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Abstract. An algorithm for the simulation of the evolution of slightly entangled
quantum states has been recently proposed as a tool to study time-dependent
phenomena in one-dimensional quantum systems. Its key feature is a time-
evolving block-decimation (TEBD) procedure to identify and dynamically update
the relevant, conveniently small, subregion of the otherwise exponentially large
Hilbert space. Potential applications of the TEBD algorithm are the simulation of
time-dependent Hamiltonians, transport in quantum systems far from equilibrium
and dissipative quantum mechanics. In this paper we translate the TEBD
algorithm into the language of matrix product states in order to both highlight
and exploit its resemblances to the widely used density-matrix renormalization-
group (DMRG) algorithms. The TEBD algorithm, being based on updating
a matrix product state in time, is very accessible to the DMRG community
and it can be enhanced by using well-known DMRG techniques, for instance
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in the event of good quantum numbers. More importantly, we show how it
can be simply incorporated into existing DMRG implementations to produce a
remarkably effective and versatile ‘adaptive time-dependent DMRG’ variant, that
we also test and compare to previous proposals.

Keywords: density matrix renormalization group calculations
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1. Introduction

Over many decades the description of the physical properties of low-dimensional strongly
correlated quantum systems has been one of the major tasks in theoretical condensed
matter physics. Generically, this task is complicated by the strong quantum fluctuations
present in such systems which are usually modelled by minimal-model Hubbard or
Heisenberg-style Hamiltonians. Despite the apparent simplicity of these Hamiltonians,
few analytically exact solutions are available and most analytical approximations remain
uncontrolled. Hence, numerical approaches have always been of particular interest, among
them exact diagonalization and quantum Monte Carlo.

Decisive progress in the description of the low-energy equilibrium properties of one-
dimensional strongly correlated quantum Hamiltonians was achieved by the invention
of the density-matrix renormalization-group (DMRG) [1, 2]. It is concerned with the
iterative decimation of the Hilbert space of a growing quantum system such that some
quantum state, say the ground state, is approximated in that restricted space with a
maximum of overlap with the true state. Let the quantum state of a one-dimensional
system be

|ψ〉 =
∑

i

∑
j

ψij |i〉|j〉, (1)

where we consider a partition of the system into two blocks S and E, and where {|i〉}
and {|j〉} are orthonormal bases of S and E, respectively. Then the DMRG decimation
procedure consists of projecting |ψ〉 on the Hilbert spaces for S and E spanned by the
M eigenvectors |wS

α〉 and |wE
α〉 corresponding to the largest eigenvalues λ2

α of the reduced
density matrices

ρ̂S = TrE|ψ〉〈ψ| ρ̂E = TrS|ψ〉〈ψ|, (2)
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such that ρ̂S|wS
α〉 = λ2

α|wS
α〉 and ρ̂E|wE

α〉 = λ2
α|wE

α〉. That both density matrices have the
same eigenvalue spectrum is reflected in the guaranteed existence of the so-called Schmidt
decomposition of the wavefunction [3],

|ψ〉 =
∑

α

λα|wS
α〉|wE

α〉, λα ≥ 0, (3)

where the number of positive λα is bounded by the dimension of the smaller of the bases
of S and E.

Recently [4]–[9], the ability of the DMRG decimation procedure to preserve the
entanglement of |ψ〉 between S and E has been studied in the context of quantum
information science [3, 10]. This blooming field of research, bridging quantum physics,
computer science and information theory, offers a novel conceptual framework for the
study of quantum many-body systems [3]–[17]. New insights into old quantum many-body
problems can be gained from the perspective of quantum information science, mainly
through its eagerness to characterize quantum correlations. As an example, a better
understanding of the reasons for the breakdown of the DMRG in two-dimensional systems
has been obtained in terms of the growth of bipartite entanglement in such systems [7, 9].

More specifically, in quantum information the entanglement of |ψ〉 between S and E
is quantified by the von Neumann entropy of ρ̂S (equivalently, of ρ̂E),

S(ρ̂S) = −
∑

λ2
α log2 λ2

α, (4)

a quantity that imposes a useful (information theoretical) bound M ≥ 2S on the minimal
number M of states to be kept during the DMRG decimation process if the truncated
state is to be similar to |ψ〉. On the other hand, arguments from field theory imply that,
at zero temperature, strongly correlated quantum systems are in some sense only slightly
entangled in d = 1 dimensions but significantly more entangled in d > 1 dimensions: in
particular, in d = 1 a block corresponding to l sites of a gapped infinite-length chain
has an entropy Sl that stays finite even in the thermodynamical limit l → ∞, while at
criticality Sl only grows logarithmically with l. It is this saturation or, at most, moderate
growth of Sl that ultimately accounts for the success of the DMRG in d = 1. Instead, in
the general d-dimensional case the entropy of bipartite entanglement for a block of linear
dimension l scales as Sl ∼ ld−1. Thus, in d = 2 dimensions the DMRG algorithm should
keep a number M of states that grows exponentially with l, and the simulation becomes
inefficient for large l (while still feasible for small l).

While the DMRG has yielded an enormous wealth of information on the static and
dynamic equilibrium properties of one-dimensional systems [18, 19] and is arguably the
most powerful method in the field, only few attempts have been made so far to determine
the time evolution of the states of such systems, notably in a seminal paper by Cazalilla
and Marston [20]. This question is of relevance in the context of the time-dependent
Hamiltonians realized, e.g. in cold atoms in optical lattices [21, 22], in systems far from
equilibrium in quantum transport, or in dissipative quantum mechanics. However, in
another example of how quantum information science can contribute to the study of
quantum many-body physics, one of us (GV) has recently developed an algorithm for the
simulation of slightly entangled quantum computations [23] that can be used to simulate
time evolutions of one-dimensional systems [17].
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This new algorithm, henceforth referred to as the time-evolving block decimation
(TEBD) algorithm, considers a small, dynamically updated subspace of the blocks S and
E in equation (3) to efficiently represent the state of the system, as we will review in detail
below. It was originally developed in order to show that a large amount of entanglement
is necessary in quantum computations, the rationale being quite simple: any quantum
evolution (e.g. a quantum computation) involving only a ‘sufficiently restricted’ amount
of entanglement can be efficiently simulated in a classical computer using the TEBD
algorithm; therefore, from an algorithmical point of view, any such quantum evolution is
no more powerful than a classical computation.

Regardless of the implications for computer science, the above connection between the
amount of entanglement and the complexity of simulating quantum systems is of obvious
practical interest in condensed matter physics since, for instance, in d = 1 dimensions the
entanglement of most quantum systems happens to be ‘sufficiently restricted’ precisely in
the sense required for the TEBD algorithm to yield an efficient simulation. In particular,
the algorithm has already been implemented and tested successfully on spin chains [17],
the Bose–Hubbard model and single-atom transistors [24], and dissipative systems at finite
temperature [25].

