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We report on our theoretical investigation of the effects of the confining potential profile and sample size on
the electron velocity distribution in �narrow� quantum Hall systems. The electrostatic properties of the electron
system are obtained by the Thomas-Fermi-Poisson nonlinear screening theory. The electron velocity distribu-
tion as a function of the lateral coordinate is obtained from the slope of the screened potential at the Fermi level
and within the incompressible strips. We compare our findings with the recent experiments.
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I. INTRODUCTION

In the early electro-optical measurements performed on
the two-dimensional electron systems �2DESs�, the electro-
static potential across the Hall bar was shown to exhibit local
dips as a function of the lateral coordinate across the
sample.1–3 The positions of these local potential variations
are strongly dependent on the applied perpendicular mag-
netic field. They coincide with the positions of the strips with
finite width corresponding to integer local filling factors
where the longitudinal conductance vanishes, i.e., ���x�
=�xx�x�=�yy�x�=0. It was concluded that the “expected”
quasi-one-dimensional edge states can be as large as hun-
dreds of micrometers, where ���x��0. It was also shown
that the current can flow from the bulk in the magnetic field
interval where the Hall resistance does not assume its quan-
tized value. In this regime, however, the outermost edge
states are reported to be “invisible.”3 On the other hand, the
local probe of the electrostatic potential and the longitudinal
resistivity measurements4–7 using scanning force microscopy
and single-electron transistor has indicated that the current is
confined within finite regions across the sample. These re-
gions were later suggested to be the “incompressible” re-
gions, namely, regions of integer local Landau filling factors
which are distributed in an inhomogeneous manner over the
sample due to the electronic nonlinear screening as well as
the boundary effects as previously predicted.8,9 These experi-
ments are well explained by the recent theoretical works,10–12

which take into account interaction effects by exploiting the
smooth confining potential profile within the Thomas-Fermi
approximation and also incorporating a local version of the
Ohm’s conductivity model. These models contribute not only
to the understanding of the induced electric field and current
distribution but also to the high precision nature of the low-
temperature integer quantized Hall �QH� plateaus in narrow

Hall bars as a function of the continuous lateral sample co-
ordinate.

Recently, the edge profile of a InP/ InGaAs Hall sample
was probed in the “surface photovoltage �SPV� spectros-
copy” measurements, and it was found that the electron ve-
locity at the edges increases with increasing magnetic field
�B� respecting a square root behavior,13 i.e., vel�B��B1/2. In
the interpretation of the data, these authors used a model in
which the electrostatic bending of the Landau levels �result-
ing from the confinement potential� was not taken into
account, the electron Hartree potential was neglected, and
instead, the velocity distribution was modeled by an homo-
geneous induced electric field. It was stated therein that these
measurements should be reinterpreted in the light of a
“screening model.” It is the aim of the present paper to show
that their original interpretation cannot be corrected even by
including a linear screening model �see Sec. III�. In parallel
to these developments, the nonlinear screening was also pro-
moted by the importance of the recent electronic-Mach-
Zehnder interferometer experiments,14,15 where the role of
the electron-electron interaction on the B field dependence of
the edge fields was emphasized. In these latter experiments
the electron phase deduced from roughly assuming a con-
stant group velocity of vg��2–5��106 cm/s disagrees with
the single particle picture, and the authors argued this in
favor of a possible breakdown of the single particle picture
and the Landauer-Büttiker conductance formalism.

In the present work, we systematically analyze the elec-
trostatic edge profile of narrow Hall bar samples using a
self-consistent Thomas-Fermi-Poisson approach under QH
conditions. In Sec. II, we introduce a model which incorpo-
rates a constant donor density in the manner of the Chk-
lovskii geometry16 and, secondly, �Sec. III� by a nonuniform
distribution of donors. We then find, in Sec. III and Sec. IV,
the electron velocity vy, considering different models, across
the sample in the current direction by
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vy =
1

