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Abstract

Recently, quantum spin liquids (QSL), as an example of topologically ordered phases,
have attracted much attention [1]. A prominent model potentially hosting QSL states is
the Heisenberg-Kitaev model on the triangular lattice. Earlier analyses using Schwinger
boson mean-field theory (SBMFT) predicted three QSL phases in this model [2]. In this
thesis, we use an effective action approach to study the system analytically in order to gain
insight into the nature of one of the corresponding quantum phase transitions. Starting
from a Schwinger boson representation of the model, we perform a Hubbard-Stratonovich
decoupling in the pairing channel using singlet and triplet fields. Integrating out the
Schwinger bosons, we derive a critical theory for the phase transition. This results in a
theory of three interacting bosonic fields, dispersing along one of the lattice directions
each. We study the critical phenomena of this theory using mean-field theory and the
functional renormalization group (fRG), and find the phase transition to be of second
order in agreement with the predictions of SBMFT. This shows that the combination of
an effective action and fRG can give insights into phase transitions between different QSLs.
Furthermore, our method can be generalized to other systems hosting QSL states.
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1 Chapter 1

Introduction

Since the early days of quantum mechanics, the intrinsic ‘quantumness’ of spin has posed
an interesting challenge for theoretical and experimental physicists. In particular, the in-
sight that the spin and magnetic properties of a system are intertwined at a microscopic
level gave rise to a new field of physics, nowadays called ‘quantum magnetism’, that de-
scribes magnetic properties from a quantum mechanical point of view [3].

The simplest models of quantum magnetism involve localized spins on a lattice, which
are often derived from underlying microscopic models for the electrons in a solid, as for
example the fermionic Hubbard model [4]. Already, these seemingly easy spin models
provide an interesting playground for the study of (strongly-correlated) quantum many-
body systems. Consequently, an enormous number of approaches has been used to study
quantum magnets numerically (e.g. Quantum Monte Carlo [5], DMRG [6], tensor network
methods [7], exact diagonalization [8]) and analytically (e.g. large N expansion [9], slave-
particle mean-field theory [1,10]). At the same time, the close connection to real materials
has lead to many experimental studies of spin systems in solid-state systems as well as
realizations in cold atom experiments [11].

In recent years, the field of quantum magnetism has seen a renaissance with the discovery
of topologically ordered phases. Loosely speaking, this kind of order is characterized by
the absence of a local order parameter describing a broken symmetry, and therefore has
to be studied and understood globally [12, 13]. One class of topologically ordered states
are so-called quantum spin liquid states, which can arise as ground states of frustrated
spin models. The possibility to formulate the underlying models in terms of lattice gauge
theories has given rise to analogies to high energy physics, most prominently Higgs mech-
anisms and particle confinement [14].

Again, a new perspective presents itself by combining lattice symmetries with topologi-
cally ordered states. In this way, symmetry enriched topological phases can be defined,
which are characterized by both, topological properties as well as the representation of
the symmetry group of the underlying lattice. These phases can be (partially) classified
using the projective symmetry group [1] or group cohomology [15].

An example of a system hosting different symmetry enriched topological phases, and in
particular different quantum spin liquid states, is the Heisenberg-Kitaev model on the
triangular lattice. Kos and Punk [2] used Schwinger boson mean-field theory to analyze
this model. For a totally symmetric mean-field ansatz they found the system to host three
quantum spin liquid ground states, which are separated by quantum phase transitions.
However, the details of the phase transitions remained unclear. The nature of one of these
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1 Introduction

quantum phase transitions will be discussed in this thesis. To this end, we will derive an
effective action for the relevant degrees of freedom in chapter 3 using a Schwinger boson
representation of the spin degrees of freedom. To get a first understanding of the possible
phases, we perform a mean-field analysis of the resulting effective action in chapter 4. In
chapter 5, we use the functional renormalization group to derive one-loop renormalization
group flow equations and use them to understand the critical behavior of the theory.

We confirm the existence of the quantum phase transition using analytical tools without
relying on numerical methods. Furthermore, we derive a critical theory characterizing
the phase transition and argue that it is indeed second order by both mean-field and RG
arguments.

Before we start our endeavor, we will review some theoretical background on quantum
phase transitions, quantum spin liquids and renormalization group methods in chapter 2.
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2 Chapter 2

Theoretical Background

To set the stage for our discussion of quantum phase transitions in the Heisenberg-Kitaev
model, some theoretical foundations are introduced in this chapter. First, a very short
exposition of quantum phase transitions is given. For a deeper understanding we refer
to the literature (e.g. Sachdev’s book on quantum phase transitions [16]). We discuss in
some detail magnetic (dis)order on the square and triangular lattice to obtain a working
definition of quantum spin liquids. Afterwards, we define some basic notation and the
Heisenberg and Kitaev models, before we turn to a short review of earlier work on the
Heisenberg-Kitaev model on the triangular lattice and discuss connections to real mate-
rials. Eventually, we introduce basic concepts of the renormalization group method and
the functional renormalization group.

2.1. Quantum Phase Transitions and Quantum Spin Liquids

2.1.1. Quantum Phase Transitions

As is well-known from statistical physics, when lowering the temperature, many systems
undergo phase transitions from (thermally) disordered to ordered phases. Such a phase
transition is driven by thermal fluctuations which contribute more at high temperatures
and therefore lead to disorder in this regime. When lowering the temperature, the ther-
mal fluctuations become increasingly negligible and the system will finally reach its ground
state. This idea gave rise to Landau’s theory of phase transitions formulated in terms of
order parameters and symmetry breaking. Today we know some exceptions to this theory
even for thermal phase transitions, in particular in low dimensions. However for a rough
understanding of the difference between classical and quantum phase transitions this sim-
plified picture is sufficient at this point.

In quantum mechanical systems, additional quantum fluctuations play an important role.
When lowering the temperature, these quantum fluctuations become more and more im-
portant [16] and at zero temperature, they are the only kind of fluctuations that persist.
If the system depends on some non-thermal control parameter, the ground state of the
system may depend on this non-thermal parameter. Then, by changing this parameter,
the system may undergo what is called a quantum phase transition (QPT) and the point
of the phase transition is called a quantum critical point (QCP). These transitions are
clearly driven by quantum fluctuations as they occur at zero temperature, T = 0. A
generic phase diagram for a system undergoing a QPT is given in Fig. 2.1.

3



2 Theoretical Background

g0 QCP

T

Quantum critical

regime

Ordered Disordered

Fig. 2.1. Schematic phase diagram around a quantum critical point (QCP), where T
denotes the temperature and g denotes a non-thermal control parameter. The solid line
indicates a classical second order phase transition around which the classical theory of
thermal fluctuations may be applied. The dashed line indicates the crossover into the
quantum critical regime, where the finite-temperature behavior is affected by the QCP.
(Figure adapted from [16])

In addition to the QPT at zero temperature, there is a quantum critical regime, where
the finite-temperature properties of the system are controlled by the QCP. In this regime,
quantum and thermal fluctuations are equally important and a classical description of the
system cannot be used. It is important to mention that the crossover behavior around
this quantum critical regime is not a thermal phase transition but really a crossover. The
quantum critical regime is of great interest due to the interplay of quantum and thermal
fluctuations. Even more, as any experiment will perform measurements at temperatures
T > 0, understanding the influence of the QCP on the behavior in the quantum critical
regime is very important for a correct interpretation of such measurements.

2.1.2. Quantum Spin Liquids

For spin systems, phase transitions can often be described by a local order parameter
measuring magnetic order in the system. To illustrate this situation, consider Ising spins
on the square lattice with an anti-ferromagnetic nearest-neighbor interaction. We want
to find the ground state of this model. For the first spin we have the freedom to have it
point parallel to the z-axis or anti-parallel.1 For the neighboring spins the orientation is
restricted by the first spin due to the anti-ferromagnetic interaction: all neighboring spins
of the initial spin have to point in the opposite direction as the initial one. Repeating
this argument for all lattice sites, we finally arrive at the well-known Néel-ordered state
depicted in Fig. 2.2a. The order parameter in this case would be the staggered magneti-
zation, 〈 1

N

∑
i(−1)iσzi 〉, where σzi is the value of the Ising variable at site i and N is the

number of lattice sites. For the Néel-ordered state the staggered magnetization takes a
finite value whereas it is zero in the disordered phase.

However, for the triangular lattice the situation changes drastically. Consider again Ising
spins with anti-ferromagnetic nearest-neighbor interaction. After positioning the first spin,
the second neighboring spin is forced to point in the opposite direction as the first one. The
third spin necessarily neighbors one spin pointing upwards and one pointing downwards,
therefore it is not clear how to align the third spin in an optimal way (see Fig. 2.2b), a
feature known as geometric frustration.