A primary aim of this paper is to re-express the TEBD algorithm in a language more
familiar to the DMRG community than the one originally used in [17, 23], which made
substantial use of the quantum information parlance. This turns out to be a rewarding task
since, as we show, the conceptual and formal similarities between the TEBD and DMRG
are extensive. Both algorithms search for an approximation to the true wavefunction
within a restricted class of wavefunctions, which can be identified as matrix product
states [26], and had also been previously proposed under the name of finitely correlated
states [27]. Arguably, the big advantage of the TEBD algorithm relies on its flexibility
to flow in time through the submanifold of matrix product states. Instead of considering
time evolutions within some restricted subspace according to a fixed, projected, effective
Hamiltonian, the TEBD algorithm updates a matrix product state in time using the bare
Hamiltonian directly. Thus, in a sense, it is the Schrödinger equation that decides, at each
time step, which are the relevant eigenvectors for S and E in equation (3), as opposed to
having to select them from some relatively small, pre-selected subspace.

A second goal of this paper is to show how the two algorithms can be integrated. The
TEBD algorithm can be improved by considering well-known DMRG techniques, such
as the handling of good quantum numbers. But most importantly, we will describe how
the TEBD simulation algorithm can be incorporated into pre-existing, quite widely used
DMRG implementations, the so-called finite-system algorithm [2] using White’s prediction
algorithm [28]. The net result is an extremely powerful ‘adaptive time-dependent DMRG’
algorithm, that we test and compare against previous proposals.

The outline of this paper is as follows: in section 2, we discuss the problems currently
encountered in applying the DMRG to the calculation of explicitly time-dependent
quantum states. Section 3 reviews the common language of matrix product states. We
then express both the TEBD simulation algorithm (section 4) and the DMRG (section 5)
in this language, revealing where both methods coincide, where they differ and how they
can be combined. In section 6, we then formulate the modifications to introduce the
TEBD algorithm into the standard DMRG to obtain the adaptive time-dependent DMRG,
and section 7 discusses an example application, concerning the quantum phase transition
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between a superfluid and a Mott-insulating state in a Bose–Hubbard model. To conclude,
we discuss in section 8 the potential of the new DMRG variant.

2. Simulation of time-dependent quantum phenomena using the DMRG

The first attempt to simulate the time evolution of quantum states using the DMRG
is due to Cazalilla and Marston [20]. After applying a standard DMRG calculation

using the Hamiltonian Ĥ(t = 0) to obtain the ground state of the system at t = 0,
|ψ0〉, the time-dependent Schrödinger equation is numerically integrated forward in time,

building an effective Ĥeff(t) = Ĥeff(0) + V̂eff(t), where Ĥeff(0) is taken as the Hamiltonian

approximating Ĥ(0) in the truncated Hilbert space generated by DMRG. V̂eff(t) as an

approximation to V̂ (t) is built using the representations of operators in the block bases

obtained in the standard DMRG calculation of the t = 0 state. V̂ (t) contains the changes

in the Hamiltonian with respect to the starting Hamiltonian: Ĥ(t) = Ĥ0 + V̂ (t). The
(effective) time-dependent Schrödinger equation reads

i
∂

∂t
|ψ(t)〉 = [Ĥeff − E0 + V̂eff(t)]|ψ(t)〉, (5)

where the time-dependence of the ground state resulting in Ĥ(0) has been transformed
away. If the evolution of the ground state is looked for, the initial condition is obviously
to take |ψ(0)〉 = |ψ0〉 obtained by the preliminary DMRG run. Forward integration can
be carried out by step-size adaptive methods such as the Runge–Kutta integration based
on the infinitesimal time evolution operator

|ψ(t + δt)〉 = (1 − iĤ(t)δt)|ψ(t)〉, (6)

where we drop the subscript denoting that we are dealing with effective Hamiltonians
only. The algorithm used was a fourth-order adaptive size Runge–Kutta algorithm [29].

Sources of errors in this approach are twofold: due to the approximations involved in
numerically carrying out the time evolution, and to the fact that all operators live on a
truncated Hilbert space.

For the systems studied we have obtained a conceptually simple improvement
concerning the time evolution by replacing the explicitly non-unitary time-evolution of
equation (6) by the unitary Crank–Nicholson time evolution

|ψ(t + δt)〉 =
1 − iĤ(t)δt/2

1 + iĤ(t)δt/2
|ψ(t)〉. (7)

To implement the Crank–Nicholson time evolution efficiently we have used a (non-
Hermitian) biconjugate gradient method to calculate the denominator of equation (7).
In fact, this modification ensures higher precision of correlators, and the occurrence of
asymmetries with respect to reflection in the results decreased.

It should be noted, however, that for the Crank–Nicholson approach only lowest-
order expansions of the time evolution operator exp(−iĤδt) have been taken; we have not
pursued feasible higher-order expansions.
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As a testbed for time-dependent DMRG methods we use throughout this paper the
time-dependent Bose–Hubbard Hamiltonian,

ĤBH(t) = −J

L−1∑
i=1

b†i+1bi + b†ibi+1 +
U(t)

2

L∑
i=1

ni(ni − 1), (8)

where the (repulsive) onsite interaction U > 0 is taken to be time-dependent. This model
exhibits for commensurate filling a Kosterlitz–Thouless-like quantum phase transition
from a superfluid phase for u < uc (with u = U/J) to a Mott-insulating phase for u > uc.
We have studied a Bose–Hubbard model with L = 8 and open boundary conditions, total
particle number N = 8, J = 1, and instantaneous switching from U1 = 2 in the superfluid
phase to U2 = 40 in the Mott phase at t = 0. We consider the nearest-neighbour
correlation, a robust numerical quantity, between sites 2 and 3. Up to 8 bosons/site
(i.e. Nsite = 9 states/site) were allowed to avoid cut-off effects in the bosonic occupation
number in all calculations in this section. All times in this paper are measured in units
of �/J or 1/J , setting � ≡ 1. Comparing Runge–Kutta and Crank–Nicholson (with
time steps of δt = 5 × 10−5) we found the latter to be numerically preferable; all static
time-dependent DMRG calculations have been carried out using the latter approach.

However, Hilbert space truncation is at the origin of more severe approximations.
The key assumption underlying the approach of Cazalilla and Marston is that the effective
static Hilbert space created in the preliminary DMRG run is sufficiently large that |ψ(t)〉
can be well approximated within that Hilbert space for all times, such that

ε(t) = 1 − |〈ψ(t)|ψexact(t)〉| (9)

remains small as t grows. This, in general, will only be true for relatively short times. A
variety of modifications that should extend the reach of the static Hilbert space in time
can be imagined. They typically rest on the DMRG practice of ‘targeting’ several states:
to construct the reduced density matrix used to determine the relevant Hilbert space
states, one may carry out a partial trace over a mixture of a small number of states such
that the truncated Hilbert space is constructed so that all of those states are optimally
approximated in the DMRG sense:

ρ̂S = TrE|ψ〉〈ψ| → ρ̂S = TrE

∑
i

αi|ψi〉〈ψi|. (10)

A simple choice uses the targeting of Ĥn|ψ0〉, for n less than 10 or so, approximating
the short-time evolution, which we have found to substantially improve the quality of
results for non-adiabatic switching of Hamiltonian parameters in time: convergence in M
is faster and more consistent with the new DMRG method (see below).