�

�EX,n

�ky
, �1�

where EX,n is the eigenenergy of the single particle Hamil-
tonian with X=�ky /eB denoting the center coordinate and n
the Landau Level �LL� index. Here, ky is the conserved elec-
tron momentum in the y direction, e is the electron charge,
and B represents the strength of the perpendicular magnetic
field. We then investigate the dependence of the electron ve-
locities on the B field considering two edge state models in
Sec. IV. The widths of the incompressible strips �ISs� de-
pending on the sample properties are examined in Sec. V. We
observe that the electron transport is confined within the ISs
where the electron velocity decreases with increasing mag-
netic field as B−1/2. On the other hand, if the center filling
factor ��0� is smaller than its minimum integer value of 2
�since we do not resolve the spin degeneracy�, all the current
is spread over the sample, suggesting that the slope of the
screened potential should be calculated at the Fermi level.
We close our discussion with a summary section.

II. MODEL

The 2DES, described by the electron number density
nel�x�, is considered to be in the x-y plane with a lateral
confinement �x��b at z=0 and assuming translation invari-
ance in the y direction. The ionized donors also reside in this
plane, with the average number density n0 confined into the
interval �x��d, where d is the sample width and �d-b� the
depletion length with b�d. Electrostatic self-consistent so-
lution is then independent of the y coordinate, and from the
solution of the Poisson’s equation with the appropriate
boundary conditions, i.e., V�x= ±d ,z=0�=0, we obtain the
Hartree potential energy of an electron in the plane of the
2DES as

VH�x� =
2e2

�̄
�

−d

d

dx�K�x,x��nel�x�� , �2�

with �̄ being the dielectric constant of the material and the
electrostatic kernel9 is

K�x,x�� = ln���d2 − x2��d2 − x�2� + d2 − x�x

�x − x��d
� . �3�

The potential energy of an electron in the confinement region
generated by the donors reads

Vbg�x� = − E0
�1 − �x/d�2, E0 = 2	e2n0d/�̄ , �4�

which can be found from Eq. �2� using the kernel given in
Eq. �3� and replacing nel�x�� by −n0. We write the total po-
tential energy of an electron as V�x�=VH�x�+Vbg�x�. The
electron number density is calculated numerically, within the
Thomas-Fermi Approximation �TFA�,

nel�x� =� dED�E�f��E + V�x� − 
	/kBT� , �5�

with D�E� describing the �collision-broadened� Landau den-
sity of states �DOS�, f���= �1+e��−1, the Fermi distribution

function, and 
 the electrochemical potential. Here, kB and T
represent the Boltzmann constant and the electron tempera-
ture, respectively. We also assume the electron spin degen-
eracy. Equations �2� and �5� complete the self-consistent
scheme,10,11 which can be solved by a numerical iteration.
For accurate convergence, we first perform calculations at
T=0 and B=0, then increase T at an elevated B strength, and
reduce the temperature stepwise until the relevant tempera-
ture is achieved. In the next sections, we first consider two
distribution functions for the donor number density and in-
vestigate the electron velocity dependence on the magnetic
field, temperature, and confining potential profile.

III. DONOR DISTRIBUTION

During the last decades, several boundary conditions were
considered, ranging from infinite hard-wall potentials17 to
smooth potentials9,16,18 in order to theoretically investigate
the 2DES under QH conditions. For relatively large samples
�d�1 mm�, the edge effects were considered to be domi-
nated by the localization; thus, the positions of the ISs were
mainly predicted by the disorder potential. On the other
hand, for narrow samples �d�15 
m�, the ISs were consid-
ered to be formed due to the electrostatic boundary condi-
tions at the edges. Recently, it was experimentally shown
that the steep potential at the edge of the sample prohibits the
formation of the ISs and the Chklovskii picture is no longer
applicable.19 These results coincide with an early theoretical
calculation, based on Hartree approximation, given in Ref.
17, where the edge potential is taken to be an infinite wall,
for which ISs were not observed. On the other hand, if
the edge profile is smooth, several incompressible regions
can be observed theoretically,9,18,20 which are confirmed
experimentally.21 In the intermediate case, corresponding to
narrow samples, only a single incompressible edge strip was
reported,4,5 which was then supported by subsequent theoret-
ical works.11,22

In this section, we consider narrow samples �1 
md
5 
m� and vary the donor distribution to investigate the
widths of the ISs depending on the magnetic field strength.
The selected donor profiles can be realized experimentally
either by the uncontrollable etching processes or by gradu-
ally doping the sample.

