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We analyze spectral functions of mesoscopic systems with large dimensionless conductance, which
can be described by a universal Hamiltonian. We show that an important class of spectral functions are
dominated by one single state only, which implies the existence of well-defined (i.e., infinite-lifetime)
quasiparticles. Furthermore, the dominance of a single state enables us to calculate zero-temperature
spectral functions with high accuracy using the density-matrix renormalization group. We illustrate the
use of this method by calculating the tunneling density of states of metallic grains, of which we discuss
the crossover from the few-electron to the bulk regime.
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The pairing Hamiltonian of Bardeen, Cooper, and
Schrieffer (BCS) is established as the paradigmatic
framework for describing superconductivity [1,2]. The
BCS solution is, however, an approximate one, valid
(and exceedingly successful) only as long as the mean
level spacing d is much smaller than the superconducting
band gap �BCS [3,4]. One of the main features of the BCS
solution is the description of the excitation spectrum by
well-defined (i.e., infinite-lifetime) Bogoliubov quasipar-
ticles, responsible for many of the features of the super-
conducting state.

In this Letter, we address the question whether this
quasiparticle picture prevails in the entire regime of
parameters—including the case where the samples are
so small or so weakly interacting that d � �BCS and the
BCS solution is inapplicable —by analyzing spectral
functions. For example, the spectral function correspond-
ing to the (noninteracting) particle creation operator cyk�
is given, within the BCS solution, by a sharp line in k-!
space; this reflects the infinite lifetime of the quasipar-
ticles. For an interacting system, this is a very peculiar
property, since the interactions usually shift a significant
portion of the spectral weight to a background of excita-
tions, responsible for the finite lifetime of the quasipar-
ticles. Here we show that the unusual property of finding
well-defined quasiparticles persists to a very good ap-
proximation over the entire parameter range of the pair-
ing Hamiltonian and is not merely a property of the mean
field approximation in the BCS regime. We also give a
condition for more general spectral functions to show
analogous behavior.

Of central importance is that this result is relevant not
only in the context of mesoscopic superconductivity, but
more generally for disordered systems with large dimen-
sionless conductance g (defined as the ratio between the
Thouless energy and the mean level spacing d). This is
because to lowest order in g�1 the electron-electron in-
teractions can be described by a remarkably simple uni-
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versal Hamiltonian [5,6], which has, besides the kinetic
energy term H0 �

P
i�	ic

y
i�ci�, only three couplings:

Hc � Ecn̂2; Hs � Js ~̂S
2
; Hp ���d

X
i;j2N

cyi"c
y
i#cj#cj":

(1)

Here Ec, Js, and ��d are coupling constants. The sum
includes all energy levels around the Fermi energy 	F up
to some cutoff !co at the Thouless energy, denoted by the
set N . It turns out thatHc andHs do not affect our result
because they commute with H0 �Hp and thus leave the
eigenstates invariant. Therefore, it suffices to take Hp—
the BCS pairing Hamiltonian—as the only interaction
term. Therefore, for our purposes the difference between
the BCS model and the universal Hamiltonian is only in
the cutoff !co, being at the Debye energy for the former
and at the Thouless energy for the latter. In either case, we
define �BCS � !coe�1=�.

The fact that the zero-temperature spectral function
AÔ	!
 of an operator Ô is sharply peaked translates to a
strong condition on the matrix elements of the Lehmann
representation, which is given by

A Ô	!
 �
X
jIi

hgsjÔyjIihIjÔjgsi�	!� EI
: (2)

Here jgsi denotes the ground state, jIi the excited states
with energies EI. For only one sharp peak to be present in
the spectral function, the sum in Eq. (2) must be domi-
nated by one single eigenstate, say, jIi0, whereas all other
states jIi � jIi0 do not contribute. Obviously, it will de-
pend on the operator Ô whether this is the case, and, if so,
which is the state jIi0. We show that it suffices that Ô
satisfies a rather unrestrictive condition, given after
Eq. (4) below and fulfilled for many physically relevant
quantities. Furthermore, we show that under this condi-
tion the state jIi0 is from a very limited subset of all
possible excitations, which we characterize below as the
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‘‘No-Gaudino states.’’ Our finding of well-defined quasi-
particles therefore implies that only these No-Gaudino
states are relevant for many physical properties of sys-
tems that satisfy the conditions of the universal
Hamiltonian.