Similarly, we have found that for adiabatic changes of Hamiltonian parameters, results
improve if one targets the ground states of both the initial and final Hamiltonian. These
approaches are conceptually very similar to targeting not only |ψ0〉, but also Ô|ψ0〉 and

some ĤnÔ|ψ0〉, n = 1, 2, 3, . . . in Lanczos vector dynamics DMRG [30, 31], or the real

and imaginary part of (Ĥ − ω − E0 + iη)−1Ô|ψ0〉 in the correction vector dynamics
DMRG [31, 32] to calculate Green functions

〈ψ0|Ô† 1

H − ω − E0 + iη
Ô|ψ0〉. (11)
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Figure 1. Time evolution of the real part of the nearest-neighbour correlations
in a Bose–Hubbard model with instantaneous change of interaction strength at
t = 0: superfluid state targeting only. The different curves for different M are
shifted.

To illustrate the previous approaches, we show results for the parameters of the Bose–
Hubbard model discussed above. Time evolution is calculated in the Crank–Nicholson
approach using a stepwidth δt = 5 × 10−5 in time units of �/J targeting (i) just the
superfluid ground state |ψ0〉 for U1 = 2 (figure 1), (ii) in addition to (i) also the Mott-

insulating ground state |ψ′
0〉 for U2 = 40 and Ĥ(t > 0)|ψ0〉 (figure 2), (iii) in addition to

(i) and (ii) also Ĥ(t > 0)2|ψ0〉 and Ĥ(t > 0)3|ψ0〉 (figure 3).

We have used up to M = 200 states to obtain converged results (meaning that we
could observe no difference between the results for M = 100 and M = 200) for t ≤ 4,
corresponding to roughly 25 oscillations. The results for the cases (ii) and (iii) are almost
converged for M = 50, whereas (i) shows still crude deviations.

A remarkable observation can be made if one compares the three M = 200 curves
(figure 4), which by the standard DMRG procedure (and for lack of a better criterion)
would be considered the final, converged outcome, both amongst each other or to the
result of the new adaptive time-dependent DMRG algorithm which we are going to discuss
below: result (i) is clearly not quantitatively correct beyond very short times, whereas
result (ii) agrees very well with the new algorithm, and result (iii) agrees almost (beside
some small deviations at t ≈ 3) with result (ii) and the new algorithm. Therefore we see
that for case (i) the criterion of convergence in M does not give good control to determine
if the obtained results are correct. This also raises doubts about the reliability of this
criterion for cases (ii) and (iii).

A more elaborate, but also much more time-consuming improvement still within the
framework of a static Hilbert space was proposed by Luo et al [33, 34]. In addition to
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Figure 2. Time evolution of the real part of the nearest-neighbour correlations
in a Bose–Hubbard model with instantaneous change of interaction strength at
t = 0: targeting of the initial superfluid ground state, Mott insulating ground
state and one time-evolution step. The different curves for different M are shifted.
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Figure 3. Time evolution of the real part of the nearest-neighbour correlations
in a Bose–Hubbard model with instantaneous change of interaction strength at
t = 0: targeting of the initial superfluid ground state, Mott insulating ground
state and three time-evolution steps. The different curves for different M are
shifted.
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Figure 4. Comparison of the three M = 200 Crank–Nicholson calculations to
the adaptive time-dependent DMRG at M = 50: we target (i) just the superfluid
ground state |ψ0〉 for U1 = 2 (figure 1), (ii) in addition to (i) also the Mott-
insulating ground state |ψ′

0〉 for U2 = 40 and Ĥ(t > 0)|ψ0〉 (figure 2), (iii) in
addition to (i) and (ii) also Ĥ(t > 0)2|ψ0〉 and Ĥ(t > 0)3|ψ0〉. The different
curves are shifted.

the ground state they target a finite number of quantum states at various discrete times
using a bootstrap procedure starting from the time evolution of smaller systems that are
iteratively grown to the desired final size.

The observation that even relatively robust numerical quantities such as nearest-
neighbour correlations can be qualitatively and quantitatively improved by the additional
targeting of states, which merely share some fundamental characteristics with the true
quantum state (as we will never reach the Mott-insulating ground state) or characterize
only the very short-term time evolution, indicates that it would be highly desirable to have
a modified DMRG algorithm which, for each time t, selects Hilbert spaces of dimension M
such that |ψ(t)〉 is represented optimally in the DMRG sense, thus attaining at all times
the typical DMRG precision for M retained states. The presentation of such an algorithm
is the purpose of the following sections.

3. Matrix product states

As both the TEBD simulation algorithm and DMRG can be neatly expressed in the
language of matrix product states, let us briefly review the properties of these states also
known as finitely correlated states [27, 26].

We begin by considering a one-dimensional system of size L, divided up into sites
which each have a local Hilbert space, Hi. For simplicity we take the same dimension
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Nsite at all sites. In such a system a product state may be expressed as

|σ〉 = |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σL〉, (12)

where |σi〉 denotes the local state on site i. We can express a general state of the whole
system as

|ψ〉 =
∑

σ1,...,σL

ψσ1,...,σL
|σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σL〉

≡
∑

σ

ψσ|σ〉. (13)

This general state exists in the Hilbert space H =
∏L

i=1 Hi, with dimension (Nsite)
L.

A matrix product state is now formed by only using a specific set of expansion
coefficients ψσ. Let us construct this set in the following. To do this we define operators
Âi[σi] which correspond to a local basis state |σi〉 at site i of the original system, but
which act on auxiliary spaces of dimension M , i.e.

Âi[σi] =
∑
α,β

Ai
αβ [σi]|α〉〈β|, (14)

where |α〉 and |β〉 are orthonormal basis states in auxiliary spaces. For visualization, we
imagine the auxiliary state spaces to be located on the bonds next to site i. If we label
the bond linking sites i and i + 1 by i, then we say that the states |β〉 live on bond i and

the states |α〉 on bond i−1. The operators Âi[σi] hence act as transfer operators past site
i depending on the local state on site i. On the first and last site, which will need special
attention later, this picture involves bonds 0 and L to the left of site 1 and to the right
of site L, respectively. While these bonds have no physical meaning for open boundary
conditions, they are identical and link sites 1 and L as one physical bond for periodic
boundary conditions. There is no a priori significance to be attached to the states in the
auxiliary state spaces.

