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Entangled multiqubit states may be generated through a dispersive collective quantum nondemolition mea-
surement of superconducting qubits coupled to a microwave transmission line resonator. Using the quantum
trajectory approach, we analyze the stochastic measurement traces that would be observed in experiments. We
illustrate the synthesis of three-qubit W and Greenberger-Horne-Zeilinger states, and we analyze how the
fidelity and the entanglement evolve in time during the measurement. We discuss the influence of decoherence
and relaxation, as well as of imperfect control over experimental parameters. We show that the desired states
can be generated on time scales much faster than the qubit decoherence rates.
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I. INTRODUCTION

The realization of quantum-optical concepts in condensed
matter systems has led to remarkable progress during the
past few years. One of the prime examples is the study of
quantum electrodynamics �QED� in superconducting cir-
cuits. Earlier suggestions to implement the Jaynes-
Cummings model in the solid state �1–3� were followed by a
proposal �4� to employ on-chip microwave resonators and
couple them to artificial atoms in the form of superconduct-
ing qubits. This seminal idea was soon thereafter realized
experimentally �5�, creating a solid-state analog of conven-
tional optical cavity QED �6�. The tight confinement of the
field mode and the large electric dipole moment of the
“atom” yield extraordinary coupling strengths. As a result,
these highly tunable systems have been employed to demon-
strate experimentally a variety of achievements, including:
the Jaynes-Cummings model in the strong-coupling regime
�5,7,8�, Rabi and Ramsey oscillations and dispersive qubit
readout �9,10�, generation of single photons �11� and Fock
states �12,13�, cavity-mediated coupling of two qubits
�14,15�, setups with three qubits �16�, Berry’s phase �17�,
and measurement of the photon number distribution �18�.

The strong coupling makes dispersive quantum nondemo-
lition �QND� readout possible, both for qubit states and for
detecting single photons �19�. QND measurements are ideal
projective measurements that reproduce their outcome when
repeated �20,21�. Any QND measurement may be applied to
�probabilistically� generate states. In particular, having sev-
eral qubits inside a common cavity �as realized in recent
circuit QED experiments �14,15�; for a schematic setup see
Fig. 1�, one may produce entangled multiqubit states, even
without employing directly any qubit-qubit coupling. In the
context of circuit QED, this option has been investigated
previously in a series of remarkable studies �22–24�. How-
ever, these consider primarily two qubits, with a recent work
�23� discussing the extension to more qubits in general
terms. The present paper aims to go beyond these studies in
several aspects. First, we present necessary conditions for
being able to generate arbitrary multiqubit states out of a
given subspace of the total multiqubit Hilbert space, using
only single qubit operations and subsequent collective mea-

surement. Second, we carry out detailed quantum jump tra-
jectory simulations also for the case of three qubits, where W
and Greenberger-Horne-Zeilinger �GHZ� states may be pro-
duced. We show how entanglement is generated in the course
of the measurement process, paying attention to the effects of
relaxation and decoherence. Moreover, we analyze how im-
precise fine-tuning of experimental parameters would lead to
a loss of entanglement after its initial transient generation.
Finally, we comment on possible experimental realizations.
Such a measurement-based scheme complements other ap-
proaches for entanglement generation in circuit QED
�4,25–32�, based on unitary dynamics, and may prove advan-
tageous for some purposes since generation and measure-
ment are combined into one step. It might also be used to
generate entanglement between qubits in spatially separated
cavities, without any direct interaction.

II. MODEL

We investigate a QND scheme utilizing the coupling of
superconducting qubits to a bosonic field mode of a micro-
wave resonator as examined in �4,5�. The presence of exci-
tations in the qubits inside the cavity gives rise to a fre-
quency shift of the cavity mode, which can be observed
dispersively via the phase shift of a transmitted beam. In
turn, the measurement backaction leads to a projection of the
qubits on a state that depends on �a� the chosen set of cou-
plings and �b� the initial �product� state the qubits are pre-
pared in.

