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J. Ye, and H. J. Kimble, Phys. Rev. Lett. 103, 063005 (2009)] we have shown the possibility to achieve strong
coupling of the quantized motion of a micron-sized mechanical system to the motion of a single trapped atom. In
the proposed setup the coherent coupling between a SiN membrane and a single atom is mediated by the field of
a high finesse cavity and can be much larger than the relevant decoherence rates. This makes the well-developed
tools of cavity quantum electrodynamics with single atoms available in the realm of cavity optomechanics. In
this article we elaborate on this scheme and provide detailed derivations and technical comments. Moreover, we
give numerical as well as analytical results for a number of possible applications for transfer of squeezed or Fock
states from atom to membrane as well as entanglement generation, taking full account of dissipation. In the limit
of strong-coupling the preparation and verification of nonclassical states of a mesoscopic mechanical system is
within reach.
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I. INTRODUCTION

The quantum regime of optomechanical systems [1,2]—in
particular micro- or nanomechanical oscillators coupled to
the optical field in a cavity—has recently received consid-
erable attention, mainly owing to the experimental progress
in quantum ground-state cooling [3,4] and strong coupling
dynamics [5–9]. Combining optomicromechanics with low-
loss dielectric membranes [10,11], on the one hand, with cavity
QED [12] with single or many atoms, on the other hand, a
hybrid system emerges that can be a testbed for experiments
on coherent dynamics between microscopic (single atom or
ensemble of atoms) and macroscopic (micromechanical oscil-
lator) systems. Given the already well-developed toolbox for
the manipulation of atomic states such an interface can be used
for indirect preparation and manipulation of quantum states
of mesoscopic mechanical oscillators. Moreover, in view of
applications such as quantum information processing, it seems
timely to ask for quantum hybrid systems which combine the
advantages of physically different systems, each with a unique

set of properties and capabilities, in a compatible experimental
setup. A hybrid atomic-mechanical system would be one such
example.

A few recent theoretical proposals advance the possibility
of coupling ensembles of atoms to mechanical resonators.
Most generally the interaction is mediated by a light field that
couples the mechanical resonator via the radiation pressure
effect to either internal levels of the atoms [13–15], or to
their motional degrees of freedom [16], which can result,
e.g., in cooling of the mechanical resonator via a bath of
atoms [17]. Also a direct coupling has been proposed where
a magnetic tip mounted on a cantilever provides a Zeeman
coupling to the atomic spin of the Bose-Einstein-condensed
[18] or ultracold [19] atoms. A number of proposals discuss
the possibility of coupling the motion of a microresonator
to single two-level systems, realized, e.g., in a quantum dot
[20], in a nitrogen-vacancy impurity in diamond [21], or in
superconducting circuits such as a Cooper-pair box [22,23], a
SQUID [24,25], or a flux qubit [26].
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The direct coupling of the motion of a single microscopic
body such as a single atom to a macroscopic mechanical
oscillator is considerably more challenging. Typically, the
interaction strength is governed by a small intrinsic parameter
which scales as

√
m/M ∼ 10−7 − 10−4, where m and M are

the masses of the atom and the mechanical oscillator. This is
true, e.g., in Ref. [27] where the motion of an ion in a trap is
coupled to the vibrations of nanoelectrodes providing the trap
potential. An alternative route is, however, possible, where an
indirect cavity-mediated coupling circumvents the limitations
imposed by the small mass ratio, as presented in our recent
proposal [28]. Thereby a strong coupling is achievable between
a single trapped atom and the motion of a membrane, where the
coupling strength can exceed the dissipative rates by a factor
of 10 for present or near future experimental parameters.

In this article we elaborate on the mechanism described
in our previous letter [28], and provide more details and
applications of the scheme. The article is structured as
follows. Section II presents an overview and qualitative
picture of our results. In Sec. III the reduced master equation
describing the cavity-mediated membrane-atom interaction is
derived in detail, and results are presented in particular for
the dispersive regime. Section IV specializes on the regime
of strong membrane-atom coupling, and examples of state
transfer are presented. In addition, we describe how to produce
entanglement between atom and membrane by modulating
the input laser intensity in time, leading to a two-mode
squeezing Hamiltonian. Section V discusses technical details
regarding the specific setup that we have in mind, and finally
we discuss the result and conclude in Sec. VI. Mathematical
details of the derivation are presented in the Appendices.

II. OVERVIEW

In the setup proposed in Ref. [28], the recent development
within micromechanics with membranes in optical cavities
[10] is combined with single trapped atom cavity QED [12].
As shown in Fig. 1, we consider an optomechanical system
where a micron-sized dielectric membrane is placed in a
laser driven high-finesse cavity and coupled through radiation
pressure to the cavity field quadratures, with the coupling
strength controlled by the laser power through the intracavity
amplitude. In this setup, the membrane vibration manifests
itself as a dynamic detuning of the driven cavity modes. For
a cavity mode driven by a laser detuned from the cavity
resonance this dynamic detuning translates into a dynamic
intracavity field intensity. If now a single atom is trapped in

FIG. 1. (Color online) Dynamic intracavity field provides strong
interface between the motion of a single trapped atom and the
vibrations of a micron-sized membrane.

the optical dipole potential provided by the cavity field, the
membrane vibration couples via the dynamics of the optical
trap to the motion of the atom and vice versa. This coupling is
strongly enhanced by a large steady-state field amplitude and
the cavity finesse, which is a key ingredient in achieving the
strong coupling regime.

A. Effective master equation and strong coupling

The focus of our analysis is a configuration where the cavity
field serves merely as a quantum bus and can be effectively
eliminated from the dynamics, giving rise to a coupled
oscillator dynamics for the reduced system comprising the
membrane and the atom [h̄ = 1],

H = ωma†
mam + ωata

†
ataat − G(am + a†

m)(aat + a
†
at). (1)

In this Hamiltonian the first and second terms describe the
bare micromechanical oscillator and harmonic motion of the
trapped atom, respectively, with am (aat) being the mechanical
(atomic motion) annihilation operator. ωm and ωat are the
respective oscillation frequencies. The linear form of this
interaction would provide a quantum interface for coherent
transfer of quantum states between the mechanical oscillator
and the atom, opening the door to coherent manipulation,
preparation, and measurement of micromechanical objects via
well-developed tools of atomic physics, as will be detailed in
Sec. IV.

However, the cavity-mediated, coherent dynamics will
compete with a number of dissipative processes, such that
the full dynamics will be described by a master equation,

ρ̇ = −i[H,ρ] + Lm(ρ) + Lat(ρ) + Lc(ρ). (2)

The three Liouvillian terms describe the respective sources
of dissipation, with Lm including the thermal heating of the
membrane vibration and Lat including the atomic momentum
diffusion due to spontaneous emission. Furthermore, a cavity-
mediated coupling comes naturally at the price of cavity-
induced decoherence via photon leakage, Lc. Our goal here
is to construct a setup obeying the master equation (2) with a
Hamiltonian term (1) where the interaction between the atom
and the membrane is resonant, i.e., ωm � ωat, and strong, i.e.,
the coupling constant G is larger than the relevant decoherence
rates �c,�m,�at corresponding to the dissipative processes
described by Lc,Lm,Lat, respectively. In fact, we will show
that for state of the art experimental parameters small ratios
(�c,�m,�at)/G � 0.1 are within reach.

B. Qualitative picture of linear coupling

A strong linear coupling as described in Eq. (1) is obtained
in a configuration involving two driven cavity modes of
frequencies ωc,1 and ωc,2, as shown in Fig. 2(a). The two modes
are driven by lasers of frequencies ω1 and ω2, respectively,
where the first laser is tuned to the red side of its cavity
resonance, ω1 − ωc,1 < 0, and the second laser is tuned to the
blue side, ω2 − ωc,2 > 0. By a proper choice of cavity modes,
and with an internal structure of the specific atom as shown
in Fig. 3, both lasers separately provide red-detuned optical
lattices, which combine into a potential where we trap a single
atom in one of the wells, see Fig. 2(b). With wave vectors
k1 �= k2 and assuming equally large intracavity amplitudes, the
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FIG. 2. (Color online) Linear atom-membrane coupling mediated
by two driven cavity modes. (a) One mode is driven on the red side,
the other on the blue side. When the mode frequencies shift due to
the membrane vibration (dashed line), the cavity response is reduced
for one mode and enhanced for the other. (b) Atom and membrane in
equilibrium inside the driven cavity. (c) When the membrane vibrates
around its equilibrium, the oppositely changing cavity response for
the respective modes shifts the equilibrium of the combined atom
potential.

two lattices have opposite slopes at the equilibrium position
x̄at of the atom. Moreover, the particular well is chosen
such that the slopes are close to maximal and such that the
response of the cavity field amplitude to the atomic motion
is close to maximal. Similarly, the membrane is positioned
at x̄m halfway between a field node and antinode, where
the linear optomechanical coupling is maximal [10], see
Fig. 2(b). The position x̄m is chosen such that both fields have
similar slope (with the same sign), thus react equally to the
membrane vibration. The displacement of the membrane thus
shifts the cavity resonances, as shown by the dashed lines
in Fig. 2(a). With the two lasers being tuned to different
sides of their respective resonances, during the membrane

|0〉

|2〉

|1〉

FIG. 3. (Color online) Two lasers with frequencies ω1 and ω2

respectively drive two different internal atomic transitions with
detunings δ.

displacement one driving laser will come closer to resonance,
with resulting enhanced intracavity field, and the other one
farther off resonance with resulting reduced intracavity field.
Consequently, we will find that one of the atomic lattice
potentials is getting deeper and the other one getting more
shallow, as seen in Fig. 2(c), thus shifting the atomic trapping
potential. Due to this spatial shift being proportional to xm, the
result is an overall ∼xatxm coupling as in Eq. (1).

