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We present a quantum-mechanical theory of the cooling of a cantilever coupled via radiation pressure to
an illuminated optical cavity. Applying the quantum noise approach to the fluctuations of the radiation
pressure force, we derive the optomechanical cooling rate and the minimum achievable phonon number.
We find that reaching the quantum limit of arbitrarily small phonon numbers requires going into the good-
cavity (resolved phonon sideband) regime where the cavity linewidth is much smaller than the mechanical
frequency and the corresponding cavity detuning. This is in contrast to the common assumption that the
mechanical frequency and the cavity detuning should be comparable to the cavity damping.
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Recent years have seen significant advances in fabricat-
ing, measuring, and controlling mechanical systems on the
micro- and nanometer scale [1–4]. A number of experi-
ments to explore the quantum regime of these mechanical
devices have been proposed, including generation of non-
classical states [5], entanglement [6–11], and quantum-
limited measurements [12,13]. Many of these proposals
require the system to be cooled to its ground state, i.e., to
temperatures below 20 mK even for 1 GHz resonators. This
is hard or impossible using bulk refrigeration, but it may be
feasible using nonequilibrium cooling techniques analo-
gous to the laser-cooling schemes for trapped ions and
neutral atoms [14].

Cooling via an active feedback loop [15–17] has already
been considered elsewhere (including its quantum limits
[18] ). Here we will focus on passive cooling (without
feedback). In this approach the cantilever displacement is
coupled parametrically to a driven resonator (or two-level
system). When the drive frequency is chosen appropriately,
the cantilever is cooled. The lowest achievable temperature
is determined by the resonator’s quantum fluctuations
(photon shot noise).

This approach has been considered theoretically for a
few specific realizations of the cooling system: a Cooper-
pair box [19], the superconducting single-electron transis-
tor [4,20,21], quantum dots [22], and ions [23]. However,
for experimental simplicity one often prefers to get rid of
the auxiliary quantum system mediating between cantile-
ver and radiation field. This is achieved by coupling di-
rectly to the field of an optical cavity via radiation pressure.
A number of recent experiments [24–31] have produced
very promising results on self-cooling in such systems,
using both photothermal and radiation pressure forces. In
this Letter, we present a fully quantum-mechanical de-
scription, providing the basic theory for future ground-state
cooling experiments. Cooling rates and steady-state tem-

peratures for such systems (and related ones like a driven
LC circuit [32] ) have been derived only (semi-)classically
so far. Specifically, Braginsky and Vyatchanin [33] con-
sidered the optomechanical damping within a semiclassi-
cal theory. Here, we use the quantum noise approach to find
simple and transparent but fully quantum-mechanical ex-
pressions, starting directly from the force fluctuation spec-
trum. Our results are valid both for the good-cavity regime
(resolved mechanical sidebands) and the bad-cavity regime
(unresolved sidebands). Earlier (semi-)classical calcula-
tions [24,32,33] are reproduced in the appropriate limits.
We show, in particular, that it should be possible to cool the
cantilever to its quantum-mechanical ground state by
choosing the cantilever resonance frequency much larger
than the cavity ringdown rate, a regime that has not been
considered so far. Ground-state cooling is required for the
experiments mentioned above and may permit studies of
the optomechanical instability [28,34–36] in the quantum
regime. Moreover, we present an exact solution of the
linearized coupled equations of motion to account for the
‘‘strong cooling’’ limit, where the cooling rate exceeds the
cavity ringdown rate.

Consider a mechanical degree of freedom x̂ coupled
parametrically with strength A to the cavity oscillator
 

Ĥ � @�!R � Ax̂��â
yâ� hâyâi� � ĤM � Ĥdrive

� Ĥ� � Ĥ�; (1)

where !R is the cavity resonance frequency at the equilib-
rium cantilever position x � 0 in the presence of the mean
radiation pressure, ĤM � @!Mĉ

yĉ is the mechanical os-
cillator, Ĥdrive is the optical drive, Ĥ� is the cavity damp-
ing, and Ĥ� is the mechanical damping. For a cavity of
length L, the coupling constant is A � �!R=L.

