy scale h∗ with respect to the interaction strength, the height and curvature
of the potential. Furthermore, we present first results of the magnetic field behaviour of
higher conductance plateaus.

5.2 Modelling a quantum point contact

With the two-dimensional Hubbard model of section 3.2.2, which consists of a contact
region coupled to two semi-infinite leads, we model a quantum point contact by applying
an appropriate potential to the contact/interaction region. Here, a saddle-point model is
most reasonable for two-dimensional systems, compare subsection 4.3.2.

In the following, we will restrict ourselves to rather narrow systems M < 10 due to
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Figure 5.2: Illustration of the one-dimensional potential barrier V x
n for various potential heights

and curvatures. Left panel: the potential as a function of the site n with fixed w = 0.01τ and
Ṽg ranging form 0.5τ to 3.0τ in increments of 0.5τ . Right panel: the potential as a function of
the site n with constant Ṽg = 2τ and curvatures ranging form 0.005τ to 0.025τ in increments of
0.005τ . In each panel the length of the potential is N = 1000.

numerical costs and, therefore, we won’t be able to model a realistic crossover from the
extended two-dimensional electron gas to the narrow quasi one-dimensional constriction.
Hence, our model neglects all physical effects due to this vast reduction of the transver-
sal extension, for example transitions of the transversal eigenstates, and inherits only the
constriction and pinch-off of the last remaining transmission modes at the center of the
quantum point contact. Whether the physics of this crossover is considerable or not de-
pends on the specific experimental setup, but it should be negligible if the potential at the
beginning of the QPC varies slowly and an adiabatic approximation is valid.

Figure 5.3: Illustration of the saddle point potential V sp for different potential heights. The
extension of the potential is N = 1000 times M = 6 and its curvature in longitudinal and
transversal direction (at the center) are wx = 0.01τ and wy = 1τ . In the left or right panel is the
potential height (at the center) Ṽg = 3τ or Ṽg = 1τ .

Although, the curvatures at the center of the saddle point potential change with the gate
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voltage in real experiments, we implement a constriction potential where the curvatures are
fixed for all potential heights 1, which enables us to extract the influence of these parameters
on the conduction behaviour. For our proceeding numerical calculations, we use V x for
studies of one-dimensional systems and V sp for studies of two-dimensional systems. In
figure 5.2 and 5.3, these potentials are illustrated. The corresponding formulas are

V sp
n,m(κx, κy, Ṽg) = V x

n (κx, Ṽg) + V x
n (κx, 1)V y

m(κy), (5.1)

where
V y
m(κy) = 1/2κy (m−m0)2 (5.2)

and

V x
n (κ, Ṽg) = Ṽg exp

(
− (n− n0)2

α2 − β2(n− n0)2

)
with α2 =

2Ṽg
κ
, β2 =

α2

(1− n0)2
. (5.3)

Here, Ṽg is the potential height and κx/y the curvatures2 in x/y-direction at the center
(n0,m0) of the potential. In the following, we don’t use κ as parameter for the curvature
but rather ~w, the energy splitting in a harmonic potential with κ = mw2. The connection
between these parameters, in our discrete model, is

w =
√

2κ τ, (5.4)

which follows from the formula of τ given in equations (3.3). The units are chosen in
such a way, that the lattice parameters and h-bar is one. Due to the narrow width M of
our system, we obtain only a pseudo-harmonic potential in transversal direction, which is
dominated by the fixed boundary conditions. Therefore, we can’t expect an equidistant
energy splitting wy of the transmission modes.

For the site-dependent magnetic filed hn,m and the on-site interaction Un,m of our two-
dimensional Hubbard model of section 3.2.2, we use a constant field with value h and U
respectively. To avoid oscillations, we implement these potentials in such a way, that they
exponentially decrease at the boarder of the contact region.

In our model Hamiltonian, we set the g-factor equal minus one, compare 3.8.

5.3 Energy scale h∗

In his master thesis [17], Jan Heyder found a quadratic dependence of the linear conduc-
tance G and the magnetic field in the low-field regime for an one-dimensional extended
Hubbard model, where the data were generated with the fRG approach of Bauer [3]. He
showed that a low energy scale h∗ can be defined by this quadratic dependence via

G(h) = G(h = 0)
[
1− (h/h∗)

2] , (5.5)

1For the connection between the gate voltage and the height of the potential at the center we refer to
section 4.3.2.

2The curvature is equivalent to the second derivative at critical points, compare [6, equ. 3.435].
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where the magnetic field h must be small enough, see figure 5.5. This energy scale de-
pends on the gate voltage Ṽg and changes in a characteristic way if the transmission
channel opens, see figure 5.4. It is dominated by two areas with exponential growths
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Figure 5.4: Energy scale h∗ and
conductance as a function of the
potential height Ṽg. The data is
generated for a potential barrier
with w = 0.01 τ and interaction
strength U = 1.5 τ , U ′ = U/10,
by using the fRG approach of
Bauer [3].

h∗ ∝ exp(−f1/2(w,U)Ṽg), which are indicated in the log(h∗/τ) plot by two linear slopes.
We call these slopes analogously to Heyder f2 and f1. The exponential increase, corre-
sponding to f2, starts when the transmission of the subband reaches a non-negligible value
and ends if the transmission is almost one. This exponential behaviour crosses over to the
exponential increase, corresponding to f1, which is persistent for a huge range of Ṽg, where
the transmission is just one, and ends in some parabolic structures. These parabolic curves
evolve for increasing U and have similarities to the TK-curves in quantum dots [17]. The
behaviour of f1 is stable under the variation of the curvature w, the form of the potential
barrier and the interaction strength U . The same holds for f2, with the difference, that its
appearance depends on the interaction strength.

The definition of the low-energy scale h∗, see (5.5), was introduced within the scope
of an one-dimensional system and a single transmission mode. The extension to higher
spin-degenerate subbands is obvious, we define for each subband n an equivalent energy
scale h

(n)
∗ via

Gnn(h) = Gnn(h = 0)
[
1−

(
h/h(n)

∗
)2
]
, (5.6)

where Gnn := G0Tnn is the contribution to the conductance of the nth transmission mode.
In the following section, we continue the previous work of Heyder [17] and investigate

the dependence of the energy scale h∗ on the potential curvature w and the interaction
strength U in an one-dimensional system. We will do this separately for data generated with
two different fRG approaches. First, the fRG implementation introduced in [3] denoted
by fRG approach including nearest neighbour vertex flow. This approach is also able to
take nearest neighbour interactions U ′ into account. Second, the fRG implementation of
section 3.3.1 denoted by fRG approach including on-site vertex flow. This approach is not
able to take nearest neighbour interactions into account. To obtain comparable results
with previous studies, we set analogously to [3, 17] U ′ = U/10. At the end we compare the
energy scale for these two approaches and investigate the influence of the nearest neighbour
interaction U ′ on the energy scale.
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Figure 5.5: Magnetic field range of the well-definedness of the energy scale h∗. The parameters
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G(h)/G(h = 0) as a function of h2 for five gate voltages from 1.99τ to 2.015τ . Right panel: the
conduction as a function of the potential height Ṽg for various magnetic fields. The black or red
conductance traces correspond to magnetic fields for that the well-definedness of h∗ holds or not
holds. The blue dots represent the conductance values of the black traces for the potential heights
of the left figure.

5.3.1 Non-interacting model

Before we extract an absolute energy scale for an interacting model, we discuss the non-
interacting case. The purpose is to obtain reference values in the limit U/τ → 0 and to
see which structures of h∗ are already inherited in the non-interacting case. Using the
transmission probability for the saddle-point constriction potential (4.10), which reads

Tnn(E) =
1

e−2πẼn/wx + 1
with Ẽn = E − wy

(
n+

1

2

)
− Ṽg, (5.7)

where ~ = 1, we can easily calculate the corresponding energy scale h
(n)
∗ . After a short

calculation, we obtain

h(n)
∗ =

√
2

π

1 + e2πẼn/wx

√
−1 + e2πẼn/wx

. (5.8)

For high energies or low gate voltages Ṽg, in the sense of Ẽ � wx, this leads to the
exponential growth

h(n)
∗ =

√
2/π exp(πẼn/wx) (5.9)

and hence

ln(h(n)
∗ ) ∝ −π Ṽg

wx
for Ẽn � wx. (5.10)

The minimum of this scale is given for Ẽn = Ẽmin
n , where

Ẽmin
n =

ln(3)

2π
and h(n)

∗ (Ẽmin
n ) =

4

π
~wx. (5.11)
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Figure 5.6: Energy scale h∗ for a saddle-point constriction model in a non-interacting systems.

The conductance (black lines) and the energy scales h
(n)
∗ (blue lines in the left panel) and the

logarithm log(h
(0)
∗ /τ) (blue line in the right panel) are plotted as functions of the normalized

energy (µ− Ṽg)/wx, where the curvature parameters are wx = 1 and wy = 2.

In figure 5.6, we illustrated h∗ for a non-interacting system. The main difference, compared
to an interacting system, is the boundedness of h∗ to higher transmission probabilities
Tnn > 1/2. For Tnn < 1/2, the conductance increases and, therefore, becomes imaginary,
compare subsection 4.3.3. If the transmission probability is one half, which is equivalent
to Ẽn = 0, the energy scale of the corresponding transmission mode diverges because the
conductance is invariant with respect to the magnetic field at this point. For every subband
n, the low-energy scale h

(n)
∗ has the same form. They are shifted by wy with respect to

each other, similar to the conduction plateaus.

