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We study dephasing by electron interactions in a small disordered quasi-one-dimensional �1D� ring weakly
coupled to leads. We use an influence functional for quantum Nyquist noise to describe the crossover for the
dephasing time ���T� from diffusive or ergodic 1D ���

−1�T2/3 ,T1� to zero-dimensional �0D� behavior
���

−1�T2� as T drops below the Thouless energy. The crossover to 0D, predicted earlier for two-dimensional
and three-dimensional systems, has so far eluded experimental observation. The ring geometry holds promise
of meeting this long-standing challenge, since the crossover manifests itself not only in the smooth part of the
magnetoconductivity but also in the amplitude of Altshuler-Aronov-Spivak oscillations. This allows signatures
of dephasing in the ring to be cleanly extracted by filtering out those of the leads.
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I. INTRODUCTION

Over the last 20 years numerous theoretical1–8 and
experimental10–15 works have studied the mechanism of
dephasing in electronic transport and its dependence on tem-
perature T and dimensionality in disordered condensed-
matter systems. At low temperatures dephasing is mainly due
to electron interactions, with the dephasing time ���T� in-
creasing as T−a when T→0.

The dephasing time controls the scale of a negative weak
localization �WL� correction to the magnetoconductivity and
�under certain conditions� the magnitude of universal con-
ductance fluctuations �UCFs�. If T is so low that �� exceeds
�Th=� /ETh, the time required for an electron to cross �diffu-
sively or ballistically� a mesoscopic sample �ETh is the Thou-
less energy�, UCFs become T independent. This leaves WL
as the only tool to measure the T dependence of dephasing in
mesoscopic wires or quantum dots at very low T. For quan-
tum dots, a dimensional crossover was predicted4 from
���T−1, typical for a two-dimensional �2D� electron gas,1 to
���T−2 when the temperature is lowered into the zero-
dimensional �0D� regime,

�/�� � T � ETh, �1�

where the coherence length and the thermal length are both
larger than the system size independent of geometry and real
dimensionality of the sample. Although the ���T−2 behavior
is quite generic, arising from the fermionic statistics of con-
duction electrons, experimental efforts13 to observe it have so
far been unsuccessful. The reasons for this are unclear. Con-
ceivably dephasing mechanisms other than electron interac-
tions were dominant, or the regime of validity of the 0D
description had not been reached. In any case, other ways of
testing the dimensional crossover for �� are desirable.

Here we study dephasing in a quasi-1D mesoscopic ring
weakly coupled to two well-conducting leads through narrow
point contacts. We find a dimensional crossover for ���T�
from diffusive or ergodic 1D ��T−2/3 ,T−1� to 0D ��T−2� be-
havior as T is decreased below ETh and propose a detailed
experimental scenario for observing this behavior. It reveals
itself not only via the WL corrections to the smooth part of
magnetoconductivity but also via the amplitude of the

Altshuler-Aronov-Spivak �AAS� oscillations16 that result
from closed trajectories with a nonzero winding number ac-
quiring the Aharonov-Bohm phase. For sufficiently weak
lead-ring coupling �specified below�, the magnitude of AAS
oscillations will be independent of dephasing in the leads.
Thus, the ring geometry provides a more promising setup for
the observation of the dimensional crossover than 2D or 3D
settings.

II. DEPHASING IN WEAK LOCALIZATION

The WL correction to the conductivity is governed by
coherent backscattering of the electrons from static disorder
and, to the lowest order, is due to the enhancement of the
return probability caused by constructive interference of two
time reversed trajectories described by the so-called Coop-
eron C.17,18 In this order, the WL correction to the conduc-
tivity, in units of the Drude conductivity �0, is given by19

�g =
��

�0
= −

1

	

�

0

�

dt�C�t�� . �2�

Here 
 is the electron density of states per spin at the Fermi
surface and �=1 henceforward. Dephasing limits the scale of
this contribution and effectively results in the suppression of
the Cooperon at long times:

C�t� � C0�t�exp�− t/�H − t/�dw − F�t�� . �3�

We consider here low temperatures where the phonon con-
tribution to dephasing is negligible and three main sources
contribute to the Cooperon decay with time: an applied mag-
netic field H characterized by the time scale �H �Ref. 20�; the
leakage of particles from the ring characterized by the dwell
time �dw �Ref. 21�; and electron interactions, whose effects
can be described in terms of the decay function F�t�,1,3

which grows with time and may be used to define a dephas-
ing time via F����=1.