In general, operators corresponding to different sites can be different. If this is the case
the resulting matrix product state to be introduced is referred to as a position dependent
matrix product state. We also impose the condition∑

σi

Âi[σi]Â
†
i [σi] = I, (15)

which we will see to be related to orthonormality properties of bases later. An
unnormalized matrix product state in a form that will be found useful for Hamiltonians
with open boundary conditions is now defined as

|ψ̃〉 =
∑

σ

(
〈φL|

L∏
i=1

Âi[σi]|φR〉
)
|σ〉, (16)

where |φL〉 and |φR〉 are the left and right boundary states in the auxiliary spaces on

bonds 0 and L. They act on the product of the operators Âi to produce scalar coefficients

ψσ = 〈φL|
L∏

i=1

Âi[σi]|φR〉 (17)

for the expansion of |ψ̃〉.
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Several remarks are in order. It should be emphasized that the set of states obeying
equation (16) is an (arbitrarily constructed) submanifold of the full boundary-condition
independent Hilbert space of the quantum many-body problem on L sites that is hoped
to yield good approximations to the true quantum states for Hamiltonians with open
boundary conditions. If the dimension M of the auxiliary spaces is made sufficiently large,
then any general state of the system can, in principle, be represented exactly in this form
(provided that |φL〉 and |φR〉 are chosen appropriately), simply because the O(NsiteLM2)
degrees of freedom to choose the expansion coefficients will exceed NL

site. This is, of
course, purely academic. The practical relevance of the matrix product states even for
computationally manageable values of M is shown by the success of the DMRG, which
is known [35, 36] to produce matrix product states of auxiliary state space dimension M ,
in determining energies and correlators at very high precision for moderate values of M .
In fact, some very important quantum states in one dimension, such as the valence-bond-
solid (VBS) ground state of the Affleck–Kennedy–Lieb–Tasaki (AKLT) model [37]–[39],
can be described exactly by matrix product states using very small M (M = 2 for the
AKLT model).

Let us now formulate a Schmidt decomposition for matrix product states which can be
done very easily. An unnormalized state |ψ̃〉 of the matrix-product form of equation (16)
with auxiliary space dimension M can be written as

|ψ̃〉 =

M∑
α=1

|w̃S
α〉|w̃E

α〉, (18)

where we have arbitrarily cut the chain into S on the left and E on the right with

|w̃S
α〉 =

∑
{σS}

[
〈φL|

∏
i∈S

Âi[σi]|α〉
]
|σS〉, (19)

and similarly |w̃E
α〉, where {|α〉} are the states spanning the auxiliary state space on the

cut bond. Normalizing the states |ψ̃〉, |w̃S
α〉 and |w̃E

α〉 we obtain the representation

|ψ〉 =

M∑
α=1

λα|wS
α〉|wE

α〉 (20)

where in λα the factors resulting from the normalization are absorbed. The relationship
to reduced density matrices is as detailed in section 1.

4. TEBD simulation algorithm

Let us now express the TEBD simulation algorithm in the language of the previous section.
In the original exposition of the algorithm [23], one starts from a representation of a
quantum state where the coefficients for the states are decomposed as a product of tensors,

ψσ1,...,σL
=

∑
α1,...,αL−1

Γ[1]σ1
α1

λ[1]
α1

Γ[2]σ2
α1α2

λ[2]
α2

Γ[3]σ3
α2α3

· · ·Γ[L]σL
αL−1

. (21)

It is of no immediate concern to us how the Γ and λ tensors are constructed explicitly
for a given physical situation. Let us assume that they have been determined such that
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Figure 5. Bipartitioning by cutting bond l between sites l and l + 1.

they approximate the true wavefunction close to the optimum obtainable within the class
of wavefunctions having such coefficients; this is indeed possible as will be discussed below.
There are, in fact, two ways of doing it, within the framework of DMRG (see below), or
by a continuous imaginary time evolution from some simple product state, as discussed
in [17].

Let us once again attempt a visualization; the (diagonal) tensors λ[i], i = 1, . . . , L− 1
are associated with the bonds i, whereas Γ[i], i = 2, . . . , L−1 links (transfers) from bond i
to bond i−1 across site i. Note that at the boundaries (i = 1, L) the structure of the Γ is
different, a point of importance in the following. The sums run over M states |αi〉 living
in auxiliary state spaces on bond i. A priori, these states have no physical meaning here.

The Γ and λ tensors are constructed such that for an arbitrary cut of the system into
a part Sl of length l and a part EL−l of length L− l at bond l, the Schmidt decomposition
for this bipartite splitting reads

|ψ〉 =
∑
αl

λ[l]
αl
|wSl

αl
〉|wEL−l

αl
〉, (22)

with

|wSl
αl
〉 =

∑
α1,...,αl−1

∑
σ1,...,σl

Γ[1]σ1
α1

λ[1]
α1

· · ·Γ[l]σl
αl−1αl

|σ1〉 ⊗ · · · ⊗ |σl〉, (23)

and

|wEL−l
αl

〉 =
∑

αl,...,αL−1

∑
σl+1,...,σL

Γ[l+1]σl+1
αlαl+1

λ[l+1]
αl+1

· · ·Γ[L]σL
αL−1

|σl+1〉 ⊗ · · · ⊗ |σL〉, (24)

where |ψ〉 is normalized and the sets of {|wSl
αl
〉} and {|wEL−l

αl 〉} are orthonormal. This
implies, for example, that∑

αl

(λ[l]
αl

)2 = 1. (25)

We can see that (leaving aside normalization considerations for the moment) this

representation may be expressed as a matrix product state if we choose for Âi[σi] =∑
α,β Ai

αβ [σi]|α〉〈β|

Ai
αβ [σi] = Γ

[i]σi

αβ λ
[i]
β , (26)

except for i = 1, where we choose

A1
αβ [σ1] = fαΓ

[1]σ1

β λ
[1]
β , (27)
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and for i = L, where we choose

AL
αβ [σL] = Γ[L]σL

α gβ. (28)

The vectors fα and gβ are normalized vectors which must be chosen in conjunction with
the boundary states |φL〉 and |φR〉 so as to produce the expansion (21) from this choice

of the Âi. Specifically, we require

|φL〉 =
∑

α

fα|α〉 (29)

|φR〉 =
∑

β

g∗
β|β〉, (30)

where |α〉 and |β〉 are the states forming the same orthonormal basis in the auxiliary spaces
on bonds 0 and L used to express Ai

αβ . In typical implementations of the algorithm it
is common to take fα = gα = δα,1. Throughout the rest of the paper we take this as
the definition for gα and fα, as this allows us to treat the operators on the boundary
identically to the other operators for the purposes of the simulation protocol. For the

same reason we define a vector λ
[0]
α = δα,1.

In the above expression we have grouped Γ and λ such that the λ reside on the
right of the two bonds linked by Γ. There is another valid choice for the Âi, which will
produce identical states in the original system, and essentially the same procedure for the
algorithm. If we set

Ãi
αβ [σi] = λ[i−1]

α Γ
[i]σi

αβ , (31)

except for i = 1, where we choose

Ã1
αβ [σ1] = fαΓ

[1]σ1

β , (32)

and for i = L, where we choose

ÃL
αβ [σL] = λ[L−1]

α Γ[L]σL
α gβ, (33)

then the same choice of boundary states produces the correct coefficients. Here we have
grouped Γ and λ such that the λ reside on the left of the two bonds linked by Γ. It is also
important to note that any valid choice of fα and gβ that produces the expansion (21)
specifically excludes the use of periodic boundary conditions. While generalizations are
feasible, they lead to a much more complicated formulation of the TEBD simulation
algorithm and will not be pursued here.