κcavity/2
κcavity/2

qubits

FIG. 1. �Color online� Schematic setup: three superconducting
qubits �indicated by boxes between center conductor and ground
planes� are coupled to a mode of a coplanar microwave resonator
�consisting of a center conductor and two neighboring ground
planes�. The measurement of the phase shift of a transmitted micro-
wave beam can be utilized to rapidly synthesize, e.g., maximally
entangled multiqubit states such as GHZ and W states.
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We consider a system of a driven cavity mode coupled to
N qubits,
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a model commonly known as the Tavis-Cummings model
which has been recently realized experimentally for N=2
�14,15� and N=3 �16�. The first term of this Hamiltonian
describes the cavity mode with a frequency �, the second
describes all qubit energies, the third term realizes the
Jaynes-Cummings coupling for each qubit to the cavity with
bare coupling constants gi

0, while the last term describes the
driving of the cavity with the readout microwave tone which
will yield ���2 photons in the resonator on average ��cavity is
the intensity decay rate for the cavity�.

In the limit where all the qubits are strongly detuned from
the cavity, it is well known �4� that the qubits impart a state-
dependent phase shift on the cavity mode and the effective
Hamiltonian can be written as
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Here, n̂= â†â denotes the number operator of the cavity
mode. Hamiltonian �1� also induces an effective flip-flop in-
teraction �4,33� of strength J�	=g�g	���+�	� / �2���	� be-
tween each pair of qubits �� ,	� in the same cavity �for cou-
plings g��	� and detunings from the cavity ���	�, in the
dispersive limit �g�
 ����:

Ĥ�	
flip-flop = J�	��̂�

+�̂	
− + H.c.� . �3�

When simulating master Eq. �11� to be derived from Hamil-
tonian �2�, we neglect this interaction for several reasons. �i�
In a concrete experiment the qubit energies could always be
chosen very differently such that this unwanted interaction
does not play a role since the qubits are nonresonant. �ii� As

we will argue later in more detail, the measurement rate �̄ is
usually much larger than J�	, thus making the effects of the
interaction negligibly small even when the qubits are in reso-
nance with each other. �iii� We note that all the states we
consider as examples are eigenstates of the flip-flop interac-
tion �Eq. �3��. Therefore, even if the qubits are chosen to be
in resonance �as is ultimately assumed in our simulations�,
the interaction will not have any important effect on the dy-
namics besides trivial phases between subspaces that are

rendered mutually incoherent by the measurement anyway.
Thus, we will neglect the flip-flop interaction.

III. NECESSARY CONDITIONS FOR THE GENERATION
OF GIVEN TARGET STATES

The protocol we are envisaging is to first produce a prod-
uct state, using local operations on the individual qubits, and
then to project on an entangled state by measurement. This
scheme will be successful with a certain probability. Our aim
in the present section is to briefly discuss the necessary con-
ditions that must be met to be able to generate a given class
of entangled states. It goes without saying that once an en-
tangled state has been reached, one may then apply further
local operations to reach a corresponding subspace of the full
multiqubit Hilbert space.

Let us first fix notation. The coupling strengths gi deter-
mine the phase shifts induced by the individual qubits,

gi �
�gi

0�2

�i
, �4�

and for convenience we will collect them into the coupling
vector

G� � �gi

ḡ
�, i = 1, . . . ,N , �5�

where the overall strength ḡ just determines the measurement
time scale but does not affect the reachable states.

Using qubit excitation operators n̂i�
��̂i

z+1�
2 , we define the

measurement operator N̂ as

N̂ � �
i=1

N
gi

ḡ
n̂i. �6�

Note that even in current experiments, the gi are tunable in
magnitude and sign simply by choosing the detuning � ap-
propriately. The frequency shift imposed on the microwave
cavity will then be

�̂ = �
i=0

N

̂i = ḡN̂ = �
i=1

N

gin̂i, �7�

where ni is the excitation number of the ith qubit.

The desired entangled state ���� j=1
2N

� j�� j has complex
amplitudes,

�� � �� j�, j = 1, . . . ,2N, �8�

in the energy eigenbasis of the qubits �a product basis that
diagonalizes n̂i�.

In the following we derive necessary conditions for being
able to produce arbitrarily chosen states out of some
M-dimensional Hilbert space that is spanned by a subset of
M basis states �� j. In order to generate a certain target state
given by arbitrary �� , we need to adjust the couplings such
that all base kets with nonvanishing � j yield the same phase
shift. Assume that the amplitude vector of the target state has
M � �1, . . . ,2N� nonzero entries � j, j� �1, . . . ,2N� where the
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corresponding indices can be written as a family F� with
dim�F��=M. Then the goal is to use the measurement to
project the system onto the subspace given by span����j � j
�F���.