F�t� can be obtained using the influence functional
approach,6,7 which gives results for the magnetoconductivity
that are practically equivalent to those originally obtained in
Ref. 1. Roughly speaking, an electron traversing a random
walk trajectory x�t1� of duration t acquires a random phase
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�t=�0
t dt1V�x�t1� , t1� due to the random potential V describing

the Nyquist noise originating from electron interactions; the
variance of this phase, averaged over all closed random
walks �crw�, gives the decay function, F�t�= 1

2 ���t
2	crw. A

careful treatment6,7 gives

F�t� = �
0

t

d2t1,2�VV�x12,t12� − VV�x12, t̄12�	crw, �4�

where x12�x�t1�−x�t2�; t12� t1− t2; t̄12� t1+ t2− t. The noise
is assumed Gaussian, with correlation function

VV�x,t� = �2e2T/�0A�Q�x��T�t� . �5�

Here A is the wire’s cross-sectional area, the diffuson Q�x� is
the time-averaged solution of the diffusion equation, and
�T�t� is a broadened � function of width T
1 /T and height

T given by7,8

�T�t� = 	Tw�	Tt�, w�y� =
y coth�y� − 1

sinh2�y�
. �6�

This form takes into account the Pauli principle in a quantum
description of Nyquist noise and reproduces the results5 of
leading order perturbation theory in the interaction for �g.
The broadening of �T�t� is the central difference between
quantum noise and the classical noise considered in previous
treatments,1,6 which used a sharp ��t� function instead. Note
that Eq. �4� is free from IR singularities, because the
x-independent part of VV �the diffuson “zero mode”� does
not contribute to F.

III. QUALITATIVE PICTURE

We begin with a qualitative discussion of dephasing in an
isolated quasi-1D system of size L. Since Nyquist electric
field fluctuations are white noise in space, the x dependence
of V behaves like a random walk in space ���x�, so that
Q�x��x. For �T��Th, the potential seen during one tra-
versal of the system is also white noise in time, i.e.,
�T�t�→��t�.

In the diffusive regime ��T� t��Th�, a random walk x�t1�
of duration t does not feel the boundaries, hence,
x�t1���t1. Thus, F�t��T�0

t �t1dt1�Tt3/2, reproducing the
well-known result ���T−2/3.1

In the ergodic regime ��T��Th� t�, the trajectory fully
explores the whole system, thus, x�t1��L instead, which
reproduces F�t��TLt and ���T−1.6

We are primarily interested in the 0D regime reached at
T�ETh��Th��T� t�. In contrast to the previous two regimes,
a typical trajectory visits the vicinity of any point x in the
interval �0,L� several times during the time �T �see Fig. 1�.
On time scales shorter than this time �T the potential is ef-
fectively frozen, so that the broadened � function in Eq. �5�
saturates at its maximum, �T�t�→T, and the variance of V is
of order T2x. The phase picked up during �T becomes
��T

=�T�0
Ldxp�x�V�x , t1�, where p�x�dx is the fraction of time

the trajectory spends near x. Then only small statistical de-
viations from the completely homogeneous limit, p�x�=1 /L
�reached for �T→��, yield a phase difference between the
two time-reversed trajectories. These deviations scale like

�p�1 /��T, since the number of “samples” �i.e., of traversals
of the system during time �T� effectively grows with �T.
Thus, setting V�T�x, we estimate ��T

��TL3/2T /��T, so
that ����T

2 	�L3T2�T. Adding up the contributions from t /�T

independent time intervals �t�T�, we find F�t��L3T2t, im-
plying ���T−2, characteristic of 0D systems.4 Thus, when
�Th becomes the smallest time scale, a dimensional crossover
occurs and the system becomes effectively 0D.

The qualitative behavior of �� in all three regimes also
follows upon extracting �� self-consistently from the stan-
dard perturbative expression for the Cooperon
self-energy.2,7,8 Inserting the usual cutoffs T and 1 /�� for the
frequency transferred between the diffusive electrons and
their Nyquist noise environment and excluding the diffuson
zeroth mode via a cutoff at 1 /L of the transferred momen-
tum, we have �omitting numerical prefactors�

1

��

�
T

g1L
�

1/��

T

d��
1/L

� Ddq

�Dq2�2 + �2 , g1 =
h�0

e2

A

L
, �7�

where g1 is the 1D dimensionless conductance, D=vFl the
1D diffusion constant, vF the Fermi velocity, and � the mean
free path. Writing ETh=D /L2 this yields ��� �g1 /�EThT�2/3,
g1 /T, or EThg1 /T2 for the diffusive ��T�����Th�, ergodic
��T��Th����, or 0D ��Th��T���� regimes, respectively,
as above �with dimensionful parameters reinstated�. Equation
�7� illustrates succinctly that the modes dominating dephas-
ing lie near the infrared cutoff ��
��

−1 or ETh� for the diffu-
sive or ergodic regimes but near the ultraviolet cutoff �
T
for the 0D regime �which is why, in the latter, the broadening
of �T�t� becomes important�.