Calculating the spectral function nonperturbatively
[e.g., by the route of Eq. (2)] is usually a formidable
task, equivalent to diagonalizing the Hamiltonian.
Although an exact solution [3,7] exists for the
Hamiltonian Hp, its complexity in practice does not
allow us to calculate spectral functions from it. Instead,
we use the density-matrix renormalization group
(DMRG) method [8] for this purpose, a numerical varia-
tional approach that has already been proven very useful
for analyzing this model [9–11]. For suitable operators Ô,
we are able to obtain the spectral function from the
DMRG without the usual complications [12,13], because
the state jIi0 —the only one that contributes significantly
to the spectral function—can be constructed explicitly.
The existence of a sum rule allows us to quantify the
contribution of other states jIi � jIi0, which we find to be
negligibly small. Finally, we illustrate the use of our
method of calculating spectral functions by evaluating
the tunneling density of states, of which we discuss the
crossover from the few-electron to the bulk regime.

Excitation spectrum and No-Gaudino states.—Let us
begin by describing the excitations of the Hamiltonian
Hp in Eq. (1).Hp has the well-known property that singly
occupied energy levels do not participate in pair scatter-
ing; hence their labels (and spins) are good quantum
numbers. Therefore, the singly occupied levels decouple
from the interaction with the other levels, in the sense that
all eigenstates with a set of singly occupied levels B �
fj1; . . . ; jlg are (as far as the remaining levels are con-
cerned) identical to those of a system with N in Eq. (1)
replaced by N nB [3].

A given state can thus contain two kinds of excitations:
pair-breaking excitations that go hand in hand with a
change of the quantum numbers B and other many-
body excitations that do not. The latter were studied in
[14] and dubbed ‘‘Gaudinos.’’ In this spirit, we define the
No-Gaudino state as the lowest-energy state within a
certain sector of the Hilbert space characterized by the
quantum numbers B, i.e., the state that is mapped onto the
ground state in the presence of the levels N nB. For
example, the No-Gaudino state with no singly occupied
levels, B � 06 , is trivially given by the ground state. In the
BCS limit, the No-Gaudino state with singly occupied
levels B � fj1; . . . ; jlg (with spins �1; . . . ; �l) is given by

jj�1
1 � � � j�ll i

0 � �y
j1�1

� � ��y
jl�l

jgsiBCS; (3)

where jgsiBCS is the BCS ground state and � are the
Bogoliubov quasiparticle operators from BCS theory
[2]. As is shown below, these states are easily obtained
within the DMRG algorithm.
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Let us now specify under which condition the spectral
function, Eq. (2), is dominated by such a No-Gaudino
state. Any operator can be written as a linear superposi-
tion of operators:

Ô � ci1�1
� � � cik�kc

y
j1�0

1
� � � cyjl�0

l
: (4)

Creating linear superpositions poses no difficulties;
therefore it is sufficient to consider operators of this
form. The central condition we impose on Ô is that all
indices i1; . . . ; jl be mutually different. Ô then takes a
state with no singly occupied levels, B � f g, to the sector
of the Hilbert space characterized by B � fi1; . . . ; jlg. We
show below that under the above condition Ô moreover
has the crucial property that, when acting on the ground
state, it creates to an excellent approximation just the No-
Gaudino state in this sector. Therefore, the state Ôjgsi
contributing to the spectral function, Eq. (2), is seen to be
not only a well-defined eigenstate of the system, but
moreover a No-Gaudino state. This is our central result.
It is ultimately based on the large number of good quan-
tum numbers in the universal Hamiltonian model: they
subdivide the Hilbert space into ‘‘narrow’’sectors, each of
which is well represented by the respective No-Gaudino
state. Note that the condition stated after Eq. (4) excludes
operators such as Ô � cyi�ci�. Such operators do have a
substantial amplitude of creating a pair excitation, and
therefore a ‘‘Gaudino state,’’ as can be easily verified in
the BCS limit.

