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We propose a method for generating all symmetric Dicke states, either in the long-lived internal levels
of N massive particles or in the polarization degrees of freedom of photonic qubits, using linear optical
tools only. By means of a suitable multiphoton detection technique, erasing Welcher-Weg information, our
proposed scheme allows the generation and measurement of an important class of entangled multiqubit
states.
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Multipartite entanglement is arguably at the center of
interest of most fields related to entanglement and quantum
information theory. Unfortunately, its characterization is
neither fully understood nor completed and, at the moment,
we only know how to classify the entanglement of a few
qubits [1–3]. However, these drawbacks have not pre-
vented the apparition of a number of proposals for gener-
ating and measuring entangled states, besides their
possible applications.

The efficient and scalable preparation of entangled mul-
tiqubit states is a key ingredient for the further character-
ization and experimental study of multipartite entangle-
ment. Several experiments have already observed genuine
entangled multiphoton states [4,5] as well as entangled
distant atomic states [6–8]. While some of the latter ex-
periments are based on the exchange of photons between
the qubits, there are other proposals for projecting distant
noninteracting particles into entangled states via photonic
measurements [9–14]. Further, the very recent experiments
observing interference of light emitted by two atoms
[15,16] make use of these projective measurements repre-
senting key steps towards entanglement of single atoms at
a distance [17]. Hereby, the important class of Dicke states
[18] represents a particular interesting set of quantum
states associated with high robustness against particle
loss [19,20] and nonlocal properties of genuine entangled
multipartite states [21–23]. Recently, the entangled sym-
metric Dicke state j2; 0i of four photonic qubits was

studied in an experiment involving linear optics only [5]. In
this experiment, among other features, the possibility of
generating both classes of tripartite entangled states by
projecting one of the four qubits was observed.

In this Letter, we propose a method for generating any
symmetric Dicke state either in distant matter or in photon
polarization qubits using a multifold detection technique.
In this case, we grant access to the generation and mea-
surement of this important class of genuine entangled
states for potentially any number N of qubits. Our method
relies on the far-field detection of N photons incoherently
emitted byN initially excited atoms via spontaneous decay
using suitably oriented polarizers. Unlike former proposals
for entangling distant qubits based on projective measure-
ments [9,10,12,13], our scheme uses explicitly the geomet-
rical phase differences between the possible quantum
paths. Furthermore, using a complementary technique,
we show how to generate any symmetric Dicke state in
the polarization degree of freedom of photon qubits.

In an N spin- 1
2 compound system, the Dicke states,

usually denoted by jS;mi, are defined as the simultaneous
eigenstates of both the square of the total spin operator Ŝ2

and its z component Ŝz, where S�S� 1�@2 and m@ are the
corresponding eigenvalues [24]. The N � 1 states with the
highest value of the cooperation number S � N=2 form a
special subset of all 2N Dicke states. These states j N2 ; mi
are the only ones which are totally symmetric under per-
mutation of any particles and are usually written as
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Pk�j11; 12; . . . ; 1�N=2��m; 01; 02; . . . ; 0�N=2��mi�; (1)

where fPkg denotes the complete set of all possible distinct
permutations of the qubits.

Our scheme considers N particles, e.g., atoms, in a �
configuration with upper state jei and lower states j0i and
j1i. We may identify those states with the Zeeman sub-
levels jei :� je;m � 0i, j0i :� jg0; m � �1i, and j1i :�

jg1; m � �1i. The excited state jei has two decay chan-
nels, jei ! j0i and jei ! j1i, accompanied by the sponta-
neous emission of a �� (��)-polarized photon. For a
single atom, the polarization state of the emitted photon
is entangled with the corresponding ground state of the
deexcited atom [25,26] so that the total state of atom and
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photon can be written as

 j�i � c0j0ij��i � c1j1ij��i; (2)

where ci, i � 0, 1, is the corresponding normalized
Clebsch-Gordan coefficient of the transition jei ! jii.

