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Chapter 0

Overview

We propose a design based on flux qubits which is capable of creating tripartite entanglement
in a natural, controllable and stable way.

In chapter 1, we describe the basic concepts of quantum computation and superconducting
qubit devices. After having determined the character and the strength of the interaction
between the flux qubits in our design in chapter 2, we concentrate on the properties of the
eigenstates in chapter 3. Besides their natural benefits of easy preparation and stability to
pure dephasing processes, the eigenstates are found to exhibit strong tripartite entanglement
for an appropriate choice of parameters. Moreover, symmetries of the system lead to the
formation of energetically degenerate subspaces that show a particular robustness. In chapter
4, we demonstrate the preparation of given, maximally entangled states in these subspaces
by means of external microwave fields. In chapter 5, we cover the entanglement properties
in more detail and identify both generic kinds of tripartite entanglement –the W type and
the GHZ type entanglement– among the eigenstates. We furthermore discuss the violation of
Bell inequalities in this system and present the impact of a limited measurement fidelity on
the detection of entanglement and quantum nonlocality.

Chapter 6 finally features an approach to the shaping of short pulse sequences by filter net-
works of passive circuit elements. Its application is not limited to the presented flux-qubit
design but also complies to the requirements of other solid state systems, as shown for the
example of a quantum gate implementation in a system of two coupled charge qubits.
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Chapter 1

Introduction

1.1 Quantum computation

Unlike classical computers, quantum computers store and process information represented
by quantum variables. Typically, these variables consist of two-state quantum systems (al-
though in principle, larger Hilbert spaces can be used), called quantum bits or qubits. Dif-
ferent from a classical bit, such a qubit can be prepared in a superposition of its basis states
|ψ〉 = α|0〉 + β|1〉. Moreover, interactions between qubits provide other intrinsic quantum
mechanical resources unknown in classical physics and information technology such as en-
tanglement. States of composite systems are called entangled if they are not separable into
the states of the subsystems, such as |ψ〉 = (1/

√
2)(|0〉|1〉 + |1〉|0〉). Performing operations

on these variables and making use of these resources while preserving the quantum character
of the system allows for the solution of computational tasks practically infeasible for any
conventional information technology. Various quantum algorithms have been developed that
provide significant speedups over classical computation schemes [1, 2, 3, 4].
Crucial properties of a quantum computer are the capability to prepare the qubits in a desired
initial state, the coherent manipulation of the states, and the possibility to couple qubits with
each other, as well as read out their state at the end of the operation [5]. For the coherent
manipulation, the qubits have to be isolated well enough to keep them free from interactions
that induce noise and decoherence.

1.2 Implementation schemes

A number of possible two-state systems has been examined both theoretically and experimen-
tally, and qubits have been physically implemented in a variety of systems as different as ions
in an electromagnetic trap [6], nuclear spins, optical photon [7], and solid state realizations.
All these efforts aim at developing a highly coherent and scalable set of quantum bits which
can be isolated, controlled, coupled and measured. Realizations based on Nuclear Magnetic
Resonance (NMR) [8, 9, 10] have been used to carry out small quantum algorithms [11],
thereby proving the feasibility of a working quantum computer.
Although qubits based on NMR and other microscopic systems are the most advanced exper-
imental realization available nowadays, it can hardly be imagined how to scale these systems
up to large sizes, where quantum computers would beat conventional computers in real-world
applications. Solid state implementations [12, 13] such as quantum dots or superconducting

3



4 1 Introduction

qubits on the other hand side can –due to the available advanced lithographic methods de-
veloped in the context of conventional integrated electronics– be scaled up easily. Moreover,
the layout of these system and the values of the parameters and couplings are determined
by the designer. Along with this great flexibility, however, one has to deal with fabrication
drawbacks, uncertain tolerances and the problem of decoherence. Whereas microscopic qubits
such as ions are identical by nature, the manufacturing variability in artificial systems must
be taken into account and being compensated for.
Here, we want to focus on superconducting designs.

1.3 Superconducting qubits

When quantizing the electromagnetic field, one finds that flux and charge are canonically
conjugate variables [12]

[Φ̂, Q̂] = i~ . (1.1)

Both charge and flux quantization effects arise in superconducting circuits, both being capable
of letting the system act as qubit. By tuning the system near a degeneracy point of the two
basis states of the chosen degree of freedom (gate charge ng = 1/2 for a charge qubit, external
flux Φx = Φ0/2 for a flux qubit), we can have the coupling mix the basis states and modify
the energy of the eigenstates, Fig. 1.5. In the vicinity of these points the system effectively
reduces to a two-state quantum system and quantum computation can be performed. The
basis states in qubits based on the charge degree of freedom differ in the number of Cooper
pairs on an island (|n〉 ≡ |0〉, |n + 1〉 ≡ |1〉), while the states in flux qubits exhibit oppositely
circulating supercurrents (and therefore two different fluxes).
Experimental investigations have demonstrated several quantum phenomena in both designs.
On flux qubits, Rabi, Ramsey and echo-type sequences have been successfully performed
[14, 15, 16], whereas in charge qubits even a CNOT gate has been realized [17, 18].
In the following, we describe the basic building blocks of superconducting qubits. Besides the
fact that dissipation, meaning electrical resistance, should be avoided, and therefore use of
superconductors is made, the phenomena associated with the quantum nature of supercon-
ductivity provide more interesting features for the design of such a qubit.

1.3.1 Josephson junction

A Josephson junction consists of two pieces of superconductor separated by a small insulating
barrier. Cooper pairs on the superconducting electrodes on either side of the junction can
tunnel through the barrier.
According to the first Josephson equation, the supercurrent through the barrier is given by
[19]

IS = IC sinϕ , (1.2)

where IC is the critical current through the junction and ϕ the phase difference between the
Cooper pair wavefunctions left and right

ΨL = |Ψ1| eiϕ1 , ΨR = |Ψ2| eiϕ2
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ϕ

Figure 1.1: Equivalent circuit diagram of a Josephson junction. The junction itself
is represented by a cross, associated with a Josephson energy EJ . The geometrical
capacitance between the electrodes is given by C. ϕ is the phase difference across the
junction.

with

ϕ = ϕ1 − ϕ2 . (1.3)

If the current through the junction exceeds the critical current, a voltage V will drop across
the junction and the phase will vary with time according to the second Josephson equation,

ϕ̇ =
2eV

~
. (1.4)

The dependence of the voltage on the time derivative of the phase (and hence the current)
allows for associating a (nonlinear) inductance for the linear response of the junction, the
Josephson inductance

LJ =
Φ0

2πIC cosϕ
. (1.5)

Using (1.2) and (1.4), one gets the free energy of the junction

F =
∫

V IS dt = const.− EJ cos∆ϕ (1.6)

with the Josephson energy

EJ =
~IC

2e
. (1.7)

Whereas the quadratic potentials provided by capacitances and inductances don’t allow for
the selective addressing of certain transitions due to their equal level spacing, this nonlinear
potential will turn out to be a crucial ingredient for the construction of potentials beyond
and gives rise to the desired double well constituting the qubit.
Since the junction geometry forms a parallel plate capacitor, there is, in addition to the
junction itself, a capacitance C associated with the junction (see figure 1.1). The junction is
therefore characterized by its Josephson energy EJ and its single-electron charging energy

EC =
e2

2CJ
. (1.8)
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1.3.2 Fluxoid quantization

If we put superconductors and Josephson junctions into a closed loop, the magnetic flux
through the area enclosed by the loop is restricted. This is a result the single-valuedness of
the Cooper pair wavefunction phase γ after one circulation around the loop,

γ =
∑

i

ϕi +
2π

Φ0

∮
A ds . (1.9)

Here, A denotes the vector potential of the magnetic field, the sum goes over all junctions,
and the line integral goes once around the loop. By applying Stokes theorem we obtain

∑

i

ϕi +
2πΦtot

Φ0
= 0 . (1.10)

This relation is called fluxoid quantization [19]. The magnetic flux quantum in a supercon-
ductor reads

Φ0 =
h

2e
. (1.11)

1.4 Flux qubit

We want to describe qubits based on the flux degree of freedom, called flux qubits or persistent
current qubits.
In order to make persistent, dissipationless currents possible, we consider superconducting
ring geometries. In addition, these rings shall be intersected by one or more Josephson
junctions. The simplest design is a RF-SQUID, formed by a loop with one junction. Fluxoid
quantization relates the phase across the junction to the magnetic flux enclosed by the loop,
ϕ = −2πΦtot

Φ0
. The Hamiltonian includes the charging energy of the junction and its Josephson

energy as well as the energy contained in the magnetic field created by the current in the loop
[12],

H =
Q2

2CJ
− EJ cos

(
2π

Φtot

Φ0

)
+

(Φtot − Φx)2

2L
, (1.12)

where L is the self-inductance of the loop, and Φx is the externally applied bias flux. For a
bias Φx ≈ (n + 1/2)Φ0, the cosine potential and the quadratic potential of the third term
can form a double well potential. The states in the bottoms of the two wells then correspond
to two Φ expectation values Φ = nΦ0 and Φ = (n + 1)Φ0. The first term depends on the
charge Q, the canonically conjugate variable of Φ and can therefore be considered to be the
kinetic energy of the particle in the double well with mass CJ . However, in order to form
a suitable double well potential, the Josephson energy EJ of the junction as well as the self
inductance L of the loop have to be large. The first restriction requires a large junction with
a large capacitance CJ , which suppresses tunneling. A high self inductance calls for large
loops, making the system very sensitive to external noise.
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These shortcomings can be overcome by using a smaller loop with three junctions [20], see
figure 1.2 and 1.3.

pI

ϕ
2

ϕ
1

ϕ
3

Figure 1.2: Circuit diagram of a three-
junction flux qubit. Junction 3 is
slightly smaller than the junctions 1
and 2.

Figure 1.3: SEM picture of a three-
junction flux qubit. The Joseph-
son junctions are thin insulating oxide
barriers between the superconducting
electrodes [21].

The flux in this low-inductance circuit remains –as opposed to the design above– close to the
externally applied field Φtot ≈ Φx and fluxoid quantization takes the form

ϕ1 + ϕ2 + ϕ3 +
2πΦx

Φ0
= 0 . (1.13)

Moreover, one of the junctions (here junction 3) is slightly smaller than the other two,
EJ,3/EJ,2 = EJ,3/EJ,1 = α ≈ 0.8.
Writing down the Hamiltonian of the loop [20] yields

H =
3∑

i=1

Q2
i

2CJ,i
−EJ

(
cosϕ1 + cosϕ2 + α cos

(
2πΦ
Φ0

− ϕ1 − ϕ2

))
+

(Φ− Φx)2

2L
. (1.14)

Due to the small inductance of the loop, Φ ≈ Φx holds, and the term expressing the magnetic
energy is small. The phase across junction 3 in (1.14) is expressed by the phases ϕ1 and ϕ2

of the two other junctions, leaving only these two phases as independent variables for the
potential. If we plot the potential landscape of the Josephson energies spanned by these two
variables along ϕ1 = ϕ2 = ϕ (the direction connecting two nearest-neighbor minima in the
periodic potential created by the cosine terms), we obtain a double well potential for the
applied flux close to half a flux quantum and α ≈ 0.8, see figure 1.4.
At low temperatures, only the lowest states in the two wells contribute, making sure that there
is only one bound state in each well. The states in the two wells correspond to persistent
currents running clockwise and counterclockwise through the loop.
The phase configuration in these minima can be derived from the classical stability diagram
(minimum energy phase configurations, ∂U

∂ϕ1
= 0, ∂U

∂ϕ2
= 0 and ϕ1 = ϕ2 = ±ϕ∗) for Φx

Φ0
= 1

2
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Φ/Φ
0
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-1 0 1
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Figure 1.4: Energy landscape of a three junction qubit. Left figure: The energy bias
ε can be tuned by the applied magnetic flux. With the definition of the persistent
current (1.16), it reads: ε = 2 Ip (Φ− Φ0/2). Right figure: The tunnel matrix element
is determined by the barrier between the two classical minima, which depends on α.
One can see that a smaller α lowers the barrier and increases the tunneling.

[22],

cosϕ∗ =
1
2α

. (1.15)

The persistent current is the current flowing in this classical minimum,

Ip = IC sinϕ∗ = IC

√
1− 1

4α2
. (1.16)

In the classical limit, for large EJ and vanishing EC of the junctions, tunneling would be
suppressed, establishing these two states with well defined phase (and therefore well defined
current and flux) as eigenstates of the system, justifying the name flux qubit. For realistic
scenarios of EJ being larger than EC , but both being within few orders of magnitude, tun-
neling is driven by the capacitive quantum fluctuations, and the eigenstates of the system
are superpositions of the the two flux states, making the system act as qubit. Hence, the
reduced Hamiltonian of this two-state (or pseudo-spin) system can be written in standard
representation,

Heff = −1
2

ε σ̂z − 1
2

∆ σ̂x , (1.17)

where σ̂z and σ̂x are the Pauli matrices. The diagonal term containing ε is the energy bias,
i.e. the energy asymmetry between the two wells, and ∆ is the tunnel matrix element.
The eigenenergies of this Hamiltonian are ±√ε2 + ∆2/2, the resulting anticrossing is depicted
in figure 1.5.
As mentioned above, several quantum phenomena have been observed in flux qubits, including
superposition of states [14] and coherent Rabi oscillations [15, 16]. This justifies the two-state
approximation used above.
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0.495 0.4975 0.5 0.5025 0.505

Φ/Φ
0

-0.01

0

0.01

E/E
J

Figure 1.5: The energies of the two localized persistent-current states are indicated
with the dashed lines. At the degeneracy point Φ = Φ0/2, the quantum levels (solid
lines) are symmetric and antisymmetric superpositions of the two persistent-current
states and an anticrossing occurs. The expectation value of the current in the loop is
zero at the degeneracy point and approaches the persistent current ±Ip far away from
the degeneracy point.

1.5 Decoherence

Among the design requirements for a quantum computer, the sufficient long timescale over
which the quantum coherence needs to be kept, is particulary hard to meet for solid state
systems. The relatively strong coupling of the qubits to the many fluctuating, uncontrolled
environmental degrees of freedom causes quick decoherence, i.e. dephasing and relaxation.
Dephasing describes the process of vanishing correlations between the states, ending up in a
statistical mixture as opposed to a quantum mechanical superposition. The correlations are
given by the off-diagonal terms of the density operator. The dephasing time is the character-
istic time on which these terms turn to zero. In the flux qubit design, among other sources,
flux noise causes the energy splitting of the qubit to fluctuate, resulting in dephasing.
Relaxation is the process of approaching the thermal equilibrium. The relaxation time is
the characteristic time on which the diagonal elements of the density matrix go towards the
values given by the Boltzmann factors.
Recent measurements on relaxation and dephasing times in flux qubits have yielded timescales
of approximately 100 ns for both processes [23].
The coupling of the system to a dissipative environment and the resulting decoherence effects
are often modelled by the Spin-Boson model [24]. Here, the qubits are described by spin-
1/2 particles and the environment is taken as a bath of harmonic oscillators. This way, all
Gaussian noise sources can be reproduced by appropriately chosen spectral functions. On the
other hand, non-Gaussian noise such as 1/f noise can not be treated by this method.

1.6 Coherent manipulation

Quantum operations in solid state devices are performed by applying electromagnetic fields.
To implement given operations, two components of the effective magnetic field need to be
controlled. However, for flux qubits, usually only control over the energy bias ε can be gained
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by means of an external magnetic field, whereas the tunnel element ∆ remains fixed. A
possible solution is resonant driving, known from NMR [8]. One induces Rabi oscillations
between different states of the qubit by resonant pulses, i.e. AC pulses with frequency close
to the qubit’s level spacing, and lets the system evolve at this degeneracy point for a certain
time. By this, arbitrary one-qubit operations are possible, but the evolution under the internal
system Hamiltonian puts physical limits on the minimum time required to prepare the target
state.

1.7 Coupling of three qubits

A two-qubit operation is in general induced by turning on the corresponding coupling between
the qubits. For flux qubits placed close to each other, the natural interaction is mediated
by the magnetic fluxes and always turned on, however, switchable [20] or even tunable [25]
coupling schemes based on SQUIDs have been proposed. But even for fixed coupling schemes
as the ones presented in the following, full control can be gained and all quantum gates
can be realized. However, we want to concentrate on the possibility of creating tripartite
entanglement. It will be shown that the coupling schemes proposed in chapter 2 give rise
to pairwise coupling between the qubits of the type σ̂

(i)
z ⊗ σ̂

(j)
z . We will see that this can

lead to superpositions of macroscopically distinct states. Besides the fundamental interest
in this kind of macroscopic quantum behavior, these states will turn out to have interesting
entanglement properties.

1.8 Measurement

Besides the controlled manipulations of the qubits, measurements have to be performed to
read out the final state of the system. The ideal projective measurement with the collapse
of the wavefunction is just an approximation of this process, since the measurement device
is a quantum system by its own, coupled to the measured system. In case of flux qubits,
the measurement devices are DC-SQUIDs [20, 21, 26], the coupling is given by the mutual
inductance between the qubit and the DC-SQUID. By sending a current through the SQUID
one can determine the switching current, i.e. the critical current where the SQUID switches
to the finite voltage state. This is a measure for the flux enclosed by the SQUID, and thereby
for the state of the qubit. However, the flux fluctuations produced by the SQUID current
itself cause decoherence in the qubit. Moreover, this switching is a statistical process, giving
a spread in the switching currents. No perfect correlation of the measurement result with
the state of the qubit can be achieved, in contrast to the ideal von Neumann measurement.
Recently developed measurement schemes like dispersive readout [27] or the non-dissipative
measurement of the change in the Josephson inductance of the SQUID [28, 29] in contrast to
the dissipative switching scheme outlined above can avoid some of these limitations. We will
discuss this in more detail in section 2.3, where we propose a measurement geometry for our
three-qubit design.



Chapter 2

Coupling strength

Two designs for a coupled 3-qubit system with two different coupling schemes have been
investigated, namely inductive coupling via mutually induced fluxes and coupling via the
Josephson inductances of shared junctions. It will turn out that of both these mechanisms
can be treated by introducing extra phases, which incorporate the couplings and add up
linearly to the total coupling strength.

2.1 Coupling via a common loop

The first design is shown in figure 2.1. To achieve a reasonable interaction via the magnetic
flux, the qubits have –due to their small mutual inductances– to be put very closely to each
other. The dashed line denotes a flux transformer consisting of a SQUID loop around the
three qubits to further increase the small coupling. The flux transformer encloses the qubits
in a way such as to maximize the inductance between transformer and qubit and to obtain a
coupling as symmetrical as possible.

1I

2I 3I

ϕ
1,3

Φ

Figure 2.1: Three qubits, enclosed by a common SQUID-loop (dashed line). Crosses
represent the Josephson junctions. The circle arrows in the qubits define the directions
of the currents, the semicircle arrow indicates a magnetic flux line, causing a coupling
between the qubits via their geometrical mutual inductance. In addition, there is a
indirect inductive coupling between the qubits mediated by the SQUID loop.

11



12 2 Coupling strength

To calculate the coupling strength one has to take into account two terms that contribute to
the total potential energy. The first one is the sum of the Josephson energies in the junctions
of the qubits. This energy is modified by the coupling via a change in the fluxoid quantization
(1.10) due to the additional fluxes. This induces an extra phase bias and thus the energy of
the junctions. We will calculate this contribution in the following.