In Fig. 1, we show the two selected donor distributions
�upper panel� and the corresponding confinement potentials
�lower panel� generated by

�1�u� =

�− �u + c�2 + �c − 1�2	nc

�c − 1�2 , − 1 � u � − c

nc, − c � u � c

�− �u − c�2 + �1 − c�2	nc

�c − 1�2 , c � u � 1 �
�6�

and
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�2�u� =

�u + 1�nc

�1 − c�
, − 1 � u � − c

nc, − c � u � c

�1 − u�nc

�1 − c�
, c � u � 1, � �7�

where u=x /d and nc is a constant density preserving the total
number of the donors in the sample. The steepness of the
confinement is controlled by the dimensionless parameter c.
In the figures, the potential energies are also normalized with
the pinch-off energy �E0� of the constant donor distribution.
To make a connection between the experimental realizations
of such donor distributions, we point out that, during the
chemical etching in the z direction, the reaction also takes
place in the x-y plane. Hence, the donor layer is not neces-
sarily etched completely at the edges and a distribution simi-
lar to �1�u� is expected. Meanwhile, during the growth pro-
cess of the wafer, donors can be distributed �in a controlled
way� similar to �2�u�. In our calculations in both cases, we
keep the average donor number density constant. It is clearly
seen in Fig. 1 that the steepness profiles close to the edges of
the sample are different for two distribution functions,
whereas the minima of the confining potentials change lin-
early with c. As a result, different behaviors can be identified
for the screened potentials �even without exploiting the mag-
netic field� arising from the momentum �q� dependence of
the Thomas-Fermi dielectric function, i.e., ��q�=1+ 2

aB
* �q�

dominated by q=2	 /a.

The relation between the screened potential Vscr�q� and
the external potential Vext�q� is given by

Vscr�q� = Vext�q�/��q� . �8�

Different steepness values lead to different dominating q re-
gions, which then render different characteristic screening
properties. From the inset of Fig. 1, we conclude that the
steepness of the potential increases much faster for �1, better
simulating the edge profile than the doped profile. This dif-
ference becomes crucial when a magnetic field is applied and
the ISs are formed at the edges of the sample.

In the next step, we consider the effect of the electronic
screening. We calculate the screened potential self-
consistently by solving Eqs. �2� and �5� at T=0 and B=0. In
this limit, Eq. �5� is reduced to

nel�x� = D0„EF
0 − V�x�…�„EF

0 − V�x�… , �9�

which then becomes a linear relation between the potential
and the electron distribution within the linear screening re-
gime. In Fig. 2, the calculated self-consistent potentials are
depicted for the considered donor distributions together with
the variation of the Fermi energy as a function of c. On one
hand, the screened potential within the sample coincides with
the EF

0 for both models in Eq. �6� and �7�. On the other hand,
these quantities differ strongly for both distributions due to
the nonlinear screening pronounced above. Since the con-
stant part of the donor distribution �q=0 component� is
strongly screened, the change of the potential depending on
steepness is less pronounced for �2�x�; meanwhile, the sharp
transition is observed at �1�x�. This implies that more q com-
ponents are involved in the screening there. This behavior
can be seen from the slope shown in the inset of Fig. 1. In
other words, less q components contribute, for �1�x�, to the
screened potential in the bulk, whereas more q components
are involved close to the edge of the sample. Thus, the mini-

FIG. 1. �Color online� The cross section of the donor layer con-
sidering �a� �1�u� and �b� �2�u� for various values of the steepness
parameter �0.5�c�1�, together with the calculated background
potential profiles �lower panels, �c� and �d�	. The thin solid line
represents a constant donor distribution �c=1�, whereas thick solid
line corresponds to c=0.5. The line code denotes a gradual increase
of c with a step of 10%. The sample width d and the depletion
length b are fixed and set to be 3 
m and 300 nm, respectively. In
both cases, the donor number density is kept constant and chosen to
be 4�1011 cm−2. The inset depicts the variation of the background
potential calculated at the center of the sample for �1 �thin solid
line� and �2 �broken line�.

