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Entanglement of mechanical oscillators coupled to a nonequilibrium environment
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Recent experiments aim at cooling nanomechanical resonators to the ground state by coupling them to
nonequilibrium environments in order to observe quantum effects such as entanglement. This raises the general
question of how such environments affect entanglement. Here we show that there is an optimal dissipation
strength for which the entanglement between two coupled oscillators is maximized. Our results are established
with the help of a general framework of exact quantum Langevin equations valid for arbitrary bath spectra,
in and out of equilibrium. We point out why the commonly employed Lindblad approach fails to give even a
qualitatively correct picture.
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I. INTRODUCTION

Entanglement [1] constitutes a cornerstone of quantum
mechanics and is a major subject of present-day research [2].
Whether it persists and can be observed in systems comprising
macroscopic bodies has been a hotly debated topic since the
early days of quantum mechanics. The ground state of two
interacting quantum systems will generically be entangled.
Thus, one could naively expect that it is sufficient to simply
cool two interacting, macroscopic bodies to their ground
states and thereby prepare an entangled state. However, when
coupling to a dissipative bath—as is of course necessary
for cooling—entanglement may be destroyed, as explored
in a number of works, for example, [3]. A slate of recent
experiments has now brought a new aspect into focus: A
nonequilibrium environment, consisting of either a driven
optical cavity [4], a superconducting microwave resonator [5],
or a superconducting single-electron transistor [6], can be
employed to cool the motion of mechanical resonators down to
the ground state. The advances in this field may ultimately en-
able tests of quantum mechanics in an entirely new regime [7]
and to observe entanglement of massive objects [8,9]. Still it
remains to resolve the issue of how the dissipative coupling to
the nonequilibrium bath affects entanglement.

In the present work, we demonstrate a nonmonotonic
dependence of entanglement between two oscillators on the
coupling strength to the nonequilibrium environment and show
that there is an optimal value for the coupling to the bath. Below
this value, entanglement is diminished by thermal fluctuations,
and above this value, it is lost through dissipation. The striking
behavior found here is missed entirely by the commonly
employed Lindblad approach to dissipative dynamics.

In order to obtain an exact description, we develop a general
framework based on quantum Langevin equations, which
allows us to analyze the entanglement between harmonic os-
cillators in the presence of coupling to a linear bath of arbitrary
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spectral density. First, we exploit this scheme to show that even
in equilibrium there are effects likely to be missed by simpler
approaches. For example, the minimum coupling strength
needed for entanglement depends logarithmically on the cutoff
frequency for the most important case of an Ohmic bath
spectrum. For the case of a nonequilibrium bath, we illustrate
the generic behavior in a concrete example of two mechanical
resonators inside an optical cavity, being cooled by the optome-
chanical interaction with the light field circulating in the cavity.

II. MODEL

We consider two coupled oscillators with masses mA,B

and frequencies �A,B (see Fig. 1). In terms of their positions
and momenta, q̂A/B and p̂A/B, the Hamiltonian reads Ĥsys =∑

α=A,B mα�2
αq̂2

α/2 + p̂2
α/2mα + k(q̂A − q̂B)2/2, with a cou-

pling spring constant k. Moreover, we assume the oscillators to
be subject to fluctuating quantum forces F̂α , which are possibly
correlated, and which derive from a bath of harmonic oscilla-
tors, with Ĥsys-bath = ∑

α q̂αF̂α . They will be characterized by
their spectra as specified below.

If the state of the environment is Gaussian, the oscillators
also end up in a Gaussian state, which is fully described
by the covariance matrix γij = tr(ρ̂{R̂i,R̂j }/2). Here R̂ =
(p̂A,q̂A,p̂B,q̂B)T , 〈R̂i〉 ≡ 0 in steady state, and ρ̂ is the
system’s density matrix. As a measure of the entanglement
between the oscillators, the logarithmic negativity [10–12]
is calculated as EN (ρ̂) = ∑

i=1,2 f (c̃i), where f (c̃) =
− log2(2c̃) for c̃ < 0.5 and f (c̃) = 0 otherwise, and where
c̃1,2 are the symplectic eigenvalues of the partially transposed
covariance matrix γ TA [12].