With this construction, the cavity field can provide the
leverage to couple two objects with mass ratio on the order
of 10−13. Imagine for illustration that we were to achieve a
similar coupling with a mechanical device like a seesaw: To
balance the torques would require a lever ratio of the same
order of magnitude; 15 mm on one side and the Earth-Sun
distance on the other side.

III. MODEL FOR CAVITY-MEDIATED
MEMBRANE-ATOM COUPLING

After the qualitative description in the last section, we move
on to a detailed presentation of the system consisting of a
moving atom and a vibrating membrane coupled to driven
cavity modes. Further, we will show how to obtain the reduced
atom-membrane dynamics described by Eq. (2) by eliminating
the cavity degrees of freedom, and finally we will identify the
regime of strong coupling.

A. Detailed derivation of effective master equation

1. Full master equation

Our starting point is the complete master equation for the
density operator W describing the dynamics of cavity modes,
atom and membrane motion,

Ẇ = −i[Hsys,W ] +
[
Lm + Lat +

∑
i

Li

]
(W ), (3)

with the coherent dynamics contained in the system Hamilto-
nian Hsys,

Hsys = Hmotion + Hc.

Here Hmotion takes into account the free harmonic motion of
the membrane, modeled as a single-mode oscillator, and the
kinetic energy of the atom with momentum Pat,

Hmotion = ωma†
mam + P 2

at

/
2m. (4)

Further, Hc contains the free cavity Hamiltonian, as well as
the effect of the atomic motion and the membrane vibration
on the cavity field. We will postpone its discussion to the next
section, where we give the concrete form of Hc for various
setups, and here first address the remaining terms in the master
equation (3).

The Lindblad terms in the master equation (3) describe
dissipation of the membrane (Lm), the atom (Lat), and the
cavity modes (Li), respectively. Here i labels the cavity modes
with photon annihilation operator Ai obeying [Ai,A

†
j ] = δij .

Cavity decay at an amplitude decay rate κi is described by

Li(W ) = κiD[Ai](W ),
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where we use the shorthand notation

D[a](W ) = 2aWa† − {a†a,W }+
for a Lindblad term with jump operator a.

Lat describes the noise processes acting purely on the
atoms and could also include controlled dissipation such as
Raman cooling. Here we assume each driven mode with wave
number ki to couple to a different atomic transition |0〉 ↔ |i〉,
as sketched in Fig. 3, and focus on the photon recoil during
spontaneous emission from the excited state |i〉 with rate γi to
the common ground state |0〉. The effect of the photon recoil on
the atomic motion is described by the following Lindblad term,

Lat(W ) = 1

2

∑
i

γisi

(
2
∫ 1

−1
dϑSi(ϑ)eiϑkixat

√
ui(xat)

×We−iϑkixat
√

ui(xat) − {ui(xat),W }+
)

, (5)

where γi is the spontaneous emission rate and si is the satura-
tion parameter for transition i [33]. Si(ϑ) are (even) geometric
functions whose exact expressions depend on the chosen
transitions, and ui(xat) describe the spatial intensity profiles
of the cavity modes with xat the atomic position in the cavity.
In the next section we will discuss this term in more detail in
the Lamb-Dicke regime, where it simplifies considerably.

Finally, Lm describes the membrane thermal contact via the
finite temperature suspension, modeled as interaction with a
thermal bath,

Lm = γm

2
(n̄m + 1)D[am] + γm

2
n̄mD[a†

m], (6)

with γm the natural linewidth of the mechanical resonance and
n̄m its mean occupation in thermal equilibrium. The heating
rate �m = γmn̄m � kBT /(h̄Qm) is related to the temperature
T of the contact and the mechanical quality factor Qm. In
addition to the thermal contact, we include membrane heating
due to absorption of laser power. In fact, a fairly cautious
estimate detailed in Sec. V shows that with standard cryogenic
precooling the natural lower limit for the temperature T is set
by light absorption within the membrane.

The model presented so far makes the following assump-
tions: (i) atomic motion is accurately described by a 1D model,
with the transverse confinement provided by the Gaussian
intensity profile of the cavity fields; (ii) internal atomic
dynamics can be eliminated, assuming the laser drive to be
sufficiently detuned from the atomic resonances (cf. Fig. 3);
and (iii) negligible internal coupling of the chosen membrane
mode to vibrations of higher energy, allowing a single mode
approximation.

2. Linearization around equilibrium

We will now proceed to discuss the cavity and interaction
Hamiltonian Hc. Note first that despite the very different
physical nature of the atom and the membrane, their effect
on the cavity field can be collected in a unified description,
where the cavity modes Ai with frequencies ωc,i see an index
of refraction which depends on the respective positions xat and
xm of the atom and the membrane along the cavity axis. This
description assumes a Born-Oppenheimer type approximation,

where the slow atom or membrane motion compared to the
optical cavity frequencies allows a separation of time scales.

Single-mode setup. We now first want to consider a setup
with only a single driven cavity mode, i = 1, in order to
illustrate a number of conceptual points. The generalization
to the two-mode setup is then immediate. For a single mode
the cavity Hamiltonian Hc in the master equation (3), taken
in a frame rotating with the laser frequency ω (dropping the
index i), is

Hc = [ωc(xat,xm) − ω]A†A + E(eiφA† + H.c.). (7)

The first term is the cavity free energy in the rotating
frame, which depends parametrically on the atom (membrane)
position. The second term describes the laser drive of power
P , such that E = √

2Pκ/h̄ωc.
The strong drive field creates a steady-state intracavity field

with amplitude α � 1, which in turn provides a trap potential
for the atom at a certain equilibrium point x̄at and mean force
on the membrane, displacing it to a slightly shifted position
x̄m. We are interested in the dynamics of the fluctuations
of cavity amplitude and atom or membrane position around
these equilibrium values. It is therefore convenient to move
to a displaced frame where the dynamics is described by the
fluctuations a around the steady-state field,

A = α + a, (8)

and the fluctuations δxat and δxm around the equilibrium atom
and membrane positions,

xat = x̄at + δxat, xm = x̄m + δxm. (9)

Along this line, we expand the cavity mode frequency
ωc (xat,xm) around steady state,

ωc(xat,xm) � ω0
c + [∂atωc]δxat + [∂mωc]δxm + 1

2

[
∂2

atωc
]
δx2

at

+ 1
2

[
∂2

mωc
]
δx2

m + [∂2
at,mωc

]
δxatδxm (10)

with ∂at and ∂m short for the partial derivative with respect to
xat and xm, evaluated at the atom and membrane equilibrium
points. When the expansions (8), (9), and (10) are used in the
full master equation (3) with Hamiltonian (7), the steady-state
amplitude α and equilibrium positions of atom and membrane
can be determined self-consistently by demanding that all
terms vanish which are linear in fluctuation operators δxat,δxm,
and a. In particular one finds for the intracavity amplitude (see
Ref. [32] for details),

α � Eeiφ(
ω − ω0

c

)+ iκ
. (11)

The laser phase φ can be chosen for convenience such as to
make α real.

In the resulting Hamiltonian all linear terms are thus
systematically removed and the dynamics is governed by an
effective Hamiltonian

Hc � (ω0
c − ω

)
a†a + α2

2

[
∂2

atωc
]
δx2

at + α2

2

[
∂2

mωc
]
δx2

m

+α2 [∂2
at,mωc

]
δxatδxm + α[∂mωc]δxm(a + a†)

+ α

2

[
∂2

mωc
]
δx2

m(a + a†) + α

2

[
∂2

atωc
]
δx2

at(a + a†),

(12)
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where terms of fourth order in fluctuations (zeroth order in
cavity amplitude) have been neglected.

In the first line we find the free energy of the cav-
ity and the optical potential for the atom, providing a
harmonic trap with a frequency determined by mω2

at =
α2[∂2

atωc]. The corresponding term for the membrane provides
a small correction to its mechanical frequency and can be
neglected.

The term in the second line of Eq. (12) describes a direct
linear atom-membrane coupling of the form ∼gdirect(aat +
a
†
at)(am + a

†
m), where δxat = �at(aat + a

†
at) and δxm = �m(am +

a
†
m). The zero-point fluctuations are given by

�at =
(

h̄

2mωat

)1/2

, �m =
(

h̄

2Mωm

)1/2

,

and am now refers to the shifted frame for the membrane.
Assuming that the cavity field provides the atomic trap as
discussed above, with a trap frequency close to that of the
membrane vibration, ωat ∼ ωm, it can be checked easily that
the direct coupling will be hampered by the small mass
ratio,

gdirect ∼ (�m/�at)ωat ∼
√

m/Mωat,

thus would not reach the strong coupling regime for a
single atom. We will see that the cavity-mediated, indirect
coupling can be many orders of magnitude larger such
that the direct coupling can be safely neglected in the
following.