5.3.2 Nearest neighbour vertex flow

Before we extract a functional dependence of h∗ on the curvature and the interaction
strength, we want to discuss the general influence of these parameters on the low-energy
scale. Therefore, we plotted its logarithm log (h∗/τ) as a function of the potential height
and the interaction or the curvature in figure 5.7 or 5.8, which was already partially done
in [17].

In figure 5.7, we observe, that the logarithm develops smoothly for increasing interaction
strengths from the hook-like structure of the non-interacting model to the typical structure
of the interacting system, we described previously. This crossover takes place within a
small region of ∆U < 0.4τ . Having a look on the linear slopes f1/2, we see that f1 already
occurs in the non-interacting model and is persistent throughout the range of investigated
interaction energies and curvatures, where its gradient decreases for increasing U . This is in
contrast to the straight line f2 which forms in the pinch-off region only for evaluated values,
in our case approximately U & 0.5τ . The slope f2 becomes steeper for increasing interaction
strengths. The red traces 1), 2), 3) in figure 5.7, 5.8 denote log(h∗/τ) at potential heights
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3)• Ṽ 0.95G0
g

4)• Ṽ
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h∗ and respectively of log(h∗/τ). The right panel shows a close-up image of the pinch-off region
obtained from the left panel, where we omitted the black curve Ṽ min

g .

where the conductance is 0.05, 0.5 and 0.95 times the conductance quantum. Therefore,
they are marking the pinch-off region.

For denoting potential heights relative to the conductance, we use the quantity Ṽ xG0
g

defined by

G(w,U, Ṽ xG0
g (w,U)) = xG0, (5.12)

where we understood the conductance as a function of w, U and Ṽg. To be consistent in

the graphs, we also defined Ṽ
hmin∗
g which is the value of Ṽg where h∗ is its minimum.

Furthermore, we can see, that the area of the exponential growth is strongly correlated
to the pinch-off region, which gives a hint how to obtain the desired functional dependence.
The black trace 4) is the minimum of h∗ and respectively log(h∗/τ). Its behaviour, with
respect to the interaction strength, seems not to be related with the conductance. The
opposite holds for its behaviour with respect to w, as can be seen in figure 5.8. The position
of the minimum only slightly changes with respect to Ṽ 0.05G0

g . For increasing curvatures
the pinch-off region broadens and, therefore, the log(h∗/τ) curve also flattens.

Analysis of the exponential growth f1

At first we want to investigate the most noticeable structure of this low energy scale, the
exponential growth h∗ ∝ exp(−f1Vg) which starts when the transmission of the corre-
sponding subband is approximately one. In section 5.3.1, we showed that this structure
already occurs in the non-interacting case of a saddle point constriction model, with the
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Figure 5.8: Three-dimensional graph of log(h∗/τ) as a function of the potential height and
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linear decrease

log (h∗) ∝ −
π

w
Ṽg (5.13)

for the logarithm of the energy scale. For increasing U , it evolves continuously into f1 of
the interacting system. Therefore, we expect f1(w,U) → π/w in the limit U/τ → 0. Jan
Heyder already investigated f1 for higher interaction strengths and found the functional
dependence [17, equ. 5.18]

f1(w,U) ∼ 1.3
1

w
, (5.14)

where a distinct U -dependence couldn’t be resolved and just an oscillatory behaviour
around the value 1.3 is mentioned. In the following, we want to continue this work and try
to obtain a functional dependence of f1 on the interaction strength U .

We determine the gradient f1 by performing the required linearisation log(h∗) = −f1Ṽg
within an interval of range ∆Ṽg = 0.01 τ (=̂ 50 data points), centered around a fixed Ṽg
relative to the conduction trace. For the gradient f1, we find the expected linear dependence
on the inverse of the curvature, see the left panel of figure 5.9, which was already reported
in [17]. We define g1 as the resulting gradient f1 ∼ g1/w, and we plot this quantity as
a function of the interaction U , see the right panel of figure 5.9. For small interaction
strengths, the U -dependence can be linearized and we obtain 1/g1(U) ∼ αU + β, where β
is in striking agreement with the expected value 1/π of the non-interacting model. This
indicates the following functional dependence

f1(U,w) ∼ π

(1 + γ U)w
with γ ∼ 0.8 (5.15)
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for small U , in explicit terms U . 0.9 τ . Therefore, the linear slope f1 becomes flatter for
increasing interaction strengths, and the proportionality factor of f1 ∝ 1/w ranges from
approximately 3.1 to 1.8 in the interaction regime where (5.15) is valid. For higher values,
U & 0.9 τ , we can confirm an oscillatory behaviour around the value of 2 with an amplitude
of about 0.2

f1(U,w) ∼ (2± 0.2)
1

w
, (5.16)

which corresponds to an oscillation around 2/
√

2 ≈ 1.4 in units of [17]. Therefore, the
exponential growth f1 seems to be approximately U -independent for higher interaction
strengths U & 1τ , at least in the regime we investigated.

Analysis of the exponential growth f2

Now, we want to study the second exponential growth h∗ ∝ exp(−f2Vg) of the energy
scale which evolves for higher interaction strengths within the pinch-off region and, hence,
it seems to be a special feature of the interacting system. This exponential behaviour
was discovered by Jan Heyder [17, chap. 5.3.5], but he no functional dependence on the
parameters w, U was stated and, therefore, we want to make up for that.

We determine the gradient f2 of the corresponding straight line as follows. We observe,
that this linear increase always forms for evaluated interaction strengths in a regime of Ṽg,
where the conductance increases from 0.5 to 0.75 times the conductance quantum, compare
the upper panels of figure 5.10. For very small values, the logarithm of the energy scale
has a hook-like structure and no exponential growth f2 can be observed. Therefore, we
have to distinguish between parameters (w,U), for that a linearisation is possible or not.



85

1.9851.991.9952
−5

−4.5

−4

−3.5

−3

−2.5
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Figure 5.10: Analysis of the exponential growth exp(−f2Ṽg) for data generated with the fRG
approach including nearest neighbour vertex flow [3] and U ′ = U/10. Upper panels: the logarithm
log(h∗/τ) as a function of the potential height for fixed w = 0.014τ and U = 0.1, 0.8, 1.6τ . The
points 1) to 4) represent characteristic values regarding the conductance. Bottom left panel:
the black/red dots represent parameters (w,U) for that a linearisation between 2) and 4) is
possible/not possible. Bottom middle panel: linearisation of f2 as a function of U exemplary for
w = 0.004, 0.012, 0.022τ and 0.04τ . Bottom right panel: linearisation of the resulting gradients
g2 ∼ f2/U with respect to w−1.38.

This was done in the bottom left panel of figure 5.10, where we call a linearisation possible
whenever the coefficient of determination fulfils R2 > 0.998. In the bottom middle panel of
the last-named figure, the corresponding gradients f2 of the linear increase are plotted as
a function of the interaction, where a linear dependence f2 ∼ g2 U is observable. And the
right panel of figure 5.10 shows a linear dependence of g2 on the curvature. This indicates
the following functional dependence

f2(w,U) ∼ α
U

wβ
with α ∼ 0.46, β ∼ 1.38. (5.17)

We conclude, the slope f2 always forms between Ṽ 0.75G0
g and Ṽ 0.5G0

g , increases linearly in
the interaction U and is suppressed for evaluated values of w, in the sense of a flatter slope
and the need of higher interaction strengths for its appearance.

Analysis of h0.5G0∗

Up to now, we have analysed the characteristic exponential growths exp(−f1/2Ṽg) of the
low energy scale. In the following, we want to investigate h0.5G0∗ , which is equivalent to
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Figure 5.11: Analysis of the absolute value h0.5G0∗ for data generated with the fRG approach
including nearest neighbour vertex flow [3] and U ′ = U/10. Left panel: linearisation with respect
to w, exemplarily illustrated for U = 0.1, 0.5, 1, 1.5τ and 2τ . Right panel: the inverse of the
resulting gradients f0.5G0 ∼ h0.5G0∗ /w as a function of U , where the blue or green lines are fittings
in the low or high interaction regime.

h∗ evaluated at the potential height where the conductance is one-half of the conductance
quantum, in explicit terms

h0.5G0
∗ (w,U) := h∗

(
w,U, Ṽ 0.5G0

g (w,U)
)
, (5.18)

where we understood h∗ as a function of w, U and Ṽg. The evaluation of this quantity
will enable us to set up a formula for the absolute value of the exponential growth h∗ ∝
exp(−f2Ṽg).