To conclude the identification of states, let us consider normalization issues. The
condition (15) is indeed fulfilled for our choice of Ai[σi], because we have from (24) for a
splitting at l that

|wEL−(l−1)
αl−1 〉 =

∑
αlσl

Γ[l]σl
αl−1αl

λ[l]
αl
|σl〉 ⊗ |wEL−l

αl
〉

=
∑
αlσl

Al
αl−1αl

[σl]|σl〉 ⊗ |wEL−l
αl

〉, (34)
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so that from the orthonormality of the sets of states {|wEL−(l−1)
α 〉}M

α=1, {|σl〉}Nsite
σl=1 and

{|wEL−l
γ 〉}M

γ=1, ∑
σl

Âl[σl]Â
†
l [σl] =

∑
αβγ

∑
σl

Al
αγ [σl](A

l
βγ [σl])

∗|α〉〈β|

=
∑
αβ

〈wEL−(l−1)

β |wEL−(l−1)
α 〉|α〉〈β|

=
∑
αβ

δαβ |α〉〈β| = I. (35)

Let us now consider the time evolution for a typical (possibly time-dependent)
Hamiltonian in strongly correlated systems that contains only short-ranged interactions,
for simplicity only nearest-neighbour interactions here:

Ĥ =
∑
i odd

F̂i,i+1 +
∑
j even

Ĝj,j+1, (36)

Fi,i+1 and Gj,j+1 are the local Hamiltonians on the odd bonds linking i and i +1, and the
even bonds linking j and j + 1. While all F and G terms commute among each other, F
and G terms do not, in general, commute if they share one site. Then the time evolution
operator may be approximately represented by a (first order) Trotter expansion as

e−iĤδt =
∏
i odd

e−iF̂i,i+1δt
∏

j even

e−iĜj,j+1δt + O(δt2), (37)

and the time evolution of the state can be computed by repeated application of the
two-site time evolution operators exp(−iĜj,j+1δt) and exp(−iF̂i,i+1δt). This is a well-
known procedure in particular in a quantum Monte Carlo [40] where it serves to carry
out imaginary time evolutions (checkerboard decomposition).

The TEBD simulation algorithm now runs as follows [23, 17]:

(i) Perform the following two steps for all even bonds (order does not matter):

(a) Apply exp(−iĜl,l+1δt) to |ψ(t)〉. For each local time update, a new wavefunction
is obtained. The number of degrees of freedom on the ‘active’ bond thereby
increases, as will be detailed below.

(b) Carry out a Schmidt decomposition cutting this bond and retain as in the DMRG
only those M degrees of freedom with the highest weight in the decomposition.

(ii) Repeat this two-step procedure for all odd bonds, applying exp(−iF̂l,l+1δt).

(iii) This completes one Trotter time step. One may now evaluate expectation values at
selected time steps, and continues the algorithm from step 1.

Let us now consider the computational details.
(i) Consider a local time evolution operator acting on bond l, i.e. sites l and l +1, for

a state |ψ〉. The Schmidt decomposition of |ψ〉 after partitioning by cutting bond l reads

|ψ〉 =

M∑
αl=1

λ[l]
αl
|wSl

αl
〉|wEL−l

αl
〉. (38)
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Using equations (23), (24) and (34), we find

|ψ〉 =
∑

αl−1αlαl+1

∑
σlσl+1

λ[l−1]
αl−1

Al
αl−1αl

[σl]A
l+1
αlαl+1

[σl+1]|wSl−1
αl−1

〉|σl〉|σl+1〉|w
EL−(l+1)
αl+1 〉. (39)

We note that if we identify |wSl−1
αl−1〉 and |wEL−(l+1)

αl+1 〉 with the DMRG system and environment
block states |wS

ml−1
〉 and |wE

ml+1
〉, we have a typical DMRG state for two blocks and two

sites

|ψ〉 =
∑
ml−1

∑
σl

∑
σl+1

∑
ml+1

ψml−1σlσl+1ml+1
|wS

ml−1
〉|σl〉|σl+1〉|wE

ml+1
〉 (40)

with

ψml−1σlσl+1ml+1
=

∑
αl

λ[l−1]
ml−1

Al
ml−1αl

[σl]A
l+1
αlml+1

[σl+1]. (41)

The local time evolution operator on site l, l + 1 can be expanded as

Ûl,l+1 =
∑

σlσl+1

∑
σ′

lσ
′
l+1

U
σ′

lσ
′
l+1

σlσl+1 |σ′
lσ

′
l+1〉〈σlσl+1| (42)

and generates |ψ′〉 = Ûl,l+1|ψ〉, where

|ψ′〉 =
∑

αl−1αlαl+1

∑
σlσl+1

∑
σ′

lσ
′
l+1

λ[l−1]
αl−1

Al
αl−1αl

[σ′
l]A

l+1
αlαl+1

[σ′
l+1]U

σlσl+1

σ′
lσ

′
l+1

|wSl−1
αl−1

〉|σl〉|σl+1〉|w
EL−(l+1)
αl+1 〉.

This can also be written as

|ψ′〉 =
∑

αl−1αl+1

∑
σlσl+1

Θσlσl+1
αl−1αl+1

|wSl−1
αl−1

〉|σl〉|σl+1〉|w
EL−(l+1)
αl+1 〉, (43)

where

Θσlσl+1
αl−1αl+1

= λ[l−1]
αl−1

∑
αlσ

′
lσ

′
l+1

Al
αl−1αl

[σ′
l]A

l+1
αlαl+1

[σ′
l+1]U

σlσl+1

σ′
lσ

′
l+1

. (44)

(ii) Now a new Schmidt decomposition identical to that in DMRG can be carried out for
|ψ′〉: cutting once again bond l, there are now MNsite states in each part of the system,
leading to

|ψ′〉 =

MNsite∑
αl=1

λ̃[l]
αl
|w̃Sl

αl
〉|w̃EL−l

αl
〉. (45)

In general the states and coefficients of the decomposition will have changed compared to
the decomposition (38) previous to the time evolution, and hence they are adaptive. We
indicate this by introducing a tilde for these states and coefficients. As in the DMRG,
if there are more than M non-zero eigenvalues, we now choose the M eigenvectors

corresponding to the largest λ̃
[l]
αl to use in these expressions. The error in the final

state produced as a result is proportional to the sum of the magnitudes of the discarded
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eigenvalues. After normalization, to allow for the discarded weight, the state reads

|ψ′〉 =

M∑
αl=1

λ[l]
αl
|wSl

αl
〉|wEL−l

αl
〉. (46)

Note again that the states and coefficients in this superposition are in general different
from those in equation (38); we have now dropped the tildes again, as this superposition
will be the starting point for the next time evolution (state adaption) step. As is done in
DMRG, to obtain the Schmidt decomposition reduced density matrices are formed, e.g.