For later use, and in order to fix the notation, it will
be convenient to consider first the simple example of two
identical oscillators (mA/B = m, �A/B = �) at thermal equi-
librium and assume the coupling to the environment to be
negligible. The system can be decoupled by introducing the
normal-mode coordinates η̂± = (q̂A ± q̂B)/

√
2 and momenta

π̂± = (p̂A ± p̂B)/
√

2 corresponding to the center-of-mass
motion (�+ = �) and the relative motion at frequency
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FIG. 1. (Color online) The system consists of two harmonic
oscillators (A and B) that are coupled via a harmonic force with spring
constant k and are subject to fluctuating quantum forces (F̂A/B ) due
to their coupling to the environment.

�− =
√

�2 + 2k/m ≈ � + 2G. Here we defined the cou-
pling rate G = k/2m�, to be used in place of k. In the
following, for simplicity, we assume attractive interaction,
G ∝ k > 0. The symplectic eigenvalues have the simple form

c̃1,2 =
√

〈η̂2±〉〈π̂2∓〉, (1)

and the variances are given by 〈η̂2
±〉 = (2n± + 1)/2m�±

and 〈π̂2
±〉 = m�±(2n± + 1)/2, where n± = (e�±/T − 1)−1 is

the thermal occupation number (we set kB ≡ 1 and h̄ ≡ 1).
Entanglement is obtained when the product 〈η̂2

−〉〈π̂2
+〉 in Eq. (1)

becomes smaller than 1/4, which requires a coupling rate
G/� >∼ 2nth. In this expression only terms up to first order
in G/� have been considered and we have set nth = n+ ≈
n−. For a given coupling rate G, the logarithmic negativity
decreases linearly as a function of the thermal occupation nth:
EN (ρ) ≈ (2G/� − 4nth)/ ln 2 (black curve in Fig. 2). Thus, as
is well known, thermal fluctuations will reduce and eventually
destroy entanglement.

III. EXACT SOLUTION

Returning to the full model, an exact description of
the dissipative dynamics is provided by quantum Langevin
equations [13] for the Heisenberg operators, obtained by
eliminating the bath degrees of freedom:

mα
¨̂qα(t) + mα�2

αq̂α(t) + k[q̂α(t) − q̂ᾱ(t)]

= F̂α(t) +
∫ t

−∞

∑
β=A,B

χF
αβ(t − t ′)q̂β(t ′)dt ′, (2)

where α = A/B and ᾱ = B/A. F̂A/B denotes stationary
quantum noise forces acting on the oscillators (with
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FIG. 2. (Color online) Entanglement between two identical har-
monic oscillators as a function of the thermal occupation num-
ber nth in the absence of dissipation (black curve) and under
the influence of an equilibrium Ohmic bath (red curve), which
leads to a temperature-independent reduction of entanglement by
	m[ln(ωc/�) − 1]/(π� ln 2). The additional reduction with temper-
ature scales as T 2 at low T , as shown in the inset (dashed curve).
G = 0.2�, 	m = 0.1�, and ωc = 10�.

〈F̂α〉 = 0). The response functions that take into
account the memory effect of the baths are given
by χF

αβ(t) = −iθ (t)〈[F̂α(t),F̂β(0)]〉. Solving Eq. (2)
in Fourier space yields position correlators 〈q̂αq̂β〉ω =∫

dteiωt 〈q̂α(t)q̂β(0)〉 = ∑
α̃,β̃∈{A,B} χαα̃(ω)χββ̃(−ω)〈F̂α̃F̂β̃〉ω.