1We choose the z-axis to be perpendicular to the lattice plane.
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(a)

?
(b)

Fig. 2.2. Spin alignment for the anti-ferromagnetic Ising model. (a) Néel-ordered ground
state on the square lattice. (b) Geometric frustration on the triangular lattice. The red
spin indicates the first spin placed on the lattice.

Allowing for superpositions of various states in the quantum case, this problem can be
overcome in the so-called resonating valence bond (RVB) state. For a given lattice, con-
sider a state where pairs of neighboring spins combine into spin singlets. Such a state
is called a valence bond state and is illustrated in Fig. 2.3. A single valence bond state
clearly breaks the lattice symmetries, however a superposition of all possible valence bond
states restores the initial symmetries. Therefore, such a superposition seems to be a good
candidate for a state without broken symmetries and without long-range order. Such a
superposition is called a (short-ranged) RVB state and was first proposed by Anderson in
1973 [17,18].

The described RVB state is the prototype of so-called quantum spin liquid (QSL) states
which break no symmetries [19]. Quantum spin liquids are indeed qualitatively differ-
ent from other states of matter. They do not break symmetries of the system and thus
cannot be described by Landau’s theory of phase transitions which involves spontaneous
symmetry breaking as a key ingredient. In fact, they are topologically ordered in the sense
that they have degenerate ground states which cannot be distinguished in terms of local
observables [12].

Fig. 2.3. Examples of valence bond states on the triangular lattice. The blue ellipses
indicate the singlets. The state in the right panel can be obtained from the state in the left
one by the action of a local operator. The number of singlets crossed by the dashed path
has the same parity for all states obtained under the action of local operators. (Figure
adapted and expanded from [20])
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2 Theoretical Background

This degeneracy can most easily be understood in the context of a valence bond state as
indicated in Fig. 2.3. Imagine the triangular lattice to be realized on a torus. Consider
the left panel of the figure and draw a closed path intersecting some of the bonds in the
middle. Thus, the path might cross some of the singlets, where we are mainly interested
in the parity of the number of crossings (in the figure the path crosses 2 singlets, i.e. an
even number). Acting on the state with a local operator which effectively flips two of
the singlets, we obtain another valence bond state like the one in the right panel. Again,
examining the path defined before for the new state, we see that it crosses some singlets
and the parity of this number did not change. Since this is in fact true for any local
operator, the Hilbert space is split into two parts of opposite parity,

H = Heven ⊕Hodd,

and we cannot distinguish states in one summand of the Hilbert space by any local mea-
surement. Note, that the periodic boundary conditions for the path are crucial for this
argument. As the possible closed paths in a given space are dictated by the topology of
this space, it is clear that the splitting of the Hilbert space is a topological statement.
Thus, it es expected to be unaffected by local properties and changes of the system.

In particular, the ground state degeneracy is robust against any local perturbation and ex-
citations are gapped. Hallmark signs of topological order are a high degree of entanglement
and non-local and fractionalized excitations [21]. In the RVB picture the fractionalization
of an excitation can be understood intuitively. Starting from a valence bond state, imagine
breaking one of the singlets by flipping one of the spins, thereby obtaining an excitation
with ∆S = 1. The two resulting spins can independently propagate through the system.
These excitations are called ‘spinons’ which carry spin 1/2 but no charge.

2.2. The Heisenberg-Kitaev Model

Having discussed the basic ideas of quantum spin liquids, we now want to find a model
which might host such a special state of matter. In particular, we are looking for models
of localized spins on a lattice as these were studied in the context of ‘quantum magnetism’
for quite some time [3]. One of the simplest models describing localized spins is the
Heisenberg model, which consists of spin-S particles on a lattice interacting according to
the Hamiltonian

HH =
∑
i,j
i 6=j

Jij ~Si · ~Sj ,

where i, j denote the lattice sites and ~Si is the spin operator on site i. The couplings
Jij could in principle be chosen arbitrarily, however we restrict our discussion to the case
of site-independent nearest-neighbor interactions, such that the Heisenberg Hamiltonian
simplifies to

HH = JH

∑
〈ij〉

~Si · ~Sj , (2.1)

where 〈ij〉 denotes the sum over nearest-neighbors. Furthermore, we will discuss the anti-
ferromagnetic Heisenberg model where JH > 0. Note, that the Heisenberg Hamiltonian in
Eq. (2.1) preserves SU(2) spin-rotation symmetry.
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2.2. The Heisenberg-Kitaev Model

a1 = ex

a2

a3

ey

Fig. 2.4. Definition of the triangular lattice vectors aγ and the Cartesian coordinate
system ex,y for lattice constant a = 1.

For the Kagomé lattice it was found that the ground state of the anti-ferromagnetic Heisen-
berg model is indeed a spin liquid [22, 23]. The previous discussion of the Ising model on
the triangular lattice indicates some interesting physics on this lattice as well. However,
for the triangular Heisenberg model with spin-1/2 constituents it is known that the ground
state is characterized by the magnetic ‘120-degree order’. Nevertheless, using or adding
other interactions one can prevent the system from magnetically ordering even at zero
temperature.

One particular model hosting QSL states was proposed by Kitaev in Ref. [24]. Even though
the model was initially studied on the hexagonal lattice, it can be equally well defined on
the triangular lattice. To this end, we define the triangular lattice vectors aγ as shown
in Fig. 2.4. The Kitaev model again consists of interacting spins with the anisotropic
interaction

HK = J1

∑
1−links

S1
i S

1
j + J2

∑
2−links

S2
i S

2
j + J3

∑
3−links

S3
i S

3
j ,

where the sums are over the nearest-neighboring lattice sites along the indicated link.
The couplings J1,2,3 can again take any value, however we consider the symmetric case,
J1 = J2 = J3 = JK > 0, and rewrite the Kitaev Hamiltonian in the more compact form

HK = JK

∑
γ‖〈ij〉

Sγi S
γ
j . (2.2)

Here, the notation γ‖〈ij〉 indicates the sum over neighboring sites along a link in direction
γ ∈ {1, 2, 3}.

To understand the interplay of different types of interaction, we will study the physics of
spins on a triangular lattice interacting via both a Heisenberg and a Kitaev term,

HHK = JH

∑
〈ij〉

~Si · ~Si + JK
∑
γ‖〈ij〉

Sγi S
γ
j , (2.3)

in this thesis.
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2 Theoretical Background

2.2.1. QSL States in the Triangular Heisenberg-Kitaev Model

Earlier studies of the Heisenberg-Kitaev model on the triangular lattice showed that the
properties of the system depend strongly on the size of the spin, S. For S = 1/2 Becker
et al. calculated phase diagrams for both the classical and the quantum version of the
model [25]. It turned out that the model hosts a variety of different phases depending
on the ratio of the Heisenberg and the Kitaev coupling. Without going into the physical
properties of the individual phases, we show the phase diagram for the quantum model in
Fig. 2.5, where the parametrization

JH = cosα, JK = sinα,

is used and the couplings where normalized, such that J2
H + J2

K = 1. Earlier analyses of
Heisenberg models on triangular and Kagomé lattices [9,14] have shown that, by lowering
the value of the spin to (unphysically) small values, the ground state might become a
QSL state. Furthermore, further-neighbor interactions were found to stabilize the QSLs
as they might increase frustration of the system. Thus, QSL ground states might actually
be realized in real materials as discussed in the next section.

Guided by these results Kos and Punk [2, 26] studied the ground state behavior of the
triangular Heisenberg-Kitaev model at small spin values using Schwinger boson mean-field
theory (SBMFT). They found three different spin liquid phases in the sector JH, JK > 0,
which they identified as symmetry enriched topological (SET) phases. Ground state phase
diagrams for three different spin values can be found in Fig. 2.6a. Note that the phase
transition between the different spin liquid phases seems to depend on the value of the
spin. In particular, the transition between SL1 and SL2 occurs at a smaller ratio JK/JH

for larger spin values. The nature of the quantum phase transitions between the different
QSL phases remained unclear and will be addressed in this thesis.

Fig. 2.5. Phase diagram of the Heisenberg-Kitaev model on the triangular lattice for
S = 1/2 as obtained by Becker et al., using the parametrization JH = cosα, JK = sinα.
(Figure taken from [25])
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2.2. The Heisenberg-Kitaev Model

(a) Phase diagrams for the dif-
ferent QSL ground states.