FIG. 2. �Color online� The screened potentials obtained from the
bare confinement potentials shown in Fig. 1, at B=0 and T=0 �thick
lines� and also the Fermi energy for vanishing field and temperature
�thin horizontal lines�. The inset depicts the variation of EF

0 versus
the steepness considering �1 �solid line� and �2 �broken line�.
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mum of the screened potential changes faster than that of
�2�x�. The Fermi energies show a similar behavior, up to a
factor, which indicates that the average number of electrons
decreases faster for �1�x� although the density of the donors
is kept constant.

The effect of the sample width on the potential profile
affects the variation of the screened potential. In Fig. 3, the
self-consistent potential at the center is plotted against the
�half� sample width for the two donor distributions in Eqs.
�6� and �7� for the selected steepness parameters. For large
samples �2d�6 
m�, the variation of the central value of the
potential is not sensitive to the steepness, since the electrons
at the bulk can perfectly screen the confinement potential at
the edges. On the other hand, steepness is expectedly impor-
tant for narrower samples. This observation clarifies the
dominating role of the edge profile on the electron velocity
for narrow samples and shows that the interaction effects
become important in the Mach-Zehnder-type experiments,
where the dimensions of the samples used are usually less
than a few micrometers �2d�3–4 
m�.

Before proceeding with the investigation of the effects of
the magnetic field, i.e., considering the effects of the IS in
the presence of nonlinear electronic screening, we briefly
discuss the slope of the self-consistent Hartree potential by
only taking into account the LL quantization. As the mag-
netic field is changed, the LLs and their separations are
shifted on the energy axis. A qualitative understanding of the
B dependence of the induced electric field �F� within the
sample can then be achieved by analyzing this shift. Then,
F�B� can be compared with the experimental results obtained
by Ref. 13.

Our main argument is that, even without taking the ISs
into account, one should be able to observe the predicted
behavior of the �average� electron velocity �vel� at the edges
of the sample. Since in their model the electron-electron in-
teraction �also without magnetic field� was not taken into
account, therefore their results should be a limiting case of
our first order approximation. This argument relies also on
the fact that, within the single particle picture, the electron
velocity is calculated from the slope of the LLs �essentially
from the confinement potential� at the Fermi level. Since in

the Landauer-Büttiker23 formalism the electron velocity
plays no role due to cancellation of the velocity with the
arguments of the one-dimensional DOS, the simplest next
step would be to take into account the screening without
magnetic field and rewrite the energy dispersion within the
TFA, yielding

EX,n = En + Vscr
T=0,B=0�X� , �10�

where En is the Landau energy �=��c�n+1/2�	 and
Vscr

T=0,B=0�X� the screened potential calculated at vanishing
magnetic field and temperature.

We use the derivative of this potential with respect to u at
the Fermi level to infer vel. This derivative of Vscr�u� is
shown in Fig. 4 for selected values of c and using �2�u� as
the donor distribution. We observe two characteristic behav-
iors. In Fig. 4�a�, in the electron dense region ��u��0.9,
where Vscr�u� /E0�EF /E0�, the derivative grows in the posi-
tive x direction rather slowly compared to that in the electron
depleted region, as shown in Fig. 4�b�. Screening is strong in
the electron dense interior where the total potential is flat.
Approaching the edge of the populated region, the number of
electrons decreases and screening becomes poor. In the de-
pleted region, the confinement potential is screened very
poorly; thus, the variation of the total potential there is large
yielding a larger derivative. For a given Fermi energy, de-
creasing the magnetic field corresponds to sweeping the x
axis by which the electron velocity along y can be deduced.
In the inset of Fig. 4, vel�B−1/2 behavior is clearly observed
for all c values; however, the exact quantitative values de-
pend on the steepness of the edge profile. We observe that,
for c�0.8, the change in the electron velocity is much more
rapid in this case than the shallow edge profiles, indicating a
strong relation between the edge profile and the magnetic
field dependence of the electron velocity. Here, we would
like to focus on the crossover between the two different slope
behaviors, namely, the c�0.8 and c�0.8. If the potential
slope is sharper at the edge, the local electron density at the

FIG. 3. �Color online� The sample width dependence of the
screened potential calculated at the center. The line code depicts the
selected values of c and two distribution functions.

