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Chapter 1

Introduction

The fundamental assumption in statistical physics demands that systems evolve into
a unique configuration, an equilibrium or thermal state, after a sufficiently long time.
For the description of the statistical properties of these equilibrium configurations only
a small set of macroscopic quantities like energy, total particle number or confining vol-
ume have to be prescribed. The methods of statistical physics that enable this simplified
description, however, fail for the description of states that are driven out of equilibrium
posing the question of how to characterize these nonequilibrium states.

Recently, nonequilibrium dynamics in quantum systems have gained considerable
interest due to their observation in experiments. Nanodevices like single electron tran-
sistors or quantum dots offer the possibility to control microscopic parameters. It was
realized soon that these nanodevices can display Kondo physics [11], the paradigm
model for strongly correlated electron systems. The huge flexibility in control over the
microsocopic parameters in these nanodevices leads to the question of how the system’s
properties are affected in a nonequilibrium setting. In principle, two different ways of
creating a nonequilibrium situation for a quantum dot can be distinguished. First, a
source drain voltage can be applied across the nanodevice, creating a window of scat-
tering channels that are not accessible in an equilibrium setting. Alternatively, the mi-
croscopic parameters can be varied in time leading to a time-dependent nonequilibrium
setup. Another way of experimentally realizing nonequilibrium quantum many-body
systems is to use cold atoms in optical lattices. Optical lattices are arrays of standing
light waves that create a periodic potential background in which atoms can be trapped.
In contrast to bulk solids the lattice spacing as well as the ratio between kinetic and
potential energy can be varied in time.

A way of generating a nonequilibrium setting is a so-called interaction quench. An
interaction quench describes a scenario in which a system is initially prepared in the
ground state of some Hamiltonian H0. Then at t = 0 a parameter of the Hamiltonian is
changed instantaneously, much faster than any internal time scale in an actual experi-
ment, such that the ground state of the initial Hamiltonian evolves in time due to a new
Hamiltonian. In general, the prepared state is not an eigenstate of the system’s Hamil-
tonian any more leading to nontrivial dynamics. The time evolution for interacting
quantum many-body systems subject to such an interaction quench has been studied
for a variety of model systems, e.g. for the Hubbard model [30], the Falicov-Kimball
model [9], the Kondo model [26][27] and the related Anderson model [31], the Richard-
son model [10] or for Luttinger liquids [5]. Another important example for a system
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subject to an interaction quench is the Fermi-edge singularity problem where the X-ray
absorption spectrum for bulk metals is studied. As it turned out, it is possible to map
this problem onto a nonequilibrium problem where a sea of conduction band electrons
has to adapt to a suddenly created local scatterer [33].

One may ask the question of how a system’s properties are affected if it is quenched
not only once, but infinitely often in a periodic fashion. In this case a quasi-steady state
is generated, a state such that all correlation functions are invariant under a discrete
time shift of one period τ in all their time arguments, i.e. 〈O(t)P(t′)〉 = 〈O(t + τ)P(t′ +
τ)〉 for a two-time correlation function. In general, states that are created by a periodic
driving of a system are different from states that are accessible by thermal activation
such that states with new properties may be generated. The characterization of such
states, however, poses a new challenge. The dynamics of periodically driven strongly
interacting many-body systems have been addressed only in a rather small number
of model systems, e.g. the Falicov-Kimball model [42], the Anderson model [29][32] or
the Kondo model [12][20][21]. The complexity of these driven quasi-steady states, how-
ever, is accompanied by mathematical and technical difficulties restricting the number
of analytical and numerical methods that are suitable to tackle these time-dependent
problems.

In this thesis a quasi-steady state in the Kondo model will be analyzed. The Kondo
model, the paradigm model for strongly correlated electron systems, describes a local
two level system, a spin 1/2, that is coupled to a bath of fermions via an exchange in-
teraction. The quasi-steady state is generated by periodically switching on and off the
exchange interaction. The Kondo model exhibits a special point in parameter space,
the so-called Toulouse limit, where it becomes exactly solvable such that its dynam-
ics can be studied nonperturbatively. Moreover, the real-time dynamics are accessible
analytically on all time scales for a wide range of parameters of the external driving.
Especially, it is possible to analyze the buildup of the quasi-steady state whose features
will be characterized by analyzing the dynamical properties of the local two state sys-
tem, that is the magnetization of the local spin 〈Sz(t)〉 and the spin-spin correlation
function 〈Sz(t)Sz(t′)〉. The exact solvability of the Kondo model in the Toulouse limit
may open the possibility to gain key insights into the properties of quasi-steady states
in the Kondo model.

Recently, there have been attempts to characterize nonequilibrium settings by intro-
ducing effective thermodynamic quantities like effective temperatures [28][32]. It will
be shown that it is not possible to define an effective temperature in the present setup
since the excitations in a periodically driven system are fundamentally different from
those induced by temperature. A periodic driving creates a discrete excitation spec-
trum corresponding to the absorption and emission of multiple quanta of the driving
frequency whereas a finite temperature leads to a smearing of the Fermi surface.

Although new parameters appear in a nonequilibrium configuration, a universal
description is expected to be possible in the Kondo model. Kaminski et al. [21] pro-
posed a universal function for the conductance through a Kondo impurity in nonequi-
librium. Moreover, they showed that the Kondo temperature remains the only relevant
energy scale. In the periodic time-dependent setting used in this thesis, the spin-spin
correlation function also exhibits a universal description revealing that the only rele-
vant energy scale indeed is the Kondo scale.

Moreover, the asymptotic behavior of the periodically driven Kondo system in the
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fast and slow driving case will be analyzed. As expected, the system is not able to fol-
low a fast external driving. The spin-spin correlation function approaches a shape that
is similar to an equilibrium one. A careful analysis, however, shows that it is not possi-
ble to find a time-independent effective Hamiltonian that generates the same dynamics.
In the opposite case of very slow driving, the system relaxes during each time interval
in which the Kondo Hamiltonian is constant in time. Therefore, the system behaves as
for a single interaction quench in the Kondo model, a situation that has already been
addressed in the work by Lobaskin and Kehrein [27][28].

The outline of this thesis is as follows. In Chapter 2, the basic concepts of impurity
models in equilibrium will be explained, including the Anderson impurity model and
Kondo model as well as their connection via the Schrieffer-Wolff transformation. The
experimental realization of tunable Kondo impurities in form of quantum dots embed-
ded in two-dimensional electron gases will be presented. Moreover, known results of
time-dependent Kondo and Anderson impurity models will be discussed. Chapter 3 is
devoted to the bosonization technique and its application to the Kondo model. Using
the bosonization method it is shown how the Kondo Hamiltonian in the Toulouse limit
can be mapped onto an exactly solvable noninteracting resonant level model Hamilto-
nian. Chapter 4 deals with the periodic time-dependent setup that is used to generate
the quasi-steady state in the Kondo model, namely the periodic switch on and off of
the Kondo interaction. Moreover, a possible experimental realization using a quantum
dot is presented. The exact single-particle dynamics in the time-dependent resonant
level model Hamiltonian are determined in Chapter 5 on all time scales. This enables
the exact evaluation of correlation functions on all times like the magnetization of the
impurity spin and the spin-spin correlation function in the full many-body situation in
Chapter 6. Based on these quantities the quasi-steady state will be characterized. The
thesis closes with a short summary and outlook in Chapter 7.
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Chapter 2

Kondo effect

The Kondo effect was observed for the first time in 1934 in an experiment by de Haas
et al. where the temperature dependence of the resistivity of a bulk gold sample was
investigated. The measurement unexpectedly showed an increase of resistivity for de-
creasing temperature. Phonons, that commonly provide the dominant scattering mech-
anism for electrons, die out rapidly as one approaches low temperatures. Therefore, the
resistivity was expected to decline monotonically and to saturate at a nonzero value due
to scattering off lattice imperfections. The deviation from this behavior suggested the
existence of a new scattering mechanism that becomes more efficient at lower tempera-
tures. In 1964 the Japanese physicist Jun Kondo achieved a first theoretical explanation
for this anomalous behavior in terms of scattering induced by magnetic impurities, im-
purities with a net spin in the electronic environment. Using the s-d- model, also named
Kondo model, Kondo showed using perturbation theory up to the second order in the
coupling that a new contribution ∝ ln(1/T ) appears in the resistivity increasing log-
arithmically at low temperatures. While perturbation theory describes the increase of
resistivity, the logarithmic divergence for T → 0 suggested that for low temperatures
perturbation theory breaks down such that this problem becomes nonperturbative. In
the early 70’s, Anderson [2] proposed a scaling method, named poor man’s scaling, by
which the most relevant logarithmic terms in the perturbation series can be summed
up. This approach confirmed the existence of an energy scale, the Kondo temperature
TK , below which the problem becomes nonperturbative. Based on the idea of scal-
ing, Wilson [44] with the invention of the numerical renormalization group method
was able to calculate thermodynamic low-temperature properties of the Kondo model
nonperturbatively. In 1980, Andrei [4] gave an analytical and nonperturbative solution
of the Kondo model by use of the Bethe ansatz that allowed to determine thermody-
namic properties exactly. In the same year, Wiegman [43] applied the Bethe ansatz to
the closely related Anderson impurity model and showed its integrability. Dynami-
cal properties, however, have not been accessible using this approach. For a detailed
introduction to the Kondo effect, see for example [16].

2.1 The Kondo effect in equilibrium

As already mentioned in the introductory remarks, the Kondo effect emerges when a
local spin is coupled to a metallic environment. The Hamiltonian that models a physical
situation in which a local two state system in form of a spin 1

2 is coupled to a fermionic
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fermionic bath
spin degree of freedom

J

Figure 2.1: Two state system coupled to a fermionic bath via an exchange interaction J
leading to spin-flips of the local spin.

bath of electrons via an exchange interaction is the s-d-Hamiltonian, or Kondo Hamil-
tonian:

HK =
∑

k,η=↑,↓
εk : c†kηckη : +J

∑
kk′

[
c†k↑ck′↑ − c†k↓ck′↓

]
Sz+

+ J
∑
kk′

[
c†k↓ck′↑S+ + c†k↑ck′↓S−

]
.

(2.1)

Here, c†kη creates an electron with wave vector k and spin η in the reservoir. The colons
: ... : denote normal ordering with respect to the Fermi sea. The operator Sz measures
the spin on the local level that can be flipped by the spin ladder operators S+ and
S−. The first term thus describes a sea of noninteracting fermions with a dispersion
relation εk. The second contribution causes scattering of electrons off the impurity by
changing their momenta but retaining their spins. The spin dynamics are introduced
by the term in the second line where the spin of the scattered electron is flipped while
simultaneously flipping the spin of the impurity.

The characteristic energy scale of the Kondo model is the Kondo temperature TK

that is connected to the parameters in the Hamiltonian through the following relation:

TK = D e
− 1

ρJ (2.2)

where D denotes an ultra-violet cutoff and ρ the electron’s density of states at the Fermi
energy.

The low energy excitations of a Kondo system are complicated spin excitations in
the vicinity of the local level resulting from multiple spin flip processes of the conduc-
tion band electrons. Due to these subsequent scattering events the electrons become
strongly correlated. As electrons try to screen Coulomb potentials the surrounding
electrons try to screen the local spin. Therefore, electrons with opposite spin gather in
the vicinity of the impurity forming the so called Kondo cloud thereby partially com-
pensating the excess spin. Renormalization group approaches show that for decreasing
temperature T → 0 the Kondo model flows to a strong coupling fixed point Hamil-
tonian that is dominated by the Kondo interaction. In the zero temperature limit one
ends up in a situation where itinerant electrons with opposite spin are bound to the
local level resulting in a perfectly screened spin. The ground state in the Kondo model
can be thought of as a superposition of two states each of which contains a bound pair
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Figure 2.2: Schematic picture of the ground state of the Kondo model: superposition
of two bound pairs of the impurity spin (marked by the blue arrow) with a collective
bath electron spin (marked as the red arrow) embedded in an otherwise unpolarized
background

of an impurity spin with a collective localized spin of conduction band electrons as in-
dicated in Fig. (2.2). This bound pair of a local spin and a collective spin of the bath
electrons is called the Kondo singlet with an associated binding energy of the order TK .
Due to the formation of the Kondo singlet it is not possible any more for the impurity
to flip spins. Nevertheless, this new local impurity acts as a static scatterer. The con-
duction band electrons constitue a Fermi liquid where the phase shift associated with
this local potential scatterer approaches the value δ↑ (εF ) = π/2 at the Fermi level.

At low temperatures, the striking feature of the Kondo effect is a sharp resonance in
the local density of states that is pinned exactly at the Fermi energy of the conduction
band. As transport properties depend crucially on the available states at the Fermi level
it is clear that this sharp resonance will have an important impact on those quantities.

2.1.1 Anderson impurity model

The Kondo model describes the low energy physics of the local level coupled to a fer-
mionic environment, but it does not explain how such a single spin can develop in a
sea of fermions. For this purpose, the more general Anderson impurity model can be
employed [1]:

HAIM = Hel + Hdot + Ht

Hel =
∑

kη=↑,↓
εk : c†kηckη :

Hdot =
∑

η

εdd
†
ηdη + Un̂↑n̂↓

Ht =
∑
kη

[
tkc†kηdη + t∗kd†ηckη

]
.

(2.3)

The Anderson impurity model describes a situation where a central region with a level
at an energy εd is coupled to a sea of electrons via tunnel coupling. The local level
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εF

εd

εd + U

U

E

conduction band

Figure 2.3: Schematic picture of a Quantum Dot in the local moment regime. The ar-
rows indicate a virtual process leading to a spin flip in the central region.

hybridizes with the surrounding bath of conduction band states with an associated
level broadening of half width Γ = 2π

∑
k |tk|2δ(εF − εk). The Anderson impurity

model is able to describe a variety of different physical situations depending on the
parameters. Important for the present work is the so called local-moment regime where

εd � 0, εd + U � 0, Γ, kBT � |εd|, εd + U. (2.4)

A schematic picture of this situation is shown in Fig. (2.3). Here, all energies are mea-
sured in their distance from the Fermi energy of the lead, i.e. εF = 0. The probability
for the local level εd to be occupied in the local-moment regime will be nearly one. The
first condition ensures that it is favorable for the local level to be occupied since the en-
ergy can always be minimized due to a process where a conduction band electron hops
onto the local level with energy εd if no electron is present in the central region. The
second condition prohibits double occupancy at low temperatures since a conduction
band electron has to pay a lot of energy for hopping onto the central region if already
another electron is occupying the level εd. The third restriction ensures that the level
broadening as well as the temperature are small enough not to cause strong fluctua-
tions in the occupation of the local levels such that the occupation number is a good
quantum number. Consequently, the large on-site Coulomb interaction U causes single
occupancy. Since single occupancy implies a net spin in the central region, the Ander-
son impurity model provides the explanation for the question of how a single spin can
develop in a fermionic environment.

As already emphasized in the previous paragraph, the Kondo effect originates from
multiple spin-flip processes of conduction band electrons. In the Anderson impurity
model such processes can happen in the following way. Suppose the local level is oc-
cupied with a spin up electron as indicated in Fig. (2.3). Although double occupancy is
unfavorable virtual processes can lead to spin flips. According to the Heisenberg uncer-
tainty relation it is possible for the local electron to hop into the conduction band for a
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short but finite time. In the meanwhile, it is possible for an electron with opposite spin
to tunnel onto the local level thereby effectively flipping the spin of the central region.
Besides this example, various other virtual processes can lead to a spin-flip of the local
electron.

2.1.2 Schrieffer-Wolff transformation

In the local-moment regime the effective low energy Hamiltonian of the Anderson im-
purity model is the Kondo Hamiltonian. This can be shown by the so-called Schrieffer-
Wolff transformation that maps onto the subspace of states that are relevant for the
low energy properties of the Anderson impurity Hamiltonian [40]. Suppose there is a
unitary transformation

U = eW (2.5)

where the generator W is chosen to be proportional to the hopping element tk. Due to
the condition Γ � |εd|, εd+U , see Eq. (2.4), the tunneling matrix element tk is small such
that the transformed Hamiltonian can be expanded according to the Baker-Hausdorff
formula where the expansion parameter is tk:

eW HAIMe−W = HAIM + [W,HAIM] +
1
2

[W, [W,HAIM]] +O
[
t3k
]
. (2.6)

Grouping together those terms that are of the same order in the expansion parameter
tk leads to:

eW HAIMe−W = Hel + Hdot + (Ht + [W,Hel + Hdot])

+
(

[W,Ht] +
1
2
[W, [W,Hel + Hdot]]

)
+O

[
t3k
]
.

(2.7)

Suppose one can choose the generator W in such a way, that the term linear in the
tunnel coupling vanishes

[Hel + Hdot,W ] = Ht. (2.8)

Then the resulting transformed operator will be of the order t2k:

eW HAIMe−W = Hel + Hdot +
1
2
[W,Ht] +O

[
t3k
]
. (2.9)

This is achieved by the choice:

W =
∑
kη

tk

[
1

εk − εd
c†kηdη +

U

(εd − εk) (εd + U − εk)
d†−ηd−ηc

†
kηdη

]
− h.c. (2.10)

Additionally, another projection is performed simplifying the resulting Hamilton oper-
ator substantially. The occupation of the local level is nearly one in the local-moment
regime. Due to the conditions εd � 0, εd + U � 0, see Eq. (2.4), the subspace of the
Hilbert space that contains zero and double occupancy is irrelevant for the low energy
properties. Therefore, one can project onto the subspace of single occupation. As a re-
sult of the unitary transformation and the projection one ends up with the following
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Kondo Hamiltonian as the effective Hamiltonian for the low energy properties of the
Anderson impurity model:

HK =
∑

k,η=↑,↓
εk : c†kηckη : +J

∑
kk′

[
c†k↑ck′↑ − c†k↓ck′↓

]
Sz+

+ J
∑
kk′

[
c†k↓ck′↑S+ + c†k↑ck′↓S−

]
+
∑
kk′η

Kkk′c
†
kηck′η,

(2.11)

where the couplings are related to the parameters of the Anderson impurity Hamilto-
nian [16]:

Jkk′ = tktk′

[
1

εk − εd
+

1
εd + U − εk′

]
,

Kkk′ =
tktk′

2

[
1

εk − εd
− 1

εd + U − εk′

]
.

(2.12)

Since only electrons near the Fermi level, εk = 0, contribute to the low energy properties
of the Kondo model, one can neglect the k-dependence of the coupling Jkk′ thereby
replacing it by the structureless constant J = J00. In the particle-hole symmetric case,
εd = −U/2, the potential scattering term vanishes.

2.2 The anisotropic Kondo model in 1-d

In the case where the coupling J in the Kondo Hamiltonian shows no dependence on
the momenta the local spin acts as a pointlike scatterer located at the origin, such that
only s-wave scattering occurs. By expanding the electron’s plane waves with wave vec-
tor k in spherical waves around x = 0 one can show that only those spherical waves
that have angular momentum quantum numbers l = m = 0 are affected by the lo-
cal scatterer [25]. All other spherical waves decouple from the scattering problem and
propagate freely. As a consequence, the states that are relevant for the dynamics can be
characterized by the absolute value |k| of their momenta. Thus, the problem is effec-
tively a one-dimensional one.

Since the excitations that are relevant for the Kondo effect are low energy excitations
in the vicinity of the Fermi level, one may linearize the spectrum of the conduction band
electrons around the Fermi energy εF = 0 leading to

εk ≈ vF k, (2.13)

where vF is the Fermi velocity. In the low temperature limit the interaction in the Kondo
Hamiltonian becomes dominant leading to the buildup of the Kondo singlet. In this
regime one can replace the usual Kondo Hamiltonian by its anisotropic counterpart in
the Toulouse limit [27]:

HK =
∑

k,η=↑↓
vF k : c†kηckη : +

J‖

2

[
: Ψ†

↑(0)Ψ↑(0) : − : Ψ†
↓(0)Ψ↓(0) :

]
Sz+

+
J⊥
2

[
Ψ†
↑(0)Ψ↓(0)S− + Ψ†

↓(0)Ψ↑(0)S+
]
,

(2.14)
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Figure 2.4: The left picture shows a scanning electron microscope image of a quantum
dot that is created in the confined region between the electrodes. The picture is taken
from Goldhaber-Gordon et al. [11]. The two outer metallic gates can be used to tune
the tunnel coupling of the dot to the surrounding 2DEG. The metallic gate in between,
the so-called back-gate, enables to control the energy levels of the dot relative to the
conduction band electrons. Additionally, contacts for source and drain, not shown in
the left picture, can be placed upon the heterostructure in order to create a current
through the device. A schematic picture of the experimental situation is shown on the
right hand side.

that can be viewed as a generalization of the usual isotropic Kondo Hamiltonian. Here,
the perpendicular coupling J⊥ and the parallel coupling J‖ are not necessarily identical.
This is in contrast to the Kondo Hamiltonian that emerges from the Anderson impu-
rity model after the Schrieffer-Wolff transformation. Initially, the anisotropic Kondo
Hamiltonian was introduced by Anderson and coworkers [3] in the beginning of the
70’s merely as a calculational tool while rotational invariance, i.e. J‖ = J⊥, was always
demanded in the end. Here, the anisotropic Kondo Hamiltonian in the Toulouse limit
serves as an effective Hamiltonian for the strong coupling limit of the Kondo model.
Under this replacement, however, the meaning of the coupling constant changes. The
parallel coupling J‖ is fixed at a special value, J‖ = 2−

√
2, the so-called Toulouse limit,

where the Hamiltonian can be diagonalized exactly using the bosonization technique.
The Kondo scale TK is still linked to a coupling constant in the Kondo model, namely
to the perpendicular coupling J⊥. The exact relation will be discussed later.

2.3 The Kondo effect in nonequilibrium

Originally, measurements on the Kondo effect were restricted to metallic or semicon-
ducting bulk samples in which magnetic impurities have been embedded. In order to
observe their impact on bulk properties like conductance or magnetic susceptibility, for
example, a sufficient concentration of impurities was needed. The influence of a single
impurity, however, has not been accessible by such an experiment. Moreover, a varia-
tion of the microscopic parameters was achievable only by fabricating different samples
with different kinds of impurities.

The advent of quantum dots opened up the possibility to study the Kondo effect
with a high tunability of the microscopic parameters. Quantum dots can be thought
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of as small islands that are confined within a two dimensional electron gas (2DEG) in
a semiconductor heterostructure. Connecting two semiconducting materials with dif-
ferent band structures leads to a deformation of the conduction and valence band in
the vicinity of the interface. For a proper combination of materials, like GaAs/AlGaAs,
a two-dimensional electron gas (2DEG) forms in the interface region. Additionally,
metallic gates can be placed upon the top of the heterostructure as can be seen in
Fig. (2.4). By a proper tuning of the gates the filling of the dot as well as the tunnel
coupling can be controlled. Moreover, contacts can be placed upon the heterostructure
such that a current can be induced by applying a source-drain voltage across the dot.
Mathematically, a quantum dot can be modeled by an Anderson impurity Hamiltonian.

The flexibility in control over these systems automatically led to the question of how
the Kondo effect is influenced by a nonequilibrium setting. Such a nonequilibrium situ-
ation can be created in different ways. One may apply a source-drain voltage across the
dot that may be chosen time-dependent. Moreover, the back gate voltage can varied
in time leading to a modulation of the energy levels in the dot. In this work the in-
fluence of a special periodic time-dependent back-gate voltage, that leads to a periodic
switch on and off of the Kondo interaction in the Kondo model, onto local properties
of the quantum dot will be analyzed. During the last two decades numerous theoreti-
cal works have addressed the properties of the Kondo or Anderson impurity model in
nonequilibrium settings with time-dependent gate voltages.

Nordlander and coworkers [31] investigated a scenario in which the local level po-
sition εd, by a proper tuning of the back gate voltage, is suddenly pushed into the local-
moment regime in which a Kondo effect can emerge. This amounts to the instantaneous
switch on of the Kondo interaction. As a result of their calculation using the noncross-
ing approximation (NCA) they could confirm the existence of a time scale 1/TK for the
buildup of the Kondo effect.

In an earlier work, Nordlander and coworkers [32] addressed a situation in which
the local level position of a quantum dot is varied sinusoidally with a period Ω. De-
pending on the driving frequency Ω they found three different regimes. For slow driv-
ing, i.e. small Ω, the system behaves adiabatically such that at any time the system is
in perfect equilibrium. In an intermediate regime, the Kondo effect survives and addi-
tional side peaks appear in the local density of states placed at multiples of the driving
frequency Ω. For fast switching an equilibrium-like situation is created. The local den-
sity of states approaches an equilibrium form of a setting where the local level position
εd is given by its time averaged value. In the case of fast driving, they conjectured that
the additional decay rate for the electrons on the dot due to the periodic driving has the
same effect as an increased effective temperature for leads.

Goldin and Avishai [12] derived an explicit formula for the current through a quan-
tum dot in the Kondo regime for the case of a strong source-drain voltage with a slowly
varying periodic modulation by use of third order perturbation theory in the Kondo
coupling. They found that the zero bias anomaly in the differential conductance is sup-
pressed and side peaks appear at multiples of the driving frequency.

In a work by Kaminski et.al. [20] [21] the influence of an ac source-drain voltage and
a periodic shifting of the local level in a quantum dot onto the differential conductance
was investigated for various regimes. Despite the appearance of new parameters in this
nonequilibrium setup, they conjectured that a universal description of the differential
conductance is achievable. Moreover, they found that the Kondo temperature remains
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the only relevant energy scale even under these nonequilibrium conditions. They could
attribute the suppression of the Kondo effect to a mechanism called spin-flip cotunnel-
ing leading to decoherence of the local spin under the periodic driving.

The dynamical quantities characterizing the local two state system are the magneti-
zation of the impurity spin 〈Sz(t)〉 and the spin-spin correlation function 〈Sz(t)Sz(t′)〉
whose properties have been addressed in numerous works [15] [25] [26] [27]. Those
dynamical quantities, however, have only been studied in equilibrium settings or in-
teraction quench scenarios. The influence of a periodic driving onto their properties
will be investigated in this work. Due to the periodic driving, a quasi-steady state
will emerge that may be fundamentally different from an equilibrium state or factor-
ized initial preparation as for an interaction quench scenario. A characterization of this
quasi-steady state with the help of the magnetization and spin-spin correlation function
will be the task of this work.