2.1.1 Josephson energy due to phase bias

The total Josephson energy in the junctions of all qubits is given by

EJos,Q = −EJ,Q

3∑

i=1

(cos ϕ1,i + cosϕ2,i + α cosϕ3,i) . (2.1)

Applying the fluxoid quantization for the i-th qubit gives

ϕ1,i + ϕ2,i + ϕ3,i +
2πΦtot,i

Φ0
= 0 . (2.2)

The total magnetic flux Φtot,i through the i-th qubit is a sum of the externally applied flux
Φx,i, the self produced flux, the fluxes induced by the other qubits and the flux induced by
the transformer,

Φtot,i = Φx,i + Li Ip,i −
∑

j 6=i

Mij Ip,j + MTi IT . (2.3)

Here Li denotes the self inductance of the i-th qubit, Mij = Mji with i 6= j the mutual
inductance between the i-th and the j-th Qubit and MTi the mutual inductance between the
transformer and the qubit. The negative sign in front of the qubit-qubit interaction term
reflects the fact that the mutual inductance between the qubits is negative, as a flux in one
qubit reduces the fluxes in the other ones (cp. figure 2.1).
Henceforth, we will refer to the persistent current Ic,i simply as Ii. Since there are no other
currents involved in the calculation, this should not provoke misunderstandings.

The flux ΦT through the transformer reads

ΦT = LT IT +
3∑

j=1

MTj Ij (2.4)

with LT being the self inductance of the transformer and IT the current flowing through it.
The screening flux in the transformer opposes the magnetic field, effectively cancelling out
the net flux,

ΦT = 0 . (2.5)

Therefore:

IT = − 1
LT

3∑

j=1

MTj Ij . (2.6)
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For convenience purposes and for later generalizing the results, we introduce an extra phase,

φi =
2π

Φ0


Li Ii −

∑

j 6=i

Mij Ij − 1
LT

MTi

3∑

j=1

MTj Ij


 . (2.7)

This phase φi incorporates the coupling effects and enters into the fluxoid quantization (2.2),

ϕ1,i + ϕ2,i + ϕ3,i + φi +
2πΦx,i

Φ0
= 0 . (2.8)

Since the fluxes induced by the other parts of the system are small compared to the flux
quantum, φi can be considered to be small as well (φi ≈ 7 · 10−4).

Expressing the phase across the smaller junction in terms of the other phases gives

α cosϕ3,i = α cos
(

2πΦx,i

Φ0
+ ϕ1,i + ϕ2,i + φi

)
=

= α cos
(

2πΦx,i

Φ0
+ ϕ1,i + ϕ2,i

)
· cosφi −

−α sin
(

2πΦx,i

Φ0
+ ϕ1,i + ϕ2,i

)
· sinφi . (2.9)

The discussion of the individual terms yields:

• cosφi ≈ 1, since φi is small.

• sin
(

2πΦx,i

Φ0
+ ϕ1,i + ϕ2,i

)
≈ sin (π + ϕ1,i + ϕ2,i) = − sin (ϕ1,i + ϕ2,i).

The minima of the potential landscape of a single qubit are located at ϕ1 = ϕ2 = ±ϕ∗

where cosϕ∗ = 1
2α [22].

Therefore: − sin (ϕ1,i + ϕ2,i) ≈ −2 sin ϕ∗ cosϕ∗ = − 1
α

Ii
IC,Q

.

• sinφi ≈ φi.

α cosϕ3,i = α cos
(

2πΦx,i

Φ0
+ ϕ1,i + ϕ2,i

)
+

Ii

IC,Q
φi . (2.10)

With the definitions of φi (2.7), EJos,Q (2.1) and Φ0 (1.11), we arrive at

EJos,Q =
3∑

i=1

EJos,uncp − EJ,Q

IC,Q

3∑

i=1

Ii φi =

=
3∑

i=1

EJos,uncp −
3∑

i=1

Li Ii
2 +

3∑

i=1

∑

j 6=i

Mij Ii Ij +
1

LT

∑

ij

MTi MTj Ii Ij . (2.11)
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for the Josephson energies of the qubit junctions. Here EJos,uncp denotes the Josephson
junction energies of a single qubit without couplings,

EJos,uncp = −EJ,Q

3∑

i=1

(
cosϕ1,i + cosϕ2,i + α cos

(
2πΦx,i

Φ0
+ ϕ1,i + ϕ2,i

))
. (2.12)

We now separate the sums into single qubit energies and interaction terms. Note that

3∑

i=1

∑

j 6=i

cij = 2
3∑

i=1

∑

j>i

cij , if cij = cji ∀ i, j .

EJos,Q =
3∑

i=1

EJos,uncp +
3∑

i=1

(
MTi

2

LT
− Li

)
Ii

2 + 2
3∑

i=1

∑

j>1

(
Mij +

MTi MTj

LT

)
Ii Ij . (2.13)

This coupling, expressed by the last term in (2.13), is antiferromagnetic, giving an energy
advantage for an antiparallel configuration of the currents.

2.1.2 Energy stored in the magnetic field

The second contribution is the energy stored in the joint magnetic field [30]. It is given by

Emag =
1
2

3∑

i=1

Li Ii
2 −

3∑

i=1

∑

j>i

Mij Ii Ij +
3∑

i=1

MTi IT Ii +
1
2
LT IT

2 . (2.14)

Insert (2.6) and split again into single qubit terms and interactions:

Emag =
1
2

3∑

i=1

Li Ii
2 −

3∑

i=1

∑

j>i

Mij Ii Ij − 1
2

1
LT

∑

ij

MTi MTj Ii Ij =

= −1
2

3∑

i=1

(
MTi

2

LT
− Li

)
Ii

2 −
3∑

i=1

∑

j>i

(
Mij +

MTi MTj

LT

)
Ii Ij (2.15)

We see that this contribution gives a ferromagnetic coupling with half the strength of the
Josephson term. The sign of the interaction can be understood by looking at the two parts
of the expression Mij + MTi MTj

LT
. First, the direct qubit-qubit interaction, represented by

Mij , has to be ferromagnetic owing to the negative mutual inductance between the qubits.
Comparing the direction of the flux line in Fig. 2.1, one recognizes that for a parallel alignment
of the magnetic fluxes, each qubit reduces the flux in the other qubits and thereby the energy
of the joint magnetic field, yielding an energy advantage for a parallel alignment. Second, the
screening of the magnetic flux in the transformer, as described above, gives rise to a second
ferromagnetic contribution. The two mutual inductances showing up in the transformer
coupling part 1

LT
MTi MTj can be considered as the links in the interaction chain first qubit

↔ flux transformer ↔ second qubit.
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2.1.3 Coupling strength

Adding up the two contributions gives

E = EJos,Q + Emag =

=
3∑

i=1

EJos,uncp +
1
2

3∑

i=1

(
MTi

2

LT
− Li

︸ ︷︷ ︸
Li
′

)
Ii

2 +
3∑

i=1

∑

j>i

(
Mij +

MTi MTj

LT︸ ︷︷ ︸
Kij

)
Ii Ij .(2.16)

Li
′ is the modified self inductance of the i-th qubit. As pointed out in the introduction, the

double well potential is predominantly shaped by the Josephson energies. We can therefore
neglect the modified self inductance when applying the two-state approximation.
Kij is the coupling coefficient between the i-th and the j-th qubit and describes an antifer-
romagnetic coupling. This can be considered an effect of Lenz’ rule imposed by the perfect
screening of the fluxes in the qubits. Table 2.1 shows numerical values for the inductances
obtained with FastHenry, an inductance analysis program [31].

L1 = L2 = L3 2.39 pH
LT 15 pH

M12 = M13 0.014 pH
M23 0.0039 pH
MT1 0.68 pH

MT2 = MT3 0.73 pH
L1

′ = L2
′ = L3

′ -2.36 pH
K12 = K13 0.047 pH

K23 0.039 pH

Table 2.1: Mutual inductances for the common-loop-design, based on the following
geometrical sizes: qubits 1 µm by 1.51 µm with lines of 100 nm height and 300 nm
width, distance qubit–loop 600 nm.

One finds that the coupling due to the flux transformer (Kij−Mij) gives a significantly larger
coupling than the direct geometric inductance between the qubits (Mij). Moreover, it turns
out that the strong asymmetry arising for direct coupling between the qubit 1↔qubit 2, 3
(0.014 pH) and qubit 2↔qubit 3 (0.0039 pH) is decreased because the mutual inductance
between qubits 2, 3 and the flux transformer (0.73 pH) is stronger than between qubit 1 and
the transformer (0.68 pH). We therefore can assume an equal coupling constant between all
three pairs of qubits,

Kij ≈ K ∀ i 6= j . (2.17)

Furthermore, the persistent currents of all qubits are ideally identical, I1 = I2 = I3 = Ip ≈ 300
nA and the coupling Cij reads

Cij = Kij Ii Ij ≈ KIp
2 = C ≈ 5.8 MHz . (2.18)
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2.2 Coupling via shared junctions–qubit triangle

In this section the design shown in figure 2.2 will be discussed. The three qubits are pairwise
sharing a common line with an extra Josephson junction inserted in it. Every pair of qubits
sends its currents through the joint junction and therefore imposes a phase ϕi,S across it.

1I

3I

2I
ϕ
2,S

ϕ
1,S

ϕ
3,S

ϕ
3,2

Figure 2.2: The design of the flux qubit triangle. The three qubits are formed by the
three small isosceles triangles, the round arrows in the qubits defining the directions
of the currents. Small crosses represent the Josephson junctions in the individual
qubits, large crosses the coupling junctions (big Josephson energy—small Josephson
inductance).

As in section 2.1, two energies are associated with this coupling. The first one is again the
sum of the Josephson energies in the qubit junctions. The phases across the shared junctions
influence fluxoid quantization in the individual qubits and thus change the Josephson energies
of their junctions. We will first calculate this effect.

2.2.1 Josephson energy due to phase bias

The total Josephson energies in the qubit junctions is again given by

EJos,Q = −EJ,Q

3∑

i=1

(cos ϕ1,i + cosϕ2,i + α cosϕ3,i) . (2.19)

When applying fluxoid quantization, we take the additional phases ϕi,S of the shared junctions
into account (here exemplarily for qubit 1, in analogy for qubits 2 and 3):

ϕ11 + ϕ12 + ϕ13 + ϕ1,S − ϕ2,S +
2πΦtot,1

Φ0
= 0 (2.20)

The coupling junctions are large compared to the qubit junctions and their critical currents
are far above the persistent currents in the qubits. Hence, their phases are small and behave
nearly classical (the fluctuations in the phases are small, and phases can therefore be expressed
in terms of the classical flowing currents). In this regime, the nonlinear inductance discussed
in chapter 1 can be assumed to be linear, having the same effect as the mutual inductances in
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section 2.1. Moreover, we assume the critical currents of these junctions to be equal (which can
be achieved in an actual experiment, because critical currents can be tuned very accurately
[16]). According to the directions of currents (cp. Figure 2.2), we get

ϕ1,S = arcsin
I1 − I2

IC,S
≈ I1 − I2

IC,S
, (2.21)

ϕ2,S ≈ I3 − I1

IC,S
, (2.22)

ϕ3,S ≈ I2 − I3

IC,S
. (2.23)

Adding up the phases for the fluxoid quantization rules (2.20) in each qubit consistently, we
again define extra coupling phases (cp. (2.7)), namely

φ1 = ϕ1,S − ϕ2,S ≈ 2 I1 − I2 − I3

IC,S
, (2.24)

φ2 = ϕ3,S − ϕ1,S ≈ 2 I2 − I1 − I3

IC,S
, (2.25)

φ3 = ϕ2,S − ϕ3,S ≈ 2 I3 − I1 − I2

IC,S
. (2.26)

Moreover, the coupling mediated by the geometrical inductance will turn out to be much
smaller than the one due to the shared junctions. Therefore, we neglect the additional fluxes
induced by the other qubits and set Φtot,i ≈ Φx,i.

The rewritten fluxoid quantization

ϕ1,i + ϕ2,i + ϕ3,i + φi +
2πΦx,i

Φ0
= 0 (2.27)

then looks the same as (2.8).

Applying the same reasoning as in section 2.1.1, we get in analogy to (2.11)

EJos,Q =
3∑

i=1

EJos,uncp − EJ

IC,Q

3∑

i=1

Ii φi . (2.28)

Putting in (2.24),(2.25) and (2.26) and using (1.7) and (1.11) yields

EJos,Q =
3∑

i=1

EJos,uncp +
Φ0

2πIC,S
2


−

3∑

i=1

Ii
2 +

3∑

i=1

∑

j>i

Ii Ij


 . (2.29)

We can express this in terms of the Josephson inductance of the shared junctions LJ,S (1.5),

LJ,S ≈ Φ0

2πIC,S
, (2.30)
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EJos,Q =
3∑

i=1

EJos,uncp − 2LJ,S

3∑

i=1

Ii
2 + 2 LJ,S

3∑

i=1

∑

j>i

Ii Ij . (2.31)

We find that the coupling due to the phase bias is antiferromagnetic, as in section 2.1.1. The
Josephson inductance of the shared junctions here plays the role of the mutual inductance
mediating the interaction between the qubits. It depends on the size of the junctions, with
a bigger junction resulting in a smaller inductance and a smaller coupling. This can be
understood by considering that the same current imposes a smaller phase difference across a
larger junction modifying the fluxoid quantization less violently.

2.2.2 Josephson energy of the shared junctions

The second energy associated with the inserted junctions is their own Josephson energy. We
expand and get

EJos,S = −EJ,S

3∑

i=1

cosϕi,S ≈ −EJ,S

3∑

i=1

(
1− ϕi,S

2

2

)
. (2.32)

By putting in (2.21), (2.22), (2.23) and using the definition of the Josephson inductance
(2.30), we obtain

EJos,S = −3EJ,S + LJ,S

3∑

i=1

Ii
2 − LJ,S

3∑

i=1

∑

j>i

Ii Ij . (2.33)

2.2.3 Coupling strength

The total potential energy reads

E = EJos,Q + EJos,S =

=
3∑

i=1

EJos,uncp − 3EJ,S − LJ,S

3∑

i=1

Ii
2 + LJ,S

3∑

i=1

∑

j>i

Ii Ij . (2.34)

Therefore:

Kij = K = LJ,S ∀ i 6= j (2.35)

Using the same values as in section 2.1.3, I1 = I2 = I3 = Ip ≈ 300 nA, we arrive at the
coupling

Cij = Kij Ii Ij ≈ LJ,SIp
2 = C . (2.36)

This type of coupling allows for great flexibility, a typical and achievable coupling strength
for later discussions is C=700 MHz (corresponding to LJ,S ≈ 5 pH).
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2.2.4 Smaller contributions

In addition to the strong coupling provided by the junctions, there are still smaller contribu-
tions from the geometrical inductance (as described in section 2.1) and the kinetic inductance
of the shared lines [16]. All these coupling add up linearly to the total coupling

Ctot =
∑

n

Cn . (2.37)

In table 2.2, the mutual geometrical inductances as calculated by FastHenry and the resulting
coupling are listed (cp. table 2.1).

L1 = L2 = L3 2.8 pH
M12 = M13 = M23 -0.48 pH

C 65 MHz

Table 2.2: Mutual geometrical inductances for the qubit triangle, based on the following
geometrical sizes: short sides of the qubit triangles 2 µm, all lines 100 nm thick and
300 nm wide.

The mutual geometrical inductances between the qubits as listed in table 2.2 are due to the
close arrangement and the pairwise shared lines much stronger than in the case of the common
loop design (table 2.1). Nevertheless, the coupling mediated by the geometrical inductances
is much weaker than the Josephson coupling.

2.3 Measurement design

Fig. 2.3 shows a possible design for the readout of the individual qubits. Three SQUIDs are
attached to the three sides of the triangle and coupled to it by their mutual inductance.
The quantum state can be read out by measuring the generated magnetic flux, as the critical
supercurrent of the SQUIDs depends on the flux piercing the SQUID loops [26]. By ramping
the current through the SQUID up to the critical current one can determine the point where
switching to the finite voltage state takes place. However, in the voltage state, quasiparticles
are generated that later recombine with a burst of energy, and high frequency radiation is
emitted towards the circuit. To circumvent these drawbacks, one can indirectly obtain the
critical current by determining the Josephson inductance. This is based on the property of a
SQUID to behave as an inductor, with a Josephson inductance that depends on the magnetic
flux enclosed in the loop. The value of the Josephson inductance can be determined by
measuring the impedance of the SQUID. This way, very high measurement fidelities of 90%
could be observed experimentally [28, 29]. In order to achieve a high measurement fidelity, the
mutual inductance between SQUID and qubit needs to be large [29], leading to the common
design, where the the qubit is enclosed in the SQUID. A placement besides the qubits as in
our design decreases the coupling and could partially be compensated for by larger structures.
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I

I

I

Figure 2.3: Possible readout design with three SQUIDs. The SQUIDs are coupled to
the triangle by their mutual inductances.



Chapter 3

Eigenstates of the system

We aim for preparing tripartite entangled states in a preferably easy and stable way. Both
demands are naturally met by the eigenstates of a system, as eigenstates are easy to prepare by
π-pulse driving on the one hand side and stable to pure dephasing processes on the other hand
side. Since the dephasing time T2 is usually the shorter timescale compared to the relaxation
time T1 [23], this is particulary desirable. We start with writing down the Hamiltonian in a
appropriate basis, taking into account the coupling derived in chapter 2 and continue with
investigating the eigenenergies and eigenstates for different coupling strengths and in different
regimes of the energy bias ε.

3.1 Hamiltonian

By adding up the single qubit Hamiltonians of the individual qubits as introduced in (1.17)
and the coupling term derived in chapter 2, we arrive at the total Hamiltonian. The currents
in the qubits are quantum mechanically associated with σ̂z operators and the Hamiltonian
reads in terms of the Pauli spin matrices1

H =
3∑

i=1

(
−1

2
εi σ̂

(i)
z − 1

2
∆i σ̂

(i)
x

)
+ C(σ̂(1)

z σ̂(2)
z + σ̂(1)

z σ̂(3)
z + σ̂(2)

z σ̂(3)
z ) . (3.1)

1The superscript indices here have the meaning of being applied to the qubit with the corresponding index
while unity is applied to the qubits with the missing indices (e.g. σ̂

(3)
z ≡ 1l2⊗ 1l2⊗ σ̂z, σ̂

(1)
z σ̂

(2)
z ≡ σ̂z ⊗ σ̂z ⊗ 1l2).

21
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Writing H down in the standard basis (see A.2) yields

H = −1
2




ε1+ε2+ε3−6C ∆3 ∆2 0 ∆1 0 0 0

∆3 ε1+ε2−ε3+2C 0 ∆2 0 ∆1 0 0

∆2 0 ε1−ε2+ε3+2C ∆3 0 0 ∆1 0

0 ∆2 ∆3 ε1−ε2−ε3+2C 0 0 0 ∆1

∆1 0 0 0 −ε1+ε2+ε3+2C ∆3 ∆2 0

0 ∆1 0 0 ∆3 −ε1+ε2−ε3+2C 0 ∆2

0 0 ∆1 0 ∆2 0 −ε1−ε2+ε3+2C ∆3

0 0 0 ∆1 0 ∆2 ∆3 −ε1−ε2−ε3−6C




.

(3.2)

We want to assume the qubits to be identical (∆1 = ∆2 = ∆3 = ∆, ε1 = ε2 = ε3 = ε). We
already introduced this approximation implicitly by setting the coupling C equal for all three
pairs of qubits.
In the following, we choose a collective quartet-doublet basis, reflecting the nature of the
system as a system of three coupled (pseudo-) spin-1/2 particles (see appendix A.4 for the
definition of this basis). This will simplify many arguments related to the symmetries of the
system. The Hamilton rewritten in the collective basis is (as from now, operators and states
expressed in the collective basis carry a tilde, see also appendix A)

H̃ = −1
2




3ε− 6C
√

3∆ 0 0 0 0 0 0
√

3 ∆ ε + 2C 2∆ 0 0 0 0 0

0 2 ∆ ε + 2C
√

3∆ 0 0 0 0

0 0
√

3∆ −3ε− 6C 0 0 0 0

0 0 0 0 ε + 2C ∆ 0 0

0 0 0 0 ∆ −ε + 2C 0 0

0 0 0 0 0 0 ε + 2C ∆

0 0 0 0 0 0 ∆ −ε + 2C




.

