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We study the dynamics of the 2+1 Dirac oscillator exactly and find spin oscillations due to a Zitterbewegung
of purely relativistic origin. We find an exact mapping of this quantum-relativistic system onto a Jaynes-
Cummings model, describing the interaction of a two-level atom with a quantized single-mode field. This
equivalence allows us to map a series of quantum optical phenomena onto the relativistic oscillator and vice
versa. We make a realistic experimental proposal, in reach with current technology, for studying the equiva-
lence of both models using a single trapped ion.
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Current technology has allowed the implementation of the
paradigmatic nonrelativistic quantum harmonic oscillator in
a single trapped ion �1�, one of the most fundamental toy
models in any quantum mechanical textbook. However, its
relativistic version, the so-called Dirac oscillator �2,3�, re-
mains still far from any possible experimental consideration
for different fundamental and technical reasons. We will
show here that available experimental tools may allow the
implementation of the relativistic Dirac oscillator in a single
nonrelativistic trapped ion.

The Dirac oscillator was introduced as an instance of a
relativistic wave equation such that its nonrelativistic limit
leads to the well-known Schrödinger equation for the har-
monic oscillator. This is achieved by introducing the follow-
ing coupling in the Dirac equation:

i�
����

�t
= �c��p − im��r� + �mc2���� , �1�

where ��� is the Dirac four-component bispinor correspond-
ing to a quantum relativistic spin-1

2 particle, like the electron,
c is the speed of light, m is the particle rest mass, and � j and
� are Dirac matrices in the standard representation. The in-
teracting Hamiltonian is linear in both momentum pj and
position rj, j=x ,y ,z, and � turns out to be the harmonic
oscillator frequency. We remark that when �=0 we recover
the standard Dirac equation �4�. The Dirac oscillator looks
like a particular gauge transformation p→p− e

cA that is lin-
ear in position, but the presence of the i and the � matrix
makes a crucial difference. Demanding the correct energy-
momentum relation for a relativistic free particle E
=�p2c2+m2c4, these matrices are 4�4 dimensional and
must obey a Clifford algebra given by the anticommutation
relations

� j�k + �k� j = 2� jk,

� j� + �� j = 0. �2�

There has been a growing interest in simulating quantum
relativistic effects in other physical systems, such as black
hole evaporation in Bose-Einstein condensates �5� and the

Unruh effect in an ion chain �6�. Another astonishing relativ-
istic prediction is the Zitterbewegung �4�, a helicoidal motion
realized by the average position of a relativistic fermion,
which has been discussed in the context of condensed matter
systems �7� and the free-particle Dirac equation in a single
ion �8�.

Here, we shall be concerned with the Dirac oscillator in
2+1 dimensions, since it is in this setting where we can
establish a precise equivalence with the Jaynes-Cummings
�JC� model �9�. In two spatial dimensions, the solution to the
Clifford algebra �2� is given by the 2�2 Pauli matrices
�x=�x, �y =�y, and �=�z. In this case, ��� can be described
by a two-component spinor which mixes spin-up and -down
components with positive and negative energies, and the
Dirac oscillator equation is

i�
����

�t
= �	

j=1

2

c� j�pj − im�z�rj� + �zmc2
��� . �3�

In this paper, we shall provide the complete �eigenstates and
energies� and exact solution of the two-dimensional �2D�
Dirac oscillator in order to study its relativistic dynamics,
where certain collapses and revivals in the spin degree of
freedom appear as a consequence of Zitterbewegung. In ad-
dition, we derive an exact mapping of the 2+1 Dirac oscil-
lator onto the JC model, an archetypical quantum optical
system. Furthermore, we propose the simulation of this rela-
tivistic dynamics in a single trapped ion, a physical setup
possessing outstanding coherence features.

Considering the spinor ���ª ��	1� , �	2��t, Eq. �3� be-
comes a set of coupled equations

�E − mc2��	1� = c��px + im�x� − i�py + im�y���	2� ,

�E + mc2��	2� = c��px − im�x� + i�py − im�y���	1� . �4�

In order to find the solutions, it is convenient to introduce the
following chiral creation and annihilation operators:

ar ª
1
�2

�ax − iay�, ar
†
ª

1
�2

�ax
† + iay

†� ,
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al ª
1
�2

�ax + iay�, al
†
ª

1
�2

�ax
† − iay

†� , �5�

where ax, ax
†, ay, and ay

†, are the usual annihilation and
creation operators of the harmonic oscillator ai

†

= 1
�2

� 1

ri−i
�� pi� and 
=�� /m� represents the ground-

state oscillator width. The orbital angular momentum may
also be expressed as

Lz = ��ar
†ar − al

†al� , �6�

which leads to a physical interpretation of ar
† and al

†. These
operators create a right or left quantum of angular momen-
tum, respectively, and are known hence as circular creation-
annihilation operators. Equations �4� can be rewritten in the
language of these circular operators