In the left panel of figure 5.11, we plotted this quantity as a function of the interaction
strength U , which reveals an approximate linear dependence on w, hG0∗ ∼ f0.5G0 w. The
validity of this linearisation becomes worse for decreasing U . In the right panel of the last-
named figure, we visualized the inverse of the corresponding constant of proportionality as
a function of the interaction strength. We can observe a linear increase for small U , which
evolves into a quartic behaviour for evaluated values of the interaction. This indicates the
following dependence

h0.5G0
∗ ∼ α

w

U
with α ∼ 0.12 (5.19)

for small interaction strengths U . 1.3 τ and

h0.5G0
∗ ∼ α

w

1 + β U4
with α ∼ 0.12, β ∼ 0.14 (5.20)

for higher values, in explicit terms U & 1.3 τ . The number one in the denominator can’t be
neglected, at least in the interaction regime we studied. A divergence in U of the form (5.19)
was to be expected, because h∗ evolves into the hook-like structure for decreasing U , with a
clear divergence at Ṽg where the conductance is one half of G0 in the non-interacting model.
The derived functional dependencies of h0.5G0∗ are in agreement with the observation, that
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Figure 5.12: Analysis of the minimum hmin∗ for data generated with the fRG approach including
nearest neighbour vertex flow [3] and U ′ = U/10. Left panel: linearisation with respect to w
exemplary for U = 0.1, 0.5, 1, 1.5, 2τ . Middle panel: the resulting gradients fmin ∼ hmin∗ /w as a
function of U . The grey line shows the fitting using a high-ordered polynomial and the green or
blue line represent the results for the fittings of log(fmin) using fitU< or fitU>. Right panel: the
logarithm log(fmin) versus the interaction strength U , where the green or blue line illustrates the
linearisation within a low (fitU<) or high (fitU>) interaction regime. The red cross corresponds
to the theoretical prediction for the non-interacting model, compare equation (5.11).

log(h∗/τ) increases or decreases in the regime Ṽg . Ṽ 0.5G0
g with respect to the curvature or

the interaction strength.

Analysis of hmin∗

The second absolute value of the low energy scale, we are going to investigate, is its
minimum hmin∗ . In our studies, it turned out that this quantity isn’t useful for setting
up an absolute functional dependence of the energy scale, but it provides us with useful
information about the influence of the interaction on our system.

In section 5.3.1, we calculated this quantity in the non-interacting model and discovered
a linear dependence on the frequency w, which reads

hmin∗ =
4

π
w. (5.21)

This dependence also holds in the interacting case, as can be seen in figure 5.12, where we
illustrated the linearisation for some interaction values. But against our initial expecta-
tions, this linearisation is more valid for higher interaction strengths than for smaller ones.
The resulting gradients fmin ∼ hmin∗ /w have a complicated dependence on the interaction,
as the middle panel of figure 5.12 shows. But for evaluated values of U an exponential
dependence can be identified from the right panel of the last-named figure which indicates
the following relation

hmin∗ ∼ αw e−βU with α ∼ 0.4, β ∼ 1.6 (5.22)

for U & 0.8τ . The analogue attempt for the low interaction regime doesn’t provide ade-
quate results. But a fit with a high-ordered polynomial provides good results with striking
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agreement with the theoretical prediction for U/τ → 0. The first term provide the following
relation

hmin∗ ∼ 4

π
(1 + αU)w with α ∼ −5.3 (5.23)

for U < 0.2 τ . Another promising approach, for deriving a more accurate dependence, is
to fit log(fmin) using a low-ordered polynomial.

Conclusion

In this subsection, we analysed various quantities which enable us to set up an absolute
functional dependence of the exponential growth exp(−f2Ṽg) of the form

h∗(w,U, Ṽg) = α(w,U)× exp
(
−f2(w,U) · Ṽg + β(w,U)

)
. (5.24)

The corresponding linear slope of log(h∗/τ), f2, is given by its starting point h0.5G0∗ (w,U)
and its gradient f2(w,U). This allows us to derive the following formula

h∗(w,U, Ṽg) = h0.5G0
∗ (w,U)× exp

(
−f2(w,U)

(
Ṽg − Ṽ 0.5G0

g (w,U)
))

(5.25)

which is valid for w and U , where the linearisation of f2 is possible at all, and values of Ṽg
which fulfil

Ṽ 0.75G0
g (w,U) . Ṽg . Ṽ 0.5G0

g (w,U). (5.26)

Because this exponential growth forms for elevated interaction strengths, the choice of
equation (5.20) for h0.5G0∗ (w,U) is most reasonable. Equation (5.25) is the main result of
this subsection.

Since we determined the gradient f1 analogously to f2 - by performing the needed
linearisation within an interval centered around a fixed Ṽg relative to the conductance - we
could easily give an absolute functional dependence for this exponential scale, too. Because
this exponential scale seems to be an artefact of the non-interacting system, and this scale
is only modified for U 6= 0, and it occurs in a region where the transmission is one, we
waive this analysis.

5.3.3 On-site vertex flow

In the last subsection, we performed a minute analysis of the functional dependence of
the low-energy scale h∗ on the interaction strength and the potential curvature, where
the data was generated with the fRG approach including nearest neighbour vertex flow.
Furthermore, we set the nearest neighbour interaction U ′ = U/10. Our method of section
3.3.1 is different and takes only on-site interaction into account. Therefore, we perform the
same analysis using the fRG approach including on-site vertex flow. This is considerable,
because we used U ′ = U/10 for nearest neighbour interaction in the last subsection, but this
choice is rather arbitrarily. Furthermore, it is desirable to have a functional dependence
of h∗ for the proceeding studies of two dimensional systems, too. Because the following
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proceeding is analogously to the last subsection, we will only briefly comment on the
differences.

In figure, 5.13 and 5.14, we illustrated the general dependence of the logarithm log(h∗/τ)
on the interaction and the curvature. For changing on-site interaction U , the hook-like
structure of the non-interacting model evolves slower towards the typical structure of the
interacting case and the gradient f2 decreases slower. It is clearly noticeable that the
minimum of the low-energy scale is now correlated with the conductance and is almost
equivalent to the logarithm of h∗ evaluated at Ṽ 0.05G0

g . This holds for all curvatures and
almost all interaction energies.

In figure 5.14, we chose a different illustration of the three-dimensional graph, which
illustrates the w-dependence, compared to figure 5.13. By plotting log(h∗/τ) as a function
of ∆Ṽg/w, the width of the pinch-off remains constant and the change of the structure of
the low energy scale becomes observable. The gradients of the straight line f1 are constant
and only the structure in the region of the pinch-off seems to change. The additional ex-
ponential growth f2 vanishes.

Analysis of the exponential growth f1

In the case of the onsite vertex flow, the gradient shows also a linear dependence on the
inverse of the curvature, f1 ∼ g1/w, where the linear dependence of 1/g1 on the interaction
strength holds for a slightly wider range of about U . 1τ and indicates

f1(U,w) ∼ π

(1 + γU)w
with γ ∼ 0.6 (5.27)

for this interaction regime, compare figure 5.15. The parameter γ is smaller and, therefore,
the influence of the interaction on f1 is weaker. For higher U , the oscillation in the case of
nearest neighbour vertex flow vanishes, instead the influence of U on f1 saturates around
U ∼ 1.2τ and afterwards begins to decrease linearly.

Analysis of the exponential growth f2

The strict correlation between the exponential growth exp(−f2Vg) and the transmission of
the first spin-degenerate subband weakens. This holds especially for the lowest curvatures,
as can be seen in the upper panels and the bottom left panel of figure 5.16. Nevertheless,
we can perform the same analysis as before. Now we neglect the data for curvatures
w < 0.014τ , which leads to

f2(w,U) ∼ α
U

wβ
with α ∼ 0.5, β ∼ 1.3. (5.28)

This dependence is almost identical to the corresponding results for data generated with
the fRG approach including nearest neighbour vertex flow.
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Figure 5.13: Three-dimensional graph of log(h∗/τ) as a function of the potential height and
the interaction for data generated with the fRG approach including only on-site vertex flow.
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and curvature for data generated with the fRG approach including on-site vertex flow. The
interaction strength is U = 1.0 τ and w varies from 0.004 τ to 0.04 τ in increments of 0.002 τ . The
red curves 1), 2), 3) visualizes the logarithm of h∗ for potential heights, where the conductance
is 0.005, 0.5, 0.95 times G0. The black curve 4) follows the minimum of h∗ and respectively of
log(h∗/τ).
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Analysis of h0.5G0∗

In the case of on-site vertex flow, the range of proportionality f0.5G0 ∼ h0.5G0∗ /w is larger,
in explicit terms U . 1.5τ . Compare figure 5.17. This indicates the functional dependence

hG0/2
∗ ∼ α

w

U
with α ∼ 0.13 (5.29)

for small interaction strengths. For higher U no quartic behaviour occurs, which is in
contrast to the data generated with the other fRG implementation.

Analysis of hmin∗

Considering nearest neighbour vertex flow, we derive the same functional dependence of
h∗min on the curvature and the interaction, see figure 5.18. Only the parameters are slightly
different. We obtain

hmin∗ ∼ αwe−βU with α ∼ 0.3, β ∼ 1.1 (5.30)

for U & 0.6τ . Furthermore, we can extract by fitting a high-ordered polynomial

hmin∗ ∼ 4

π
(1 + αU)w with α = −5.4, (5.31)

which is the dominant term for U < 0.2τ . The agreement of this results with the last sub-
section 5.3.2, especially for higher interaction energies, is surprising. Because the position
of hmin∗ with respect to the pinch-off region strongly differ for the fRG approaches.