FIG. 4. �Color online� The numerical derivative of the screened
potentials for different steepness values calculated at the edge of the
sample for inverse parabolic donor distribution �2. Horizontal axis
essentially presents the Fermi level, i.e., increasing of the u corre-
sponds to increasing of the average electron density.
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edges reaches the bulk �average� density value much closer
to the end of the sample; hence, the screened potential varies
rapidly in the length scale of electron poor region, resulting
in a high electron velocity. By electron poor region we mean
the interval between the electron depleted stripe �see, e.g.,
Fig. 9 of Ref. 9, �x /d � �0.9� and where the local density is
similar to the bulk value ��x /d � �0.8�. Considering the SPV
experiments, one should expect the fast electron behavior,
since the sample is gated from one side resulting in a steep
profile, whereas in the Mach-Zehnder interference experi-
ments, the boundary conditions are mixed, i.e., smooth near
the quantum point contacts and steep near the chemically
etched regions. For the shallow edge profile, the case is just
the opposite, i.e., the electron poor region is much more
extended �same figure of Ref. 9 for the solid lines 0.5
� �x /d � �0.9� and therefore screening is not good as it was
for the sharp edge, yielding a slower electron velocity. Com-
bining vel�B−1/2 and the calculated slopes demonstrates that,
in the mentioned experiments,13 the confinement is relatively
steep, which was concluded by these authors to be the oppo-
site. In connection, here we would like to stress another ex-
periment where a similar geometry reported in Ref. 19 was
considered. In this work, it is ruled out that if a negatively
charged gate is placed on the side perpendicular to the 2DES
�in the experimental setup, this gate is another 2DES, ob-
tained by a cleaved edge overgrowth technique�, creating a
sharp potential profile at this edge, no ISs are observed.
Similarly, a side �gate� electrode is used to detect the SPV
signal in the experimental setup of Karmakar et al.13 and
their conclusion contradicts strongly with the findings of Hu-
ber et al.19 They also contradict with the velocity depen-
dence, which we discuss next in more detail now also includ-
ing the incompressible regions. It is clear that we will work
with those geometries where the edge profile is neither very
steep �such as an infinite wall or a perpendicular side gate�
nor very shallow so that many incompressible regions can be
observed at a given magnetic field, within the Thomas-Fermi
approximation.

In the SPV work, the Hamiltonian of the system was
given by

H =
1

2me
* �p − eA�2 + eFx , �11�

which includes a constant electric field �F� along the positive
x axis pointing to the edge. Here, me

* is the effective electron
mass and p and A are the canonical electron momentum and
the vector potential, respectively. Using the Landau gauge,
the energy dispersion is found to be24

En,X = Eg + �n + 1/2���c − �F/B��X/lb
2� − �me

*/2��F/B�2,

�12�

where Eg is the energy band gap and lb=�� /m�c the mag-
netic length. These authors concluded that in order to obtain
the B=0 value and also to match the experimental results
�see Fig. 4 of Ref. 13�, one should assume that F�B3/2. First
of all, one remark is that in the B=0 limit, energy dispersion
given in Eq. �12� becomes meaningless. Secondly, in the
limit of high magnetic field, assuming F�B3/2 or F�B1/2

essentially leads to similar linear behavior at the measured B
values, as shown in the inset of Fig. 4. In the SPV experi-
ments, no low field �B1 T� measurement were performed;
therefore, we conclude that their conclusion about F�B3/2 in
Ref. 13 is not unique. Moreover, our calculations ascertain
that, even in the absence of ISs, the electron velocity is an
inverse square root function of the magnetic field, namely,
vel�B−1/2, and as a consequence, F�B1/2.

Our simple self-consistent calculations, assuming that the
effects of ISs are negligible, agree qualitatively well with the
experimental findings. We also point that the functional form
of the electric field and the interpretation of the steepness of
the potential strongly differ from Ref. 13. First of all, it is
experimentally19 and theoretically9,17 shown that in the pres-
ence of a side gate, perpendicular to the 2DES �simulating a
hard-wall potential or surface charges�, the potential at the
edge is steep. Secondly, the proclaimed B dependence of the
electric field at the edge is not unique and we claim that F
�B1/2.