(3.3)
As can be see from 3.3, the Hamiltonian is block diagonal in the doublet and quartet subspaces.
In the following, |E1〉–|E8〉 denote the eigenstates of the system (E1–E8 are the associated
eigenenergies), where |E1〉–|E4〉 correspond to the upper four by four matrix (the quartet),
|E5〉 and |E6〉 to the first doublet, |E7〉 and |E8〉 to the second one. Apparently, due to the
identical form of the two doublets, there are two pairs of degenerate eigenstates, |E5〉 and
|E7〉 as well as |E6〉 and |E8〉. The eigenenergies and eigenstates of the doublet blocks can be
found in appendix B.
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Figure 3.1 displays the eigenenergies in dependence of the energy bias ε for different coupling
strengths, ranging from large ferromagnetic coupling to large antiferromagnetic coupling.
These parameter regimes will be investigated in the following.

|E3>

|E4>

|E2>
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Figure 3.1: Plot of the eigenenergies of the eigenstates |E1〉–|E8〉 for several coupling
strengths. |E5〉 and |E6〉 as well as |E7〉 and |E8〉 are always degenerate. For C = 0,
an additional degeneracy involving |E2〉 and |E3〉 is imposed, which is lifted for finite
coupling strengths (details in the text). The energy level diagram for the ferromagnetic
coupling C = −1.4∆ is just opposed to the case of antiferromagnetic coupling of the
same strength.

For discussion of the eigenstates we refer to figures C.1–C.3.

3.2 No coupling, C = 0

We first explore the case of vanishing coupling, C = 0. Apparently, no entangled states can
be found in this regime, the system can be described by three disjoint, independent quantum
systems. As a result, all eigenstates can be written as tensor products of the eigenstates
of the single qubits. Nevertheless, the discussion provides some insight into symmetries of
the system and will therefore be performed here. As a first observation, we find the energy
spectrum of the system to be symmetrical around zero energy as well as zero energy bias
(ε = 0). Moreover, the amplitudes of all eigenstates show the same behavior as function of
the energy bias ε, as can be seen in figure C.1, but in terms of different basis states and
with different relative phases (see below). Both observations obey the fact that the system
is invariant under a combined flip of the spins and an inversion of the sign of ε. This is
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obvious as ε is (due to the missing coupling) the only parameter that determines the spin
alignment (and hence the energy of a certain configuration), favoring spins aligned parallel
to the applied magnetic field and giving an energy disadvantage to the opposite aligned ones.
We also find that for the same reason the ground state maps onto the highest excited state by
just a global spin flip. We will refer to these general considerations when looking at the case
of finite coupling and will now explicitly write down the form of the some of the eigenstates
in standard notation.

3.2.1 No energy bias, ε = 0

Without energy bias, for zero coupling as well as for finite coupling (see below), no σ̂z spin
alignment in either direction is preferred, therefore all states will yield zero expectation value
for σ̂z, 〈σ̂(1)

z 〉 = 〈σ̂(2)
z 〉 = 〈σ̂(3)

z 〉 = 〈σ̂(1)
z + σ̂

(2)
z + σ̂

(3)
z 〉 = 0. The single qubit Hamiltonian (1.17)

then reduces to H = −1
2 ∆ σ̂x with the two well-known eigenstates |ψG〉 = 1/

√
2(|↓〉 + |↑〉)

(ground state) and |ψex〉 = 1/
√

2(|↓〉−|↑〉) (excited state). The ground state of the composite
three-qubit system |E1〉 is the direct product of the σ̂x eigenstates with the lower energy
(crossing point of the curves in the first plot of figure C.1),

|ψG〉 = |E1〉 =
1√
8
(|↓〉+ |↑〉)A ⊗ (|↓〉+ |↑〉)B ⊗ (|↓〉+ |↑〉)C , (3.4)

whereas the highest excited state reads (crossing point in the fourth plot)

|ψex〉 = |E4〉 =
1√
8
(|↓〉 − |↑〉)A ⊗ (|↓〉 − |↑〉)B ⊗ (|↓〉 − |↑〉)C . (3.5)

Reflecting the symmetry of the system under exchange of qubits, the other six eigenenergies
split up in two 3-fold degenerate subspaces, the corresponding states being |E2〉, |E5〉, |E7〉
(first excitation above the ground state) and |E3〉, |E6〉, |E8〉 (second excitation above the
ground state). These subspaces contain states with different properties, including non-zero
entanglement. However, we make here a physical choice for the basis states, taking into
account that the system physically consists of three disjoint subsystems.
The basis states spanning the low-energy subspace for ε = 0 then read

|E2〉 := (|↓〉+ |↑〉)A ⊗ (|↓〉+ |↑〉)B ⊗ (|↓〉 − |↑〉)C ,

|E5〉 := (|↓〉+ |↑〉)A ⊗ (|↓〉 − |↑〉)B ⊗ (|↓〉+ |↑〉)C ,

|E7〉 := (|↓〉 − |↑〉)A ⊗ (|↓〉+ |↑〉)B ⊗ (|↓〉+ |↑〉)C (3.6)

and for the high-energy subspace

|E3〉 := (|↓〉 − |↑〉)A ⊗ (|↓〉 − |↑〉)B ⊗ (|↓〉+ |↑〉)C ,

|E6〉 := (|↓〉 − |↑〉)A ⊗ (|↓〉+ |↑〉)B ⊗ (|↓〉 − |↑〉)C ,

|E8〉 := (|↓〉+ |↑〉)A ⊗ (|↓〉 − |↑〉)B ⊗ (|↓〉 − |↑〉)C . (3.7)

The basis states are composed of the low-energy eigenvalues with respect to two of the qubits
and a high-energy eigenvalue with respect to the third one for the low-energy subspace, and
oppositely for the high-energy subspace.
One can see that all eigenstates occurring at zero energy bias are superpositions of all basis
states, where all basis states are equal in amplitude, only varying in their relative phases.
Particulary, all eigenstates contain contributions from the two totally aligned states |↑↑↑〉 and
|↓↓↓〉. As we will see in section 3.3 and 3.4, this is not true for finite coupling.
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3.2.2 High energy bias

With increasing (positive) energy bias, the energy degeneracy between spin up and spin down
states expressed by their equal amplitudes is lifted. For the ground state |E1〉, spins aligned
antiparallel to the magnetic field increasingly get suppressed, with the totally misaligned state
|↓↓↓〉 decaying quickest. In the limit of large energy bias, only the totally aligned component
of the ground state is left,

|ψG〉 = |E1〉 = |↑↑↑〉 . (3.8)

The highest state in analogy looks like

|ψex〉 = |↓↓↓〉 . (3.9)

These are the classical states of the system for large energy bias (no superposition).
For the states spanning the degenerate subspaces we get classical, frustrated states with σ̂z

expectation values of 〈σ̂(1)
z + σ̂

(2)
z + σ̂

(3)
z 〉 = 1

2 for the low-energy subspace,

|E2〉 = |↑↑↓〉 , |E5〉 = |↓↑↑〉 , |E7〉 = |↑↓↑〉 , (3.10)

and 〈σ̂(1)
z + σ̂

(2)
z + σ̂

(3)
z 〉 = −1

2 for the high-energy subspace,

|E3〉 = |↓↓↑〉 , |E6〉 = |↓↑↓〉 , |E8〉 = |↑↓↓〉 . (3.11)

3.3 Weak antiferromagnetic coupling, C = 0.2∆

Introducing a σ̂z ⊗ σ̂z coupling into the system for small energy bias lifts the three-fold
degeneracies described above into two-fold degeneracies. Thus, the states |E2〉, |E5〉, |E7〉,
|E3〉, |E6〉 and |E8〉 do not have a direct counterpart for zero coupling and only the ground
state |E1〉 and the highest excited state |E4〉 can be directly compared to the case of C = 0.

3.3.1 Ground state and highest excited state

The antiferromagnetic coupling energetically favors frustrated states. For ε = 0, the ground
state |E1〉 therefore contains a larger contribution of frustrated states and a smaller contribu-
tion of aligned states compared to the case of vanishing coupling. The highest excited state
|E4〉 shows the opposite behavior. For large energy bias, the states converge to the states for
zero coupling and the plots look the same.

3.3.2 The degenerate subspaces

As already mentioned, the three-fold degeneracies for C = 0 are for finite coupling lifted into
two-fold degeneracies. This can be understood by looking at the collective basis in appendix
A. We want to point out the situation for zero energy bias.
Again the expectation value for the total σ̂z component of the states will be zero, 〈σ̂tot

z 〉 =
〈σ̂(1)

z + σ̂
(2)
z + σ̂

(3)
z 〉 = 0. This results in equal superpositions of states with opposite σ̂z expec-

tation values. We can construct a state with 〈σ̂z〉 = 0 by a superposition of |ṽ5〉 and |ṽ6〉, |ṽ7〉
and |ṽ8〉, as well as |ṽ2〉 and |ṽ3〉 (note that the second quantum number in the notation of
the collective basis states as in appendix A gives the σ̂z expectation value). An equal super-
position of |ṽ1〉 and |ṽ4〉 also yields 〈σ̂z〉 = 0; however, due to the antiferromagnetic coupling,
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this aligned state is energetically raised compared to the frustrated states. Moreover, it turns
out that a superposition of |ṽ2〉 and |ṽ3〉 is not an eigenstate of the system. The remaining
superpositions span the two subspaces2.
The low-energy subspace is spanned by

|ψ̃L
1 〉 = x |ṽ5〉+

√
1− x2 |ṽ6〉 ,

|ψ̃L
2 〉 = x |ṽ7〉+

√
1− x2 |ṽ8〉 , (3.12)

the high-energy subspace by

|ψ̃H
1 〉 = x′ |ṽ5〉 −

√
1− x′2 |ṽ6〉 ,

|ψ̃H
2 〉 = x′ |ṽ7〉 −

√
1− x′2 |ṽ8〉 . (3.13)

For zero energy bias x and x′ read (for the general form of x and x′ see appendix B)

x = x′ =
1√
2

. (3.14)

All four states are superpositions of states with 〈σ̂z〉 = ±1
2 , i.e. frustrated states. The

application of the operator representing the coupling to any frustrated state |f〉 yields
(
σ̂(1)

z σ̂(2)
z + σ̂(1)

z σ̂(3)
z + σ̂(2)

z σ̂(3)
z

)
|f〉 = −|f〉 . (3.15)

All frustrated states are thus eigenstates of the coupling for any arbitrary coupling strength.
Therefore, |ψ̃L

1 〉, |ψ̃L
2 〉, |ψ̃H

1 〉, |ψ̃H
2 〉 do not depend on the coupling strength. Formally, this is

expressed by the coupling C being located as factor in front of the doublet matrices.

Low-energy subspace

|ψ̃L〉 = A |ψ̃L
1 〉+ eiϕ

√
1−A2 |ψ̃L

2 〉 (3.16)

is an arbitrary state in the low-energy subspace. In chapter 4, the topic will be covered how
to prepare given states, with respect to the relative amplitudes as well as phases, in these
degenerate subspaces. Here, we take a look at –in terms of entanglement– significant resulting
states.

For quantifying entanglement, we use so-called global entanglement here, addressed in chapter
5 and appendix D.2. The amplitude A and phase ϕ of the states |E5〉 and |E7〉 displayed in
figures C.2 and C.3 are chosen such as to maximize (the state displayed in box 5), respectively
minimize (displayed in Box 7) the global entanglement. Remarkably, the optimal choice for
A and ϕ does not depend on the energy bias.

We obtain maximal entanglement for the state

|ψ̃L
max〉 =

1√
2
(|ψ̃L

1 〉+ i |ψ̃L
2 〉) := |Ẽ5〉 , (3.17)

2These are the eigenstates of the 2 × 2 block matrices (the doublets) of the coupled Hamiltonian (cp.
appendix B)
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and minimal entanglement for

|ψ̃L
min〉 =

1√
2
(|ψ̃L

1 〉+ |ψ̃L
2 〉) := |Ẽ7〉 . (3.18)

The global entanglement for |ψ̃L
max〉 is 8

9 , equal to the so-called W (Werner) state

|W 〉 =
1√
3
(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉) . (3.19)

For zero energy bias, the state |ψ̃L
max〉 transformed into the standard basis has the form

|ψL
max〉 = S†|ψ̃L

max〉 =

=
1

2
√

6

{
2(|↑↑↓〉+ |↓↓↑〉)− (1− i

√
3)(|↑↓↑〉+ |↓↑↓〉)− (1 + i

√
3)(|↑↓↓〉+ |↓↑↑〉)

}
.

(3.20)

In fact, as suggested by the equal value for the global entanglement, |ψL
max〉 can be transferred

onto a W state by a unitary operator ÛL composed of purely local operations,

ÛL |ψL
max〉 = |W 〉 (3.21)

with

ÛL = {e−iπ/3 R̂y(π/2)}(1) ⊗ {R̂z(2π/3) R̂y(π/2)}(2) ⊗ {R̂z(−2π/3) R̂y(π/2)}(3) , (3.22)

where R̂z(θ) (R̂y(θ)) rotates the qubit by an angle θ around the z-axis (y-axis),

R̂z(θ) = e−i θ
2

σ̂z , R̂y(θ) = e−i θ
2

σ̂y . (3.23)

Since ÛL is a tensor product of operations acting on the individual qubits (subsystems),
whereas entanglement is a resource reflecting correlations between subsystems, Û does not
change the entanglement properties of the state. In this sense, |ψL

max〉 and |W 〉 are called
locally equivalent3.

High-energy subspace

The same considerations employed for the low-energy subspace also apply to the high-energy
subspace. The plots in box 6 and box 8 in figures C.2 and C.3 are again –with respect to
the entanglement– the maximized and minimized superpositions of the basis states |ψ̃H

1 〉 and
|ψ̃H

2 〉; optimal amplitude and phase are identical to (3.17) and (3.18):

|ψ̃H
max〉 =

1√
2
(|ψ̃H

1 〉+ i |ψ̃H
2 〉) := |Ẽ6〉 (3.24)

|ψ̃H
min〉 =

1√
2
(|ψ̃H

1 〉+ |ψ̃H
2 〉) := |Ẽ8〉 (3.25)

3Û belongs to a general class of operations called LOCC (local operations and classical communication).
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Again we write for zero energy bias the explicit form of |ψ̃H
max〉 in the standard basis,

|ψH
max〉 = S†|ψ̃H

max〉 =

=
1

2
√

6

{
2(|↑↑↓〉+ |↓↓↑〉) + (1− i

√
3)(|↑↓↑〉 − |↓↑↓〉) + (1 + i

√
3)(|↑↓↓〉 − |↓↑↑〉)

}
,

(3.26)

and can find a local transformation rotating this state onto the W state,

ÛH = {e−iπ/3 Ĥ}(1) ⊗ {R̂z(2π/3) Ĥ}(2) ⊗ {R̂z(−2π/3) Ĥ}(3) , (3.27)

where Ĥ denotes the Hadamard gate,

Ĥ =
1√
2

(
1 1
1 −1

)
. (3.28)

3.4 Strong antiferromagnetic coupling, C = 1.4∆

In this regime due to the large coupling, frustrated alignment of spins is strongly favored.

3.4.1 Ground state and the highest excited states

The arguments provided in 3.3.1 concerning the ground state and the highest excited state
for the weak antiferromagnetic coupling apply even more intensively to the case of strong
antiferromagnetic coupling.
The ground state for zero energy bias takes the form

|ψG〉 = |E1〉 =
1√

6 + 2 δ2
(|↑↑↓〉+ |↑↓↑〉+ |↑↓↓〉+ |↓↑↑〉+ |↓↓↑〉+ |↓↑↓〉+ δ(|↑↑↑〉+ |↓↓↓〉)) ,

(3.29)
where δ is small (δ → 0 for C →∞, δ ≈ 0.2 for C = 1.4∆), i.e. the aligned states |↑↑↑〉 and
|↓↓↓〉 are strongly suppressed.
The two highest excited states |E3〉 (box 3 in figure C.3) and |E4〉 (box 4 in figure C.3),
however, show an interesting behavior. In a small range for the energy bias ε around zero,
|E3〉 and |E4〉 are superpositions of the maximally unfavorable states in terms of energy, i.e.
of the states |↑↑↑〉 and |↓↓↓〉.
For zero energy bias we obtain

|E3〉 =
1√

2 + 6 δ′ 2
(|↑↑↑〉+ |↓↓↓〉 − δ′(|↑↑↓〉+ |↑↓↑〉+ |↑↓↓〉+ |↓↑↑〉+ |↓↓↑〉+ |↓↑↓〉))

with δ′ ≈ 0.07 , therefore |E3〉 ≈ 1√
2
(|↑↑↑〉+ |↓↓↓〉) . (3.30)

|E4〉 =
1√

2 + 6 δ′′ 2
(−|↑↑↑〉+ |↓↓↓〉+ δ′′(|↑↑↓〉+ |↑↓↑〉 − |↑↓↓〉+ |↓↑↑〉 − |↓↓↑〉 − |↓↑↓〉))

with δ′′ ≈ 0.1 , therefore |E4〉 ≈ 1√
2
(|↓↓↓〉 − |↑↑↑〉) . (3.31)
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Despite the antiferromagnetic coupling, |E3〉 and |E4〉 are for small energy bias close to
superpositions that contain only the macroscopically distinct states |↑↑↑〉 and |↓↓↓〉 with equal
amplitude. Such states are called GHZ (Greenberger-Horne-Zeilinger) states. The interesting
entanglement properties of GHZ states are covered in chapter 5.

3.4.2 The degenerate subspaces

As emphasized above, the form of the states in the degenerate subspaces does not depend
on the coupling strength, the coupling only shifts the states in energy (cp. appendix B and
(3.15)). Therefore, all statements made in 3.3.2 apply without modification. In the next
chapter, we will show how to prepare arbitrary states –i.e. arbitrary superpositions of |ψL

1 〉
and |ψL

2 〉 (|ψH
1 〉 and |ψH

2 〉, respectively)– in these subspaces by means of external driving.
Due to the particular stability of these states with respect to the coupling, the results are not
limited to a particular design scheme or coupling.
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Chapter 4

Preparing states in the degenerate
subspaces

We aim for preparing arbitrary states in the degenerate subspaces introduced in 3.3.2, i.e. we
want to apply a π-pulsing scheme in order to fully depopulate the ground state and populate
the desired subspace with an arbitrary superpositions of |ψL

1 〉 and |ψL
2 〉 (|ψH

1 〉 and |ψH
2 〉,

respectively),

|ψL(H)〉 = A |ψL(H)
1 〉+ eiϕ

√
1−A2 |ψL(H)

2 〉 . (4.1)

This is different from ordinary π-pulse driving for the fact that two degenerate states above
the ground state need to be populated in parallel with a given amplitude ratio and relative
phase. We investigate this situation by the use of a dressed state approach. Note that
analogous results can be obtained by the use of Floquet states and classical driving [32].

We consider driving of the system by means of external radiofrequency (rf ) pulses. The ap-
plied oscillating flux couples in via the energy bias εi to the σ̂z component of the Hamiltonian,
given by

εi
′(t) = 2 Ip,i

(
Φtot,i(t)− Φ0

2

)
= 2 Ip,i

(
Φi + Φrf,i(t)− Φ0

2

)
= εi + δεi(t) . (4.2)

Here, we consider individual microwave amplitudes for the qubits. The Hamiltonians for the
individual qubits have the form

Hi = −1
2

εi
′(t) σ̂(i)

z − 1
2

∆i σ̂(i)
x = −1

2
εi σ̂(i)

z − 1
2

∆i σ̂(i)
x − 1

2
δεi(t) σ̂(i)

z , (4.3)

where δεi(t) = δεi cosωt is a periodic perturbation.