We assume theN atoms to be regularly arranged in a row
with equal spacing d and initially excited into the upper
state jei by a collective laser � pulse. N detectors placed at
distinct positions rn (n � 1; . . . ; N) in the far-field region
of the atoms detect the spontaneously emitted photons. In
front of each of the detectors, a polarization analyzer
enables to measure the polarization state of the photons.
Via post-selection only those events where all detectors
register one and only one photon will be accepted as a
measurement. For N � 1, after a detector has recorded the
emitted photon with a polarization equal to �� (��), the
corresponding atom has been projected into the ground
state j0i (j1i). However, for N > 1, the detectors located
in the far-field region of the atoms are unable to distinguish
which particular atom has emitted a registered photon.
Therefore, after the detection of a first photon, all atoms
will form a correlated state [9,10,12,13].

The entanglement of the atoms is a consequence of two
ingredients: the impossibility of the detectors to determine
which atom emitted a particular photon together with the
projection postulate which states that after the detection of
a photon the state of the atoms is projected into a state com-
patible with the outcome of the measurement [9]. In the
following, we introduce a third ingredient to this scheme. It
exploits the geometrical phase differences of the N! quan-
tum paths resulting from the N! possibilities that each of
the N atoms emits a photon which is subsequently regis-
tered by one of the N detectors. As will be shown below,
these geometrical phase differences will allow to prepare
Dicke states of arbitrary symmetric configuration.

To show this in more detail, let us introduce the conve-
nient coordinate system displayed in Fig. 1. As can be seen
from the figure, the position of the jth atom (j � 1; . . . ; N)
is given by Rj � jdu, where u is a unit vector along the
axis of the atoms. Denoting the unit vector along the
direction of the nth detector by en :� rn=rn, we introduce
the angle �n shown in Fig. 1 so that Rj � en � jd sin�n.
The phase difference �n between two photons of wave
number k, emitted by adjacent atoms and both detected
at rn, can then be written as

 �n :� k�Rj�1 � en �Rj � en� � kd sin�n: (3)

Initially, all N atoms are excited into the upper state jei.
The initial state j�i

Ni of the atoms is thus given by

 j�i
Ni � je; e; . . . ; eiN; (4)

where the dimension of the state is indicated by the sub-
script N. The N photons, subsequently emitted by the N

atoms, are detected by N detectors at rn, n � 1; . . . ; N.
Eventually, all N atoms have thus been projected into a
ground state. Hereby, each detection event has to take into
account that one (unknown) atom out of N possible scat-
terers has emitted the photon. This leads for each detection
event to N possible quantum paths where each of them is
associated with a particular phase [11,27]. Using the coor-
dinate system of Fig. 1, the (unnormalized) operator de-
scribing the detection event of the nth photon at rn can thus
be written in the form [9,11,28]

 D̂ n :� D̂n��n; xn� �
XN
j�1

eij�n jxnijhej; (5)

where �n is the phase introduced in Eq. (3). The operator
jxnijhej projects the jth atom from state jei to the ground-
state jxni 2 fj0i; j1ig, depending on the polarization of the
photon as measured by the polarization analyzer in front of
the detector.

With the detector operator of Eq. (5) we can describe the
detection processes of all N photons emitted by the N
atoms. As an example, let us consider the case of N � 3
qubits. After a first photon is detected at r1, we obtain from
Eqs. (4) and (5):

 D̂ 1j�
i
3i � ei�1 jx1; e; ei � ei2�1 je; x1; ei � ei3�1 je; e; x1i:

(6)

The detection of the second and third photon may occur
at r2 and r3 and we describe these events by applying
successively the two detector operators D̂2 and D̂3 on the
intermediate state D̂1j�

i
3i. The final state j�f

3i of the three
atoms can then be written as:

 

j�f
3i � D̂3D̂2D̂1j�

i
3i � ei�1�i2�2�i3�3 jx1; x2; x3i � e

i�1�i2�3�i3�2 jx1; x3; x2i � e
i�2�i2�1�i3�3 jx2; x1; x3i

� ei�3�i2�1�i3�2 jx3; x1; x2i � e
i�2�i2�3�i3�1 jx2; x3; x1i � e

i�3�i2�2�i3�1 jx3; x2; x1i: (7)