The discussion above should also be reconsidered in the
presence of IS. In the next section, we do that by examining
both the potential slope at the Fermi level and at the position
of the ISs to obtain a more realistic comparison between
our theory and the recent Mach-Zehnder interferometry
experiments.14,15

IV. COMPARISON OF THE E FIELD AT DIFFERENT
EDGE STATE MODELS

In principle, the electron velocity at the edge of the 2DES
or the electric field at the depleted region is not directly
measured in the SPV experiments; instead, the slope of the
potential profile is investigated as a function of the magnetic
field deduced by the energy dependence of the SPV signal.
On the other hand, in our calculations, we explicitly obtain
the self-consistent potential, and by taking the derivative of
the energy dispersion, we can directly calculate the electron
velocity. In the previous section, by making use of the
Thomas-Fermi approximation, we obtained the screened po-
tential and claimed that the center coordinate dependent dis-
persion is given by Eq. �10�. In the next step, we calculate
the full screened potential �Vscr

T�0,B�0�X�	 and investigate its
slope as a function of B ,T ,c and d as well as the long-range
part of the disorder potential.

As a standard technique,9,22,25,26 we simulate the potential
fluctuations generated by the disorder by imposing a modu-
lation potential26 of the type

Vm�x� = V0 cos�k�x� with k� = �� + 1/2�	/d �13�

as an additive contribution to the confinement potential.
Here, V0 is the modulation amplitude and � is an integer to
preserve the boundary conditions.

In Fig. 5, we show the numerical derivative of Vscr�x� at
the chemical potential. Note that at T�0, the Fermi energy
is no longer equal to the chemical potential, and it has to be
calculated for the given set of physical parameters. Here, we
consider �=5. The amplitude of the modulation is set such
that, after screening, the potential variation is at the order of
5%–25% of EF

0 . As a rough estimate, we find that V0 reduces
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by 3 orders of magnitude due to the dielectric screening �for
GaAs, �=12.4	, and electronic screening ���q��41, see,
e.g., the expression given in the caption of Fig. 2 of Ref. 9
and the related text�. Regardless of the variation in d, T, and
V0, the slope of the screened potential obtained at the chemi-
cal potential exhibits the previously observed F�B−1/2 form;
except the case where the modulation is so strong that slope
remains unaffected at d=1 
m with V0=300 meV. The hint
to understand this exception is found in Fig. 5�b�, where we
show the slope calculated inside the IS at the position corre-
sponding to ��x�=2. We see that the derivative of the poten-
tial also behaves similarly to the one obtained at the chemi-
cal potential, namely the inverse square root form, which
indicates that the ISs are considerably narrow. Also, from the
density profile calculated �not shown here; however, the re-
sults of a similar calculation can be found in Ref. 26�, we see
that, due to the strong modulation, the outermost IS is nar-
row and its effect is negligible; thus, the slope remains al-
most insensitive to the change in the B field on this scale. An
interesting comparison concerning the sample widths reveals
that the narrower the sample is, the stronger the slope.
Hence, in the Mach-Zehnder experiments and also consider-
ing the fact that the measurements are performed at an inter-