Here 〈F̂αF̂β〉ω = ∫
dteiωt 〈F̂α(t)F̂β(0)〉 and χαβ(ω)

are elements of a matrix whose inverse is given
by [χ−1(ω)]αα = mα(�2

α − ω2) + k − χF
αα(ω) and

[χ−1(ω)]αβ = −k − χF
αβ(ω) for α �= β. Momentum

correlators follow from 〈p̂αp̂β〉ω = mαmβω2〈q̂αq̂β〉ω and
〈p̂αq̂β〉ω = −imαωα〈q̂αq̂β〉ω. Finally, equal-time correlators
are obtained by integration, 〈q̂αq̂β〉 = ∫

dω
2π

〈q̂αq̂β〉ω. The
solution of Eq. (1) thus provides the full covariance matrix
γ in terms of frequency integrals over arbitrary bath
spectra, and from it the logarithmic negativity EN for two
coupled dissipative oscillators. Note that we did not assume
equilibrium, that is, the fluctuation-dissipation relation
between χF

αβ and 〈F̂αF̂β〉ω does not necessarily hold.
For simplicity, we will from now on restrict our explicit

calculations to the symmetric case of two identical oscillators
that couple equally strongly to independent baths, such
that 〈F̂αF̂β〉ω = δαβ〈F̂ F̂ 〉ω and χF

αβ = δαβχF . The system
can then, as before, be decomposed into the center-of-mass
mode (η̂+, π̂+) and the relative mode (η̂−, π̂−), which be-
come independent dissipative oscillators. We find 〈η̂±η̂±〉ω =
〈F̂ F̂ 〉ω|χ±(ω)|2, where χ±(ω) = [m(�2

± − ω2) − χF (ω)]−1.
After frequency integration, Eq. (1) thus directly yields the
logarithmic negativity.

IV. EQUILIBRIUM BATH

First, we illustrate the general scheme for the case of
equilibrium baths, picking the important example of an Ohmic
bath spectrum: 〈F̂αF̂α〉Tω = 〈F̂ F̂ 〉Tω = m	mω[coth(ω/2T ) +
1]/(1 + ω2/ω2

c ). Here T denotes the temperature, 	m the
damping rate, and ωc the cutoff frequency. For 	m < � and
ωc  �, the position and momentum variances of an oscillator
coupled to this bath are given analytically in [14]. Here we only
display the expansion to first order in 	m/� at T = 0:

2m�±〈η̂2
±〉 ≈ 1 − 	m

π�±
,

(3)

2〈π̂2
±〉/m�± ≈ 1 + 	m

π�±

(
2 ln

ωc

�±
− 1

)
.

As illustrated in Fig. 2, entanglement between the oscil-
lators is suppressed due to their coupling to the bath. The
high-frequency bath modes cause momentum fluctuations that
depend logarithmically on the cutoff frequency [cf. Eq. (3)].
Thus, even at zero temperature, the coupling to the environ-
ment reduces the logarithmic negativity by 	m[ln(ωc/�) −
1]/(π� ln 2) [as follows from Eqs. (1) and (3)], and eventually
destroys the entanglement completely. Entanglement persists
(EN > 0) only if the coupling rate exceeds a threshold value of

GOhmic,T =0
min = 	m

π

(
ln

ωc

�
− 1

)
. (4)

As a distinctive feature, the minimal coupling rate depends
logarithmically on the cutoff frequency. It indicates that any
approach that disregards the influence of high-frequency
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fluctuations has to fail, as discussed for the example of the
Lindblad approach below. Our general formula also allows to
obtain the full temperature-dependence (see Fig. 2).

V. NONEQUILIBRIUM BATH

Tunable nonequilibrium quantum fluctuations are now rel-
evant in many contexts and may be used, for example, to cool
systems below the bulk temperature. A paradigmatic example
is the photon shot noise coupled to mechanical resonators
in optomechanical setups [4,15] (the following results also
apply to analogous electromechanical systems [5,6]). We treat
the conceptually clearest case where two nanomechanical
membranes are placed inside a laser-driven cavity, and two
independent light forces F̂ cav

± act on the mechanical normal
modes η̂±, leading to optomechanical cooling [16,17]. This
may be realized in a setup with two cavity modes, where
Ĥsys−cav = (g/m)[(â†

+ + â+)η̂+ + (â†
− + â−)η̂−](see Fig. 3).

Here â± are the annihilation operators of the cavity modes,
m = 1/

√
2m� is the mechanical ground-state width, and

g is the oscillator-cavity coupling rate that scales linearly
with the laser amplitude (see [18,19] for a derivation of this
type of coupling). The mechanical coupling k between the
oscillators (here assumed as given) can itself be implemented
via other, strongly driven far-detuned cavity modes [9,18].
Other possible setups include cold-atom or hybrid atom-
membrane systems [18].