Leggett and coworkers [25] studied those dynamical quantities in the context of the
spin-boson model that is unitarily equivalent to the Kondo model. In this formulation
of the problem they calculated the magnetization and spin-spin correlation function
by using the so-called noninteracting-blip approximation. Preparing the system in a
nonequilibrium state with a nonvanishing initial impurity spin orientation, 〈Sz〉 = 1

2 ,
they found that the magnetization decays exponentially:

P (t) = 〈Sz(t)〉 =
1
2
e−t/τ (2.15)

where τ is a characteristic time scale of the system. This result has been confirmed
by Lesage and Saleur [26] using the form-factor approach. Lobaskin and Kehrein [27]
derived the magnetization after an interaction quench in the limit of small Kondo cou-
plings, i.e. away from the Toulouse limit, for all times using the flow equation method.
They found that, initially, P (t) decays faster, but approaches the exponential behavior
as in Eq. (2.15) asymptotically for long times. The question of how the magnetization
of the impurity spin relaxes in a scenario of periodic driving will be a basic issue ad-
dressed in this work.

A local dynamical quantity that carries more information about the local two state
system is the spin-spin correlation function 〈Sz(t)Sz(t′)〉. As has been shown by Leggett
and coworkers [25] it asymptotically decays algebraically at zero temperature in equi-
librium:

〈Sz(t)Sz(t′)〉
t−t′→∞∝ 1/(t− t′)2 (2.16)

For finite temperatures, however, the spin-spin correlation function decays exponen-
tially. Guinea [15] derived an analytical expression for the Fourier transform of this
function for zero temperature in equilibrium in the Toulouse limit. The behavior of
the spin-spin correlation function in a nonequilibrium situation due to an interaction
quench in the Kondo model was addressed in the work by Lobaskin and Kehrein [27].
They found that both in the Toulouse limit and in the limit of small Kondo couplings
this correlation function decays algebraically for nonzero waiting times, that is the
time of the first spin measurement. Additionally, the nonequilibrium to equilibrium
crossover happens exponentially fast as a function of the waiting time.



14 2. Kondo effect



Chapter 3

Bosonization: Kondo model

One striking feature of one dimensional systems is the possibility to completely span
the full fermionic Fock space in terms of bosonic operators and Klein factors result-
ing in the bosonization identity relating fermionic fields with bosonic ones as an op-
erator identity in Fock space [37]. The bosonization identity is a fundamental prop-
erty of fermionic fields in one dimension and is completely independent of the struc-
ture of the Hamiltonian that is responsible for the dynamics of the physical system.
Nevertheless, the question, if it is of advantage to use the bosonization identity, re-
lies on the detailed structure of the Hamilton operator. Bosonizing a Hamiltonian
with quadratic dispersion, for example, leads to an interaction between bosons that
is not tractable in the bosonic language [35]. Despite these difficulties of quadratic dis-
persion relations, strongly correlated systems with linear dispersion such as the Lut-
tinger liquid or the Kondo model in the Toulouse limit can be solved exactly using the
bosonization technique. Therefore, bosonization has become a very useful analytical
tool to study one-dimensional systems. Recently, there have been attempts to also treat
quadratic dispersion relations in Luttinger liquids in combination with the bosoniza-
tion method [18][35][22]. All those attempts are based on a projection scheme, that is
related to the solution of the Fermi-edge singularity problem, mapping the Luttinger
liquid Hamiltonian onto an effective Hamiltonian with appropriately linearized spec-
trum such that in the end the problem can be solved using the bosonization technique.

Since the bosonization technique does not rely on the structure of the Hamiltonian,
it can also be used for the treatment of time-dependent nonequilibrium systems. The
Fermi-edge singularity problem [33], for example, can be solved easily by use of the
bosonization technique [39]. This is in big contrast to the first analytical solution where
a Parquet expansion has been used [33]. The Fermi-edge singularity problem addresses
a nonequilibrium situation where conduction band electrons have to adapt to a sud-
denly created local Coulomb potential. Recently, it has been shown by Lobaskin and
Kehrein that it is possible to determine the spin dynamics in the Kondo model after an
interaction quench by use of the bosonization technique [27].

For the bosonization technique to be applicable the only prerequisite has to be a
given field theory in one dimension with fermionic fields Ψη(x) defined on an interval
[−L/2, L/2]. In general, such a field theory contains M different species η of fermions.
These may be spins as in the Kondo model, η =↑, ↓, or left- and right-movers in a
Luttinger liquid, η = L,R. Since the domain of the fermionic fields is compact, one can
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perform a mode expansion defining the operators ckη

Ψη(x) =

√
2π

L

∑
k

e−ikx ckη, (3.1)

ckη =
1√
2πL

∫ L/2

L/2
dx eikx Ψη(x), (3.2)

obeying fermionic commutation relations{
Ψη(x),Ψ†

η′(x
′)
}

= 2πδη,η′δ(x− x′),
{

ckη, c
†
k′η′

}
= δη,η′δk,k′ . (3.3)

Here, the fermionic fields are normalized to 2π instead of 1. Depending on the period-
icity condition characterized by the parameter δB ∈ [0, 2):

Ψη(x + L/2) = eiπδBΨη(x− L/2), (3.4)

the momentum index k obeys the following relation:

k =
2π

L

[
nk −

1
2
δB

]
, nk ∈ Z. (3.5)

It is important for the derivation of the bosonization identity, that the wave-vector k is
unbounded. In the case of a momentum bounded from below as in a Luttinger liquid
one introduces unphysical positron states and extends k to −∞. These positron states
typically lie well below the Fermi surface. Therefore, they don’t contribute to the low
energy properties of the system. Since the physical properties of a bulk system in the
thermodynamic limit should not depend on the boundary conditions, one is free to
choose δB . From now on, δB will be set equal to 0 corresponding to periodic boundary
conditions.

Given a set of annihilation and creation operators ckη, c
†
kη there is a unique state, the

vacuum state |0〉, such that

ckη|0〉 = 0, k > 0 (3.6)

c†kη|0〉 = 0, k ≤ 0. (3.7)

One can think of |0〉 as a Fermi sea filled up to k = 0. Given the vacuum state one can
define the procedure of normal-ordering, to be denoted by : ... :

: ABC... : = ABC...− 〈0|ABC...|0〉, A, B,C, ... ∈
{

ckη, c
†
kη

}
. (3.8)

A function of annihilation and creation operators is called normal-ordered if all ckη with
k > 0 and c†kη with k ≤ 0 are located right of all other operators.

The number operator

N̂η =
∞∑

k=−∞
: c†kηckη : (3.9)

counts the number of fermions of species η with respect to the reference state |0〉 such
that the eigenvalues of this symmetric operator are integer numbers. Given an M -
tuple N = (N1, ..., NM ) of integers, M is the number of different species, the space HN
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spanned by the set of all eigenvectors with the same set of eigenvalues will be called
the N-particle Hilbert space. For each HN there exists one unique state |N〉0 up to a
sign that contains no particle-hole excitations. Thus, it can be viewed as a vacuum of
the Hilbert space HN. Here, this state |N〉0 is defined in the following way, prescribing
a definite ordering of the fermionic operators in order to resolve sign ambiguities:

|N〉0 = [C1]
N1 ... [CM ]NM |0〉, (3.10)

[Cη]
Nη =


c†Nη ηc

†
(Nη−1) η...c

†
1 η for Nη > 0,

1 for Nη = 0,
cNη ηc(Nη−1) η...c1 η for Nη < 0.

(3.11)

For ease of notation, nk instead of k is used at this point as an index for the creation and
annihilation operators. The fact that the fermionic Fock space F can be decomposed
into a direct sum over all N-particle Hilbert spaces:

F = ⊕NHN, (3.12)

will be of great importance for the derivation of the bosonization identity.

3.1 Bosonization technique

Based on these introductory remarks, it is possible to establish a relation between fermi-
onic and bosonic fields in one dimension called the bosonization identity whose deriva-
tion will be given below following the work of Schöller and von Delft [37]. The basic
ingredient is the observation that the particle-hole excitations in a bath of fermions
display bosonic character by defining proper so-called bosonic particle-hole operators.
Most importantly, the fermionic fields acting on states of the Hilbert space are similar
to coherent states of these bosonic particle-hole operators. As a consequence, one can
find a coherent state representation of the fermionic fields that leads to the bosonization
identity. As mentioned before, for the applicability of the bosonization technique only
a fermionic field theory is required. Importantly, the bosonization method is indepen-
dent of the structure of the Hamilton operator determining the physical properties of
the system of interest.

3.1.1 Bosonic particle-hole operators

As mentioned before, the basic building block of the bosonization technique is the ob-
servation that the particle-hole excitations possess bosonic character. The operators

bqη = − i
√

nq

∞∑
k=−∞

c†k−q ηckη, b†qη =
i

√
nq

∞∑
k=−∞

c†k+q ηckη (3.13)

create a superposition of particle-hole pairs with momentum transfer q = 2π
L nq > 0

where nq ∈ N. These operators obey bosonic commutation rules[
bqη, b

†
q′η′

]
= δη,η′δq,q′ ,

[
bqη, bq′η′

]
= 0,

[
b†qη, b

†
q′η′

]
= 0, (3.14)



18 3. Bosonization: Kondo model

as can be checked by using the known commutation relations of the original fermions,
although some care is needed not to subtract off infinite expressions in an uncontrol-
lable way [37]. Since the states |N〉0, see Eq. (3.10), contain no particle-hole excitations
the action of all the bqη’s on those gives 0:

bqη|N〉0 = 0 for all q, η,N. (3.15)

Therefore, |N〉0 serves as a vacuum state for the bosonic excitations in each N-particle
Hilbert space HN. Moreover, a very important and nontrivial statement can be made,
namely that every state |N〉 in an N-particle Hilbert space HN can be obtained by the
action of the b†qη operators on the N-particle ground state |N〉0. Thus, given a state
|N〉 ∈ HN, there exists a function f(b†) of bosonic creation operators such that

|N〉 = f(b†)|N〉0. (3.16)

A proof of this relation can be found in [37].

3.1.2 Klein factors

Using the statement before, each N-particle Hilbert space can be spanned by the bosonic
operators b†qη acting on |N〉0. In order to completely recast the full Fock space, ladder
operators are needed that connect the various N-particle Hilbert spaces. These opera-
tors are called Klein factors and will be labeled F †

η and Fη. They are uniquely defined
through, firstly, their commutation relations with the bosonic particle-hole operators:[

bqη, F
†
η

]
=
[
b†qη, F

†
η

]
= [bqη, Fη] =

[
b†qη, Fη

]
= 0, (3.17)

and, secondly, through their action on the N-particle ground states:

F †
η |N〉0 = c†Nη+1 η|N1, ..., Nη, ..., NM 〉0 = T̂η|N1, ..., Nη + 1, ..., NM 〉0, (3.18)

Fη|N〉0 = cNη η|N1, ..., Nη, ..., NM 〉0 = T̂η|N1, ..., Nη − 1, ..., NM 〉0. (3.19)

The operator T̂η counts the (−1) factors for the fermions that the creation or annihilation
operators have to pass until they arrive at the position on which they act on. The Klein
factors can be used to map different N-particle ground states onto each other. Using
the properties of the Klein factors above, one can show that they fulfill the following
anticommutation relations:{

Fη, F
†
η′

}
= 2δη,η′ , since F †

ηFη = 1, (3.20){
Fη, Fη′

}
=
{

F †
η , F †

η′

}
= 0, (3.21)[

N̂η, F
†
η′

]
= δη,η′F

†
η . (3.22)

3.1.3 Bosonic fields

Based on the bosonic annihilation and creation operators bqη and b†qη one can introduce
bosonic fields:

ϕη(x) = −
∑
q>0

1
√

nq
e−iqx bqη e−aq/2, ϕ†η(x) = −

∑
q>0

1
√

nq
eiqx b†qη e−aq/2, (3.23)

φη(x) = ϕη(x) + ϕ†η(x) = −
∑
q>0

1
√

nq

[
e−iqx bqη + eiqx b†qη

]
e−aq/2. (3.24)
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At this stage, a regularization scheme for the theory has been introduced in terms of
an ultra-violet cutoff a > 0 in the bosonic fields. The cutoff a can be thought of as
the maximum momentum transfer that is possible in the physical system of interest.
In principle, there are various ways to regularize a given theory. Depending on the
regularization scheme that is chosen, however, the meaning of the coupling constants
in the Hamiltonian changes [45]. The bosonic fields obey the following commutation
relations: [

ϕ†η(x), ϕ†η′(x
′)
]

=
[
ϕη(x), ϕη′(x′)

]
= 0, (3.25)[

ϕη(x), ϕ†η′(x
′)
]

= −δη,η′ ln
[
1− e−i 2π/L (x−x′−ia)

]
(3.26)

L→∞−→ −δη,η′ ln
[
i
2π

L

(
x− x′ − ia

)]
, (3.27)

[
φη(x), ∂x′φη′(x′)

] L→∞−→ δη,η′2πi

[
a/π

(x− x′)2 + a2
− 1

L

]
(3.28)

a→0−→ 2πiδη,η′

[
δ(x− x′)− 1

L

]
, (3.29)

[
φη(x), φη′(x′)

] L→∞−→ −δη,η′2i arctan
[
x− x′

a

]
(3.30)

a→0−→ −δη,η′iπ sgn(x− x′). (3.31)

One very important property of the bosonic field φη(x) is the relation to the local density
ρη(x) of η-fermions:

ρη(x) =: Ψ†
η(x)Ψη(x) := ∂xφ(x) +

2π

L
N̂η. (3.32)

In the thermodynamic limit the last term in this expression can be neglected:

lim
L→∞

2π

L
N̂η = 0. (3.33)

The great importance of the relation in Eq. (3.32) is, that the electron’s density, which
is quadratic in fermion operators, becomes linear in the bosonic ones. Therefore, a
density-density interaction as it appears in a Luttinger liquid, which is quartic in the
fermion operators, becomes quadratic in the bosonic language and therefore exactly
solvable. Moreover, one can think of the bosonic field φη(x) as a charge since ρη(x)/2π
is the charge density. The factor 2π is included for the actual charge density since the
fermionic fields defined in Eq. (3.2) are normalized to 2π instead of 1, see Eq. (3.3)

3.1.4 Bosonization identity

The derivation of the bosonization identity, as it is presented in the work by von Delft
and Schöller [37], is based on the observation that the fermionic fields Ψη(x) acting
on the N-particle ground states |N〉0 are coherent states of the bosonic particle-hole
operators bqη. The essential commutators needed to verify this property of the operators
Ψ̂η(x) are direct consequences of the definitions of the fermionic fields in Eq. (3.2) and
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the bosonic particle-hole operators, see Eq. (3.13):[
bqη′ ,Ψη(x)

]
= δη,η′αq(x)Ψη(x),[

b†qη′ ,Ψη(x)
]

= δη,η′α
∗
q(x)Ψη(x).

(3.34)

Here, αq(x) = i√
nq

eiqx. Using these relations together with bqη|N〉0 = 0, see Eq. (3.15),
leads to the following expression:

bqη′Ψη(x)|N〉0 = δη,η′αq(x)Ψη(x)|N〉0. (3.35)

Therefore, Ψη(x)|N〉0 is a coherent state of the bose operators bqη. Since the fermionic
field annihilates one η-electron, Ψη(x)|N〉0 is an element of HN′ where N′ is the same
M -tuple as N except that N ′

η = Nη − 1. Due to Eq. (3.16) one can find a function f
(
b†
)

such that the relation Ψη(x)|N〉0 = f(b†)|N′〉0 holds. The right-hand side of Eq. (3.35)
can also be expressed through the function f such that one ends up with a relation, that
clarifies in which N-particle Hilbert space we work in:

bqη′f(b†)|N′〉0 = δη,η′αq(x)f(b†)|N′〉0. (3.36)

Therefore:

Ψη(x)|N〉0 = f(b†)|N′〉0 = e
P

q>0 αq(x)b†qηλη(x)|N′〉0 = e−iϕ†
η(x)λη(x)Fη|N〉0. (3.37)

Strictly speaking, the last equality is true only if the ultra-violet cutoff a = 0, see the
definition of the bosonic fields ϕ†η(x) in Eq. (3.23). Thus, all statements below are only
valid in this limit.

Any coherent state is defined up to a multiplicative factor, called λη(x) here, that is
included at this stage of the derivation of the bosonization identity since it will be of
great importance as we shall see now. The expectation value 0〈N|F †

ηΨη(x)|N〉0 deter-
mines the value of λη(x) uniquely. Firstly, plugging in Eq. (3.37), the outcome of this
expectation value is λη(x) itself:

0〈N|F †
ηΨη(x)|N〉0 = λη(x), (3.38)

since the Klein factors and the bosonic fields ϕ†η(x) commute due to Eq. (3.17). Addi-
tionally, exp [−iϕη(x)] |N〉0 = 1 and F †

ηFη = 1. Alternatively, one can insert the original
definition of the fermionic field, see Eq. (3.1), as a mode expansion. Using Eq. (3.19)
0〈N|F †

η = 0〈N|c†Nη
the only term in the mode expansion that gives a non zero contribu-

tion is the one with nk = Nη:

0〈N|F †
ηΨη(x)|N〉0 =

√
2π

L

∑
k

e−ikx
0〈N|c†Nη ηcnk η|N〉0 =

√
2π

L
e−i 2π

L
Nηx. (3.39)

Therefore, the multiplicative factor λη(x) depends on the N-particle ground state |N〉0
such that one can introduce the following operator:

λ̂η(x) =

√
2π

L
e−i 2π

L
N̂ηx. (3.40)
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As a result, Eq. (3.37) is equivalent to the following relation:

Ψη(x)|N〉0 = e−iϕ†
η(x) Fη λ̂η(x)|N〉0. (3.41)

The bosonization identity can be derived by regarding the action of Ψη(x) onto an ar-
bitrary state |N〉. Using Eq. (3.16), the quantity to analyze is

Ψη(x) f({b†qη′})|N〉0. (3.42)

The aim is to commute Ψη(x) past the function f . Then Eq. (3.41) can be inserted. Using
Eq. (3.34) together with the elementary operator identity

[A,B] = DB and [A,D] = [B,D] = 0 ⇒ Bf(A) = f(A−D)B (3.43)

leads to
Ψη(x) f({b†qη′}) = f({b†qη′ − δη,η′α

∗
q(x)})Ψη(x). (3.44)

Additionally, Eq. (3.23) together with

[A,B] = C and [A,C] = [B,C] = 0 ⇒ e−Bf(A)eB = f(A + C) (3.45)

implies
f({b†q′η − δη,η′α

∗
q(x)}) = e−iϕη(x)f({b†q′η})e

iϕη(x). (3.46)

Using all these relations, the bosonization identity can be easily shown [37]:

Ψη(x)|N〉 = Ψη(x)f({b†qη′})|N〉0
= f({b†qη′ − δη,η′α

∗
q(x)})Ψη(x)|N〉0

= f({b†qη′ − δη,η′α
∗
q(x)})e−iϕ†

η(x)Fηλ̂η(x)|N〉0

= Fηλ̂η(x)e−iϕ†
η(x)f({bqη′ − δη,η′α

∗
q(x)})|N〉0

= Fηλ̂η(x)e−iϕ†
η(x)

[
e−iϕη(x)f({b†qη′})e

iϕη(x)
]
|N〉0

= Fηλ̂η(x)e−iϕ†
η(x)e−iϕη(x)f({bqη′})|N〉0

= Fηλ̂η(x)e−iϕ†
η(x)e−iϕη(x)|N〉.

(3.47)

Since the state |N〉 has been chosen to be arbitrary, there exists a representation of Ψη(x)
in terms of bosonic fields that is called the bosonization identity

Ψη(x) = Fηλ̂η(x)e−iϕ†
η(x) e−iϕη(x) (3.48) .

Due to the operator identity:

[A,B] = const. ⇒ eAeB = eA+Be[A,B]/2 (3.49)
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and Eq. (3.27) the above equality can be rewritten in terms of the field φη(x) defined in
Eq. (3.24)

Ψη(x) =

√
2π

L
Fηe

−i 2π
L

N̂ηxe−iϕ†
η(x)e−iϕη(x) (3.50)

=
1√
a
Fηe

−i 2π
L

N̂ηxe−iφη(x). (3.51)

Strictly speaking, this equality is not valid since the bosonization identity is exact only
in the limit a → 0 as already mentioned before. The prefactor 1/

√
a appears since the

expression in Eq. (3.51) is not normal ordered. Nevertheless, Eq. (3.51) can be used by
implicitly assuming that the limit a → 0 is to be taken in the end. In the thermodynamic
limit the phase operator can be replaced by unity, see Eq. (3.33):

e−i 2π
L

N̂ηx L→∞−→ 1. (3.52)

In this case, the bosonization identity reduces to:

Ψη(x) L→∞=

√
2π

L
Fηe

−iϕη(x)e−iϕ†
η(x) (3.53)

=
1√
a
Fηe

−iφη(x) (3.54)

.

Concluding, starting from a fermionic field theory one can define bosonic particle-hole
operators, the corresponding bosonic fields and Klein factors such that in the end one
can express the fermionic fields in terms of Klein factors and bosonic fields. The inverse
procedure named refermionization is also possible. Suppose that bosonic fields and
Klein factors are given, as will be the case for the Kondo model, one can introduce a
new fermionic field out of those quantities by just using the inverse of the bosonization
identity.

3.1.5 Bosonizing a Hamiltonian with linear dispersion

So far, only the properties of fermionic fields have been exploited. The goal of this
section will be to express a Hamiltonian with linear dispersion:

H0 =
∑

η

H0η, H0η =
∑

k

vF ~k : c†kηckη := vF ~
∫ L/2

L/2

dx

2π
: Ψ†

η(x) i∂xΨη(x) : (3.55)

in terms of bosonic operators. From now on, vF ~ will be set equal to 1. Normal order-
ing regularizes operators in momentum space, the regularization technique in position
space is a procedure called point splitting. The product of two local operatorsO(x) and
P(x) at the same point x is regularized by evaluating the operators a short distance ia
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apart from each other and then subtracting off their expectation value with respect to a
reference state |0〉:

: O(x)P(x) := lim
a→0

[O(x− ia)P(x)− 〈0|O(x− ia)P(x)|0〉] . (3.56)

Here, a is not necessarily related to the ultra-violet cutoff introduced in the definition
of the bosonic fields [45]. In this section, however, we will identify both for simplic-
ity [37]. By use of the bosonization identity the operators of the operator product
Ψ†

η(x− ia) i∂xΨη(x) can be written in terms of the bosonic fields:

Ψ†
η(x− ia) i∂xΨη(x) =

1
a
eiφη(x−ia)e−iφη(x)

[
∂xφη(x)−

(
1
a
− π

L

)]
. (3.57)

where the identity

i∂xe−iΦη(x) = e−iΦη(x)

[
∂xΦη(x) +

[∂xΦη(x),Φη(x)]
2

]
(3.58)

has been used. An additional decomposition of the exponentials leads to:

Ψ†
η(x− ia) i∂xΨη(x) =

=
2π

L
eiϕ†

η(x−ia)eiϕη(x−ia)e−iϕ†
η(x)e−iϕη(x)

[
∂xφη(x)−

(
1
a
− π

L

)]
.

(3.59)

Interchanging the two exponentials in the middle and a subsequent Taylor expansion
yield:

Ψ†
η(x− ia) i∂xΨη(x) =

=
2π

L
ei[ϕ†

η(x−ia)−ϕ†
η(x)]ei[ϕη(x−ia)−ϕη(x)]

[
L

4πa

] [
∂xφη(x)−

(
1
a
− π

L

)]
=

1
2a

[
1 + ∂xϕ†η(x)a

]
[1 + ∂xϕη(x)a]

[
∂xφη(x)−

(
1
a
− π

L

)]
=

1
2a

∂xφη(x) +
1
2

(∂xφη(x))2 − 1
2a

(
1
a
− π

L

)
∂xφη(x)− 1

2a

(
1
a
− π

L

)
+O

( a

L

)
.

(3.60)

Subtracting off the ground state expectation value 〈0|Ψ†
η(x− ia) i∂xΨη(x)|0〉 eliminates

the divergent constant. Therefore, the Hamiltonian in Eq. (3.55) reads:

H0η =
∫ L/2

L/2

dx

2π
: Ψ†

η(x) i∂xΨη(x) :

= lim
a→0

∫ L/2

L/2

dx

2π

[
1
2

: (∂xφη(x))2 : +
(

1
2a
− 1

2a2
+

π

2aL

)
∂xφη(x)

]
.

(3.61)

The normal-ordering colons can be neglected for the operator ∂xφη, since it is already
normal-ordered. Due to the periodic boundary condition of the bosonic fields [37]

φη(x + L/2) = φη(x− L/2) (3.62)
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the integral
∫ L/2
L/2 dx ∂xφη(x) = φη(L/2)− φη(−L/2) = 0 gives zero such that in the end

only one term survives:

H0η =
∫ L/2

L/2

dx

2π

1
2

: [∂xφη(x)]2 : . (3.63)

Expanding ∂xφη(x) in a Fourier series leads to an expression for the Hamiltonian in
terms of the bosonic particle-hole operators:

H0η =
∫ L/2

−L/2

dx

2π

1
2

: [∂xφη(x)]2 : =
∑
q>0

qb†qηbqη. (3.64)

Therefore, a linear dispersion for the initial fermionic Hamiltonian results in a linear
dispersion for the bosonic particle-hole operators. As mentioned in the introduction to
bosonization, a Hamilton operator with a quadratic dispersion relation would lead to
an additional scattering of the bosons that is not tractable in a bosonic language.

3.2 Bosonization: Anisotropic Kondo model

One of the physical systems whose Hamiltonian can be diagonalized analytically by
use of the bosonization technique is the anisotropic Kondo Hamiltonian for a special
line in parameter space, the so-called Toulouse limit. This diagonalization procedure
will be shown in this section. As already mentioned in Sec. (2.2), strong coupling prop-
erties of the Kondo model are described by the anisotropic Kondo Hamiltonian in one
dimension with a linearized dispersion relation:

HK =
∑

k,η=↑↓
k : c†kηckη : +

J‖

2

[
: Ψ†

↑(0)Ψ↑(0) : − : Ψ†
↓(0)Ψ↓(0) :

]
Sz+

+
J⊥
2

[
Ψ†
↑(0)Ψ↓(0)S− + Ψ†

↓(0)Ψ↑(0)S+

]
.