The third line in Eq. (12) describes a membrane-cavity
interaction. As was discussed in detail in Ref. [30] a proper
choice of the membrane position along the cavity axis can
make either the first or the second term dominant. In the latter
case the cavity field couples to δx2

m ∼ (am + a
†
m)2, which has

interesting applications for measuring occupation numbers of
the membrane. However, this term is typically rather small as
it scales like ∂2

mωc�
2
m ∼ (kc�m)2 and is thus of second order in

the corresponding Lamb-Dicke parameter. In the following
we will neglect this second-order term and keep only the
first one, where the cavity couples linearly to the membrane
fluctuations.

The linear-coupling term for the atom vanishes, as for a
single cavity mode the atomic equilibrium position is defined
by [∂atωc] = 0. Thus, only the quadratic, parametric term given
in the last line of Eq. (12) contributes to the atom-cavity
coupling. It is perfectly possible to proceed from here and
to derive an effective coupling of the atom to the membrane.
However, this coupling will be ∼xmx2

at and thus not of the
desired form given in Eq. (1).

Two-mode setup. Creating a linear atom-cavity coupling
requires nonvanishing cavity field slopes at the mean position
of the atom, [∂atωc,i] �= 0. To this end one has to require
an external trap for the atom shifting it away from a lattice
extremum. An elegant alternative is to use two driven cavity
modes (i = 1,2) with the atomic equilibrium position at an
extremum of the combined optical potential and at the same
time at a point of maximal slope of the individual cavity fields.
Let us therefore study the cavity Hamiltonian Hc in detail for
this case of two driven cavity modes. In a frame rotating with

the laser frequencies ωi we have

Hc =
∑
i=1,2

[
ωc,i (xat,xm) − ωi

]
A

†
i Ai

+
∑

i

Ei(e
iφi A

†
i + H.c.), (13)

with mode frequencies ωc,i (xat,xm) given by

ωc,i(xat,xm) = ω0
c,i − [g0,i/�m]xm + U0ui(xat). (14)

The second term in (14) describes the dynamic cavity detuning
due to vibrational fluctuations of the thin dielectric membrane,
with single-photon coupling [10,30]

g0,i = fi(�m/L)ω0
c,i . (15)

Here L is the cavity length and fi = 2r sin(2ki x̄m)/[1 −
r2 cos2(2ki x̄m)]1/2 is a correction factor which takes into
account the finite amplitude reflectivity r of the membrane, as
well as the distance x̄m to the cavity field node where the field
is zero and thus insensitive to the membrane motion. Note that
the special case fi = 1 is familiar from optomechanics with
a perfectly reflecting moving mirror. By a proper choice of
membrane location x̄m it is possible to achieve fi � 2r for
both fields.

The third term in (14) describes how the driven optical
modes provide a lattice potential for the atom along the cavity
axis, with the spatial intensity profile

ui(x) = sin2(kix),

and a lattice potential strength determined by the ac Stark shift
(per photon),

U0 = �2
0/δ. (16)

Here �0 is the vacuum Rabi frequency and δ is the detuning
of the lasers from the respective atomic transitions, assumed
equal for simplicity (see Fig. 3).

The linearization of the dynamics around the equilibrium
mean values is done as for the single-mode case discussed
previously. The intracavity amplitudes are αi = Eie

iφi /(i +
iκi) with Ei the drive strength of mode i, and the phase φi is
chosen to make αi real. i = ωi − ω0

c,i is the laser detuning
relative to the cavity mode. The following derivation is in
principle general regarding the number of driven modes, the
mode parameters αi, κi and the optomechanical coupling g0,i .
Without loss of generality we will assume in the following a
symmetric two-mode case with αi = α, κi = κ , and g0,i = g0.

The expansion is again very similar to the setup for a
single mode. The main differences concern the atomic degrees
of freedom. The atomic mean position x̄at is determined by
vanishing first derivative of the total field,

u′(x̄at) = 0, u(x) = u1(x) + u2(x). (17)

and the trap frequency ωat of the harmonic potential at this
position is accordingly

mω2
at = U0α

2k2
1ζ (x̄at), ζ (x) = u′′(x)/k2

1 .

Most notably the ac Stark shift term U0
∑

i ui(xat)A†A gives
rise also to a linear atom-cavity interaction, as the individual
terms ∼u′

i(x̄at) can be nonzero despite the condition on
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vanishing derivative of the total field (17),

u1(2)(xat) � u1(2)(x̄at) ± ηθ (x̄at)(aat + a
†
at) (18)

with θ (x) = u′
1(x)/k1 and Lamb-Dicke parameter η = k1�at.

A significant slope θ (x̄at) and hence significant coupling is
achieved for two modes by a careful choice of atomic site
within the cavity, far from extremum points of the individual
lattice modes, as we discuss in Sec. V.

In this way it is straightforward to expand and linearize
the cavity Hamiltonian for the two mode setup in Eq. (13).
When combined with the kinetic energy of the atom this results
overall in a linearized Hamiltonian Hsys of the full master
equation in Eq. (3)

Hsys = H0 + Hint (19)

with a free energy

H0 = −
∑

i

ia
†
i ai + ωma†

mam + ωata
†
ataat,

and linear membrane-cavity and atom-cavity interaction

Hint = gm(am + a†
m)[(a1 + a

†
1) + (a2 + a

†
2)]

+ gat(aat + a
†
at)[(a1 + a

†
1) − (a2 + a

†
2)]

with coupling strengths,

gat = U0αηθ (x̄at), gm = g0α. (20)

In Hsys all parametric coupling terms have been neglected, as
they will be smaller by the atomic Lamb-Dicke factor η or
by the much smaller Lamb-Dicke factor corresponding to the
membrane motion, as discussed previously. In the limit of large
cavity amplitude we also drop all terms of zeroth order in α.
For later use it will be convenient to re-express the interaction
in the form

Hint = g
∑

i

[Fi + F
†
i ](ai + a

†
i ),

with operators Fi describing the forces exerted by the atom
and membrane motion on the cavity fields,

F1,2 =
(

−gm

g
am ± gat

g
aat

)
, g =

√
g2

m + g2
at. (21)

Before we derive the cavity-mediated atom-membrane cou-
pling, we will finally discuss the atomic Lindblad term
of Eq. (5). In a Lamb-Dicke expansion around the atomic
equilibrium position in the optical potential this Lindblad term
takes the form of a momentum diffusion master equation

Lat(W ) = �at

2
D[aat + a

†
at](W ),

with a diffusion rate,

�at = η2seγ [2 − (4/5)u(x̄at)], (22)

where the saturation parameter is now explicitly given by
se = [α�0/δ]2. The expression (22) in the end depends on
the particular atomic transition and the specific geometry; the
factor (4/5) is specific for transitions with m = 0 but for
other transitions it is still of order unity.

Let us remark that in fact it is possible to solve the master
equation of the full system exactly (e.g., by means of the

methods given in Appendix B), and indeed there can be rich
physics to be explored in the regimes not considered here.
However, the focus of this article is the regime where the cavity
modes can be eliminated, gat, gm 	 max{κ,}, which is not
only more relevant from an experimental point of view but
also allows for analytical, transparent results which highlight
the physical properties of the system.

3. Adiabatic elimination of cavity field and effective
master equation

We are now in the position to derive an effective coupling
mediated by the cavity modes. The idea is to use a parameter
regime where the cavity dynamics is essentially unperturbed
by the motion of the membrane and the atom, and solely
mediates interaction between the two. The corresponding
requirement is fast cavity dynamics, g 	 κ or g 	 |i ± ωm|.
For optomechanical cooling the former condition is the more
common requirement, but since the resulting strong dissipation
through the cavity decay would harm the coherent cavity-
mediated dynamics, we choose a regime where i are the
large parameters. Here fluctuations in the cavity quadratures
are fast variables which adiabatically follow the dynamics of
the position fluctuations of the atom and the membrane. In
order to achieve strong interaction we further assume atom
and membrane to be on resonance,

ωat = ωm. (23)

The formal procedure for eliminating the optical modes, as
described in detail in Appendix B, is to perform adiabatic
elimination using standard techniques [29]. We find that the
linearized atom-membrane-cavity dynamics (19) gives rise to
the effective master equation (2) with

H = ωma†
mam + ωata

†
ataat + Hat-m.

The last term Hat-m (A3) represents the cavity-induced atom-
membrane coupling and a correction to the free motion and
can be extracted from the coherent part of the cavity-mediated
Liouvillian Lc-med (A1). In detail it reads,

Hat-m = i

2

∑
i

[
g2

κ + i(i − ωm)
Fi(Fi + F

†
i )

+ g2

κ + i(i + ωm)
F

†
i (Fi + F

†
i ) − H.c.

]
. (24)

The cavity decay translates into correlated decay Lc(ρ)
(A4) for atom and membrane, where in the rotating wave
approximation (RWA) each optical mode i contributes cooling
(D[Fi]) and heating (D[F †

i ]) associated with emission of
sideband photons at either side of the driving laser, that is,
at one of the two frequencies ωi ± ωm,

Lc(ρ) �
∑

i

[(
g2κ

κ2 + (i + ωm)2

)
D[Fi](ρ)

+
(

g2κ

κ2 + (i − ωm)2

)
D[F †

i ](ρ)

]
. (25)

An emission event is accompanied by the creation or annihila-
tion of a quantum in either the atomic motion or the membrane
vibration. For a near resonant system (ωm � ωat) these two
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possibilities are indistinguishable, such that both processes
happen in a coherent fashion. Therefore, the jump operators
Fi are linear combinations of the corresponding annihilation
operators aat and am.