�	1� = i
2mc2��

E − mc2al
†�	2� ,

�	2� = − i
2mc2��

E + mc2al�	1� , �7�

where �ª�� /mc2 controls the nonrelativistic limit. In order
to find the energy spectrum we obtain the associated Klein-
Gordon equation from Eqs. �7� as follows:

�E2 − m2c4��	1� = 4m2c4�al
†al�	1� ,

�E2 − m2c4��	2� = 4m2c4��1 + al
†al��	2� . �8�

These equations can be simultaneously diagonalized writing
the spinor in terms of the left chiral quanta basis
�nl�= 1

�nl!
�al

†�nl�vac�, where nl=0,1 , . . .,

�Enl

2 − m2c4��nl� = 4m2c4�nl�nl� ,

�Enl�
2 − m2c4��nl�� = 4m2c4��1 + nl���nl�� . �9�

Since both components �	1� and �	2� belong to the same
solution, the energies must be the same Enl�

=Enl
. This physi-

cal requirement sets up a constraint on the quantum numbers
nl¬nl�+1. Note that, following Eq. �6�, the state �nl� corre-
sponds to a negative angular momentum. The energy spec-
trum can be described as follows:

E = ± Enl
= ± mc2�1 + 4�nl. �10�

To find the corresponding eigenstates, we go back to Eq. �7�,
and after normalization we arrive at the expression for the
positive and negative energy eigenstates:

� ± Enl
� = � �Enl

± mc2

2Enl

�nl�

i�Enl
 mc2

2Enl

�nl − 1� � , �11�

where the quantum number is now restricted to nl=1,2 , . . . .
In this way, we have solved the two-dimensional Dirac os-

cillator describing the energy spectrum and the eigenstates in
terms of circular quanta. The distinction between Dirac and
Klein-Gordon eigenstates is an important point in order to
understand the dynamics of the 2+1 Dirac oscillator and its
realization in an ion trap.

These eigenstates �11� can be expressed transparently in
terms of two-component Pauli spinors ��↑� and ��↓�:

� + Enl
� = �nl

�nl���↑� − i�nl
�nl − 1���↓� ,

�− Enl
� = �nl

�nl���↑� + i�nl
�nl − 1���↓� , �12�

where �nl
ª
�Enl

+mc2

2Enl

and �nl
ª
�Enl

−mc2

2Enl

are real. From this

expression we observe that the energy eigenstates present
entanglement between the orbital and spin degrees of free-
dom. This property is extremely important since the initial
state ���0��ª �nl−1���↓�=i�nl

�+Enl
�−i�nl

�−Enl
� superposes

positive- and negative-energy components, and this is the
fundamental ingredient that leads to Zitterbewegung in rela-
tivistic quantum dynamics. This phenomenon, due to the in-
terference of positive and negative energies, has never been
observed experimentally. The reason is that the amplitude of
these rapid oscillations lies below the Compton wavelength,
where pair creation is allowed, and the one-particle interpre-
tation falls down.

Now, the evolution of this initial state can be expressed as
���t��=i�nl

�+Enl
�e−i�nl

t−i�nl
�−Enl

�ei�nl
t, where

�nl
ª

Enl

�
=

mc2

�
�1 + 4�nl �13�

describes the frequency of oscillations. Writing this evolved
state in the language of Pauli spinors,

���t�� = cos �nl
t +

i
�1 + 4�nl

sin �nl
t��nl − 1���↓�

+ � 4�nl

1 + 4�nl
sin �nl

t��nl���↑� , �14�

we observe an oscillatory dynamics between �nl���↑� and
�nl−1���↓�. The initial state, �nl−1���↓�, which has spin down
and nl−1 quanta of left orbital angular momentum, evolves
exchanging a quantum of angular momentum from the spin
to the orbital motion.

The dynamics described in Eq. �14� is completely similar
to the atomic Rabi oscillations occurring in the Jaynes-
Cummings model, though arising from a completely differ-
ent reason. Whereas the Rabi oscillations in the Jaynes-
Cummings model are caused by the interaction of a
quantized electromagnetic field with a two-level atom, the
relativistic oscillations are caused by the interference of
positive- and negative-energy states and therefore constitute
a clear signature of Zitterbewegung �4�.