In the simplest case this is directly possible by choosing
�i� an appropriate initial product state of the qubits �to fix the
amplitudes� and �ii� a suitable coupling vector �to project
onto the correct subspace�.

Choosing an arbitrary initial product state allows for the
choice of 2N complex amplitudes. Due to normalization of
the N single qubit states and an arbitrary global phase for
each of those states, we essentially have 2N real parameters
to choose.

The amplitude vector of the target state will—up to a
constant common factor due to the renormalization after
projection—be determined by the amplitudes of this initial
state. This suggests that, in general �i.e., for arbitrary target
states�, we can only aim at reaching states that satisfy

2M − 2 � 2N . �9�

Again, we had to subtract 2 to account for the irrelevant
global phase and normalization.

Note that for the maximal value of M =2N, the last in-
equality does not hold for any N�1 and we recover the fact
that arbitrary states are in general not product states. Note
that we have just found a necessary condition for construct-
ing arbitrary states out of an M-dimensional subspace. When
choosing particular states, e.g., trivially separable states, one
may still be able to construct those even if they formally
violate Eq. �9�.

We now turn to the question when it is possible to choose
the couplings such that the measurement cannot distinguish
the components of the target state from each other. This re-
quirement of equal phase shifts formally corresponds to a set
of M −1 equations

��i�N̂��i = �� j�N̂�� j �10�

where i , j denote successive indices out of F�.
As tunable parameters to our disposal we effectively have

N−1 couplings �discounting the overall strength ḡ� so this
set of equations will in general be solvable as long as M
�N is fulfilled.

As we will demonstrate below in several examples, some
of the most interesting entangled states, such as W and GHZ
states for three qubits, can be synthesized by this scheme.
Indeed, they have M =N for the W and M =2 for the GHZ
states and thus satisfy the necessary conditions discussed in
this section.

IV. STOCHASTIC MASTER EQUATION

In this section we turn to the quantum trajectory approach
known from quantum optics �21,34–45�. The stochastic mas-
ter equation to be presented below allows us to model the
backaction of the phase-shift measurement and to produce
individual realizations of the measured phase-shift signal.
Stochastic master equations of the kind used in the present
analysis have been successfully employed to, e.g., model

single qubits subject to a continuous measurement �22,46,47�
or to study qubit projection �48� or state reduction of bipar-
tite systems �49�. Moreover, the same structure of a stochas-
tic master equation, e.g., emerges when analyzing trapped
ion motion cooling using continuous measurements and
feedback �50�.

In the case of a cavity mode that decays much faster both
than the qubit decoherence rates ��cavity��1 ,�� and the
couplings to the cavity mode �cavity�gi ∀ i� �0,1 , . . . ,N�,
it is possible to adiabatically eliminate the cavity mode from
the system and find for the stochastic master equation �in the
interaction picture� for the qubits alone,
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− �4�̄�N̂�̂ + �̂N̂ − 2�̂�N̂�t����t� . �11�

Here �̄� ḡ2���2
�cavity

is the measurement rate, �1 and �� are the

qubit relaxation and dephasing rates, P̂i is the projector onto
the excited state of qubit i, and ���2 is the average photon
number circulating inside the cavity mode. See �43,51� for a
detailed derivation and �19� for our recent analysis of photon
detection in circuit QED using the same approach. The sto-
chastic master equation is conditioned on the measured sig-
nal,

X�t� � �N̂�t� +
1

4�1

�̄
��t� , �12�

where � represents the fundamental, unavoidable vacuum
noise �with ���t���t��=��t− t���.

The dephasing term [N̂ , �N̂ , �̂�] destroys the coherence be-

tween different eigenstates of the operator N̂, which is the
unavoidable consequence of the QND measurement process.
As such, this term, although formally analogous to dephasing
terms appearing, among many other places, in the context of
models of intrinsic decoherence �such as the one introduced
by Milburn �52�, where the number operator would be re-
placed by the Hamiltonian�, models the measurement-
induced dephasing due to the projective measurement of the
electromagnetic field leaking out a cavity mode. To elabo-
rate, in our model the concept of a �measurement� bath is a
physically meaningful and necessary ingredient rather than a
conceptual framework to derive the physics of decoherence.
Only to the latter, intrinsic decoherence provides an alterna-
tive description.