4. Coupling in the dispersive regime

So far, we have derived expressions for the cavity-mediated
interaction (24) as well as its inevitable companion, dissipation
through the cavity decay (25). The remaining challenge is to
reach the strong coupling regime for the reduced system, with
effective coupling strength G which is much larger than all
decay rates, G � �c,�m,�at. Let us first consider the relation
to the cavity-induced dissipation described by Lc.

Our first observation is that the atom-membrane coupling
(24) is maximized for equal and opposite detunings,

1 = −2 ≡ ,

for which the two cavity modes respond equally and oppositely
to the membrane vibration. Evaluating the effective Hamilto-
nian (24) for this special case we find

Hat-m = −G[(am + a†
m)(aat + a

†
at) + iε(amaat − a†

ma
†
at)],

where we dropped a global energy shift. The effective coupling
strength G is given by

G =
[

2gmgat( − ωm)

κ2 + ( − ωm)2
+ 2gmgat( + ωm)

κ2 + ( + ωm)2

]
.

From the observation that the rate of cavity-induced deco-
herence in Lc, see Eq. (25), scales like ∼1/2, whereas in the
cavity-mediated interaction G ∼ 1/, we draw the conclusion
that the dispersive limit is natural for suppressing dissipation.
Focusing on the regime where || is the largest parameter,
|| � ωm, κ , the correction ε to a pure (am + a

†
m)(aat + a

†
at)

interaction is negligible,

ε = 2κωm

2 + κ2 − ω2
m

	 1.

Thus the coherent dynamics in the reduced master equation (2)
is effectively given by the Hamiltonian H in (1). This is the
main result of our investigation. To zeroth order in κ/,ωm/

the coupling constant G has the simple form,

G � 4gmgat


.

Regarding the cavity-induced decoherence processes de-
scribed by Eq. (25), the combination of a red-detuned (1 =
 < 0) and a blue-detuned (2 = −) laser drive can be
interpreted as simultaneous cooling and heating processes.
The rate of cooling �+

c via mode 1 equals the rate of heating
via mode 2, and vice versa with rate �−

c ,

Lc(ρ) = �+
c

2
[D[F1](ρ) + D[F †

2 ](ρ)]

+ �−
c

2
[D[F †

1 ](ρ) + D[F2](ρ)], (26)

with the rates given by

�±
c = 2κ

(
g2

m + g2
at

)
κ2 + ( ± ωm)2

.

In our attempt to minimize dissipation we additionally note
that the relation between the coupling constants gat and gm is
of importance. The ratio of dissipation to coupling strength is
proportional to

�±
c /G ∝ g2

m + g2
at

gmgat
.

This implies that the mediated atom-membrane interaction is
most efficient when the two oscillators couple equally strongly
to the cavity modes, gm = gat. Under this condition and to
lowest order in κ/,ωm/ the cooling and heating rates are
in fact equal,

�±
c � �c = G

κ


, (27)

a factor κ/ 	 1 smaller than the coupling constant G.

B. Alternative setups

In this section we extend the previous discussion to give
a hint about alternative mode configurations for the proposed
setup. In particular we discuss how to obtain a time-dependent
atom-membrane coupling G(t), which can be advantageous,
e.g., for entanglement creation as discussed in Sec. IV.

1. Single driven mode combined with external trap

As briefly mentioned previously, as an alternative to the
two-mode setup one could use a single driven mode combined
with an external atom trap. This trap would shift the atom
away from the lattice extremum, to an equilibrium point x̄at

where the cavity field has finite slope, u′
1(x̄at) �= 0, which can

be significant for a properly chosen atom location within the
cavity. With coupling only to a single mode, the force F̂1 is
given by (21), whereas F̂2 = 0. Consequently, with only one
cavity mode mediating the membrane vibration, the largest
displacement of the atomic mean position is only half as large
compared to the case when two cavity modes are shifted out
of phase. Hence the resulting coupling constant is only half of
its maximum value,

Gsingle mode � 2gmgat


.

2. Time-dependent coupling constant G(t)

In principle, it is possible to achieve a time-dependent cou-
pling constant G(t) by modulating the laser power, resulting
in a time-dependent intracavity amplitude α(t). However, the
basic problem with simply introducing time-dependent α(t)
in the two-mode setup, is that the atom potential will be time
dependent as well, which could heat up the atomic motion.
Therefore we consider the following modified setup, where
we either use an external trap for the atom as above, or use a
second mode mainly to provide the trapping potential. Either
way, the role of the first mode is to mediate the atom-membrane
interaction with modulated strength, α1(t) = α1c(t).

023816-7



M. WALLQUIST et al. PHYSICAL REVIEW A 81, 023816 (2010)

Without going into details, the idea of the two-mode case
is to drive the second mode such that the corresponding
intracavity field becomes very strong, α2 � α1, with α1 the
amplitude of the coupling mode. Due to the very small
ratio α1/α2 	 1, the first mode hardly influences the atomic
potential at all, and the mean atom position x̄at is given by
u′

2(x̄at) = 0. Furthermore, the atomic frequency is determined
by the curvature of the second field, mω2

at = α2
2u

′′
2(x̄at). Since

u′
2 = 0 at the atomic equilibrium point, the second mode will

not contribute to the linear atom-cavity coupling.
With the atom-membrane interaction mediated by only a

single mode, as discussed above, the coupling constant will
be half of the maximum value. We find the resulting time-
dependent atom-membrane coupling,

Gtwo mode(t) � 2gmgat


c2(t).

We will come back to this possibility of making the coupling
explicitly time dependent in our discussion of coherent
evolution, in particular of a protocol to generate entangled
states of the atom and the membrane; see subsection IV E.

We will remark on yet another type of setup in the
outlook of this paper (Sec. VI), namely how to implement
an optomechanical Jaynes-Cummings model where atomic
internal degrees of freedom are used instead of the atomic
motion. Together with the examples of this section, the
discussion illustrates that the present setup actually provides
a toolbox for engineering various interactions and different
types of dynamics.

IV. COHERENT EVOLUTION IN THE STRONG
COUPLING REGIME

In the previous section it was shown that we can implement
a linear atom-membrane interaction (1) with the proposed
two-mode setup operated in the dispersive regime, and that
this interaction can be fast on the time scale of relevant
decoherence rates in this system. In this section we will study
a few applications, which become accessible in this regime.

Note first that the coherent evolution governed by this
Hamiltonian transfers a state from the atom to the membrane,
and vice versa, in a time ts given by

ts = π/(2G),

such that |ψ1〉at|ψ2〉m → |ψ2〉at|ψ1〉m, up to local rotations.
The state swap mechanism appears naturally in the interaction
picture; for resonant coupling ωat = ωm � G the Hamiltonian
takes a beam-splitter form in the RWA,

HI � G(aata
†
m + H.c.).

Particularly intriguing is the ability to use the state transfer
to control the mechanical state through the available atomic
physics toolbox. However, as already discussed, the coherent
interaction is accompanied by several sources of noise which
in the end reduce the fidelity of the state transfer. Strong
coupling is therefore established by fulfilling, additionally to
the resonance condition, the following set of conditions,

G � �at,�m,�c. (28)

In subsection V A we will summarize and comment on the
optimization of parameters which is necessary in order to reach
the strong coupling regime, following [28]. Here we illustrate
the strong coupling in the presence of noise with three specific
examples of state transfer from atom to membrane: coherent
and squeezed state as well as a Fock state. Aiming at a clear
picture of the effect of dissipation, we assume all dissipation
rates to be equally strong and define a ratio f ,

f = �c

G
= �at

G
= �m

G
. (29)

Note that we here put the membrane heating and cooling rates
equal, (n̄m + 1)γm � n̄mγm = �m, and assume the dispersive
regime where �±

c → �c. Our aim is to find the acceptable noise
level which still allows for state transfer, by solving the master
equation (2) with the Hamiltonian (1) exactly. These numerical
solutions are combined with analytical calculations based on
the RWA as described above. In fact, for Gaussian states it
is straightforward to analytically solve for the time evolution;
the details of the derivation are presented in Appendix B.
Interestingly, with the generalized technique presented in
Appendix B2, the impact of noise on the evolution of non-
Gaussian states, e.g., Fock states, can be derived as well. In all
three examples the noise introduces a thermal population n̄s

during the time interval ts needed for state transfer. We find,

n̄s = πf.

Another interesting application is cooling of the membrane via
coherent state swap, as will be presented in subsection IV D.
Finally in subsection IV E we present a way to entangle atom
and membrane, using a time-dependent coupling G(t)—as
discussed in subsection III B2—which enhances exactly those
terms which are neglected in the RWA.