Conclusion

Analogously to section 5.3.3, formula 5.25 is valid to describe the absolute dependence
of f2 with the corresponding quantities h0.5G0∗ (w,U) and f2(w,U) of this subsection. The
parameter regime for this formula changes, see bottom left panel of figure 5.16.

Comparing between the resulting quantities of the two different fRG approaches, we
studied in the last two subsections, we conclude, the majority of quantities don’t change
too much in the low interaction regime of U smaller than approximately 1τ . For higher
interaction energies there are major changes. For example, the oscillation of f1 disappear
and a linear decrease is observable. Hence, the low energy scale h∗ seems to be more sen-
sitive to the absolute value of the nearest neighbour interaction rather than the ration.

5.3.4 Comparison on-site/nearest neighbour vertex flow

In the last two subsections, we analysed the functional dependence of the low energy scale
h∗ on the interaction strength and the potential curvature for data generated with the two
different fRG approach. Within these studies, we revealed some minor differences between
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Ṽg/τ

lo
g
(h

∗/
τ
)

U = 1.2τ
w = 0.004τ

1)

2)

3)

4)
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2)• Ṽ 0.5G0
g
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4)• Ṽ 0.75G0
g

0 0.5 1 1.5 2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

U/τ

w
/
τ

linearization:
• possible
• unpossible

0 0.5 1 1.5 2
0

50

100

150

200

250

300

U/τ

f
2

w = 0.040τ
w = 0.032τ
w = 0.022τ
w = 0.014τ

0 50 100 150 200 250 300
0

50

100

150

(w/τ )−1.30

g
2 0.50x →

Figure 5.16: Analysis of the exponential growth exp(−f2Vg) for data generated with the fRG
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Figure 5.18: Analysis of the minimum hmin∗ for data generated with the fRG approach including
on-site vertex flow. Left panel: linearisation with respect to w exemplary for U = 0.1, 0.5, 1, 1.5 τ
and 2 τ . Middle panel: the resulting gradients fmin ∼ hmin∗ /w as a function of U . The grey line
shows the fitting using a high-ordered polynomial and the green or blue line represent the results
for the fittings of log(fmin) using fitU< or fitU>. Right panel: the logarithm log(fmin) versus
the interaction strength U , where the green or blue line illustrates the linearisation within a
low (fitU<) or high (fitU>) interaction regime. The red cross corresponds to the theoretical
prediction for the non-interacting model, compare equation (5.11).
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Figure 5.19: Comparison of the conductance and energy scale h∗ between data generated with
fRG including on-site (on) and nearest neighbour (nn) vertex flow. Left panel: conductance as a
function of ∆Ṽg = Ṽg − Ṽ 0.5G0

g for various magnetic fields. Right panel: the logarithm log(h∗/τ)

as a function of ∆Ṽg. For each panel, data generated with the fRG approach including nearest
neighbour, with U ′ = U (black) and U ′ = U/10 (dark blue), and including on-site (light blue)
are visualized. The remaining parameters are U = 1τ and w = 0.01τ .

these two approaches, which isn’t surprising because the nearest-neighbour interaction U ′

was chosen to be only one-tenth of the on-site interaction energy. Now, we want to have
a closer look on the different results emerging from these approaches. Furthermore, we
study the influence of the nearest neighbour interaction on the energy scale, conductance
by considering elevated values U ′.

In the left panel of figure 5.19, we illustrate the conductance resulting from these
two approaches, where we set the nearest neighbour interaction U ′ = 0.1τ (dark blue)
and U ′ = 1τ (black) respectively, for the fRG approach including the nearest neighbour
vertex flow. Here, we can observe, that the on-site approach (on) produces almost the
same low field behaviour of the conductance as the nearest neighbour approach (nn) with
U ′ = U/10. Only for Zeeman energies where the spin-resolved plateaus are clearly visible,
the conductance of the spin-up transmission mode is considerably reduced in the pinch-off
region for the nearest neighbour approach. The similar low field behaviour also reflects
in an almost identical energy scale h∗, which can be seen in the right panel of the last-
named figure. Within the pinch-off region a slightly smaller value of h∗ for the nearest
neighbour approach can be found. For higher values of the nearest neighbour interaction,
the conductance and hence the scale h∗ changes dramatically, see the black curves in figure
5.19. The conductance pinch-off becomes steeper, and the whole influence of the magnetic
field is strongly reduced. This includes a fixed position of the pinch-off and only a tiny
reduction of the conductance for evaluated Zeeman energies at the beginning of the pinch-
off . The graph illustrating the logarithm of h∗ shows, that the gradient of the straight line
f2 increases and a plateau-like structure arises in the pinch-off region. In figure 5.20, the
evolution of this plateau for increasing nearest neighbour interaction energies is illustrated.
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Figure 5.20: Three-dimensional graph of log(h∗/τ) as a function of the potential height relative
to Ṽ 0.5G0

g and the nearest-neighbour interaction U ′. The curvature of the potential is w = 0.01 τ ,
the on-site interaction U = 1.0 τ and the nearest-neighbour interaction varies from 0 τ to 1.0 τ
in increments of 0.1 τ . The blue/black curves of log(h∗/τ) are produce with data generated with
the fRG approach including nearest neighbour/on-site vertex flow. The red traces 1), 2), 3), 4)
visualizes the logarithm of h∗ for potential heights, where the conductance is 0.005, 0.5, 0.95 and
0.75 times G0.

Here, we can observe, that the straight line f2 strictly builds for U ′ 6= 0 within the transition
region of the conductance from ∼ 0.5 to 0.75 times the conductance quantum and is part
and parcel of this plateau-like structure. This plateau seems to be solely induced by the
nearest neighbour interaction.

We conclude that the nearest neighbour interaction seems to influence the exponential
growth exp(−f2Ṽg) strongly and fixes its appearance between the conductance region of
0.5 to 0.75 times the conductance quantum. In the previous analysis in 5.3.2 and 5.3.3,
we saw that this influence is already recognizable for U ′ = U/10 and seems to hold for
arbitrary interaction energies.

5.4 Two-dimensional system

In this subsection, we use the fRG approach of section 3.3.1 to extend the previous studies of
the influence of interaction on the zero temperature linear conductance of one-dimensional
systems towards two-dimensional systems. In this fRG implementation, we consider only
on-site interaction. Besides the transmission of the first submode, this extension enables
us to investigate the transmission of additional modes with higher energies. They are of in-
terest, because higher conductance plateaus reveal quite a different behaviour with respect
to several conductance anomalies in experiments, like the zero field splitting, temperature
dependence, magnetic field dependence and effective g-factor, see section 4.4.2. Our hope
is not only to find a reason of these deviations, but in fact to get useful hints of the physical
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wy = 0.0τ

Eα/τ -3.80 -3.25 -2.45 -1.55 -0.75 -0.2

|Ψ2
α|2 0.21 0.21 0.21 0.21 0.21 0.21

wy = 0.5τ

Eα/τ -3.71 -3.04 -2.21 -1.32 -0.53 -0.09

|Ψ2
α|2 0.24 0.22 0.19 0.23 0.22 0.19

wy = 1.0τ

Eα/τ -3.51 -2.54 -1.58 -0.71 0.28 0.44

|Ψ2
α|2 0.30 0.23 0.18 0.24 0.26 0.19

Table 5.1: Eigenenergies in terms of our energy scale (energy offset −2τ) and the scalar product
of the component-wise squared eigenstates of the transversal confinement potential (5.2) at the
center of the potential barrier for wy = 0.0, 0.5 and 1.0τ .

background of the conductance anomalies. Of course, we won’t be able to reproduce any
zero field splitting or temperature dependence in our static fRG approach and, hence, we
will concentrate on the anomalous magnetic field behaviour and the effective g-factor.

Since we use a two-dimensional system with finite width M > 1, we are forced to
extend our considered interaction regime to much higher values to obtain a conductance
behaviour comparable to one-dimensional systems that we investigated up to now. This
can be understood as follows. By increasing the width, the averaged probability of presence
for an electron localized at a certain site becomes smaller and hence the interaction between
two electrons propagating through the constriction decreases. Since we consider interaction
energies of order of ten times τ , the question arises, whether fRG still provides reliable
results or not, because in this regime we are clearly no longer able to argue with a small
interaction strength. If the results are comparable to the one-dimensional case, there is no
reason for us to be suspicious. However, we can’t exclude that the fRG approximations
strongly bias the results within this interaction regime. Therefore, further studies of the
validity of the truncation approach are required. At any rate, we should apply our fRG
method to a reference system, for example a quantum dot implemented within a 2D model,
and compare the obtained results with well-known results of the system.

In the following, we use a quasi-one-dimensional system consisting of six sites in transver-
sal and 500 sites in longitudinal direction. For this system, we study three different
transversal confinements, a hard-wall potential (wy = 0τ) and a harmonic-like poten-
tial of the form (5.2), with two different curvatures wy = 0.5τ and wy = 1.0τ . In table
5.1, we stated the corresponding eigenenergies Eα and scalar products of the component-
wise squared eigenstates. Since we are considering an on-site density-density interaction,
the quantity |Ψ2

α|2 is the conversion factor of U for mapping the transversal eiegenstate α
onto an effective one-dimensional system. Therefore, table 5.1 indicates, that we require
roughly five times higher interaction strengths for the 2D model compared to the 1D model
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Figure 5.21: Influence of the potential curvatures and interaction strength on the first three
conductance steps. In all panels the conductance is plotted as a function of the potential height,
where one parameter is varied and the others are fixed with values wx = 0.1τ , wy = 0.5τ and
U = 5τ . In the left or middle panel the longitudinal or transversal curvature is varied and in the
right panel the interaction energy changes.

to obtain comparable interactions between the modes.