Physically, X�t� is the appropriate �suitably normalized�
quadrature component of the electric field transmitted
through the cavity, which is proportional to the phase shift
that indicates the multiqubit state. Experimentally, this signal
would be measured in a homodyne detection scheme. Note
that, for a two-sided cavity, information is contained both in
the transmitted and the reflected signal, and we have as-
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sumed that both parts of the signals are superimposed sym-
metrically to extract the maximum possible information con-
tent �19�.

V. EXAMPLES OF MEASUREMENT-GENERATED
ENTANGLED STATES

In this section we discuss the most relevant examples for
the case of two and three qubits in the cavity. More precisely
we will show that it is possible to generate Bell states, W
states, and GHZ states.

We will be able to observe that the measurement indeed
first drives the system to one of its attractor solutions �among
them the desired state� which are then stabilized by the mea-
surement. The attractor nature of the subspaces selected by

the coupling vector G� can be immediately understood from
the structure of the stochastic master equation �11� by real-
izing that the stochastic term and the measurement-induced
dephasing term both vanish if the density matrix is in the
desired state. Only relaxation and dephasing can take the
system out of this final state, and we will discuss their influ-
ence later.

A. Quantitative characterization

In order to characterize the time evolution during the
measurement process, we have plotted several quantities. We
plot the phase-shift signal X�t� and the excitation number ni
in each qubit as functions of time. To verify that we have
indeed obtained the desired state, we will compute the state
fidelity � between the density matrix from the simulation,
�sim, and the ideal state density matrix �, according to �

� tr���sim���sim�. Finally, the two-qubit entanglement be-
tween two qubits A and B will be measured by the log nega-
tivity. Given the density matrix � of the two qubits �after
tracing out other qubits, if needed�, this is defined as EN���
=log2��TA�. Here �TA is the partial transpose with respect to
qubit A, and ���=tr���†�� is the trace norm.

Before discussing the individual examples, we briefly
point out the general features. Looking at the results �e.g., in
Fig. 2�, we find that in those cases where we end up in the
right state the fidelity as well as the log negativity are 1.
Furthermore, the state is stabilized by the measurement,
meaning that, due to the absence of any nonvanishing terms
in the master equation’s right hand side, it is frozen. We
observe that the state is generated on a time scale given by

the measurement rate �̄−1.
While discussing the examples we will also analyze plots

that show the probability density of various quantities evolv-
ing over time. This point merits a brief discussion. The time
evolution of the distribution for any simple quantum me-
chanical observable can be immediately obtained from the
time evolution of the average density matrix, i.e., from the
standard, nonstochastic master equation. In that case, simu-
lating a large number of stochastic trajectories and then av-
eraging over the results would be unnecessarily cumber-
some. However, that argument becomes void as soon as one
considers signals that depend on the entire prehistory of the

trajectory. An important example is the time-averaged cumu-
lative phase-shift signal,

X̄�t� �
1

t
�

0

t

X�t��dt�. �13�

This quantity has the advantage of tending toward a well-
defined limit in the course of a QND measurement, with the
fluctuations around that limiting value decreasing such as

1 /�t. It is not possible to obtain the distribution of X̄ from
the average density matrix �, and quantum jump trajectory
simulations are needed.

Another example is represented by quantities that depend
nonlinearly on the density matrix. In those cases, the average
density matrix is irrelevant since obviously �f���� f����
for a nonlinear function f . An important case is the entangle-
ment measure EN. In fact, the average density matrix is never
entangled �EN�����0� for our examples. Thus, it is indeed
necessary to obtain EN for a large number of trajectories in
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FIG. 2. �Color online� Generation of the Bell state ��+= ��10
+ �01� /�2 �the two-qubit W state�: �a� quantum trajectories illus-
trating the different phase-shift signal traces X�t�. Three traces have
been selected, corresponding to the possible outcomes of the mea-

surement given the same input state ��0. At time �̄t0=3, Had-
amard gates are applied to both qubits, starting from the ground
state. As in every real measurement of field quadratures, the signal
X�t� is smoothed by doing a windowed average over a suitable time

span, �̄�avg=1.0. Part �b� displays the excitation numbers, state syn-
thesis fidelity and the entanglement �log negativity� for the one
trajectory of plot �a� that ended up in the desired state.
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order to discuss its statistical behavior and plot the probabil-
ity density.