In the BCS limit d� �BCS (i.e., at �� 1= lnN, where
N is the number of energy levels between the Fermi
energy and !co), our result follows from the identity

Ôjgsi � vi1 � � �vikuj1 � � � ujl ji
��1
1 � � � j

�0
l
l i0; (5)

where the state ji��1
1 � � � j

�0
l
l i0 is the BCS limit of a No-

Gaudino state of the form of Eq. (3). Here u and v are the
coherence factors from BCS theory [2].

In the opposite limit �BCS � d (�� 1= lnN), where
perturbation theory in � is valid[4], the same conclusion
is obtained: to first order (i.e., up to errors of order �2),
Ôjgsi again creates precisely the No-Gaudino state [15].

There is no such simple analytic argument that the
Gaudino admixture to Ôjgsi in Eq. (5) will be negligible
also in the intermediate regime. However, this assertion
can be checked numerically by a sum rule, which follows
from Eq. (2):
Z

A	!
d!�
X
jIi

hgsjÔyjIihIjÔjgsi � hgsjÔyÔjgsi: (6)

The right-hand side (r.h.s.) is a simple ground state ex-
pectation value and is therefore easily evaluated using the
DMRG. We define the lost spectral weight wL �

hgsjÔyÔjgsi � jhgsjÔyjIi0j2 as the part of Eq. (6) that is
not carried by the No-Gaudino state jIi0 but instead lost
186402-2
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to other background states. As is shown in Fig. 1, this lost
weight turns out to be negligibly small.

DMRG algorithm.—We now give a brief description of
the DMRG algorithm as applied to the universal
Hamiltonian; more details are available elsewhere
[10,11]. Energy levels are added one by one to the system
until it obtains its final size. For simplicity, we assume the
energy levels to be equally spaced, although none of our
methods require this assumption. After adding a level,
only a limited number m of basis vectors are kept, such
that the size of the Hilbert space remains numerically
manageable. These basis vectors are selected in order to
represent a number of so-called target states accurately;
this is achieved by the DMRG projection described in [8].
By varying m between 60 and 140, we estimate the
relative error in the spectral function from the DMRG
projection to be of the order of �10�5 (for m � 60). This
accuracy can be improved by increasing m.

In order to calculate the spectral function correspond-
ing to the operator Ô in Eq. (4), we use as target states the
ground state and a state representing the No-Gaudino

state ji��1
1 � � � j

�0
l
l i

0, with levels i1; . . . ; jl singly occupied,
in the BCS limit given by Eq. (3). In fact, rather than
using the No-Gaudino state itself, we target the state

ji1 � � � jli0 � Ôyji��1
1 � � � j

�0
l
l i

0; (7)

with Ô given by Eq. (4). In Eq. (7), the levels i1; . . . ; jl,
again, do not participate in pair scattering, but levels
i1; . . . ; ik are now doubly occupied, and levels j1; . . . ; jl
are empty. The main advantage of this choice is that no
singly occupied levels occur at any point in the algo-
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FIG. 1 (color online). The matrix element hci�c
y
i�i from

Eq. (6) with Ô � cyi� (dashed line) and the contribution from
the No-Gaudino state (solid line) as a function of �. Here i �
10, i.e., the tenth out of a total of N � 40 energy levels above
EFermi. The lost weight wL, i.e., the difference between both, is
plotted in the inset. It shows a maximum in the intermediate
regime around �� 1= lnN (indicated by dotted line), but even
there, wL is less than 0.2% of the total spectral weight.
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rithm; hence only doubly occupied or empty levels have
to be considered. Furthermore, it allows the matrix ele-
ment occurring in the spectral function (2) to be ex-
pressed as a simple scalar product:

j0hi��1
1 � � � j

�0
l
l jÔjgsij

2 � j0hi1 � � � jljgsij2: (8)

The sum rule, i.e., the r.h.s. of Eq. (6), is evaluated in a
separate run with jgsi and Ôyjgsi as the target states.