(3.65)

The kinetic part of the Hamiltonian can be expressed in terms of bosonic operators
using Eq. (3.64). Due to Eq. (3.32) the fermionic charge density : Ψ†

η(0)Ψη(0) : can
be replaced by the derivative of the bosonic field ∂xφη(0). Additionally, inserting the
bosonization identity in the thermodynamic limit, see Eq. (3.54), into Eq. (3.65) yields
the anisotropic Kondo Hamiltonian in a bosonic representation:

HK =
∑

η

∫ L/2

−L/2

dx

2π

1
2

: [∂xφη(x)]2 : +
J‖

2
∂x [φ↑(0)− φ↓(0)]Sz

+
J⊥
2a

[
F †
↑F↓e

iφ↑(0)e−iφ↓(0)S− + F †
↓F↑e

iφ↓(0)e−iφ↑(0)S+

] (3.66)

This operator may now be written in a form in which the spin and charge degrees of
freedom can be separated, a characteristic feature of one dimensional systems. Since
the bosonic fields of different species commute with each other, the product of the ex-
ponentials can be recast into a single exponential of the sum of the two exponents due
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to Eq. (3.49):

HK =
∑
q>0

q
1
2

[b†q↑ + b†q↓][bq↑ + bq↓] +
∑
q>0

q
1
2

[b†q↑ − b†q↓][bq↑ − bq↓]

+
J‖

2
∂x [φ↑(0)− φ↓(0)]Sz

+
J⊥
2a

[
F †
↑F↓e

i[φ↑(0)−φ↓(0)]S− + F †
↓F↑e

−i[φ↑(0)−iφ↓(0)]S+

]
.

(3.67)

3.2.1 Spin-charge separation

A unitary transformation of the bosonic particle-hole operators that mixes the two spin
species reduces the degrees of freedom that couple to the local level from two to one.
Define [46]

b†qc =
1√
2

[
b†q↑ + b†q↓

]
,

b†qs =
1√
2

[
b†q↑ − b†q↓

]
.

(3.68)

This rotation in the space of the b operators conserves the bosonic commutation rela-
tions. According to these new bosonic operators, new bosonic fields can be introduced
that share the same relation to the original bosonic fields as the new bosonic operators
to their old ones:

φc(x) = −
∑
q>0

1
√

nq

[
e−iqx bqc + eiqx b†qc

]
e−aq/2 =

1√
2

[φ↑(x) + φ↓(x)] ,

φs(x) = −
∑
q>0

1
√

nq

[
e−iqx bqs + eiqx b†qs

]
e−aq/2 =

1√
2

[φ↑(x)− φ↓(x)] .
(3.69)

As indicated by the subscript (c,s) those two new species of bosons describe the charge
(c) and the spin (s) degrees of freedom of the model. Most evidently this connection
can be visualized regarding the corresponding densities. The quantity that measures
the total charge density at a point x is : Ψ†

↑(x)Ψ↑(x) : + : Ψ†
↓(x)Ψ↓(x) :=

√
2∂xφc(x).

Accordingly, the spin density at x, that describes the spin polarization of the bath of
fermions, is connected to the bosonic field φs(x): : Ψ†

↑(x)Ψ↑(x) : − : Ψ†
↓(x)Ψ↓(x) :=

√
2∂xφs(x). A Fourier transformation of ∂xφs(x) shows that √nqb

†
qs and √nqbqs are the

modes of the spin density. Insertion of the bosonic spin and charge operators defined
above into the Kondo Hamiltonian leads to spin-charge separation, a phenomenon that
is typical for one-dimensional systems:

HK =Hc + Hs,

Hc =
∑
q>0

qb†qcbqc,

Hs =
∑
q>0

qb†qsbqs +
J‖√
2
∂xφs(0)Sz

+
J⊥
2a

[
F †
↑F↓e

i
√

2φs(0)S− + F †
↓F↑e

−i
√

2φs(0)S+

]
.

(3.70)
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The charge sector of the Kondo Hamiltonian Hc decouples completely from the local
level. Moreover, the dynamics of the charge degree of freedom are trivial as they are
determined by a set of uncoupled harmonic oscillators with a linear dispersion. There-
fore, the charge sector will be disregarded from now on.

The fact that the charge dynamics are completely irrelevant for the Kondo effect is
not surprising since the excitations that are causing the Kondo effect are spin excitations
in the vicinity of the local level. Those emerge from scattering events where the spin
of a conduction band electron is flipped. Such a process, as it happens instantaneously,
conserves the local particle density. The spin density, however, changes.

For systems, where it is not sufficient to consider the particle-hole symmetric case,
see Eq. (2.1.2), i.e. U 6= −εd/2, an additional scattering term has to be included in the
Kondo Hamiltonian. This may be the case for a quantum dot in a real experiment. The
dynamics of such a scatterer do not produce spin flips, but charge excitations. As a
consequence, the charge sector will not be trivial any more and will contain an addi-
tional local scatterer ∝ ∂xφc(0). The spin sector and consequently the spin dynamics,
however, will not be affected.

3.2.2 Emery-Kivelson transformation

The bosonized Hamiltonian in Eq. (3.70) can be simplified using an Emery-Kivelson
transformation that will lead to a phase shift in the spin sector. This transformation
acts locally at the impurity site and is parametrized by a real number γ whose exact
value will be chosen later:

U = eiγφs(0)Sz . (3.71)

The action of this unitary transformation on the Hamiltonian in Eq. (3.70) is fully deter-
mined by the elementary operator identity

[A,B] = DB and [A,D] = [B,D] = 0 ⇒ eBAe−B = A−DB (3.72)

and the following commutation relations:

[bqs, φs(0)Sz] = − 1
√

nq
e−aq/2Sz (3.73)

3.72−→ UbqsU = bqs + i
γ
√

nq
e−aq/2Sz, (3.74)

[∂xφs(0)Sz, φs(0)Sz]
3.28= − i

2a

3.72−→ U∂xφs(0)SzU
† = ∂xφs(0)Sz −

γ

2a
, (3.75)

[Sz, S±] = ±S±
3.43−→ US±U † = e±iγφs(0)S±, (3.76)

[∂xφs(x), φs(0)Sz]
3.31= −2πiδ(x)Sz, (3.77)

3.72−→ U∂xφs(x)U † = ∂xφs(x)− 2πγSzδ(x). (3.78)

Since ∂xφs(x)/(2π
√

2) is the spin density of the conduction band electrons, Eq. (3.78)
suggests to think of the Emery-Kivelson transformation as tying a spin of −γSz/

√
2 of

the surrounding conduction band electrons to the impurity spin [46]. Due to Eq. (3.74)
the kinetic energy acquires an additional scatterer of the structure ∝ ∂xφs(0)Sz as it is
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already present in Eq. (3.70):

UH0U
† =

∑
q>0

Ub†qsU
†UbqsU

†

=
∑
q>0

q

[
b†qs − i

γ
√

nq
e−aq/2Sz

] [
bqs + i

γ
√

nq
e−aq/2Sz

]
=
∑
q>0

qb†qsbqs + iγ
∑
q>0

q
√

nq

[
b†qs − bqs

]
Sz + γ2

∑
q>0

e−aqS2
z

=
∑
q>0

qb†qsbqs − γ∂xφs(0)Sz +
γ2

4a
.

(3.79)

Eq. (3.75) shows that U shifts H‖ = J‖/
√

2∂xφs(0)Sz by a real number:

UH‖U
† =

J‖√
2
U∂xφs(0)U †Sz

=
J‖√
2
∂xφs(0)Sz −

γJ‖

2
√

2a
.

(3.80)

Since the Klein factors commute with all bosonic fields, the only effect of U on H⊥ is a
change of the parameter in the exponentials:

UH⊥U † =
J⊥
2a

[
F †
↑F↓Uei

√
2φs(0)S−U † + F †

↓F↑Uei
√

2φs(0)S+U †
]

=
J⊥
2a

[
F †
↑F↓e

i[
√

2−γ]φs(0)S− + F †
↓F↑e

−i[
√

2−γ]φs(0)S+

]
.

(3.81)

In order to simplify the last line of the equation above, one chooses γ =
√

2− 1. In this
case one arrives at the following expression where constant terms are neglected:

H ′
K = UHKU † =

∑
q>0

qb†qsbqs +
[

J‖√
2
− γ

]
∂xφs(0)Sz

+
J⊥
2a

[
F †
↑F↓e

iφs(0)S− + F †
↓F↑e

−iφs(0)S+

]
.

(3.82)

3.2.3 Refermionization

As already mentioned at the end of Sec. (3.1.4), the bosonization identity can also be
used to introduce new fermionic fields for given bosonic fields and Klein factors. The
structure of the Hamiltonian in Eq. (3.82) suggests to use the bosonic fields φs(x) for the
definition of new pseudofermions Ψs(x). The goal will be to completely fermionize the
Hamiltonian above. For that purpose, a fermionic representation for the spin operators
has to be established. Therefore, another unitary transformation U2 = eiπN̂sSz has to be
performed [45]. The operator

N̂s =
1
2

[
N̂↑ − N̂↓

]
(3.83)

measures the total spin of the bath of conduction band electrons. The only operators of
H ′

K that are affected by U2 are the Klein factors and spin operators S±:

U2F
†
↓F↑U

†
2 = e−iπSzF †

↓F↑,

U2S±U †
2 = e±iπN̂sS±.

(3.84)



28 3. Bosonization: Kondo model

The transformed Hamiltonian reads:

U2H
′
KU †

2 =
∑
q>0

qb†qsbqs +
[

J‖√
2
− γ

]
∂xφs(0)Sz

+
J⊥
2a

[
F †
↑F↓e

iφs(0)eiπ[Sz−N̂s]S− + S+e−iπ[Sz−N̂s]F †
↓F↑e

−iφs(0)
]
.

(3.85)

Now, all prerequisites are prepared in order to refermionize the Kondo Hamiltonian.
In order to introduce new fermionic fields out of the bosonic fields φs(x), first the ap-
propriate Klein factors Fs have to be defined:

Fs = F †
↓F↑, F†

s = F †
↑F↓. (3.86)

Using the bosonization identity, see Eq. (3.54), leads to the introduction of new spinless
pseudofermions Ψs(x) and their corresponding modes ck:

Ψs(x) =
1√
a
Fse

−iφs(x), (3.87)

ck =
1√
2πL

∫ L/2

L/2
dx eikx Ψs(x). (3.88)

Due to the periodicity condition φs(x + L/2) = φs(x− L/2), the quasi-momenta k take
the values [37]:

kn =
2π

L
n , n ∈ Z. (3.89)

Additionally, fermionic representations of the spin operators can be defined as a conse-
quence of the unitary transformation U2:

d† = S+eiπ[N̂s−Sz ], d = e−iπ[N̂s−Sz ]S−. (3.90)

Remarkably, despite of both unitary transformations the relation between the spin op-
erator Sz and the new fermionic operators remains simple:

Sz = d†d− 1
2

(3.91) .

Therefore, the spin expectation value of the local level is a quantity that is easily accessi-
ble in this new picture. This is not the case for the original electrons, for example. They
are very complicated functions of the new fermions Ψs(x). The relation (3.91) will be of
great importance for the evaluation of correlation functions. Due to the unitary trans-
formation U2 the new operators obey fermionic commutation relations since N̂s − Sz

has integer eigenvalues: {
d, d†

}
= 1,

{
d†, d†

}
= 0, (3.92){

d, c†k

}
= 0,

{
ck, c

†
k′

}
= δk,k′ . (3.93)
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By use of Eq. (3.32) it is easy to see the relation of ∂xφs(x) to the modes ck:

∂xφs(x) =: Ψ†
s(x)Ψs(x) :=

2π

L

∑
kk′

ei(k−k′)x : c†kck′ : (3.94)

Additionally, Eq.(3.64) is also applicable such that the kinetic energy for the bosonic
spin operators transforms to a kinetic energy term for the pseudofermions where the
dispersion stays linear: ∑

q>0

qb†qsbqs =
∑

k

k : c†kck : . (3.95)

After the insertion of all these relations above into U2H
′
KU †

2 one arrives at an interacting
resonant level model for the new pseudofermions where the energy εd of the resonant
level takes the value εd = 0:

HIRLM = U2H
′
KU †

2 =
∑

k

k : c†kck : +
[

J‖√
2
− γ

]
2π

L

∑
kk′

: c†kck′ : Sz

+ V
∑

k

[
d†ck + c†kd

]
.

(3.96)

Here, V =
√

2π/LJ⊥/(2
√

a). The resonant level hybridizes with the sea of pseud-
ofermions with width ∆ = V 2L/2 that is connected to the Kondo scale TK ∝ ∆ as
will be shown later. The appearance of a factor 1/

√
a in the Hamiltonian may be con-

tradicting the fact that the bosonization identity is only valid in the limit a → 0. In
fact, 1/

√
a ∝

√
D gives the correct dependence on the bandwidth D for the hybridiza-

tion term in the interacting resonant level Hamiltonian [45]. Therefore, one obtains the
correct scaling equations.

3.2.4 Toulouse limit

As is obvious in Eq. (3.96), for a special value of the coupling

J‖ = 2−
√

2 (3.97) ,

i.e. J‖ =
√

2γ, the many-body interaction term in the Hamiltonian cancels. As a result,
the transformed Kondo Hamiltonian becomes quadratic in the pseudofermions and
exactly solvable. The line in parameter space of the couplings J⊥ and J‖ with J‖ = 2−√

2 is referred to as the Toulouse limit. As a consequence, one arrives at a noninteracting
resonant level model [25]:

HRLM =
∑

k

k : c†kck : +V
∑

k

[
d†ck + c†kd

]
(3.98) .
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Although no restriction on J⊥ appeared up to now, for the bosonization technique it is
important that only low energy physics are described properly mainly due to the lin-
earization of the spectrum. Therefore, the perpendicular coupling J⊥ should provide a
low energy scale J⊥ � J‖ [17]. The parameter V can be connected to the Kondo scale
TK , the only scale in the Kondo problem, via the zero temperature impurity contribu-
tion to the Sommerfeld coefficient γimp [27]. In this way

TK = πw∆, ∆(ε) = π
∑

k

|Vk|2 δ(εk − ε) =
V 2L

2
. (3.99)

Here, w = 0.4128 is the Wilson ratio. The hybridization function ∆ is the transition
rate for the pseudofermions in presence of the resonant level in 2nd order perturbation
theory evaluated using Fermi’s Golden Rule. If an experiment reveals, that the quan-
tum dot, say, has a Kondo temperature TK , the appropriate low energy Hamiltonian is
a resonant level model where the intrinsic energy scale ∆ has to be chosen such that
Eq. (3.99) is fulfilled.

3.2.5 Summary

Concluding, the application of an Emery-Kivelson transformation U and a second uni-
tary transformation U2 simplified the anisotropic Kondo Hamiltonian in the Toulouse
limit tremendously. The resulting Hamilton operator of the resonant level model is
quadratic in spinless fermions. Those spinless fermions describe the spin degrees of
freedom in the Kondo model and are complicated functions of the initial conduction
band electrons. Therefore, the action of those operators cannot be easily interpreted in
the initial picture. Furthermore, despite the fact that the Emery-Kivelson transforma-
tion simplifies the Hamiltonian, observables, in general, become difficult. But there is
one important exception. The spin operator Sz commutes with both transformations U
and U2 and can be connected to the operators of the effective Hamiltonian in an easy
way, see Eq. (3.91). Consequently, despite of all difficulties, the dynamics of the local
spin are analytically accessible.

Throughout the mapping onto a resonant level model, there has been no require-
ment on J⊥. As a consequence, one can choose J⊥ or equivalently V to be arbitrar-
ily time-dependent. This basic observation will serve as a starting point for the spe-
cific nonequilibrium setup that will be analyzed later. Namely, the situation where
the spin dynamics in the Kondo Hamiltonian are switched on and off periodically:
J⊥(t) = J⊥θ [sin(Ωt)]. The mapping itself puts no constraint upon the couplings J⊥
and V , but, initially, the spectrum of the electrons has been linearized for an appro-
priate use of the bosonization technique. This is a suitable approximation for the low
energy properties of the model. Therefore, V and J⊥ should be small enough such that
the typical energy transfer for scattered electrons does not exceed the range of validity
for linearization. In this case, the effect of curvature in the dispersion relation is neg-
ligible. The periodic time dependence of the Hamiltonian, however, leads to another
energy scale in the problem, the driving frequency Ω. Electrons can hop off the local
level into the conduction band by absorbing or emitting multiple quanta of Ω [21]. As a
consequence, the energy gain or loss ∼ Ω for a conduction band electron in a scattering
process has to be small enough such that the curvature of the spectrum is negligible.



Chapter 4

Setup: Periodic time-dependent
Kondo model

Before the advent of quantum dots, experiments on the Kondo effect were limited to
samples where different kinds of magnetic impurities are embedded in various bulk
materials. Obviously, the amount of control over such devices is rather restricted. Since
one is dealing with bulk samples, a certain concentration of magnetic impurities is
needed to observe a significant impact onto bulk properties like the conductance or
magnetic susceptibility. Therefore, properties of a single impurity are not accessible in
such a measurement. Moreover, the microscopic parameters are fixed for each sample,
such that a variation of system parameters can only be achieved by fabricating a whole
bunch of samples with different kinds of impurities, for example.

The realization of quantum dots enabled the creation of highly tunable nanodevices.
In a certain regime of the microscopic parameters, quantum dots act as magnetic impu-
rities producing Kondo physics [11]. Most importantly, the Kondo effect can be studied
at a single impurity with the opportunity to generate nonequilibrium setups because
unscreened electrical or magnetic fields can be applied directly to the impurity. Since
the Kondo effect is a coherent fragile many-body effect, that can be destroyed easily by
temperature in equilibrium for example, a nonequilibrium setting may affect the Kondo
effect drastically. One way of creating a nonequilibrium situation is the application of
a dc bias across the dot. In this case a window of scattering channels is opened that
is not present in an equilibrium setting. Moreover, a nonequilibrium setting may be
created by varying microscopic parameters like a back gate voltage or a locally applied
magnetic field in time.

4.1 Setup

In this work a scenario will be considered that leads to a periodic switch on and off of
the interaction in the Kondo model. A possible experimental realization using a quan-
tum dot with a time-dependent back gate voltage will be presented in Sec. (4.1.2). More-
over, it will be shown that this experimental situation is indeed described by a time-
dependent Kondo Hamiltonian in which the Kondo exchange interaction is switched
on and off periodically. As a quantum dot can be modeled by a time-dependent Ander-
son impurity Hamiltonian, one can construct an appropriate time-dependent Schrieffer-
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Figure 4.1: Time dependence of the Kondo coupling J(t) in the time-dependent Kondo
Hamiltonian under the periodic driving.

Wolff transformation, as will be explained in Sec. (4.1.3), that maps the Anderson impu-
rity Hamiltonian onto the desired Kondo Hamiltonian. As will be shown in Sec. (4.1.1),
in the strong coupling limit, a proper anisotropic Kondo Hamiltonian can be used to
map the problem onto an exactly solvable one, onto a time-dependent noninteracting
resonant level model.

The time-dependent Kondo Hamiltonian whose dynamics will be analyzed in this
thesis is the following:

HK =
∑
kη

εk : c†kηckη : +J(t)
∑
kk′

[
c†k↑ck′↓ − c†k↓ck′↑

]
Sz

+ J(t)
∑
kk′

[
c†k↓ck′↑S+ + c†k↑ck′↓S−

]
,

with J(t) = J θ(t) θ(sin(Ωt)).

(4.1)

The Kondo coupling J(t) is switched on and off periodically in time as indicated in
Fig. (4.1). The protocol according to which the system evolves will be the following.
For all times t < 0 the Hamiltonian is given by just the free part of the Kondo Hamil-
tonian describing a decoupled noninteracting Fermi gas and local spin. The system is
connected to a heat bath for t < 0 whose temperature T is assumed to be small enough
to consider the system to be in the ground state, that is a product state of the Fermi sea
|0〉 and a spin wave function |χ〉 of the local spin. Therefore, the system is prepared
initially in the following state:

|Ψ0〉 = |0〉 ⊗ |χ〉. (4.2)

At time t = 0 the system is decoupled from the heat bath and the time-dependent
periodic setup starts with an instantaneous switch on of the Kondo interaction. The
coupling J is held at a constant value until time τ/2 where the Kondo interaction is
switched off and remains off until t = τ . This procedure is repeated until after an
infinite number of periods τ one expects a quasi-steady state to build up. The energy
scale associated with this periodic switching is the so-called driving frequency Ω:

period τ, driving frequency Ω =
2π

τ
. (4.3)
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Figure 4.2: Time dependence of the couplings of the periodic time-dependent
anisotropic Kondo Hamiltonian.

Due to the time dependence of the Hamiltonian the energy is not a conserved quantity.
Moreover, each quench that is performed excites the system such that one can expect
that after an infinite number of switches an infinite amount of energy is pumped into
the system. Therefore, a dissipation mechanism is needed that absorbs the excitations
that are created in the vicinity of the impurity in a periodic fashion. As has been shown
by Doyon and Andrei [8], the leads themselves can serve as heat baths in the correct
limit. Therefore, no additional dissipation mechanism is needed. They showed rigor-
ously that in a dc bias situation the leads in the Kondo Hamiltonian act as a bath if
they are taken as infinitely big. As a consequence, a certain order of taking limits has to
be prescribed, namely the thermodynamic limit has to be performed before taking the
limit of long times:

lim
t→∞

lim
L→∞

. (4.4)

Doyon and Andrei referred to this order of taking limits as the open system limit. The
opposite order of taking limits would lead to a blow up of the occupation distribution
nk = 〈c†kck〉 in this setup, where ck are the modes of the spinless fermions in the resonant
level model Hamiltonian, signaling an overheating of the system.

4.1.1 Setup in the effective Hamiltonian picture

For temperatures T much lower than the Kondo temperature, T � TK , the Kondo
singlet forms, as explained in Sec. (2.1), driving the Kondo system into the strong cou-
pling regime. The effective Hamiltonian describing the dynamics in this limit is ob-
tained by replacing the Kondo Hamiltonian by the appropriate anisotropic counterpart
in the Toulouse limit. In the present periodic driving setup the proper time-dependent
anisotropic Kondo Hamiltonian reads:
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Figure 4.3: Time dependence of the hopping element V of the effective Hamiltonian
under the periodic driving

HK =
∑
η=↑↓

∫
dx

2π
: Ψ†

η(x)[−i∂x]Ψη(x) : +
J‖

2

[
: Ψ†

↑(0)Ψ↑(0) : − : Ψ†
↓(0)Ψ↓(0) :

]
Sz,

+
J⊥(t)

2

[
Ψ†
↑(0)Ψ↓(0)S− + Ψ†

↓(0)Ψ↑(0)S+
]

J⊥(t) = J⊥ θ(t), θ(sin(Ωt)) J‖ = 2−
√

2.

(4.5)

The parallel coupling is fixed at a value J‖ = 2 −
√

2, corresponding to the so-called
Toulouse limit, see Eq. (3.97). The Kondo scale is solely determined by the perpendicu-
lar coupling J⊥, see Eq. (3.99), providing the low energy scale in the problem. The time
dependence of the couplings in the effective strong coupling Hamiltonian is shown in
Fig. (4.2). As explained in the previous chapter, the anisotropic Kondo Hamiltonian can
be mapped onto a resonant level model Hamiltonian of spinless pseudofermions (3.98)
in the Toulouse limit by use of the bosonization technique. This mapping does not de-
pend on the actual value of J⊥, such that it can also be performed for a time-dependent
coupling J⊥(t). An anisotropic Kondo Hamiltonian with J⊥ = 0 results in the free
part of the effective resonant level model Hamiltonian since V ∝ J⊥. Therefore, the ef-
fective Hamiltonian in the periodic driving setup considered here is a time-dependent
resonant level model Hamiltonian, where the coupling to the local level is switched on
and off periodically:

HRLM(t) =
∑

k

k : c†kck : +V (t)
∑

k

[
d†ck + c†kd

]
V (t) = V θ(t) θ(sin(Ωt))

(4.6)

The Kondo temperature, the only energy scale in the Kondo model, is connected to the
hopping element V of the resonant level model by the relation TK = πw V 2L

2 where
w = 0.4128 is the Wilson number and L the system size, see Eq. (3.99). Reminding the
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Figure 4.4: Time dependence of the gate voltage

previous paragraphs, the complete protocol according to which the system will evolve
in the language of the effective Hamiltonian can be summarized in the following way.
Initially, the system is prepared in the ground state of the Hamiltonian for times t < 0,
that is a product state

|Ψ0〉 = |0〉 ⊗ |χ〉 (4.7)

where |0〉 is the Fermi sea of the spinless fermions and |χ〉 an arbitrary wave function of
the local level. At time t = 0 the periodic quenching process starts where the hopping
term is switched on and off periodically with period τ as indicated in Fig. (4.3).

Although all couplings in the Kondo Hamiltonian before the replacement by the
anisotropic Kondo Hamiltonian are switched including J‖, the parallel coupling is held
fixed at a constant value here. As has been shown by Lobaskin and Kehrein [27] for
a single interaction quench in the Kondo Hamiltonian, an additional switch off of
the parallel coupling induces a potential scattering term for times during which the
time-dependent resonant level model Hamiltonian only contains the kinetic part in the
present setup as a consequence of the Emery-Kivelson transformation, see Sec. (3.2.2).
As one can check, this additional potential scattering term does not affect the spin dy-
namics in a single interaction quench scenario. The strength of the potential scattering
is proportional to the magnetization of the impurity spin 〈Sz〉. Since the magnetization
drops exponentially in the present setup, as will be shown later, one can expect that at
least in the steady state after an infinite number of switches this additional potential
scattering term will be irrelevant.

4.1.2 Possible experimental realization

As pointed out by Nordlander et al. [32], in contrast to impurities in a bulk it is possi-
ble to apply unscreened time-dependent electric or magnetic fields directly to a single
impurity by using a quantum dot. The goal of this section will be to show a possible
experimental setup for a quantum dot that generates a periodic switch on an off of the
Kondo interaction. This can be achieved by periodically modulating the gate voltage as
is indicated in Fig. (4.4) with a large amplitude Vgate. The Hamiltonian that models such
a physical situation is the following time-dependent Anderson impurity model with a
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local level whose energy εd(t) changes in time due to the applied gate voltage:

HAIM(t) = Hel + Hdot(t) + Ht

Hel =
∑

kη=↑,↓
εk : c†kηckη :

Hdot(t) =
∑

η

εd(t) d†ηdη + Un̂↑n̂↓

Ht =
∑
kη

tk

[
c†kηdη + d†ηckη

]
εd(t) = εd + Vgate(t).