IV. ANALYTICAL RESULTS

We now turn to a quantitative analysis.22 The diffuson in
the ring geometry is18

Q�x� =
Ldw

2

cosh��L − 2x�/2Ldw�
sinh�L/2Ldw�

, �8�

where Ldw=�D�dw and x is the cyclic coordinate along the
ring. Terms of order �Th /�dw �small for an almost isolated
ring� do not change the parametric dependence of F on T , t,
and L so that we neglect them below, setting �dw=� in Eq.
�4�. Inserting Eqs. �5�, �6�, and �8� into Eq. �4�, the decay
function Fn�t� for a given winding number n can be calcu-
lated as in Ref. 6 but replacing ��t� by �T�t�:

�

�L

0 t1

x

�

�

0 x

p(x)

L

�
�

1/
√

τT� �τT ��τTh

1
L

FIG. 1. �Color online� Left: a pair of time-reversed diffusive
trajectories exploring ergodically a region of size L. The fluctuating
noise potential is frozen during time intervals �indicated by shad-
ing� of duration �T=1 /T sketched here to be �Th. Right: the den-
sity p�x� of points x visited by a particular trajectory during the time
interval �T fluctuates around 1 /L with fluctuations �p�1 /��T.
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Fn�t� = −
4	Tt

g1L
�

0

1

du z�u��Q	crw�u� ,

�Q	crw�u� =
L

2 �
k=1

�
cos�2	knu�

�	k�2 e−�2	k�2EThtu�1−u�,

z�u� = − 2	Tt�1 − u�w�	Ttu� + �
−	Ttu

	Ttu

dv w�v� . �9�

Equation �9� yields the following results for the diffusive,1,23

ergodic,6 and 0D regimes at n�ETht:

Fn�t� 
 �
�n,0	3/2

2g1

�EThTt3/2, �T � t � �Th �10a�

	Tt

3g1
, �T � �Th � t �10b�

	2

270g1

T2t

ETh
, �Th � �T � t . �10c�

Subleading terms in the three limiting cases �10a�–�10c� are
of order O���T / t�1/2 , �t /�Th�1/2�, O���T /�Th�1/2 ,�Th / t�, and
O���Th /�T�2 , ��T / t��, respectively. Note that the crossover
temperatures where ��

diff
��
erg or ��

erg
��
0D, namely,

c1g1ETh or c2ETh, respectively, involve large prefactors,
c1=27 /4
7 and c2=90 /	
30, which should aid experi-
mental efforts to reach the 0D regime.

For a ring of rectangular cross section A=LWLH and cir-
cumference L, the Cooperon can then be written as

C�t� 
 �
n=−�

+�
e−�nL�2/4Dt

�4	Dt
e−t/�H−Fn�t�−t/�dwein�, �11�

with �restoring �� �H=9.5��c /eH�2� �l /DLW
3 � and �

=4	� /�0, where �=	�L /2	�2H is the flux through the
ring and �0=hc /e.15,16,24 Inserting Eqs. �9� and �11� into
Eq. �2� gives the desired WL correction for the ring
weakly coupled to leads. The resulting value of
�g�T ,�� increases with decreasing T, Fig. 2, in a manner
governed by ��: since only trajectories with n�2�t /�Th
contribute, the diffusive regime �n restricted to 0� gives
�g���� /�Th /g1� �ETh /g1

2T�1/3, whereas the ergodic regime
�sum on n is �t1/2� gives �g� ��� /�Th� /g1�ETh /T, as long
as ����H ,�dw. With decreasing T, the growth of �g�T ,��

saturates toward �g�0,�� once �� increases past
min��H ,�dw�, with �g�0,��− �g�T ,�����

−1 vanishing as
T or T2 in the ergodic or 0D regimes, respectively.