ρ̂E = TrS|ψ′〉〈ψ′|

=
∑

σl+1σ′
l+1αl+1α′

l+1

|σl+1〉|wαl+1
〉〈wα′

l+1
|〈σ′

l+1|


 ∑

αl−1σl

Θσlσl+1
αl−1αl+1

(Θ
σlσ

′
l+1

αl−1α′
l+1

)∗


 . (47)

If we now diagonalize ρ̂E, we can read off the new values of Al+1
αlαl+1

[σl+1] because the

eigenvectors |wEL−l
αl 〉 obey

|wEL−l
αl

〉 =
∑

σl+1αl+1

Al+1
αlαl+1

[σl+1]|σl+1〉|w
EL−(l+1)
αl+1 〉. (48)

We also obtain the eigenvalues (λ
[l]
αl)

2. Due to the asymmetric grouping of Γ and λ into A
discussed above, a short calculation shows that the new values for Al

αl−1αl
[σl] can be read

off from the slightly more complicated expression

λ[l]
αl
|wSl

αl
〉 =

∑
αl−1σl

λ[l−1]
αl−1

Al
αl−1αl

[σl]|wSl−1
αl−1

〉|σl〉. (49)

The states |wSl
αl
〉 are the normalized eigenvectors of ρ̂S formed in analogy to ρ̂E.

The key point about the TEBD simulation algorithm is that a DMRG-style truncation
to keep the most relevant density matrix eigenstates (or the maximum amount of
entanglement) is carried out at each time step. This is in contrast with time-dependent
DMRG methods used up to now, where the basis states were chosen before the time
evolution, and did not ‘adapt’ to optimally represent the final state.

5. DMRG and matrix-product states

Typical normalized DMRG states for the combination of two blocks S and E and two
single sites (figure 6) have the form

|ψ〉 =
∑
ml−1

∑
σl

∑
σl+1

∑
ml+1

ψml−1σlσl+1ml+1
|wS

ml−1
〉|σl〉|σl+1〉|wE

ml+1
〉 (50)

which can be Schmidt decomposed as

|ψ〉 =
∑
ml

λ[l]
ml
|wS

ml
〉|wE

ml
〉. (51)

It has been known for a long time [35, 36] that a DMRG calculation retaining M
block states produces M × M matrix-product states for |ψ〉. Consider the reduced basis
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Figure 6. Typical two-block two-site setup of the DMRG used here.

transformation to obtain the states of DMRG block S that terminates on bond l from
those of the block terminating on bond l − 1 and those on a single site l,

〈wS
ml−1

σl|wS
ml
〉 ≡ Al

ml−1ml
[σl], (52)

such that

|wS
ml
〉 =

∑
ml−1σl

Al
ml−1ml

[σl]|wS
ml−1

〉 ⊗ |σl〉. (53)

The reduced basis transformation matrices Al[σl] automatically obey equation (15), which
here ensures that {|wS

ml
〉} is an orthonormal set provided {|wS

ml−1
〉} is one too. We may

now use equation (53) for a backward recursion to express |wS
ml−1

〉 via |wS
ml−2

〉 and so forth.
There is a complication as the number of block states for very short blocks is less than

M . For simplicity, we assume that M is chosen such that we have exactly N Ñ
site = M . If

we stop the recursion at the shortest block of size Ñ that has M states we obtain

|wS
ml
〉 =

∑
mÑ+1···ml−1

∑
σ1···σl

AÑ+1
mÑ mÑ+1

[σÑ+1] · · ·Al
ml−1ml

[σl]|σ1 · · ·σl〉, (54)

where we have boundary-site states on the first Ñ sites indexed by mÑ ≡ {σ1 · · ·σÑ}.
Similarly, for the DMRG block E we have

〈wE
ml+1

σl+1|wE
ml
〉 ≡ Al+1

mlml+1
[σl+1], (55)

such that (again having Ñ boundary sites) a recursion gives

|wE
ml
〉 =

∑
ml+1···mL−Ñ

∑
σl+1···σL

Al+1
mlml+1

[σl+1] · · ·AL−Ñ
mL−Ñ−1mL−Ñ

[σL−Ñ ]|σl+1 · · ·σL〉, (56)

with boundary-site states on the last Ñ sites indexed by mL−Ñ ≡ {σL−Ñ+1 · · ·σL}.
A comparison with equations (16), (18) and (19) shows that the DMRG generates

position-dependent M × M matrix-product states as block states for a reduced Hilbert
space of M states; the auxiliary state space to a bond is given by the Hilbert space of the
block at whose end the bond sits. This physical meaning attached to the auxiliary state
spaces and the fact that for the shortest block the states can be labelled by good quantum
numbers (if available) ensures through (52) and (55) that they carry good quantum
numbers for all block sizes. The big advantage is that using good quantum numbers
allows us to exclude a large amount of wavefunction coefficients as being 0, drastically
speeding up all calculations by at least one, and often two, orders of magnitude. Moreover,
as is well known, DMRG can be easily adapted to periodic boundary conditions, which is in
principle also possible for the TEBD algorithm but cumbersome to implement. Fermionic
degrees of freedom also present no specific problem and, in particular, there exists no
negative sign problem of the kind that is present in quantum Monte Carlo methods.

J. Stat. Mech.: Theor. Exp. (2004) P04005 (stacks.iop.org/JSTAT/2004/P04005) 18

http://stacks.iop.org/JSTAT/2004/P04005


JS
TAT

(2004)
P

04005

Adaptive time-dependent DMRG

Figure 7. Finite-system DMRG algorithm. Block growth and shrinkage. For
the adaptive time-dependent DMRG, replace ground state optimization by local
time evolution.

The effect of the finite-system DMRG algorithm [2] is now to shift the two free sites
through the chain, growing and shrinking the blocks S and E as illustrated in figure 7.
At each step, the ground state is redetermined and a new Schmidt decomposition carried
out in which the system is cut between the two free sites, leading to a new truncation
and new reduced basis transformations (two matrices A adjacent to this bond). It is thus
a sequence of local optimization steps of the wavefunction oriented towards an optimal
representation of the ground state. Typically, after some ‘sweeps’ of the free sites from left
to right and back, physical quantities evaluated for this state converge. While comparison
of the DMRG results to exact results shows that one often comes extremely close to an
optimal representation within the matrix state space (which justifies the use of the DMRG
algorithm to obtain them), it has been pointed out and numerically demonstrated [36, 41]
that finite-system DMRG results can be further improved and better matrix product
states be produced by switching, after convergence is reached, from the S • •E scheme
(with two free sites) to an S • E scheme and to carry out some more sweeps. This point
is not pursued further here, it just serves to illustrate that the finite-system DMRG for
all practical purposes comes close to an optimal matrix product state, while not strictly
reaching the optimum.