FIG. 1. N atoms are regularly aligned in a row with spacing d.
The origin of the coordinate system is chosen to be at one of the
virtual extensions of this alignment. The nth detector is placed at
rn in the far-field region of the atoms, where it sees all atoms
under an angle �n with respect to a line perpendicular to the
symmetry axis of the alignment.
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For three equidistant atoms this is the most general
expression of the final state. As can be seen from Eq. (7),
the geometrical phase differences �n, n � 1; . . . ; 3, deter-
mine the symmetry of the state. In particular, to generate
the symmetric Dicke states j 32 ; mi, the phases �n should
adopt multiple values of 2�, which can be determined by a
suitable localization of the N detectors according to
Eq. (3). Note that the final form of the state (7) depends
eventually on the orientation of the polarization analyzers
in front of the detectors: if the nth polarizer is oriented to
transmit �� (��)-polarized light, the internal levels of the
atoms will be projected onto the state jxni � j0i (jxni �
j1i). In particular, this means that we can generate all four
symmetric Dicke states
 

j32 ;�
3
2i � j1; 1; 1i;

j32 ;�
1
2i � 3��1=2��j1; 1; 0i � j1; 0; 1i � j0; 1; 1i�;

j32 ;�
1
2i � 3��1=2��j1; 0; 0i � j0; 1; 0i � j0; 0; 1i�;

j32 ;�
3
2i � j0; 0; 0i:

(8)

The simple product state j 32 ;�
3
2i (j 3

2 ;�
3
2i) can be ob-

tained by orienting the three polarizers to transmit ��

(��)-polarized light so that all atoms are projected onto
the state j1i (j0i). It is, however, also possible to generate
the genuine tripartite entangled state j 3

2 ;�
1
2i (j 3

2 ;�
1
2i). In

this case, one polarizer should be oriented to transmit ��

(��)-polarized and two polarizers to transmit �� (��)-
polarized light. Hereby it does not matter which of the
three detectors is actually sensitive to ��- or ��-polarized
photons, since all detectors are placed in the far-field
region of the atoms and in a symmetric formation where
the phases �n are equal to multiples of 2�.

So far we showed how to generate all the symmetric
Dicke states for N � 3 atoms. The generalization to an
arbitrary number N of atoms is nevertheless straightfor-
ward. For this, we have to place again all N detectors at
positions r1; . . . ; rN such that the phases �n adopt multiple
values of 2�. The state of the N atoms after a first photon
has been detected at r1 can be calculated by applying the
operator D̂1 on the initial state (4). From this we obtain

 D̂ 1j�
i
Ni �

X
k

Pk�jx1; e; . . . ; eiN�; (9)

where fPkg denotes the set of all possible permutations of
the N qubits.

In analogy to the case N � 3, we assume that the N � 1
remaining photons are detected at positions r2; r3; . . . ; rN ,
respectively. We can calculate the final state of the atoms,
after all N photons have been detected at the N detectors,
by applying the N � 1 detector operators D̂2; D̂3; . . . ; D̂N
on the intermediate state (9). From this we obtain:

 j�f
Ni �

X
k

Pk�jx1; x2; . . . ; xNiN�: (10)

With the final state of the N atoms given by Eq. (10), we
still have to choose the orientation of the N polarizers to

determine the final state of the N qubits jxni. For example,
if we want to generate the symmetric Dicke state j N2 ; mi,
with m 2 � N

2 ; . . . ; N2 , we have to choose N
2 �m polarizers

to be sensitive to ��-polarized light and N
2 �m polarizers

to be sensitive to ��-polarized light; this will determine
the final state of the atoms to contain N

2 �m qubits in the
state j1i and N

2 �m in the state j0i. Again assuming that
each detector registers one and only one photon, the atoms
are projected into the state j N2 ; mi containing all symmetric
Dicke states for an arbitrary number of particles. This
outcome corresponds to the state expressed in Eq. (1).

In principle, our method does not require nearby parti-
cles since we do not make use of any interaction between
the atoms. Nevertheless the far-field condition inherent in
expression (3), i.e., in Eqs. (5)–(10), implies a practical
limit for the spacing of the particles. However, this limit
can be overcome by using optical fibers. Linking each of
the N atoms with all N detectors by using N2 identical
fibers leads as well to the N! possible quantum paths
discussed above. Hereby, the optical phases are no longer
determined by the condition (3) but simply by the optical
paths between each ion and its light collecting fibers.
Placing all fibers at the same distance to the ions, the
condition �i � 2� is thus fulfilled. Note that optical fibers
are commonly used in experiments involving single atoms
to collect the light of selective modes, see, e.g., [17,26]. In
this way we can apply our scheme even to spatially far
distant, i.e., remote, particles.