B. Bell states for two qubits—no decoherence

In the case of two qubits and vanishing decoherence rates
�1, �=0, the generation of Bell states is straightforward
�23�. We imagine starting the experiment with all qubits in
the ground state �00 and applying a Hadamard gate
�� /2—�x rotation� at some time t0, which leaves the system
in the product state ��0���

1
�2

��0+ �1�= 1
2 ��00+ �01

+ �10+ �11�. We want to generate the Bell state

��+ �
1
�2

��01 + �10� , �14�

which is the two-qubit version of a W state. Clearly the am-
plitude vector for this state is simply �2�� = �0,1 ,1 ,0�T, and
the resulting equation �10� for the couplings is given by g1

=g2, thus G� = �1,1�T. The desired state will be generated with
a success rate � given by

� � ���+��0�2 =
1

2
, �15�

meaning that the experiment will in 50% of all runs end up
in the correct state �as confirmed by observation of the cor-
rect phase shift�.

Likewise, for the Bell state vector ��+� 1
�2

��00+ �11�,
we find for the amplitude vector �2�� = �1,0 ,0 ,1�T, and for
the characteristic equation for the couplings g1=−g2, which

is fulfilled by the choice of coupling vector G� = �1,−1�T.
Note that in principle ��+ could also be generated by first
producing ��+ and then applying local unitary operations,
and the same is true for the two other Bell states, ��− and
��−.

Individual traces and probability density time evolutions
for various quantities are shown in Figs. 2 and 3, respec-
tively, for the two types of Bell states discussed here.

C. Three qubits—no decoherence

1. Generation of W states

Similarly, for three qubits, the generation of W states is
straightforward as well. We imagine starting the experiment
with all qubits in the ground state �0, applying a Hadamard
gate �� /2—�x rotation� at some time t0, leaving the system
in the state

��0 � �
�

1
�2

��0 + �1�

=
1
�8

��000 + �001 + �010 + �011 + �100 + �101

+ �110 + �111� .

We aim to generate a W state which for three qubits is given
by

�W �
1
�3

��001 + �010 + �100� .

We find the corresponding amplitude vector �3��
= �0,1 ,1 ,0 ,1 ,0 ,0 ,0�T, and the resulting equations for the
couplings, g1=g2=g3, solved by equal couplings to all qu-

bits, G� = �1,1 ,1 �T. The W state will be generated with a suc-
cess rate � given by

� � ��W��0�2 =
3

8
.

Note that with the same success rate the dual W state,

�W̄ �
1
�3

��011 + �110 + �101� ,

is generated �see Fig. 4�.

2. Generation of GHZ states

Extending the two-qubit scheme to three qubits, we find
for the amplitude vector �3�� = �1,0 ,0 ,0 ,0 ,0 ,0 ,1�T and for
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FIG. 3. �Color online� Generation of two-qubit Bell state ��+
= ��00+ �11� /�2: �a� Probability density of the integrated �cumula-

tive� phase-shift signal X̄�t�= t−1�0
t X�t��dt� from 6000 runs of the

simulation. At time t0 Hadamard gates are applied to both qubits.
Part �b� displays the probability density of the entanglement mea-
sure EN, the log negativity. Note that neither of these plots can be
obtained from the standard, nonstochastic master equation �see
main text�, i.e., quantum jump trajectory simulations are essential.
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the characteristic equation for the couplings in case of a de-
sired GHZ state as the target state �GHZ� 1

�2
��000+ �111�,

0 = g1 + g2 + g3,

which is fulfilled, for example, by the choice of coupling

vector G� = �1,−1 /2,−1 /2�T. The success rate is �= 1
4 . Again

we plot phase-shift signal, excitation numbers, log negativity,
and fidelity to illustrate the correctness of our considerations
�see Fig. 5�. Note that due to the unequal couplings, the qubit
excitations and pairwise entanglement do depend on the qu-
bit index, in contrast to all our previous examples, where the
couplings had been equal in magnitude.

It is noteworthy that this three-qubit GHZ scheme yields a
75% chance of obtaining a Bell state between qubits 2 and 3
as a by-product. So this might in fact be also considered an
even more efficient scheme to generate two-qubit Bell states
than just with two qubits in the cavity.