(4.8)

All energies will be measured with respect to the Fermi energy, i.e. εF = 0. The protocol
according to which the system evolves is the following. For times t < 0, a large negative
gate voltage is applied to the quantum dot such that the local level position is shifted far
beyond the Fermi level in order to suppress exchange processes that cause the Kondo
effect. Furthermore, the Coulomb repulsion U is chosen to be large enough to prevent
double occupancy even for large gate voltages, in order to stay in the subspace of single
occupation such that one arrives at the following conditions:

εd − Vgate � εd, εd − Vgate + U � εF . (4.9)

A shift of the local level position far below the Fermi surface, the first condition, sup-
presses the hopping processes between the conduction band and the central region.
The probability for exchange processes, causing the spin flips and therefore the Kondo
effect, becomes negligible such that the hopping term in the Anderson Hamiltonian as
well as the Kondo interaction are effectively switched off. This will be shown rigorously
in Sec. (4.1.3).

At time t = 0, the local level position is suddenly shifted to a value εd where a
Kondo effect can build up. For a time τ/2 the system evolves due to a Anderson impu-
rity model in the local moment regime. At t = τ/2, the Hamiltonian is pushed back to
the configuration with a large negative gate voltage Vgate. This procedure of shifting the
local level position, switching the Kondo effect on and off, will be continued further in
order to generate the desired time-dependent Kondo Hamiltonian.

The regime where the Kondo effect emerges, the so called local moment regime, is
realized when εd � εF , ε + U � εF ,Γ � |εd|, εd + U , see Eq. (2.4). In equilibrium those
conditions are sufficient in order to cause Kondo physics. In the periodic driving setup
another condition has to be imposed. By driving the system periodically electrons can
hop off the central region into the conduction band by absorbing quanta of the driving
frequency Ω [21]. If Ω & |εd|, for example, a local electron can easily hop into the lead
leaving behind an unoccupied level. Similarly, in the case where Ω & U + εd, electrons
at the Fermi level can hop onto the dot into the level at U + εd by absorbing quanta of Ω
leading to double occupancy. Both processes lead to a destruction of the Kondo effect
since they would drive the system out of the subspace of single occupation. Therefore,
a restriction on the driving frequency emerges:

Ω � |εd|, εd + U, (4.10)

to exclude processes in which the dot is ionized.
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Figure 4.5: Schematic picture of the periodic modulation of the local level in a quantum
dot

4.1.3 Time-dependent Schrieffer-Wolff transformation

In the local moment regime the low-energy sector of the Anderson impurity model
can be mapped onto a Kondo Hamiltonian via a Schrieffer-Wolff transformation, see
Sec. (2.1.2) for the equilibrium case. This is possible even for time-dependent Ander-
son Hamiltonians as is the case in the periodic driving setup considered here [13][21].
The Schrieffer-Wolff transformation, however, has to be modified since time-dependent
unitary transformations leave the Schrödinger equation invariant only if the Hamilton
operator is transformed in the following way, see for example [13]:

HAIM −→ eW HAIMe−W + i
dW

dt
. (4.11)

Here, ~ was set equal to 1. In the time-independent case, the generator W of this trans-
formation is chosen such that all terms linear in the tunnel coupling tk vanish, see
Eq. (2.8). This leads to an algebraic equation that can be solved for W . In the time-
dependent case, a differential equation has to be solved instead, in order to eliminate
all linear in tk contributions:

[W,Hel + Hdot] + Ht + i
dW

dt
= 0. (4.12)

Accordingly, the final Hamiltonian will be of the structure

HK = Hel + Hdot +
1
2

[
[W,Ht]− i

[
W,

dW

dt

]]
(4.13)
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up to third order terms in the tunnel coupling tk. Inserting the choice

W =
∑
kη

[(
w

(1)
k (t)(1− d†−ηd−η) + w

(2)
k (t)d†−ηd−η

)
d†ηckη −H.c.

]
(4.14)

for W into Eq. (4.12) leads to a differential equation for the functions w
(1)
k (t) and w

(2)
k (t):

−iẇ
(1)
k (t) = [εk − εd(t)]w

(1)
k (t) + tk,

iẇ
(2)
k (t) = [εk − εd(t)− U ]w(2)

k (t) + tk.
(4.15)

It was shown in the previous section that the driving frequency has to be chosen small
compared to the energy scales |εd| and U − εd, confirm Eq. (4.10). In this case the dif-
ferential equations can be solved in the adiabatic approximation since one can assume
that the functions w will only vary slowly in each half period such that one can neglect
the derivatives on the left hand side [21]:

w
(1)
k (t) = − tk

εk − εd(t)
,

w
(2)
k (t) =

tk
εk − εd(t)− U

.
(4.16)

If the position of the local level is shifted to a value εd(t) = εd − Vgate well below the
Fermi surface the functions w

(1)
k (t) and w

(2)
k (t) vanish leading to the following relations

in the periodic driving setup:

w
(1)
k (t) = −θ(sin(Ωt))

tk
εk − εd

,

w
(2)
k (t) = θ(sin(Ωt))

tk
εk − εd − U

.
(4.17)

Inserting these expressions into Eq. (4.13), the Kondo Hamiltonian is given by:

HK =
∑
kη

εk : c†kηckη : +
∑
kk′

Jkk′(t)
[
c†k↑ck′↓ − c†k↓ck′↑

]
Sz

+
∑
kk′

Jkk′(t)
[
c†k↓ck′↑S+ + c†k↑ck′↓S−

]
+
∑
kk′η

Kkk′(t)c
†
kηck′η.

(4.18)

where the derivative of the generator in Eq. (4.13) has been neglected due to ẇ
(1)
k (t),

ẇ
(2)
k (t) ≈ 0 in the adiabatic approximation. In order to arrive at the desired Hamil-

ton operator a further projection onto the subspace of single occupation has to be per-
formed as in the equilibrium case. The couplings Jkk′(t) and Kkk′(t) obey the following
relations:

Jkk′(t) = θ(sin(Ωt))
[

t2k
εk − εd

+
t2k

εk − εd − U

]
,

Kkk′(t) =
1
2
θ(sin(Ωt))

[
t2k

εk − εd
−

t2k
εk − εd − U

]
.

(4.19)

The exact dependence of Jkk′(t) on the modes is negligible for electrons near the Fermi
level. Since the low energy properties of the Kondo model depend only on the elec-
trons near the Fermi surface, one can replace Jkk′ by the structureless constant J := J00.
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In the particle-hole symmetric case, i.e. U = −εd/2, the potential scattering term in
the Kondo Hamiltonian vanishes. Since the potential scattering term does not affect
the spin sector of the Kondo Hamiltonian, as already emphasized in Sec. (3.2.1), it can
be neglected for the study of the spin observables due to spin charge separation. Ac-
cordingly, the particle-hole symmetric case will be assumed from now on. As a result,
the effective low energy Hamiltonian of the Anderson impurity model, where the local
level is shifted periodically, is given by:

HK =
∑
kη

εk : c†kηckη : +J(t)
∑
kk′

[
c†k↑ck′↓ − c†k↓ck′↑

]
Sz

+ J(t)
∑
kk′

[
c†k↓ck′↑S+ + c†k↑ck′↓S−

]
,

with J(t) = J θ(sin(Ωt)),

(4.20)

that is the desired time-dependent Kondo Hamilton operator. Therefore, it was shown
that shifting the local level of a quantum dot far beyond the Fermi level switches off the
Kondo effect. Accordingly, a periodic shifting in this setup leads to a periodic switch
on and off of the Kondo interaction as expected.

4.2 Periodic time-dependent Hamiltonians and Floquet theory

Despite the complexity of time evolution in time-dependent physical systems, Hamil-
tonians that share a periodic time dependence are provided with a formalism called
Floquet theory moving periodic time-dependent systems towards time-independent
ones. A Hamiltonian equipped with a discrete symmetry of the form

H(t + τ) = H(t) (4.21)

where τ is a positive and finite real number exhibits a set of wave functions called
Floquet modes that are the solutions of an eigenvalue equation formally resembling
that of a time-independent Schrödinger equation [41] [36]. A simple proof can be found
in [34] that is similar to the proof of the Bloch theorem for particles moving in a spatially
periodic potential. The basic observation is that there exists a complete set of solutions
|Ψα(t)〉, called Floquet states, of the time-dependent Schrödinger equation that is of the
following form:

|Ψα(t)〉 = e−iεαt|φα(t)〉 (4.22)

where the so called Floquet modes |φα(t)〉 exhibit a characteristic periodicity property

|φα(t + τ)〉 = |φα(t)〉. (4.23)

The structure of the Floquet states resembles the structure of the Bloch states, the single
particle eigenstates of particles moving in a spatially periodic potential. As the Bloch
states can be characterized by a quasimomentum, the Floquet states can be labeled by
the so-called quasienergies εα, also called the Floquet characteristic exponents. As a
consequence of the periodicity of the Floquet modes, the long time evolution is com-
pletely determined by the quasienergies [14]. The dynamics within one period, how-
ever, relies on the behavior of the Floquet modes. Insertion of the Floquet states into the
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time-dependent Schrödinger equation leads to an eigenvalue equation of the so called
Floquet Hamiltonian

H = H − i
∂

∂t
(4.24)

for the Floquet modes with the quasienergies playing the role of the eigenvalues:

H|Φα(t)〉 = εα|Φα(t)〉. (4.25)

Here, the great advantage of the Floquet formalism becomes apparent. Due to the for-
mal similarity to a time-independent Schrödinger equation known theorems for time-
independent problems can be simply adopted to the periodic time-dependent case, like
the Rayleigh-Ritz variational principle or the Hellman-Feynman theorem [14]. As is the
case for the quasimomenta in the Bloch theorem, the quasienergies are not uniquely de-
fined such that one can restrict to a certain ”Brioullin zone”

− Ω
2
≤ εα ≤

Ω
2

(4.26)

where Ω = 2π/τ is the frequency of the driving. Due to the periodicity of the Flo-
quet mode and the Hamilton operator one can perform a Fourier expansion of both
quantities such that one can find a time-independent representation of the Schrödinger
equation: ∑

m

Hn−m|Φm
α 〉 = [εα + nΩ] |Φn

α〉 (4.27)

where
Hn =

1
τ

∫ τ

0
dt einΩtH(t), |Φn

α〉 =
1
τ

∫ τ

0
dt einΩt |Φα(t)〉. (4.28)

The time evolution operator U(t, t0) that propagates any state |Ψ(t0)〉 at a time t0 to
time t,

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉, (4.29)

although difficult for time-dependent systems, exhibits special properties in the case of
periodic time-dependence. First, it is invariant under a shift of one period τ in both
time arguments [23]:

U(t + τ, t0 + τ) = U(t, t0). (4.30)

As a consequence, the propagator over multiple periods factorizes into a product of
propagators over one period:

U(nτ, 0) = [U(τ, 0)]n . (4.31)

This property will be used extensively throughout this work. Moreover, the propaga-
tor carries all information about the quasienergies. As the time evolution operator is
unitary, it can be diagonalized by another unitary transformation W :

W †U(τ, 0)W = e−iDτ . (4.32)

The diagonal elements of the diagonal matrix D are just the quasienergies εα [14]. Since
the Floquet states constitute a complete basis of the Hilbert space, any wave function
can be decomposed in a way similar to a time-independent situation:

|Ψ(t)〉 =
∑
α

cαe−iεαt|Φα(t)〉, cα = 〈Φα|Ψ〉, (4.33)
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such that the whole information about the long time behavior is encoded in the quasi-
energies.

Correlation functions in a periodic setup also exhibit a distinctive periodicity prop-
erty. Suppose, that the system of interest is initially prepared in an equilibrium state
characterized through a density matrix ρ0. Then, due to the periodic driving, the state
of the system evolves into a quasi-steady state after an infinite amount of periods, that
is determined by the following density matrix:

lim
N→∞

[U(τ)]Nρ0[U †(τ)]N (4.34)

where U(τ) is the time evolution operator over one period. In this state, correlation
functions are invariant under a discrete time shift of one period τ in all their time argu-
ments. A two-time correlation function of two observablesO and P in the quasi-steady
state, for example, is given by:

〈O(t)P(t′)〉 =
1
Z

lim
N→∞

Tr
[
[U(τ)]Nρ0[U †(τ)]NO(t)P(t′)

]
(4.35)

where Z = Tr[ρ0] is the partition function. The invariance property of two-time corre-
lation functions follows directly:

〈O(t + τ)P(t′ + τ)〉 =
1
Z

lim
N ′→∞

Tr
[
[U(τ)]N

′
ρ0[U †(τ)]N

′O(t)P(t′)
]

= 〈O(t)P(t′)〉.
(4.36)

Here, N ′ = N + 1. In equilibrium two-time correlation functions depend only on the
time difference of both time variables such that they are functions of only one time
argument, effectively. Therefore, one can find a spectral decomposition in terms of
a function of only one frequency. In nonequilibrium time translational invariance is
broken such that those two-time correlation functions cannot be reduced to a function
of only one argument. Consequently, a spectral representation involves two arguments.
In the case of periodic time-dependence, however, a special representation can be found
due to the periodicity property, see Eq. (4.36). Exploiting this invariance property one
can define a set of two new variables, a relative time coordinate trel and an average one
tave by [42]

trel = t− t′ tave =
t + t′

2
(4.37)

such that one can rewrite the two time correlation function in the following way

〈O(t)P(t′)〉 = 〈O(tave + trel/2)P(tave − trel/2)〉. (4.38)

Most importantly, the time average coordinate carries the invariance property tave →
tave + τ . With respect to the new time coordinated one can define two spectral decom-
positions of the two-time correlation function:

〈OP〉(tave, ε) =
∫ ∞

−∞
dtrel eiεtrel 〈O(tave + trel/2)P(tave − trel/2)〉,

〈OP〉n(ε) =
1
τ

∫ τ

0
dtave einΩtave 〈OP〉(tave, ε).

(4.39)
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Effectively, the first spectral decomposition is a Wigner transform of the correlation
function and can be interpreted as the spectral decomposition of the two time correla-
tion function at a given time point tave. Due to the invariance under a discrete time shift
tave → tave + τ the Wigner transform can be expanded into a Fourier series defining a
second spectral representation. With each mode n one can associate processes in which
n photons are absorbed (n > 0) or emitted (n < 0) [23]. The zero mode n = 0 Fourier
coefficient is equivalent to the time averaged Wigner transform.

One can also regard a modified Wigner transform that can be obtained by the fol-
lowing reasoning:

〈OP〉n(ε) =
1
τ

∫ τ

0
dtave einΩtave

∫ ∞

−∞
dtrel eiεtrel 〈O(tave + trel/2)P(tave − trel/2)〉

tave→tave+trel/2
=

∫ ∞

−∞
dtrel ei(ε+nΩ/2)trel

1
τ

∫ τ+trel/2

trel/2
dtave einΩtave〈O(tave + trel)P(tave)〉.

(4.40)

Since the evaluation of a Fourier component of a periodic function is independent on
how one chooses the integral over the period, one can shift the integration limits in the
integral over tave back to 0 and τ . Defining ε := ε+nΩ/2, one can rewrite the expression
above in the following way:

〈OP〉n(ε) =
1
τ

∫ τ

0
dtave einΩtave

∫ ∞

−∞
dtrel eiεtrel 〈O(tave + trel)P(tave)〉 (4.41)

Therefore, equivalently to the Wigner transform of the two-time correlation function
one can consider the following spectral decomposition:

〈OP〉(tave, ε) =
∫ ∞

−∞
dtrel eiεtrel 〈O(tave + trel)P(tave)〉 (4.42)



Chapter 5

Single-particle dynamics in the
periodic driving setup

In Chapter 3 it was shown that the anisotropic Kondo Hamiltonian in the Toulouse limit
can be mapped onto a noninteracting resonant level model by use of the bosoniza-
tion technique. Remarkably, this mapping allows for an arbitrary time-dependence
of the perpendicular Kondo coupling J⊥(t) resulting in the corresponding time de-
pendence of the hopping amplitude V (t) ∝ J⊥(t) in the resonant level model. This
observation opens the way to analyze the properties of the Kondo model under time-
dependent nonequilibrium conditions as has been done in the work by Lobaskin and
Kehrein [27][28] for a single interaction quench.

Since the resonant level model Hamiltonian is quadratic in spinless fermionic oper-
ators, the time evolution is analytically accessible on all time scales. In this chapter, the
dynamics of the single-particle operators will be evaluated in the periodic driving setup
presented in the last chapter where the couplings J⊥, and V respectively, are switched
on and off periodically. For this purpose, a technical statement will be made at first,
namely that the unitarity of time evolution in quantum mechanics evidently translates
into a unitary time evolution of the single-particle operators. Based on these consider-
ations, the dynamics of the single particle operators are calculated exactly for all times
in the periodic nonequilibrium setup.

Despite the difficulty of time evolution in driven systems, the dynamics in this setup
are governed by sequentially time-independent Hamiltonians, alternately a free and a
resonant level model Hamiltonian. Effectively, the time evolution can be reduced to
an equilibrium time evolution where a state is evolved sequentially by different time-
independent Hamiltonians. Moreover, the symmetry of the Hamiltonian H(t + τ) =
H(t) in time can be exploited for the description of the dynamics of the single-particle
operators. Due to this periodicity of the Hamiltonian the time evolution operator for
an integer number n of periods τ factorizes into a product of n identical operators that
evolve the system over one period, see Eq. (4.31). Essentially, the problem of long-time
evolution can be reduced to a matrix multiplication problem where the challenge will
be to evaluate matrix elements of powers of the period matrixM, that is the matrix that
takes the single-particle operators over one period.
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5.1 Dynamics of systems with quadratic Hamiltonians

In this section, an elementary property of the time evolution for a wide class of quadratic
Hamilton operators will be analyzed. The reason for the exact solvability of quadratic
Hamiltonians is the property, that the time evolution of a single-particle operator only
involves transitions into other single-particle operators. It can never happen, that they
get dressed by particle-hole excitations. As a consequence, the dynamics are restricted
to a certain operator subspace. For quadratic Hamiltonians the corresponding transi-
tion matrix, whose elements give the probability amplitude for a transition from one
operator to the other in course of time, is unitary.

A basis transformation U , like the unitary time evolution, that acts on a Hilbert
space H, induces a transformation TU on the linear operators O:

TU [O] := UOU−1. (5.1)

In the case where U † = e−iHt is the time evolution operator for a time-independent
Hamiltonian H , the induced transformation TU is the time evolution operator in the
space of operators TU = etL. The generator L of this transformation is the so-called
Liouvillian, that is defined through its action on operators: L[Γ] := i[H,Γ] where the
brackets denote the standard commutator. The aim of this section is to show that, if U is
unitary, TU is unitary, too, if one chooses an appropriate domain. As a first observation,
TU is a linear operator:

TU [ηO + P] = U (ηO + P) U−1 = η TU [O] + TU [P] (5.2)

where η is a complex number and O,P are two arbitrary linear operators. Moreover,
for every TU there exists an inverse transformation T−1

U , because

(TU−1 TU )[O] = U−1U OU−1U = O. (5.3)

Therefore, the inverse of TU is the induced transformation of U−1:

T−1
U = TU−1 . (5.4)

Additionally, a product of two operators O and P factorizes under TU :

TU [OP] = TU [O]TU [P]. (5.5)

In order to show the unitarity of TU , first, a proper domain D has to be chosen as in-
dicated before. For a fermionic field theory, the operators of interest are the operators
c†l , cl that create or annihilate one fermion in state l. Since c†l is the Hermitian conjugate
of cl, one can restrict on either one species of them for the purpose of showing the uni-
tarity of TU . Here, the annihilation operators will be chosen. Define the vector space D
of all linear combinations of the cl’s:

D := span [{cl}] . (5.6)

If TU is an endomorphism on D, i.e. for all elements O of D TU [O] is also an element of
D, one can think of TU as acting on the vector space D:

TU : D → D O → TU [O]. (5.7)
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In the following, only those transformations that fulfill this condition will be consid-
ered. For the dynamics of a wide class of quadratic systems this requirement can be
met as will be shown below. In order to address the property of unitarity, a scalar prod-
uct has to be defined on the spaceD, since unitarity means scalar product conservation.
Recalling that a fermionic field theory already owns an additional structure, namely the
anticommutation relations of the creation and annihilation operators, the proper inner
product on the linear operator space D can be defined in the following way:

〈O|P〉 :=
〈{
O†,P

}〉
∀O,P ∈ D (5.8)

where 〈...〉 denotes some average that has not to be specified now, since it is only im-
portant to ensure that the outcome of this expression is a complex number. As one can
check, the definition above fulfills all requirements for a scalar product. Now all pre-
requisites are prepared in order to show the unitarity of TU on the vector space D. Due
to the linearity of D it suffices to restrict to the basis elements cl:

〈TU [cl]|TU [cl′ ]〉 =
〈{

Uc†l U
−1, Ucl′U

−1
}〉

= 〈cl|cl′〉 = δl,l′ . (5.9)

Consequently, TU is unitary on D. Using the matrix representation t(U) of TU ,given by:

TU [cl] =
∑
l′

tll′(U) cl′ , (5.10)

on can rephrase the statement as∑
j

tlj(U) t∗jl′(U) = δl,l′ . (5.11)

In the case of a bosonic field theory, all results apply analogously, except that one has
to choose the respective commutation relations instead of anticommutation relations in
the definition of the proper scalar product on D.

Up to this point, this section may have been quite technical, but the statement above
will be important for the dynamics in the periodic driving setup. Suppose, the time
evolution of a physical system is governed by a quadratic Hamilton operator H of the
structure

H =
∑
ll′

hll′(t)c
†
l cl′ (5.12)

where the matrix elements hll′(t) may depend on time in an arbitrary fashion. Accord-
ing to Def. (5.6), one can introduce the operator space D of all linear combinations of
the annihilation operators cl. The time evolution of the cl’s under the Hamiltonian H
only leads to transitions to other single-particle annihilation operators. This can be seen
by regarding the corresponding Heisenberg equations of motion:

d
dt

cl(t) = iP †(t)[H(t), cl]P (t) = −i
∑
l′

hll′(t)cl′(t) (5.13)

where P (t) is the time evolution operator. If all the matrix elements hll′ are independent
of time, P = e−iHt. As the differential equation (5.13) shows, a Hamiltonian of the
given structure only induces transitions to all other cl′ ’s. Therefore, the requirement of
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Eq. (5.7) is fulfilled. As a direct consequence, the annihilation operators will evolve into
a superposition of all other cl′ ’s in course of time where the probability amplitude for a
transition cl → cl′ after a time t is denoted by Gll′(t):

TP [cl] = cl(t) =
∑
l′

Gll′(t) cl′ . (5.14)

As a result of the previous considerations, the matrix G must be unitary [38]. Moreover,
there is an explicit expression for this matrix in terms of Green’s functions. Due to the
fact that there is a scalar product onD, one can expand any operatorO inD in the basis
of annihilation operators:

O =
∑

l

〈{
O, c†l

}〉
cl. (5.15)

Consequently, up to a prefactor of −i the matrix elements Gll′(t) are the following
single-particle Green’s functions:

Gll′(t) = θ(t)
〈{

cl(t), c
†
l′

}〉
. (5.16)

Therefore, the time evolution of the annihilation operators is entirely given by the single
particle Green’s function where the transition matrix G is unitary:

cl(t) =
∑
l′

〈{
cl(t), c

†
l′

}〉
cl′ (5.17) .

5.2 Green’s functions of the resonant level model

Despite the complexity of the dynamics for time-dependent Hamiltonians, the periodic
driving as it is considered in this thesis involves two time slices over a half period τ/2
during which the Hamiltonian is constant, see Chapter (4). During the first half period
the dynamics are governed by a resonant level model, during the second half period
the dynamics are trivial, since the Hamiltonian describes the free time evolution of a
noninteracting Fermi gas. As a consequence, the dynamics over one period under this
periodic time-dependent Hamiltonian reduces to the time evolution of two subsequent
time-independent Hamiltonians. In this section, the time evolution of the first half
period will be analyzed. Due to Eq. (5.17) the dynamics of the single-particle operators
in the first half period are completely determined by the Green’s functions

Gll′(t) = −iθ(t)
〈{

cl(t), c
†
l′

}〉
, l, l′ ∈ {k, d} (5.18)

of the resonant level model:

HRLM =
∑

k

k : c†kck : +V
∑

k

[
d†ck + c†kd

]
. (5.19)
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The transition matrix elements Gll′(t), see Eq. (5.16), are connected to the Green’s func-
tions through Gll′(t) = iGll′(t). They can be determined by using the equations of
motion approach that relates the derivative of Gll′(t) to the Heisenberg equations of
motion for the single-particle operators:

d
dt

Gll′(t) =− iδ(t)
〈{

cl, c
†
l′

}〉
+ θ(t)

〈{
[HRLM, cl] (t), c

†
l′

}〉
= −iδll′δ(t) + θ(t)

〈{
[HRLM, cl] (t), c

†
l′

}〉
.

(5.20)

Using the commutation relations

[HRLM, d] = −V
∑

k

ck, [HRLM, ck] = −kck − V d, (5.21)

the equations of motion result in a complete set of coupled differential equations for all
Green’s functions

d
dt

Gd(t) = −iδ(t)− iV
∑

k

Gkd(t)

d
dt

Gkd(t) = −ikGkd(t)− iV Gd(t)

d
dt

Gdk(t) = −iV
∑
k′

Gk′k(t)

d
dt

Gkk′(t) = −iδkk′δ(t)− ikGkk′(t)− iV Gdk′(t)

(5.22)

where the initial conditions that are necessary for the uniqueness of the solution are
encoded in the Dirac-δ distributions. A δ-function on the right-hand side corresponds
to an initial value of −i whereas the absence corresponds to an initial value 0:

Gd(0) = Gkk(0) = −i,

Gdk(0) = Gkd(0) = Gk 6=k′(0) = 0.
(5.23)

This closed system of coupled differential equations can be solved using Laplace trans-
formation:

G(ω+) =
∫

dteiω+tG(t) (5.24)

where ω+ = ω + iε. The positive parameter ε is needed to ensure that the Laplace
transform exists, since it may be possible that without this additional exponential decay
the integral does not converge. At the end of the calculation, however, when the back
transformation to the time-dependent Green’s functions has been made, one performs
the limit ε → 0. By using Laplace transforms the linear differential equations become
algebraic:

i. ω+Gd(ω+) = 1 + V
∑

k

Gkd(ω+)

ii. Gkd(ω+) =
V

ω+ − k
Gd(ω+)

iii. ω+Gdk(ω+) = V
∑
k′

Gk′k(ω+)

iv. Gkk′(ω+) =
δkk′

ω+ − k
+

V

ω+ − k
Gdk′(ω+).