(b) Self-consistent mean-field parameters for the singlet
field A, the hopping field B and the triplet field t.

Fig. 2.6. Phase diagrams and self-consistent mean-field parameters as obtained by Kos
and Punk [2] using the parametrization JH = cosψ, JK = sinψ. Here, SL1, SL2, and
SL3 denote the three different QSL phases obtained in SBMFT using totally symmetric
ansätze, defined by the different fields taking (non-)zero values. (Figures taken from [2])

9



2 Theoretical Background

2.2.2. Connection to Real Materials

So far, our discussion of quantum spin liquids was rather abstract and we did not con-
nect our theoretical concepts to real materials. However, several promising candidates
for QSL states in real materials have been studied using numerical and experimental
techniques [27]. For example, in the compound κ-(BEDT–TTF)2Cu2(CN)3, in which an
almost isotropic triangular Heisenberg model is realized, QSL behavior was found using
1H NMR and static susceptibility measurements [28]. Using neutron scattering, Cs2CuCl4
was found to host a QSL phase and spinon excitations [29], where a description by an
anisotropic Heisenberg interaction applies. A recent example of a triangular lattice com-
pound possibly hosting a QSL ground state is LiYbS2, where magnetic susceptibility and
7Li NMR measurements indicate the absence of magnetic long range order down to 2 K [30].

Strong spin-orbit coupling could give rise to a Kitaev-type interaction in certain Mott in-
sulating materials. Often, this Kitaev interaction is accompanied by a residual Heisenberg
interaction, thus the system can be described by an effective Heisenberg-Kitaev model.
A possible class of materials realizing this idea are the iridates A2IrO3, A = Na, Li [31].
Analyzing thermodynamic measurements, α-Li2IrO3 was estimated to be close to a spin-
liquid regime, whereas Na2IrO3 seems to be in a magnetically ordered regime [32]. Instead
of a triangular lattice, these materials form a hexagonal lattice. However, the Ir4+-ions in
the compound Ba3IrTi2O9 were found to form a triangular lattice and could theoretically
be described by a spin-1/2 Heisenberg-Kitaev model [25]. Indeed, experimental measure-
ments of the magnetic susceptibility did not find magnetic ordering down to 2 K [33]. Even
more, heat capacity measurements give no indication for magnetic order down to 0.35 K.
These measurements suggest that Ba3IrTi2O9 hosts a quantum spin liquid described by
the Heisenberg-Kitaev model on a triangular lattice.

2.3. Renormalization Group Fundamentals

Having introduced quantum phase transitions and QSL states, we now take a different
perspective on the system under study. The Heisenberg-Kitaev model is a theory of pure
interaction in the sense that the Hamiltonian only contains interaction terms and no ki-
netic term. Thus, we are more or less directly in the regime of strong interactions. A
meaningful analysis of interacting theories is notoriously difficult. A convenient method
to gain knowledge about the behavior in the limit of weak interactions is perturbation
theory, especially in combination with diagrammatic techniques [34, 35]. However, in the
regime of strong coupling, perturbation theory is doomed to fail and a different method
has to be used. A method which turned out to be particularly useful is the renormaliza-
tion group (RG), which was mainly developed by Wilson. Here, we will only sketch the
main idea following reference [36] and refer to the literature for a more detailed discus-
sion [37–40].

In condensed matter physics, we are mainly interested in the long-range behavior of a
system so that it seems natural to integrate out fast, short-range fluctuations in order to
obtain an effective theory for the slow, long-range fluctuations. However, the separation
of fast and slow fluctuations is in general not clear a priori and instead, one introduces
a scale Λ = Λ0/b in momentum space which separates fast and slow fluctuations, where
Λ0 is some ultraviolet (UV) scale at which the parameters of the theory are known, and b
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parametrizes the recursive step discussed next.

The recursive RG step starts with the integration over the fast field components and yields
a new effective action for the slow field components. At this stage, approximations like a
loop expansion are needed in most cases. The choice of reasonable approximations strongly
influences the effectiveness of the RG method. Rescaling momenta and frequencies in such
a way that the kinetic term of the theory becomes scale-invariant yields a mapping from
the old couplings g to a set of new couplings g′ = R̃(g). Now, for the new effective theory
the RG step is repeated and again the fast field components are integrated out. Repeating
this argument recursively, one obtains a flow for the couplings which is parametrized by
the rescaling parameter b.

Introducing the infinitesimal, logarithmic flow parameter l = log b one obtains the Gell-
Mann–Low equation or β-function for the change of the couplings under the RG step:

dg

dl
= R(g), where R(g) = lim

l→0
l−1
(
R̃(g)− g

)
.

We identify the Gell-Mann–Low equation as a set of flow equations for the couplings which
might have fixed points which do not change under the RG step, thus parametrizing a
scale-invariant action. Now, the correlation length ξ describing the exponential decay of
field correlations is a natural length scale for a given system. Importantly, only ξ = 0 and
ξ =∞ are compatible with the argument of scale-invariance. However, the divergence of
the correlation length can be seen as a hallmark of a second order phase transition. There-
fore, the study of fixed points of the RG flow might help to understand phase transitions
of the system under study.

The fixed point structure of the flow equations can be investigated further. Linearizing
the flow equations around the fixed point g? one might use the eigenvalues λα and left-
eigenvectors φα of the resulting matrix to define scaling fields,

vα = φTα(g − g?),

satisfying the property
dvα
dl

= λαvα.

We distinguish three different types of RG eigenvalues and scaling fields:

• λα > 0: The flow is directed away from the fixed point and the corresponding scaling
field is called relevant.

• λα < 0: The flow is directed towards the fixed point and the corresponding scaling
field is called irrelevant.

• λα = 0: In this case, the scaling field is stationary under the flow and is called
marginal.

Using this classification of RG eigenvalues, we can also distinguish different types of fixed
points:

• Stable fixed points with only irrelevant and marginal scaling fields. These describe
stable phases of matter, as any small deviation from the (fine-tuned) fixed point is
decreased upon the RG flow, driving the system back to the stable fixed point.

11



2 Theoretical Background

• Unstable fixed points with only relevant scaling fields. They do not describe special
phases of matter, but are highly important for the global structure of the RG flow.

• Generic fixed points involving both relevant and irrelevant scaling fields. These turn
out to be particularly important for the understanding of phase transitions. The
irrelevant scaling fields span the so-called critical manifold. Starting on the critical
manifold the couplings get attracted to the fixed point. However, even the slightest
deviation from the critical manifold introduces some relevant parameter and drives
the flow away from the fixed point to either some other fixed point or to the strongly
interacting regime.

• Critical fixed points as a special case of the previous type, with one relevant and an
arbitrary number of irrelevant scaling fields, where the relevant perturbation drives
a phase transition. This class of fixed points is clearly the most interesting one for
the analysis of critical phenomena and indicates a second order phase transition.

Furthermore, the RG eigenvalues can be used to calculate critical exponents which can be
measured in experiments. Thus, the RG not only allows for qualitative statements but
also for quantitative predictions which can be tested in experiments.

This superficial introduction to the philosophy of the renormalization group already indi-
cates its effectiveness in the study of critical phenomena in the strongly correlated regime.
However, RG methods can be used not only in condensed matter physics but also in
high-energy physics and statistical physics. Also, many different implementations exist
for both numerical and analytical approaches. In the next section, we will shortly discuss
the functional renormalization group (fRG) as a particularly versatile method due to its
flexibility in the choice of the separation between slow and fast modes. Our discussion
follows [21,41]. For a more detailed introduction to the fRG we refer to the literature [41].

2.3.1. Functional Renormalization Group

Consider a field theory containing the fields ϕα, where α is some (multi-)index labeling
the fields (e.g. momentum, spin, Hermitian conjugates, . . .), coupled to source fields Jα.
We write the partition function as functional integral:

Z [J ] =

∫
Dϕα e−S[ϕ]+

∫
α Jαϕα .

Next, we decompose the action into a Gaussian part,

S0[ϕ] = −1

2

∫
α,α′

ϕα
(
G−1

0

)
αα′

ϕα′ ,

and an interaction part S1[ϕ], such that

S[ϕ] = S0[ϕ] + S1[ϕ].