As the actual decomposition and truncation procedure in the DMRG and the TEBD
simulation algorithm are identical, our proposal is to use the finite-system algorithm
to carry out the sequence of local time evolutions (instead of, or after, optimizing the
ground state), thus constructing by Schmidt decomposition and truncation new block
states best adapted to a state at any given point in the time evolution (hence adaptive
block states), as in the TEBD algorithm, while maintaining the computational efficiency of
the DMRG. To do this, one needs not only all reduced basis transformations, but also the
wavefunction |ψ〉 in a two-block two-site configuration such that the bond that is currently
updated consists of the two free sites. This implies that |ψ〉 has to be transformed between
different configurations. In the finite-system DMRG such a transformation, which was first
implemented by White [28] (‘state prediction’), is routinely used to predict the outcome of
large sparse matrix diagonalizations, which no longer occur during time evolution. Here
it merely serves as a basis transformation. We will outline the calculation for shifting the
active bond by one site to the left.
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Starting from

|ψ〉 =
∑
mS

l−1

∑
σl

∑
σl+1

∑
mE

l+1

ψmS
l−1σlσl+1mE

l+1
|wS

ml−1
〉|σl〉|σl+1〉|wE

ml+1
〉, (57)

one inserts the identity
∑

mE
l
|wE

ml
〉〈wE

ml
| obtained from the Schmidt decomposition

(i.e. density matrix diagonalization) to obtain

|ψ〉 =
∑
mS

l−1

∑
σl

∑
mE

l

ψmS
l−1σlm

E
l
|wS

ml−1
〉|σl〉|wE

ml
〉, (58)

where

ψmS
l−1σlm

E
l

=
∑
mE

l+1

∑
σl+1

ψmS
l−1σlσl+1mE

l+1
Al+1

mlml+1
[σl+1]. (59)

After inserting in a second step the identity
∑

mS
l−2σl−1

|wS
ml−2

σl−1〉〈wS
ml−2

σl−1|, one ends

up with the wavefunction in the shifted bond representation:

|ψ〉 =
∑
mS

l−2

∑
σl−1

∑
σl

∑
mE

l

ψmS
l−2σl−1σlm

E
l
|wS

ml−2
〉|σl−1〉|σl〉|wE

ml
〉, (60)

where

ψmS
l−2σl−1σlm

E
l

=
∑
mS

l−1

ψmS
l−1σlm

E
l
Al−1

ml−2ml−1
[σl−1]. (61)

6. Adaptive time-dependent DMRG

The adaptive time-dependent DMRG algorithm which incorporates the TEBD simulation
algorithm in the DMRG framework is now set up as follows (details on the finite-system
algorithm can be found in [2]):

(1) Set up a conventional finite-system DMRG algorithm with state prediction using the

Hamiltonian at time t = 0, Ĥ(0), to determine the ground state of some system of
length L using effective block Hilbert spaces of dimension M . At the end of this stage
of the algorithm, we have for blocks of all sizes l reduced orthonormal bases spanned
by states |ml〉, which are characterized by good quantum numbers. Also, we have all
reduced basis transformations, corresponding to the matrices A.

(2) For each Trotter time step, use the finite-system DMRG algorithm to run one sweep
with the following modifications:

(i) For each even bond apply the local time evolution Û at the bond formed by
the free sites to |ψ〉. This is a very fast operation compared to determining the
ground state, which is usually done instead in the finite-system algorithm.

(ii) As always, perform a DMRG truncation at each step of the finite-system
algorithm, hence O(L) times.

(iii) Use White’s prediction method to shift the free sites by one.

(3) In the reverse direction, apply step (i) to all odd bonds.
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(4) As in the standard finite-system DMRG evaluate operators when desired at the end
of some time steps. Note that there is no need to generate these operators at all
those time steps where no operator evaluation is desired, which will, due to the small
Trotter time step, be the overwhelming majority of steps.

The calculation time of adaptive time-dependent DMRG scales linearly in L, as
opposed to the static time-dependent DMRG which does not depend on L. The
diagonalization of the density matrices (Schmidt decomposition) scales as N3

siteM
3; the

preparation of the local time evolution operator as N6
site, but this may have to be done

only rarely, e.g. for discontinuous changes of interaction parameters. Carrying out the
local time evolution scales as N4

siteM
2; the basis transformation scales as N2

siteM
3. As

M � Nsite typically, the algorithm is of the order of O(LN3
siteM

3) at each time step.

7. Case study: time-dependent Bose–Hubbard model

In this section we present some results of calculations on the Bose–Hubbard Hamiltonian
introduced in section 2 which have been carried out using modest computational resources
and an unoptimized code (this concerns in particular the operations on complex matrices
and vectors). In the following, Trotter time steps down to δt = 5 × 10−4 in units of �/J
were chosen. It is also important to note that in contrast to the DMRG calculations shown
earlier for the conventional time-dependent DMRG Nsite = 14 states/site were used as a
local site basis for all calculations in this section.

Comparing the results of the adaptive time-dependent DMRG for the Bose–Hubbard
model with the parameters chosen as in section 2 with the static time-dependent DMRG
we find that the convergence in M is much faster; for the nearest neighbour correlations it
sets in at about M = 40 (figure 8) compared to M = 100 for the static method (figure 3).

This faster convergence in M enables us to study larger systems than with the
static time-dependent DMRG (figure 9). In the L = 32 system considered here, we
encountered severe convergence problems using the static time-dependent DMRG. By
contrast, in the new approach convergence sets in for M well below 100, which is easily
accessible numerically. Let us remark that the number M of states which have to be
kept does certainly vary with the exact parameters chosen, depending if the state can
be approximated well by matrix product states of a low dimension. At least in the case
studied here, we found that this dependency is quite weak. We expect (also from studying
the time evolution of density matrix spectra) that the model dependence of M is roughly
similar as in the static case.

Similar observations are made both for local occupancy (a simpler quantity than
nearest-neighbour correlations) and longer-ranged correlations (where we expect less
precision). Moving back to the parameter set of section 2, we find as expected that
the result for the local occupancy (figure 10) is converged for the same M leading
to convergence in the nearest-neighbour correlations. In contrast, if we consider the
correlation 〈b†b〉 between sites further apart from each other, the numerical results
converge more slowly under an increase of M than the almost local quantities. This
can be seen in figure 11, where the results for M = 40 and 50 still differ a bit for times
larger than t ≈ 2�/J .

The controlling feature of the DMRG is the density matrix formed at each DMRG
step—the decay of the density-matrix eigenvalue spectrum and the truncated weight
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Figure 8. Time evolution of the real part of nearest-neighbour correlations in a
Bose–Hubbard model with instantaneous change of interaction strength using the
adaptive time-dependent DMRG. The different curves for different M are shifted
(parameters as in section 2).
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Figure 9. Time evolution of the real part of nearest-neighbour correlations
in a Bose–Hubbard model with instantaneous change of interaction strength
using the adaptive time-dependent DMRG but for a larger system L = 32 with
N = 32 bosons. The different curves for different M are shifted, comparing
M = 30, 50, 70 to M = 80, respectively.
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Figure 10. Time evolution of the occupancy of the second site. Parameters as
used in section 2 (L = 8, N = 8). The different curves for different M are shifted.
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Figure 11. Time evolution of the real part of the correlation between site 2 and
7. Parameters as used in section 2 with N = 8 particles. The different curves
for different M are shifted. Note that the plot starts at t = 1 (parameters were
changed at t = 0).