The total Hamiltonian of the system can then be written as

H = H0 + V̂ (t) . (4.4)

H0 is the unperturbed Hamiltonian of the system as given in (3.1) and V̂ (t) is the periodic
perturbation

V̂ (t) = −1
2

{
δε1 σ̂(1)

z + δε2 σ̂(2)
z + δε3 σ̂(3)

z︸ ︷︷ ︸
V̂0

}
cosωt . (4.5)

31
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We choose a parametrization in polar coordinates in order to make sure that the maximal
transition rate does not depend on the ratio of the relative amplitudes driving the individual
qubits (given by κ1 and κ2), but only on a global driving amplitude κ,

V̂0 =
κ

3








1
1
1


 + κ1




1
0

−1


 + κ2




1
−1

0











σ̂
(1)
z

σ̂
(2)
z

σ̂
(3)
z


 with 0 ≤ κ1, κ2 ≤ 1 (4.6)

4.1 Quantizing the electromagnetic field and the
interaction Hamiltonian

The electromagnetic field can be written quantum mechanically as a sum over all modes of the
field, each one corresponding to a harmonic oscillator. However, by driving with a laser, we can
achieve the situation of a near-monochromatic field, i.e. a field with a dominating mode and
a narrow line width. Therefore, we want to treat it (in the ideal limit) as a monochromatic,
single mode quantum field, disregarding all modes except the one being resonant with the
desired transition of the system [33].
The Hamilton of the field mode with frequency ω reads

HF = ~ω
(

a†a +
1
2

)
(4.7)

with a† and a being the creation and annihilation operators, whose effect on number states
|n〉 is given by

a†|n〉 =
√

n + 1 |n + 1〉 , (4.8)
a|n〉 =

√
n |n− 1〉 , (4.9)

a†a|n〉 = n |n〉 . (4.10)

At the coordinate origin, the magnetic field vector can be written as

~B = i~εB0 (a + a†) . (4.11)

Here, B0 is the field strength and ~ε is the polarization of the field.
To lowest order, the interaction is a dipole-dipole interaction between the field and the dipole
moment of the qubits, which is aligned along σ̂z, and we obtain the interaction between the
field and a qubit,

HI = gI σ̂z (a† + a) . (4.12)

gI is the coupling constant which describes the strength of the interaction. It depends on
details of the experimental realization.
Adding up the system Hamiltonian H0, the Hamiltonian of the field mode HF and the inter-
action HI (rewritten in terms of V̂0 as introduced above), we arrive at the total Hamiltonian,

H = H0 + ~ω
(

a†a +
1
2

)
+ ĝI V0 (a† + a) . (4.13)
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In what follows we assume that the mean number of photons 〈n〉 (which will simply be
referred to as n in the following) is large. In 4.2 we will calculate expectation values of the
creation and annihilation operators, scaling with

√
n. These expectation values are affected

by a fluctuation δn in the number of photons as

√
n + δn−√n√

n
=
√

n√
n

(√
1 +

δn

n
− 1

)
≈ 1

2
δn

n
, (4.14)

where in the last step a Taylor approximation was applied.
For large n, however, the width δn in the distribution of the number of photons is small
compared to n. For example for a coherent state holds δn =

√
n [33], yielding

lim
n→∞

√
n + δn−√n√

n
= lim

n→∞
1

2
√

n
= 0 . (4.15)

This results in the system being subjected to the same field intensity during the experiment.

4.2 Preparing given states in the degenerate subspaces

We first disregard the coupling expressed by HI. The state of the composite system consisting
of the qubits and the electromagnetic field can be written as |ψ, n〉, where the labels in the
ket are |qubits, field〉, i.e. qubits in the state |ψ〉, and n being the number of photons.
For propagating the system from the ground state to one of the excited two-fold degenerate
subspaces, we choose the frequency of the mode to be resonant with the transition frequency
from the ground state to the excited level (the indices ’e’ and ’g’ stand for the ground state
and the excited states, respectively),

~ω = Ee −Eg . (4.16)

Consider the three states

|g, n〉 , |e1, n− 1〉 , |e2, n− 1〉 , (4.17)

where |e1〉 and |e2〉 are two arbitrary states in the degenerate subspace.
The three states in (4.17) are energetically degenerate eigenstates of the uncoupled Hamilto-
nian

(
H0 + HF

)
,

(
H0 + HF

) |g, n〉 = H0 |g, n〉+ ~ω
(
a†a + 1/2

) |g, n〉 =
{
Eg + ~ω(n + 1/2)

} |g, n〉(
H0 + HF

) |e1, n− 1〉 =
{
Ee + ~ω(n− 1 + 1/2)

} |e1, n− 1〉 =
{
Eg + ~ω(n + 1/2)

} |e1, n− 1〉(
H0 + HF

) |e2, n− 1〉 =
{
Ee + ~ω(n− 1 + 1/2)

} |e2, n− 1〉 =
{
Eg + ~ω(n + 1/2)

} |e2, n− 1〉 .

(4.18)

We can now introduce the couplings between the field and the qubits. The couplings cor-
respond to absorption (|g, n〉 → |e1, n− 1〉, |g, n〉 → |e2, n− 1〉) and stimulated emission
(|e1, n− 1〉 → |g, n〉, |e2, n− 1〉 → |g, n〉) processes.



34 4 Preparing states in the degenerate subspaces

We first note that the transition matrix elements between the states |e1, n− 1〉 and |e2, n− 1〉
vanish,

〈e1, n− 1|(a† + a)|e2, n− 1〉 = 〈e1, n− 1|√n + 1 |e2, n− 2〉+ 〈e1, n− 1|√n |e2, n〉 = 0 ,
(4.19)

since the number states are orthogonal, 〈n|m〉 = δnm.
The elements between the ground state and the excited states, however, are non-zero,

〈g, n|gI V̂0(a† + a)|e1, n− 1〉 = gI

√
n 〈g, n|V̂0|e1, n〉 , (4.20)

〈g, n|gI V̂0(a† + a)|e2, n− 1〉 = gI

√
n 〈g, n|V̂0|e2, n〉 . (4.21)

We write down the matrix representing the reduced perturbation in the tree-fold degenerate
subspace, spanned by the states in (4.17). The basis states are numbered as

|g, n〉 =




1
0
0


 , |e1, n− 1〉 =




0
1
0


 , |e2, n− 1〉 =




0
0
1


 . (4.22)

With this choice for the basis, the reduced perturbation takes the form

V̂ red
0 = gI

√
n




0 〈g|V̂0|e1〉 〈g|V̂0|e2〉
〈e1|V̂0|g〉 0 0
〈e2|V̂0|g〉 0 0


 . (4.23)

4.2.1 Driving the low-energy subspace

For convenience purposes, we calculate V̂ red
0 in the coupled basis introduced in appendix A,

V̂ red
0 = gI

√
n




0 〈g̃|Ṽ0|ẽ1〉 〈g̃|V̂0|ẽ2〉
〈ẽ1|Ṽ0|g̃〉 0 0
〈ẽ2|Ṽ0|g̃〉 0 0


 . (4.24)

As pointed out in chapter 3.3.2 and explicitly written down in appendix B, the lower energy
subspace is spanned by |ψ̃L

1 〉 and |ψ̃L
2 〉, which are superpositions of |ṽ5〉 and |ṽ7〉 (|ṽ6〉 and |ṽ8〉,

respectively), whereas the ground state |Ẽ4〉 is a superposition of { |ṽ1〉, . . . , |ṽ4〉}. Moreover,
the state vectors have only real entries (the Hamiltonian is purely real). This enables us
–without further knowledge about the structure of the states– to write

|g̃〉 = |Ẽ4〉 =




g1

g2

g3

±
√

1− g2
1 − g2

2 − g2
3

0
0
0
0




, |ẽ1〉 = |ψ̃L
1 〉 =




0
0
0
0
e√

1− e2

0
0




, |ẽ2〉 = |ψ̃L
2 〉 =




0
0
0
0
0
0
e√

1− e2




.

(4.25)
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We obtain

V̂ red
0 = −

√
2
3
gI

√
n (e g2 +

√
1− e2 g3)




0
√

3κ1 κ1 + 2κ2√
3κ1 0 0

κ1 + 2κ2 0 0


 =

= ~




0 ω1 ω2

ω1 0 0
ω2 0 0


 . (4.26)

Here, all the constants1 have been substituted by the Rabi frequencies ω1 and ω2.

When we take into account this coupling between |g, n〉 and |e1, n− 1〉, as well as between
|g, n〉 and |e2, n− 1〉, as expressed by V̂ red

0 , we obtain three perturbed states |1(n)〉, |2(n)〉,
|3(n)〉 (the eigenstates of V̂ red

0 ), two of which are shifted up and down, respectively, in energy
by ~Ω with Ω :=

√
ω2

1 + ω2
2. These states are called dressed states. In the dressed state

language, this configuration can be understood as two two-state systems, the first one con-
sisting of |g, n〉 and |e1, n− 1〉, the second one of |g, n〉 and |e2, n− 1〉. The missing coupling
between |e1, n− 1〉 and |e2, n− 1〉 on the other hand, results in an energy shift of zero (state
|2(n)〉) with respect to the original energies.

Figure 4.1: Level diagram of the qubit+field system showing the dressed states. The
bare states are perturbed by the coupling encountered via absorption and induced
emission, resulting in new eigenstates |1(n)〉, |2(n)〉, and |3(n)〉 (dressed states). The
frequency of the field ω is resonant with the qubits’ level splitting. ~Ω is the energy
separation induced by the coupling.

In the following, we aim for exploring the dynamical behavior of the states, that is to say we
derive the Rabi formula by means of our dressed state approach. We expect the probability
to find the system in the state |e1, n− 1〉 (|e2, n− 1〉, respectively) after a time t if we started
in the ground state |g, n〉 at time t = 0 to be a sinusoidal function of time, oscillating at the

1The eigenstates of the system are supposed not to change during the short duration of the pulses. Moreover,
κ1 and κ2 shall remain fixed during the driving process.
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Bohr frequency Ω associated with the perturbed levels [33]. For resonant coupling as in our
case, the Rabi frequency equals the Bohr frequency.

In the interaction picture, the time evolution of the system is governed by the perturbation
and the Schrödinger equation reads

i~
∂

∂t
|ψ(t)〉 = V̂ red

0 |ψ(t)〉 . (4.27)

V̂ red
0 is time independent (as a result of the used dressed state approach), and we can solve

(4.27) by

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉 = e−
i
~ V̂ red

0 (t−t0) |ψ(t0)〉 . (4.28)

Our objective is to calculate the propagator Û(t, t0). The dressed states together with the
corresponding eigenvalues read

|1(n)〉 =
1√
2Ω




Ω
ω1

ω2


 , |2(n)〉 =

1
Ω




0
−ω2

ω1


 , |3(n)〉 =

1√
2Ω



−Ω
ω1

ω2


 (4.29)

λ1 = ~Ω , λ2 = 0 , λ3 = −~Ω . (4.30)

We get (in the following we set t0 = 0 without loss of generality)

Û(t) = T̂




e−iΩt 0 0
0 1 0
0 0 eiΩt


 T̂ † with T̂ =

(
|1(n)〉 |2(n)〉 |1(n)〉

)
. (4.31)

The explicit form of Û(t) can be found in appendix E.

Consider we start with a fully occupied ground state without any population in the excited
levels. The effect of the propagator onto this initial state then looks like

|ψ(t)〉 = Û(t)




1
0
0


 =




cosΩt

−iω1
sinΩt

Ω

−iω2
sinΩt

Ω


 . (4.32)

We obtain the expected sinusoidal behavior mentioned above. Complete depopulation of the
ground state can be achieved by applying a π-pulse of length

tπ =
π

2Ω
, (4.33)

yielding the final state (disregarding a global phase)

|ψ(tπ)〉 =
1
Ω




0
ω1

ω2


 . (4.34)

By choosing the amplitudes of the sources κ1 and κ2 (and thereby the Rabi frequencies ω1

and ω2) appropriately, we can completely depopulate the ground state and prepare states
with arbitrary amplitude ratio (in a given basis) in the degenerate subspace. Note that this
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could not be achieved by a symmetric driving in ε (ε1(t) = ε2(t) = ε3(t)); the Hamiltonian
H0 in (3.1) has no transition matrix elements between the ground state (living in the upper
4× 4 block) and the degenerate subspaces (living in the lower 2× 2 blocks).

We now want to enhance this scheme by additionally introducing a relative phase, that is
preparing a target state

|ψtarget〉 =
1
Ω




0
ω1

ω2 eiϕ


 . (4.35)

4.2.2 Introducing a relative phase

We assume the two microwave sources, so far just characterized by their amplitudes κ1 and
κ2, to be independent not only in amplitude but also in their relative phase. However, both
sources shall be kept on resonance, as expressed by the condition (4.16), oscillating on the
same frequency,

~B1(t) = ~εB1 cosωt = ~εB1
1
2

(
eiωt + e−iωt

)
,

~B2(t) = ~εB2 cos (ωt + θ) = ~εB2
1
2

(
eiθeiωt + e−iθe−iωt

)
. (4.36)

Quantization of the field introduces the creation and annihilation operators, whereas the
exponentials e±iωt disappear for a single-mode field (in the interaction representation) [34],

~B1 = ~εB1 (a + a†) ,

~B2 = ~εB2 (eiθa + e−iθa†) . (4.37)

The interaction Hamiltonian then takes the form

HI = gI
κ

3











1
1
1


 + κ1




1
0

−1






~σ(a + a†) + κ2




1
−1

0


~σ

(
eiθa + e−iθa†

)

 (4.38)

and the reduced perturbation operator reads (cp. (4.26))

V̂ red
0 = −

√
2
3

gI
κ

3
√

n (e g2 +
√

1− e2 g3)




0
√

3κ1 κ1 + 2κ2 e−iθ√
3κ1 0 0

κ1 + 2κ2 eiθ 0 0


 =

= ~




0 ω1 ω2 e−iϕ

ω1 0 0
ω2 eiϕ 0 0


 . (4.39)

The operator can still be written in terms of the two frequencies ω1 and ω2 and in addition
a phase ϕ; however, note that in general, ω2 as in (4.39) is different from ω2 as in (4.26).
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Determining the propagator Û(t) = e−
i
~ V̂ red

0 t in the same way as above and applying it to the
initial ground state gives

|ψ(t)〉 = Û(t)




1
0
0


 =




cosΩt

−iω1
sinΩt

Ω

−iω2
sinΩt

Ω eiϕ


 . (4.40)

The explicit form of Û(t) can again be found in appendix E.

For a π-pulse of the same length as in (4.33) and disregarding a global phase we get a final
state

|ψ(tπ)〉 =
1
Ω




0
ω1

ω2 eiϕ


 . (4.41)

We obtain the delighting result that amplitude as well as phase can be controlled by amplitude
and phase of the applied pulses. This enables us to prepare arbitrary states in the subspace.
By an optimal choice of ω1, ω2 and ϕ, states with maximized entanglement can be created
(see appendix D.2). We will concentrate on these states in the following.



Chapter 5

Entanglement properties

Entanglement [35] is considered to be one of the key resources [36] in quantum information
processing, lying at the heart of many striking phenomena and methods, such as quantum
teleportation [37, 38] and entanglement-based approaches for secure quantum key distribution
[39]. Over decades, it has therefore been the subject of much study and attention.
In quantum mechanics, a system is made up by its subsystems in a holistic way, where
the states of the subsystems do in general not determine the state of the system. To each
subsystem, a Hilbert space is associated, and the Hilbert space of the total system is the
product of these individual Hilbert spaces, H =

⊗
j Hj . However, not all states in H

are product states, i. e. they factorize into the states of the subsystems. As a result,
the measurement outcomes on the subsystems (particles) show correlations that are only
contained in the state of the combined system and cannot be accounted for classically. As an
example, the singlet state |ψ〉 = 1√

2
(|↑↓〉 − |↓↑〉) predicts perfect anticorrelation between the

measurement outcomes on the two particles for a spin measurement along an arbitrary axis.
Probably the most famous example of the baffling nature of entanglement is the violation of
Bell’s inequality (or Bell-type inequalities, respectively). Considering the singlet state above,
the perfect anticorrelation also holds true if one separates the two particles by an arbitrarily
large distance. Before a measurement on one of the particles, the two possible outcomes |↑〉
and |↓〉 are equally likely; however, after having measured the state of the two particles at
two distant (spacelike separated) stations, one always finds the perfect anticorrelation. As
this seems to impose some action at a distance, it is called quantum nonlocality.1

An alternative explanation avoiding such an interaction assumes that the measurement results
are determined before the measurement by the history of the particles, i.e. each particle carries
a local plan preparing the particle’s answer on a certain type of measurement (local realism).
If such a local plan in the form of hidden variables would exist, a theory not including these
variables would be incomplete. In this fashion, the incompleteness of quantum mechanics was
claimed by Einstein, Podolsky and Rosen (EPR) in their famous 1935 paper [40].
However, the statistical predictions of quantum mechanics regarding measurements performed
on different axes are different from the predictions made by hidden variable theories. These
differences can be expressed in terms of inequalities for expectation values of certain mea-
surements, called Bell inequalities [41], which are violated if quantum mechanics holds true.

1However, the observers at the stations cannot exchange information as they cannot affect the probabilities
of each others’ results. Both of them see the two possible outcomes of their individual measurements occur
with probability 1/2, regardless of what the other observer chose to measure.

39
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These inequalities are experimentally testable and have been tested [42, 43, 44, 45].

5.1 Tripartite entanglement

Despite the great importance of entanglement, a necessary and sufficient condition for the
entanglement of a given state is only known for two-qubit systems [46]. The determina-
tion of entanglement for multipartite states, however, is an open question. For three qubits
it was shown in Ref. [47] that two different kinds of genuine multipartite entanglement
(i.e. each party is entangled with each other party) can occur. Namely, each tripartite
entangled state can (with nonzero probability) be converted2 by LOCC [48] to either one
of two standard forms, the GHZ state, |GHZ〉 = 1√

2
(|↑↑↑〉+ |↓↓↓〉) [49], or the W state,

|W〉 = 1√
3
(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉), which are mutually unrelated under LOCC. For GHZ-like

entanglement, a measure was invented [50], the 3-tangle τ . It allows for a reliable distinction
between the two classes of entanglement, as it is zero for all W-type states (and all separable
states, of course), whereas it is greater than zero for all states in the GHZ class. An expression
for τ in terms of the coefficients of the state in the standard basis is given in appendix D.1.
A tool for detection of any kind of genuine tripartite entanglement for arbitrary states is
not at hand; however, if some knowledge about the state under investigation is provided,
entanglement witnesses (EW) can be used [51, 52]. These are observables with a positive ex-
pectation value for all (bi-)separable states (in general n−1 partite entangled states), whereas
a negative expectation value indicates the presence of tripartite (n-partite) entanglement3.
The common way to construct an EW for a state |ψ〉 is

W = α 1l− |ψ〉〈ψ| , (5.1)

where α is the maximal squared overlap of |ψ〉 with any biseparable or fully separable state.
Determination of α is in general complicated4, but we can use the proximity of the states
under investigation (as described in 3.3.2 and 3.4) to W and GHZ states, respectively, to
make use of known values for α. In order to measure EWs, they must be decomposed into
a sum of local measurements. This as well is a demanding task and we will again refer to
previous work done on this topic [55, 56, 57].