The eigenenergies of the transversal confinement potential at the center of the barrier
determine the position of the pinch-off. Therefore, the energies of the latter table are
equivalent up to sign to the pinch-off values in the non-interacting case. In the case of a
hard-wall potential wy = 0τ , the values in 5.1 are in agreement with equation (3.60).

Before we study the magnetic field behaviour of the conductance, we discuss the influ-
ence of the interaction and curvatures on the zero-field conductance steps. These effects are
summarized in figure 5.21. As we already stated, the curvature wx determines the width
of the transition from one plateau to another which is also valid in a 2D interacting model,
see left panel of figure 5.21. The transversal curvature wy determines the position of the
pinch-off. Since we are dealing with a pseudo-harmonic confinement, the energy splitting of
the submodes is not equidistant wy and varies for every plateau. With increasing transver-
sal curvatures, the eigenenergies of the transversal modes increase and the pinch-off values
shift to smaller values of Ṽg, compare middle panel of figure 5.21. Increasing interaction
values enhance the electron repulsion at the center of the potential barrier and leads to a
suppression of the conductance. This induces a shift of the pinch-off which becomes larger
for higher submodes, due to an increased electron density at the center of the barrier, as
can be seen in right panel of figure 5.21.

We shall now continue with the magnetic field behaviour of the conductance plateaus.
In the following, we focus on the first three plateaus. The other conductance steps are not
observable for all transversal confinements and interaction energies, we are considering.

In figure 5.22, we visualized the conductance and the corresponding differential con-
ductance dG/dṼg as a function of Ṽg. The differential conductance evolution of the first
submode reveal numerical problems. This is connected with the choice of the curvatures
and the interaction. The longitudinal curvature wx is very high and, hence, the poten-
tial rather angular. Although, we wanted to present this data because of its similarities
to the experimental measurements. For smaller value of wx the slope of the pinch-off
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Figure 5.22: Influence of the interaction on the conductance and differential conductance
dG/dṼg for the first three conductance plateaus. Upper panel: conductance as a function of
the potential height for magnetic fields, including h = 0τ , ranging from h = 0.2τ to h = 0.145τ
in increments of 0.25τ . Bottom panels: differential conductance as a function of potential height
ranging from h = 0τ to h = 0.18τ in increments of 0.005τ . The traces are shifted for a better
overview. The interaction changes from the panels a) to c), where U = 6, 8, 10τ . The curvature
parameters wx = 0.2τ and wy = 0.5τ are fixed. Notice the difference of magnetic field interval
within the upper and bottom panels.

becomes much steeper. Despite these numerical issues, we can observe the fundamental
differences within the firs three conduction steps. At fist, the qualitatively dependence
of the conductance on the magnetic field is the same for every subbmode. The conduc-
tance evolves from above towards the spin-resolved plateaus and the spin-up pinch-off is
almost constant. This holds only within limits. The effective g-factor g∗, characterizing
the Zeeman splitting of the spin-up and spin-down modes3, is considerably increasing with
the conductance plateaus. Furthermore, the spin-up pinch-off moves to lager Ṽg values
for higher conductance plateaus and elevated magnetic fields. Whether, this is caused by
the increasing g-factor or might be interpreted as, a reduction of the anomalous magnetic
field behaviour, can’t be read off this figure. A comparison of the conductance traces with
equivalent Zeeman splittings could provide clarity.

We already mentioned the differences of the g-factor with respect to the different sub-
modes. In the following, we want to analyse this quantity in more details. In figure 5.23,
we visualized the effective g-factors for three different transversal confinements each for the

3For a detailed introduction and experimental results of the effective g-factor, we refer to the subsection
4.4.2.
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Figure 5.23: Effective g-factor for the first three submodes as a function of the interaction U
and three different transversal confinements. In the left, middle, right panel is the transversal
curvature wy = 0, 0.5τ and 1.0τ . The longitudinal curvature is for each panel fixed wx = 0.02τ .

first three submodes. The g-factor g∗ starts to increase linearly from the number one and
seems to saturate for very high interaction strengths between 1 and 3.4. The enhancement
of the g-factor is in agreement with experiments of Koop et al. [25]. The linear behaviour
for small interaction values was already observed in one-dimensional models by Bauer and
Heyder [3, 17]. We can also observe, that the effective g-factor g∗ strongly increases for
higher submodes where its difference becomes almost equidistant for higher U . This is
contrary to the publication [25] of Kopp et al. and the references in it, compare section
4.4.2. They predict a decreasing effective g-factor for increasing subband index. But, the
observed increasement of g∗ in our model for higher submodes seems not to be related
with the transversal confinement. Because, if the confinement strengthens by increasing
wy, then the g-factor slightly increases for all submodes, as expected. At this point, we
can’t explain this contrary behaviour and further investigations are necessary.

In the following, we compare directly the magnetic field behaviour of the first three
conductance steps. Therefore, we illustrated Gnn = G0Tnn (Tnn is the transmission prob-
ability of the nth transmission mode) of the first three conductance steps for different
Zeeman energies. See figure 5.24. Here, the conductance is plotted as a function of

∆Ṽ (n)
g = Ṽg − Ṽ (n+0.5)G0

g (5.32)

which is the distance from Ṽg to the potential height where Tnn = 1/2. We can observe,
that the magnetic field dependence is qualitatively the same. The conductance step evolves
from above into the spin-resolved conductance plateaus where the position of the spin-up
pinch-off hardly changes. For increasing subbmode index, the conductance trace seems to
be more sensitive to the magnetic field which corresponds to a higher effective g-factor.
For transversal curvature wy = 1τ , the zero-field conductance pinch-off becomes flatter for
increasing submode index. But, it is questionable, whether this is caused by the elevated
transversal confinement. The comparison between the evolution of zero-field conductance
pinch-off gradients for the panels b), c), h), k) with c), f), i) l) reveals a different behaviour
with respect to the pinch-off gradient. Therefore, we assume, the strongly changing slope
is most likely induced by the changing form of the potential. A more precise analysis is
difficult using this illustration because of the changing gradients of the conductance traces.



100 5. fRG studies of quantum point contacts

In figure 5.25, we plotted the same conductance traces as we did in figure 5.24, but
now we rescaled the x-axis by the width W

(n)
po of the nth submode pinch-off region which

is defined by
W (n)
po := Ṽ 0.05G0

g − Ṽ 0.95G0
g . (5.33)

This approach fixes the zero field conductance slope of every submode and excludes the
effect, that every transmission mode feels another effective potential curvature due to
the repulsive interaction with other modes. Therefore, the zero field conductance traces
have the same form and only small deviations are noticeable. For stronger transversal
confinements, the spin-down conductance become less suppressed for all submodes. And
this decreasing of the conductance supression is stronger for higher submodes, as can be
seen for example in the panels g), h) and i). For the first mode is almost no change
noticeable. So that for wy = 1τ , the magnetic field behaviour for all submodes is almost
the same and almost identical to the conductance behaviour of the first mode. And this
evolution to an overall combined magnetic field behaviour of all submodes takes place for
all invested interaction energies and is only slightly sensitive with respect to the interaction.
Even though, we vary the interaction about 12τ . This can be seen by the panel c), f), i)
and l). Therefore, the first submode also seems to be distinguished in our model. For the
confirmation of the generic nature of this phenomena and an explanation, further research
is necessary.
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Figure 5.24: Comparison of the magnetic field behaviour of the conductance for the first three
conductance plateaus. The conductance Gnn of each transmission mode is illustrated as a func-
tion of the potential height measured relatively to Ṽg where Gnn is one-half of the conductance
quantum. The transversal potential curvature wy is increased from the left to the right panels,
where wy = 0.0, 0.5, 1.0τ , and the interaction strength is increased from the top to the bottom
panels, where U = 4, 8, 12, 16τ . The longitudinal curvature wx is always fixed at 0.5τ . With
increasing Zeeman energy the spin-resolved plateaus develops for each mode.
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Figure 5.25: Comparison of the magnetic field behaviour of the conductance for the first three
conductance plateaus where the pinch-off region is rescaled for each mode. The conductance

Gnn of each transmission mode is illustrated as a function of ∆Ṽ
(n)
g /W

(n)
po the potential height

measured relatively to Ṽg where Gnn is half the conductance quantum. The potential curvature
wy is increased from the left to the right panels, wy = 0.0, 0.5, 1.0τ , and the interaction strength
from the top to the bottom panels, U = 4, 8, 12, 16τ , where wx is always fixed at 0.5τ . With
increasing Zeeman energy the spin-resolved plateaus develops for each mode.