Elimination of the cavity degrees of freedom generates
cavity noise spectra [16] 〈F̂±F̂±〉cav

ω = (g/m)2κ[(ω + �±)2 +
κ2/4]−1, where κ is the decay rate of the cavity photons and �±
the detuning of the corresponding input lasers with respect to
the first (second) cavity mode. A spectrum of this kind induces
an optomechanical cooling rate of 	opt,± = 2

m(〈F̂±F̂±〉cav
�± −

〈F̂±F̂±〉cav
−�±). In the optimal cooling regime, for �± = −�±

and κ � �, we have 	opt± ≈ 	opt = 4g2/κ . In this regime,
the minimum possible phonon number due to optical cooling,
defined by (nopt± + 1)/nopt± = 〈F̂±F̂±〉cav

�±/〈F̂±F̂±〉cav
−�± , will

be much smaller than 1 [nopt± ≈ nopt = (κ/4�)2]. Moreover,
we assume 	mnth � �, 	m � 	opt, and g � � as required
for ground-state cooling. The full forces F̂± = F̂ cav

± + F̂ T
±

also contain thermal fluctuations F̂ T
± , independent from F̂ cav

± .
For low mechanical damping (	m � �), the spectrum of the
thermal bath can be replaced by the values at the resonances,
that is, 〈F̂±F̂±〉Tω �→ 〈F̂±F̂±〉Tω=sgn(ω)�± . The general scheme

FIG. 3. (Color online) Two coupled mechanical oscillators, repre-
sented by membranes, under the influence of nonequilibrium photon
shot noise baths because of their coupling to two modes (a±) of an
optical cavity. The placement of the membranes allows the normal
modes of the coupled system to be cooled by independent noise forces
F cav

± .

yields the variances by integrating 〈η̂±η̂±〉ω = (〈F̂±F̂±〉Tω +
〈F̂±F̂±〉cav

ω ) | χ±(ω) |2 and 〈π̂±π̂±〉ω = m2ω2〈η̂±η̂±〉ω.
In the optimal cooling regime, the variances of the op-

tomechanically damped system can be expressed in a compact
way:

2〈π̂2
±〉/m�± ≈ 1 + 2(neff + δn), (5)

2m�±〈η̂2
±〉 ≈ 2〈π2

±〉/m�± + g2/�2
±, (6)

where neff = 	mnth/	opt + nopt and δn = 	mnth/κ .
Together with Eq. (1), these formulas constitute our main

result for entanglement in a system subject to optomechanical
cooling. We now extract and discuss its main physical features.
The first term on the right-hand side (RHS) of Eq. (5) describes
the ground-state energy, and the second term takes account
of the cooling mechanism: the thermal occupation is reduced
to an effective phonon number neff . Thus, entanglement can in
principle be created even for large bulk temperatures, nth  1,
if the optomechanical damping rate 	opt is sufficiently large.
Since 	opt = 4g2/κ , this can be achieved either by reducing
the cavity linewidth κ or by increasing the cavity-oscillator
coupling rate g. However, we identify two processes that
destroy entanglement for small κ and large g, respectively.
First, as known from [16], the cooling mechanism becomes
less efficient in the strong-coupling regime 	opt ∼ κ , where the
contribution of δn becomes appreciable. Second, for a large op-
tomechanical coupling strength g, the low-frequency contribu-
tions of the photon shot noise induce an increase of the position
variance [second term on the RHS of Eq. (6)]. This implies that
strong correlations between the individual oscillators and the
driven cavity lead to a destruction of entanglement between the
oscillators.