A. Coherent state swap

Our first example is the transfer of a coherent state |β〉 from
the atom to the membrane. The perfect state swap evolves a
state |0〉m|β〉at into |βeiφ(t)〉m|0〉at with the phase φ(t) governed
by the system Hamiltonian. Here we use the fidelity F , defined
as the overlap between the original atomic wave function and
the final membrane wave function, as a figure of merit for the
effect of noise during the state transfer. Figures 4(a) and 4(b)

(a) (b) (c)F(t)

t (π/2G)

F(π/2G)

Γ/G

1 2 30

0.5

0.1 0.2
0 0

0
0

0

1.0 1.0

1

0.5

t (π/2G)

2 3

0.5

F(t)
1.0

FIG. 4. (Color online) Fidelity for transfer of coherent state |β〉
from atom to membrane. (a and b) Fidelity as function of time for
transfer of a state with (a) β = 1 and (b) β = 5 for various values
of the dissipation ratio f , with fixed G/ωm = 0.034. Here f = 0.01
(black solid line), f = 0.05 (orange dotted line), and f = 0.10 (blue
dashed line). The little wiggles are due to counter-rotating terms. (c)
Snapshot at t = π/2G: fidelity for transfer of state with β = 1 as a
function of the dissipation ratio f .
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show the fidelity for transfer of two different coherent states,
|β = 1〉 and |β = 5〉. Particularly interesting is the fidelity of
the state swap, i.e., for t = ts, where F is close to maximal but
still deteriorated due to dissipation. In fact, the dependence of
the state swap fidelity (at t = ts) on the noise ratio f follows
the analytical result (B4) derived in Appendix B in the RWA,

F (ts) = 1

1 + πf
. (30)

This simple analytical result, which very well matches the
exact numerical solution shown in Fig. 4(c), states that with
noise levels below 10% we can expect a state transfer fidelity
above 75%.

B. Squeezed state transfer

The second example is the transfer of an atomic squeezed
state |ξ 〉 with minimal variance X2

at = (1/2)s; here s < 1
denotes a state squeezed along the X quadrature. Such a state
can be constructed using, for example, the parametric coupling
to the cavity field, ∼(aat + a

†
at)

2(ai + a
†
i ) which was briefly

mentioned in Sec. III. Ideally the swap operation transfers the
atomic minimal variance to the membrane state, |β〉m|ξ 〉at →
|ξeiϕ〉m|βeiφ〉at. Dissipation, however, broadens the variance
during the swap operation,

(X′
m)2 = 1

2 s(ts),

with s(ts) > s(0). Figure 5(a) shows the minimal variance of
the membrane, reaching its lowest value after half a period
(t = ts) when the squeezed state has been transferred from
the atom to the membrane. Obviously larger dissipation ratio
f results in less squeezing transferred. In Appendix B we
derive the following analytical expression in the RWA for the
dependence of the squeezing parameter s on the dissipation
rate f ,

s(ts) = s(0) + 2πf.

Figure 5(b) shows snapshots of the atom and membrane
Wigner functions at t = 0, t = ts, and t = 2ts; one clearly sees
how the dissipation broadens the variances. Furthermore, due
to the coherent evolution, the squeezed membrane quadrature
X′

m is not necessarily equal to the squeezed atom quadrature
Xat.

In Fig. 5(c) we show how the membrane minimal variance
increases with the noise ratio f for two specific examples of
initial minimal variance of the atom. The exact result confirms
the loss of squeezing given by the expression above for s(ts).
With noise levels below f ∼ 10% an initial atom squeezing
below −4.3 dB allows for squeezing of the membrane.

C. Fock state transfer

The previous two sections dealt with the engineering of
Gaussian states of the mechanical resonator, while the ultimate
goal would of course be to apply these methods to create more
nonclassical state, e.g., states with negative Wigner functions.

As a last example we therefore present the transfer of a Fock
state with n = 1 from the atom to the membrane. Assuming
the membrane to be ground-state cooled, the ideal evolution
reads |0〉m|n = 1〉at → |n = 1〉m|0〉at. The quantum properties

(a)

(b) (c)

2
M

in
[(

∆X
′)

]
m

0 1

-4

2
0

t (π/2G)

-6

-8

3

-2

-2

-2
-2 -2 -2

FIG. 5. (Color online) Transfer of squeezed atom state with initial
variance X2

at = e−2/2 to the membrane. (a) Snapshot of Wigner
functions (upper row, atom; lower row, membrane) for f = 0.05 at
t = 0, t = π/2G, and t = π/G. (b) Minimum membrane variance
as function of time for different dissipation ratios f = 0 (black solid
line), f = 0.05 (orange dotted line), and f = 0.10 (blue dashed
line). (c) Transferred squeezing (in dB; S(t) = 10 log10[s(t)](dB))
as function of the dissipation ratio f for fixed G/ωm = 0.034.
The initial atom squeezing is given by s(0) = e−2 (purple dashed
line) corresponding to −8.7 dB, and s(0) = e−1 (green solid line)
corresponding to −4.3 dB, respectively.

of the Fock state are best illustrated by the negative value of its
Wigner function at the origin. Figure 6 shows cuts through the
Wigner function for three instants in time, t = 0, t = ts, and
t = 2ts. Thermalization during the state transfer is reflected in
the decreasing Wigner function negativity for each state swap.
A convenient figure of merit for the thermalization is therefore
the value of the membrane Wigner function wm(β,β∗,t) at
β = β∗ = 0 relative to the corresponding (absolute) value for
a Fock state wF(0,0),

Nw(t) ≡ wm(0,0,t)

|wF(0,0)| .

An analytic expression for Nw(t) in the RWA is derived in
Appendix B, see Eq. (B10). In Fig. 7 we present a case of
particular interest, namely the membrane Wigner function
negativity after the first state swap (t = ts), which depends
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t=π/2Gt=0 t=π/G

0.1

0

-0.1

0.1

0

-0.1

FIG. 6. (Color online) Transfer of the Fock state |n = 1〉 from
atom to ground-state prepared membrane. Snapshot cuts through the
Wigner functions at times t = 0, t = π/2G, and t = π/G, for fixed
dissipation ratio f = 0.05 and G/ωm = 0.034.

on the dissipation ratio f according to,

Nw(ts) = −1 + 2πf

(1 + 2πf )2
.

The quantum properties of the Fock state |n = 1〉 are trans-
ferred to the membrane if the dissipation ratio is sufficiently
small, 2πf < 1. For an experimentally feasible noise ratio
f = 0.1, 14% of the Wigner function negativity is preserved
during the swap operation.

D. Membrane cooling through state swap

With the present setup, we see two routes toward preparing
the membrane ground state. The first route is along the
lines of cavity cooling; for example, cooling the membrane
via the cavity decay, or via an externally controlled Raman
atom cooling with rate �R in the ground-state cooling regime
G 	 �R 	 ωm. The second route is to perform a state swap
and hence transfer the ground state to the membrane from the

N (t )w s

f

FIG. 7. (Color online) Analytical result for the relative membrane
Wigner function negativity Nw at time t = ts as a function of the
dissipation ratio f .

(previously cooled) atom. Comparing the two routes, we find
that the effective rate for state swap is much higher than for
cooling, �swap ∼ G � �cool ∼ G2/�R and that the state swap
leads to a final occupation which is a factor G/�R lower than
for cooling,

n̄
swap
f ∼ πf +

(
G

2ωm

)2

, n̄cool
f ∼ f

�R

G
+
(

�R

2ωm

)2

.

Note that the expression for n̄
swap
f can be optimized with respect

to G, since a large coupling strength on one hand decreases the
noise level f but on the other hand increases the residual final
occupation in the second term. Replacing f with �c/G and
considering �c as a fixed parameter, one obtains the minimum
n̄

swap
f for Gopt = 3

√
2π�cω2

m.
Concluding that state swap cooling is more efficient than

indirect Raman cooling, it is still interesting to make a
comparison with typical cavity cooling in the good cavity
regime where now κ 	 ωm and in the perturbative regime
where gm 	 κ . In this case, the cooling rate scales as �c ∼
g2

m/κ and the final occupancy is

n̄c
f ∼ �mκ

g2
m

+
(

κ

2ωm

)2

.

We conclude that n̄swap
f < n̄c

f for large enough atom-membrane
coupling, G/π > g2

m/κ .
One drawback with the state swap procedure is that it only

works for a precooled membrane; the anharmonicity of the
atom well supports the transfer of only a few quanta from the
membrane, say nwell ∼ 5–10. The situation looks better in a
generalized setup with N atoms distributed over the lattice. In
the ideal case of no atom-atom interaction and identical atom
site conditions, the effective coupling G is enhanced by a factor√

N and the single atom operator aat can be substituted by
the center-of-mass operator Ac.m. = (1/

√
N )
∑N

j=1 aat,j . Here
we can consider introducing even further anharmonicity of
the atomic wells to prevent an individual atom to be multiply
excited, in which case the center-of-mass mode can support the
transfer and storage of N excitations from the hot membrane,
thus allowing the swap of a fairly large thermal membrane
occupation.

E. Entanglement

In this subsection we lay out the prospects of observing
entanglement between the atom and the membrane. The major
obstacle in this regard is the coupling of the system to the
environment. Even when we assume the membrane to be
prepared in the ground-state initially, the system will quickly
heat up and entanglement is lost, at least if one just considers
the usual static coupling. Here we point out, instead, a method
for generating entanglement based on a time-dependent
modulation of the input laser intensity that controls the atom-
membrane interaction strength. In fact, this scheme can be
employed generally in optomechanically coupled mechanical
systems. The scheme turns out to be relatively robust against
the impact of the dissipation channels. By modulating the
atom-membrane coupling strength in time one can realize
a nondegenerate parametric amplifier (two-mode squeezing)
which induces strong quantum correlations between atom and
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membrane despite the simultaneously occuring heating of the
system. We consider the linear membrane-atom interaction
Eq. (1) with the coupling constant modulated according to,

G(t) = G cos2(ω̄t), ω̄ = ωm + ωat

2
.