Chapter 6

Conclusion and outlook

In quantum point contacts occurs besides the well-known conductance quantization ad-
ditional unexpected conductance anomalies. This includes an anomalous magnetic field
behaviour which is assumed to be persistent in the limit of vanishing temperature. Florian
Bauer successfully managed to set up a static fRG approach to study zero temperature
linear conductance in an one-dimensional extended interaction region, with a potential
barrier modelling the QPC. This approach was able to reveal the anomalous magnetic
field dependence. The main purpose of this thesis was to extend this successful method to
two-dimensional systems, and thereby to study higher conductance steps.

For this purpose, we introduced fRG in chapter 2. We sketched the derivation of the fRG
flow equations which are a hierarchy of infinitely many coupled differential equations in the
vertex functions and describe the flow from a static to the fully interacting system. To solve
this hierarchy, we introduced a perturbative truncation by neglecting all vertex functions,
that are high-ordered in the interaction. In addition, we considered only the static case by
restricting ourselves to zero Matsubara frequency. Due, to this static approximation, we
were only able to calculate T = 0K observables. Solving the resulting flow equations leads
to an effective non-interacting model which takes the interaction into account.

In chapter 3, we applied this static renormalization group enhanced perturbative method
to a 2D Hubbard model. To be able to deal with a translational non-invariant system with
a vast extension, we considered only the on-site vertex flow and set almost all elements of
the remaining vertex functions to zero. To solve the resulting differential equations and to
compute the required Green functions, we introduced the RGF algorithm which calculates
elements of a sparse inverse matrix.

In chapter 4, we gave background knowledge for quantum point contacts. We discussed
several experimental researches in this field and peculiarities of higher spin-degenerated
subbands. Furthermore, we introduced the microscopic models of Meir et al. and Lunde
et al.

In chapter 5, we used the derived fRG approach to study zero temperature linear
conductance in our Hubbard model, where a saddle point potential models the QPC.

Before we studied two dimensional systems, we performed a minute analysis of the low
energy scale h∗ for two different fRG approaches (including nearest neighbour vertex flow,
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with U ′ = U/10, and on-site vertex flow) in an one-dimensional system. We could show,
that the exponential growth, corresponding to f1, is already existent in the non-interaction
system and smoothly evolves to the corresponding structure of the interacting system. By
this transition, the gradient f1 changes only slightly. For many parameters w, U , this
exponential dependence occurs only in a regime where the transmission is one. We con-
clude, f1 seems to be an artefact of the non-interacting system rather than a characteristic
feature of the anomalous magnetic field behaviour in the interacting system. This slope
also depends on the specific values of the on-site interaction and nearest neighbour inter-
action. The second exponential growth, corresponding to f2, seems to be related with the
nearest-neighbour interaction. Since, the nearest-neighbour interaction seems to fix the
appearance of f2 between Ṽ 0.75G0

g and Ṽ 0.5G0
g . Furthermore, it is questionable, how precise

the low energy scale h∗ can characterise the anomalous magnetic field behaviour. Because,
it is only defined within a magnetic field area where the whole pinch-off only shifts to
smaller Ṽg.

Besides the analysis of h∗, we managed to state first results for the magnetic field
behaviour of higher conductance steps. The magnetic field behaviour depends on the
transversal confinement and differs for every submode. In contrast to experiments, the
effective g-factor increases with the submode index. But for increasing transversal con-
finements, the effective g-factor gains. Therefore, this increasing effective g-factor must
be caused by another process. The use of different potentials could give more insight into
this behaviour. Furthermore, we found an indication, that the first conductance plateau
is also distinguished in our model. For a high transversal confinements, the magnetic field
behaviour of the higher submodes become equivalent to the first one. Here, the conduc-
tance was scaled with the width of the pinch-off region. To confirm this phenomena, the
investigation of different transversal confinements and potentials are necessary.

The data seems to be strongly dependent on the specific form of the potential and
not only on the parameters wx and wy. Therefore, we suggest to include the transversal
confinement into the leads. Thereby, a specific implementation of the crossover from the
harmonic-like potential of the constriction to the hard-wall potential of the leads is no
longer necessary. The transversal confinement becomes decoupled of the x-direction and an
isolated investigation of the dependence of the conductance on the submode energysplitting
becomes possible. To identify a ”weakening” of the anomalous magnetic field behaviour
in our presented data is hardly possible. It’s not clear, whether the differences of the
conductance traces are induced by differing g-factors or not. Furthermore, it’s not clear,
how the enhanced g-factor and the anomalous evolution of the conductance for increasing
magnetic fields are correlated. For trying to separate these two phenomena, we suggest
to investigate the position and form of the spin-resolved conductance plateaus for fixed
spin-splitting energies.

We are dealing for two-dimensional models with huge interaction energies. It is ques-
tionable whether the perturbative fRG truncation still provides reliable results or not.
Therefore, further studies are necessary to check its validity. We propose a comparison
with results of a well-known reference system, for example a quantum dot.
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A further possibility of application within the field of QPCs is the investigation of the
intersection of two spin-split subbands of two neighbouring spin-degenerate subbands. Gra-
ham et al. performed such QPC measurement and reported an additional ”0.7 anomaly”-
like structure. Therefore, the question arises if our model shows an anomalous conductance
behaviour within such an intersection region.
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Appendix A

Calculation details to the projected
Green functions

In the following we want to proof the equations (3.25) and (3.26) from section 3.2.3, which
express the projected Green functions GPQ and GQ in terms of GP . The Green function
GP was already calculated in the mentioned section using the projection method and the
surface Green function of the leads. Our starting point is the matrix equation (3.19), that
includes

(zP −HP )GPQ(z)−HPQGQ(z) = 0, (A.1)

and
−HQPGPQ(z) + (zQ−HQ)GQ(z) = 1. (A.2)

Details to the calculation of GPQ

We multiply equation (A.1) from left by (zQ−HQ)

(zP −HP )GPQ(z)(zQ−HQ)−HPQGQ(z)(zQ−HQ) = 0, (A.3)

and add the zero matrix 0 = HPQ −HPQ

(zP −HP )GPQ(z)(zQ−HQ)−HPQ +HPQ −HPQGQ(z)(zQ−HQ) = 0. (A.4)

Now we can rearrange the second part of the latter equation in the following way

HPQ −HPQGQ(z)(zQ−HQQ) = HPQ (1− GQ(z)(zQ−HQ))

= HPQ(zQ−HQ)−1 (1− (zQ−HQ)GQ(z)) (zQ−HQ)

= −HPQ(zQ−HQ)−1HQPGPQ(z)(zQ−HQ),

(A.5)

where we used equation (A.2)

1 − (zQ−HQ)GQ(z) = −HQPGPQ(z). (A.6)
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Therefore, equation (A.4) becomes

(zP −HP )GPQ(z)(zQ−HQ)−HPQ−HPQ(zQ−HQ)−1HQPGPQ(z)(zQ−HQ) = 0. (A.7)

Now we can exclude GPQ(zQ−HQ)

(
(zP −HP )−HPQ(zQ−HQ)−1HQP

)
GPQ(zQ−HQ) = HPQ, (A.8)

and using the result of GP from section 3.23, we finally obtain

GPQ(z) = GP (z)HPQ(zQ−HQ)−1, (A.9)

which we wanted to proof.

Details to the calculation of GQ

To show that equation (3.26) holds, we just have to multiply the latter expression for GPQ
from left by HQP , that provides

HQPGPQ(z)−HQPGP (z)HPQ (zQ−HQ)−1 = 0. (A.10)

Now we add the unit matrix on both sides and use (A.2)

(zQ−HQ)GQ(z)−HQPGP (z)HPQ (zQ−HQ)−1 = 1, (A.11)

which is equivalent to

GQ(z) = (zQ−HQ)−1 + (zQ−HQ)−1HQPGP (z)HPQ (zQ−HQ)−1 , (A.12)

the expression we wanted to proof.



Appendix B

Calculation details to the surface
Green function g̃

In the following section we want to proof that for Im{z} 6= 0 the inequalities |υ1| < 1 and
|υ2| > 1 hold, and only υ1 is enclosed by the unit circle S1 in the contour integral (3.37).
In addition, we want to proof that the widely used form (3.41), here (B.1),

≈
g (z) =





1
τ

(
χ− i

√
1− χ2

)
if Im{χ} > 0

1
τ

(
χ+ i

√
1− χ2

)
if Im{χ} < 0

, (B.1)

where
√

denotes the positive square root, is equivalent to equation (3.39), here (B.2),

g̃(z) =
1

τ

(
χ−

√
χ2 − 1

)
, (B.2)

where Im{χ} 6= 0 and the sign of the square root is chosen so that the sign of
√
χ2 − 1 is

equivalent to the sign of Im{χ}. For these proofs we use the cartesian representation of
the two possible square roots w± of z = x + iy, where x, y ∈ R and y 6= 0, [50, ch. 1.2.3
equ. 9]

w± = ±
(√

1/2 (x+ |z|) + i
y

|y|
√

1/2 (−x+ |z|)
)

(B.3)

and especially √
z = −i y|y|

√
−z. (B.4)

Unit circle S1 encloses only the pole υ1

In this subsection
√

always denotes the positive square root. We define the quantities
x1, x2, s1, s2 ∈ R by

χ =: x1 + ix2 and
√
χ2 − 1 =: s1 + is2. (B.5)
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Under the assumption of Im{z} = x2 6= 0, we want to show that |υ1| < 1 < |υ2| and that
this is equivalent to |υ1| < |υ2| because of υ1 · υ2 = 1. Now we can use

Im
{√

χ2 − 1
}

= 2 Re{χ} Im{χ}, (B.6)

which is equivalent to s2 = 2x1x2, and equation (B.3) to rewrite υ1/2 into the following
form

υ1 = χ−
(
x1

|x1|
√

1/2 (s1 + |χ|) + i
x2

|x2|
√

1/2 (−s1 + |χ|)
)

(B.7)

υ2 = χ+

(
x1

|x1|
√

1/2 (s1 + |χ|) + i
x2

|x2|
√

1/2 (−s1 + |χ|)
)

(B.8)

and obtain

|υ1|2 =
(
|x1| −

√
1/2 (s1 + |χ|)

)2

+
(
|x2| −

√
1/2 (−s1 + |χ|)

)2

<
(
|x1|+

√
1/2 (s1 + |χ|)

)2

+
(
|x2|+

√
1/2 (−s1 + |χ|)

)2

= |υ2|2,
(B.9)

where the strict lesser sign holds because Im{χ} = x2 6= 0 and hence χ 6= 0. And this
proofs the claim.