VI. EFFECTS OF DECOHERENCE

We include decoherence into our model by considering
the stochastic master equation �11� with the Lindblad decay
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FIG. 4. �Color online� Generation of three-qubit W states: �a�
quantum trajectories for the different states that can arise from the

given input state ��0. At time �̄t0=3, Hadamard gates are applied
to all qubits. Windowed averaging is performed as in Fig. 2. Part �b�
displays the excitation numbers, state synthesis fidelity and the log
negativity for the one trajectory of plot �a� that ended up in the
desired W state. Here tri� denotes the partial trace over qubit num-
ber i, and the resulting pairwise entanglement happens to be the
same for all choices of qubit pairs in this example. Note that in the
target state all pairs of qubits are mutually entangled which is char-
acteristic for the W state and the reason for the robustness of its
entanglement compared to the GHZ state.
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FIG. 5. �Color online� generation of three-qubit GHZ states: �a�
quantum trajectories corresponding to the different states that can
arise from the given input state. At time t0, Hadamard gates are
applied to both qubits. Note that among the unwanted outcomes
there are two-qubit ��+ Bell states. These are actually generated
with a success rate of �=3 /4 which is higher than in the original
two-qubit scheme. Part �b� displays the excitation numbers, state
synthesis fidelity and the log negativity for all pairs of qubits for the
trace of part �a� that ended up in the desired GHZ state. Note that
once the GHZ state is reached, all pairwise entanglement is lost.
This is a typical feature of GHZ states, which contain only genuine
three-particle entanglement. Part �c� shows the evolution for the
particular trajectory that reaches the Bell state between qubits 2 and
3, which can be generated very efficiently as a by-product using this
three-qubit GHZ scheme.
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and dephasing rates now different from zero. Assuming
equal rates for all the qubits, evidently entanglement will be
on average destroyed on a time scale set by T2= ��1 /2
+��−1. When considering experimentally reachable param-
eters, which we will do further below, we will find that in-
deed the time needed to synthesize states is orders of mag-
nitude shorter compared to T2. It is thus clear that the
simulation of the examples will look like the above with a
weak decay of coherence superimposed on the trajectories.

In contrast to the decay due to decoherence, the decay due
to relaxation �at a rate �1� is stochastic in the sense that it
leads to sudden quantum jumps. This can be understood by
considering that the phase-shift measurement stabilizes a cer-
tain subspace. Doing so, certain configurations of diagonal
elements in the density matrix constitute attractors that com-
pete with the exponential decay due to �1. More formally
speaking, the master equation is unraveled with respect to
the �1 process but is still an ensemble average description of
the pure dephasing physics. The result is that the decay is
stochastic when looking at single trajectories and the usual
exponential �1 decay is recovered when averaging over
many trajectories. Conversely, in a single trajectory the off-
diagonal elements decay on a time scale set by T2, showing
the following behavior: as long as the relaxation jump pro-
cess has not happened, one observes a decay solely due to
pure dephasing �see Fig. 6�. Once the relaxation process has
happened, coherence and thus entanglement are also lost
completely.

Example—two-qubit Bell states including dissipation

To demonstrate the influence of decoherence and relax-
ation, we repeat the example for a two-qubit Bell state,
��+� 1

�2
��01+ �10�, assuming comparatively low values of

�̄ /�1=10 and �̄ /�=20 to illustrate the effects and make all

the dynamics visible. Experimental ratios would be at least
about a factor 100 higher and thus the fidelity and lifetime
are higher in experiment than they appear from the following
simulations.

We have plotted the time evolution for the choice of cou-
plings that leads to the creation of a two-qubit Bell state
��+� 1

�2
��10+ �01�. The results are shown in Fig. 6, which

should be compared against Fig. 2. Likewise, we have con-
sidered the probability density for the time-averaged phase-
shift signal and the entanglement measure for the Bell state
��+; see Fig. 7. There, the strict upper envelope for the
entanglement is particularly noteworthy, corresponding to
the decay of coherence within the subspace selected by the
measurement.
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FIG. 6. �Color online� Effects of adding decoherence to the
dynamics. The situation is identical to the simulation of Fig. 2, with
the target state ��+, except for the added relaxation rate �1

=0.01�̄ and pure dephasing rate �=0.02�. We can observe that the
subspace of choice is stabilized before the eventual decay due to
relaxation. However, even before the sudden jump due to relax-
ation, one observes a slow decay of the fidelity and entanglement
between the qubits, due to the pure dephasing rate � �dashed
lines�.
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FIG. 7. �Color online� Effects of adding decoherence and relax-
ation to the creation of the Bell state ��+� 1