V. FILTERING OUT LEADS

For simplicity, above we did not model the leads explic-
itly. In real experiments, however, �g is affected by dephas-
ing in the leads, which might mask the signatures of dephas-
ing in the ring. Similar concerns apply to quantum dots
connected to leads �cf. the ���T−1 behavior observed in Ref.
13�, or finite-size effects in a network of disordered wires,15

where paths encircling a given unit cell might spend signifi-
cant time in neighboring unit cells as well �cf. T−1/3 behavior
observed in Refs. 15 and 25 at �� /�Th�1�. To filter out the
effect of leads, we construct15 from �g�T ,�� its nonoscil-
latory envelope �gen�T ,��, obtained by setting �=0 in Eq.
�11� while retaining �H�0, and study the difference

�ḡ�T,�� = �gen�T,�� − �g�T,�� . �12�

This procedure is illustrated in Fig. 2. �ḡ is dominated by
paths with winding numbers n�1 which belong to the ring.
Contributions to �ḡ from Cooperons extending over both the
ring and a lead will be subleading for well-conducting leads
with a small contact-lead-contact return probability. Con-
cretely, for N-channel point contacts with conductance
gcont=NTcont, this requires leads with dimensionless conduc-
tance gleadN.26

VI. SUGGESTED EXPERIMENTS

To observe the predicted 1D-to-0D crossover experimen-
tally, several conditions need to be satisfied. Our theory as-
sumes �i� L�LW�F ��F is the Fermi wavelength�. En-
suring that we stay in the WL regime requires �ii� a large
dimensionless conductance, g1� �� /L��LWLH /�F

2�1, and
�iii� a finite �dw to limit the growth of �g with decreasing T;
choosing the limit, somewhat arbitrarily, as �g�

1
2 at T ,H

=0 implies �dw /�Th�g1 /8. Estimating �dw /�Th
g1 /gcont,
this implies 8�gcont and thus the absence of Coulomb block-
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FIG. 2. �Color online� The WL correction �g�T ,�� �solid
lines�, its envelope �gen�T ,�� �dashed lines�, and their difference
�ḡ= �gen− �g �inset�, plotted as function of magnetic flux
2� /�0, for three different temperatures.
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FIG. 3. �Color online� T dependence of �a� the WL correction at
zero field, �g�T ,0� and �b� at finite field with envelope subtracted,
�ḡ�T ,�1�; �c� the difference �ḡ�0,�1�−�ḡ�T ,�1�, which reveals a
crossover to T2 behavior for T�30ETh. The flux �1, which weakly
depends on T, marks the first maximum of �ḡ�T ,��; see inset of
Fig. 2.
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ade. �iv� We also need �Th��dw, or gcont�g1, to ensure that
trajectories with n�1, responsible for AAS oscillations, re-
main relevant. �v� To maximize the WL signal, the transmis-
sion per channel should be maximal, thus, we suggest
Tcont
1 and N
10. �vi� The relevant temperature range,
�Tdil ,Tph�, is limited from below by dilution refrigeration
�Tdil
10 mK� and from above by our neglect of phonons
�Tph
5 K�. �vii� The ring should be small enough that
c2ETh�Tdil. �viii� The interaction-induced dephasing rate
��

−1, though decreasing with decreasing T, should for
T
Tdil not yet be negligible compared to the T-independent
rates �H

−1 and �dw
−1 . These constraints can be met, e.g., with

rings prepared from a 2D GaAs/AlGaAs heterostructure with
�F�30 nm, vF�2.5�105 m /s, and g1=4	LWl /�FL, by
adjusting g1 and ETh by suitably choosing L and LW.

To illustrate this, numerical results for �g and �ḡ, ob-
tained from Eq. �2� using experimentally realizable
parameters,9,10,15,27 are shown in Figs. 2 and 3 for several
combinations of �, L, and LW. The regime where �g exhibits
diffusive T−1/3 behavior �7g1ETh�T�Tph� is visible only for
our smallest choices of both g1 and ETh �Fig. 3�a�; heavy
dashed line�. AAS oscillations in �g and �ḡ �Fig. 2�, which
require �Th���, first emerge at the crossover from the diffu-
sive to the ergodic regime. They increase in magnitude with

decreasing T, showing ergodic T−1 behavior for
30ETh�T�7g1ETh �Figs. 3�a� and 3�b��, and eventually
saturate toward their T=0 values, with �ḡ�0,��−�ḡ�T ,��
showing the predicted 0D behavior, �T2, for T�5ETh, see
Fig. 3�c� �there ���dw, i.e., dephasing is weak�.

VII. CONCLUSIONS

The AAS oscillations of a quasi-1D ring weakly coupled
to leads can be exploited to filter out the effects of dephasing
in the leads, thus, offering a way to finally observe, for
T�5ETh, the elusive but fundamental 0D behavior ���T−2.
This would allow quantitative experimental tests of the role
of temperature as ultraviolet frequency cutoff in the theory of
dephasing.
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