Finally, let us estimate the expected fidelity of our
scheme, e.g., for generating the symmetric Dicke state
j2; 0i using N � 4 adjacent atoms. In the case of ions
localized in a linear trap, we assume the atoms 5 �m apart
and confined to 5 nm in the lateral direction, i.e., perpen-
dicular to the trap axis. Furthermore, we allow for an
azimuthal detection window of 0.6�. All of these uncer-
tainties were included in our analysis via error propagation,
and we estimate a fidelity of about 90% for the generation
of the four qubits state j2; 0i. Remarkably, it was shown
recently that a fidelity of 66% is already sufficient to
demonstrate the entanglement of this state [21]. In an
experiment that uses CCD cameras covering a fair area
in the detection plane and taking into account all sources of
errors mentioned above, we moreover expect the counting
rate of the needed fourfold coincident events to be a few
tenths of Hz with an excitation rate of several tens of MHz
[25] (see [29] ). In general, the counting rate decreases with
the number of qubits. This might limit the scalability of our
scheme as is indeed the case with other experiments ob-
serving entangled photons [4,5] as well as entangled atoms
[17,25,26].

In the last part of this Letter we want to discuss how our
method can also be used to prepare symmetric Dicke states
in the polarization degree of freedom of photon qubits.
Recently the Dicke state j2; 0i has been observed as an
entangled photon polarization state in a post-selective
manner, by using initially entangled photons generated in
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spontaneous parametric down-conversion [5]. To prepare
arbitrary symmetric Dicke states of photon polarization
qubits we have to place the polarization analyzers, for-
merly positioned in front of the detectors (see Fig. 1), in
front of the atoms such that the polarization of each spon-
taneously emitted photon is determined by an individual
polarizer. The setup remains otherwise identical to the one
presented above: all N atoms are initially prepared in the
excited state jei and, via post-selection, we assure that one
and only one photon is registered at each of the N detec-
tors. However, after the detection of the photons the inter-
nal state of each atom is now uniquely determined by the
orientation of the polarizer, i.e., in correspondence to the
polarization state of the photon emitted by this particular
atom. Since the photons are still detected in the far-field
region of the atoms, we do not acquire Welcher-Weg
information of individual photons and thus cannot deter-
mine the polarization state of each individual photon at any
of the N detectors. Instead, all N quantum paths associated
with the N possibilities that a photon has been emitted by
one of the N atoms will contribute to a single photon
detection event at a particular detector.

Introducing the wave vectors of the N different spatial
modes kn � ken, defined by the unit vectors e1; . . . ; eN of
the positions of the N detectors, we only know after the
detection of all N photons at r1; . . . ; rN that each single
mode kn was populated by exactly one photon. But what
was the polarization state of the photon in the nth mode?
We define the polarization state of a photon in the mode kn
as jxni � j��i (j��i). Using the same detector positions
as for generating Dicke states of massive particles, we
obtain the same state as given in Eq. (10), however, now
for the polarization state of the N photons in the N spatial
modes. It is thus possible to generate an arbitrary symmet-
ric Dicke state j N2 ; mi of photon polarization qubits by
choosing N

2 �m polarizers to be sensitive to ��- and N
2 �

m polarizers to ��-polarized light.
In conclusion, we have demonstrated that it is possible to

generate all symmetric Dicke states for distant matter as
well as for photon polarization qubits using linear optical
tools only. Our method offers a simple access to genuine
entangled states of any number of qubits exploiting ab-
sence of Welcher-Weg information and polarization sensi-
tive far-field detection of photons spontaneously emitted
by atoms in a � configuration. As for the technical feasi-
bility of making use of optical phase differences between
single ions, we refer to [30] where first order interferences
of light coherently scattered by two ions were observed. It
can be seen from Eq. (7) that our method is also capable of
generating entangled quantum states different from the
symmetric Dicke states. In addition, considering more
general atomic arrangements or orientations of the polar-
izers it is possible to generate other families of entangled
states [29].
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