�2
��00+ �11�. The

situation is identical to the simulation of Fig. 3, except for the added

relaxation rate �1=0.1�̄ and pure dephasing rate �=0.05�. Part �a�
shows the probability density of the time-averaged �cumulative�
phase-shift signal X̄�t� with an example trajectory superimposed.
Note the buildup of finite probability at finite signal values, before
relaxation back to zero phase shift, which represents the vacuum
state �00 at long times. Part �b� shows the probability density of the
entanglement �log negativity�. We can observe that the entangle-
ment is lost on a time scale given by T2= ��1 /2+�2�−1. Note in
particular the sharply defined, exponentially decaying envelope that
defines a strict upper bound for the entanglement at any given time.
This is due to the pure dephasing.
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VII. EFFECT OF IMPERFECTIONS DUE TO PARAMETER
SPREAD

In order to prepare states in this way experimentally, one
faces the problem that it might not always be possible to fix
important parameters perfectly. If the scheme one has in
mind in turn relies on exact matching of parameters too
much, one quickly ends up with a proposal that may be in-
teresting but not very realistic. We therefore examine the
effects on the fidelity and entanglement properties of this
state synthesis scheme in the presence of small deviations in
the couplings of the qubits to the cavity

G� = G� 0 + ��gi

ḡ
� , �16�

where G� 0 is the ideal coupling vector from solving the char-
acteristic equations �10� for the target state. �gi / ḡ are the
deviations from that ideal coupling for each qubit. Without
loss of generality we first look at the case where all cou-
plings are equal to their ideal value, except one which differs
by �g / ḡ. We focus on the stochastic term in the master equa-
tion �Eq. �11�� which is responsible for the projection onto a
set of states, one of which is our target state. Let us rewrite

this term a bit by inserting the definitions of �̄ and N̂ as
follows:

�̇̂st = − �4�̄�N̂�̂ + �̂N̂ − 2�̂�N̂�t����t�

= −�4
ḡ2���2

�cavity
�
i=1

N
gi

ḡ
�n̂i�̂ + �̂n̂i − 2�̂�n̂i�t����t� . �17�

From this form of Eq. �17�, it is evident that due to the
linearity in the couplings gi, we can pull out all deviating
couplings into separate terms which have the same form.
This reads as

�̇̂ = − �4�̄�
i=1

N
gi

�0�

ḡ
�n̂i�̂ + �̂n̂i − 2�̂�n̂i�t����t�

− �4�̄�
i=1

N
�gi

ḡ
�n̂i�̂ + �̂ni − 2�̂�n̂i�t����t�

= − �4�̄�N̂�̂ + �̂N̂ − 2�̂�N̂�t����t�

− �
i=1

N

�4��i�n̂i�̂ + �̂n̂i − 2�̂�n̂i�t����t� ,

which means that in addition to the ideal behavior captured
by the first term, each individual qubit with deviating cou-
pling will be projected on its ground or excited state on a
time scale given by the inverse of the individual measure-

ment rate ��i�
���2�gi

2

�cavity
�we have assumed positive �gi for sim-

plicity; otherwise the signs in the last line would change for
those qubits with �gi�0�. This has two consequences: The
first consequence concerns the measured phase shift: Instead
of being equal for all the base kets that form our target state,
there will be deviations in the phase shift from base ket to
base ket. This means that we will be able to observe the
breakdown of the target state. Therefore, second, the lifetime

of the desired entangled state will now also be limited by the
inverse of the maximum of the individual measurement rates,
in addition to the effects of decoherence. In other words, as
soon as we have gained enough signal to noise ratio to dis-
criminate the different base kets from each other �i.e., resolve
the different corresponding phase shifts�, our target state will
be destroyed.

To illustrate this effect in a fairly drastic way, we choose
an example of three qubits with a W state as a target state and

the coupling vector G� = �1,1 ,1�T+ ��2 /10,0 ,−�2 /10�T. This
yields an individual measurement rate for the second qubit of

��2 / �̄=1 /50. Therefore, we expect the target state and es-
pecially its entanglement properties to be destroyed on a time

scale of 50 times the preparation time �̄−1. As we will argue
in the following section, present experiments allow a ratio

�̄ /�decoh=O�104� which justifies to ignore decoherence for
the moment. The resulting simulation beautifully confirms
the expectations; see Fig. 8.

We conclude that in order to observe the full dynamics of
the system one should strive for a regime where the condi-
tion

�̄ � ��i � �1,� ∀ i � 1, . . . ,N �18�

is met. In the next section we will show that this is indeed
possible with present-day experimental parameters.