(5.25)
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Taking equation iv, interchanging k and k′, and inserting it into iii leads to an algebraic
equation for Gdk(ω+):

ω+Gdk(ω+) =
V

ω+ − k
+ Gdk(ω+)V 2

∑
k′

1
ω+ − k′

. (5.26)

The sum appearing on the right hand side can be calculated exactly. Due to Eq. (3.89)
the quasi momenta k of the modes ck take the values kn = 2π

L n:

V 2
∑

k

1
ω+ − k

= −V 2L

2π

∞∑
n=−∞

1
n− Lω+

2π

= −∆
π

Lω+

π

∞∑
n=1

1

n2 −
[

Lω+

2π

]2 +
2∆
Lω+

= ∆ cot
[
L

2
ω+

]
L→∞−−−−→ −i∆.

(5.27)

For this limit to be true it is essential that ω+ is not purely real. This limit has to be per-
formed at this point because otherwise the back transformation to the time-dependent
Green’s functions can not be done analytically since the integrals over the correspond-
ing Laplace transforms are not known. Since finally the thermodynamic limit is always
taken, the question is if one is allowed to interchange the limiting processes involved
here. One can check that the equations of motion for the Green’s functions obtained by
taking the thermodynamic limit at this stage are fulfilled exponentially fast. Therefore,
it is suitable to interchange the limiting processes at this point. Insertion of Eq. (5.27)
into Eq. (5.26) solves the coupled system of equations for the function Gdk(ω+):

Gdk(ω+) =
V

(ω+ − k)(ω+ + i∆)
. (5.28)

With the result for Gdk(ω+) the solution of Gkk′(ω+) is easily obtained using Eq. iv.
Analogously, the remaining functions can be found by inserting ii in i. Then by use of
Eq. (5.27) one can calculate Gd(ω+) which in turn enables to compute Gkd(ω+). Finally,
one obtains [16]:

Gd(ω+) =
1

ω+ + i∆
,

Gdk(ω+) =
V

(ω+ − k)(ω+ + i∆)
,

Gkd(ω+) =
V

(ω+ − k)(ω+ + i∆)
,

Gkk′(ω+) =
δkk′

ω+ − k
+

V 2

(ω+ − k)(ω+ + i∆)(ω+ − k′)
.

(5.29)

The last equation determines the T -matrix that is defined through the relation:

G(ω+) = G(0)(ω+) + G(0)(ω+)T (ω+)G(0)(ω+) (5.30)

where the objects G(ω+), G(0)(ω+) and T (ω+) are to be understood as matrices with
indices k, d. The quantity G(0)(ω+) is the unperturbed Green’s function of the fermions
without the presence of the resonant level. It is diagonal in quasi momentum represen-
tation:

G
(0)
kk′(ω

+) =
δkk′

ω+ − k
. (5.31)
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As a consequence, the T -matrix is independent of the quasi momenta. The origin of
this property lies in the structure of the resonant level Hamiltonian. The interaction is
pointlike such that the hopping element V itself is independent of k. Due to Eq. (5.17)
the T -matrix is given by the following expression:

Tkk′(ω+) = T (ω+) =
V 2

ω+ + i∆
. (5.32)

The knowledge of the T -matrix enables the evaluation of the scattering matrix S(ε) by
use of the relation [38]

S(ε) = 1− 2πiρ(ε)T (ε) =
ε− i∆
ε + i∆

(5.33)

where ρ(ε) = L/(2π) is the density of states of the fermions at energy ε that is constant
due to the linear spectrum. An important quantity that is related to the S-matrix, is the
phase shift δ(ε) of a fermion of energy ε that is scattered off the impurity. The phase
shifts can be obtained by taking the logarithm of the S-matrix [38]:

S(ε) = e2iδ(ε). (5.34)

Therefore, the phase shift at the Fermi energy εF = 0 takes the value:

δ(0) =
π

2
. (5.35)

This is consistent with the Friedel sum rule, see [16] for example, which states that the
phase shift at the Fermi energy divided over π is equal to the screening charge. The
screening charge is the amount of charge that is displaced in the bath of fermions by
the introduction of the local scatterer. In the resonant level model, the local level will be
occupied with a probability 1/2. Therefore, the bath fermions have to screen an amount
of charge of 1/2 consistent with the above calculation.

The Green’s functions in the time domain can be obtained by performing the inverse
Laplace transformation:

G(t) = lim
ε→0

1
2π

∫ ∞

−∞
dωe−iω+tG(ω+) (5.36)

where it is important to perform the limit ε → 0 after integration. For the calculation of
these integrals one can use the residue theorem yielding:

Gd(t) =− ie−∆t,

Gdk(t) = −i
V

k + i∆

[
e−ikt − e−∆t

]
,

Gkd(t) = −i
V

k + i∆

[
e−ikt − e−∆t

]
,

Gkk′(t) = −iδk,k′e
−ikt − iV 2

[
e−ikt

(k − k′)(k + i∆)
+

e−∆t

(k + i∆)(k′ + i∆)
+

e−ik′t

(k′ − k)(k′ + i∆)

]
.

(5.37)

Consequently, the transition matrix G for the resonant level model reads as:
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Gd(t) = e−∆t (5.38)

Gdk(t) =
V

k + i∆

[
e−ikt − e−∆t

]
(5.39)

Gkd(t) =
V

k + i∆

[
e−ikt − e−∆t

]
(5.40)

Gkk′(t) = δk,k′e
−ikt + V 2

[
e−ikt

(k − k′)(k + i∆)
+

e−∆t

(k + i∆)(k′ + i∆)
+

e−ik′t

(k′ − k)(k′ + i∆)

]
(5.41)

The transition matrix G carries the information of how the scattering states c†l |〉, l =
(k, d), behave in time where |〉 is the true vacuum, see for example [6]:

e−iHtc†l |〉 =
∑
l′

Gll′(t) c†l′ |〉, l = k, d. (5.42)

In other words, G states how a single fermion would behave without the presence of
the Fermi sea. The functions in Eq. (5.38) and Eq. (5.39), for example, reveal that a
fermion on the local level fully decays into bath fermions after an exponentially short
time where the time scale is given by the Kondo scale 1/∆ ∝ 1/TK , see Eq. (3.99).
The probability Pk(t) to find the fermion in the bath state k is independent of time for
t � 1/∆ where the shape of the probability distribution is a Lorentzian of width ∆, see
Fig. (5.1). In the continuum limit, Pk(t � 1/TK) is given by:

Pk(t � 1/TK) = |Gdk(t � 1/TK)|2 =
∆
π

1
k2 + ∆2

(5.43)

Since the local state is exactly located at the Fermi level ε = 0, the probability distribu-
tion Pk is centered around k = 0. Moreover, it is symmetric because of the particle-hole
symmetry of the Hamiltonian in the case of a linearized spectrum. The probability for
the inverse process, where a fermion in state c†k|〉 hops onto the resonant level, has to be
equal to Pk due to time reversal symmetry.

The presence of the local level induces transitions of a scattering state c†k|〉 into all
other states c†k′ |〉 in course of time as a result of two subsequent processes. First, the
fermion in state k hops onto the resonant level. After some time, it will decay into
some bath state k′ that may be different from the initial state k. In contrast to Pk, the
probability for transitions from c†k|〉 to c†k′ |〉 oscillates for all times and does not relax.
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Figure 5.1: Probability Pk for the scattering state d†|〉 to decay into a bath scattering
state c†k|〉 after time t � 1/TK in the resonant level model

5.3 Period matrix M

Despite the difficulty of time evolution due to a time-dependent Hamilton operator, the
symmetry of the Hamiltonian H(t+τ) = H(t) can be exploited for the description of the
time development of the single-particle operators. The periodicity leads to a separation
of time scales, the time evolution over multiple periods and the time evolution within
one, see Sec. (4.2). As mentioned in the section before, the time evolution over one
period τ is given by the subsequent application of two time-independent Hamiltonians.
Firstly, a resonant level Hamiltonian and, secondly, the free Hamiltonian of a gas of
noninteracting fermions. In the Schrödinger picture an initial state |Ψ〉 evolves into the
state

|Ψ(τ)〉 = e−iH0τ/2e−iHRLMτ/2|Ψ〉 (5.44)

after one period τ . Accordingly, in the Heisenberg picture an operator O transforms in
time in the following way:

O(τ) = eiHRLMτ/2eiH0τ/2Oe−iH0τ/2e−iHRLMτ/2. (5.45)

Remarkably, the order of application of the two time evolution operators changes in the
Heisenberg picture. At first, the operators are evolved according to the Hamiltonian
that acts at last.

For the free Hamiltonian H0 =
∑

k k : c†kck : the transition matrix G(0) for the single-
particle operators is diagonal:

G(0)
kk′(t) = δkk′e

−ikt, G(0)
dd = 1, G(0)

dk = G(0)
kd = 0. (5.46)
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According to Eq. (5.45), the transition matrix M over one period is obtained by a suc-
cessive application of G(0)(τ/2) and the transition matrix G(τ/2) of the resonant level
model (5.41):

M = G
(τ

2

)
G(0)

(τ

2

)
, cl(τ) =

∑
l′

Mll′cl′ . (5.47)

The operators are first evolved according to the free Hamiltonian followed by the res-
onant level model. The matrix M will be called period matrix from now on. Using
the results for G and G(0), the matrix elements of the period matrix can be obtained by
matrix multiplication:

Md = e−∆ τ
2 (5.48)

Mdk =
V

k + i∆

[
e−ik τ

2 − e−∆ τ
2

]
(5.49)

Mkd =
V

k + i∆
e−ik τ

2

[
e−ik τ

2 − e−∆ τ
2

]
(5.50)

Mkk′ = δk,k′e
−ikτ+V 2e−ik τ

2

[
e−ik τ

2

(k − k′)(k + i∆)
+

e−∆ τ
2

(k + i∆)(k′ + i∆)
+

e−ik′ τ
2

(k′ − k)(k′ + i∆)

]
(5.51)

5.4 Powers of the period matrix

For the long-time behavior of the system all operators have to be evolved over multiple
periods. This corresponds to a successive application of the period matrix M onto the
single-particle annihilation operators:

cl(Nτ) =
∑
l′

(
MN

)
ll′

cl′ , (5.52)

thereby reducing the problem of long-time evolution to a matrix multiplication prob-
lem. The long-time behavior of the annihilation operators is completely determined
by the matrix elements of powers of the period matrix M that will be denoted in the
following way:

M(N)
ll′ :=

(
MN

)
ll′

. (5.53)

In general, the computation of the matrix elements of any power of some matrix can be
an arbitrarily difficult task. The matrixM, however, displays nice properties that make
the calculation feasible. No element of M exhibits a pole in the complex plane and the
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Figure 5.2: Contour γ

exponentials e−ikt are such that one can always choose integration contours in the lower
half plane. Application of the residue theorem then shows that most of the terms do
not contribute. The goal will be to derive recursion formulas for the elements M(N)

ll′ by
a proper splitting of the sums that appear in a matrix multiplication of multiple period
matrices M.

5.4.1 Preliminary calculations

As indicated before, the derivation of the matrix elements is based on elementary prop-
erties of the period matrixM. Most importantly, there is no matrix element that exhibits
a pole in the complex plane. As a consequence, a lot of sums will vanish.

A sum that will appear later is the following:

∑
k

MdkMkde
−iλkτ L→∞=

∆
π

∫ ∞

−∞
dk e−ik[λ+1/2]τ e−ikτ/2 − e−∆τ/2

k + i∆
e−ikτ/2 − e−∆τ/2

k + i∆
(5.54)

where λ is an arbitrary positive integer. Since the integrand exhibits no pole in the
complex plane, the integration contour can be deformed in an arbitrary fashion into
the lower complex plane [19], as is indicated in Fig. (5.2). The path γ of the integration
contour can be chosen to be:

γ(s) = −Reiπs s ∈ [0, 1] (5.55)

where the limit R → ∞ is to be taken in the end, since only in this case the integration
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over γ is equal to the integration of k over the whole real axis:

∑
k

MdkMkde
−iλkτ = lim

R→∞

∆
π

∫ 1

0
ds
[
−iπReiπs

]
eiR cos(πs)[λ+1/2]τ−R sin(πs)[λ+1/2]τ×

×eiR cos(πs)τ/2−R sin(πs)τ/2 − e−∆τ/2

−Reiπs + i∆
eiR cos(πs)τ/2−R sin(πs)τ/2 − e−∆τ/2

−Reiπs + i∆
.

(5.56)

Since the integrand is at least of the order 1/R, the integral vanishes in the limit R →∞:∑
k

MdkMkde
−iλkτ = 0. (5.57)

As already mentioned, the first index of the period matrix M marks the initial and the
second index the final scattering state in a single particle picture. Therefore, Mdk is for
the probability amplitude for a scattering state d†|〉 to evolve into c†k|〉 after one period τ .
The total probability amplitude for a fermion to stay on the local level after two periods
is given by:

M(2)
dd = MddMdd +

∑
k

MdkMkd. (5.58)

Consequently, the second part of this expression gives the total contribution of all pro-
cesses where the fermion has hopped into any bath state k after one period and hops
back onto the local level a period later. Due to Eq. (5.57), this term vanishes. Therefore,
the decay of the local fermion is not influenced by processes that include transitions
d → k → d. Furthermore, the intermediate time evolution of the bath states c†k|〉 due
to a free Hamiltonian is irrelevant for the decay. This will be of great importance in the
evaluation of correlation functions in the next chapter.

To tackle sums involving Mkk′ it is suitable to separate two parts:

Mkk′ = δkk′e
−ikτ + Lkk′ ,

Lkk′ = V 2e−ikτ/2

[
e−ikτ/2

(k − k′)(k + i∆)
+

e−∆τ/2

(k + i∆)(k′ + i∆)
+

e−ik′τ/2

(k′ − k)(k′ + i∆)

]
.

(5.59)

Based on this separation, the evaluation of the sum∑
k′

Mdk′Mk′ke
−iλk′τ = Mdke

−i[λ+1]kτ +
∑
k′

Mdk′Lk′ke
−iλk′τ (5.60)

reduces to the evaluation of
∑

k′Mdk′Lk′k that can be done using a deformed integra-
tion contour as before:∑

k′

Mdk′Lk′ke
−iλk′τ L→∞= V

∆
π

∫
dk′ e−i[λ+1/2]k′τ e−ik′τ/2 − e−∆τ/2

k′ + i∆
×

×

[
e−ikτ/2

(k − k′)(k + i∆)
+

e−∆τ/2

(k + i∆)(k′ + i∆)
+

e−ik′τ/2

(k′ − k)(k′ + i∆)

] (5.61)

Again, L has no poles in the complex plain such that the integration contour can be
deformed to match γ, see Eq. (5.55), as in the previous case. Analogously, performing
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the limit R →∞ the integral above vanishes such that:

∑
k′

Mdk′Mk′ke
−iλk′τ = Mdke

−i[λ+1]kτ . (5.62)

The case where the order of k and d is interchanged as well as the case where the sum-
mands are Mkk and Mkk′ can be calculated straightforwardly:

∑
k

MkkMkk′e
−iλkτ =

∑
k

[
δkke

−ikτ + Lkk

] [
δkk′e

−ik′τ + Lkk′

]
e−iλkτ

= δkk′e
−i[λ+2]τ + Lkk′

[
e−ikτ + e−ik′τ

]
e−iλτ +

∑
k

LkkLkk′e
−iλkτ .

(5.63)

The sum on the right hand side will vanish since the corresponding integrands do not
have poles in the complex plane such that the integration contour γ as in Eq. (5.55) can
be used as before. Concluding, the elementary property that the Green’s functions do
not have any poles made the evaluation of the sums above very simple.

∑
k

MdkMkde
−iλkτ = 0 (5.64)

∑
k′

Mkk′Mk′de
−iλk′τ = Mkde

−i[λ+1]kτ (5.65)

∑
k′

Mdk′Mk′ke
−iλk′τ = Mdke

−i[λ+1]kτ (5.66)

∑
k”

Mkk”Mk”k′e
−iλk”τ = δkk′e

−i[λ+2]kτ + Lkk′

[
e−i[λ+1]kτ + e−i[λ+1]k′τ

]
(5.67)

5.4.2 The matrix element M(N)
dd

Based on these preliminary calculations the evaluation of powers of the period matrix
M is straightforward. The matrix element that is most easily derived is M(N)

dd . Using
its definition, see Eq. (5.53), M(N)

dd can be written as a matrix product:

M(N)
dd =

∑
l1,...,lN−1

Mdl1Ml1l2 . . .MlN−1d (5.68)
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where the sums run over all intermediate indices such that for each li = ki, d. The sums
in this expression can be splitted such that one obtains:

M(N)
dd =

∑
l1,...,lN−2

Mdl1 . . .MlN−2dMdd +
∑

l1,...,lN−2,kN−1

Mdl1 . . .MlN−2kN−1
MkN−1d =

= M(N−1)
dd Mdd +

∑
l1,...,lN−3,kN−1

Mdl1 . . .MlN−2dMdkN−1
MkN−1d+

+
∑

l1,...,lN−3,kN−2,kN−1

Mdl1 . . .MlN−3kN−2
MkN−2kN−1

MkN−1d.

(5.69)

Using Eq. (5.64) the second term in the expression above cancels and one arrives at:

M(N)
dd = M(N−1)

dd e−∆τ/2 +
∑

l1,...,lN−3,kN−2

Mdl1 . . .MlN−3kN−2
MkN−2de

−ikN−2τ . (5.70)

Again, if lN−3 = d, the sum over kN−2 vanishes as before. As a consequence, only the
sum over kN−3 remains and a summation over kN−2 produces another phase factor
according to Eq. (5.65):

M(N)
dd = M(N−1)

dd e−∆τ/2 +
∑

l1,...,lN−4,kN3

Mdl1 . . .MlN−4kN−3
MkN−3de

−i2kN−3τ . (5.71)

A successive application of this procedure leads to:

M(N)
dd = M(N−1)

dd e−∆τ/2 +
∑
k1

Mdk1Mk1de
−i[N−2]k1τ = M(N−1)

dd e−∆τ/2. (5.72)

This recursive formula for the sequence M(N)
dd can be solved directly yielding:

M(N)
dd = e−N∆τ/2. (5.73)

In comparison with Eq. (5.17) the matrix element M(N)
dd is connected to a retarded

Green’s function
M(N)

dd = Gd(Nτ) =
〈{

d(N τ), d†
}〉

. (5.74)

This Green’s function has already been analyzed in the work by Langreth and Nord-
lander [24] for an arbitrary time dependence of the hopping amplitude V in a resonant
level model by solving the corresponding Dyson equations resulting in:

Gd(N τ) = e−
R Nτ
0 dt, ∆(t) = e−∆Nτ/2 ∆(t) =

L

2
V 2(t) (5.75)

consistent with the calculation above.

5.4.3 The matrix elements M(N)
kd and M(N)

dk

The evaluation of M(N)
kd differs from that of M(N)

dd only in one of the last steps. Until
Eq. (5.72) the derivation can be simply adopted such that one obtains:

M(N)
kd = M(N−1)

kd Mdd +
∑
k1

Mkk1Mk1de
−i[N−2]k′τ = M(N−1)

kd Mdd +Mkde
−i[N−1]kτ .

(5.76)
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This recursive formula is solved by a geometric series that can be summed up to give:

M(N)
kd = Mkd

e−iNkτ − e−N∆τ/2

e−ikτ − e−∆τ/2
. (5.77)

The matrix element M(N)
dk can be derived in the same way by splitting the sums from

the left hand side:

M(N)
dk = Mdd

∑
l2,...,lN−1

Mdl2 . . .MlN−1k +
∑

k1,l2,...,lN−1

Mdk1Mk1,l2 . . .MlN−1k =

=MddM
(N−1)
dk +

∑
k1,l3,...,lN−1

Mdk1Mk1dMdl3 . . .MlN−1k+

+
∑

k1,k2,l3,...,lN−1

Mdk1Mk1k2Mk2l3 . . .MlN−1k.

(5.78)

By use of Eq. (5.64) and Eq. (5.66) one arrives at a recursive formula of the same type as
for M(N)

kd :

M(N)
dk = MddM

(N−1)
dk +Mdke

−i[N−1]kτ . (5.79)

The solution of this relation is determined by a geometric series resulting in:

M(N)
dk = Mdk

e−iNkτ − e−N∆τ/2

e−ikτ − e−∆τ/2
. (5.80)

5.4.4 The matrix element M(N)
kk′

As before, the evaluation of M(N)
kk′ starts with a proper splitting of sums:

M(N)
kk′ = Mkd

∑
l2,...,lN−1

Mdl2 . . .MlN−1k′ +
∑

k1,l2,...,lN−1

Mkk1Mk1l2 . . .MlN−1k′

=MkdM
(N−1)
dk′ +

∑
k1,l3,...,lN−1

Mkk1Mk1dMdl3 . . .MlN−1k′

+
∑

k1,k2,l3,...,lN−1

Mkk1Mk1k2Mk2l3 . . .MlN−1k′

= MkdM
(N−1)
dk′ + e−ikτMkdM

(N−2)
dk′ +

∑
k1,k2,l3,...,lN−1

Mkk1Mk1k2Mk2l3 . . .MlN−1k′ .

(5.81)

Continuing the procedure of evaluating the contributions where an index d appears
leads to:

M(N)
kk′ =

N−1∑
j=1

MkdM
(N−j)
dk′ e−i[j−1]kτ +

∑
k1,...,kN−1

Mkk1 . . .MkN−1k′ . (5.82)
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The first part can be summed up after insertion of the expression for M(N−j)
dk′ , see

Eq. (5.80), by use of the formula for the geometric series:

N−1∑
j=1

M(N−j)
dk′ e−i[j−1]kτ =

=
Mdk′e

ikτ

e−ik′τ − e−∆τ/2

N−1∑
j=1

[
e−i[N−j]k′τe−ijkτ − e−[N−j]∆τ/2e−ijkτ

]

=
Mdk′e

ikτ

e−ik′τ − e−∆τ/2

[
e−iNk′τ e−i[k−k′]τ − e−iN [k−k′]τ

1− e−i[k−k′]τ
−

− e−N∆τ/2 e−ikτe∆τ/2 − e−iNkτeN∆τ/2

1− e−ikτe∆τ/2

]

= Mdk′

[
e−iNkτ

[e−ikτ − e−ik′τ ]
[
e−ikτ − e−∆τ/2

]+
+

e−N∆τ/2[
e−ikτ − e−∆τ/2

] [
e−ik′τ − e−∆τ/2

]
+

e−iNk′τ

[e−ik′τ − e−ikτ ]
[
e−ik′τ − e−∆τ/2

]] .

(5.83)

The matrix K: The second term in Eq. (5.82) can be evaluated by constructing a proper
recursion formula. At this point it is suitable to define another object K(N) as:

K(N)
kk′ =

∑
k1,...,kN−1

Mkk1 . . .MkN−1k′ . (5.84)

By applying Eq. (5.67) to the sum over kN−1 one arrives at:

K(N)
kk′ =

∑
k1,...,kN−2

Mkk1 . . .MkN−3kN−2

[
δkN−2k′e

−i2k′τ + LkN−2k′

(
e−ikN−2τ + e−ik′τ

)]
.

(5.85)

The matrix element LkN−2k′ can be rewritten in terms of the period matrix due to
Eq. (5.59), LkN−2k′ = MkN−2k′ − δkN−2k′e

−ik′τ :

K(N)
kk′ =

∑
k1,...,kN−2

Mkk1 . . .MkN−3kN−2

[
MkN−2k′

(
e−ikN−2τ + e−ik′τ

)
− δkN−2k′e

−i[kN−2+k′]τ
]

= K(N−1)
kk′ e−ik′τ −K(N−2)

kk′ e−i2k′τ +
∑

k

K(N−2)

kk
Mkk′e

−ikτ .

(5.86)

This recursion formula can be solved in an unusual way by considering the following
sequence of expressions:

K(N)
kk′ = K(N−1)

kk′ e−ik′τ −K(N−l)
kk′ e−ilk′τ +

∑
k

K(N−l)

kk
Mkk′e

−i[l−1]kτ (5.87)
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where l = 2, . . . , N − 1. For l = 2 this formula is true as it reproduces the derived
expression. As will be shown by induction this formula is true for all l. Assuming
validity for l, that is true for l = 2, validity for l + 1 is also given:

K(N)
kk′ = K(N−1)

kk′ e−ik′τ −K(N−l)
kk′ e−ilk′τ +

∑
k

K(N−l)

kk
Mkk′e

i[l−1]kτ

= K(N−1)
kk′ e−ik′τ −K(N−l)

kk′ e−ilk′τ +
∑
k k

′

K(N−l−1)

kk
′ M

k
′
k
Mkk′e

−i[l−1]kτ .
(5.88)

The summation over k can be carried out by use of Eq. (5.67). According to the previous
considerations, L can be rewritten in terms of the period matrixM such that one arrives
at the desired expression:

K(N)
kk′ = K(N−1)

kk′ e−ik′τ −K(N−l−1)
kk′ e−i[l+1]k′τ +

∑
k

K(N−l−1)

kk
Mkk′e

−ilkτ . (5.89)

Consequently, insertion of l = N − 1 into this formula leads to the recursion formula
that allows to determine K by noting that K(1) = M:

K(N)
kk′ = K(N−1)

kk′ e−ik′τ −Mkk′e
−i[N−1]k′τ +

∑
k

MkkMkk′e
−i[N−2]kτ

= K(N−1)
kk′ e−ik′τ + e−i[N−1]kτLkk′ .