To clarify this issue further, we calculate the time evolu-
tion of the following physical observables, which catch the
full essence of the system dynamics,
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�Lz�t = − �nl − 1�� −
4�nl

1 + 4�nl
� sin2 �nl

t ,

�Sz�t = −
�

2
+

4�nl

1 + 4�nl
� sin2 �nl

t ,

�Jz�t = �1

2
− nl� , �15�

where Jz=Lz+Sz stands for the z component of the total an-
gular momentum. The latter relations describe a certain os-
cillation in the spin and orbital angular momentum, while the
total angular momentum is conserved due to the existent
invariance under rotations around the z axis. It is important
to highlight that these oscillations have a pure relativistic
nature. In the nonrelativistic limit ��1, these oscillations
become vanishingly small:

�Lz�t = − �nl − 1�� − 4�nl� sin2 �nl
t + O��2� ,

�Sz�t = −
�

2
+ 4�nl� sin2 �nl

t + O��2� , �16�

where �nl
ªmc2�1+2�nl� /� is the nonrelativistic oscillation

frequency. In this limit, negative-energy components are
negligible and the Zitterbewung disappears.

The results discussed so far allow a precise mapping be-
tween two seemingly unrelated models: the Jaynes-
Cummings model of quantum optics and the 2D Dirac oscil-
lator. Starting from Eq. �7�, we may write the Dirac oscillator
Hamiltonian as

H = 2imc2���al
†�	2��	1� − al�	1��	2�� + mc2�z

= ��g�−al
† + g*�+al� + mc2�z, �17�

where �+ and �− are the spin raising and lowering operators
and gª2imc2�� /� is the coupling strength between orbital
and spin degrees of freedom. In quantum optics, this Hamil-
tonian describes a Jaynes-Cummings interaction, which has
been studied in cavity QED and trapped ions �1,10�, among
others. Within this novel perspective, the electron spin can be
associated with a two-level atom and the orbital circular
quanta with the ion quanta of vibration—i.e., phonons. As
we will see below, the central result of Eq. �17� allows both
physical systems, the JC model and the 2D Dirac oscillator,
to exchange a wide range of important applications.

We will show now how to implement the dynamics of Eq.
�3� in a single ion inside a Paul trap, which was shown to
follow the dynamics of Eq. �17�. The Dirac spinor will be
described by two metastable internal states �g� and �e� as
follows ���ª �	1��e�+ �	2��g�, while the circular angular mo-
mentum modes will be represented by two ionic vibrational
modes ax and ay. Current technology allows an overwhelm-
ing coherent control of ionic internal and external degrees of
freedom �1�. There, three paradigmatic interactions, the car-
rier, red-sideband, and blue-sideband excitations, can be
implemented at will, independently or simultaneously �11�.
For example, using appropriately tuned lasers, it is possible
to produce the interactions

Hi
JC = ��i�̃i��+aie

i� + �−ai
†e−i�� + ��i�z,

Hi
AJC = ��i�̃i��+ai

†ei� + �−aie
−i�� , �18�

where �ai ,ai
†�, with i=x ,y, are the phonon annihilation and

creation operators in directions x and y, �i are the natural trap
frequencies, �iªki

�� /2M�i are the associated Lamb-Dicke
parameters depending on the ion mass M and the wave vec-

tor k, �i and �̃i are the excitation coupling strengths, and �
and � are the red- and blue-sideband phases. We remark that
the term ��i�z, in Hi

JC of Eq. �18�, stems from a detuned JC
excitation.

A suitable combination of the above-introduced excita-
tions �18�, with proper couplings and relative phases, can
reproduce the Hamiltonian

H = c��x
gepx + �y

gepy� + m�c��x
gey − �y

gex� + mc2�z
ge,

�19�

with �x
ge
ª �g��e�+ �g��e�, �y

ge
ª−i��e��g�− �e��g��, and �z

ge

ª �e��e�− �g��g�, with the following correspondence:

c = �2��̃
̃, mc2 = ��, m�c = ��2��̃
̃−1, �20�

where 
̃ª 
̃i is the width of the motional ground state, �̃

ª�̃i, �ª�i, ∀i=x ,y. The remarkable equivalence of the
Dirac oscillator Hamiltonian �3� and the interaction in Eq.
�19� shows that it is possible to reproduce the 2D Dirac os-
cillator, with all its quantum relativistic effects, in a control-
lable system as a single trapped ion.

For the sake of illustration, note that the effective terms
appearing in Eq. �19� can be achieved by suitable linear com-
binations of Hi

JC and Hi
AJC in Eqs. �18�,

i = x, �x = �, � =
3�

2
,

� =
�

2
→ �2���̃
̃�x

gepx + ���z
ge,

i = y, �y = 0, � = 0, � = � → �2���̃
̃�y
gepy ,

i = x, �x = 0, � =
�

2
, � =

�

2
→ �2���̃
̃−1�y

gex ,

i = y, �y = 0, � = 0, � = 0 → �2���̃
̃−1�x
gey .