Equality between
≈
g and g̃

In this subsection
√

always denotes the positive square root. We define the quantities
x1, x2, s1, s2 ∈ R by

χ =: x1 + ix2 and
√
χ2 − 1 =: s1 + is2. (B.10)

Under the assumption of Im{z} = x2 6= 0, we can rewrite
≈
g the following way

τ
≈
g (z) = χ− i x2

|x2|
√

1− χ2. (B.11)

And using equations (B.3), (B.4) and s2 = 2x1x2, we obtain

τ
≈
g (z) = χ− i x2

|x2|
√

1− χ2 = χ− i x2

|x2|

(
−i s2

|s2|

)√
χ2 − 1

= χ−
(
x1

|x1|
√

1/2 (s1 + |χ|) + i
x2

|x2|
√

1/2 (−s1 + |χ|)
)

= τ g̃(z),

(B.12)

what we wanted to prove.



Appendix C

Calculation details to the spectral
function of a 2D tight-binding chain

In section 3.2.4 we calculated the spectral function A1D of an one-dimensional infinite
translational invariant tight-binding chain using the surface Green function of an one-
dimensional semi-infinite lead (3.43). With this result the spectral function of the two-
dimensional infinite tight-binding chain is easily attainable by a basis transformation to
the transversal eigenfunction.

We assume a finite effective widthM and use the following abbreviation for the transver-
sal eigenstates (3.35)

sβ(m) := ψkβ(m) =

√
2

M + 1
sin

(
m

βπ

M + 1

)
, (C.1)

with

m ∈ {0, . . . ,M + 1} and β ∈ {1, . . . ,M}. (C.2)

But in the following, we restrict ourselves to m ∈ {1, . . . ,M} and therefore the indices m
and β commute

sβ(m) = sm(β). (C.3)

The eigenfunctions {sβ| β∈{1, . . . ,M}} are an orthonormal basis and we can define the
orthogonal matrix 1

Ui,j := sj(i) with
[
UT
]
i,j

= si(j) = Ui,j. (C.4)

With this basis transformation we can easily perform the inversion of (3.57)

G2D,ret(w) =
1

(w + i0+)1 −Hstripe − Σ2D
leads (w + i0+)

(C.5)

1If you explicitly want to revise the orthogonality, relation (C.3) is very useful.
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because the matrices Hstripe and Σ2D
leads become diagonal, especially

gret1,m;1,m′(w) =
M∑

l=1

Um,l gl,l(w)
[
UT
]
l,m′

with gl,l(w) = g̃ret(w + 2τy cos(kl)) (C.6)

holds. Therefore, the Green function becomes

G2D,ret
i,j (w) =

M∑

l=1

Ui,l
1

w + i0+ + µ+ 2τy cos(kl)− Σ1D
leads (w + 2τy cos(kl))

[
UT
]
l,j

(C.7)

and the spectral function

A2D
i,j (w) =

[
−2 Im{G2D,ret(w)}

]
i,j

=
M∑

l=1

Ui,l A1D (w + 2τy cos(kl))
[
UT
]
l,j
, (C.8)

which is equivalent to equation (3.58).



Appendix D

Recursive Green function algorithm

In the proceeding text we want to show how the forward and backward recursion relations
(3.72) and (3.74), the cornerstone of the RGF algorithm, can be derived. Furthermore, we
want to proof equation (3.75) for calculating off-diagonal elements. We will derive these
recursion relations not only for the left connecting scheme but also derive the corresponding
relations for the right connecting scheme. The following derivations are based on the
notation and final equations of [23] and [35, chap. 4.3].

At first, we introduce the Dyson equations, which is the basis of RGF, and define
the left- and right-connected matrices/inverses belonging to the left and right connecting
scheme. With these definitions, we can proof the recursion relations in a very elegant way.

Dyson equation

The recursive Green function algorithm is based on dividing the matrix which we want
to invert into smaller parts whose inverses are easily computed. The inverse of the whole
system D is then obtained by the inverse of these unconnected parts d and the so called
Dyson equations

D = d− dBD, (D.1)

D = d−DBd, (D.2)

where B connects the submatrices. In the following we want to proof these equations
for a simple system. We consider the matrix A consisting of a diagonal part A0 and an
off-diagonal part B

A =

(
A1 B1,2

B2,1 A2

)
, A0 =

(
A1 0

0 A2

)
, B =

(
0 B1,2

B2,1 0

)
, (D.3)

where the entries A1, A2, B1,2 and B2,1 may be complex matrices itself. By the unconnected
system we mean A0 and by the connected system we mean the matrix A. Later we will
illustrate how this approach can be interpreted in a physical context. We use the following
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notation for the inverse of the connected and unconnected system

D := (A)−1 and d := (A0)−1 =

(
A−1

1 0

0 A−1
2

)
. (D.4)

In this context the Dyson equations are just simple matrix relations and can be derived
by multiplying A0 = A − B from left and right by the corresponding inverse of A or A0.
Equation (D.1) follows from

A0 = A−B
∣∣∣∣
×A−1

A−1
0 ×

, (D.5)

and equation (D.2) from

A0 = A−B
∣∣∣∣
×A−1

0

A−1× . (D.6)

With these relations we can derive the forward and backward recursion of the RGF algo-
rithm quite easily.

Left- and right-connected matrices and inverses

Before we start with the derivation we define the left-connected and right-connected ma-
trices with respect to the matrix (3.71) as follows

AL,i :=




A1 B1,2

B2,1 A2
. . .

. . . . . . Bi−1,i

Bi,i−1 Ai 0

0 Ai+1
. . .

. . . . . . 0

0 AN




, (D.7)

AR,i :=




A1 0

0 A2
. . .

. . . . . . 0

0 Ai Bi,i+1

Bi+1,i Ai+1
. . .

. . . . . . BN−1,N

BN,N−1 AN




. (D.8)

For these matrices the following relations

[
AL,1

]
j,k

= δj,kAk, A
L,N = A and

[
AR,1

]
j,k

= δj,kAk, A
R,N = A. (D.9)
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hold. And with the connection matrices CL,i, i ∈ {1, . . . , N −1}, and CR,i, i ∈ {2, . . . , N},
defined via

[
CL,i

]
j,k

:= δj,iδk,i+1Bi,i+1 + δj,i+1δk,iBi+1,i, (D.10)
[
CR,i

]
j,k

:= δj,i−1δk,iBi−1,i + δj,iδk,i−1Bi,i−1, (D.11)

we can successively connect the diagonal elements/blocks from left or right via

AL,i+1 = AL,i + CL,i or AR,i−1 = AR,i + CR,i. (D.12)

We define the left- and right-connected inverses as the inverse of the left- and right-
connected matrices

dL,i :=
(
AL,i

)−1
and dR,i :=

(
AR,i

)−1
, (D.13)

where i ∈ {1, . . . , N − 1} and i ∈ {2, . . . , N}. These inverse of these matrices fulfil the
very useful relations

[
dL,i
]
j,k

= δj,k (Aj)
−1 for j > i or k > i, (D.14)

[
dR,i
]
j,k

= δj,k (Aj)
−1 for j < i or k < i, (D.15)

and for the special case i = 1, N
[
dL,1
]
j,k

= δj,k (Aj)
−1 =

[
dR,N

]
j,k
. (D.16)

With the definition of left- and right-connected matrices and inverses, we can derive the
forward and backward recursion in a very elegant way.