mediate magnetic field strength �B�2.5–4.5 T� and narrow
samples �d�1 
m�, the assumption of a constant velocity
independent of B is not realistic. We observe that the disor-
der potential does not affect this general behavior as long as
the dominating scattering processes come from the edges of
the sample. Introducing disorder obviously results in density
fluctuations, which can be screened by the 2DES if the sys-
tem is compressible �far from integer filling factors�, and the
conclusion is the opposite if the Landau levels are fully oc-
cupied. We consider a situation such that the magnetic field
is tuned to an interval where the average filling factor be-
comes close to an �even� integer. In this situation, a large IS
is formed at the bulk �without modulation� and split into
several ribbons �as observed in Fig. 2 of Ref. 22�, and the
effect of these incompressible ribbons on the slope at the
edge is marginal. This is seen in the left panel of Fig. 5,
where we examine the behavior of the derivative comparing
V0=0 and V0�0. In the unmodulated case, the slope drops
linearly with increasing B, until a large IS is formed at the
bulk �e.g., in Fig. 5�f�, B�7.3 T�. The wide strip disappears
when the magnetic field strength is strong enough so that the
Fermi level is pinned to the lowest Landau level, B
�7.45 T. For the modulated case, the derivative decreases
also linearly, with a smaller slope. However, this linear re-
gion is larger compared to the unmodulated case, e.g., in Fig.
5�d�, up to B�7.8 T for V0=100 meV and B�9.0 T for
V0=200 meV. Depending strongly on the modulation ampli-
tude, the rapid decay of the slope due to the formation of a
large bulk IS is observed in a relatively narrow B interval.
The “linear slope regime” is observed for all considered
sample widths; however, for narrow samples, the B interval
is larger for higher modulation amplitudes. This indicates
that for high mobility samples, where the long-range part of
the disorder potential is well screened,22 the linear regime
will be observed in a narrow B interval. From the above
discussion we conclude that the electron velocity on the ISs
presumes a linear B field dependence. At this point, we find
it useful to make a connection between our results and the
Mach-Zehnder-type samples. These samples have intermedi-
ate mobility and are relatively narrow. We have shown that
the electron velocity calculated at the chemical potential de-
creases like an inverse square root of the B field, and the
assumption of constant velocity is not applicable. If the cur-
rent is carried by the ISs, assuming a constant vel in the
magnetic field interval where the interference pattern is ob-
served is still irrelevant. Recently, it has been shown theo-
retically that,27 within the screening picture of integer quan-
tized Hall effect, the interference can be observed only in a
narrow magnetic field interval within the plateau regime at
high mobilities. The boundaries to observe interference pat-
tern is estimated such that two separated ISs should be
formed �similar to B�8 T of Fig. 6�f�	, which are larger than
the Fermi wave length �B�6 T�. This interval coincides
with the linear velocity regime shown above. Therefore, we
support the idea15 that the phase of the electron calculated
within the single particle picture should also be reconsidered
form the interaction point of view as presented in this work.
So far, we have examined the magnetic field dependence of
the slope of the screened potential at the Fermi level and
within the ISs. We have found that, depending on the B

FIG. 5. �Color online� The slopes of the screened potential cal-
culated at the Fermi level �left panel� and within the IS �right
panel�, considering characteristic �half� sample widths of d=1 
m
�upper panel�, d=2 
m �middle panel� and d=5 
m �lower panel�.
The electron temperatures are chosen to be T=1 K �thick lines� and
T=5 K �thin lines� only in the upper panel.
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strength, the electron velocity exhibits different behaviors
depending on where the slope is calculated. If it is assumed
that the current flows from the Landauer-Büttiker-type edge
states, the velocity takes the form B−1/2. If the current is
carried by the ISs, the velocity drops linearly in the case of
two separate ISs and is highly nonlinear in the presence of a
large IS in the bulk. Next, we discuss the extent of the ISs
depending on the magnetic field and steepness of the con-
finement potential considering different sample widths.

V. FORMATION OF INCOMPRESSIBLE STRIP

The long-standing question of “where the current flows”
in the quantum Hall bar systems has been addressed in many
different theoretical works.10,11,28–31 In an early paper by
Chang,30 it was stated that the current is confined to the ISs
where the potential drops. This conjecture was supported by
Fogler and Shklovskii,32 in which they calculated �at zero
temperature� the magnetoresistance coefficients within the
“electrostatic approximation” and the self-consistent treat-
ment of the potential and density distribution was left unre-
solved. In a recent model10,11 using a local version of the
Ohm’s law, it was shown explicitly that the external current
is confined in the ISs where the longitudinal resistivity van-
ishes, i.e., ���x�=0. This novel approach brought a quantita-
tive explanation to many interesting aspects of the integer
quantized Hall effect, among which are the high reproduc-
ibility of the very accurate quantized Hall plateaus, the tran-
sition between the zero states and the description of the local
current distribution. This model is based on the formation
�and disappearance� of the ISs, and now we concentrate on
their widths taking into account different edge profiles and
sample widths.