From the generating functional for connected correlators,

W [J ] = logZ [J ] ,

one can derive the vacuum expectation values of the fields ϕα,

δW [J ]

δJα
= 〈ϕα〉 =: φα, (2.4)
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2.3. Renormalization Group Fundamentals

|k|0 Λ

RΛ(k)

Fig. 2.7. Schematic plot of a regulator satisfying the necessary conditions.

and we define the effective action Γ as the Legendre transform of W [J ],

Γ [φ] =

∫
α
Jαφα −W [J ] ,

where Jα = Jα[φ] can be obtained by inverting Eq. (2.4). The functional derivatives of
Γ with respect to φα give the one-particle irreducible n-point correlation functions with
their full momentum and frequency dependence.2

We formalize the RG step of integrating out the fast modes by introducing a cutoff Λ such
that we obtain a cutoff-dependent generating functional

ZΛ [J ] =

∫
Dϕα e−S0,Λ[ϕ]−S1[ϕ]+

∫
α Jαϕα ,

where, in the cutoff-dependent Gaussian action S0,Λ, the propagator G0 is modified by
some regulator RΛ,

G−1
0,Λ(k) = G−1

0 (k)−RΛ(k),

satisfying the conditions

RΛ(k)→


∞ for Λ→∞,
0 for |k| � Λ or Λ→ 0 (|k| fixed),

> 0 for |k| → 0.

A schematic plot for such a regulator can be found in Fig. 2.7.

Using the regularized propagator, we define the cutoff-dependent effective action

ΓΛ [φ] :=

∫
α
Jαφα −WΛ [J ]− 1

2

∫
α,α′

φα (RΛ)αα′ φα′︸ ︷︷ ︸
∆SΛ[φ]

, (2.5)

which is a modified Legendre transform of the cutoff-dependent generating functional,
such that

ΓΛ [φ] =

{
S [φ] for Λ→∞,
Γ [φ] for Λ→ 0,

where S[φ] is the classical action at some initial UV scale.

2In our analytical approach we will neglect the external momentum and frequency dependence and
restrict the correlation functions to be some parameters flowing under the RG.
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2 Theoretical Background

Taking the derivative of Eq. (2.5) with respect to the cutoff Λ followed by some manipu-
lations [41] one arrives at the Wetterich equation,

∂ΛΓΛ [φ] =
1

2
Tr

[(
Γ

(2)
Λ + RΛ

)−1
∂ΛRΛ

]
, (2.6)

where the trace is performed over all indices and where we used the matrix notation3

(
Γ

(2)
Λ

)
αα′

:=
δ

δφα
ΓΛ

←
δ

δφα′
.

The Wetterich equation is an exact equation for the flow of the effective action and defines
an infinite hierarchy of flow equations for the n-point correlation functions. In order to
obtain a closed set of equations, this hierarchy has to be truncated at some order n. For
our analysis, we will use the one-loop approximation, and keep only the n-point correlation
functions up to n = 4, neglecting all higher order correlation functions. For an action S
including terms up to fourth order in the fields, this corresponds to

ΓΛ = S,

where the parameters in S are now taken to be Λ-dependent. Thus, one can derive flow
equations for the parameters as functional derivatives of the Wetterich equation with
respect to the fields φα.

3The arrow above the second derivative indicates that the derivative acts from the left. This distinction
is not needed for purely bosonic theories, however in the case of fermionic fields additional minus signs can
arise. Since in this thesis we only use bosonic fields, we do not discuss this in further detail.
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3 Chapter 3

Effective Action of the Heisenberg-
Kitaev Model

Starting from the Heisenberg-Kitaev Hamiltonian,

HHK = JH

∑
〈ij〉

~Si · ~Sj + JK
∑
γ‖〈ij〉

Sγi S
γ
j , (3.1)

we want to study quantum phase transitions between different quantum spin liquid ground
states on the triangular lattice discovered earlier [2]. We concentrate on the QPT at rela-
tively small Kitaev coupling, that is the transition from SL1 to SL2 in the nomenclature of
the aforementioned reference. To this end, we want to derive a critical theory describing
some order parameter-like quantity characterizing the QPT.

We start by rewriting the model in terms of Schwinger bosons for which we obtain an
action containing quartic interactions. We decouple this action by a Hubbard-Stratonovich
transformation and integrate out the remaining Schwinger bosons. At this point, we can
use a saddle point approximation as consistency check and compare our intermediate
results to those by Kos and Punk. We use the saddle point approximation for some of the
degrees of freedom and perform a gradient expansion of the two-point vertex for the triplet
fields. Thus, we obtain an effective theory expected to characterize the critical behavior
at the QPT.

3.1. Schwinger Boson Description of the Model

Since the model consists only of interaction terms and therefore does not allow for a
perturbative expansion in some small parameter, we have to use another approach. In
earlier works [2,9,42], Schwinger boson approaches turned out to be particularly useful to
study frustrated spin systems. Therefore, we employ spin-1/2 bosons, b↑, b↓, and express
the spin operator at lattice site i as

~Si =
1

2
b†iα~σαβbiβ,

where ~σ is the vector of Pauli matrices and b
(†)
iα are the creation/annihilation operators for

a boson with spin α at site i.1 For this representation to be faithful, the constraint

b†iαbiα = 2S ∀i (3.2)

1If not explicitly mentioned otherwise, summation over spin indices is implied throughout this thesis.
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3 Effective Action of the Heisenberg-Kitaev Model

has to be satisfied, where S is the total spin.

Using the Schwinger boson operators, we define a singlet (aij) and three triplet operators
(tγij) on nearest-neighbor bonds,

aij =
1

2
biαεαβbjβ =

i

2
biασ

2
αβbjβ

t1ij =
i

2
biασ

3
αβbjβ

t2ij = −1

2
biαδαβbjβ

t3ij = − i
2
biασ

1
αβbjβ,

where ε is the anti-symmetric tensor of rank 2. These operators satisfy the identities

aji = −aij , tγji = tγij

and

~Si · ~Sj = −2a†ijaij + S2

Sγi S
γ
j = −tγ†ij t

γ
ij − a

†
ijaij + S2,

which hold true for arbitrary spin S (see appendix A). With the new link operators the
Heisenberg-Kitaev Hamiltonian reads

HHK = − (2JH + JK)
∑
〈ij〉

a†ijaij − JK

∑
γ‖〈ij〉

tγ†ij t
γ
ij + (JH + JK)

∑
〈ij〉

S2

︸ ︷︷ ︸
const.

.

We include the constraint in Eq. (3.2) in the Hamiltonian via Lagrange multipliers λi,
define the new couplings

J1 := 2JH + JK, J2 := JK,

and drop the constant term to get

H = −J1

∑
〈ij〉

a†ijaij − J2

∑
γ‖〈ij〉

tγ†ij t
γ
ij +

∑
i

λi

(
b†iαbiα − 2S

)
.

We relax the constraint to hold only on average, i.e. λi = λ. In principle, this allows
doubly-occupied or unoccupied sites, which correspond to unphysical states in the en-
larged Hilbert space of the Schwinger boson representation. However, studies involving
the related pseudo-fermion representation showed that, using the relaxed constraint, the
ground state remains in the physical Hilbert space, where all sites are singly-occupied [43].
A similar behavior is expected for our Schwinger boson representation as well, thus justi-
fying the approximation.2

2The validity of this approximation can also be seen from gauge theoretical considerations: It is possible
to describe the anti-ferromagnetic Heisenberg model in terms of a U(1) lattice gauge theory [12,21]. In this
description the (now time-dependent) field λi(τ) plays the role of the temporal component of the gauge
field. It turns out that in the present case the fluctuations of the gauge field are gapped and therefore
approximating λi(τ) by its expectation value should not change the theory significantly. We comment on
the gapped gauge fluctuations later on when discussing the validity of a saddle point approximation.
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3.1. Schwinger Boson Description of the Model

In this approximation, the Hamiltonian in the Schwinger boson representation takes the
form

HSB = −J1

∑
〈ij〉

a†ijaij − J2

∑
γ‖〈ij〉

tγ†ij t
γ
ij + λ

∑
i

b†iαbiα − 2λNS. (3.3)

Here, from a formal point of view, S can take any real value and it was seen earlier, that
below some critical value, Scrit < 1/2, spin liquid states can emerge. We will briefly discuss
this in the context of the saddle point approximation below.

In SBMFT this Hamiltonian would be the starting point for replacing the singlet and
triplet operators by their mean-field values, expanding in the fluctuations around the
mean-field and again rewriting the fluctuations in terms of Schwinger boson operators.
This was done by Kos and Punk in their previous work [2]. Here, we will not use the mean-
field approximation but instead use a Hubbard-Stratonovich transformation to decouple
the quartic interactions of the Schwinger bosons in the next section. This allows for a
more systematic treatment of the fluctuations around the mean-field solution.