�21�

Note that in the trapped-ion picture, the important parameter

�=2���̃ /��2 can take on all positive values, assuming avail-

able experimental parameters: ��0.1, �̃�0–106 Hz, and
��0–106 Hz �1�. The ability to experimentally tune these
parameters will allow the experimenter to study otherwise
inaccessible physical regimes that entail relativistic and non-
relativistic phenomena. Moreover, using similar techniques,
the experimentalist could also introduce certain modifica-
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tions to the relativistic Hamiltonian �19� that would entail
novel phenomena.

Remarkably enough, the Zitterbewegung is encoded in the
spin degree of freedom, and we can associate Rabi oscilla-
tions to the interference of positive- and negative-energy so-
lutions. Setting the initial state �0���↓�↔ �0��g�, the evolution
described in Eq. �15� leads to

�Sz�t = −
�

2
+

4�

1 + 4�
� sin2 �1t , �22�

where �1=��1+4� �see Eq. �13�� stands for the frequency of
the Zitterbewegung oscillations and can take on a wide vari-
ety of measurable values.

In order to simulate this dynamics in an ion-trap tabletop
experiment, the ion must be cooled down to its vibrational
ground state �0�, with a current efficiency above 99% �1�. To
estimate the observable �22�, one can make use of
the powerful tool called electron shelving, where �Sz�t

= �
2 �2Pe�t�−1� can be obtained through a measurement of the

probability of obtaining the ionic excited state, Pe�t�. This is
usually performed with extraordinary precision using current
technology. This measurement technique amounts to a great
advance with respect to the work in Ref. �8�, where it was
proposed to simulate relativistic effects with measurements
based on the position of an ion simulating a free Dirac par-
ticle. In our proposal, the measurement is different and more
feasible since it is based on spin-Zitterbewegung, and not
position-Zitterbewegung.

Another fundamental result of the JC model is the exis-
tence of collapses and revivals in the atomic population,
which is direct evidence of the quantization of the electro-
magnetic field. This effect can be mapped to the Dirac oscil-
lator if the initial state �z��g� is prepared, where �z� is an
initial circular coherent state, ���0��=e−�z�2/2	nl=0

� znl

�nl!
�nl��g�,

with z�C. After an interaction time t,

�Sz�t = −
�

2
+ �	

nl=0

�
4��nl + 1��z�2nle−�z�2

�1 + 4��nl + 1��nl!
sin2��nl+1t� .

�23�

This expression can be understood as an interference effect
of terms with different frequencies �nl+1 leading to collapses
and revivals. A novel feature of the Dirac oscillator is the

appearance of these collapses and revivals in the orbital cir-
cular motion of the particle, reflected in

�Lz�t = − ��z�2 − �	
nl=0

�
4��nl + 1��z�2nle−�z�2

�1 + 4��nl + 1��nl!
sin2��nl+1t� .

�24�

The generation of an initial circular coherent state requires
two sequential applications of the technique described in
Ref. �1� on an initial motional ground state. These two op-
erations must have a relative phase such that Dl�z�
=Dx�z�Dy�−iz�, where Dj�z�=ezaj

†−z*aj, j=x ,y. The observ-
able of Eq. �23� can be measured via a similar electron-
shelving technique, while the observable of Eq. �24� needs a
mapping of the collective motional state onto the internal
degree of freedom �1�.

It is worth mentioning that the chiral partner of the 2D
Dirac oscillator Hamiltonian �3� can be obtained through the
substitution �→−� and consists of right-handed quanta.
This Hamiltonian presents similar features as those discussed
above, and can be exactly mapped onto an anti-Jaynes-
Cummings interaction H=��gar�

−+g*ar
†�+�+mc2�z, with

similar parameters. It is precisely this chirality which allows
an exact mapping between the JC, AJC, and the left-handed
and right-handed 2D Dirac oscillators. This essential prop-
erty, missing in the 3D case, forbids an exact mapping of Eq.
�1� onto a JC-like Hamiltonian. It is the lack of this mapping
that makes a theoretical prediction of relativistic effects more
difficult. Nevertheless, an experimental implementation, us-
ing similar ion trap techniques, would allow the measure-
ment of novel effects in this 3D system.

In conclusion, we have demonstrated the exact mapping
of the 2+1 Dirac oscillator onto a Jaynes-Cummings model,
allowing an interplay between relativistic quantum mechan-
ics and quantum optics. We gave two relevant examples: the
Zitterbewegung and collapse-revival dynamics. In addition,
we showed that the implementation of a 2D Dirac oscillator
in a single trapped ion, with all analogies and measured ob-
servables, is in reach with current technology. This experi-
mental implementation shall confirm the predicted relativis-
tic phenomena and possibly measure nonpredicted ones.
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