In order to allow for a modulation of the coupling strength
without modulating the trapping frequency the setup needs to
be modified as discussed in Sec. III B. Switching into the
interaction picture, we find that in contrast to the case of
constant coupling G previously discussed, the coupling term
here effectively transforms into a parametric amplifier part and
a slowly oscillating beam splitter part (in RWA),

HI � G

4
[amaat + H.c.] + G

2
[a†

maate
i(ωm−ωat)t + H.c.],

and contributions that are oscillating fast with respect to the
time scale of G and hence have negligible influence. It is the
parametric amplifier part that can be exploited to generate
strong correlations.

As a measure of entanglement we employ the logarithmic
negativity [34–36]. For a Gaussian state it can be computed
directly from the elements of the covariance matrix [36], whose
time evolution was derived in Appendix B.

Figure 8 displays the generation of entanglement (a) and
the increase of the atomic excitation number nat = 〈a†

ataat〉
(b). This number should not exceed a threshold value of
nat ∼ 5–10 in order to keep the effects of the anharmonicity
of the trap negligible. Note that we chose a relatively large
difference in the oscillation frequencies, ωat/ωm = 1.1, in
order to suppress the influence of the beam splitter interaction.
As indicated by this numerical example, driving the system
with time-modulated driving strength provides a useful method
for generating entanglement in a quantum system that is in
contact with a thermal bath.

For the parameters discussed here, the rates of the
optomechanical cooling and heating processes are equal
(�±

c � �c), and these processes reduce the entanglement.
We note, however, that the optomechanical damping can in
principle also be used to generate entanglement in a steady-
state situation (i.e., for fixed coupling G) by reducing the
effective occupation numbers of the mechanical oscillators as
discussed in Ref. [37].
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FIG. 8. (Color online) Generation of entanglement between atom
and membrane by modulating the coupling strength. (a) Logarithmic
negativity as a function of time for different values of the dissipation
ratio f = 0.1 (blue curve), f = 0.05 (red curve), and f = 0.01 (black
curve). (b) Corresponding increase of the atomic excitation number
nat = 〈a†

ataat〉. For these plots we chose G/ωm = 0.034 and ωat/ωm =
1.1 and assume the membrane to be in the ground state initially.

V. TECHNICAL DETAILS REGARDING
THE EXPERIMENTAL SETUP

In this section we discuss technical issues regarding the
specific setup that we have in mind, namely the optimal atom
location within the cavity field, and the membrane heating due
to power absorption.

A. Optimization of parameters

Demanding strong atom-membrane coupling, i.e., fulfilling
the conditions G � �c,�at,�m (28), in the end boils down to
satisfying constraints on the cavity and membrane geometry,
choosing the proper detunings and finding suitable atomic
transitions. In the following we will therefore go through the
set of conditions G � �c,�at,�m and ωat = ωm (23) in detail.

In order to obtain weak cavity-induced decay �c 	 G, we
concluded in Sec. III that it is necessary to drive the cavity far
off resonance

 � κ, ωm (31)

and to keep at the same time a balanced atom-cavity and
membrane-cavity coupling gm � gat, which is equivalent to
demanding

g0α � U0αηθ (x̄at).

Here we first note that the intracavity amplitude α drops out.
For simplicity we estimate fi � 2r and θ (x̄at) � 1. In the
following we insert the respective definitions of g0 (15) and
U0 (16) and use that ωc � ck1, and find

2r
c

κL
�m � �2

0

κδ
�at.

The difference in zero-point fluctuations between membrane
and atom will give a factor �m/�at = √

m/M . Moreover, on
the left side, we introduce the cavity finesse F ,

F = πc

2κL

and on the right side the cooperativity parameter

C = �2
0

κγ
.

This way, the ratio of the coupling constants gm/gat turns into
a ratio of the cavity finesse F to the reduced single-atom
cooperativity (γ /δ) C, which must be balanced by the mass
ratio m/M , (

4r

π
F
/

γ

δ
C

)√
m

M
� 1. (32)

The equality (32) does not only put a condition for weak
cavity-induced decay, but will also be useful in the following
to connect the respective parameters related to the membrane-
cavity and atom-cavity coupling.

Here we should comment on the dependence of the ratio
F/C on the cavity geometry. At first glance it may seem like
this ratio can be controlled through the cavity length L, with
F/C ∼ (c/L)(γ /�2

0). This is, however, not the case. Keeping
in mind that the electric field strength is proportional to

√
1/V ,

with the mode volume V = AL and A the beam cross section,
the dependence on the cavity length L in the cooperativity C

through the relation �2
0 ∼ 1/(AL) in fact cancels the length

023816-11



M. WALLQUIST et al. PHYSICAL REVIEW A 81, 023816 (2010)

dependence in F , assuming fixed cross section A. We find
that the relevant geometric parameter for this ratio is the beam
cross section,

F
C

∼ A.

Next we require small decoherence due to atomic momen-
tum diffusion, �at/G 	 1, which gives the condition,

4gatgm


	 η2peγ. (33)

First of all, we use the condition on the coupling constants
gat � gm to write the inequality (33) in terms of atomic
parameters,

4(U0αη)2


	 η2peγ.

The Lamb-Dicke parameter η drops out. Furthermore, with
pe = α2U0/δ, the intracavity field amplitude α also drops out,
and what remains is a condition on the cooperativity parameter,

C � 

4κ
, (34)

which has to be very large, taking into account the condition
(31).

Finally, thermal decoherence depends on the ambient
temperature T of the membrane. As we will discuss in more
detail further below (see Sec. V C), it is reasonable to assume
that heating of the membrane is in fact caused dominantly by
absorption of laser power, which depends in particular on the
thermal link κth of the membrane to its support. The condition
of small thermal decoherence �m/G 	 1 reads in detail,

4gatgm


� kBT

h̄Qm
= γm

ωm

2π

κthF
ωccα

2

L
. (35)

First, we use the condition on the coupling constants gat � gm

to write the inequality (35) without atomic parameters. Using
also that ωm = h̄/(2M�2

m), we arrive at,

(2r)2�2
mω2

cα
2

L2
� M�2

mγm

h̄2

π

κthF
h̄ωccα

2

L
.

The amplitude α and the zero-point fluctuation �m drop out of
the inequality. In the same fashion as for the condition (34),
we rewrite the inequality with respect to /κ ,

8r2F2

π2

κth

γm

h̄ωc

Mc2
� 

κ
, (36)

with the first factor related to the properties of the membrane
in the cavity, the second factor comparing the thermal link
of the membrane to its natural linewidth, and the third factor
comparing the energy of a single cavity photon to the effective
“rest energy” of the membrane. Remarkably, this condition is
independent of the laser power, and the left-hand side depends
only on parameters fixed at fabrication.

Together, Eqs. (31), (32), (34), and (36) ensure the set
of conditions for strong coupling in Ref. (28). Note that the
intracavity amplitude α dropped out in all cases. The absolute
timescale of the system is thus not fixed by Eqs. (31), (32),
(34), and (36), but by the resonance condition ωm = ωat which

fixes the cavity amplitude α,

ωm � η2α2 �2
0

δ
.

The membrane frequency ωm is fixed by construction, whereas
the intracavity amplitude depends on the laser power P ,

α2 �
( κ



)2 2P

κh̄ωc
.

B. Details of ac Stark shift potential

Let us first discuss briefly how the various requirements
on the ac Stark potential generated by the two cavity modes
can be met. These requirements are as follows: (i) Above we
have assumed for the atom-cavity coupling gat = U0αηθ (x̄at)

and for the diffusion rate �at = γ
g2

at

�2
0
ξ (x̄at) that both geomet-

rical factors, θ (x̄at) and ξ (x̄at) = [2 − (4/5)u(x̄at)]/θ2(x̄at) (for
m = 0) can be of order one for a proper choice of the
atomic mean position x̄at along the cavity axis. Moreover, it is
desirable to keep the value of ζ (x), which enters the atomic
trap frequency as well, close to 1. (ii) The two modes have
to couple, respectively, to the D1 and D2 lines of the chosen
atomic species. For a microcavity this implies that the two
modes have to be separated by a couple (say q) of free spectral
ranges (FSRs) only. A typical intensity profile is shown in
Fig. 9(a) for a mode separation of q = 5 FSRs.

(a)

(b)

(c)

(d)

FIG. 9. (Color online) (a) Spatial dependence u(x) of the AC
Stark potential along the cavity axis for a cavity length L � 53 µm.
The two driven modes are at λ1 � 852 nm and λ2 � 888 nm. Their
separation is q = 5 FSRs. Both the parameter θ (x̄at) (b) entering the
atom-cavity coupling gat and the parameter ξ (x̄at) (c) entering the
atomic dephasing rate �at can be kept close to 1 at potential wells
around the points where δkx = nπ with δk = k1 − k2 and n � q.
In (d) the parameter ζ (x) is shown, which can be well around 50%
while θ, ξ � 1. The resulting loss in trap frequency can be easily
compensated for by an increased intracavity amplitude.
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(iii) The atom has to be located in one of the potential wells
determined by u′(x) = 0. If we take k1(2) = (k ± δk)/2 then
this condition is equivalent to

tan(kx) = −δk

k
tan(δkx).