3.1.1. Hubbard-Stratonovich Transformation

Using a functional integral approach, the partition function can be written as

Z =

∫
D[b̄, b, λ] e−SSB[b,λ],

SSB[b, λ] =

∫ β

0
dτ

(∑
i

b̄iα(τ)∂τ biα(τ) +HSB[b̄(τ), b(τ)]

)
.

The Hamiltonian for the Schwinger bosons contains terms quartic in the bosons, biσ.3

To decouple this quartic interaction, we perform a Hubbard-Stratonovich transformation
using the identity

1 =

∫
D[Ā, A] e−J1

∑
〈ij〉

∫ β
0 dτ Āij(τ)Aij(τ),

and shifting the A-field according to the rules

Aij(τ)→ Aij(τ)− 1

2
biα(τ)εαβbjβ(τ) = Aij(τ)− aij(τ)

Āij(τ)→ Āij(τ)− 1

2
b̄iα(τ)εαβ b̄jβ(τ) = Āij(τ)− āij(τ).

Introducing analogous Hubbard-Stratonovich fields T γ for the triplets tγ , we decouple all
quartic terms in the pairing channel.4 Decoupling in the pairing channel seems reasonable
as we want to construct an RVB-like ground state consisting mostly of spin singlets and
some (rather dilute) triplets. Flint and Coleman [42] argued that an additional decou-
pling in the hopping channel yields more reliable results and a more accurate description
in large N descriptions. However, for our Schwinger boson representation, where N = 2,
the inclusion of the hopping term is mainly used to improve numerical stability. Therefore,
we treat numerical accuracy for a simpler description involving only the pairing channel.

3Recall that aij and tij are both quadratic in b.
4To avoid confusion, from now on temperature is always expressed by the inverse temperature β and

T (γ) always refers to the triplet field.
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3 Effective Action of the Heisenberg-Kitaev Model

Note, that the triplet fields T γ are only non-zero on the corresponding γ-links, i.e.

T γij = T γijδrj ,ri±aγ .

Thus, we obtain the equivalent action

S[b, λ,A, T γ ] =

∫
τ

∑
i

b̄iα (∂τ + λ) biα +
∑
〈ij〉

(
J1|Aij |2 + J2

∑
γ

|T γij |2
)

−
∑
〈ij〉

(
J1

2
εαβĀij +

J2i

2
σ3
αβT̄

1
ij −

J2

2
δαβT̄

2
ij −

J2i

2
σ1
αβT̄

3
ij

)
biαbjβ + c.c.


− 2λNSβ, (3.4)

where we dropped the imaginary time arguments for convenience and introduced the
notation ∫

τ
=

∫ β

0
dτ.

3.1.2. Transformation to Frequency and Momentum Space

Defining the fields biα(ωn) and Aij(Ω) in frequency space via

biα(τ) =
1√
β

∑
ωn

biα(ωn)eiωnτ ,

Aij(Ω) =

∫
τ

e−iΩτAij(τ),

and analogously for Tij(Ω), we can write the action in frequency space as

S[b, λ,A, T γ ] =
∑
ωn

∑
i

b̄iα(ωn) (iωn + λ) biα(ωn) +
1

β

∑
〈ij〉

(
J1|Aij(ωn)|2 + J2

∑
γ

|T γij(ωn)|2
)

− 1

β

∑
ωn,ωn′

∑
〈ij〉

{(
J1

2
εαβĀij(ωn + ωn′) +

J2i

2
σ3
αβT̄

1
ij(ωn + ωn′)

−J2

2
δαβT̄

2
ij(ωn + ωn′)− J2i

2
σ1
αβT̄

3
ij(ωn + ωn′)

)
biα(ωn)bjβ(ωn′)

+ c.c.

}
− 2λNSβ.

Similarly, we define the fields in momentum space via

biα(ωn) =
1√
N

∑
k

e−ikri bkα(ωn),

ĀγK(Ω) =
∑
i

Āi,i+γ(Ω)e−iKri ,

and analogously for T γK(Ω).
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3.1. Schwinger Boson Description of the Model

The momentum space expressions for the coupling of the Schwinger bosons to the Hubbard-
Stratonovich fields are somewhat non-trivial due to the geometry of the triangular lattice:

J1εαβ
2β

∑
ωn,ωn′

∑
〈ij〉

Āij(ωn + ωn′)biα(ωn)bjβ(ωn′)

=
J1εαβ
2Nβ

∑
ωn,ωn′

∑
k,k′

∑
〈ij〉

Āij(ωn + ωn′)e−i(kri+k′rj)bkα(ωn)bk′β(ωn′)

=
J1εαβ
4Nβ

∑
ωn,ωn′

∑
k,k′

∑
i,±γ

Āi,i±γ(ωn + ωn′)e−i(k+k′)ri∓ik′aγ bkα(ωn)bk′β(ωn′)

=
J1εαβ
4Nβ

∑
ωn,ωn′

∑
k,k′

∑
i,γ

Āi,i+γ(ωn + ωn′)e−i(k+k′)ri
(

e−ik
′aγ − eik

′aγ
)
bkα(ωn)bk′β(ωn′)

= −iJ1εαβ
2Nβ

∑
ωn,ωn′

∑
k,k′

∑
i,γ

Āi,i+γ(ωn + ωn′)e−i(k+k′)ri sin
(
ak′γ
)
bkα(ωn)bk′β(ωn′)

= −i J1

2Nβ
εαβ

∑
ωn,ωn′

∑
k,k′

∑
γ

sin
(
ak′γ
)
Āγk+k′(ωn + ωn′)bkα(ωn)bk′β(ωn′).

Here, we used the notation
akγ = aγ · k,

where aγ is any of the lattice vectors and a is the lattice constant. The factor of two
in the second equality is needed to compensate for overcounting when changing from a
sum over nearest-neighbors to a sum over all lattice sites. Note in particular that, when
changing to the sum over all lattice sites, we include bonds in both directions, ±aγ . This is
special for the triangular lattice, as, for example, on the hexagonal lattice only +aγ bonds
exist. This is the first expression in our discussion, where the lattice geometry enters the
mathematical structure of the theory.

By a similar calculation one finds for the term containing T̄ γbb

J2

2Nβ

∑
ωn,ωn′

∑
〈ij〉

T̄ γij(ωn + ωn′)biα(ωn)bjβ(ωn′)

=
J2

2Nβ

∑
ωn,ωn′

∑
k,k′

cos
(
ak′γ
)
T̄ γk+k′(ωn + ωn′)bkα(ωn)bk′β(ωn′).

We introduce the notation k = (ωk,k) = (k0,k), bα(k) = bαk(ωn), and∑
k

=
∑
k0,k

,

and write the action in frequency and momentum space as

S[b, λ,A, T γ ]

=
∑
k

{
b̄α(k) (ik0 + λ) bα(k) +

1

Nβ

∑
γ

(
J1|Aγ(k)|2 + J2|T γ(k)|2

)}

− 1

Nβ

∑
k,k′

(
−iJ1

2
εαβ

(∑
γ

sin
(
ak′γ
)
Āγ(k + k′)

)
+ i

J2

2
cos (ak′1)σ3

αβT̄
1(k + k′)

−J2

2
cos (ak′2) δαβT̄

2(k + k′)− J2i

2
cos (ak′3)σ1

αβT̄
3(k + k′)

)
bα(k)bβ(k′) + c.c.

− 2λNSβ. (3.5)
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3 Effective Action of the Heisenberg-Kitaev Model

The diagrammatic Feynman rules for this theory are illustrated in Fig. 3.1. We represent
Schwinger boson propagators by solid lines and propagators for the A (T γ) fields by dashed
(solid) double lines.

Aγ(k + k′)

bα(k)

bβ(k
′)J1

2 sin(ak′γ)iεαβ

T 1(k + k′)

bα(k)

bβ(k
′)−J2

2 cos(ak′1)iσ
3
αβ

T 2(k + k′)

bα(k)

bβ(k
′)J2

2 cos(ak′2)δαβ

T 3(k + k′)

bα(k)

bβ(k
′)J2

2 cos(ak′3)iσ
1
αβ

Fig. 3.1. Diagrammatic Feynman rules for the action Eq. (3.5) of the Schwinger bosons.
Solid single lines represent Schwinger bosons, dashed (solid) double lines represent the A
(T γ) fields.

3.2. Integrating Out the Schwinger Bosons

Since the action in Eq. (3.5) is quadratic in the Schwinger bosons, we can formally integrate
them out via a functional Gauss integral. We rewrite the action in terms of pseudo-spinors,

Ψ(k) =
(
b↑(k), b↓(k), b†↑(−k), b†↓(−k)

)T
,

and introduce the notation

δk,k′ = δk0,k
′
0
δkk′ .