Opening the port used to supply the classical drive to the
cavity also admits vacuum noise. Splitting the cavity field
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into classical and quantum parts â�t� � e�i!Lt� �a� d̂�t��
yields the photon number autocorrelation function (in the
absence of coupling to the cantilever)

 

~S nn�t� � hây�t�â�t�ây�0�â�0�i � hây�t�â�t�i2

� �nei�t���=2�jtj; (2)

where � � !L �!R is the laser-cavity detuning and �n is
the mean photon number.

The power spectrum of the noise is

 Snn�!� �
Z �1
�1

dtei!t ~Snn�t� � �n
�

�!���2 � ��=2�2
:

(3)

The symmetrized spectrum was used in [33] to estimate the
effects of the shot noise (assumed to dominate over tech-
nical laser noise). Note, however, that it is the asymmetry in
the noise which leads to cooling or heating. The noise of
the radiation pressure force F̂ � @An̂ at positive frequency,
SFF��!M�, corresponds to the ability of the cavity to
absorb a quantum of energy from the cantilever, while
noise at negative frequency SFF��!M� corresponds to
emission of energy into the cantilever. The net optical
damping rate of the cantilever from Fermi’s golden rule is

 �opt �
1

@
2 �SFF�!M� � SFF��!M��x2

ZPF; (4)

where xZPF is the cantilever zero-point fluctuation
and SFF � @

2A2Snn. This formula requires both �opt �

�M � � and a large mechanical quality factor, QM �
!M=�M 	 1.

Essentially, the interaction with x̂ (three wave mixing)
tries to Raman scatter the drive photons into the high
density of states at the cavity resonance. For negative
detuning �< 0, this is uphill in energy [see Eq. (3) and
Fig. 1(a)], and x̂ is cooled. A somewhat similar mechanism

involving an oscillator with nonlinear damping was con-
sidered by Dykman [37].

The nonequilibrium noise can be assigned a unique
effective temperature Teff , provided the cantilever is per-
fectly harmonic with weak optical and mechanical damp-
ing, �M � �opt � �, so that it responds only at frequencies

!M. Thus, without mechanical damping the mean
steady-state number of cantilever phonons �nOM is given by
the detailed balance expression (for �< 0)

 

�nOM � 1

�nOM
�
SFF��!M�

SFF��!M�
� exp

�
@!M

Teff

�
: (5)

Cooling (heating) is indicated by Teff > 0 (< 0) (see
Fig. 1). From Eq. (3) we obtain

 �n OM � �
�!M ���2 � ��=2�2

4!M�
: (6)

For the special case of detuning � � �!M (which is
optimal for !M 	 �), we have the simple limit

 �n OM �
�
�

4!M

�
2
; (7)

which shows that for !M * �, the ground state can be
approached (provided �opt 	 �M). For the case � �
�!M, we obtain from Eq. (4):

 �opt � 4
�
xZPF

L

�
2 !2

R �n
�

1

1� � �4!M
�2
: (8)

After including the mechanical damping �M, a rate equa-
tion yields the full expression for the mean steady-state
phonon number (Fig. 2),

 �nM �
�opt �nOM � �M �nTM

�opt � �M
; (9)

where �nTM is the equilibrium mechanical mode occupation
number determined by the mechanical bath temperature.
For �nTM 	 1, Eq. (9) reduces to the classical expression.
Note that ground-state cooling is possible only for initial
phonon numbers �nTM � QM.

We emphasize once more that a large detuning j�j �
!M 	 � offers the advantage of an arbitrarily small mini-
mum phonon number (7). The only price to pay is to
increase the input intensity, in order to keep constant the
number of photons inside the cavity, �n � �nmax=�1�
�2�=��2�, where �nmax is the photon number at resonance,
proportional to the input power. A large detuning increases
the cooling efficiency in terms of the circulating power,
thus limiting the heating of the cantilever by residual
absorption of photons.