Dominance of a single No-Gaudino state.— The fact
that the spectral function is dominated by one single No-
Gaudino state is displayed in Fig. 1. Here, the expectation
value hgsjci�c

y
i�jgsi, which occurs in the sum rule,

Eq. (6), with Ô � cyi , is plotted (for i � 10, i.e., ten levels
above EFermi) against the coupling �. It is practically
indistinguishable from the contribution j0hIjcyi�jgsij

2

from the No-Gaudino state only.
The lost weight wL, shown in the inset of Fig. 1, is seen

to be less than 0.2% of the total spectral weight through-
out the entire parameter regime. The data are shown for
i � 10 (i.e., the tenth level above the Fermi surface); the
plots for other values of i, not shown, look similar. The
maximum lost weight somewhat increases as the level i
approaches EFermi, but always remains below 1% of the
total weight. The lost weight is seen to be vanishingly
small for small �, as expected in the perturbative regime
�� 1= lnN. Interestingly, the lost weight also decreases
for large �. This is very untypical for interacting systems,
and the underlying reason is that the dominance of the
No-Gaudino state is protected also in the BCS regime as
shown in Eq. (5), which is valid for �� 1= lnN.
Consequently, the lost weight shown in the inset of
Fig. 1 displays a maximum in the intermediate regime
around �� 1= lnN, indicated by the dotted line, in which
neither bulk BCS theory nor perturbation theory in � are
reliable. This peak is a universal feature for all values of i
(not shown).

Not shown: We confirmed numerically that the cou-
pling �max	N
, at which the lost weight reaches its maxi-
mum, always scales linearly with 1= lnN, as expected.
The maximum value wL��max	N
; N� turns out to be a
monotonically decreasing function of N.

Application to tunneling density of states.—The domi-
nance of the No-Gaudino state in the spectral function is
not only remarkable by itself, but also has high practical
value: it allows us to calculate the spectral function with
high precision using the DMRG in what we call the ‘‘No-
Gaudino approximation,’’ in which only the No-Gaudino
state is kept in Eq. (2). From the spectral function, in
turn, many important physical quantities can be obtained.
The lost weight wL, defined after Eq. (6), controls the
quality of this approximation: when wL vanishes, the No-
Gaudino approximation is exact.

As an application, we calculate the tunneling density of
states #	!
 �

P
i�Acyi�

	!
 (for !> 0). Figure 2 illus-
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FIG. 2. The tunneling density of states #	E
 for �BCS �
0:07!co and N � 5; 30; 60; 200 energy levels above EFermi in
the No-Gaudino approximation (solid line; for the sake of
better visibility, the delta peaks in Eq. (2) have been replaced
by Gaussians of width 0:005!co). The familiar gap �BCS

emerges during the crossover from the few-electron (d�
�BCS) to the bulk limit (d� �BCS). In the latter limit, we
observe agreement with the BCS result (dashed line).
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trates that during the crossover from the few-electron
(d� �BCS) to the bulk limit (d� �BCS), the familiar
BCS gap of width �BCS emerges together with a strongly
pronounced peak at ! � �BCS as the quasiparticle ener-
gies are kept away from the Fermi surface by the pairing
interaction and accumulate at �BCS. Not shown: As in the
inset of Fig. 1, the lost weight again shows a maximum
around �� 1= lnN and is found to never exceed fractions
of 1%, thus confirming the accuracy of the No-Gaudino
approximation.
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