Since the components of the pseudo-spinor Ψ(k) are not linearly independent, a simple
summation over all 3-momenta k would lead to double-counting and therefore a change
of the partition function. In order to compensate for double-counting, we only sum over
half the momentum space, kα = nα · k ≥ 0 for some (arbitrary) direction specified by the

unit vector nα. We indicate the restricted sum by
∑′

, such that the action reads

S[Ψ, λ, A, T γ ] =
1

2Nβ

∑′

k,k′

Ψ̄(k)G−1
k,k′Ψ(k′)

+
1

Nβ

∑
k

∑
γ

(
J1|Aγ(k)|2 + J2|T γ(k)|2

)
− 2NβλS, (3.6)
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3.3. Saddle Point Approximation for A and λ

where(
G−1
k,k′

)
11

= Nβ (ik0 + λ) δkk′12,(
G−1
k,k′

)
12

= −J1σ
2
∑
γ

sin
(
ak′γ
)
Aγ(k − k′)

+ J2

(
iσ3 cos (ak′1)T 1(k − k′)− 12 cos (ak′2)T 2(k − k′)− iσ1 cos (ak′3)T 3(k − k′)

)
,(

G−1
k,k′

)
21

= −J1σ
2
∑
γ

sin
(
ak′γ
)
Āγ(k′ − k)

+ J2

(
−iσ3 cos (ak′1) T̄ 1(k′ − k)− 12 cos (ak′2) T̄ 2(k′ − k) + iσ1 cos (ak′3) T̄ 3(k′ − k)

)
,(

G−1
k,k′

)
22

= Nβ (−ik0 + λ) δkk′12

is the inverse Green’s function of the pseudo-spinor Ψ.

Integrating out the bosonic pseudo-spinor Ψ we get

Z =

∫
D
[
Ψ̄,Ψ, λ, Ā, A, T̄ γ , T γ

]
e−S[Ψ,λ,A,T γ ]

=

∫
D
[
λ, Ā, A, T̄ γ , T γ

]
e
− 1
Nβ

∑
k,γ(J1|Aγ(k)|2+J2|T γ(k)|2)+2NβλS

det

(
1

2Nβ
G−1

)−1

=

∫
D
[
λ, Ā, A, T̄ γ , T γ

]
e−S̃[λ,A,T γ ],

where we defined

S̃[λ,A, T γ ] :=
1

Nβ

∑
k,γ

(
J1|Aγ(k)|2 + J2|T γ(k)|2

)
− 2NβλS + Tr log

(
1

2Nβ
G−1

)
. (3.7)

Here, the trace has to be performed over frequencies, momenta and spinor indices, but
without any additional prefactors since these are already included in the Green’s function,

Tr→
∑′

k

tr4.

3.3. Saddle Point Approximation for A and λ

Before we continue our derivation of an effective field theory, we want to use a saddle
point approximation to get a first understanding of the system. Thus, we get mean-field
estimates for the singlet field A and the Lagrange multiplier λ. In particular, we will see
that the assumption J1A/λ � 1 - which will turn out to be very useful in our further
discussion - can be satisfied by tuning the spin value S. Furthermore, we can use the
saddle point approximation to compare our theory to the qualitative behavior found by
Kos and Punk [2] and use this as a consistency check on our way towards a theory beyond
Schwinger boson mean-field theory.

The projective symmetry group (PSG) analysis performed by Kos and Punk motivates a
spatially and temporally homogeneous mean-field ansatz,

Aij(ω) = ±Aδω,0δj,i±γ , T γij(ω) = Tδω,0δj,i±γ ,
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3 Effective Action of the Heisenberg-Kitaev Model

where A can be chosen as real. Therefore, we have

Aγ(k) = ANβδk,0, T γ(k) = TNβδk,0.

In the saddle point approximation, the action simplifies to

S̃MF[λ,A, T γ ] = Nβ

(
3J1A

2 + 3J2|T |2 − 2λS +
1

Nβ
Tr log

(
1

2Nβ
G−1

MF

))
,

and the saddle point equations read

∂S̃MF

∂λ

!
= 0,

∂S̃MF

∂A

!
= 0,

∂S̃MF

∂T

!
= 0.

Performing the derivatives, we get

0
!

= −2S +
1

Nβ
Tr

(
GMF

∂G−1
MF

∂λ

)
, 0

!
= 6J1A+

1

Nβ
Tr

(
GMF

∂G−1
MF

∂A

)
,

0
!

= J2T̄ +
1

Nβ
Tr

(
GMF

∂G−1
MF

∂T

)
.

A self-consistent solution of the saddle point equations using numerical methods was un-
dertaken in reference [2], whereas here we restrict ourselves to an approximative, analytical
discussion. We are interested in the quantum phase transition where the A-field has a finite
expectation value throughout the transition, and the T field acquires a finite expectation
value at some parameters (J1, J2). Thus, to get a feeling for the values of A and λ, we
consider the case where T = 0 in order to estimate their mean-field values. The saddle
point equation for λ takes the form

2S =
1

Nβ
Tr

(
GMF|T=0

∂G−1
MF

∂λ

∣∣∣∣∣
T=0

)
= Tr (GMF|T=0) .

Here, we have to be careful when evaluating the various traces. Since the Matsubara
summation over ±1/k0 is formally divergent, we have to regularize the divergence by
introducing the convergence generating factors eik00+

[36] in the inverse Green’s function,

(
G−1

MF

∣∣
T=0

)
kk′

= Nβδkk′

(
(ik0 + λ) eik00+

12 −J1σ
2Ãk

−J1σ
2Ãk (−ik0 + λ) e−ik00+

12

)
,

where we used
Ãk := A

∑
γ

sin(akγ).

Now, we can safely perform the trace in spinor space and get

2S =
2

Nβ

∑′

k

1

k2
0 + λ2 − J2

1 Ã
2
k

(
(−ik0 + λ)e−ik00+

+ (ik0 + λ)eik00+
)
.

As we are interested in the ground state behavior of the system, we take the zero temper-
ature limit and replace the Matsubara sum by an integral,

1

β

∑
k0

→
∫ ∞
−∞

dk0

2π
.
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3.3. Saddle Point Approximation for A and λ

The frequency integral can be evaluated using the residue theorem and we get

2S =
2

N

∑′

k

λ−
√
λ2 − J2

1 Ã
2
k√

λ2 − J2
1 Ã

2
k

=
2

N

∑′

k

λ√
λ2 − J2

1 Ã
2
k

− 2

N

∑′

k

.

Using the symmetry of the summands under kx → −kx, the saddle point equation for λ
reads

2S =
1

N

∑
k

λ√
λ2 − J2

1 Ã
2
k

− 1

⇔ 2S + 1 =
1

N

∑
k

λ√
λ2 − J2

1 Ã
2
k

. (3.8)

Due to the matrix structure, all Matsubara sums in the saddle point equation for A
converge and the convergence generating factor is not needed:

6J1A =
4J2

1A

Nβ

∑′

k

(∑
γ sin(akγ)

)2

k2
0 + λ2 − J2

1 Ã
2
k

=
2J2

1A

N

∑′

k

(∑
γ sin(akγ)

)2

√
λ2 − J2

1 Ã
2
k

=
J2

1A

N

∑
k

(∑
γ sin(akγ)

)2

√
λ2 − J2

1 Ã
2
k

. (3.9)

3.3.1. Self-Consistent Solution of the Saddle-Point Equations

Instead of a (numerical) evaluation of the sums over momenta in the saddle point Eqs. (3.8)
and (3.9), we stay with the qualitative behavior of these equations. Assuming that
J1A/λ� 1, we expand the summands in powers of this ratio and get the approximate
equations

2S + 1 ≈ 1

N

∑
k

1 +
J2

1A
2

2λ2

(∑
γ

sin(akγ)

)2


= 1 +
J2

1A
2

2λ2

∑
k

(∑
γ

sin(akγ)

)2

,

6 ≈ J1

λN

∑
k

(∑
γ

sin(akγ)

)2

+
J2

1A
2

2λ2

(∑
γ

sin(akγ)

)4
 .

Taking the thermodynamic limit and replacing the momentum sums by integrals over the
first Brillouin zone,

1

N

∑
k

→ 1

VBZ

∫
BZ

d2k,
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3 Effective Action of the Heisenberg-Kitaev Model

we find

1

N

∑
k

(∑
γ

sin(akγ)

)2

=
3

2
,

1

N

∑
k

(∑
γ

sin(akγ)

)4

=
45

8
.