Forward recursion

We choose an arbitrary i ∈ {1, . . . , N − 1} and express dL,i+1 in terms of dL,i. This can be
done by using the Dyson equations. From

dL,i+1 =
(
AL,i + CL,i

)−1
(D.17)

follows with equation (D.1)

dL,i+1 = dL,i − dL,iCL,idL,i+1. (D.18)

Now we determine the element (i+ 1, i+ 1) with (D.10) and (D.14), we obtain
[
dL,i+1

]
i+1,i+1

=
[
dL,i
]
i+1,i+1

−
[
dL,i
]
i+1,i+1

Bi+1,i

[
dL,i+1

]
i,i+1

, (D.19)

and the element (i, i+ 1) becomes
[
dL,i+1

]
i,i+1

=
[
dL,i
]
i,i+1︸ ︷︷ ︸

=0

−
[
dL,i
]
i,i
Bi,i+1

[
dL,i+1

]
i+1,i+1

. (D.20)
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We insert the latter equation into (D.19) and rewrite the equation into the following form

[
dL,i+1

]
i+1,i+1

=



([
dL,i
]
i+1,i+1

)−1

︸ ︷︷ ︸
=Ai+1,i+1

−Bi+1,i

[
dL,i
]
i,i
Bi,i+1




−1

. (D.21)

And with the abbreviation
[
dL,i
]
i,i

=: dLi,i, we obtain the final form (3.72), here (D.22), of

the forward recursion for the left connecting scheme

dLi+1,i+1 =
(
Ai+1,i+1 −Bi+1,id

L
i,iBi,i+1

)−1
with dL1,1 = (A1)−1 . (D.22)

The last element of this recursion is special, because it’s the (N,N) element/block of the
connected inverse because dLN,N =

[
dL,N

]
N,N

= [A−1]N,N .

The forward recursion relation for the right-connected inverses dR,i can analogously to
(D.22) be derived, which becomes

dRi,i =
(
Ai,i −Bi,i+1d

R
i+1,i+1Bi+1,i

)−1
with dRN,N = (AN)−1 , (D.23)

where we defined
[
dR,i
]
i,i

=: dRi,i. This recursion of the right connecting scheme starts

at i = N and ends for i = 1 with the (1, 1) element/block of the connected inverse
dR1,1 = [A−1]1,1.

Backward recursion

To proof the backward recursion relation (3.74), we choose an arbitrary i ∈ {1, . . . , N − 1}
and express Di,i in terms of Di+1i,i+1 by using the Dyson equations. Our starting point is
formula

D = d− dBd+ dBDBd, (D.24)

which can be derived by inserting (D.1) into (D.2). We want to apply this formula to the
identity

A =
(
A− CL,i+1

)
+ CL,i+1, (D.25)

with D = A−1, B = CL,i+1 and d =
(
A− CL,i+1

)−1
. To get (D.25) for i = N − 1 well-

defined, we set CL,N := 0. For evaluating (D.24), the following properties for the inverse
of the unconnected system are very useful. First we can express d in terms of left- and
right-connected inverses as follows

d =
(
AL,i + AR,i+1 − AL,1

)−1
= dL,i + dR,i+1 − dL,1 (D.26)

and with (D.14) and (D.16), we conclude that

[d]i,i =
[
dL,i
]
i,i

= dLi,i, (D.27)

[d]j,k = 0 for j > i, k ≤ i or j ≤ i, k > i (D.28)
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hold. Now we can calculate the element Di,i in equation (D.24) and obtain

Di,i =
[
dL,i
]
i,i

+
[
dL,i
]
i,i
Bi,i+1Di+1,i+1Bi+1,i

[
dL,i
]
i,i
, (D.29)

which is equivalent to the desired backward recursion formula (3.74), here (D.30),

Di,i = dLi,i + dLi,iBi,i+1Di+1,i+1Bi+1,id
L
i,i with DN,N = dL,N . (D.30)

For deriving the backward recursion relation of the right connecting scheme, we apply
equation (D.24) to

A =
(
A− CR,i

)
+ CR,i, (D.31)

with D = A−1, B = CR,i and d = A− CR,i. For d = dR,i + dL,i − dR,N the relations

[d]i,i =
[
dR,i
]
i,i

= dRi,i (D.32)

[d]j,k = 0 for j < i, k ≥ i or j ≥ i, k < i (D.33)

hold. And we can analogously to (D.29) derive the element (i, i) of the connected inverse,
which becomes

Di,i = dRi,i + dRi,ibi,i−1Bi,i−1Di−1,i−1Bi−1,id
R
i,i with D1,1 = dR,1. (D.34)

The backward recursion of the left/right connecting scheme calculates with the quan-
tities dLi,i/d

R
i,i derived from the forward recursion of the left/right connecting scheme the

diagonal elements of a matrix inverse A−1. For the computation of the diagonal elements
the two different schemes are equivalent. This changes if we want to compute off-diagonal
elements as we will see in the following.

Off-diagonal elements

The RGF algorithm can also be used to compute off-diagonal elements of an inverse. The
required equations for the left connecting scheme can be derived as follows. We apply
Dyson equation (D.1) to (D.25) with i ∈ {1, . . . , N − 1} arbitrary, and with (D.28) follows

Di,j

∣∣
i<j

= −dLi,iBi,i+1Di+1,j. (D.35)

The same proceeding with Dyson equation (D.2) provides

Dj,i

∣∣
i<j

= −Dj,i+1Bi+1,id
L
i,i. (D.36)

The corresponding relation for the right connecting scheme can be derived analogously.
We apply (D.1) to the identity (D.31) and with (D.33) we obtain

Di,j

∣∣
i>j

= −dRi,iBi,i−1Di−1,j (D.37)

The same proceeding with Dyson equation (D.2) provides

Dj,i

∣∣
i>j

= −Dj,i−1Bi−1,id
R
i,i. (D.38)
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With those equations and the forward recursion and parts of the backward recursion,
we can compute every off-diagonal element of the inverse. Considering we want to calculate
a single off-diagonal element Di,j of the inverse with i < j, we can apply equation (D.35)
and (D.38) (j−i)-times and obtain

Di,j = (−1)j−i
(
j−1∏

k=i

Bk,k+1 d
L
k,k

)
Dj,j (D.39)

for the left connecting scheme and

Di,j = (−1)j−i
(

j∏

k=i+1

Bk−1,k d
R
k,k

)
Di,i. (D.40)

for the right connecting scheme. In the other case, where j < i, we can apply equation
(D.36) and (D.37) (j−i)-times and obtain

Di,j = (−1)i−j
(
i−1∏

k=j

Bk+1,k d
L
k,k

)
Di,i (D.41)

for the left connecting scheme and

Di,j = (−1)i−j
(

i∏

k=j+1

Bk,k−1 d
R
k,k

)
Dj,j. (D.42)

for the right connecting scheme. And with (D.39) follows equation (3.77) with i = 1
and j = N . Whether the left or right connecting scheme is more efficient depends on
the desired element of the inverse. Because with the right choice of the scheme the steps
of the backward recursion can be minimized. For our application in section 3.3.2 this
consideration is irrelevant because the Green function is symmetric. For computing several
off-diagonal elements might the equations (D.39), (D.41) or (D.40), (D.42) be unwieldy and
the specific way through the elements of the inverse with equations (D.35) - (D.38) must
be adapted for the calculation.
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[17] J. Heyder. Der Übergang vom Kondoeffekt im Quantendot zur 0.7 Leitwert-Anomalie
im Quantenpunktkontakt. Master’s thesis, LMU Munich, 2009.

[18] S. Hunklinger. Festkörperphysik. Skript zur Vorlesung. University of Heidelberg, 2002.

[19] J. F. Janak. g factor of the two-dimensional interacting electron gas. Physical Review,
178(3):1416–1418, 1969.

[20] C. Karrasch. Transport through correlated quantum dots. a functional renormalization
group approach. Master’s thesis, University of Göttingen, 2006.

[21] A. Kirstensen, H. Bruus, A. E. Hansen, J. B. Jensen, P. E. Lindelof, C. J. Marck-
mann, J. Nygard, C. B. Sorensen, F. Beuscher, A. Forchel, and M. Michel. Bias and
temperature dependence of the 0.7 conductance anomaly in quantum point contacts.
Physical Review B, 62(16):10950–10957, 2000.
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und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Munich, May 16, 2011


	Introduction
	Functional renormalization group (fRG)
	Introduction
	Many-particle Green functions
	Green functions - generating functionals
	Dyson equation and self-energy

	Functional renormalization group approach
	General proceeding
	fRG flow equations

	Specification of the truncation and the cutoff
	Truncation scheme
	Cutoff insertion
	Resulting flow equations
	Modified initial conditions

	Alternative RG schemes

	fRG applied to a 2D Hubbard model
	Introduction
	2D Hubbard model
	Method of finite differences
	2D Hubbard model Hamiltonian
	Green function of the contact - projection method
	Infinite tight-binding chain

	fRG flow equations
	Resulting fRG flow equations
	Efficient Computation of certain elements of the Green function

	Physical observables
	Computation of the conductance 
	Spin-resolved local density


	Quantum point contacts
	Introduction
	Experimental setup
	Conductance quantization
	Adiabatic transport model
	Saddle point model of the constriction
	Magnetic field dependence
	Temperature dependence

	Conductance Anomalies
	Experimental Observations
	Higher conductance plateaus
	Microscopic models


	fRG studies of quantum point contacts
	Introduction
	Modelling a quantum point contact
	Energy scale h* 
	 Non-interacting model
	Nearest neighbour vertex flow
	On-site vertex flow
	Comparison on-site/nearest neighbour vertex flow

	Two-dimensional system

	Conclusion and outlook
	Calculation details to the projected Green functions
	Calculation details to the surface Green function  
	Calculation details to the spectral function of a 2D tight-binding chain
	Recursive Green function algorithm
	Acknowledgements