5.1.1 Entanglement of state |E3〉
As pointed out in 3.4.1, |E3〉 is for zero energy bias close to |GHZ〉 = 1√

2
(|↑↑↑〉+ |↓↓↓〉). For

constructing a GHZ witness adapted to |E3〉, the maximal squared overlap of |E3〉 with non-
GHZ entangled states is required, though not known. We therefore choose an EW suitable for
detecting the state |GHZ〉 for which α is known (α = 3/4) and thus make use of the proximity
of |E3〉 to |GHZ〉. However, instead of using the EW [58]

W̃GHZ =
3
4

1l− |GHZ〉〈GHZ| , (5.2)

2No operational criterion for the existence of such a transformation between two given states is known.
3The object of study here is tripartite entanglement. However, the concept of entanglement witnesses

applies to multipartite entanglement as well.
4Since one has to minimize over all product states, i.e. over a convex hull of states, numerical calculations

involving the theory of convex optimization are commonly used [52, 53, 54].
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Figure 5.1: 3-tangle and expectation value
of the GHZ witness WGHZ (explicit form in
the text) for the state |E3〉. As can be seen,
both quantities indicate a strong GHZ-like
entanglement around ε = 0.
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Figure 5.2: 3-tangle and expectation value of
the Bell operator M̂GHZ (explicit form in the
text) for the state |E3〉. The high 3-tangle
coincides with a significant violation of the
Bell inequality.

we apply an EW introduced in Ref. [57], which can be measured with two collective local
measurement settings,

WGHZ =
7
4

1l− σ̂⊗3
x − 1

2
[
σ̂z σ̂z 1l + σ̂z 1l σ̂z + 1l σ̂z σ̂z

]
. (5.3)

The two local settings here are the
{
σ̂

(1)
x , σ̂

(2)
x , σ̂

(3)
x

}
and the

{
σ̂

(1)
z , σ̂

(2)
z , σ̂

(3)
z

}
setting. From

these, all correlators appearing in (5.3) can be computed. In contrast, the EW W̃GHZ requires
four measurement settings (see table 5.1).

The 3-tangle τ(|E3〉) and the expectation value 〈E3|WGHZ|E3〉 for varying energy bias are
shown in figure 5.1. Both quantities indicate a strong (cp. limiting case: τmax = τ(|GHZ〉) =
1, 〈WGHZ〉min = 〈GHZ|WGHZ|GHZ〉 = −3/4) tripartite entanglement of GHZ type in a narrow
range around zero energy bias (here, only |E3〉 is plotted, |E4〉 shows the same behavior). The
range of negative expectation value forWGHZ is even a little smaller than the range of non-zero
3-tangle. This reflects the fact that EWs need to be adapted to the state under investigation
and can take positive expectation value even if the associated entanglement is present. In
section 5.2, we will comment on the violation of Bell inequality as displayed in figure 5.2.

5.1.2 Entanglement of state |E2〉
More GHZ-like states can be found among the eigenstates. In figure 5.3, the 3-tangle τ(|E2〉)
and the expectation values for two EWs 〈E2|W(1)

GHZ
|E2〉 and 〈E2|W(2)

GHZ
|E2〉 for varying energy

bias are displayed. We obtain a strong (limiting case: 〈W(1)

GHZ
〉min = 〈W(2)

GHZ
〉min = −1/4)

entanglement for a finite energy bias ε ≈ ±2.6∆ and a high residual entanglement in the
range between these two maxima.
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Figure 5.3: 3-tangle and expectation value of
the GHZ witnesses W(1)

GHZ
and W(2)

GHZ
for the

state |E2〉. For finite energy bias ε ≈ ±2.6∆,
we find a peaking 3-tangle as well as nega-
tive expectation value for the two GHZ wit-
nesses, indicating entanglement of the GHZ
class. Moreover, the entanglement is more
robust to detuning of the energy bias com-
pared to the situation for |E3〉.
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Local prediction

Figure 5.4: 3-tangle and expectation value
of the Bell operator M̂GHZ for the state |E2〉.
A significant violation of the corresponding
Bell inequality over a relatively large range
of ε can be observed.

Left maximum at ε ≈ −2.6∆

The explicit form of the state constituting the left maximum is

|E(1)
2 〉 = −α

{|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉 − |↓↓↓〉} + β
{|↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉 − |↑↑↑〉} , (5.4)

where α ≈ 0.5, β ≈ 0.09.
Thus, this state is close to the state

|GHZ〉 =
1
2
(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉 − |↓↓↓〉) =

1√
2

(|0̄0̄0̄〉+ |1̄1̄1̄〉) (5.5)

with |0̄〉 = (|↑〉+ i|↓〉)/√2 and |1̄〉 = −(|↑〉 − i|↓〉)/√2.

The LOCC transformation
Û

(1)
E2
|GHZ〉 = |GHZ〉 (5.6)

onto the state |GHZ〉 has the form

Û
(1)
E2

= eiπ/4
{

R̂x(−π/2) R̂z(−π) R̂y(π/2)
}⊗3

. (5.7)

The EW is chosen such as to detect tripartite entanglement in the proximity of |GHZ〉 [56],

W(1)

GHZ
=

3
4

1l− |GHZ〉〈GHZ| = 3
4

1l− Û
(1) †
E2

|GHZ〉〈GHZ|Û (1)
E2

. (5.8)

For an optimal decomposition of W(1)

GHZ
refer to table 5.1.
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Right maximum at ε ≈ 2.6∆

For the state in the right maximum we find

|E(2)
2 〉 = α

{|↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉 − |↑↑↑〉}− β
{|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉 − |↓↓↓〉} (5.9)

with α and β as above. |E(2)
2 〉 is the totally flipped counterpart to |E(1)

2 〉 and therefore shows
the same behavior after being flipped back by R̂x(−π)⊗3,

Û
(2)
E2
|E(2)

2 〉 ≈ |GHZ〉 with Û
(2)
E2

= Û
(1)
E2

R̂x(−π)⊗3 . (5.10)

The corresponding EW looks like

W(2)

GHZ
= R̂x(π)⊗3W(1)

GHZ
R̂x(−π)⊗3 . (5.11)

The optimal decomposition of W(2)

GHZ
can again be looked up in table 5.1.

Whereas the behavior of the highest excited states |E3〉 and |E4〉 for vanishing energy bias as
described above was expected, we make the surprising observation –referring to figure 5.3–
of the existence of GHZ entangled states also in the parameter regime of finite energy bias.
Moreover, the entanglement shown by |E2〉 is more stable to deviations from the optimal en-
ergy bias than the one of |E3〉, overcoming a major drawback caused by the antiferromagnetic
nature of the coupling.

5.1.3 Entanglement in the degenerate subspaces
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Figure 5.5: 3-tangle and expectation value
of the W witness WW (explicit form in the
text) for the state |ψL

max〉. The vanishing
3-tangle excludes entanglement of the GHZ
type, whereas the negative expectation value
of the W witness indicates a W type entan-
glement.

-8 -6 -4 -2 0 2 4 6 8

ε /∆ 

0

0.5

1

1.5

2

2.5

3

3.5

Local prediction

Figure 5.6: 3-tangle and expectation value
of the Bell operator M̂W (explicit form in
the text) for the state |ψL

max〉. The maxi-
mal violation of the Bell inequality for the
W-equivalent state is not as high as for the
GHZ-equivalent states above, however, the
violation persists over a large range of ε.

In figure 5.5, the 3-tangle and the expectation value of the EW 〈ψL
max|WW|ψL

max〉 for the max-
imally entangled superposition |ψL

max〉 in the low-energy subspace is displayed (corresponding
behavior for |ψH

max〉—not shown separately).
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Because we know that |ψL
max〉 (= |E5〉) is equivalent under LOCC to the W state (see 3.3.2),

we can construct an EW making use of the known maximal overlap (α = 2/3 [58]) between
the W state (and therefore the state |ψL

max〉) and biseparable states,

WW =
2
3

1l− |ψL
max〉〈ψL

max| . (5.12)

Its expectation value is positive on biseparable and fully separable states. It thus detects
genuine tripartite entanglement in general, without distinguishing between entanglement of
the W and the GHZ class. However, in connection with the 3-tangle, a distinction can be
achieved, stating an entanglement of the W type in a large range for ε.

Reviewing the results of this section, we were able to find states with either kind of genuine
tripartite entanglement, GHZ type as well as W type.

EW Local decomposition

W̃GHZ = 1
8

[
5 · 1l⊗3 − 2 σ̂⊗3

x − σ̂z σ̂z 1l− σ̂z 1l σ̂z − 1l σ̂z σ̂z + 1
2(σ̂x + σ̂y)⊗3 + 1

2(σ̂x − σ̂y)⊗3
]

WGHZ = 7
4 1l− σ̂⊗3

x − 1
2

[
σ̂z σ̂z 1l + σ̂z 1l σ̂z + 1l σ̂z σ̂z

]

W(1)

GHZ
= 1

16

[
10 · 1l⊗3 + 4 σ̂⊗3

z − 2(σ̂y σ̂y 1l + σ̂y 1l σ̂y + 1l σ̂y σ̂y)− (σ̂z + σ̂x)⊗3 − (σ̂z − σ̂x)⊗3
]

W(2)

GHZ
= 1

16

[
10 · 1l⊗3 − 4 σ̂⊗3

z − 2(σ̂y σ̂y 1l + σ̂y 1l σ̂y + 1l σ̂y σ̂y) + (σ̂z − σ̂x)⊗3 + (σ̂z + σ̂x)⊗3
]

WW = 1
24

[
17 · 1l⊗3 − 7 σ̂⊗3

x − 3(σ̂x 1l 1l + 1l σ̂x 1l + 1l 1l σ̂x) + 5(σ̂x σ̂x 1l + σ̂x 1l σ̂x + 1l σ̂x σ̂x)−
−(1l− σ̂x + σ̂z)⊗ (1l− σ̂x −

√
3

2 σ̂y − 1
2 σ̂z)⊗ (1l− σ̂x +

√
3

2 σ̂y − 1
2 σ̂z)−

−(1l− σ̂x − σ̂z)⊗ (1l− σ̂x +
√

3
2 σ̂y + 1

2 σ̂z)⊗ (1l− σ̂x −
√

3
2 σ̂y + 1

2 σ̂z)−
−(1l− σ̂x + σ̂y)⊗ (1l− σ̂x − 1

2 σ̂y +
√

3
2 σ̂z)⊗ (1l− σ̂x − 1

2 σ̂y −
√

3
2 σ̂z)−

−(1l− σ̂x − σ̂y)⊗ (1l− σ̂x + 1
2 σ̂y −

√
3

2 σ̂z)⊗ (1l− σ̂x + 1
2 σ̂y +

√
3

2 σ̂z)
]

Table 5.1: Local decomposition of the entanglement witnesses used above. The decom-
position for W̃GHZ (shown to be optimal in [58]) requires four collective measurement
settings in contrast to the two settings needed for WGHZ [57]. The optimal decomposi-
tion for W(1)

GHZ
can be found in Ref. [56] (five settings), the one for W(2)

GHZ
(five settings)

was computed by rotating the individual Pauli operators occurring in W(1)

GHZ
accord-

ing to R̂x(π), W(2)

GHZ
= R̂x(π)⊗3W(1)

GHZ
R̂x(−π)⊗3. The decomposition for WW (five

settings) was obtained similarly from the optimized decomposition W(1)
W (five settings)

derived in Ref. [55], WW = ÛL †W(1)
W ÛL.

5.2 Bell inequalities

Multiqubit states can contradict local realistic models in a new and stronger way than two-
qubit states. For GHZ states, the construction of local plans mimicking the total anticorrela-
tion (along an arbitrary axis) predicted by the state is not even possible anymore [49, 59, 60].
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The concept of locality therefore breaks down at an earlier stage, giving rise to a refutation
by quantum mechanics that is no longer statistical but can rather be accomplished by a sin-
gle run, i.e. the explanation required by the data accumulated by a series of experiments is
not refuted by the statistics of the data obtained in another long series of runs but by the
outcome of a single crucial run [60]. However, the actual data obtained by a realistic experi-
ment with realistic detectors would reveal less than perfect correlations, making the original
GHZ reasoning not feasible for an experimental verification. To face this problem, N -particle
Bell inequalities have been proposed [61, 62, 63], which involve pairs of settings at each of
the measurement stations. These works have shown that the predictions made by quantum
mechanics for the GHZ state violate these inequalities by a factor that grows exponentially
with N . Thereby systems capable of showing entanglement of the GHZ type might provide
an interesting way to test the hypothesis of local hidden variables5.

5.2.1 State |E3〉
We use a Bell operator similar to one proposed by Mermin [61],

M̂GHZ =
1
2i




3∏

j=1

(σ̂j
y + iσ̂j

x)−
3∏

j=1

(σ̂j
y − iσ̂j

x)


 = σ̂y σ̂y σ̂x + σ̂y σ̂x σ̂y + σ̂x σ̂y σ̂y − σ̂x σ̂x σ̂x .

(5.13)
The Bell inequality, i.e. the local prediction for 〈M̂GHZ〉 reads

〈ψ|M̂GHZ|ψ〉 ≤ 2 ∀ |ψ〉 , (5.14)

whereas quantum mechanics states a maximal value of

〈GHZ|M̂GHZ|GHZ〉 = 4 . (5.15)

In Fig. 5.2, the violation of (5.14) by |E3〉 is displayed. Again, we find the violation to occur
only in a small range around zero energy bias, however the height of the violation confirms
the almost perfect overlap of |E3〉 (at ε = 0) with the ideal GHZ state.

5.2.2 State |E2〉
Making use of the equivalency of |E(1, 2)

2 〉 with |GHZ〉 mediated by Û
(1, 2)
E2

, we use a modified
Bell operator,

M̂GHZ = Û
(2) †
E2

M̂GHZ Û
(2)
E2

= σ̂x σ̂x σ̂z + σ̂x σ̂z σ̂x + σ̂z σ̂x σ̂x − σ̂z σ̂z σ̂z . (5.16)

We again find (Fig. 5.4) a significant violation of the local prediction located at the points of
maximal 3-tangle (and minimal expectation value of the EW). Although being not as strong
as for |E3〉, this violation might –due to its smaller sensitivity to energy bias deviations– be
more promising in terms of feasibility of preparation and measurement.

5Obviously, quantum nonlocality can only arise in the entanglement of remote systems. The violation of
Bell inequalities as sign for non-classical correlations is nevertheless highly substantial as an ingredient to
quantum information processing.
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5.2.3 Degenerate subspace

We again aim for investigating the properties of |ψL
max〉. For constructing an appropriate Bell

operator M̂W, we first need the Bell operator M̂W for the common representation of the W
state |W〉 and then adapt it by applying the local operation ÛL.
In general, Bell inequalities for three qubits are constructed from the correlator

E(a,b, c) = 〈ψ|(a · ~̂σ)⊗ (b · ~̂σ)⊗ (c · ~̂σ)|ψ〉 . (5.17)

a, b, c are real three-dimensional normalized vectors, which define a rotation of the Pauli
matrices ~̂σ = (σ̂x, σ̂y, σ̂z). A Bell operator is then given by

M̂ = E(a,b, c′) + E(a,b′, c) + E(a′,b, c)−E(a′,b′, c′) . (5.18)

In order to obtain an optimal Bell operator for a given state, one can optimize over the six unit
vectors a, a′, b, b′, c and c′ [64, 65]. The two Bell operators M̂GHZ and M̂GHZ introduced
above are in this sense optimal choices for the states |GHZ〉 and |GHZ〉.
The optimal values as obtained by a numerical optimization for M̂W adapted the state |W〉
are listed in table 5.2.

a1 0.318053 a′1 -0.635515 b1 0.635515 b′1 0.318052 c1 0.635515 c′1 0.318053
a2 0.250811 a′2 -0.501155 b2 0.501155 b′2 0.250810 c2 0.501154 c′2 0.250810
a3 0.914296 a′3 -0.587337 b3 -0.587336 b′3 0.914296 c3 -0.587338 c′3 0.914296

Table 5.2: Entries of the vectors a, a′, b, b′, c and c′ for the Bell operator M̂W [66].
In connection with (5.17) and (5.18), the explicit form of M̂W can be determined.

The Bell operator for the state |ψL
max〉 then reads

M̂W = ÛL † M̂W ÛL . (5.19)

The violation of the Bell inequality as displayed in Fig. 5.6 approaches for ε = 0 the theoretical
maximum for a W state of 〈MW〉 ≈ 3.05. Moreover, it persists over a large range of ε which
even noticeably exceeds the observed range for |E2〉.

5.3 Robustness to limited measurement fidelity

Any experimental test of tripartite entanglement or the violation of Bell inequalities involving
three qubits will be more fragile than a two particle test and will be put in jeopardy by
detector imperfections (as three-party correlations need to be measured in either case, the
measurement fidelity enters –roughly spoken– with the power of three) and fabricational issues
of the sample preparation. However, concerning Bell inequalities, the stronger violation that
is possible with three particles might compensate for that. We will investigate the effect of a
limited measurement fidelity f < 1 on the expectation values of the EWs and Bell operators
introduced above and compare the results to a representative two-particle case. We model
a non-perfect measurement of a spin component σ̂i by the perfect measurement of a spin



5.3 Robustness to limited measurement fidelity 47

component σ̂′i which yields the correct measurement result with a probability f , whereas a
’1’ is measured otherwise,

σ̂′i = f σ̂i + (1− f) 1l . (5.20)

In the following, the results for the aforementioned parameter regimes are plotted.
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Figure 5.7: Left: Expectation value of GHZ witness WGHZ for several measurement
fidelities for |E3〉. Right: Minimal expectation value of WGHZ vs. fidelity. The absolute
lower limit for the measurement fidelity in order to detect tripartite entanglement with
WGHZ is fmin ≈ 84.3%.
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Figure 5.8: Left: Expectation value of Bell operator M̂GHZ for several measurement
fidelities for |E3〉. Right: Maximal violation of Bell inequality vs. fidelity. The absolute
lower limit for the measurement fidelity in order to detect nonlocality with M̂GHZ is
fmin ≈ 81.4%.



48 5 Entanglement properties

0 1 2 3 4 5 6

ε /∆ 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

f=1

f=0.95

f=0.9

f=0.85

0.70.750.80.850.90.951

Fidelity f

-0.2

-0.1

0

0.1

0.2

Figure 5.9: Left: Expectation value of GHZ witness W(2)
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ties for |E2〉. Right: Minimal expectation value of W(2)

GHZ
vs. fidelity. The absolute lower

limit for the measurement fidelity in order to detect tripartite entanglement with W(2)

GHZ
is

fmin ≈ 88.2%. Only the range of positive energy bias is displayed, corresponding to the right
minimum in Fig. 5.3.
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Figure 5.10: Left: Expectation value of Bell operator M̂GHZ for several measurement fidelities
for |E2〉. Right: Maximal violation of Bell inequality vs. fidelity. The absolute lower limit for
the measurement fidelity in order to detect nonlocality with M̂GHZ is fmin ≈ 78.4%. Only the
range of positive energy bias is displayed, corresponding to the right maximum in Fig. 5.4.
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Figure 5.11: Left: Expectation value of W witness WW for several measurement fidelities for
|ψL

max〉. Right: Minimal expectation value of WW vs. fidelity. The absolute lower limit for the
measurement fidelity in order to detect tripartite entanglement with WW is fmin ≈ 86.1%.
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Figure 5.12: Left: Expectation value of Bell operator M̂W for several measurement
fidelities for |ψL

max〉. Right: Maximal violation of Bell inequality vs. fidelity. The
absolute lower limit for the measurement fidelity in order to detect nonlocality with
M̂W is fmin ≈ 81.2%.