Thus, we can rewrite the saddle point equation for λ as

2S ≈ 3

4

J2
1A

2

λ2
⇒ J2

1A
2

λ2
=

8

3
S, (3.10)

and inserting this in the saddle point equation for A we get

6 ≈ 3J1

2λ
+ J1

15S

2
⇒ λ =

J1

4− 5S
. (3.11)

In particular, we see from the first equation that by decreasing S the ratio J1A/λ de-
creases. Therefore, we are able to fulfill the assumption J1A/λ� 1 by tuning S.

The calculations above rely on the assumption that J1A/λ � 1. Therefore, our approxi-
mation will definitely break down for S & 3

8 = 0.375. Indeed, previous works [9,14] found
that above some critical spin value the spin liquid description is no longer valid. We will
briefly discuss this in the next section.

We can use the expressions above to estimate A and λ for some values of S and compare
our estimates to the results obtained by Kos and Punk. We do not necessarily expect
the numerical values to coincide, since the inclusion of a hopping parameter B for the
Schwinger bosons in their work may affect the values of A and λ. Furthermore, our
approximate equations are only valid in the limit J1A/λ � 1, whereas the numerical
results take into account higher order corrections which become more and more relevant
away from this limit. Nevertheless, the increasing value of A with increasing spin value
S implied by Eqs. (3.10) and (3.11) agrees with the results of the numerical analysis.
Therefore, we believe our approximation to capture the essential physics in the limit of
small spin S.
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0.3

0.4
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(a)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
S

0.6

0.7

0.8

0.9

λ

(b)

Fig. 3.2. Mean-field values of (a) A and (b) λ as functions of the spin value S (J1 = 2).
The red dots in (a) indicate the numerical values from Ref. [2]. Note in particular the
qualitative agreement of decreasing A with decreasing S.
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3.4. Expansion of the Tr log-term around T γ = 0

Fig. 3.3. Spinon dispersion for λ = 1, J1A/λ = 0.3 and lattice constant a = 1. The
minima are located at the K-points, whereas the maximum is located at the Γ-point.

3.3.2. Spinon Dispersion and Gap Closing

Returning to the action in Eq. (3.6) before integrating out the Schwinger bosons, we can
understand the qualitative change taking place at the critical spin value Scrit. The Hamil-
tonian corresponding to the action S[Ψ, λ, A, T γ ] can be diagonalized via a Bogoliubov

transformation giving rise to a new set of bosonic operators γ
(†)
k . We interpret them as

spinons carrying spin 1/2. For the case T = 0 the spinon dispersion relation is given by

ωspinon(k) =
1

2

√
λ2 − J2

1 Ã
2
k,

which is plotted in Fig. 3.3 for λ = 1, J1A/λ = 0.3. The minima of the spinon dispersion
are located at the K-points of the first Brillouin zone, for example at (kx, ky) = (4π/3a, 0),
where the value is given by

∆gap = ωspinon(4π/3a, 0) =
1

2

√
λ2 − 27

4
J2

1A
2 =

λ

2

√
1− 27

4

J2
1A

2

λ2
.

Therefore, the spinons are gapped as long as J2
1A

2/λ2 < 4/27. As soon as the spinon
gap closes, our approach of integrating out the Schwinger bosons fails, as the spinons
start to form a Bose condensate with 〈bkK 〉 6= 0, where kK denotes the K-points. This
condensation leads to the 120-degree-order of the triangular Heisenberg model as discussed
in Ref. [2]. As long as the spinons are gapped, there is no magnetic order and a spin liquid
state forms. Therefore, we call the regime J1A/λ � 1 the ‘spin liquid regime’ which can
be reached by lowering the spin length S.

3.4. Expansion of the Tr log-term around T γ = 0

As mentioned before, we want to discuss the quantum phase transition, where A has a
finite expectation value, and T γ plays the role of an order parameter acquiring a finite ex-
pectation value at some parameters. The phase fluctuations of A are gapped and therefore
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3 Effective Action of the Heisenberg-Kitaev Model

at low energy the essential physics is captured by the (gapless) fluctuations of the triplet
fields, T γ .5

Deep in the spin liquid regime we can expand the term

Tr log

(
1

2Nβ
G−1

)
in powers of T γ as its fluctuations around 0 will be small compared to λ/J1A. We decom-
pose the inverse Green’s function as

G−1 = G−1
0 + D,

where

G−1
0;k,k′ := Nβδkk′

(
(λ+ ik0)12 −J1Aσ

2
∑

γ sin(akγ)

−J1Aσ
2
∑

γ sin(akγ) (λ− ik0)12

)
and D accordingly. Starting from this decomposition, we expand the Tr log-term as

Tr log

(
1

2Nβ
G−1

)
= Tr log

(
1

2Nβ

(
G−1

0 + D
))

= Tr log

(
1

2Nβ
G−1

0

)
−
∞∑
n=1

(−1)n

n
Tr [(G0D)n]︸ ︷︷ ︸
=:S̃(n)

.

The linear term (n = 1) vanishes when evaluating the trace as expected for an expansion
around the saddle point. In order to study the effect of T γ fluctuations we start by
discussing the Gaussian fluctuations.

3.4.1. Gaussian Fluctuations

The algebraic form of the second order contribution in T γ can be anticipated from the
diagrams in Fig. 3.4. Since the inverse ‘bare’ Green’s function G−1

0 is not diagonal in
the Schwinger boson basis, one gets a somewhat unusual form for the Schwinger boson
propagator. Working in the mean-field approximation with respect to A and λ, we think
of the Schwinger bosons as coupled to the A-field and thus have to use

ω(k) =

√
λ2 − J2

1 Ã
2
k

for the denominator of the Green’s function.

At second order in T γ we have

S̃(2)
= −1

2
Tr [G0DG0D]

= −1

2

∑′

k,l,m,n

tr4 [G0;k,lDl,mG0;m,nDn,k] .

5Some comments on the U(1) gauge structure of the theory justifying this approximation can be found
in appendix B.
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3.4. Expansion of the Tr log-term around T γ = 0

Γ̃
(n)
γ (q) = − 1

2

γ, q γ, q

−k

q + k

(a)

Γ
(a)
γ (q) = − 1

2

γ, q γ,−q−k

q +
k

k

−q
− k

(b)

Fig. 3.4. Contributions to the (a) normal ((b) anomalous) two-point vertex from the
second order expansion of the Tr log-term. For the anomalous term, coupling of Schwinger
bosons to A-fields is needed as expected from the evaluation of the matrix products in
the algebraic method. Recall, that the A-field only has a k = 0-mode in the mean-field
approximation.

Inverting the inverse ‘bare’ Green’s function we get

G0;k,l =
δk,l
Nβ

1

k2
0 + ω2(k)

(
(λ− ik0) 12 J1Ãkσ

2

J1Ãkσ
2 (λ+ ik0) 12

)
=
δk,l
Nβ

(
G

(n)
k 12 G

(a)
k σ2

G
(a)
k σ2 G

(n)
−k12

)
.

Thus, we can write the second order contribution as

S̃(2)
= − 1

2N2β2

∑′

k,l

tr4 [G0;k,kDk,lG0;l,lDl,k] .

We define

T̃(k − l) = iσ3 cos (al1)T 1(k − l)− 12 cos (al2)T 2(k − l)− iσ1 cos (al3)T 3(k − l),
˜̄T(l − k) = −iσ3 cos (al1) T̄ 1(l − k)− 12 cos (al2) T̄ 2(l − k) + iσ1 cos (al3) T̄ 3(l − k),

and write

Dk,l = −J2

(
0 T̃(k − l)

˜̄T(l − k) 0

)
.

Evaluating the matrix product and performing the trace in spinor space we get

S̃(2)
= − J2

2

2N2β2

∑′

k,l

{
G

(a)
k G

(a)
l

(
tr2

[
σ2 ˜̄T(l − k)σ2 ˜̄T(k − l)

]
+ tr2

[
σ2T̃(k − l)σ2T̃(l − k)

])
+
(
G

(n)
k G

(n)
−l tr2

[
T̃(k − l) ˜̄T(k − l)

]
+G

(n)
l G

(n)
−k tr2

[
T̃(l − k) ˜̄T(l − k)

])}
.

Using the Pauli matrix trace identity

tr2

[
σασβ

]
= 2δαβ,

we can rewrite this expression as

S̃(2)
=

1

Nβ

∑
q,γ

(
Γ̃(n)
γ (q)T̄ γ(q)T γ(q) + Γ(a)

γ (q)
(
T̄ γ(q)T̄ γ(−q) + c.c.