In Figs. 9(b), 9(c), and 9(d) we show exemplarily the values
of the parameters θ , ξ , and ζ for the possible potential wells,
i.e., for the solutions to the last equation. As can be seen the
intensity maxima which exhibit the desired properties lie close
to points where the cavity modes are almost completely out
of phase, that is, at points where δkx = nπ for some natural
number n � q.

C. Membrane heating due to laser absorption

Thermal decoherence depends on the ambient temperature
T of the membrane. It can be reduced by precooling the
membrane with a cryostat. However, it is important to note that
there is a natural lower limit for T which is set by absorption
of laser light inside the membrane. The intracavity light hits
the membrane in its center, where a fraction a = Pa/Pc of
the overall circulating power Pc = h̄ωccα

2

L
in the two cavity

modes is absorbed. If the cavity finesse F is limited by
absorption inside the membrane, we can estimate a � 2π

F . The
absorbed power Pa causes an increase of the temperature of the
membrane center by T � 1

kBκth
Pa , where κth is the thermal

link of the membrane center to the membrane supporting frame
[39]. κth depends on the specific geometry and the material
properties and is chosen here such as to have dimensions of Hz.
While it is not entirely clear how the resulting inhomogeneous
temperature distribution exactly affects the vibrational mode
in question, a safe assumption is an increase of the ambient
temperature by T .

In Ref. [39], experiments on heat transport inside SiN
membranes at cryogenic temperatures were performed. By
rescaling the thermal link measured in Ref. [39] at a tem-
perature of �2 K to our geometry, kBκth � 10 nW/K is
obtained. We furthermore use our parameters Pc = 850 µW
and F = 2 × 105, noting that this value for F is consistent
with an imaginary part of the refractive index of the membrane
of Im(n) � 1 × 10−5 [11]. With these parameters, we obtain
T � 2.5 K. Cryogenic precooling of the membrane frame to
T0 < T thus allows one to obtain membrane temperatures
of the order of T � T .

To gain further insight into the temperature distribution
inside the membrane, we simulate heat transport in the
membrane by solving the heat equation in 2D with the finite
elements method. We assume that the absorbed power Pa

is homogeneously distributed over an area A = πw2
0 in the

membrane center, where w0 = 10 µm is the beam waist of the
cavity mode and that the membrane frame is held at a fixed
temperature of T0 = 2 K. At this temperature, the thermal
conductivity of SiN is kth = 0.05 W/mK [39].

Figure 10 shows the steady-state temperature distribution
T (y,z) in the membrane obtained from the simulation. The
peak temperature in the membrane center is T (0,0) = 5.8 K.
The average temperature obtained by integrating T (y,z) over
the membrane cross sectional area is T̄ = 2.8 K. We note
that our simulation overestimates the temperature increase,

FIG. 10. (Color online) Finite elements simulation of membrane
heating due to laser absorption. The steady-state temperature distribu-
tion T (y,z) in the membrane is shown for the experimental parameters
considered in this article. The laser spot of radius w0 = 10 µm is
indicated by the black circle. The membrane frame is held at fixed
T0 = 2 K.

because a constant value for kth is used, while in reality
kth increases rapidly with temperature [39]. In summary,
we conclude that membrane heating due to laser absorption
sets a lower limit on the attainable T , but for our param-
eters still allows for cryogenic precooling to T of a few
kelvin.

VI. OUTLOOK AND CONCLUSIONS

In this article we have discussed the coupling of the motion
of a single atom and a mesoscopic mechanical oscillator, giving
rise to a coupled oscillator dynamics. As an outlook, we want
to indicate how the present setup could in principle also be
used for implementing a Jaynes-Cummings model by coupling
the membrane vibrations to the internal atomic degrees of
freedom. Consider an atom with two stable ground states
trapped by an external potential inside the cavity. Let both
levels be Stark-shifted by the cavity mode, but in opposite
directions. The coupling of the cavity field quadrature to the
two level system is then given by

�2
0

δ
α(â + â†)σz.

Changing basis and doing the rotating wave approximation,
we find an atom-cavity interaction of Jaynes-Cummings
form,

gat(âσ+ + â†σ−), gat = U0α.

From this brief derivation we learn that by coupling directly to
the internal levels one wins a Lamb-Dicke parameter η 	 1 in
the coupling constant, compared to coupling to the atomic
motion. However, this comes at the prize of an increased
dissipation rate, as the spontaneous emission from excited
states with rate γ translates into ground-state dephasing
(�at/2)D[σz](ρ) with rate

�at ∼ γpe,

which is a factor 1/η2 larger, compared to the momentum dif-
fusion. In order to profit from the increased coupling strength,
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it would thus be crucial to further suppress spontaneous
emission by techniques such as, e.g., coherent population
trapping. Our main point here is, however, not to declare a
winning model class but rather to point out the various types
of interaction which can be implemented with the present
setup. Realizing the Jaynes-Cummings model as described
above allows for experiments along the lines of microwave
CQED [38].

Overall, our results illustrate that the present setup actually
provides a toolbox for engineering various interactions and
different types of dynamics, which pave the way toward
quantum state engineering of and full quantum control over
massive micromechanical systems.
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APPENDIX A: ADIABATIC ELIMINATION OF THE
CAVITY MODES

In this section we present details of the adiabatic elimination
of the (independent) cavity modes, starting from the linearized
master equation in the interaction picture with respect to H0,

Ẇ = −i[Hint(t),W ] +
[
Lm + Lat +

∑
i

Li

]
(W ),

and further assuming atom and mirror to be on resonance,
ωat = ωm. The method we employ here is the projection
technique [29] which assumes separation of time scales; that
the fast cavity dynamics on the time scale of the interaction
allows us to approximate the density operator as W � ρ0

c ⊗ ρ

for times t > 1/i . Here ρ0
c = ⊗i |0〉i〈0|i is the steady state

of the shifted cavity modes, and ρ = Trc(W ) is the reduced
density operator for atom and membrane motion. Furthermore,
the influence of the cavity on the membrane-atom dynamics,
i.e., the correction in ρ to the free dynamics, is included
through second-order perturbation expansion in the interaction
term, using gi/(i ± ωm) 	 1. Finally the expressions are
simplified using the Born-Markov approximation. A crucial
point is the assumption that the cavity dynamics dominates
over the independent dissipation mechanisms of membrane
and atom, | ± ωm| � �at,�m, which would otherwise com-
plicate the cavity-mediated dynamics considerably. The result
of the adiabatic elimination is an effective master equation for
the atom-membrane system,

ρ̇ = (Lm + Lat + Lc-med)(ρ),

with cavity-mediated atom-membrane dynamics,

Lc-med(ρ) = −
∫ ∞

0
dτTrc{[Hint(t), (⊗ie

Liτ )

× [Hint(t − τ ), ρ0
c ⊗ ρ(t)]]}.

After tracing over the cavity modes, we find that due to the
independence of the cavity modes (only combinations of the
form Trc{a†

i aiρ
0
c } contribute) the cavity-mediated Liouvillian

is a sum of contributions from the different modes i,

Lc-med(ρ) =
∑

i

g2
i

∫ ∞

0
dτe−(κ+ii )τ

× [{Fi(t) + F
†
i (t)},ρ(t){Fi(t − τ )

+F
†
i (t − τ )}] + H.c..

Performing the integrals and returning to the laboratory frame,
we find

Lc-med(ρ) =
∑

i

[(Fi + F
†
i )ρ(h−,iFi + h+,iF

†
i ) + H.c.]

−
∑

i

[ρ(h−,iFi + h+,iF
†
i )(Fi + F

†
i ) + H.c.]

(A1)

with the constants h±,i = g2/[κ + i(i ± ωm)].
We expect the cavity-mediated dynamics to be described

by

Lc-med(ρ) = −i[Hat-m, ρ] + Lc(ρ), (A2)

with cavity-mediated interaction Hat-m (including corrections
to the free dynamics) and cavity-mediated decay Lc(ρ).
In order to compare the expectation (A2) with the result
(A1), we split the second line of (A1) into commutator and
anticommutator parts,

−(ρA + H.c.) = −i

[
i

2
(A − A†), ρ

]
−
{

1

2
(A + A†), ρ

}
+

,

with A =∑i(h−,iFi + h+,iF
†
i )(Fi + F

†
i ). Reading off from

the commutator that Hat-m = (i/2)(A − A†), we find the
cavity-mediated coherent dynamics,

Hat-m = i

2

∑
i

[(h−,iFi +h+,iF
†
i )(Fi + F

†
i ) − H.c.]. (A3)

The anticommutator from the second line of (A1) combined
with the sandwich terms in the first line of (A1) describes
correlated decay of membrane and atomic motion through the
cavity,

Lc(ρ) =
∑

i

1

2
[2(Fi + F

†
i )ρ(h−,iFi + h+,iF

†
i )

−{(h−,iFi + h+,iF
†
i (Fi + F

†
i ), ρ}+] + H.c..