The optomechanical frequency shift (see, e.g., [30,33] )
can also be derived from the force spectrum:

 �!M �
x2

ZPF

@
2

Z d!
2�

SFF�!�
�

1

!M �!
�

1

!M �!

�
: (10)

FIG. 1 (color online). (a) Noise spectrum of the photon num-
ber in a driven cavity as a function of frequency when the drive is
detuned from the resonance by � � �5� (leading to heating:
dashed line) and � � �5� (cooling: solid line). (b) Effective
noise temperature Teff as a function of the detuning, see Eq. (5),
for a cantilever frequency matching the detuning: !M � j�j.
The noise temperature is positive on the left side of the reso-
nance, where optomechanical cooling produces a minimum
reachable cantilever phonon number �nOM (black line) correspond-
ing to Teff , see Eqs. (5) and (7).
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Equations (4), (5), (9), and (10) are valid for arbitrary
spectra SFF. These might result from the contribution of
more than one mode, or relate to a different setup, e.g., a
driven electrical circuit [32]. A related discussion [20] has
considered cooling by a single-electron transistor.

We now compare with commonly employed simpler
models [24,26,32], where one postulates the light intensity
to relax in an exponential fashion, dn=dt � �� �n�x� � n�,
with �n�x� denoting the equilibrium photon number as a
function of position. After linearization, one obtains an
effective optomechanical damping rate [24,26,32] �0opt �

�@A2=m���1� �!M=��
2��1 @ �n

@� . In general, for a fixed � /
�, this differs from the correct result (4), and it predicts a
maximum �opt for ��!M. For radiation pressure cooling,
one has to employ a detuning-dependent decay rate, � �
���2�

2 � �2�=�, to recover Eq. (4) in the limit !M � �. For
bolometric forces, where the time lag is due to a finite heat
relaxation rate �� �, our quantum theory does not apply
due to the dissipative nature of the force, while �0opt is valid
in the semiclassical limit.

The quantum result (4) for �opt can be reproduced by
linearizing the equation for the complex light amplitude a
[29,33], da=dt � i��� Ax�a� �

2 �a� �a�. This still does

not yield the correct steady-state phonon number (9), un-
less zero-point fluctuations are included.

To go beyond weak coupling, we now derive an exact
solution of the linearized Heisenberg equations of motion
for d̂ and ĉ, using the input-output formalism [38] (see also
[27] ):

 

_̂d � i�d̂�
�
2
d̂�

����
�
p
d̂in � i��ĉ� ĉy� (11)

 

_̂c � �i!Mĉ�
�M
2
ĉ�

�������
�M

p
ĉin � i��

d̂� �d̂y�: (12)

Here the effective light amplitude has been expressed in
terms of a frequency, � � �a�!RxZPF=L� with j �aj2 � �n.
The solution yields the cantilever spectrum Scc�!� �R
dtei!thĉy�t�ĉi:

 Scc�!� �
�M�th�!� �

j�j2

� �opt�!�

jN �!�j2
; (13)

where
 

�th�!� � � �n
T
M � 1�j��!�j2 � �nTMj�

�1
M �!� � i��!�j

2;

�opt�!� � �2j�R�!�j
2j��1

M �!�j
2;

N �!� � ��1
M �!��

�1
M ��!� � 2!M��!�:

(14)

We introduced the response functions of mirror and optical
resonator, �M�!� � �

�M
2 � i�!�!M��

�1 and �R�!� �
��2 � i�!�����1, and we defined the optomechanical
‘‘self-energy’’ ��!� � �ij�j2��R�!� � �R��!��.

The quantum noise results given previously are valid in
the weak-coupling limit �M, �opt � �. Then, the optome-
chanical damping and the ‘‘optical spring’’ frequency shift
can be read off the self-energy as Im ��!M� � ��opt=2
and Re ��!M� � �!M, coinciding with the expressions
given above [Eqs. (4) and (10)]. The steady-state average
phonon number �nM �

R
d!
2� Scc�!� reproduces Eq. (9).