In Tab. 5.3, the minimal detector fidelities for the detection of tripartite entanglement or
violation of Bell inequalities using the aforementioned operators are compared. Moreover,
the required fidelity for the violation of the CHSH inequality (named after Clauser-Horne-
Shimony-Holt [67]) by a bell pair |ψ〉 = 1√

2
(|↑↓〉 − |↓↑〉) is listed. Evidently, the fidelity

needed to detect nonlocal three-party correlations via the Bell inequalities introduced above
lies even slightly below the one required for falsifying the CHSH inequality. The requested
measurement fidelity is already available for charge qubits, where significant progress has
recently been achieved with dispersive readout6 inside a cavity, providing a visibility of more
than 90% [27]. A similar design has been proposed for flux qubits [68]. Moreover, other
experiments based on Josephson junction technology indicating similar fidelities have been
performed [28, 29, 69, 70].

Operator fmin Operator fmin

WGHZ 84.3% M̂GHZ 81.4%
W(2)

GHZ
88.2% M̂GHZ 78.4%

WW 86.1% M̂W 81.2%
M̂CHSH

2
1+
√

2
≈ 82.8%

Table 5.3: Minimal detector fidelities for the detection of tripartite entanglement or
violation of Bell inequalities, respectively.

6i.e. the shift in resonance frequency of a resonator coupled to the system
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Chapter 6

Pulse shaping

In the previous chapters, properties of the eigenstates of the system were discussed. Although
the system will naturally occupy its ground state after some time, the population of higher
excited eigenstates can be achieved by applying resonant π-pulses. Here, the relevant param-
eter is the area under the pulse in the time domain. A higher pulse amplitude leads to a larger
Rabi frequency, thereby transferring the system to the desired state more quickly (4.33). In
this driving scheme, the shape of the pulses –i.e. the envelope of the amplitude– is in principle
irrelevant (as long as the rotating wave approximation is still valid, i.e. the linewidth is much
smaller than the transition frequency). However, facing the challenges given by the short de-
coherence times in solid state systems, short pulse times are crucial to preserve the quantum
properties of the system over the duration of the pulses. In addition, whenever one has to
deal with additional time scales, as –for example– given by the coupling between qubits in the
realization of quantum gates or the preparation of arbitrary non-eigenstates, simple amplifi-
cation of the (single-qubit) pulses does not yield the desired propagator anymore. It rather
creates a mismatch between the evolution of the individual qubits on their local Bloch spheres
and the evolution governed by the coupling which acts in parallel. To achieve a time optimal
propagation from the the initial state into the final state, one has to take this coupling into
account and shape the pulses optimally [8, 71]. Other boundary conditions requiring complex
pulse shapes might be the avoidance of certain Fourier components in the pulse to prevent
the excitation of leakage levels [72] or the optimization of the shape with respect to other
parameters.

The need for complex pulses in order to achieve the desired behavior of the system is accompa-
nied by the need to actually shape these pulses with available technology. As mentioned above,
decoherence and coupling eventually require this shaping to act on very short timescales, not
(yet) reached by waveform generators.

In this chapter, we discuss pulse shaping by networks of passive electronic elements. This
work stands in the context of the time-optimal implementation of a CNOT gate in a system
of two coupled charge qubits (see the corresponding publication in appendix G). The task is
to find an approximation for the optimal pulses that can be implemented by a passive circuit
network and yields a high fidelity of the gate operation. Moreover, we will find that the
number of elements needed to obtain a good approximation of the pulse provides a measure
of its complexity.

51



52 6 Pulse shaping

6.1 Laplace transform

There are two equivalent descriptions of a signal: the description in the time domain as
expressed by a function f(t) or the description as spectrum written as F (s). We want to deal
with the spectrum as obtained by the one-side Laplace transform

F (s) = L{f(t)} =
∫ ∞

t=0
f(t) e−st dt . (6.1)

s is a complex variable and can be considered to be a complex frequency. The necessary and
sufficient condition for the existence of the spectrum of a function f(t) is that the integral on
the right hand side remains finite.
We restrict ourselves to the discussion of rational functions with real coefficients, F (s) =
P (s)
Q(s) , where P (s) denotes the polynomial in the numerator and Q(s) the polynomial in the
denominator. We will see that rational functions play an outstanding role in network synthesis
theory. Moreover, the restriction to rational functions is not a strong limitation, because many
of the most important time-domain functions (the Dirac delta function, the trigonometric
functions etc., see table F.1 in appendix F) yield a spectrum that is in fact a rational function.

By dividing P (s) by Q(s) we obtain

F (s) =
P (s)
Q(s)

= ansn + an−1s
n−1 + . . . + a1s + a0 +

P1(s)
Q(s)

. (6.2)

This allows for finding the corresponding time function for every individual term (after pos-
sibly rewriting P1(s)

Q(s) as sum of partial fractions) by reverse lookup in table F.1.
We list two properties of the Laplace transform, which will be made use of later:

• The spectrum of the function f(t−t0) shifted by a time t0 = 0 is related to the spectrum
of the unshifted function f(t) via

L{f(t− t0)} = e−st0 L{f(t)} . (6.3)

• The spectrum of the first derivative df
dt of a function f(t) is related to the spectrum of

the function f(t) via

L
{

df

dt

}
= sL{f(t)} − f(0) . (6.4)

6.2 LTI-Systems and transfer functions

We are looking for a system which is capable of shaping a complex output pulse p(t) out of
a simple input pulse q(t),

p(t) = Tr{q(t)} , (6.5)

where Tr{q(t)} is the transformation performed by the system on the input signal.
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q(t)

t t

p(t)

q(t) p(t)LTI

Figure 6.1: Response p(t) of a LTI system on a rectangular input pulse q(t).

Here, we want to deal with LTI (Linear Time-Invariant) systems [73]. A system is called
linear if each superposition of input signals qi(t) results in the corresponding superposition of
output signals pi(t),

p(t) = Tr

{∑

i

ai qi(t)

}
=

∑

i

ai Tr{qi(t)} =
∑

i

ai pi(t) . (6.6)

A system is called time-invariant if the relation between the input and output signal does not
depend on time,

Tr{q(t− t0)} = p(t− t0) . (6.7)

Both conditions are fulfilled for networks assembled of devices which are individually linear
and time-invariant, such as resistors, capacitors and inductors. The equations of motion for
the input and output variables of LTI systems are linear differential equations with constant
coefficients.

The internal structure of such systems is in general complicated. However, the analysis of
the properties of the system can be reduced to the analysis of the system response h(t) to a
properly chosen input pulse, the Dirac pulse δ(t),

h(t) = Tr{δ(t)} . (6.8)

h(t) is called impulse response and depends only on the properties of the system. The output
signal p(t) for an arbitrary input signal q(t) is the convolution of q(t) with this characteristic
impulse response1,

p(t) =
∫ ∞

−∞
q(τ) h(t− τ) dτ =

∫ t

0
q(τ) h(t− τ) dτ . (6.9)

Thus, the impulse response can be considered to be the Green’s function of the system. The
power of the spectrum description as introduced above comes into play when one notes that
this convolution in the time domain simplifies to a multiplication of the spectra,

P (s) = L{p(t)} =
∫ ∞

0

[∫ ∞

0
q(τ) h(t− τ) dτ

]
e−stdt . (6.10)

1Both characteristics of an LTI-system, linearity and time-invariance can be found in (6.9): The integral can
be understood as the continuous limit of the superposition sum in (6.6), and as the system is time-invariant,
h(t, τ) depends only on the time difference, h(t, τ) = h(t− τ).
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Exchanging the order of the integrals and using (6.3) yields

P (s) =
∫ ∞

0
q(τ)

[∫ ∞

0
h(t− τ) e−st dt

]
dτ =

∫ ∞

0
q(τ) e−sτ H(s) dτ = Q(s) H(s) . (6.11)

H(s) = L{h(t)} is called transfer function and completely describes the output response P (s)
of the LTI-system to an arbitrary input signal Q(s) in the spectrum domain. Since LTI-
systems can be described by linear differential equations with real coefficients, H(s) is always
a rational function with real coefficients2.

6.3 Circuit synthesis theory

The topic of circuit synthesis theory is concerned with constructing networks in order to
realize a given rational transfer function (or several transfer functions in the case of a four
terminal network). However, not all rational functions are valid transfer functions for all
kinds of networks. Depending on the properties of the transfer function, the topology of the
network and the types of the elements constituting the network, circuit synthesis theory also
gives necessary and sufficient conditions to decide whether a given function can be imple-
mented or not. In the following, we want to concentrate on the latter question. The actual
construction of networks out of given transfer functions is roughly described in appendix F.2.
A comprehensive survey of the subject can be found in [74].

6.3.1 Two terminal networks

Figure 6.2: Block diagram of a two terminal network connected to a current source.
The input signal is the current I(s) provided by the source, the response of the network
is the voltage U(s).

Two terminal networks are characterized by the relation of voltage U(t) and current I(t). We
express this relation in terms of the spectra and the transfer function (by convention denoted
by Z(s)),

Z(s) =
U(s)
I(s)

. (6.12)

However, implementation by a two terminal network sets narrow restrictions on the allowed
transfer function. We aim for finding a network whose output signal for a simple input signal
gives a good approximation of the desired pulse shapes shown in figure 6.5 (red curves). To do

2For networks assembled from resistors, H does not depend on s.
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so, we proceed to the more general case of four terminal networks, making use of the greater
variety of valid transfer functions.

6.3.2 Four terminal networks

Figure 6.3: Block diagram of a four terminal network. Here, the case R1 = R2 = ∞ is
treated, i.e. an ideal current source connected to the input and a system with infinite
working resistance connected to the output. In this case, we only need to specify Z21(s),
whereas the other transfer functions remain to be chosen according to the conditions
imposed by the desired realization.

As only one equation –and one transfer function– is required to describe a two terminal
network, we need two equations –and four transfer functions– to characterize the relations
between the input and output voltages and currents U1(s), I1(s), U2(s) and I2(s) of a four
terminal network,

(
U1(s)
U2(s)

)
=

(
Z11(s) Z12(s)
Z21(s) Z22(s)

)(
I1(s)
I2(s)

)
. (6.13)

The behavior of the network is now completely described by the four coefficients (transfer
functions) Z11(s), Z12(s), Z21(s) and Z22(s).

What restrictions apply to the poles and zeros of a four pole transfer function? Consider a
transfer function Z(s) in the form

Z(s) =
P (s)
Q(s)

=
am sm + · · ·+ a1 s + a0

bn sn + · · ·+ b1 s + b0
, (6.14)

where Z(s) denotes any of the above transfer functions constituting the four pole. In conse-
quence of P (s) and Q(s) having only real coefficients, complex zeros and poles can only occur
as pairs of complex conjugates.
Moreover, we want to take a look at the time domain behavior of the input and output signals.

Stability

Let p(t) be the time domain function of the output and q(t) of the input signal. Eq. (6.14)
corresponds to the differential equation

bn
dnp(t)
dtn

+ . . . + b1
dp(t)
dt

+ b0 p(t) = am
dmq(t)
dtm

+ . . . + a1
dq(t)
dt

+ a0 q(t) , (6.15)

as one can obtain (6.14) by applying (6.4) to (6.15).
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An important demand on the network as a physical system is that for any bounded input,
the output will also be bounded. This condition is called stability. For an input q(t) ≡ 0, the
differential equation for the output

bn
dnp

dtn
+ · · ·+ b1

dp

dt
+ b0 p = 0 (6.16)

can be solved by the ansatz p(t) = k eλt. Owing to stability as defined above, there must be
no increasing eigen oscillations, therefore all roots of the characteristic equation

bn λn + · · ·+ b1 λ + b0 = 0 (6.17)

need to have non-positive real part, i.e. all roots lie on the left half-plane of the complex
plane or on the imaginary axis. Roots located on the imaginary axis need to be single.

If this is true for all zero points of a polynomial, the polynomial is called modified Hurwitz
polynomial.

We find:

The denominator of a stable four pole transfer function is a modified Hurwitz polynomial.

Additional restrictions on the location of poles, the parity of the transfer function (odd or
even), etc., are imposed if one sets limitations on the types of elements used, for instance LC-
or RC-networks. However, we want to consider the least restrictive case of RLC-networks,
i.e. networks consisting of resistors, inductors and capacitors.

Moreover, for the case of finite R1 and R2 as shown in figure 6.3, relations between input and
output variables are in general not given by one single transfer function, but by combinations
of several ones. As an example, we take a look at the case R1 = ∞, R2 finite. U2 is then
given by U2(s) = −R2 I2(s), and the relation between input current I1(s) and output voltage
U2(s) (using the second line of (6.13)) reads

U2(s)
I1(s)

=
−R2 I2(s)

−R2+Z22(s)
Z21(s)

I2(s)
=

Z21(s) R2

Z22(s) + R2
. (6.18)

U2(s)
I1(s) is again a transfer function. However, it has in general additional restrictions, since the
functions Z11(s), Z12(s), Z21(s) and Z22(s) are not independent from each other [74].

For our purposes, we consider R1 = R2 = ∞. This corresponds to an ideal current source
connected to the input and a system with infinite working resistance at the output (resulting
in I2 = 0). Naturally, the input variable is the current I1(s), whereas the output variable is
the voltage U2(s). The transfer function relating these variables is

U2(s)
I1(s)

= Z21(s) , (6.19)

which obeys no further restrictions than the ones mentioned above, i.e. a rational function
with real coefficients and no poles in the right half-plane of the complex plane.
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6.4 Approximation and results

We want to move on to the actual issue. In figure 6.5, the time course of the desired output
pulses δng,C(t) for the gate voltage of the control qubit and δng,T(t) for the target qubit (red
curves) in a system of two charge qubits along with the approximations by our filter networks
(blue curves) are shown.
We first state that the input pulse is arbitrary and should be kept simple, however, it has
to contain enough spectral weight at the dominating harmonics of the output pulse. Here,
we start for both output pulses with a rectangular input current pulse of length τr = 1.1 ps.
The short duration of the pulse guarantees a broad frequency spectrum. These time scales
are already accessible by the application of well established optoelectronic techniques to the
generation and detection of terahertz (THz) pulses [75] used in the field of femtochemistry
for the investigation of the dynamics of chemical reactions [76].
The time courses for the optimal pulses in figure 6.5 actually show the interpolating envelope
of 50 discrete data points resulting from the numerical optimization. Since the Laplace
transform can only be applied to continuous functions, the pulses were written as a sum of
6 (for the pulse on the control qubit, 7 for the target pulse, respectively) harmonic functions
obtained by discrete-time Fourier transform. The transfer function for the control pulse (the
target pulse) then looks like

H(s)C(T) =
L{F{tn, δng,C(T)(tn)}}

L{Θ(t)Θ(−t + τr)} =
L{F{tn, δng,C(T)(tn)}}

(1− e−s τr) /s
(6.20)

with Θ(t)Θ(−t+τr) making up the rectangular pulse of length τr (Θ(t) denotes the Heaviside
function), and F{tn, δng,C(T)(tn)} being the Fourier transform of the discrete set of pulse
amplitudes δng,C(T)(tn) of the control qubit (the target qubit).

We aim for determining a four-pole transfer function Z21(s) with the restrictions pointed
out above, approximating H(s). The used algorithm finds rational functions f(x), which
interpolate a set of data points {xi, yi} –in our case a finite number of sampling points of H(s)–
by a rational function with given degrees for the nominator and denominator polynomial. As
H(s) turns out to approach a finite value for s → ±∞, the degrees of the nominator and the
denominator need to be equal.

As expected, a small degree results in an inaccurate approximation with the inverse Laplace
transform L−1 {L{Θ(t)Θ(−t + τr)} Z21(s)} of the shaped output pulse showing large devia-
tions from the desired pulse (see figure 6.4).
For higher degrees, the rational interpolation is in increasingly good agreement with the
desired pulses. Figure 6.5 shows the approximation achieved by two transfer functions with
the degree 14 for the control qubit and 18 for the target qubit, respectively. The higher degree
of the network shaping the pulse for the target qubit is consistent with the higher number
of harmonics contained in the pulse (see above) and confirms the usability of the network
complexity as measure for the complexity of the pulse.

For the same filter networks, a characterization showing the location of the poles with the
corresponding residue is displayed in figure 6.6. According to the constructional methods
described in appendix F.2, each pole on the negative real axis corresponds to a RC-filter,
a pair of complex conjugate poles yields a LCR-filter. The pulse for the control qubit can
thereby be approximated with 6 LCR filters and 2 RC filters, the pulse for the target qubit
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with 8 LCR filters and 2 RC-filters. The fidelity of the gate operation, i.e. the overlap of the
ideal CNOT propagator with the propagator (refer to publication, appendix G) induced by
the approximated pulses is higher than 94%. In reality, first the parameters of the sample have
to be determined spectroscopically before adapting the filter network accordingly. Moreover,
the pulse arriving at the sample will be distorted by the transmission through the leads etc.
(which can be again modelled by the corresponding transfer function), which needs to be
compensated.
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Figure 6.4: Time course of the desired output pulse for the control qubit and its
approximation shaped by filter networks of varying complexity. Left: Approximation
by a transfer function with degree 6. Right: Approximation by a transfer function with
degree 11. The increasing quality of the approximation with increasing degree of the
transfer function allows for measuring the pulse complexity in terms of complexity of
the transfer function.

0 10 20 30 40 50

time (ps)

-0.2

-0.1

0

0.1

δ
 n

g
,C

 Optimal pulse

 Pulse shaped by LCR-filter

0 10 20 30 40 50

time (ps)

-0.2

-0.1

0

0.1

0.2

0.3

δ
 n

g
,T

 Optimal pulse

 Pulse shaped by LCR-filter

Figure 6.5: Time course of the desired output and the pulses shaped by the filter
networks. Left: Control qubit pulse, approximated by a transfer function with degree
14. Right: Target qubit pulse approximated by a transfer function with degree 18.
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Figure 6.6: Pole configuration of the filters shaping the pulses and the corresponding
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Laplace plane. Poles on the negative imaginary axis correspond to RC-filters, poles
outside also lead to the complex conjugate poles and can be implemented by LCR-
filters. The height of the bars shows the modulus of the residue at this pole. The boxes
in the middle are blow-ups of the regions close to the origin.
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Conclusions

In this work, we showed the suitability of a system of three coupled flux qubits to exhibit
strong tripartite entanglement for a realistic and approachable set of parameters as well as
the feasibility to prepare, detect and identify this entanglement by available technology.

In chapter 2, we discussed the types and the strengths of the interactions between the qubits
for two possible designs, an arrangement of the three qubits next to each other with an addi-
tional joint SQUID-loop acting as flux transformer (Fig. 2.1) and a triangle geometry (Fig.
2.2), providing the coupling mainly via the Josephson inductances of shared junctions placed
in shared lines between the qubits. Both of these designs cause a pairwise antiferromagnetic
Ising type coupling σ̂

(i)
z ⊗ σ̂

(j)
z , where the coupling in the triangle design is found to be much

stronger and takes –depending on the size of the shared junctions– values of approx. 1.4∆ (∆
is the tunnel matrix element of the qubits). In section 2.3, we proposed a readout geometry
consisting of three SQUIDs attached to the sides of the triangle.

In chapter 3, the properties of the eigenstates of the system were investigated for different
coupling strengths and in different regimes of the energy bias ε. Due to the antiferromagnetic
coupling, the ground state is a superposition of frustrated states (3.29), whereas the highest
excited states are for strong coupling close to GHZ states in a small range around zero energy
bias (3.31). Moreover, by writing down the Hamiltonian in an appropriate collective basis
(3.3), we found two degenerate pairs of eigenstates forming two subspaces. Among the states
contained in these degenerate subspaces, we identified states with maximal entanglement,
which are equivalent to the W state (3.19) under local unitary operations, see (3.21) and
(3.27).

The preparation of these maximally entangled states in the subspaces by application of ex-
ternal microwave fields is covered in chapter 4. By means of a dressed state approach we
showed that preparation of arbitrary superpositions of the basis states is possible by pulsing
the qubits individually.