(A4)

When written in this form the decay is not manifestly on
Lindblad form D[a](ρ) = 2aρa† − {a†a, ρ}+. However, it is
possible to diagonalize the Liouvillian (A4) and write it as a
sum of two independent jump processes (k = 1,2) for each
cavity mode i,

Lc(ρ) =
∑
i,k

γ
(i)
k

2
D
[
J

(i)
k

]
(ρ),
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with the jump operators J
(i)
k ,

J
(i)
k = ( �m(i)

k

)T ( Fi

F
†
i

)
,

which are described by the eigenvectors �m(i)
k of the 2 × 2

matrices M̂i ,

M̂i =
(

2Re{h+,i} (h−,i + h∗
+,i)

(h−,i + h∗
+,i)

∗ 2Re{h−,i}

)
. (A5)

The corresponding decay rates γ
(i)
k are given by the eigenvalues

of M̂i . However, in view of the fast rotations of terms of
the form FiρFi for ωm � γ

(i)
k , we perform the rotating wave

approximation (RWA), which here corresponds to omitting the
off-diagonal terms in M̂i , leading to (25).

APPENDIX B: TIME EVOLUTION AND STATE TRANSFER

The reduced atom-membrane master equation (2) can be
written on the general form

ρ̇ = −i[ �RT Ĥ �R,ρ] +
∑

k

γk

2
D
[ �LT

k
�R](ρ) (B1)

with the matrix Ĥ describing the Hamiltonian dynamics and
the vectors �Lk describing the jump operators of the dissipation
processes. At this point it is convenient to switch to the
dimensionless {X,P } language and thereby introduce the basis
vector �R = [Xm,Pm,Xat,Pat]T with Xat = (aat + a

†
at)/

√
2 and

Xm = (am + a
†
m)/

√
2 and the commutation relations collected

in a matrix σ̂ ,

[Ri,Rj ] = iσij , σ̂ =

⎡
⎢⎣

0 1
−1 0

0 1
−1 0

⎤
⎥⎦ .

The time evolution of a Gaussian state is fully described by its
covariance matrix γ̂ (t) and displacement vector �d(t), which
are defined as the first and second moments, respectively,

�d = 〈 �R〉, γ̂ij = 1
2 〈RiRj + RjRi〉 − 〈Ri〉〈Rj 〉.

From the general master equation (B1) one can derive the
equations of motion for the moments,

�̇d(t) = Q̂ �d(t), ˙̂γ (t) = Q̂γ̂ (t) + γ̂ (t)Q̂T + N̂,

with the matrices Q̂ and N̂ given by,

Q̂ = 2σ̂ (Ĥ + Im{�̂}), N̂ = 2σ̂ [Re{�̂}]σ̂ T . (B2)

Here the matrix �̂ collects the information about the various
dissipation channels,

�̂mn =
∑

k

γk

2
(L∗

k,mLk,n).

Using this technique, we can solve for the time evolution of
Gaussian states. In particular the solution for the time evolution
of the covariance matrix reads,

γ̂ (t) = eQ̂t γ̂ (0)eQ̂T t +
∫ t

0
dτeQ̂(t−τ )N̂eQ̂T (t−τ ). (B3)

We now go on to present the analytical results for state
transfer which will be used in Sec. IV, based on the calculations
in Appendix B. Along the lines of Sec. IV we consider
the symmetric two-mode setup with gm = gat (= g/

√
2),

assuming the rotating wave approximation ωm � G,�at,γ
(i)
k

and the large detuning regime, || � ωm, κ , and neglecting
the difference in membrane heating and cooling, 1/n̄m 	 1.
For this special case, the jump operators form cooling/heating
pairs with equal rate �; if a cooling channel is described
by some vector �L, then the corresponding heating channel
is described by its complex conjugate ( �L)∗,

ρ̇ ∼ �

2
(D[ �LT �R](ρ) + D[( �LT )∗ �R](ρ)).

Thus, in this particular case, the sum of the respective
contributions to the dissipation matrix �̂ from the cooling
and the heating processes is by definition real,

Im{�̂} = 0.

Hence dissipation does not enter the matrix Q̂ (B2). Conse-
quently the time evolution of the displacement vector �d(t) is
completely coherent, and the effect of dissipation on the state
can only be seen in the evolution of the covariance matrix γ̂ (t).

1. Transfer of coherent or squeezed states

The thermalization of a coherent state during the atom-
membrane interaction is here studied by solving the equations
of motion (B3) for the covariance matrix γ̂ (t). For an initial
coherent state,

γ̂ (0) = 1

2

(
1

1

)

we find the following evolution

γ̂ (t) = 1

2
[1 + 2n̄(t)]

(
1

1

)
+ γ̂corr(t)

describing a thermal state with dissipation-induced population

n̄(t) = 1
2 (2�c + �m + �at)t.

The second part of the covariance matrix, γ̂corr, describes os-
cillating atom-membrane correlations which are only present
when atom and membrane dissipate with different rates,

γ̂corr = �m − �at

2G

⎛
⎜⎝

s1(t) s2(t)
s1(t) −s2(t)

−s2(t) −s1(t)
s2(t) −s1(t)

⎞
⎟⎠ ,

with s1(t) = sin[2Gt] and s2(t) = sin2[Gt]. Due to thermal-
ization the fidelity of the state transfer decreases with time
from F (0) = 1 according to

F (t) = 1√
det(γ̂m(t) + γ̂at(0))

(B4)

as presented for a state swap (t = π/2G) in Eq. (30) and
Fig. 4(c). Note that this measure does not take into account the
(coherent) rotation of the displacement vector.
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For the transfer of a squeezed state we see a similar
thermalization, as is clear from Fig. 5, where we study swap
of a state with an initial atomic quadrature squeezing of e−2

γ̂at(0) = 1

2

(
e−2

e2

)
.

In this case the covariance matrix evolves according to

γ̂ ′
m

(
t = π

2G

)
= 1

2

(
e−2 + 2n̄swap

e2 + 2n̄swap

)
. (B5)

Here γ̂ ′
m(t) is the diagonalized membrane covariance matrix,

and the thermal population is given by

n̄swap ≡ n̄
( π

2G

)
= π

4G
(2�c + �m + �at). (B6)

2. Transfer of a Fock state

Our figure of merit for the thermalization of a Fock state
during state transfer to the membrane, is the negativity of
the membrane Wigner function wm(β,β∗,t) at the origin β =
β∗ = 0 relative to the (absolute) negativity of the Fock state
Wigner function wF(0, 0),

Nw(t) ≡ wm(0,0,t)

|wF(0,0)| = 1

4π

∫
d2ξmχm(ξm,t). (B7)

Here χm(ξm,t) is the characteristic function of the membrane
state, which is derived from the characteristic function of the
total atom-membrane state,

χm(ξm,t) = χm,at(ξm,ξat = 0,t).

In order to evaluate this expression we need the time evolution
of the full characteristic function, which is defined in terms of
the density operator ρm,at(t),

χm,at(ξm,ξat,t) = Tr{ρm,at(t)Dm(ξm)Dat(ξat)}
with D(ξ ) = exp

[
ξ â† − ξ ∗â

]
the displacement operator. Let

us first consider the coherent membrane-atom state, for which
the time evolution is described by the covariance matrix γ̂ (t)
and the displacement vector �d(t),

χα,β(ξm,ξat,t) = exp
[
− 1

2
�ξT γ̂ (t)�ξ + i �d(t)�ξ

]

with

�ξ =
√

2σ̂

⎛
⎜⎝

Re(ξm)
Im(ξm)
Re(ξat)
Im(ξat)

⎞
⎟⎠ .

Our next attempt is to use the result for coherent states to
simplify the description of the evolution of a Fock state; here
we focus on the state |1〉. We note that by expressing the Fock
state in terms of coherent states,

|1〉 = ∂α

(
e|α|2/2|α〉)

α=0,

the characteristic function χ1(ξ ) for |1〉 can be written in terms
of corresponding functions for coherent states,

χ1(ξ ) = ∂2
α,α∗ [eαα∗

χα(ξ )]α=0. (B8)

Consequently, for an initial density matrix ρ(0) =
|0〉〈0|m|1〉〈1|at we derive the initial characteristic fun-
ction χ (ξm,ξat,0),

χ (ξm,ξat,0) = ∂2
α,α∗

(
eαα∗

exp
[
− 1

2
�ξT γ̂ (0)�ξ + i �d(0)�ξ

])
α=0

(B9)

with initial conditions

γ̂ (0) = 1

2

(
1 0
0 1

)
, �d(0) =

√
2

⎛
⎜⎝

0
0

Re(α)
Im(α)

⎞
⎟⎠ .

Using the linear properties of the time evolution map εt ,

ρ(t) = εt (ρ(0))

we find that the time evolution of the full characteristic function
is given by

χ (ξm, ξat, t) = ∂2
α,α∗

(
eαα∗

exp
[
− 1

2
�ξT γ̂ (t)�ξ + i �d(t)�ξ

])
α=0

,

from which we derive the membrane Wigner function nega-
tivity (B7); for this specific case it reads,

Nw(t) = 2n̄(t) + cos[2Gt] + sin[2Gt](�m − �at)/2G

[1 + 2n̄(t) + sin[2Gt](�m − �at)/2G]2
.

(B10)
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