The optical output spectrum (of d̂out � d̂in �
����
�
p
d̂) dis-

plays a Stokes peak at ! � �!M and an anti-Stokes peak
at ! � �!M, with weights given by �opt� �nM � 1� �nOM and
�opt �nM� �n

O
M � 1�, respectively, which are the rates of pro-

cesses leading to heating (cooling) of the cantilever by
redshifting (blueshifting) a reflected photon. The ratio of
the peak intensities thus provides a measure of the phonon
number �nM, and the anti-Stokes peak vanishes upon reach-
ing the mechanical ground state.

The exact solution allows us also to discuss the regime
of strong cooling. In the limit �opt � 4j�j2=�	 �M, it
adds a term �nTM�M=�� 2 �nOM�opt=� to Eq. (9) for �nM
(assuming �, �� !M, and �M � �). Then a minimal
phonon number �nmin

M � �nTM�M=� is found as a function
of �opt at ��opt=��

2 � ��M=��� �n
T
M= �nOM�=2. For �opt=� >

1=2, the mirror resonance peak splits into a pair of peaks at
�!M 
 �, getting hybridized with the driven cavity mode
(see arrow in inset of Fig. 2). At even larger photon number
or smaller !M, when � � !M=2, the static bistability [39]
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FIG. 2 (color online). The steady-state phonon number �nM
obtained through cavity sideband cooling as a function of
detuning, with � � �!M. Thick lines represent the weak-
coupling quantum noise result, Eq. (9), for three different laser
powers (expressed via constant �nmax, so the actual photon
number �n increases towards smaller !M). The bath temperature
corresponds to �nTM � 100 phonons, and the optomechanical
coupling has been fixed to yield a realistic ratio �opt� �n �
1; !M ! 1�=�M � 0:1. The dotted red line shows �nOM �
��=�4!M��

2 from Eq. (7). The dashed (dash-dotted) lines show
the results of the exact input-output equations, for �M=� �
10�4�10�5� and �nmax � 106. They were obtained by integrating
the exact spectrum Scc�!�, Eq. (13), which is shown in the inset
as a density plot, for �M=� � 10�4 (arrow indicates splitting of
resonance; ‘‘unstable’’ regime does not permit � � �!M). The
weak-coupling limit is recovered for �M=�! 0.

PRL 99, 093902 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
31 AUGUST 2007

093902-3



precludes reaching the desired detuning � � �!M (see
inset of Fig. 2). Thus, the far-detuned regime !M 	 � has
the additional strong advantage of avoiding the bistability,
which already interferes with cooling in some current
schemes [29].

Recent experiments [26,28–31] combine all the neces-
sary ingredients and some of them [28,29,31] have already
demonstrated !M=�� 1, the threshold of the good-cavity
regime. As an example of what might be possible in the
near future, we mention estimates for two realistic setups: a
microtoroidal resonator [29] with !M=2� � 60 MHz,
�=2� � 50 MHz, andQM � 104, and a mechanical mem-
brane between mirrors [31] with !M=2� � 100 kHz,
�=2� � 8 kHz, and QM � 4 � 106. Both of these could
be cooled down to �nM < 1 after precooling to T �
300 mK. This could be achieved using Pin � 5 mW (or
Pin � 1 nW, respectively), while remaining in the weak-
coupling regime �opt � ��!M.

We have obtained the full quantum theory of cavity-
assisted sideband cooling of a cantilever, based on the
quantum noise approach applied to the fluctuations of the
radiation pressure. Only in the previously unexplored re-
gime of a detuning much larger than the cavity linewidth
can the cantilever be cooled to arbitrarily small phonon
numbers. The theory analyzed here may form the basis for
future experiments that venture into the quantum regime of
mechanical motion.
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Note added.—Essentially similar conclusions were
reached recently in [40].
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