In chapter 5, we addressed the detection of tripartite entanglement and violation of Bell
inequalities in more detail. We used the 3-tangle [50] and entanglement witnesses (5.1) as
tools to identify tripartite entanglement. We detected GHZ type entanglement in the regime
of zero energy bias mentioned above (Fig. 5.1) and –in a more robust manner– in a regime
of finite energy bias (Fig. 5.3). The W type entanglement in the degenerate subspaces was
investigated in 5.1.3 and was found to persist over a large range of the energy bias (Fig. 5.5).
Moreover, we observed significant violations of adapted, optimized Bell type inequalities in
all these regimes (Fig. 5.2, 5.4, 5.6).
Starting from the local decompositions of the Bell operators and the entanglement witnesses,
we discussed the effect of a limited measurement fidelity in section 5.3. The required fidelities
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are almost identical and even slightly lower than for the case of two qubits (table 5.3) and
were shown to be approachable with recently developed measurement techniques. Thus, the
proposed design is indeed suitable for demonstrating tripartite entanglement.

In chapter 6, we presented an approach to the shaping of short pulse sequences by filter
networks of passive circuit elements. This was done for the example of a quantum gate
implementation in a system of two coupled charge qubits, where an accurate approximation
of an optimal pulse sequence (Fig. 6.5) could be achieved with a small number of filter
elements (Fig. 6.6), yielding an overlap with the ideal gate propagator of more than 94%. We
also outlined the connection between the complexity of the desired pulse on the one hand side
and the complexity of the filter network on the other hand side, which allows for estimating
and measuring the pulse complexity in terms of properties of the required network (6.4).
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Thank goes to Dr. Thomas Schulte-Herbrüggen and Andreas Spörl of the group of Prof. Dr.
Steffen Glaser for the fruitful collaboration and the stimulating, intense discussions. I also
thank John Clarke and Birgitta Whaley for inviting me to visit their groups in Berkeley. I
very much look forward to it.

Thanks to my officemates Michael and Henryk for tolerating my presence for one whole year
and for being open to all kinds of questions, to physical, philosophical and profane discussions.
The same holds for all the other people at the chair for theoretical condensed matter physics,
it was a pleasure to me.

Thanks to my friends, especially Moritz, Ferdinand and Lukas, for their company and much
more. Speaking of the last year, I also don’t want to forget our common friend Jack, see you
again!

I would like to thank my girlfriend Blanca. Be it her understanding for many of my ideas or
be it the lack of understanding for some others, it has always been the right call.

Last, but in no way least thanks to my parents and my brothers for their support and
dedication over all these many years. You cannot choose your family but I am definitely
lucky.

63



64 Acknowledgements



Appendix A

Three-spin basis

The standard basis is given by the eigenstates of the tensor product of the z-components of
the individual spins ŝi

z = 1
2 σ̂i

z,

(
ŝ1
z ⊗ ŝ2

z ⊗ ŝ3
z

) |m1
s m2

s m3
s〉 = m1

s m2
s m3

s |m1
s m2

s m3
s〉 , (A.1)

where mi
s = ±1/2 corresponds to |mi

s〉 = |↑〉 (|↓〉, respectively).

|↑↑↑〉 = (1, 0, 0, 0, 0, 0, 0, 0)T = |v1〉
|↑↑↓〉 = (0, 1, 0, 0, 0, 0, 0, 0)T = |v2〉
|↑↓↑〉 = (0, 0, 1, 0, 0, 0, 0, 0)T = |v3〉
|↑↓↓〉 = (0, 0, 0, 1, 0, 0, 0, 0)T = |v4〉
|↓↑↑〉 = (0, 0, 0, 0, 1, 0, 0, 0)T = |v5〉
|↓↑↓〉 = (0, 0, 0, 0, 0, 1, 0, 0)T = |v6〉
|↓↓↑〉 = (0, 0, 0, 0, 0, 0, 1, 0)T = |v7〉
|↓↓↓〉 = (0, 0, 0, 0, 0, 0, 0, 1)T = |v8〉 (A.2)

We aim for finding a collective basis, i.e. a basis of eigenstates of the total spin and its
z-component rather than of the individual z-components. To do so, we use the well known
singlet-triplet basis, say for the qubits denoted by 1 and 2, |m1

s m2
s〉 −→ |s12 m12

s 〉 and couple
a third spin 1/2 particle to it,

|m1
s m2

s m3
s〉 −→ |stot mtot

s s12〉 . (A.3)

The third quantum number s12 denotes the total spin of the qubits 1 and 2 combined (possible
values being 1 or 0) and has to be carried along to exclude ambiguities (e.g. between the states
|12 1

2 0〉 and |12 1
2 1〉). We express these states in terms of the uncoupled basis and determine

the Clebsch-Gordan coefficients C(stot mtot
s s12, m1

s m2
s m3

s) = 〈stot mtot
s s12 |m1

s m2
s m3

s〉 by the
common method of iteratively applying the lowering operator, starting from the state |32 3

2 1〉,
as described in Ref. [77]. We arrive at:
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∣∣∣∣
3
2

3
2

1
〉

= |↑↑↑〉 = (1, 0, 0, 0, 0, 0, 0, 0)T = |ṽ1〉
∣∣∣∣
3
2

1
2

1
〉

= 1√
3
( |↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉 ) = (0, 1, 0, 0, 0, 0, 0, 0)T = |ṽ2〉

∣∣∣∣
3
2
− 1

2
1
〉

= 1√
3
( |↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉 ) = (0, 0, 1, 0, 0, 0, 0, 0)T = |ṽ3〉

∣∣∣∣
3
2
− 3

2
1
〉

= |↓↓↓〉 = (0, 0, 0, 1, 0, 0, 0, 0)T = |ṽ4〉
∣∣∣∣
1
2

1
2

1
〉

= −
√

2
3 |↑↑↓〉+ 1√

6
( |↓↑↑〉+ |↑↓↑〉 ) = (0, 0, 0, 0, 1, 0, 0, 0)T = |ṽ5〉

∣∣∣∣
1
2
− 1

2
1
〉

=
√

2
3 |↓↓↑〉 − 1√

6
( |↑↓↓〉+ |↓↑↓〉 ) = (0, 0, 0, 0, 0, 1, 0, 0)T = |ṽ6〉

∣∣∣∣
1
2

1
2

0
〉

= 1√
2
( |↓↑↑〉 − |↑↓↑〉 ) = (0, 0, 0, 0, 0, 0, 1, 0)T = |ṽ7〉

∣∣∣∣
1
2
− 1

2
0
〉

= 1√
2
( |↓↑↓〉 − |↑↓↓〉 ) = (0, 0, 0, 0, 0, 0, 0, 1)T = |ṽ8〉 (A.4)

States and operators in the new coupled basis are written with a tilde,

|ψ̃〉 = S |ψ〉 , Õ = S Ô S† , (A.5)

where Sij = 〈ṽi |vj〉 is the operator mediating the basis transfer (the matrix of the Clebsch-
Gordan coefficients).



Appendix B

Eigenenergies and eigenstates of the
doublets

The doublet Hamiltonian reads

H = −1
2


 ε + 2C ∆

∆ −ε + 2C


 . (B.1)

The eigenenergies and corresponding eigenstates in the quartet/doublet basis read

E5, E7 = −C − Λ
2

,

E6, E8 = −C +
Λ
2

. (B.2)

|ψ̃L
1 〉 =

1√
2Λ(Λ + ε)




0
0
0
0
−∆

ε + Λ
0
0




, |ψ̃H
1 〉 =

1√
2Λ(Λ− ε)




0
0
0
0
−∆

ε− Λ
0
0




|ψ̃L
2 〉 =

1√
2Λ(Λ + ε)




0
0
0
0
0
0
−∆

ε + Λ




, |ψ̃H
2 〉 =

1√
2Λ(Λ− ε)




0
0
0
0
0
0
−∆

ε− Λ




(B.3)

with Λ =
√

∆2 + ε2.
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Appendix C

Structure of the eigenstates

We plot the projection of the eigenstates |E1〉–|E8〉 onto the states of the standard basis. The
discussion of the properties of the eigenstates in chapter 3 is mainly based on these plots.
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Figure C.1: Plot of the projections of eigenstates |E1〉–|E8〉 (from upper left to lower
right; first row: |E1〉,|E2〉; second row: |E3〉,|E4〉; etc.) onto the basis states of the
standard basis vs. ε for C = 0. Curves that lie on top of each other are slightly shifted
in order to make them distinguishable. See figure 3.1 for labelling of the eigenstates.
Consider that |E2〉, |E5〉, |E7〉 form a basis of a degenerate subspace, as well as |E3〉,
|E6〉, |E8〉 (details in section 3.2)

.
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Figure C.2: Plot of the projections of eigenstates |E1〉–|E8〉 (from upper left to lower
right; first row: |E1〉,|E2〉; second row: |E3〉,|E4〉; etc.) onto the basis states of the
standard basis vs. ε for C = 0.2∆. Curves that lie on top of each other are slightly
shifted in order to make them distinguishable. See figure 3.1 for labelling of the eigen-
states. Consider that |E5〉 and |E7〉 form a basis of a degenerate subspace, as well as
|E6〉 and |E8〉(details in section 3.3)

.
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Figure C.3: Plot of the projections of eigenstates |E1〉–|E8〉 (from upper left to lower
right; first row: |E1〉,|E2〉; second row: |E3〉,|E4〉; etc.) onto the basis states of the
standard basis vs. ε for C = 1.4∆. Curves that lie on top of each other are slightly
shifted in order to make them distinguishable. See figure 3.1 for labelling of the eigen-
states. Consider that |E5〉 and |E7〉 form a basis of a degenerate subspace, as well as
|E6〉 and |E8〉(details in section 3.4)

.



Appendix D

Entanglement measures

The quantification of entanglement is a long standing problem in quantum information theory.
An entanglement measure does not need to be an observable, however, it has to satisfy certain
conditions. In particular, it has to be an entanglement monotone [78], i.e. it must not
increase on average under stochastic local operations and classical communication (SLOCC)
[47, 79]. An important measure is the entanglement of formation [80, 81, 82], which gives the
number of Einstein-Podolsky-Rosen pairs asymptotically required to prepare a given state. By
investigating the entanglement properties of mixed bipartite states, a measure for tripartite
pure states could be derived, the 3-tangle [50].

D.1 3-tangle

The 3-tangle τ can be expressed in terms of the coefficients aijk of the state in the standard
basis, |ψ〉 =

∑
ijk aijk |ijk〉, by

τ = 4 |d1 − 2d2 + 4d3| , (D.1)

where

d1 = a2
000 a2

111 + a2
001 a2

110 + a2
010 a2

101 + a2
100 a2

011

d2 = a000 a111 a011 a100 + a000 a111 a101 a010 + a000 a111 a110 a001 +

+a011 a100 a101 a010 + a011 a100 a110 a001 + a101 a010 a110 a001

d3 = a000 a110 a101 a011 + a111 a001 a010 a100 . (D.2)

D.2 Global entanglement

D.2.1 Definition

The global entanglement Q is given by

Q(|ψ〉) = 2

[
1− 1

n

n∑

1

Tr ρ2
k

]
(D.3)
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with ρk being the density matrix reduced to a single qubit k.
For the special case of three qubits, this can be rewritten as [64]

Q =
2
3

(
C2

12 + C2
13 + C2

23

)
+ τ , (D.4)

where τ is the 3-tangle and Cij the 2-qubit concurrence between qubit i and qubit j [81]. The
global entanglement thus measures the sum of different entanglement contributions.

D.2.2 Choice of |Ẽ5〉 and |Ẽ7〉
We look for superpositions of |ψ̃L(H)

1 〉 and |ψ̃L(H)
2 〉 (the states spanning the degenerate sub-

spaces, see 3.3.2 and appendix B) with maximal (respectively minimal) entanglement and use
the global entanglement introduced above as a measure.

For the global entanglement of an arbitrary state

|ψ̃L(H)〉 = A |ψ̃L(H)
1 〉+ eiϕ

√
1−A2 |ψ̃L(H)

2 〉 (D.5)

in the low-energy (high-energy) subspace, we obtain (independent from the energy bias)

Q(A, ϕ) =
8
9

(
cos2 ϕ− 1

) (
A4 −A2

)
+

2
3

, (D.6)

which leads to the choice of A and ϕ for maximal (minimal) entanglement as

A =
1√
2

, ϕ =
π

2

(
A =

1√
2

, ϕ = 0
)

. (D.7)

This results in in |ψ̃L(H)
max 〉 (|ψ̃L(H)

min 〉) with maximized (minimized) Q,

|ψ̃L(H)
max 〉 =

1√
2
(|ψ̃L(H)

1 〉+ i |ψ̃L(H)
2 〉) := |Ẽ5(6)〉 , (D.8)

|ψ̃L(H)
min 〉 =

1√
2
(|ψ̃L(H)

1 〉+ |ψ̃L(H)
2 〉) := |Ẽ7(8)〉 . (D.9)



Appendix E

Driving propagators

Referring to chapter 4, we write down the explicit form of the propagator Û(t) for the evolution
of a state in the interaction picture under the driving Hamiltonian.

For two microwave sources radiating towards the qubits with individual amplitudes κ1 and
κ2 as expressed by (4.6), the propagator reads (for the connection of ω1, ω2 and Ω to κ1 and
κ2, refer to chapter 4)

Û(t) =
1
Ω




Ωcos Ωt −iω1 sinΩt −iω2 sinΩt

−iω1 sinΩt
ω2

2+ω2
1 cosΩt
Ω

ω1ω2(cosΩt−1)
Ω

−iω2 sinΩt ω1ω2(cosΩt−1)
Ω

ω2
1+ω2

2 cosΩt
Ω




. (E.1)

As we assume the initial state to be the ground state written as (1, 0, 0)T in the basis intro-
duced in (4.22), the evolution is given by the first column in the matrix representing Û(t).

If the two sources are also shifted by an independent relative phase, the propagator reads

Û(t) =
1
Ω




Ωcos Ωt −iω1 sin Ωt −iω2 sinΩt e−iϕ

−iω1 sinΩt
ω2

2+ω2
1 cosΩt
Ω

ω1ω2(cosΩt−1)
Ω e−iϕ

−iω2 sinΩt eiϕ ω1ω2(cosΩt−1)
Ω eiϕ ω2

1+ω2
2 cosΩt
Ω




. (E.2)
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Appendix F

Network synthesis

F.1 Important time functions and their Laplace transforms

f(t) F (s) f(t) F (s)

δ(t) 1 es0t 1
s− s0

Θ(t)
1
s

tn−1

(n− 1)!
es0t 1

(s− s0)n

dn

dtn
δ(t) sn sinωt

ω

s2 + ω2

tn−1

(n− 1)!
1
sn

cosωt
s

s2 + ω2

Table F.1: Important time functions and their Laplace transforms. δ(t) denotes the
Dirac delta function, Θ(t) the Heaviside function.

F.2 Construction of networks

Several methods exist to construct an actual network out of a given transfer function (or a
set of transfer functions, respectively). We want to give a rough outline about a common
approach which is used in modified form in a number of methods and can be used for two
terminal networks as well as four terminal networks. By iteratively eliminating poles, the
order of the transfer function is reduced and the transfer function can finally be written as
a sum of partial fractions, where each fraction can individually be implemented in a known
way. Consider a RC two pole, whose transfer function can always be written in the form [74]

Z(s) =
U(s)
I(s)

=
r0

s
+

n∑

i=1

ri

s + si
+ r∞ (F.1)

with r0, ri, r∞ ≥ 0, si > 0. ri is the residue at the pole si. Each individual term in (F.1)
can be identified with an elementary RC circuit in the following way: as we wrote down the
transfer function in resistive form (voltage in the nominator, current in the denominator), the
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description of passive elements is given by their complex impedance, i.e. frequency f replaced
by the complex frequency s,

r∞ =̂ R corresponds to a resistor with R = r∞ ,
r0

s
=̂

1
sC

corresponds to a capacitor with C =
1
r0

,

ri

s + si
=̂

1
sC + 1

R

parallel connection of resistor with R =
ri

si
and capacitor with C =

1
ri

.

(F.2)
In the same way correspond terms of type Z(s) = r · s (not in (F.1)) to an inductor with
inductance L = r.
As example, let’s consider an explicit transfer function (taken from [74])

Z(s) =
s2 + 6 s + 8
s2 + 4 s + 3

. (F.3)

We find a pole at s1 = −1 with residue r1 = 1.5 and decompose Z(s) into a partial fraction
and the rest,

Z(s) =
1.5

s + 1
+ Z ′(s) , (F.4)

Z ′(s) =
s2 + 4.5 s + 3.5

s2 + 4 s + 3
. (F.5)

Z ′(s) has a pole at s2 = −3 with residue r2 = 0.5 and we arrive at

Z(s) =
1.5

s + 1
+

0.5
s + 3

+ Z ′′(s) , (F.6)

Z ′′(s) = 1 . (F.7)

(F.3) can be written as sum of three partial fractions, one corresponding to a resistor, the
other two giving each a parallel circuit of a resistor and a capacitance, according to (F.2).

Figure F.1: Realization of a RC-filter by iterative pole elimination. Each of the three
blocks (the resistor as well as the two parallel circuits) corresponds to a partial fraction
in the resistive transfer function. The structure of the circuit is governed by the location
of the poles, whereas the magnitude of the resistances and capacitances is given by the
residue.
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Taking into account that we deal with a transfer function in resistive form, this sum corre-
sponds to a serial connection of these three blocks. We end up with the circuit shown in
figure F.1.
However, instead of eliminating poles from Z(s), we could have followed the same procedure
for Y (s) = 1

Z(s) , iteratively eliminating zeros from Z(s). The result would have been a
equivalent parallel circuit of serial connections instead of a serial circuit of parallel connections.

Moreover, as we can deduce from the particular form in (F.1), the poles of a RC two pole
transfer function are located on the negative real axis. In contrast, the poles of a LC two pole
function sit on the imaginary axis, whereas poles of LCR-filters can exist somewhere in the
left halfplane.

Construction of four poles follows the same scheme. The four pole matrix Zik(s), as given in
(6.13) gets –by iterative elimination of poles (zeros, respectively)– decomposed into matrices
with known implementation (Fig. F.2). A common algorithm is the method of Gewertz.
As for two poles, elimination of a pole on the negative real axis yields a RC-filter, a pair of
complex conjugate poles yields a LCR-filter.

Figure F.2: Serial connection of two four-poles. The resulting set of transfer functions
Zik(s) is the sum of the individual sets of transfer functions, Zik(s) = Z

(1)
ik (s)+Z

(2)
ik (s).
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Publication

The attached paper has been submitted to Physical Review Letters and is available online,
quant-ph/0504202; the ASC (Arnold Sommerfeld Center for Theoretical Physics) preprint
number is LMU-ASC 38/05.
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Quantum optimal control is applied to two and three coupled Josephson charge qubits. It is shown
that by using shaped pulses a cnot gate can be obtained with a trace fidelity > 1−10−9 for the two
qubits. Even when including higher charge states, the leakage is below 1%, although the pulses are
non adiabatic. The controls are five times faster than the pioneering experiment (Nature 425, 941
(2003)) for otherwise identical parameters – i.e. a progress towards the error-correction threshold by
a factor of 100. The controls have palindromic smooth time courses representable by superpositions
of few harmonics. We outline schemes to generate these shaped pulses. The approach generalises
to larger systems, as shown by realising a Toffoli gate in three linearly coupled charge qubits 13
times faster than a circuit of nine cnots of above experimental work. In view of the next generation
of fast pulse-shape generators, the method is designed to find wide application in quantum control
of systems with finite degrees of freedom whose dynamics are Lie-algebraically closed.