In Fig. 6, we plot the widths of the ISs �W2, for local
filling factor of 2� against the magnetic field strength consid-
ering different sample properties. For the constant donor dis-

tribution �c=1�, we see that the sample width has no influ-
ence on the B dependence of the width of the strips, whereas
W2 increases by increasing the sample width, as expected.
Note that, since the variation of the self-consistent potential
at the IS is ��c, the slope is calculated simply by dividing
this variation by W2. As a direct consequence, the slope be-
comes small when W2 becomes large. At the first glance, for
intermediate steepness �c=0.8�, the functional form of the
inhomogeneous donor distribution, i.e., �1�x� or �2�x�, has no
influence on W2. However, the linear velocity regime is
much more extended for the etched samples than that of the
doped ones for relatively large sample widths �d�3 
m�.
This feature is more pronounced for c=0.6, i.e., for the
steeper edge profile, and the linear �velocity� regime is ob-
served in a larger magnetic field interval compared to other
steepness parameters. The observed difference is due to the
extent of the electron poor region, given that the etched
samples provide a steeper edge potential profile �see the dis-
cussion of Fig. 4�a�	. The slope of the linear regime is
smaller for the etched sample and a smoother transition to
the nonlinear regime is observed for the doped edge profile,
whereas the functional form of the donor distribution seems
to show no important difference for different sample widths.

As a final remark on the IS widths, we would like to recall
the findings of Güven and Gerhardts10 where the high current
regime was also investigated. It was shown that a large im-
posed current leads to a broadening of the ISs on one side of
the sample, hence a change in the slope, which was also
supported by the experiments.5 This result shows that there is
a relation between the amplitude of the imposed current and
the average electron velocity inside the ISs. We believe that
the investigation of the out-of-the-linear response regime
will improve our understanding of the Mach-Zehnder type of
interferometer experiment. Our preliminary results show that
the widths of the ISs increase linearly by increasing the am-
plitude of the applied current.

VI. SUMMARY

In summary, we have calculated the slope of the self-
consistent potential, within the Thomas-Fermi-Poisson
theory of screening. We considered two different pictures of
edge states, namely, the single particle and the incompress-
ible states, to obtain electron velocities in the presence of a
strong perpendicular magnetic field. We have systematically
investigated the effect of the sample properties such as the
sample width, edge profile, and disorder potential on the
electron velocities.

We first obtained a functional form of the vel and the
electric field depending on the magnetic field strength, with-
out taking into account the formation of the ISs, and consid-
ering only the Landau quantization. It is shown that the in-
terpretation of the SPV experiments13 strongly contradicts
with our results and also with other experiments.19 We found
that the slope of the self-consistent potential changes as
�B−1/2, whereas the electric field at the edge behaves as F
�B1/2. We also concluded that assuming a constant vel
may lead to discrepancies in analyzing the results of
Mach-Zehnder-interferometer-type14,15 experiments.

FIG. 6. �Color online� The sample width dependence of the IS
thickness for ��x�=2. Calculations are performed at 1 K for three
characteristic steepness values considering etched �left panel� and
functionally doped �right panel� samples. Widths of the samples are
selected to be d=1 
m �top� d=3 
m �middle�, and d=5 
m �bot-
tom�, whereas the electron depleted strips are fixed to be 10% of d.
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Secondly, by evaluating the full self-consistent potential,
we were able to obtain the electron velocities at the Fermi
level and within the ISs. We found that the full self-
consistent results coincide with our semiconsistent findings
pointing to the inverse square root dependence of vel within
the single particle picture. The slope of the fully screened
potential calculated at the ISs, however, exhibits two differ-
ent regimes of magnetic field. These two regimes are identi-
fied by the dependence of the electron velocity on the mag-
netic field, which is linear in one regime and nonlinear in the
other.

Our results indicate that, in narrow Hall bar geometries
with intermediate mobilities, the edge profile becomes very
important in determining the electron velocity for both the
Landauer-Büttiker or the IS-type edge states. It appears

to us that re-examining the results of Mach-Zehnder
interferometer14,15 experiments from self-consistent point of
view will thus be helpful in understanding the underlying
physics of the obtained interference patterns.
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