(5.90)

The solution of this recursion formula with initial condition

K(1)
kk′ = δkk′e

−ikτ + Lkk′ (5.91)

is given by:

K(N)
kk′ = δkk′e

−iNkτ + Lkk′
e−iNkτ − e−iNk′τ

e−ikτ − e−ik′τ
. (5.92)

By combining all contributions, the matrix element M(N)
kk′ is given by the following

formula:

M(N)
kk′ = δkk′e

−iNkτ + Lkk′
e−iNkτ − e−iNk′τ

e−ikτ − e−ik′τ
+

+MkdMdk′

[
e−iNkτ

[e−ikτ − e−ik′τ ]
[
e−ikτ − e−∆τ/2

]+
+

e−N∆τ/2[
e−ikτ − e−∆τ/2

] [
e−ik′τ − e−∆τ/2

]
+

e−iNk′τ

[e−ik′τ − e−ikτ ]
[
e−ik′τ − e−∆τ/2

]] .

(5.93)

5.4.5 Summary

In the preceding parts of this section matrix elements of powers of the period matrixM
have been calculated determining the long-time behavior of the annihilation operators
and scattering states. This has been achieved by deriving recursion formulas whose
solutions are known. The results are summarized below:
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M(N)
dd = e−N∆τ/2 (5.94)

M(N)
dk = Mdk

e−iNkτ − e−N∆τ/2

e−ikτ − e−∆τ/2
(5.95)

M(N)
kd = Mkd

e−iNkτ − e−N∆τ/2

e−ikτ − e−∆τ/2
(5.96)

M(N)
kk′ = δkk′e

−iNkτ + Lkk′
e−iNkτ − e−iNk′τ

e−ikτ − e−ik′τ
+

+MkdMdk′

[
e−iNkτ

[e−ikτ − e−ik′τ ]
[
e−ikτ − e−∆τ/2

]+
+

e−N∆τ/2[
e−ikτ − e−∆τ/2

] [
e−ik′τ − e−∆τ/2

]
+

e−iNk′τ

[e−ik′τ − e−ikτ ]
[
e−ik′τ − e−∆τ/2

]]
(5.97)

Remarkably, the decay of a fermion on the local level is unaffected by the driving pro-
cess, contrary to what one might expect. As in the equilibrium dynamics due to a res-
onant level model Hamiltonian, see Eq. (5.38), the probability amplitude for a fermion
to stay on the local level decays exponentially in time. The time scale of the decay 2/∆,
however, is twice the time scale in the equilibrium setup. Remarkably, the decay is
solely determined by the total time during which the interaction in the resonant level
model is switched on, that is Nτ/2 after N periods. This behavior is a consequence
of Eq. (5.64) stating that the probability amplitude for a fermion to stay on the local
level is not influenced by processes in which the fermion intermediately hops into the
continuum of bath states. Therefore, it is only important how much time has passed in
which the local dynamics are switched on. This is consistent with the results of Lan-
greth and Nordlander [24] as already discussed before, see Eq. (5.75). In this work the
local retarded Green’s function G(t, t′) = −iθ(t − t′)〈{d(t), d†(t′)}〉 has been calculated
for an arbitrary time dependence of the hopping element V by solving the correspond-
ing Dyson equations. Inserting the particular periodic time dependence into G(Nτ, 0),
which is equal to the matrix element M(N)

dd , shows perfect agreement.
It is important to note that the whole analysis in this section only applies for the

scattering states, i.e. only the dynamics for a single fermion in absence of the bath
are considered. The real many-body situation of fermions subject to the bath will be
regarded in the next chapter.

The equilibrium Kondo model exhibits only one scale, the Kondo temperature TK

that is connected to the parameters of the resonant level model through TK = πw∆, see
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Figure 5.3: Fermions on the local level can hop into the continuum of bath states by
absorbing or emitting multiple quanta of Ω

Eq. (3.99). Its inverse
tK = 1/TK (5.98)

is the corresponding internal time scale, the time scale for the buildup of the Kondo
correlations [31]. In the present setup another time scale emerges, the time scale of the
switching τ with a corresponding energy scale set by the driving frequency Ω = 2π/τ .
Remarkably, all matrix elements of MN as proper scaled functions depend on the two
parameters TK and τ only through their product. Therefore, it is only important how
fast the interaction in the Kondo Hamiltonian is switched in comparison to the internal
time scale. Consequently, the only parameter in the present setup is

η =
τ

tK
(5.99)

that compares the speed of switching with the internal time scale.
Regarding the k-dependent matrix elements ofMN , the periodic driving in the res-

onant level model leads to transitions of fermions where multiple quanta of the driv-
ing frequency Ω are absorbed or emitted. This can be seen by analyzing the quantity∣∣∣M(N)

dk

∣∣∣2, that is the probability PN
k for a scattering state d†|〉 to evolve into a bath state

c†k|〉 after a time Nτ , see Eq. (5.42). Here, |〉 stands for the true vacuum without any
fermion as before. The scattering states describe the time evolution of a single fermion
without the presence of a bath in a pure single particle picture. After N � 1/η periods
this probability density becomes stationary and is given by the following expression in
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Figure 5.4: Universal curves for the probability PN→∞
k for a scattering state d†|〉 to

evolve into a state c†k|〉 after N � 1/η periods

the continuum limit:

PN→∞
k =

∆
π

1
k2 + ∆2

1− 2 cos (kτ/2) e−∆τ/2 + e−∆τ

1− 2 cos (kτ) e−∆τ/2 + e−∆τ
. (5.100)

Regarding the case of time evolution in a time-independent resonant level model, see
Eq. (5.43), this probability distribution gets modified by a multiplicative factor that ac-
counts for processes in which fermions undergo transitions by absorbing or emitting
quanta of Ω. A plot of PN→∞

k as a function of k/Ω is shown in Fig. (5.4) for different
values of the parameter η, the only parameter in the problem. Clearly, pronounced
structures at multiples of the driving frequency Ω are observed. Surprisingly, there is
an asymmetry between even and odd multiples of Ω whose origin will be discussed
later. The probability distribution PN→∞

k as a function of k/TK is shown in Fig. (5.5).
As a reference the equilibrium curve is included as the dashed line.

The limit η → ∞: For slow switching, i.e. large η, the deviation from the equilib-
rium curve is small. If the period τ is large, the scattering state d†|〉 decays completely
into bath states in the first half period according to the simple dynamics in a time-
independent resonant level model. The probability to find the fermion in state k is
given by the equilibrium formula, see Eq. (5.43), that is a Lorentzian of width ∆. The
subsequent time evolution due to a free Hamiltonian merely causes the different k-
states to acquire their corresponding phase factors in course of time. Eq. (5.62) implies
that the additional application of a resonant level model Hamiltonian is not sufficient
to cause further transitions. Remarkably, the subsequent time evolution is not affected
by the driving process. Consequently, after the first period the scattering state d†|〉 has
reached its equilibrium configuration that cannot be changed by an additional time
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k for a scattering state d†|〉 to

evolve into a state c†k|〉 after N � 1/η periods for different values of η = τTK . The
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evolution with a free or resonant level Hamiltonian. Therefore, in the limit η → ∞
the probability distribution PN→∞

k approaches the equilibrium form as can be seen in
Fig. (5.5).

Intermediate η: Deviating from this limit, side-peaks appear that are located at odd
multiples of the driving frequency Ω such that spectral weight is transferred from the
central peak to the satellites. For values of η < ∞ the scattering state d†|〉 is not able to
decay completely into bath states after the first half period. With a probability of e−∆τ

one can still find the fermion on the local level. According to Eq. (5.39) the probability
density for the fermion to be decayed into the scattering state c†k|〉 after the time τ/2 is
given by the formula in the continuum limit:

|Gdk(τ/2)|2 =
∆
π

1
k2 + ∆2

[
1− 2 cos(kτ/2)e−∆τ/2 + e−∆τ

]
. (5.101)

For values of kn = (2n + 1)Ω, n ∈ Z, i.e. odd multiples of the driving frequency, this
function approaches a local maximum of magnitude ∆/π[1 + e−∆τ ]2/[k2

n + ∆2]. The
next half period leads to a trivial time evolution where the modulus of the amplitude
for each k stays constant whereas a phase factor of e−ikτ/2 is acquired. Thereafter, the
dynamics are again governed by a resonant level model Hamiltonian. According to
Eq. (5.66), the further time evolution of a k-state does not lead to additional transitions
to other k-states. As in a free time evolution the amplitudes get modified by a phase
factor only. Nevertheless, a fermion on the local level can evolve further where the
probability for hopping into states kn = (2n + 1)Ω, n ∈ Z, is enhanced again. A contin-
ued application of this two step time evolution leads to Eq. (5.100) for the probability
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distribution PN→∞
k . The shorter is the period τ , the smaller the magnitude of the local

maxima turns out to be. Due to the increase of the driving frequency Ω the position of
the local maxima will move to larger values.

The limit η → 0: Formally, this limit can be performed. Nevertheless, one should
keep in mind that the mapping from the Anderson impurity model onto the resonant
level model is only valid for sufficiently small driving frequencies Ω such that the quan-
tum dot is not ionized, see Eq. (4.10). Consequently, there is a lower bound for the
switching period τ � 1/|εd|, 1/(εd + U) where εd is the energy of the local level in a
quantum dot and U the Coulomb repulsion.

The limit τ → 0 has to be done with certain care, however, as will be shown in the
following. Since PN→∞

k is a probability distribution, it should be normalized to 1:∑
k

PN→∞
k = 1. (5.102)

The normalization condition can be proven for all finite τ most easily by using the
Fourier series of the multiplicative factor, see Eq. (A.1):

1− 2 cos (kτ/2) e−∆τ/2 + e−∆τ

1− 2 cos (kτ) e−∆τ/2 + e−∆τ
=
∑
n∈Z

cneikτ/2 (5.103)

with coefficients

cn =


1 + e−∆τ

1− e−∆τ
e−|n|∆τ/4 , for n even

−2 cosh(∆τ/4)
e−∆τ/2

1− e−∆τ
e−|n|∆τ/4 , for n odd.

(5.104)

Performing the limit τ → 0 in Eq. (5.100) leads to an expression that seems to be similar
to an equilibrium probability distribution of a resonant level Hamiltonian with different
parameters:

lim
τ→0

PN→∞
k =

V 2/4
k2 + ∆2/4

. (5.105)

Integrating PN→∞
k over all k in this limit yields∑

k

lim
τ→0

PN→∞
k =

1
2

(5.106)

indicating that one has to be careful in taking this limit since a probability distribution
should be normalized to 1. Actually, the limit τ → 0 does not commute with the infinite
sum because PN→∞

k is only pointwise convergent. The loss of spectral weight of 1
2

is caused by shifting the side peaks to ±∞ in an uncontrolled way. Effectively, by
performing the limit directly at the level of the probability distribution, all the spectral
weight of the side peaks is lost. Therefore, the limit of τ → 0 should be performed
with care. A more detailed analysis of this limiting behavior will be given in the next
chapter.
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time0

cl cl(t)

τ nτ [n + 1]τ

t

snτ

Figure 5.6: Splitting of time evolution in the Heisenberg picture.

5.5 Time evolution of single-particle operators

Based on the previous parts of this section the long-time dynamics of the single-particle
operators are analytically accessible by separating the time evolution into two parts,
the time evolution over an integer number periods and a short time evolution within
one. The order of time evolution, however, is changed for the operators in the Heisen-
berg picture according to Eq. (5.45), namely the operators are evolved according to the
Hamiltonian that acts at last as indicated in Fig. (5.6). Suppose, one is interested in an
annihilation operator cl at some time t. For this purpose it is most convenient to split t
into two parts:

t = nτ + s, 0 6 s < τ. (5.107)

According to this separation the time evolved operator cl(t) can be written in the fol-
lowing way

cl(t) = P †(nτ, 0) P †(nτ + s, nτ) cl P (nτ + s, nτ) P (nτ, 0) (5.108)

where P (t, t0) is the time evolution operator that evolves a state |Ψ〉 at time t0 to the
final state at time t

|Ψ(t)〉 = P (t, t0)|Ψ(t0)〉. (5.109)

If s 6 τ/2 the propagator P (nτ + s, nτ) takes a simple form since in the correspond-
ing time window [nτ, nτ + s] the Hamiltonian is time-independent and given by the
resonant level model Hamiltonian

s 6 τ/2 −→ P (nτ + s, nτ) = e−iHRLMs. (5.110)

In the case where s > τ/2, the propagator P (nτ +s, nτ) factorizes into two exponentials

s > τ/2 −→ P (nτ + s, nτ) = e−iH0[s−τ/2] e−iHRLMτ/2. (5.111)

The operator whose dynamics are the simplest is the operator d of the local level.
In the case where s 6 τ/2, the time evolution back to nτ is completely determined by
the dynamics of a resonant level model Hamiltonian. According to Eq. (5.17), all the
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information about the time evolution of the single-particle operators is encoded in the
transition matrix G where G is given by Eq. (5.38):

P †(nτ + s, nτ) d P (nτ + s, nτ) = Gd(s) d +
∑

k

Gdk(s) ck. (5.112)

If s > τ/2, the time evolution operator of a free Hamiltonian has to be applied first.
Since d commutes with H0, it commutes with the corresponding propagator, too, such
that

P †(nτ + s, nτ) d P (nτ + s, nτ) = Mdd d +
∑

k

Mdk ck. (5.113)

Plugging both relations into Eq. (5.108) one obtains:

d(t) = θ
(τ

2
− s
)[
Gd(s) d(nτ) +

∑
k

Gdk(s) ck(nτ)

]
+

+ θ
(
s− τ

2

)[
M(n+1)

dd d +
∑

k

M(n+1)
dk ck

]
.

(5.114)

Conveniently, one can continue the calculation by regarding s to be in the interval
[
0, τ

2

]
without caring about the step function θ. The operators on the right hand side of the
equation above are known from the last section. They are given by the matrix elements
of powers of the period matrix M, see Eq. (5.52):

d(nτ) = M(n)
dd d +

∑
k

M(n)
dk ck,

ck(nτ) = M(n)
kd d +

∑
k′

M(n)
kk′ ck′ .

(5.115)

Consequently, one obtains:

d(t) =

[
Gd(s)M

(n)
dd +

∑
k

Gdk(s)M
(n)
kd

]
d+

+
∑

k

[
Gd(s)M

(n)
dk +

∑
k′

Gdk′(s)M
(n)
k′k

]
ck.

(5.116)

The sums over intermediate indices in the expressions above can be obtained easily by
use of the same techniques as in the calculation of Eq. (5.64) and Eq. (5.66):∑

k

Gdk(s)M
(n)
kd = 0,∑

k′

Gdk′(s)M
(n)
k′k = Gdk(s) e−inkτ .

(5.117)

expressing again the observation that the dynamics of a fermion on the local level are
not influenced by processes in which the fermion hops back onto the local level af-
ter being in the continuum of bath states intermediately. Therefore, the time evolved
single-particle operator d(t) obeys the following relation:
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d(t) = θ
(τ

2
− s
)[
Gd(s)M

(n)
dd d +

∑
k

(
Gd(s)M

(n)
dk + Gdk(s)e−inkτ

)
ck

]

+ θ
(
s− τ

2

)[
M(n+1)

dd d +
∑

k

M(n+1)
dk ck

]
(5.118)

.
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Chapter 6

Correlation functions

In the last section the time evolution in the periodic driving setup has been analyzed in
a pure single-particle picture, i.e. the dynamics of the annihilation operators and scat-
tering states of the effective Hamilton picture have been determined without referring
to their implications onto the dynamics in the time-dependent nonequilibrium Kondo
model. In this chapter the full many-body situation will be considered by analyzing the
magnetization 〈Sz(t)〉 and the spin-spin correlation function 〈Sz(t)Sz(t′)〉. Reminding
Chapter 4, the periodic driving setup obeys the following protocol. Initially, the system
is prepared in the ground state |ΨGS〉 of the Kondo Hamiltonian without spin dynamics
that corresponds to the free part of the noninteracting resonant level model. At some
time t = t0 the periodic driving process starts where subsequently the spin dynamics
in the Kondo Hamiltonian are switched on and off. After an infinite number of periods
the system approaches a quasi-steady state, a state in which all correlation functions
are invariant under a discrete time shift of one period τ , see Eq. (4.36). The purpose
of this work is a characterization of this quasi-steady state by analyzing the influence
of the periodic switching onto local properties. The quasi-steady state is generated by
shifting t0 to −∞ by performing the limit t0 = − limN→∞ Nτ . Consequently, the state
|Φ〉 over which observables are to be averaged is given by:

|Φ〉 = lim
N→∞

|ΨGS(Nτ)〉. (6.1)

Remarkably, it will be shown that the magnetization of the impurity spin is not af-
fected by the driving process. It decays exponentially where it is only important how
much time has passed during which the spin dynamics have been switched on and the
spin operator Sz has evolved nontrivially. Therefore, the excitations that are created
due to the periodic driving do not influence the impurity spin orientation. This is a
consequence of the results of the last chapter for the single-particle dynamics in a time-
dependent resonant level model where the probability for a local d fermion to stay on
the local level in a single-particle picture is not affected by the periodic driving setup.

Due to the periodic driving, energy is pumped into the system in each period.
Because of the built-in dissipation mechanism, the so-called open system limit, see
Eq. (4.4), this excess energy can flow away from the central region into the conduction
band thereby becoming irrelevant in the thermodynamic limit. Nevertheless, excita-
tions are created in the vicinity of the local level such that one could think of locally
heating the system. As a consequence of the analysis of the spin-spin correlation func-
tion in the quasi-steady state, the resulting excitations are substantially different from
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those that ar induced by temperature. Roughly speaking, the periodic driving leads to
a discrete ladder of excitation energies of multiples of the driving frequency Ω. This
discrete structure in the excitation spectrum, however, is fundamentally different from
that induced by temperature that smears the Fermi surface. As a consequence, the
Fermi surface remains sharp under the periodic switching, leading to a long time be-
havior ∝ t−2 of the spin-spin correlation as in equilibrium for zero temperature.

The equilibrium Kondo model exhibits only one energy scale, namely the Kondo
temperature TK , with an associated time scale

tK :=
1

TK
, (6.2)

that is the time scale for the build up of the Kondo effect [31]. In the present setup an-
other time scale emerges, the period of the switching τ . As was conjectured by Kamin-
ski et al. [21], the conductance through a quantum dot in the Kondo regime displays
a universal description even under time-dependent nonequilibrium conditions despite
the appearance of new energy and time scales in a nonequilibrium setup. Remark-
ably, they found that the Kondo temperature remains the only relevant energy scale.
Therefore, the question arises, if quantities like the spin-spin correlation function also
display universal behavior in the time-dependent nonequilibrium setup. It will turn
out that the spin-spin correlation function indeed exhibits a universal description. The
only parameter is

η =
τ

tK
(6.3)

comparing the speed of switching τ with the internal time scale tK . Additionally, the
Kondo temperature remains a meaningful parameter and the only relevant energy scale
in the periodic time-dependent setup.

6.1 Asymptotic behavior

6.1.1 The limit of long switching times

The properties of the Kondo system in the case of long switching times, τ → ∞, are
accessible by quite general arguments. As expected, the system relaxes in each half
period. Initially, the system is prepared in one of the degenerate ground states of the
Kondo Hamiltonian without spin dynamics, i.e. a product state in the effective Hamil-
ton picture:

|ΨGS〉 = |0〉 ⊗ |χ〉 (6.4)

where |0〉 is the Fermi sea of the spinless fermions and |χ〉 is a wave function of the local
level that has not to be specified at this point. A possible experimental realization using
a quantum dot was presented in Sec. (4.1.2). At time t = t0 the spin dynamics in the
Kondo Hamiltonian are switched on instantaneously, creating local excitations in the
vicinity of the impurity. After a transient time tK the Kondo correlations are developed
and the Kondo singlet has formed [31]. The excess energy in a neighborhood of the
local level that has been created by the interaction quench delocalizes and flows away
into the bath. After a sufficiently long time, the excitations spread over a large area in
the lead. Due to the property of the lead as a heat bath, delocalized excitations of the
order of the impurity do not contribute in the thermodynamic limit. Therefore, one can
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imagine the system to evolve towards the ground state of the Kondo model after long
times. As a result, in the limit τ → ∞, the system approaches a state that looks like
the interacting ground state after a time τ/2. The magnetization of the local level takes
a value of 〈Sz(τ/2)〉 = 0 corresponding to the particle-hole symmetry of the Kondo
Hamiltonian [25]. At this point, however, a subtlety arises. As pointed out by Lobaskin
and Kehrein [27], the overlap of the time evolved initial state |ΨGS(t)〉 = e−iHRLMt|ΨGS〉
with the true ground state Φ0 of the resonant level model Hamiltonian is constant in
time in an interaction quench scenario:

〈Φ0|ΨGS(t)〉 = 〈Φ0|ΨGS〉 = const. (6.5)

Rigorously speaking, the time evolved nonequilibrium state |ΨGS(t)〉 can never evolve
into the true ground state of the interacting Hamiltonian. Nevertheless, the time evolved
state |ΨGS(t)〉 may look like the true ground state for suitable local observables as will
be the case for the spin operator Sz . All statements about relaxation of the state itself in
the following are to be understood in this sense.

At time τ/2 the spin dynamics are switched off leading to a decoupling of the local
dynamics from the conduction band electron’s dynamics. Consequently, the local spin
is freezed and the Kondo singlet is destroyed. The released binding energy of the order
of TK flows away into the lead. As before delocalized excitations vanish in the thermo-
dynamic limit such that after a whole period the system approaches its noninteracting
ground state where the wave function of the level |χ′〉 is such that the magnetization
takes a value of 〈Sz〉 = 0:

|ΨGS(τ)〉 “ = ” |0〉 ⊗ |χ′〉. (6.6)

The quotation marks indicate that this equality has to be understood as correct only for
certain observables like the Sz operator due to the arguments given above. According
to Eq. (6.6), the system’s state at the moment where the second interaction quench takes
place is similar to the state at the moment of the first quench. Only the local wave
function may have changed. Most importantly, the state again is a product state and
does not contain any correlations. A further time evolution over another period does
not affect the outcoming wave function due to the arguments given above such that the
system will always be in the same state after an integer number of periods:

|ΨGS(nτ)〉 “ = ” |0〉 ⊗ |χ′〉. (6.7)

Concluding, in the limit τ → ∞ correlation functions involving Sz operators behave
as for a single interaction quench setting where the initial state is given by (6.6). This
situation was already addressed in a recent work by Lobaskin and Kehrein [27][28]
where the magnetization 〈Sz(t)〉 and spin-spin correlation function 〈Sz(t)Sz(t′)〉 have
been analyzed for an interaction quench in the Kondo model.

6.1.2 The limit of fast switching

The opposite limit of taking τ → 0 requires more care as already emphasized in the
last chapter, see Sec. (5.4.5). Strictly speaking, this limit cannot be taken since there is
an upper bound on the driving frequency Ω � |εd|, U + εd, see Eq. (4.10). If Ω & |εd|,
for example, the periodic driving is able to ionize the quantum dot by a process where
the local electron hops into the conduction band by absorbing an energy quantum Ω



72 6. Correlation functions

leaving behind a quantum dot without any electron. This situation, however, does not
correspond to the Kondo regime that requires a constant occupation of the local level
by exactly one electron. Therefore, the driving frequency has to be small enough not to
affect the occupation of the central region.

Another important restriction stems from the linearization of the dispersion rela-
tion that has to be performed for a proper use of the bosonization technique. The lin-
earization procedure is valid as long as one deals with the low energy properties of the
system. Consequently, the excitations of multiples of the driving frequency Ω that are
caused in the periodic driving setup should not lead out of the range of validity of the
linearization of the spectrum.

Nevertheless, the limit τ → 0 can be performed formally. Generally, one expects
that the system is not able to follow the switching as a consequence of mismatch of
time scales. The system is able to adapt to externally forced changes in the system’s
parameters on an internal time scale, that is the Kondo scale tK . If parameters are
varied faster than the internal time scale, i.e. for τ � tK , the system’s behavior cannot
adjust within one period. Therefore, correlation functions in the quasi-steady state are
expected to show behavior similar to equilibrium as will be shown for the spin-spin
correlation function. This, however, does not prohibit the build up of a quasi-steady
state since the system may adopt to the external perturbation over a large number of
periods.

6.2 Magnetization

One of the quantities characterizing the dynamics of the impurity spin is the spin ex-
pectation value P (t) = 〈Sz(t)〉 called the magnetization. In contrast to the spin-spin
correlation function, that will be analyzed in the quasi-steady state, the time depen-
dence of the spin expectation value will be determined starting from the beginning of
the driving process. The reason for this different treatment is that the interest of this
work is a characterization of the quasi-steady state. As it will turn out, the magnetiza-
tion does not provide much information about this state, it rather displays the system’s
behavior in the crossover regime from the initial to the quasi-steady state.

For a factorized initial state |0〉 ⊗ | ↑〉, the magnetization for a single interaction
quench has been calculated in numerous works [25] [24] [26] [27] with the result that it
decays exponentially in time:

P (t) =
1
2
e−t/T (6.8)

where the time scale T = tK/(2πw) is set by the Kondo time scale tK , w = 0.4128 de-
notes the Wilson number. As already emphasized in a previous chapter, see Sec. (3.2.5),
the dynamics of the local spin in terms of the operator Sz are accessible analytically.
Most importantly, Sz can be connected to the fermionic operators d and d† of the effec-
tive Hamiltonian in the following way, see Eq. (3.91):

Sz = d†d− 1
2
. (6.9)

Moreover, Sz commutes with all unitary transformations that are applied to the anisotropic
Kondo Hamiltonian in order to map it onto a resonant level model Hamiltonian. These
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observations enable the evaluation of the magnetization P (t) of the impurity spin:

P (t) = 〈Sz(t)〉. (6.10)

By use of the correspondence to the operators of the effective Hamiltonian, see Eq. (6.9),
P (t) is completely determined by the occupation nd(t) = 〈d†(t)d(t)〉 of the local d-level
in the picture of the effective resonant level model Hamiltonian:

P (t) = nd(t)−
1
2
. (6.11)

As emphasized in Sec. (5.5), it is convenient to divide the time evolution into two parts:

t = nτ + s , 0 6 s 6 τ/2 or τ/2 < s < τ. (6.12)

Due to Eq. (5.118) it is sufficient to restrict s to the interval [0, τ/2] for the description
of the time evolution since the annihilation operator d stays constant in the residual
time window [τ/2, τ ]. Inserting the corresponding expression for the dynamics of the d
operator into the definition of the level occupation nd(t) one arrives at:

nd(t) =〈d†(t)d(t)〉 = |Gd(s)|2
∣∣∣M(n)

dd

∣∣∣2 〈d†d〉+

+
∑

k

∣∣∣Gd(s)M
(n)
dk + Gdk(s) e−inkτ

∣∣∣2 〈c†kck〉.
(6.13)

In the derivation of the last line, the product state character of the initial state provided
the vanishing of the following expectation values:

〈d†ck〉 = 〈c†kd〉 = 0. (6.14)

This relation accounts for the initial preparation of the system that has been assumed
to be completely uncorrelated. As the initial state is the ground state of the free part of
the resonant level model Hamiltonian, see Sec. (4.1.1), the expectation value of 〈c†kck′〉
is equal to the step function:

〈c†kck′〉 = δkk′θ(−k). (6.15)

Consequently, the local level occupation is given by the following expression:

nd(t) = nd e−n∆τe−2∆s + e−2∆s
∑
k<0

[∣∣∣M(n)
dk

∣∣∣2 + |Gdk(s)|2
]

+ e−∆s
∑
k<0

[
Gdk(s)M

(n)
dk e−inkτ + G∗dk(s)M

(n)∗

dk einkτ
]
.