As a side remark we state that the situation of one cou-
pling deviating from the others is in principle already found
when synthesizing GHZ states for an odd number of qubits
�e.g., three� as examined in the previous sections �see Fig.
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FIG. 8. �Color online� Probability density of the time-averaged

cumulative �integrated� phase-shift signal X̄ as an illustration of the
effect of parameter spread in the couplings. Apart from the devia-
tion in the couplings from the ideal values, the setup is identical to
the example in which we aimed for a three-qubit W state, as seen in

Fig. 4. Hadamard gates are applied to all qubits at time t0=3�̄−1.

During the following time interval of length �̄−1 all trajectories are

projected onto the W state, �W̄, �000, or �111. Meanwhile the
competing projection on the individual number states of the qubits
becomes more pronounced and dominates the dynamics on a time

scale ��2
−1=50�̄−1. This is exactly the time scale on which we can

be sure to identify all the product base states by their phase-shift
values individually.
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5�a��. We had chosen a coupling vector G� = �1,−1 /2,
−1 /2�T. Here the larger magnitude of the coupling for the
first qubit is responsible for the generation of two-qubit W
states. As a consequence, we can learn about the state of the
first qubit while we can still not distinguish qubits 2 and 3
from each other. Following our previous reasoning in this
section, we find that the state of qubit 2 should be discerned

on a time scale set by ���2 / �̄�−1=4 �in units of �̄−1�, which
matches the simulation results shown in the previous section
�see Fig. 5�a��.

VIII. POSSIBILITIES FOR EXPERIMENTAL
REALIZATION

Cavity QED setups in superconducting circuits
�5,8,53,54� have been used to implement ideas of quantum
optics on the chip, and are considered a promising candidate
for scalable, fault tolerant quantum computing �e.g., �55��.
Proposals for generating and detecting nonclassical photon
states exist or have been implemented �18,19,53,56,57�.

These experiments realize a Jaynes-Cummings coupling
between qubit and resonator of up to 2��100 MHz, reso-
nators with frequencies of about 2��5 GHz, and a large
range of resonator decay rates � between 10 kHz and 100
MHz. Given this parameter space and assuming a bare qubit
coupling of g0�2��100 MHz, detunings in the GHz
range, ���2�10 photons in the readout cavity, and a qubit
decay rate �1�0.6 MHz, it is easily possible to reach values

of �̄ /��104. This gives ample time for the state synthesis
before decoherence starts playing a role.

Furthermore, couplings can be adjusted with enough ac-
curacy such that the state generation is also not limited by

this factor. We can examine the sensitivity of the ratio �� / �̄
to small deviations in the parameters. From ����g2 and

�g=��g0
2 /��, we find �� / �̄= �2�g0 /g0−�� /��2. Assuming

an uncertainty about the bare value of the coupling of the
qubits to the cavity and an uncertainty about the qubit detun-

ing of about 5% each we find that ���0.052�̄. Note that this

value is obtained without even considering the possibility of
actively compensating for the spread in the couplings by
suitably adjusting the detuning. This hints that under pres-
ently available optimal experimental conditions, the infidel-
ity due to parameter spread becomes visible only long after
the system has been severely decohered anyway. However,
one can always intentionally choose parameters such that Eq.
�18� is fulfilled and the full dynamics discussed here can
be experimentally observed, including the ultimate
measurement-induced decay of the temporarily produced en-
tangled state.

The main challenging step to be taken experimentally be-
fore realizing this scheme in the laboratory is to operate in
the single-shot qubit readout limit. This has been demon-
strated very recently by the Saclay group using a Josephson
bifurcation amplifier setup �58�.

IX. CONCLUSIONS

We have analyzed a very general experimentally directly
relevant way to generate entangled multiqubit states using a
dispersive phase-shift measurement of the collective state of
several qubits inside a cavity. We have given criteria for the
possibility to synthesize a given target state and studied the
most relevant examples of Bell states as well as W and GHZ
states for two and three qubits. We have also discussed, and
analyzed by extensive numerical simulations, the two major
sources of imperfections in this setup, namely, decoherence
and parameter spread. Finally, we have compared with pres-
ently reachable experimental parameters and conclude that
this scheme could soon be tested in the laboratory.

Note added in proof. Recently, similar results concerning
entanglement by measurement in circuit QED have been ob-
tained in Ref. �59�
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