(i.e. the sum of all eigenvalues whose eigenvectors are not retained in the block bases)
control its precision. In the discarded weight for the Bose–Hubbard model of section 2
shown in figure 12, we can observe that the discarded weight shrinks drastically, going from
M = 20 to 50. This supports the idea that the system shows a fast convergence in M .
Even more importantly, the discarded weight grows in time, as the state that was originally
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Figure 12. Discarded weight for different values of M . Parameters chosen as in
section 2.

a ground state at t < 0 decays into a superposition of many eigenstates of the system
at t > 0. However, in particular for larger M , it stays remarkably small throughout the
simulation, indicating that the adaptive time-dependent DMRG tracks the time-evolving
state with high precision. Moving to the detailed spectrum of the density matrix (shown
in figure 13 for the left density matrix when the chain is symmetrically decomposed into S
and E), the corresponding distribution of the eigenvalues can be seen to be approximately
exponential. In agreement with the increasing truncation error, one also observes that the
decay becomes less steep as time grows. Yet, we still find a comparatively fast decay of
the eigenvalue spectrum at all times, necessary to ensure the applicability of the TEBD
and the adaptive time-dependent DMRG, respectively.

Note for all results shown that the unusually large number of states per site (Nsite =
14), which would not occur in fermionic Hubbard or Heisenberg models, could there
be translated directly into longer chains or larger state spaces (larger M) for the same
computational effort, given that the algorithm is O(LN3

siteM
3). In that sense, we have been

discussing an algorithmically hard case, but in fermionic models the DMRG experience
tells us that M has to be taken much larger in fermionic systems. For the fermionic
Hubbard model, with Nsite = 4, more than M = 300 is feasible with the unoptimized
code, and much higher M values would be possible if optimizations were carried out.
This should be enough to have quantitatively reliable time-evolutions for fermionic chains,
while of course not reaching the extreme precision one is used to in the DMRG for the
static case. As the algorithmic cost is dominated by (NsiteM)3, the product NsiteM is an
important quantity to look at: while current TEBD implementations range at 100 or less,
the adaptive time-dependent DMRG using good quantum numbers runs at the order of
1000 (and more).

J. Stat. Mech.: Theor. Exp. (2004) P04005 (stacks.iop.org/JSTAT/2004/P04005) 24

http://stacks.iop.org/JSTAT/2004/P04005


JS
TAT

(2004)
P

04005

Adaptive time-dependent DMRG

 0  10  20  30  40  50

ei
ge

nv
al

ue

n

t=1.0098
t=0.3069
t=0.0099

 1e–14

 1e–12

 1e–10

 1e–08

 1e–06

 0.0001

 0.01

 1

Figure 13. Eigenvalue spectrum of the left reduced density matrix at different
times for a symmetric S/E decomposition. Parameters chosen as in section 2,
M = 50 states retained.

Let us conclude this section by pointing out that at least one improvement can be
incorporated almost trivially into this most simple version of the adaptive time-dependent
DMRG. Since we have used a first-order Trotter decomposition, we expect that for fixed
M results of measurements at a fixed time converge linearly with respect to the time
step δt chosen, as the error per time step scales as δt2, but the number of time steps
needed to reach the fixed time grows as δt−1. In other words, the Trotter error is inversely
proportional to the calculation time spent. This can indeed be observed in results such
as presented in figure 14.

It is very easy, and at hardly any algorithmic cost, for a second order Trotter
decomposition to be implemented, leading to errors of order δt2. The second order Trotter
decomposition reads [40]

e−iĤδt = e−iĤoddδt/2e−iĤevenδte−iĤoddδt/2, (62)

where we have grouped all local Hamiltonians on odd and even bonds into Ĥodd and
Ĥeven, respectively. At first sight this seems to indicate that at each Trotter time step
three (instead of two) moves (‘zips’) through the chain have to be carried out. However, in
many applications at the end of most time steps, the Hamiltonian does not change, such

that for almost all time steps, we can contract the second e−iĤoddδt/2 from the previous and

the first e−iĤoddδt/2 from the current time step to a standard e−iĤoddδt time step. Hence,
we incur almost no algorithmic cost. This is also standard practice in quantum Monte
Carlo [44]; following QMC, the second order Trotter evolution is set up as follows:

(i) Start with a half-time step e−iĤoddδt/2.

(ii) Carry out successive time steps e−iĤevenδt and e−iĤoddδt.
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Figure 14. Convergence in the Trotter time of the real part of the nearest-
neighbour correlations between site 2 and 3 in a Bose–Hubbard model with
instantaneous change with the parameters chosen as in section 2 at a fixed time.

(iii) At measuring times, measure expectation values after a e−iĤoddδt time step, and again

after a time step e−iĤevenδt, and form the average of the two values as the outcome of
the measurement.

(iv) At times when the Hamiltonian changes, do not contract two half-time steps into one
time step.

In this way, additional algorithmic cost is only incurred at the (in many applications rare)
times when the Hamiltonian changes while strongly reducing the Trotter decomposition
error. Even more precise, but now at an algorithmic cost of factor 5 over the first- or
second-order decompositions, would be the use of fourth-order Trotter decompositions
(leading to 15 zips through the chain per time step, of which five, however, can typically
be eliminated) [42, 43].

8. Conclusion

The TEBD algorithm for the simulation of slightly entangled quantum systems, such
as quantum spin chains and other one-dimensional quantum systems, was originally
developed in order to establish a link between the computational potential of quantum
systems and their degree of entanglement, and serves therefore as a good example of how
concepts and tools from quantum information science can influence other areas of research,
in this case quantum many-body physics.

While exporting ideas from one field of knowledge to another may appear as an
exciting and often fruitful enterprise, differences in language and background between
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researchers in so far separated fields can also often become a serious obstacle to the proper
propagation and full assimilation of such ideas. In this paper we have translated the TEBD
algorithm into the language of matrix product states. This language is a natural choice
to express the DMRG algorithm—which, for over a decade, has dominated the simulation
of one-dimensional quantum many-body systems. In this way, we have made the TEBD
algorithm fully accessible to the DMRG community. On the other hand, this translation
has made evident that the TEBD and the DMRG algorithms have a number of common
features, a fact that can be exploited.

We have demonstrated that a very straightforward modification of existing finite-
system DMRG codes to incorporate the TEBD leads to a new adaptive time-dependent
DMRG algorithm. Even without attempting to reach the computationally most efficient
incorporation of the TEBD algorithm into DMRG implementations, the resulting code
seems to perform systematically better than static time-dependent DMRG codes at very
reasonable numerical cost, converging for much smaller state spaces, as they change in
time to track the actual state of the system. On the other hand, while it presents no new
conceptual idea, the new code is also significantly more efficient than existing embodiments
of the TEBD, for instance thanks to the way the DMRG handles good quantum numbers.
While we have considered bosons as an example, as in the standard DMRG, fermionic and
spin systems present no additional difficulties. Various simple further improvements are
feasible, and we think that the adaptive time-dependent DMRG can be applied not only
to problems with explicitly time-dependent Hamiltonians, but also to problems where the
quantum state changes strongly in time, such as in systems where the initial quantum
state is far from equilibrium. The method should thus also be of great use in the fields of
transport and driven dissipative quantum systems.
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