As a consequence, entanglement depends nonmonoton-
ically on the cavity linewidth κ and the optomechanical
damping rate 	opt in the optimal cooling regime (see Figs. 4
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FIG. 4. (Color online) Density plot of the entanglement (loga-
rithmic negativity EN ) for the nonequilibrium dissipative system of
Fig. 3, as a function of the optomechanical cooling rate 	opt and
the mechanical coupling rate G. The white solid line represents the
boundary between entangled and separable states of the system and
thereby defines the minimal coupling rate Gmin necessary to observe
entanglement. The dashed white line depicts the result for Gmin from
the simpler Lindblad approach. 	mnth = 10−4�, �± = −�±, and
κ = 0.067�.
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FIG. 5. (Color online) Minimal coupling strength Gmin necessary
to observe entanglement. Gmin displays an optimum for intermediate
values of the optomechanical damping rate 	opt and the cavity decay
rate κ (for 	mnth = 10−4�, �± = −�±).

and 5). Entanglement can be generated only if the mechanical
coupling rate exceeds a value of

Gmin/� ≈ 2(neff + δn) + 	optκ/8�2. (7)

Note that Eq. (7) can be employed to optimize entanglement.

VI. SHORTCOMINGS OF THE LINDBLAD APPROACH

The crucial destruction of entanglement by strong dis-
sipation is missed entirely by the commonly employed
Lindblad master equation approach. Its general form is given
by ˙̂ρ = −i[Ĥsys,ρ̂] + ∑

i Li(ρ̂), where the influence of the
bath is taken into account by Lindblad terms Li [13]. For
equilibrium baths, these are given by L(±)

m,↓(ρ̂) = (	m/2)(n± +
1)D[Â±] and L(±)

m,↑(ρ̂) = (	m/2)n±D[Â†
±], where D[Â](ρ̂) =

2Âρ̂Â† − Â†Âρ̂ − ρ̂Â†Â and Â± are the mechanical normal-
mode annihilation operators. At zero temperature, the
shortcomings of the Lindblad approach are most obvi-
ous: The system evolves into its ground state, whose
entanglement is not reduced at all by the system-bath
coupling. To treat the nonequilibrium case of Fig. 3
in the Lindblad approach, we have to consider four
additional terms, L(±)

c,↓(ρ̂) = 〈F±F±〉cav
�±(�±2

m/2�)D[Â±](ρ̂)

and L(±)
c,↑(ρ̂) = 〈F±F±〉cav

−�± (�±2
m/2�)D[Â†

±](ρ̂), which take

account of the decoherence via the cavity modes (see [19] for a
detailed derivation). The steady-state variances of the normal
modes follow as 2m�±〈η̂2

±〉 = 2〈π̂2
±〉/m�± ≈ 2neff + 1. This

expression describes the cooling to an effective phonon num-
ber neff but fails to capture the loss of entanglement for strong
optomechanical coupling (see the dashed curve in Fig. 4). The
shortcomings of this approach can be understood by noting
that the Born-Markov approximation, which assumes the bath
to have a very short correlation time (no memory) and to
be uncorrelated with respect to the system, does not hold
in general for a nonequilibrium bath, as can be seen in our
example.

VII. CONCLUSIONS AND OUTLOOK

The general exact framework introduced here can be
employed to analyze the entanglement of oscillators under
the influence of arbitrary bath spectra, among them nonequi-
librium and tailored nonstandard spectral densities. As pointed
out in this paper, the effects of tunable nonequilibrium
environments promise rich physics to be explored in current
experimental setups. The optomechanical setup investigated
here is in fact just one of a rather large class of setups to
which this work applies, and which also extends into the
fields of electromechanics [5,6] and cold-atom physics [18].
We also note that completely different systems show similar
entanglement production effects under nonequilibrium con-
ditions, as has been explored in the case of coupled, driven
qubits [20], atoms [21], and ions [22], or coupled double
quantum dots [23].

In the quest to observe entanglement in dissipatively cooled
optomechanical or nanoelectromechanical systems, the theory
presented here serves as an essential guideline: It identifies
viable parameter regimes for generating and optimizing
entanglement between massive mechanical oscillators.

Recent works [19,24] have proposed an alternative way
of generating entanglement in nanomechanical systems: By
modulation of the coupling strength between the oscillators,
the system can be parametrically driven into a nonequilib-
rium state which features entanglement even at relatively
large temperatures. In a future work, the general framework
introduced here can be employed to discuss the generation of
entanglement in a parametrically driven system and to compare
and connect the two approaches.
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