PACS numbers: 85.25.Cp, 82.65.Jn, 03.67.Lx, 85.35.Gv

Regarding Hamiltonian simulation and quantum com-
putation recent years have seen an increasing array of
quantum systems that can be coherently controlled. Next
to natural microscopic quantum systems, a particular at-
tractive candidate for scalable setups are superconducting
devices based on Josephson junctions [1–3]. Due to the
ubiquitous bath degrees of freedom in the solid-state en-
vironment, the quantum coherence time remains limited,
even in light of recent progress [4, 5] approaching theo-
retical bounds. Therefore it is a challenge to generate the
gates fast and accurately enough to meet the error correc-
tion threshold. Concomitantly, progress has been made
in applying optimal control techniques to steer quan-
tum systems [6] in a robust, relaxation-minimising [7] or
timeoptimal way [8, 9]. Spin systems are a particularly
powerful paradigm of quantum systems [10]: under mild
conditions they are fully controllable, i.e., local and uni-
versal quantum gates can be implemented. In N spins- 1

2
it suffices that (i) all spins can be addressed selectively
by rf-pulses and (ii) that the spins form an arbitrary
connected graph of weak coupling interactions. The op-
timal control techniques of spin systems can be extended
to pseudo-spin systems, such as charge or flux states in
superconducting setups, provided their Hamiltonian dy-
namics can be expressed to sufficient accuracy within a
closed Lie algebra, e.g., su(2N ) in a system of N qubits.

As a practically relevant and illustrative example, we
consider two capacitively coupled charge qubits con-
trolled by DC pulses as in Ref. [1]. The infinite-
dimensional Hilbert space of charge states in the device

can be mapped to its low-energy part defined by zero or
one excess charge on the respective islands [2]. Identify-
ing these charges as pseudo-spins, the Hamiltonian can
be written as Htot = Hdrift + Hcontrol, where the drift or
static part reads (for constants see caption to Fig. 1)

Hdrift = −

(

Em

4
+

Ec1

2

)

(σ(1)
z ⊗ 1l) −

EJ1

2
(σ(1)

x ⊗ 1l)

−

(

Em

4
+

Ec2

2

)

(1l ⊗ σ(2)
z ) −

EJ2

2
(1l ⊗ σ(2)

x )

+
Em

4
(σ(1)

z ⊗ σ(2)
z ) , (1)

while the controls can be cast into

Hcontrol =

(

Em

2
ng2 + Ec1ng1

)

(σ(1)
z ⊗ 1l)

+

(

Em

2
ng1 + Ec2ng2

)

(1l ⊗ σ(2)
z ) .

(2)

Note that the Pauli matrices involved constitute a min-
imal generating set of the Lie algebra su(4); hence the
system is fully controllable. The control amplitudes ngν ,
ν = 1, 2 are gate charges controlled by external volt-
ages via ngν = VgνCgν/2e. They are taken to be piece-
wise constant in each time interval tk. This pseudo-spin
Hamiltonian motivated by Ref. [1] also applies to other
systems such as double quantum dots [11] and Josephson
flux qubits [12], although in the latter case the controls
are typically rf-pulses.

In a time interval tk the system thus evolves under

H
(k)
tot = Hdrift+H

(k)
control. The task is to find a sequence of
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2

FIG. 1: (Colour online) Fastest gate charge controls obtained
for realising a cnot-gate on two coupled charge qubits (left
part: control qubit, right part: working qubit). The total
gate charges for the qubits are ngν = n0

gν + δngν with ν =
1, 2. Here, n0

g1 = 0.24, n0
g2 = 0.26 and the qubit energies

Ec1/h = 140.2 GHz, Ec2/h = 162.2 GHz, EJ1/h = 10.9 GHz,
EJ2/h = 9.9 GHz, and Em/h = 23.0 GHz were taken from the
experimental values in [1]. The 50 piecewise constant controls
are shown as bars (uniform width ∆ = tk = 1.1 ps); the trace

fidelity is 1

2N

˛

˛tr{U†
targetUT }

˛

˛ > 1 − 10−9. Red lines give the
analytic curves in Eqn. 3; the blue ones superimposed show a
pulse synthesised by an LCR-filter (see below and Fig. 3).

control amplitudes for the intervals t1, t2, . . . , tk, . . . , tM
such as to maximise a quality function, here the over-
lap with the desired quantum gate or element of an
algorithm Utarget. Moreover, for the decomposition of

UT = e−itM HM

e−itM−1HM−1

· · · e−itkHk

· · · e−it1H1

into
available controls {H

(k)
ν } to be timeoptimal, T :=

∑M

k=1 tk has to be minimal. The gate fidelity is

unity, if ||UT − Utarget||
2
2 = 0 = ||UT ||

2
2 + ||Utarget||

2
2 −

2Re tr{U †
targetUT }. Maximising Re tr{U †

targetUT } can

be solved by optimal control: set h
(

U(tk)
)

:=
Re tr{λ†(tk)(−i(Hd +

∑

uνHν))U(tk)} with the
Lagrange-type adjoint system λ(t) following the equa-
tion of motion λ̇(t) = −i(Hd +

∑

uνHν)λ(t). Pon-
tryagin’s maximum principle requires ∂h/∂uν ≡
Re tr{λ†(−iHν)U} = 0 thus allowing to implement
a gradient-flow based recursion. For the amplitude
of the νth control in iteration r + 1 at time interval
tk one finds with ε as a suitably chosen step size

n
(r+1)
gν (tk) = n

(r)
gν (tk) + ε ∂h(r)(tk)

∂n
(r)
gν (tk)

as explained in more

detail in Refs. [13, 14]. T is the shortest fixed final time
allowing for a given fidelity to be obtained numerically.

Throughout the work, we take the parameters from the
experiment [1]. Fig. 1 shows the fastest decompositions
obtained by numerical optimal control for the cnot gate
into evolutions under available controls (Eqns. 1 and 2).
In contrast to the 255 ps in Ref. [1], T = 55 ps suffice to
get ||UT − Utarget||2 = 5.3464× 10−5 corresponding to a

trace fidelity of 1
2N

∣

∣tr{U †
targetUT }

∣

∣ > 1 − 10−9.

The supplementary material illustrates how the se-
quence of controls (Fig. 1) acts on specific input states
by representing the quantum evolution on local Bloch

spheres complemented by showing the coupling evolu-
tion in the Weyl chamber. These pictures trigger phys-
ical insight: for a cnot, the duration T = 55 ps has
to accomodate at least a π

2 rotation under the coupling
Hamiltonian ( 1

2σz ⊗ σz) lasting 21.7 ps concomitant to

two π
2 x-rotations under the drift component ( 1

2σ
(2)
x ) each

requiring 25.3 ps. This is in contrast to NMR, where
the coupling interactions are some 100 times slower than
the local ones, so timeoptimal controls can be envis-
aged as Riemannian geodesics in the symmetric space
G/K = SU(4)/SU(2)⊗2 [8]. However, in our charge
qubit system, the time scales of local and non-local inter-
actions are comparable, and the local drifts in K gener-
ated by σx are even time-limiting, while phase shifts gen-
erated by σz via the gate charge are fast (cf. Eqns. 1-2).
Assuming in a limiting simplification that two π

2 x-pulses
are required, the total length cannot be shorter than 50.6
ps. A sigmoidal phase distortion from a geodesic state in-
version is cheap timewise. While the duration of T = 55
ps of our controls is close to the simplifying infimum of
50.6 ps, the controls in Ref. [1] last 255 ps; they entail
several closed great circles on the Bloch sphere and are
far from geodesic (details in the supplement).

Note that the time course of controls in charge
qubits turns out palindromic (Fig. 1). Self-inverse
gates (U2

gate = 1l) relate to the more general time-and-
phase-reversal symmetry (TPR) observed in the con-
trol of spin systems [15]: for example, any sequence
e−itxσxe−ityσye−itzσz is inverted by transposition con-
comitant to time reversal tν 7→ −tν and σy 7→ −σy.
Since the Hamiltonians in Eqns. 1-2 are real and sym-
metric, they will give the same propagator, no matter
whether read forward or backward.

The pulses are not very complicated, as the time course
of the controls on either qubit (ν = 1, 2) can be written
with high accuracy as a sum of 6(7) harmonic functions
(coefficients in Tab. 1 of the supplement)

ngν(t) =

5(6)
∑

j=0

aν(j) cos
(

2πων(j)
t

T
+ φν(j)

)

. (3)

The limited bandwidth allows to maintain high fidelity
even if leakage levels formed from higher charge states of
the qubit system are taken into account: we now explic-
itly apply the pulses to the extended system obtained
by mapping the full Hamiltonian [1] to the subspaces of
−1, . . . , 2 extra charges per island. The two-qubit cnot

gate is thus embedded into the group SU(16), still the
full propagator generated by the above controls projects
onto the cnot gate giving a trace fidelity > 0.99. Even
the time courses starting with any of the four canonical
two-qubit basis vectors hardly ever leave the state space
of the working qubits: at no time do the projections onto
the leakage space exceed 0.6 %. Clearly, optimisation in-
cluding explicit leakage levels would improve the quality
even further as in other systems [16].
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FIG. 2: (Colour online) Spectroscopic explanation of the high quality of the control sequences of Fig. 1: the spectral overlap
of the Fourier-transforms (right walls) of the controls of Fig. 1 with the energy differences corresponding to the one-charge
transitions into leakage levels (solid lines on the surface) is small at gate charges in the working range (within black dashed
lines). In the 3D representation, intensities at allowed (solid lines) vs forbidden transitions (broken lines) into leakage levels are
given in terms of the transition-matrix elements (normalised by the charging energies E

2

c1, E
2

c2) with the control Hamiltonian
of Eqn. 2 expressed as Hc(δngν) in |〈Ψf |HcΨi〉|

2: the working transitions (blue) are far more probable than the allowed ones
into leakage levels (red) that have no overlap with the excitation bandwidth of the pulses; forbidden ones are extremely weak.

In simplified terms, the high quality can be understood
by relating the limited bandwidth to the transitions be-
tween the eigenstates of the local parts of Hdrift in Eqn. 1:
while one-charge transitions to leakage levels like |−1〉 ↔
|0〉 and |2〉 ↔ |1〉 are allowed, two-charge transitions like
| − 1〉 ↔ |1〉 and |2〉 ↔ |0〉 are forbidden in terms of
the transition-matrix elements |〈Ψfinal|HcontrolΨinitial〉|

2

as can be seen in Fig. 2. Note the charge control on
gate 2 in Fig. 1 is around δng2 = 0.2 thus driving the
working transition |0〉 ↔ |1〉, while the ‘spectral overlap’
of the Fourier-transform of the time course in both con-
trols with energy differences corresponding to one-charge
leakage transitions in Fig. 2 is small. Hence simple spec-
troscopic arguments underpin the high fidelity.

The actual pulse shape generation is a challenging but
possible task. Note that the minimal length of the pulse
is given by the coupling strength. In the pertinent time
scale, however, there are no commercially available de-
vices for generating arbitrary wave forms.Yet, high-end
pulse generators [17, 18] or ultrafast classical Josephson
electronics [19] are close to the necessary specifications.

As a proof of principle, it is important to note how
to generate these pulses experimentally, which can read-
ily be exemplified using the well-established technique of
shaping in Laplace space: we start with an input current
pulse Iin(t) shorter than the desired one of a shape which
is arbitrary as long as it contains enough spectral weight
at the harmonics necessary for the desired pulse. Such
pulses are easily generated optically or electrically[18].
This pulse is sent through an appropriately designed dis-
crete electrical four-pole with transfer function Z12. We
have carried out this idea for a rectangular pulse of length
τr = 1.1ps as an input and our two gate pulses as out-
puts. We have developed a transfer function in Laplace

space Z12(s) by fitting Vg(s) = Z12(s)Iin(s), see Fig. 3.
Owing to causality, the poles of Z12 are either on the neg-
ative real axis or in conjugate pairs of poles on the left
half plane. Each conjugate pair corresponds to an LCR-
filter stage, whereas each real pole corresponds to an RC
lowpass-filter [20]. With 8 LCR filters and two low-pass
filters the pulses are very close to the desired ones, see
Fig. 1, and a trace fidelity of 94 % can be achieved for
the entire cnot. Clearly, the quality could be further
improved with more refined technology. This approach
can also accomodate the generally frequency-dependent
transfer function from the generator to the sample as
shown in the Supplementary Material.

Note that our controls are fairly robust with regard to
±5% variation of the tunneling frequencies EJ1,2

and the
coupling term Em as well as to Gaussian noise on the
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FIG. 3: (Colour online) Filter characteristic for shaping the
pulse on the working gate. The bars show the poles si of
the transfer function in the Laplace plane. Poles outside the
negative imaginary axis also lead to the complex conjugate
pole and can be implemented by an LCR-Filter. The height
of the bar gives the modulus of the residue in this pole.
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FIG. 4: (Colour online) Left: Trace fidelities resulting from
the controls of Fig. 1 when the parameters Em and EJ in
Eqns. 1-2 vary by ±5%. In this range, the quality profile can
be fitted by a tilted 2D Gaussian (parameters in Supplement).
Right: Fidelities under Gaussian noise on control amplitudes
and time intervals parameterised by the standard deviations
2σ∆/∆ and 2σamp/amp ranging from 0 to 5%. (As in Fig. 1,
∆ := tk; amp := δngν with ν = 1, 2.) Each data point is an
average of 25′000 Monte-Carlo simulations.

control amplitudes and time-itervals as shown in Fig. 4.

Likewise, in a system of three linearly coupled charge
qubits, we realised the Toffoli gate by experimentally
available controls (Fig. 5), where the speed-up against a
circuit of 9 cnots is by a factor of 2.8 with our cnots

and by 13 with the cnots of Ref. [1]. Due to the com-
paratively strong qubit-qubit interactions in multiqubit
setups, a direct generation of three-qubit gates is much
faster than its compostion by elementary universal gates.
This also holds when developing simple algorithms [21] on
superconducting qubit setups: a minimisation algorithm
for searching control amplitudes in coupled Cooper pair
boxes was applied in [22], where the optimisation was
restricted to only very few values. In Ref. [23], an rf-
pulse sequence for a cnot with fixed couplings was in-
troduced, which, however, is much longer and uses more
of the available decoherence time.

In conclusion, we have shown how to provide optimal-
control based fast high-fidelity quantum logic gates
in pseudospin systems such as superconducting charge
qubitsr, where the progress towards the error-correction
threshold is by a factor of 100 (details in the Supple-
ment). The simplicity of the pulse shape results in low
bandwidth and remarkably low leakage to higher states,
although the pulses are non-adiabatic. With the setup
necessary to generate optimised pulses being of modest
complexity, the approach will find wide application, in
particular for the next generation of fast pulse-shaping
devices. We expect the decoherence time scales domi-
nated by 1/f contributions to T2 will not change largely
under the pulses, so time optimal controls provide a sig-
nificant step towards the accuracy threshold for quantum
computing, even if the optimisation of decoherence times
reaches its intrinsic limits.

We are indebted to N. Khaneja for continuous stim-
ulating scientific exchange. We thank M. Mariantoni

FIG. 5: Fastest gate charge controls obtained for realis-
ing a Toffoli gate on a linear chain of charge qubits cou-
pled by nearest-neighbour interactions with a trace fidelity of
1

2N

˛

˛tr{U†
targetUT }

˛

˛ > 1 − 10−5. Parameters: Ec1/h = 140.2
GHz, Ec2/h = 120.9 GHz, Ec3/h = 184.3 GHz, EJ1/h = 10.9
GHz, EJ2/h = 9.9 GHz, EJ3/h = 9.4 GHz, Em1,m2/h = 23
GHz, n0

g1 = 0.24, n0
g2 = 0.26, n0

g3 = 0.28.
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and S. J. Glaser, J. Magn. Reson. 172, 296 (2005).
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[9] S. J. Glaser, T. Schulte-Herbrüggen, M. Sieveking, O. Schedletzky, N. C. Nielsen, O. W.
Sørennsen, and C. Griesinger, Unitary Control in Quantum Ensembles, Maximising Sig-
nal Intensity in Coherent Spectroscopy, Science 280, 421 (1998).

[10] S. J. Glaser, NMR Quantum Computing, Angew. Chem. Int. Ed. 40, 147 (2001).

[11] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L.
Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear
magnetic resonance, Nature 414, 883 (2001).

[12] Y. Makhlin, G. Schön, and A. Shnirman, Quantum-state engineering with Josephson-
junction devices, Rev. Mod. Phys. 73, 357 (2001).

[13] V. Cerletti, W. A. Coish, O. Gywat, and D. Loss, Recipes for spin-based quantum com-
puting, Nanotechnology 16, R27 (2005).

91



92 BIBLIOGRAPHY

[14] C. H. van der Wal, A. ter Haar, F. Wilhelm, R. Schouten, C. Harmans, T. Orlando,
S. Lloyd, and J. Mooij, Quantum Superposition of Macroscopic Persistent-Current States,
Science 290, 773 (2000).

[15] I. Chiorescu, Y. Nakamura, C. Harmans, and J. Mooij, Coherent Quantum Dynamics of
a Superconducting Flux Qubit, Science 299, 1869 (2003).

[16] A. C. J. ter Haar, PhD thesis, TU Delft (2005).

[17] Y. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, and J. S. Tsai,
Quantum oscillations in two coupled charge qubits, Nature 421, 823 (2003).

[18] T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, Demonstra-
tion of conditional gate operation using superconducting charge qubits, Nature 425, 941
(2003).

[19] M. Tinkham, Introduction to Superconductivity (McGraw-Hill, 1996).

[20] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd,
Josephson Persistent-Current Qubit, Science 285, 1036 (1999).

[21] C. H. van der Wal, PhD thesis, TU Delft (2001).

[22] T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S. Levitov, S. Lloyd, and J. J.
Mazo, Superconducting persistent-current qubit, Phys. Rev. B 60, 15398 (1999).

[23] P. Bertet, I. Chiorescu, G. Burkard, K. Semba, C. Harmans, D. DiVincenzo, and J. Mooij,
Relaxation and dephasing in a flux qubit, cond-mat/0412485 (2004).

[24] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger,
Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59, 1 (1987).

[25] B. L. T. Plourde, J. Zhang, K. B. Whaley, F. K. Wilhelm, T. L. Robertson, T. Hime,
S. Linzen, P. A. Reichardt, C.-E. Wu, and J. Clarke1, Entangling flux qubits with a
bipolar dynamic inductance, PRB 70, 140501 (2004).

[26] J. Clarke and A. I. Braginski, The SQUID Handbook, Vol.1 : Fundamentals and Tech-
nology of SQUIDs and SQUID Systems (John Wiley & Sons Inc, 2004).

[27] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf, Approaching Unit Visibility for Control of a Superconducting Qubit
with Dispersive Readout, Phys. Rev. Lett. 95, 060501 (2005).

[28] A. Lupascu, C. J. Verwijs, R. N. Schouten, C. J. P. Harmans, and J. E. Mooij, Nonde-
structive Readout for a Superconducting Flux Qubit, Phys. Rev. Lett. 93, 177006 (2004).

[29] A. Lupascu, C. J. P. Harmans, and J. E. Mooij, Quantum state detection of a supercon-
ducting flux qubit using a dc-SQUID in the inductive mode, Phys. Rev. B 71, 184506
(2005).

[30] J. David Jackson, Klassische Elektrodynamik (De Gruyter, 2002).

[31] Fasthenry, URL http://www.wrcad.com/ftp/pub/fasthenry-3.0wr.tar.gz.

http://www.wrcad.com/ftp/pub/fasthenry-3.0wr.tar.gz�


BIBLIOGRAPHY 93

[32] M. Grifoni and P. Hänggi, Driven quantum tunneling, Phys. Reports 304, 229 (1998).

[33] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions (Wi-
ley, 1998).

[34] D. Walls and G. Milburn, Qantum Optics (Springer, 1994).

[35] E. Schrödinger, Proc. Cambridge Philos. Soc 31, 555 (1935).

[36] S. Popescu and D. Rohrlich, in Introduction to Quantum Computation and Information
(World Scientific, 1998).
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