(6.16)

As one can check, the objects that appear in the sums above exhibit symmetries that
allow to extend the k−sums to ±∞:∣∣∣M(n)

dk

∣∣∣ = ∣∣∣M(n)
d−k

∣∣∣ , (6.17)

|Gdk(s)| = |Gd−k(s)| , (6.18)

G∗dk(s)M
(n)∗

dk einkτ = Gd−k(s)M
(n)
d−ke

inkτ . (6.19)
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Basically, these properties originate from the particle-hole symmetry of the resonant
level model Hamiltonian. As one can easily show by using the same techniques as in
Sec. (5.4.1), the sum ∑

k

Gdk(s)M
(n)
dk e−inkτ = 0 (6.20)

vanishes such that the local level occupation is given by the following expression:

nd(t) = nd e−n∆τe−2∆s +
1
2
e−2∆s

∑
k

[∣∣∣M(n)
dk

∣∣∣2 + |Gdk(s)|2
]

. (6.21)

Since the matricesM(n) and G are unitary, as has been shown in section (5.1) for a wide
class of quadratic Hamiltonians, the columns as well as the rows of these matrices have
to constitute a set of orthonormal vectors such that the following relations are valid:∑

k

∣∣∣M(n)
dk

∣∣∣2 = 1−
∣∣∣M(n)

dd

∣∣∣2 = 1− e−n∆τ , (6.22)∑
k

|Gdk(s)|2 = 1− |Gd(s)|2 = 1− e−2∆s. (6.23)

Combining all contributions the magnetization of the impurity spin decays exponen-
tially in time:

P (t) = 〈Sz(0)〉 θ
(τ

2
− s
)

e−nπwτ/tK e−2πws/tK

+〈Sz(0)〉 θ
(
s− τ

2

)
e−[n+1]πwτ/tK

(6.24) .

where the relation TK = πw∆, see Eq. (3.99), has been used. Remarkably, the orienta-
tion of the local spin is not affected by the periodic driving process as the analysis of the
single-particle dynamics in the previous chapter already indicated. The magnetization
decays exponentially where the corresponding time scale is set by the Kondo time scale
tK as for a single interaction quench. The decay only depends on how much time has
passed in which the local spin can evolve nontrivially, that is half of the time after an
integer number of periods. Physically, there is no spin generating source since the total
spin

ST = N̂s + Sz (6.25)

is a constant of motion [46]. Here, the operator N̂s = 1
2

[
N̂↑ − N̂↓

]
=
∑

k : c†kck :
measures the total spin polarization of the bath of conduction band electrons. Initially,
the lead is prepared in its ground state, a filled Fermi sea that is not spin polarized.
Only the local spin may be oriented. A switch on of the spin dynamics will transport
this excess spin away from the central region to infinity. Since no further spin source
like a magnetic field is present in this setup, a spin polarization is unable to develop
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such that the expectation value of N̂s as well as the expectation value of Sz have to
average to 0 after a transient regime.

This behavior is consistent with the results of Langreth and Nordlander [24] where
the local level occupation in a resonant level model Hamiltonian was calculated for an
arbitrary time dependence of the hopping element V . A solution of the corresponding
Dyson equations leads to the following expression for the local level occupation:

nd(t) = e−2
R t
0 dt ∆(t), ∆(t) =

L

2
V 2(t). (6.26)

In the limit τ → ∞ the impurity spin expectation value decays to zero propor-
tional to e−2πwt/tK already in the first half period corresponding to the single interac-
tion quench situation already addressed in [25] [24][26][27]. The further time evolution
does not change the spin expectation value such that the magnetization P (t) stays zero
for all later times.

In the limit τ → 0 the magnetization will decay proportional to e−πwt/tK , i.e. with
half the time scale compared to the single interaction quench scenario since only half
of the time the spin dynamics are switched on. Remarkably, the impurity spin relaxes
slower in the case of fast driving.

6.3 Spin-spin correlation function

A dynamical quantity that carries more information about the local two state system
than the magnetization is the spin-spin correlation function〈

Sz(t)Sz(t′)
〉
. (6.27)

For the purpose of this work it is convenient to separate the real and imaginary part.
The real part C(t, t′), the symmetrized version of the spin-spin correlator, describes the
strength of the fluctuations:

C(t, t′) =
1
2
〈{

Sz(t), Sz(t′)
}〉

. (6.28)

The imaginary part of the spin-spin correlation function, the antisymmetrized part,
determines the response χ(t, t′) of the system due to an external classical magnetic field
applied to the local spin:

χ(t, t′) = iθ(t− t′)
〈[

Sz(t), Sz(t′)
]〉

. (6.29)

In time-dependent nonequilibrium settings where time reversal symmetry is broken,
two-time correlation functions explicitly depend on both time variables. In equilibrium,
however, two-time correlation functions depend on both arguments only through their
time difference, hence, effectively reducing them to functions of only one variable.

The spin-spin correlation function in equilibrium: In equilibrium the spin-spin cor-
relation function exhibits a characteristic algebraic long-time decay at zero temperature
as already mentioned in Sec. (2.3):

〈Sz(t)Sz(0)〉 t→∞∝ 1/t2. (6.30)
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Figure 6.1: Universal curves for the symmetrized part of the spin-spin correlation func-
tion C(t) and the response χ(t) in equilibrium at zero temperature

At finite temperatures the decay is exponential due to the smearing of the Fermi surface.
The spin-spin correlation function at zero temperature in equilibrium is given by the
following expression, see for example Ref. [27]:

〈Sz(t)Sz(0)〉 = 〈d†(t)d(0)〉2, 〈d†(t)d(0)〉 =
1
2
e−∆t − is(t),

C(t) =
1
4
e−2∆t − s2(t),

χ(t) = θ(t) e−∆t s(t),

(6.31)

where the function

s(t) =
∆
π

∫ ∞

0
dk

sin(kt)
k2 + ∆2

(6.32)

is responsible for the long-time algebraic decay since s(t) t→∞−→ 1/(π∆t) as is shown in
the appendix, see Eq. (A.5). A plot of both C(t) and the response χ(t) in equilibrium is
shown in Fig. (6.1).

As pointed out by Guinea [15], one can identify the correlation function C(t) with
the expectation value of a sequence of measurements of the local spin. Suppose that a
spin measurement is performed at time t = 0 with outcome +1/2 such that the system’s
wave function is given by the projected state 2P+|Ψ〉. Here, |Ψ〉 is the initial state and
P+ = Sz + 1

2 the projector onto the eigenspace corresponding to the eigenvalue +1/2.
The expectation value of a second spin measurement of the projected state at time t, to
be denoted by P , is given by the following expression:

P = 4
〈[

Sz +
1
2

]
Sz(t)

[
Sz +

1
2

]〉
= 4〈SzSz(t)Sz〉+ 4〈Sz(t)〉+ 2〈{Sz(t), Sz}〉. (6.33)

Due to the particle-hole symmetry of the resonant level model Hamiltonian the first
two contributions have to vanish such that

C(t) =
〈[

Sz +
1
2

]
Sz(t)

[
Sz +

1
2

]〉
. (6.34)

Therefore, C(t) is proportional to the expectation value of a spin measurement at time t
if at time t = 0 a spin measurement of the ground state with outcome +1/2 has already
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been performed.

The spin-spin correlation function after an interaction quench: Lobaskin and Kehrein
in their work [27][28] addressed the question of how the spin-spin correlation function
behaves after an interaction quench for a factorized initial state, both in the Toulouse
limit and the limit of small Kondo couplings. They found that the algebraic long time
decay survives for all non-zero waiting times, t′ > 0, i.e. the first spin measurement
is performed after the interaction has been switched. Moreover, they observe that the
spin-spin correlation function approaches its equilibrium profile at zero temperature
exponentially fast as a function of the waiting time. Since the initial state can never
evolve into a true eigenstate of the interacting Hamiltonian due to Eq. (6.5), one cannot
conclude that the system really relaxes to the new ground state as a whole. But as one
can see by analyzing the nonequilibrium to equilibrium crossover for the spin-spin cor-
relation function, the time evolved state may show equilibration behavior for suitable
local observables, as, for example, the spin operator Sz .

6.3.1 The spin-spin correlation function in the periodic driving setup

In the present setup, periodically switching the interaction, one expects that after an
infinite amount of periods a quasi-steady state builds up, a state such that all corre-
lation functions are invariant under a discrete time shift of one period τ in all their
time arguments, see Eq. (4.36). The existence of this quasi-steady state is ensured by
the presence of a sufficient dissipation mechanism, the conduction band in the Kondo
Hamiltonian plays the role of a bath that is able to absorb the infinite amount of energy
that is pumped into the system by the periodic driving, see Sec. (4.1.1). In this work the
quasi-steady state will be characterized by analyzing the spin-spin correlation function.
As for the evaluation of the magnetization the time evolution of the spin operator Sz

can be traced back to the time evolution of the single-particle operators of the quadratic
effective Hamiltonian. Due to the relation Sz = d†d − 1

2 the spin-spin correlation func-
tion can be written as:

〈Sz(t)Sz(t′)〉 = 〈n̂d(t)n̂d(t′)〉 −
1
2
[
Sz(t) + Sz(t′)

]
− 1

4
(6.35)

where the operator n̂d = d†d measures the number of fermions on the local level of
the resonant level model Hamiltonian. The average is taken with respect to the quasi-
steady state, that is given by, see Eq. (6.1):

〈O〉 = lim
N→∞

〈ΨGS(Nτ)|O|ΨGS(Nτ)〉 (6.36)

where the initial state |ΨGS〉 = |0〉 ⊗ |χ〉 is a product state of the Fermi sea for the
spinless fermions and an arbitrary wave function |χ〉 of the local level. In the following,
all expressions will be written down without showing the limit N →∞ explicitly. The
magnetization of the impurity spin in the quasi-steady state is already known from the
last section, see Eq. (6.24):

Sz(t) = 0 (6.37)

such that:
〈Sz(t)Sz(t′)〉 = 〈n̂d(t)n̂d(t′)〉 −

1
4
. (6.38)
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For the evaluation of 〈n̂d(t)n̂d(t′)〉 the time evolution of the single-particle operators d
and d† has to be analyzed. It is convenient to split the time coordinate t = nτ + s into
two parts according to Eq. (5.107) where n is an integer and 0 ≤ s < τ . Moreover, it
is sufficient for the whole calculation to assume that s ≤ τ/2 without any restriction
since in the remaining time window [τ/2, τ ] the local operators stay constant due to
the absence of spin dynamics. As a consequence of the periodicity property for two-
time correlation functions, see Eq. (4.36), the time coordinate t′ can be restricted to the
interval [0, τ/2]. The operator d decays completely into bath operators exponentially
fast on a times scale tk, see Eq. (5.118), such that in the quasi-steady state:

d(nτ + s) =
∑

k

[
Gd(s)M

(N+n)
dk + Gdk(s)e−i[N+n]kτ

]
ck

=:
∑

k

ζk(n, s) ck.
(6.39)

Insertion of this relation into Eq. (6.38) yields:

〈Sz(t)Sz(t′)〉 =
∑

k1,..,k4

ζ∗k1
(n, s)ζk2(n, s)ζ∗k3

(0, t′)ζk4(0, t′) 〈c†k1
ck2c

†
k3

ck4〉 −
1
4
. (6.40)

By use of Wick’s theorem

〈c†k1
ck2c

†
k3

ck4〉 = δk1,k2δk3,k4nk1nk3 + δk1,k4δk2,k3nk1n−k3 (6.41)

and the initial condition nk = θ(−k), the expression above for the spin-spin correlation
function can be rewritten to yield:

〈Sz(t)Sz(t′)〉 =
1
4

[∑
k

|ζk(n, s)|2
][∑

k

∣∣ζk(0, t′)
∣∣2]

+

[∑
k<0

ζ∗k(n, s)ζk(0, t′)

]2

− 1
4

(6.42)

where the following property of the functions ζ has been used:

ζ∗k(n, s) = −ζ−k(n, s), (6.43)

that originates in the corresponding behavior of the matrices G and M(N). Due to
Eq. (5.9), the transition matrix ζ has to be unitary such that∑

k

|ζk(n, s)|2 = 1. (6.44)

This property can be rephrased in the following way: the probability for a fermion d to
transform into a fermion ck after a time Nτ + nτ + s is given by |ζk(n, s)|2. Therefore,
the probability to find the fermion in any of the final states has to be 1. Insertion into
the expression for the spin-spin correlation function yields:

〈Sz(t)Sz(t′)〉 =

[∑
k<0

ζ∗k(n, s)ζk(0, t′)

]2

= 〈d†(t)d(t′)〉2. (6.45)
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Figure 6.2: Universal curves for the symmetrized spin-spin correlation function C(t) :=
C(t, 0) and the response χ(t) := χ(t, 0) for different values of the parameter η.

Therefore, the evaluation of the spin-spin correlation function, that is a four-point func-
tion in terms of the single-particle operators of the effective Hamiltonian, reduces to the
evaluation of a two-point function:

〈d†(t)d(t′)〉 = V 2
∑
k<0

einkτ

k2 + ∆2

[
e−∆[s+t′] 1− 2 cos(kτ/2)e−∆τ/2 + e−∆τ

1− 2 cos(kτ)e−∆τ/2 + e−∆τ

+ e−∆s eikτ/2 − e−∆τ/2

eikτ − e−∆τ/2

(
e−ikt′ − e−∆t′

)
+ e−∆t′ e−ikτ/2 − e−∆τ/2

e−ikτ − e−∆τ/2

(
eiks − e−∆s

)
+
(
eiks − e−∆s

)(
e−ikt′ − e−∆t′

)]
=

k=z∆=
1
π

∫ ∞

0
dz

e−iz∆nτ

z2 + 1

[
e−∆[s+t′] 1− 2 cos(zη/2)e−η/2 + e−η

1− 2 cos(zη)e−η/2 + e−η

+ e−∆s e−izη/2 − e−η/2

e−izη − e−η/2

(
e−iz∆t′ − e−∆t′

)
+ e−∆t′ eizη/2 − e−η/2

eizη − e−η/2

(
eiz∆s − e−∆s

)
+
(
e−iz∆s − e−∆s

) (
eiz∆t′ − e−∆t′

)]

(6.46)

The real part of this correlator can be calculated analytically as is done in the appendix,
see Sec. (B):

<〈d†(t)d(t′)〉 =
1
2

〈{
d†(t), d(t′)

}〉
=

1
2
e−n∆τ/2e−∆[s−t′], (6.47)

in agreement with the results of Langreth and Nordlander [24]. Since the real part of
the 〈d†(t)d(t′)〉 correlator is proportional to an anticommutator of single-particle oper-
ators of the quadratic resonant level model Hamiltonian, it only contains information
about the single-particle dynamics of the d operators and is independent of the state.
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All the information about the influence of the quasi-steady state onto the spin-spin cor-
relation function is contained in the imaginary part of the 〈d†(t)d(t′)〉 correlator, that is
the average of the commutator of d†(t) and d(t′). The imaginary part is not accessible
analytically, but can be evaluated numerically. Reminding that up to now the times s
and t′ have been restricted to the interval [0, τ/2], an extension to [τ/2, τ ] is straightfor-
ward since in this time interval the d and Sz operators do not evolve in time due to the
switch off of the spin dynamics. Therefore, the spin-spin correlation function remains
constant in this time window.

In Fig. (6.2) both the symmetrized correlator C(t, 0) and the response χ(t, 0) are plot-
ted for different values of the parameter η at zero waiting time in order to give a first
impression of the profile of the spin-spin correlation function. A detailed discussion
will be given below.

Universality of the spin-spin correlation function: As has been conjectured by Kamin-
ski et al. [21], the conductance through a quantum dot in the Kondo regime displays
universal behavior even in a time-dependent nonequilibrium setting despite the ap-
pearance of new parameters. Moreover, the Kondo temperature remains a meaningful
parameter and is the only relevant energy scale. In terms of time scales this statement
implies that tk is the only relevant time scale. The same is true regarding the spin-spin
correlation function in the present time-dependent setup. The Kondo time scale tK
remains a meaningful parameter and the spin-spin correlation function is given by a
universal function F as Eq. (6.46) shows:

〈Sz(t)Sz(t′)〉 = F

[
t

tK
,

t′

tK
,

τ

tK

]
. (6.48)

Discussion of the 〈d†(t)d〉 correlator: In equilibrium one can rewrite the 〈d†(t)d〉 corre-
lator at zero temperature in the following way:

〈d†(t)d〉eq = 〈GS|d†e−iHRLMtd|GS〉 =
∑

λ

e−iEλt|〈λ|d|GS〉|2 (6.49)

where |GS〉 is the ground state of the resonant level model Hamiltonian HRLM and the
|λ〉’s form a complete set of eigenstates with energy Eλ. The energy of the ground state
is assumed to be 0. A Fourier transform of this correlation function yields:

〈d†d〉eq(ω) =
∑

λ

|〈λ|d|GS〉|2δ(ω − Eλ),

〈d†(t)d〉eq =
∫ ∞

−∞
dω 〈d†d〉eq(ω).

(6.50)

Therefore, the Fourier transform 〈d†d〉eq(ω) can be interpreted as the probability density
for the ground state with a d hole injected to have energy ω. Alternatively, one can claim
the Fourier transform to be the probability density for decreasing (ω < 0) or increasing
(ω > 0) the energy in the system by extracting a local fermion. Comparing Eq. (6.31)
with Eq. (6.50), the Fourier transform can be read off:

〈d†d〉eq(ω) =
∆
π

θ(ω)
ω2 + ∆2

. (6.51)
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Figure 6.3: Probability distribution for a local d fermion to have energy ω

The θ-function ensures that no energy can be gained by the creation of a local hole since
the system already is in the ground state such that the bath of surrounding fermions is
not able to supply energy to a fermion tunneling out of the local level. It is only possible
for the tunneling out fermion to supply energy to the bath. For finite temperatures the
θ-function has to be replaced by a Fermi distribution.

In the periodic driving setup the 〈d†(t)d(t′)〉 correlator depends on two time argu-
ments. As a representative example one can regard the case of zero waiting time, i.e.
t′ = 0, and the case where t takes values of multiples of the period,i.e. t = nτ , such
that the time evolution of this correlator is analyzed in a stroboscopic manner. This will
display the main features if the period of the switching is not too large compared to the
internal time scale such that η . 1. In this case:

〈d†(t)d〉 =
∆
π

∫ ∞

0
dω

e−iωt

ω2 + ∆2

1− 2 cos(ωτ/2)e−∆τ/2 + e−∆τ

1− 2 cos(ωτ)e−∆τ/2 + e−∆τ
(6.52)

Due to the previous considerations, one can regard

Pω =
∆
π

θ(ω)
ω2 + ∆2

1− 2 cos(ωτ/2)e−∆τ/2 + e−∆τ

1− 2 cos(ωτ)e−∆τ/2 + e−∆τ
(6.53)

to be the probability density that a local fermion tunneling out of the system lowers
(ω < 0) or increases (ω > 0) the energy in the quasi-steady state. A plot of Pω is shown
in Fig. (6.3) for different values of the parameter η. A comparison with the equilibrium
probability density, see Eq. (6.50), shows that the time-dependent nonequilibrium setup
only leads to an additional multiplicative factor. Analogously to the equilibrium case
a θ-function appears suggesting to think of the bath as to behave for zero temperature.
Therefore, a local fermion tunneling out of the system cannot extract energy from the
bath as before. As one can see in the plot, the probability density of increasing the
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energy in the system is enhanced at multiples of the driving frequency accounting for
processes where multiples of Ω are absorbed. Remarkably, the bath of fermions behaves
as for zero temperature although energy is pumped into the system by the periodic
driving.

A possible process of extracting a local fermion and later reentering that leads to an
increase of energy in the system is the following. Suppose, at time t = 0 a local fermion
tunnels out of the system leaving behind a hole on the local d level. This vacancy can
be filled by a bath fermion around the Fermi surface. By absorbing n quanta of Ω this
fermion can hop back into the continuum of bath states. Thus, at time t a fermion is
able to tunnel back onto the local level. During this process an energy nΩ has been put
into the system.

At this point one can ask the question why the bath behaves as at zero temperature
despite the existence of excitations? As was shown in the previous chapter, the only
process that creates excitations driven by the periodic time dependence of the Kondo
Hamiltonian, is that fermions can hop onto or hop off the local level by absorbing or
emitting multiples of the driving frequency. It is not possible to induce transition for the
bath fermions directly. Therefore, excitations can only be created by hopping processes.
Due to Eq. (5.64), a fermion that has been on the local level once is not influencing local
properties any more after tunneling into the continuum of bath states. Therefore, one
can imagine that the excitations are flowing infinitely far away from the local level into
the bath without returning such that multiple hopping processes will not take place.
Concluding one can state that the excitations that are created in the periodic driving
setup always depart from the central region and do not contribute to the local proper-
ties any more.

Discussion of the results for the spin-spin correlation function: Here, general fea-
tures of the spin-spin correlation function will be discussed. The asymptotic behavior
will be studied later. In Fig. (6.4), false color plots for the symmetrized spin-spin corre-
lation function C(t+ t′, t′) and for the response χ(t+ t′, t′) are shown. Both C and χ are
invariant under a discrete time shift of τ in both arguments due to Eq. (4.36). Therefore,
the time coordinate t′ can be restricted to the interval [0, τ ]. These plots show how the
spin-spin correlation function behaves if the point in time t′ of the first measurement is
varied over one period.

In the case of fast switching, corresponding to the plot with η = 0.13, the sym-
metrized part as well as the response are nearly constant if t′ is varied over the period.
Therefore, the system is not sensitive to the specific point in time of the first spin mea-
surement. Since the system can change its behavior only on times of the order of the
internal time scale, that is tK in this case, the system’s properties like the response to a
magnetic field χ cannot vary substantially on a time scale τ in the limit of fast switching.
Therefore, the system is not able to adapt within one period.

In the opposite case of large switching times, the η = 13 plot, the spin-spin correla-
tion function depends crucially on the time coordinate t′. As argued in Sec.(6.1.1), the
Kondo system is expected to behave in the same way as for a single interaction quench
in the limit of large periods, i.e. τ � tK . This nonequilibrium setting has already been
considered in the work by Lobaskin and Kehrein [27]. They found that the spin-spin
correlation function approaches its equilibrium behavior exponentially fast as a func-
tion of the waiting time t′ on a time scale tK . This can be seen most clearly in the plot
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Figure 6.4: False color plot for the symmetrized spin-spin correlation function C(t +
t′, t′) and the response χ(t + t′, t′) for three different values of the parameter η where
t > 0. On the left hand side, the plots for C(t + t′, t′) are shown in ascending order of
the parameter η, on the right hand side the corresponding plots for χ(t + t′, t′)
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Figure 6.5: Universal curves for C and χ in the fast and slow switching limits

of the dynamical susceptibility. After a transient time of the order tK , a peak builds up
and the dynamical susceptibility evolves into its equilibrium profile that is shown in
Fig. (6.1). Near the half period boundary, a new structure appears. Due to the switch
off of the spin dynamics during the second half period, the spin operators as well as
the spin-spin correlation function are freezed if τ > t + t′ > τ/2 as can be seen in the
plot. As a consequence plateaus emerge whose heights depend on the value of C and
χ at the moment of the switch off.

If the time scale of the external driving τ is of the same order as the internal time
scale tK , the η = 1.3 plot, a mixture of both the fast and slow switchings cases is ob-
served. Both C and χ don’t vary substantially over one period and one can see the
existence of plateaus.

6.3.2 The spin-spin correlation function in the limit of long switching times

As elaborated in Sec. (6.1.1), the general features of correlation functions, involving
suitable local observables like the spin operator Sz , in the limit of long switching times
τ → ∞ are accessible by general arguments. Basically, the system relaxes in each half
period where relaxation is to be understood in the sense of relaxation of expectation
values of suitable observables, as discussed in Sec. (6.1.1). If the system relaxes in each
half period, two-time correlation functions are expected to behave analogously to a
single interaction quench setting. This will be shown in the following for the spin-spin
correlation function.

In the τ →∞ limit, it is reasonable to assume for the time coordinates t and t′ to take
values in the interval [0, τ/2] such that n = 0 in Eq. (6.46). For τ → ∞, the 〈d†(t)d(t)〉
correlator transforms into:

〈d†(t)d(t′)〉
τ→∞
≈ ∆

π

∫ ∞

0
dk

1
k2 + ∆2

[
e−∆[t+t′] + e−∆teikτ/2

(
eikt′ − e−∆t′

)
+ e−∆t′e−ikτ/2

(
e−ikt − e−∆t

)
+ e−ik[t−t′] − e−∆t′e−ikt

−e−∆teikt′ + e−∆[t+t′]
]
.

(6.54)
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As is shown in the appendix, see Eq. (A.5), the integral ∆/π
∫∞
0 dk eikτ/2/(k2 + ∆2) ≈

2i/(π∆τ) → 0 vanishes in the τ → ∞ limit such that the correlator above transforms
into:

〈d†(t)d(t′)〉 τ→∞−→ ∆
π

∫ ∞

0
dk
[
2e−∆[t+t′] + e−ik[t−t′] − e−∆t′e−ikt − e−∆teikt′

]
=

1
2
e−∆[t−t′] − i

[
s(t− t′) + e−∆ts(t′)− e−∆t′s(t)

] (6.55)

where the function s(t) is given by Eq. (6.32). Due to Eq. (6.45), the spin-spin correlation
function can be obtained by squaring the 〈d†(t)d(t′)〉 correlator leading to:

〈Sz(t)Sz(t′)〉
τ→∞−→ 1

4
e−2∆[t−t′] −

[
s(t− t′) + e−∆ts(t′)− e−∆t′s(t)

]2
− ie−∆[t−t′]

[
s(t− t′) + e−∆ts(t′)− e−∆t′s(t)

]
.

(6.56)

This result matches precisely the result for the spin-spin correlation function obtained
by Lobaskin and Kehrein [27] in a single interaction quench scenario in the Kondo
model, exactly as was argued in Sec. (6.1.1). Therefore, the analysis in this regime can
be simply adopted from their work. The nonequilibrium to equilibrium crossover is
exponentially fast as a function of the waiting time t′ on a time scale tK . For all nonzero
waiting times, the spin-spin correlation function decays algebraically ∝ (t − t′)2 in the
limit t− t′ →∞. For t′ = 0, however, the decay is exponentially fast and the spin-spin
correlation function reduces to half of the magnetization after a single quench, a setting
that is shown in Fig. (6.5) where the asymptotic curves for η = ∞ are included. As
one can see, the numerical results for the spin-spin correlation function approach the
analytical asymptotic behavior. The response χ(t), proportional to the imaginary part
of 〈Sz(t)Sz〉, declines becoming zero in the η →∞ limit.

6.3.3 The spin-spin correlation function in the limit of fast switching

The opposite limit of fast switching, i.e. τ → 0, requires more care as already empha-
sized earlier, see Sec. (6.1.2). In general, the system is not able to follow the fast external
driving. Indeed, it will be shown in this section that the spin-spin correlation function
approaches a behavior that is similar to an equilibrium setting.

In the beginning, the analysis will focus on the 〈d†(t)d(t′)〉 correlator since the spin-
spin correlation function can be obtained easily from this function, see Eq. (6.45). The
real part of the 〈d†(t)d(t′)〉 correlator is known analytically, see Eq. (6.47), such that
the limit can be performed straightforwardly. Since s and t′ take values in the interval
[0, τ/2], s, t′ → 0 in the limit τ → 0 such that the 〈d†(t)d(t′)〉 correlator only depends on
one time coordinate t = nτ signaling that the system approaches an equilibrium-like
behavior in the limit of fast switching. The real part of the correlator transforms into:

<〈d†(t)d(t′)〉 τ→0−→ 1
2

e−∆t/2, (6.57)

that is identical to the real part of the correlator in an equilibrium setting, see Eq. (6.31),
except that the time coordinate has to be rescaled, t → t/2, since only half of the time
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the d operators can evolve nontrivially. The imaginary part can be obtained in the fast
switching limit in the following way:

=〈d†(t)d(0)〉 =− ∆
π

∫ ∞

0
dk

sin(kt)
k2 + ∆2

1− 2 cos(kτ/2)e−∆τ/2 + e−∆τ

1− 2 cos(kτ)e−∆τ/2 + e−∆τ︸ ︷︷ ︸
τ→0−→ k2 + ∆2

4k2 + ∆2

τ→0−→ −∆
π

∫ ∞

0
dk

sin(kt)
4k2 + ∆2

= −∆
2π

∫ ∞

0
dk

sin(kt/2)
k2 + ∆2

= −1
2
s(t/2),

(6.58)

also displaying behavior similar to equilibrium. The function s(t) is given by Eq. (6.32).
In equilibrium, 〈d†(t)d(0)〉 = 1

2e−∆t − is(t), see Eq. (6.31). The imaginary part of the
〈d†(t)d〉 correlator containing the information about the initial state, however, acquires
an additional prefactor of 1/2 compared to the real part where only the time coordi-
nate has been modified. Therefore, the real and imaginary part transform qualitatively
different in the fast switching limit. Thus, it is not possible to find a time-independent
effective Hamiltonian that generates the same dynamics. Finally, the spin-spin correla-
tion function in the limit τ → 0 reads:

〈Sz(t)Sz(0)〉 τ→0−→
[
1
2
e−∆t/2 − i

2
s(t/2)

]2

. (6.59)

A plot of the spin-spin correlation function in this limit can be found in Fig. (6.5). Ob-
viously, the numerical results for the spin-spin correlation function approach the calcu-
lated asymptotic behavior for small switching times.

6.3.4 The long-time asymptotic behavior: no effective temperature

As mentioned in the beginning of this chapter, the spin-spin correlation function ex-
hibits a characteristic algebraic long-time decay at zero temperature in equilibrium:

〈Sz(t)Sz(t′)〉
t→∞∝ (t− t′)−2 (6.60)

in contrast to the long-time behavior at finite temperature where the decay is exponen-
tial due to a smearing of the Fermi surface. This sensitivity can be used to test if the
concept of effective temperature is applicable in the periodic driving setup.

The long-time asymptotics for the spin-spin correlation function can be determined
by evaluating the asymptotics for the 〈d†(t)d(t′)〉 correlator since both correlation func-
tions are connected by quadrature, see Eq. (6.45). The complicated functions of the
integrand in Eq. (6.46) are periodic in k with period 2Ω such that they can be expanded
into a Fourier series:

1− 2 cos(kτ/2)e−∆τ/2 + e−∆τ

1− 2 cos(kτ)e−∆τ/2 + e−∆τ
=
∑
n∈Z

cneinkτ/2,

eikτ/2 − e−∆τ/2

eikτ − e−∆τ/2
=
∑
n∈Z

dneinkτ/2.

(6.61)
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Figure 6.6: Asymptotic long-time behavior of the spin-spin correlation function

The Fourier coefficients cn and dn can be found in the appendix, see Eq. (A.1). Their
precise expressions are not important for the evaluation of the desired asymptotics,
they decay exponentially as the index n is increased. The long time behavior of the
spin-spin correlation function is completely determined by choosing t = nτ and s = 0.
Inserting the Fourier series expansions into Eq. (6.46) yields:

〈d†(t)d(t′)〉 = e−∆t′
∑

n

[cn − d−n]
∆
π

∫ ∞

0
dk

e−ik(t−nτ/2)

k2 + ∆2

+
∑

n

d−n
∆
π

∫ ∞

0
dk

e−ik(t−t′−nτ/2)

k2 + ∆2
.

(6.62)

Due to Eq. (A.5), the asymptotic behavior of the integrals as t → ∞ are known such
that:

〈d†(t)d(t′)〉 t−t′→∞−→ e−∆t′
∑

n

[cn − d−n]
−i

π∆t
+
∑

n

d−n
−i

π∆(t− t′)
. (6.63)

Since both
∑

n cn = 1 and
∑

n dn = 1, the first term in the expression above vanishes.
Due to Eq. (3.99), TK = πw∆ where w = 0.4128 is the wilson number, the 〈d†(t)d(t′)〉
correlator can be written in terms of the Kondo time scale tk = 1/TK :

〈d†(t)d(t′)〉 t→∞−→ −i
w tK
t− t′

. (6.64)

Therefore, the spin-spin correlation function decays algebraically for long times:
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〈Sz(t)Sz(t′)〉
t−t′→∞−→ − (w tK)2

1
(t− t′)2

(6.65) .

Remarkably, the asymptotic long-time behavior is independent of the periodic time-
dependent setting regardless of the strength of the driving. Moreover, this asymptotic
behavior matches exactly the equilibrium behavior at zero temperature. Even the pref-
actor is identical and is not modified by the driving. In Fig. (6.6) the analytical curve is
compared to numerical results for three different values of the parameter η. Obviously,
all curves reach the algebraic behavior asymptotically.

The matching of the equilibrium zero temperature long-time decay and the asymp-
totic behavior in the periodic driving setup indicates that a description of the quasi-
steady state in terms of an effective temperature is not possible. As the analysis of the
〈d†(t)d(t′)〉 correlator showed, the bath of fermions behaves as for zero temperature,
it is not possible to extract energy out of it. Nevertheless, excitations are created in
the periodically driven system but they are fundamentally different from those that are
created by temperature. The excitations in a system periodically in time are excitations
of multiples of the driving frequency Ω corresponding to the absorption of multiple
quanta of Ω thereby forming a discrete ladder of excitations. At finite temperature, the
Fermi surface gets smeared over a width∼ T . But as has been shown for the 〈d†(t)d(t′)〉
correlator, no smearing takes place, the Fermi surface remains sharp. Since the long-
time limit of the spin-spin correlation function is dominated by the low energy degrees
of freedom, the excitations of multiples of the driving frequency are irrelevant for the
asymptotic behavior such that the equilibrium zero temperature behavior is recovered.
Therefore, it is not possible to characterize the quasi-steady state by an effective tem-
perature.

6.4 Dynamical spin susceptibility

The result for the magnetization of the impurity spin, see Eq.(6.24), showed that the
impurity spin expectation value is zero in the quasi-steady state. There is no source for
spin generation in the present setup since the total spin

ST = N̂s + Sz (6.66)

is a conserved quantity [7]. The operator N̂s = 1
2 [N̂↑ − N̂↓] measures the total spin of

the bath of conduction band electrons, see Eq. (3.83). A spin generating source can be
created, for example, by applying a magnetic field h(t) to the local spin. If one can
assume the magnetic field h(t) to be classical such that fluctuations can be neglected,
the Hamilton operator reads:

Hh(t) = H(t)− h(t)Sz. (6.67)

Here, the leakage of the magnetic field to the conduction band is neglected, it only
couples to the local spin. If the amplitude of the field is small, linear response theory
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Figure 6.7: Universal curve for the imaginary part of the dynamical spin susceptibility
in equilibrium at zero temperature

is applicable predicting for the magnetization of the impurity spin up to second order
corrections in the magnetic field:

〈Sz(t)〉h = 〈Sz(t)〉+
∫ ∞

−∞
dt′ χ(t, t′)h(t′),

χ(t, t′) = iθ(t− t′)〈
[
Sz(t), Sz(t′)

]
〉.

(6.68)

All expectation values that are not marked with an index h are to be evaluated with re-
spect to the unperturbed Hamiltonian without the magnetic field term. The expectation
value 〈Sz(t)〉 vanishes in the quasi-steady state due to Eq. (6.24) such that:

〈Sz(t)〉h =
∫ ∞

−∞
dt′ χ(t, t′) h(t′). (6.69)

The response function in equilibrium: The response function χ(t, t′) only depends on
the time difference t− t′ in equilibrium leading to a reduction to a function of only one
argument, i.e. χ(t, t′) = χ(t − t′). Therefore, there exists a spectral representation in
terms of only one frequency, called the dynamical spin susceptibility. The imaginary
part can be obtained analytically for zero temperature [15] [25]:

χ(ω) =
∫ ∞

−∞
dt eiωtχ(t)

χ′′(ω) = = [χ(ω)] =
2∆2

π

1
ω2 + 4∆2

[
1
ω

ln
(

1 +
( ω

∆

)2
)

+
1
∆

arctan
( ω

∆

)] (6.70)

A plot of χ′′(ω) is shown in Fig. (6.7).



90 6. Correlation functions

η = 0.13 χ′′(tave, ǫ)× TK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tave/τ

0

0.5

1

1.5

2

2.5

3

ǫ/
T

K

0

0.05

0.1

0.15

0.2

0.25

0.3

η = 1.3 χ′′(tave, ǫ)× TK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tave/τ

0

0.5

1

1.5

2

ǫ/
T

K

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

η = 30 χ′′(tave, ǫ)× TK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tave/τ

0

0.5

1

1.5

2

2.5

3

ǫ/
T

K

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

η = 0.65 χ′′(tave, ǫ)× TK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tave/τ

0

0.5

1

1.5

2

ǫ/
T

K
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

η = 6.5 χ′′(tave, ǫ)× TK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tave/τ

0

0.5

1

1.5

2

ǫ/
T

K

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η = 30 χ′′(tave, ǫ)× TK

0 0.05 0.1 0.15 0.2 0.25 0.3

tave/τ

0

0.5

1

1.5

2

2.5

3

ǫ/
T

K

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 6.8: Spectral decomposition of the imaginary part of the dynamical spin suscep-
tibility χ′′(tave, ε) in false color plots for different parameters η. These plots show the
low frequency behavior over one period.
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Figure 6.9: Imaginary part of the dynamical susceptibility at high energies for different
values of the parameter η.

The response function in nonequilibrium: According to Eq. (4.42), one can derive a
spectral decomposition of the response function in the time-dependent nonequilibrium
setup:

χ(tave, ε) =
∫ ∞

−∞
dtrel eiεtrel χ(tave + trel, tave) (6.71)

that can be interpreted as the spectral decomposition of the response function at a given
point tave in time. Due to Eq. (4.36), the function χ(tave, ε) is periodic in the time argu-
ment with period τ , χ(tave + τ, ε) = χ(tave, ε), such that tave can be restricted to the
interval [0, τ ].

The dynamical susceptibility cannot be analyzed analytically. Therefore, numerical
results are plotted in Fig. (6.8) and Fig. (6.9) as false color plots. The low frequency be-
havior is shown in Fig. (6.8) whereas the high frequency sector is contained in Fig. (6.9).

The limit of fast switching: For fast switching, the η = 0.13 plot, the dynamical spin
susceptibility approaches a behavior similar to equilibrium, see Sec. (6.3.3). The spectral
decomposition of the response function remains nearly constant over the whole period.
As explained before, this behavior originates in a mismatch of time scales. Namely, the
internal time scale tk is much larger than the external time scale τ such that the system
cannot adapt to the fast change of parameters that is caused by the external driving. In
Sec.(6.3.3), an analytical expression for the spin-spin correlation function was derived
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Figure 6.10: Comparison of the scaled equilibrium dynamical susceptibility with the
numerical results for the fast switching limit shows perfect agreement.

in the limit of fast driving where the response function obeys the following formula:

χτ→0
neq (t) =

1
2

θ(t) e−∆t/2 s(t/2) (6.72)

Note, that in the limit τ → 0, the response function only depends on one time coor-
dinate indicating the similarity to an equilibrium behavior. Moreover, the response
function is identical to an equilibrium response function, see Eq. (6.31), except that the
time coordinate is rescaled, t → t/2, and the amplitude is reduced by one half such that
one can write:

χτ→0
neq (t) =

1
2
χeq(t/2). (6.73)

The rescaling of the time coordinate can be explained by the fact that only half of the
time the spin dynamics are switched on, such that the Sz operators only evolve during
half of the time. A relation as in Eq. (6.73) in time implies the following relation for the
corresponding Fourier transforms:

χτ→0
neq (ω) = χeq(2ω) (6.74)

such that:

χ′′neq(ω) =
∆2

2π

1
ω2 + ∆2

[
2ω

ln

(
1 +

(
2ω

∆

)2
)

+
1
∆

arctan
(

2ω

∆

)]
(6.75)

The scaled equilibrium dynamical spin susceptibility is compared with the numerical
nonequilibrium result in Fig. (6.10). The plotted fast driving limit curve is obtained by
a time average of the η = 0.13 result in Fig. (6.8). Note the perfect agreement of both
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curves such that the numerical precision of the results for the dynamical susceptibility
can be assumed to be very accurate.

In the high energy sector, see Fig. (6.9), pronounced structures can be observed at
odd multiples of the driving frequency Ω implying an enhanced response of the local
spin for a harmonic external magnetic field with frequency nΩ, n odd. The exclusion of
even multiples of the driving frequency seems not very intuitive at first sight since one
expects to observe structures at all multiples of the driving frequency. The reason for
the restriction to odd multiples of Ω stems from the fact that a square wave, that is the
profile of the modulation in the Kondo Hamiltonian, only consists of odd harmonics if
one performs a Fourier series expansion:

θ(sinΩt) = −
∑

n ∈ 2Z+1

cos(nΩt). (6.76)

Intermediate switching times: Lowering the frequency of the switching, i.e. increas-
ing η, enables the system to adapt to the change in parameters, the dependence of
χ′′(tave, ε) on the coordinate tave becomes increasingly important. As the spin dynam-
ics are switched on at tave = 0, the Kondo singlet tries to form, the equilibrium shape
of the equilibrium dynamical susceptibility tries to build up with a peak located near
TK , see Eq. (6.7). For η ∼ 1, however, it is not possible for the Kondo singlet to fully
develop. Towards the half period boundary the dynamical susceptibility collapses and
stays nearly constant over the second half period where its profile resembles the dy-
namical susceptibility of the τ → 0 limit with a peak located at half of the Kondo tem-
perature.

Regarding the high energy sector, the pronounced structures located at odd multi-
ples of the driving frequency Ω are washed out. Every time the Kondo Hamiltonian is
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switched, local excitations in the vicinity of the impurity are created. During the first
half period the excitations decay on a time scale tK . If half of the period exceeds the
internal time scale tK , all excitations have been decayed before the next switch of the
interaction. Therefore, it is not possible for the system to establish coherent excitations
over the full period like in the case of fast switching.

The limit of long switching times: Increasing the switching time further leads to the
appearance of a new structure near the half period boundary. Zooming into the region
before the half period boundary, this is the last plot in Fig. (6.8), one can clearly see the
dynamics that have been predicted in Sec. (6.1.1) where it was argued that the system
behaves as for a single interaction quench in the limit τ → ∞. After a transient time
of the order of tK , the system approaches its equilibrium ground state properties as
can be seen in Fig. (6.11) where the equilibrium and the numerically obtained relaxed
dynamical susceptibility are plotted.



Chapter 7

Conclusion and Outlook

In this work a quasi-steady state in the Kondo model has been studied. This quasi-
steady state is generated by periodically switching on and off the Kondo interaction at
zero temperature. It is shown that the time-dependent Kondo Hamiltonian in the Tou-
louse limit can be mapped onto a time-dependent noninteracting resonant level model
Hamiltonian even under these nonequilibrium conditions. Since the noninteracting res-
onant level model Hamiltonian is quadratic, its dynamics can be solved analytically on
all time scales. This is done by reducing the problem of long-time evolution to a solv-
able matrix multiplication problem. Based on the exact solution of the single-particle
dynamics of the noninteracting resonant level model in the periodic driving setup, cor-
relation functions in the Kondo model are determined exactly.

The quasi-steady state, that builds up after an infinite number of periods, is char-
acterized by the properties of the spin-spin correlation function 〈Sz(t)Sz(t′)〉 and the
dynamical spin susceptibility χ′′(t, ω), that is the spectral decomposition of the spin re-
sponse function at a given point t in time. Remarkably, the conduction band electrons,
that can be thought of as a fermionic bath for the local spin, behave as for zero tem-
perature despite of the creation of excitations in the periodic driving process. This is
seen most prominently in the algebraic long-time behavior of the spin-spin correlation
function:

〈Sz(t)Sz(t′)〉
t−t′→∞∝ (t− t′)−2. (7.1)

This behavior matches exactly the equilibrium behavior at zero temperature, even the
prefactor is identical. Therefore, the low energy degrees of freedom are not affected
by the periodic driving, since they dominate the long-time behavior. As the algebraic
long-time decay converts into an exponential decay for an infinitesimal smearing of
the Fermi surface, the long-time behavior can be viewed as a sensible measure for the
existence of finite temperatures. As a consequence of the result above for the spin-
spin correlation, it is not possible to characterize the quasi-steady state by an effective
temperature. Basically, the excitations in a periodically driven system are fundamen-
tally different from those induced by finite temperature. A finite temperature leads to
a smearing of the Fermi surface whereas a periodic driving creates a discrete ladder
of excitations corresponding to the absorption and emission of multiple quanta of the
driving frequency.

As proposed by Kaminski et al. [21], the Kondo model is expected to show univer-
sality even under nonequilibrium conditions. As is shown in this thesis, the spin-spin
correlation function and the related dynamical spin susceptibility indeed display a uni-
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versal description. Moreover, it is only important how fast the system is driven in
comparison to the internal Kondo time scale revealing that the Kondo scale remains
the only relevant energy scale.

The asymptotic behavior of the quasi-steady state in the limits of fast and slow
switching can be obtained by quite general arguments. For fast driving, the system is
not able to follow the external switching as expected. If external parameters are varied
much faster than any internal time scale, the system is not able to adapt to the external
perturbation. The spin-spin correlation function as well as the dynamical susceptibility
show a profile that is similar to an equilibrium one. A careful analysis, however, reveals
that it is not possible to find a time-independent effective Hamiltonian that generates
the same spin dynamics. In the opposite limit of slow switching the system relaxes in
each half period. Therefore, the system behaves as for a single interaction quench, a
setting that has already been considered in the work by Lobaskin and Kehrein [27][28].

For future work, it would be interesting to extend the results presented in this the-
sis obtained in the Toulouse limit of the Kondo model to the case of small Kondo cou-
plings. For small couplings, the flow equation method can be used to map the Kondo
Hamiltonian onto a noninteracting resonant level model as in the Toulouse limit. The
hopping amplitude, however, as well as the hybridization function become nontrivial.
Moreover, the analysis of further quantities like the local spectral density may provide
a deeper understanding of the quasi-steady state in the present setting.



Appendix A

Some mathematical expressions

A.1 Fourier series expansions

In this paragraph, the Fourier series expansion of two important periodic functions will
be listed:

i.
1− 2 cos(kτ/2)e−∆τ/2 + e−∆τ

1− 2 cos(kτ/2)e−∆τ/2 + e−∆τ
=
∑

n

cneinkτ/2

cn =


1 + e−∆τ

1− e−∆τ
e−|n|∆τ/4 , for n even

−2 cosh(∆τ/4)
e−∆τ/2

1− e−∆τ
e−|n|∆τ/4 , for n odd.

ii.
eikτ/2 − e−∆τ/2

eikτ − e−∆τ/2
=
∑
n∈Z

dneinkτ/2

dn =


−e−|n|∆τ/4 , for n even and n < 0

e∆τ/4e−|n|∆τ/4 , for n odd and n < 0

0 , n > 0

(A.1)

A.2 Long time asymptotics of the function s(t)

Here, the asymptotic behavior for t →∞ of the following integral will be determined:

∆
π

∫ ∞

0
dk

eikt

k2 + ∆2
=

1
π

∫ ∞

0
dz

∆t

z2 + (∆t)2
eiz. (A.2)
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Figure A.1: Integration contour

The poles of the integrand±i∆ lie on the imaginary axis in the complex plain such that
one can deform the integration contour as shown in Fig. (A.1):

1
π

∫ ∞

0
dz

∆t

z2 + (∆t)2
eiz =

1
π

∫
γ1

dz
∆t

z2 + (∆t)2
eiz +

1
π

∫
γ2

dz
∆t

z2 + (∆t)2
eiz,

γ1(s) = (1 + i)Rs, γ2(s) = (1 + i)R + (1− i)s
(A.3)

where the limit R → ∞ has to be performed in order to reproduce the correct integra-
tion contour:

1
π

∫
γ1

dz
∆t

z2 + (∆t)2
eiz =

1
π

∫ ∞

0
dx

∆t

(1 + i)2x2 + (∆t)2
eixe−x

t→∞−→ 1 + i

π∆t

∫ ∞

0
eixe−x =

i

π∆t

1
π

∫
γ2

dz
∆t

z2 + (∆t)2
eiz =

1
π

∫ 1

0
(1− i)∆t

R

R2(2− s + is)2 + (∆t)2
eiR(2−s)e−Rs

R→∞−→ 0

(A.4)

Concluding:

∆
π

∫ ∞

0
dk

eikt

k2 + ∆2

t→∞−→ i

π∆t

∆
π

∫ ∞

0
dk

e−ikt

k2 + ∆2

t→∞−→ −i

π∆t

(A.5)



Appendix B

The correlator 〈{d†(t), d(t′)}〉

Here, the correlator

〈{
d†(t), d(t′)

}〉
(B.1)

will be determined. Due to Eq. (5.118) one can write t = nτ + s, n being an integer and
s ∈ [0, τ/2]. The time coordinate t′ can be chosen to be in the time interval [0, τ/2] due
to the periodicity property of two-time correlation functions, see Eq. (4.36). In order to
determine the correlator above, four different expressions have to be evaluated:

i.
∆
2π

e−∆(s+t′)

∫ ∞

−∞
dk

cos(nkτ)
k2 + ∆2

1− 2 cos(kτ/2)e−∆τ/2 + e−∆τ

1− 2 cos(kτ)e−∆τ/2 + e−∆τ

ii.
∆
2π

e−∆s

∫ ∞

−∞
dk

e−i(n+1)kτ

k2 + ∆2

e−ikτ/2 − e−∆τ/2

e−ikτ − e−∆τ/2

[
eikt′ − e−∆t′

]
iii.

∆
2π

e−∆t′
∫ ∞

−∞
dk

ei(n+1)kτ

k2 + ∆2

e−ikτ/2 − e−∆τ/2

e−ikτ − e−∆τ/2

[
eiks − e−∆s

]
iv.

∆
2π

∫ ∞

−∞
dk

einkτ

k2 + ∆2

[
eiks − e−∆s

] [
e−ikt′ − e−∆t′

]
(B.2)

that can be obtained by taking the real part of the expression appearing in Eq. (6.46).
An integral that will automatically emerge is:

∆
π

∫ ∞

−∞
dk

eikT

k2 + ∆2
= e−∆|T | (B.3)
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The expression above can be evaluated by using Eq. (A.1) and Eq. (B.3):

i. e−∆(s+t′)
∑
m

cm
∆
2π

∫ ∞

−∞
dk

ei(n+m/2)kτ

k2 + ∆2
=

1
2
e−∆(s+t′)

∑
m

cme−|2n+m|∆τ

=
1
2
e−n∆τ/2e−∆(s+t′)

ii. e−∆s
∑
m

d−m
∆
2π

∫ ∞

−∞
dk

ei(m/2−n)kτ

k2 + ∆2

[
eikt′ − e−∆t′

]
=

1
2
e−∆s

∑
m

d−m

[
e−|(m/2−n)τ+t′|∆ − e−∆t′e−|m/2−n|∆τ

]
=

1
2
e−∆s

{
e−n∆τ/2

[
e∆t′ − e−∆t′

]
, for n > 0

0 , otherwise

iii.
1
2
e−∆t′

{
e−n∆τ/2

[
e∆s − e−∆s

]
, for n < 0

0 , otherwise

iv.
1
2

{
e−∆(s−t′) − e−∆(s+t′) , for n = 0
0 , otherwise

(B.4)

Collecting all contributions one obtains:

〈d†(t)d(t′)〉 =
1
2
e−n∆τ/2e−∆(s−t′) (B.5)
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