))
,
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3 Effective Action of the Heisenberg-Kitaev Model

where we defined the two-point vertices Γ
(n)
γ and Γ

(a)
γ via6

Γ(n)
γ (q) := J2 + Γ̃(n)

γ (q),

Γ̃(n)
γ (q) := − J2

2

Nβ

∑′′

k

(λ− ik0) (λ+ ik0 + iq0) cos(akγ) cos(a(kγ + qγ))(
k2

0 + ω2(k)
)

((k0 + q0)2 + ω2(k + q))
, (3.12)

∑′′

k

:=
∑
k

−
∑
k

−qγ<kγ<0

−
∑
k

0<kγ<−qγ

,

Γ(a)
γ (q) := − J2

2

Nβ

∑
k

kγ≥max(0,qγ)

J2
1 ÃkÃk+q cos(akγ) cos(a(kγ + qγ))(
k2

0 + ω2(k)
)

((k0 + q0)2 + ω2(k + q))
. (3.13)

Instability of the Normal Two-Point Vertex

The normal two-point vertex can be understood as the inverse normal propogator for the
T γ-fields. Therefore, a potential instability will be indicated by a sign change of the normal
two-point vertex at vanishing external frequency and momenta. Therefore, we perform
the Matsubara sum over k0 and evaluate the vertex at q = 0 to get

Γ(n)
γ (0) = J2

(
1− J2

4N

∑
k

λ2 + ω2(k)

ω(k)3
cos2(akγ)

)
.

Here, we used that for q = 0 the sum
∑′′

k
simplifies to a normal sum over momenta.

Since the summand in the previous expression is positive, Γ
(n)
γ (0) vanishes for some value

J2,crit where the Gaussian action becomes unstable so that we have to take into account
higher order contributions to obtain a stable theory. The precise value of J2,crit could
be obtained by evaluating the sum over k numerically, however an estimate value can be
obtained deep in the spin liquid regime without integrating the full expression. We expand
the summand in powers of J1A/λ and keep only terms up to second order:

Γ(n)
γ (0) ≈ J2

1− J2

2λ

1

N

∑
k

1 +
J2

1A
2

λ2

(∑
α

sin(akα)

)2
 cos2(akγ)

 .

Replacing the momentum sums by integrals over the first Brillouin zone and evaluating
the integrals, we get

Γ(n)
γ (0) ≈ J2

(
1− J2

4λ

(
1 +

5

4

J2
1A

2

λ2

))
.

Inserting the expressions for A and λ obtained from the saddle point approximation above,
we can solve the equation

Γ(n)
γ (0) = 0

for J2 and find (apart from the trivial solution J2 = 0)

J2,crit =
12J1

(4− 5S) (3 + 10S)
.

6For the normal two-point vertex we add the contribution J2 which was present in the action already
before expanding the Tr log-term. Therefore, we distinguish the ‘full’ normal two-point vertex Γγn and the
contribution from the second order terms in the Tr log-expansion. For the anomalous two-point vertex
only a contribution of the second type exists.
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3.4. Expansion of the Tr log-term around T γ = 0

Using the definitions of J1/2 and the parametrization JH = cosα, JK = sinα, we define
the critical angle αcrit via

αcrit := arctan

(
2J2,crit

J1 − J2,crit

)
.

In particular, the critical angle does not depend on the value of J1 or JH but is only a
function of the spin, as expected. For the spin values S = 0.07 (0.14, 0.17) discussed above
we find αcrit = 1.508 (1.467, 1.454). The tendency of smaller αcrit for larger S, which
was one of the key results of Kos and Punk [2] (see also Fig. 2.6), is correctly captured
by our estimate. As discussed for the saddle point values of A and λ, we do not expect
numerical agreement due to the differences in the parametrization of the model itself and
the assumption to be deep in the spin liquid.

Gradient Expansion of the Normal Two-Point Vertex

We want to derive a time-dependent Ginzburg-Landau action [44,45] as effective action for
the fluctuations of T γ around their mean-field values, T γMF = 0. To this end, we perform
a gradient expansion of the two-point vertex,

Γ(n)
γ (q) ≈ Γ(n)

γ (0) + q0∂q0Γ(n)
γ (0) +

∑
α

qα∂qαΓ(n)
γ (0) +

1

2

∑
α,β

qαqβ∂qα∂qβΓ(n)
γ (0).

We already determined the contribution Γ
(n)
γ (0) above. For the frequency term we get

q0∂q0Γ(n)
γ (0) = iq0

J2
2

4N

∑
k

λ

ω3(k)

≈ iq0
J2

2

4λ2N

∑
k

(
1 +

3

2

J2
1 Ã

2
k

λ2

)
cos2(akγ)

= iq0
J2

2

8λ2

(
1 +

15

8

J2
1A

2

λ2

)
,

where we kept only terms up to second order in J1A/λ� 1.

The term linear in the momenta vanishes by symmetry. For the term quadratic in q we
have to distinguish four different index combinations:

• α = β = γ,

• α = β 6= γ,

• twice the contribution from α 6= β = γ,

• α.β, γ all different, α 6= β 6= γ 6= α.
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3 Effective Action of the Heisenberg-Kitaev Model

The corresponding contributions are

1

2
q2
γ∂

2
qγΓ(n)

γ (0) ≈ q2
γ

J2
2a

2

8λ

(
1 +

9

16

J2
1A

2

λ2

)
,

1

2

∑
α 6=γ

q2
α∂

2
qαΓ(n)

γ (0) ≈
∑
α 6=γ

q2
α

J2
2a

2

8λ

1

8

J2
1A

2

λ2
,

2

2

∑
α 6=γ

qαqγ∂qα∂qγΓ(n)
γ (0) ≈

∑
α 6=γ

qαqγ
J2

2a
2

8λ

1

8

J2
1A

2

λ2
,

1

2

∑
α,β,γ

distinct

qαqβ∂qα∂qβΓ(n)
γ (0) ≈

∑
α,β,γ

distinct

qαqβ
J2

2a
2

8λ

1

8

J2
1A

2

λ2
,

where we always approximated the expressions up to second order in J1A/λ. Note, that
the term involving q2

γ gives the dominant contribution deep in the spin liquid regime. We
will return to this point later.

Since the velocities in the final action have to be independent of the index γ in order to
preserve the lattice symmetries, it is sufficient to consider the case γ = 1 for which we can
rewrite the full quadratic contribution as

J2
2a

2

8λ

q2
1

(
1 +

9

16

J2
1A

2

λ2

)
+

1

8

J2
1A

2

λ2

∑
α 6=1

(
q2
α + qαq1

)
+

1

8

J2
1A

2

λ2

∑
α,β,1

distinct

qαqβ



=
J2

2a
2

8λ

q2
1

(
1 +

7

16

J2
1A

2

λ2

)
+

1

8

J2
1A

2

λ2

 q2
1 + q2

2 + q2
3︸ ︷︷ ︸

=
∑
α q

2
α= 3

2(q2
x+q2

y)

+ q1q2 + q1q3 + 2q2q3︸ ︷︷ ︸
=− 1

2(q2
x+3q2

y)




=
J2

2a
2

8λ

(
1 +

9

16

J2
1A

2

λ2

)
q2

1

Note, in particular, that any contribution containing q2, q3 vanishes at this level of accuracy
so that the propagator is extremely anisotropic. Nevertheless, we expect higher order terms
in J1A/λ to give a contribution for these directions, however these contributions will not
be taken into account here. Combining our previous results, we arrive at the following
normal part of the action:

1

Nβ

∑
q;γ

T̄ γ(q)
(
r + Ziq0 + cq2

γ

)
T γ(q),

where we defined the phenomenological parameters

r = J2

(
1− J2

4λ

(
1 +

5

4

J2
1A

2

λ2

))
,

Z =
J2

2

8λ2

(
1 +

15J2
1A

2

8λ2

)
,

c =
J2

2a
2

8λ

(
1 +

9

16

J2
1A

2

λ2

)
.
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3.4. Expansion of the Tr log-term around T γ = 0

Gradient Expansion of the Anomalous Two-Point Vertex

The same approach can be used to approximate the anomalous two-point vertex,

Γ(a)
γ (q) = −J

2
1J

2
2

Nβ

∑
k

kγ≥max(0,qγ)

ÃkÃk+q cos(akγ) cos(a(kγ + qγ))(
k2

0 + ω2(k)
) (

(k0 + q0)2 + ω2(k + q)
)

= −J
2
1J

2
2

N

∑
k

kγ≥max(0,qγ)

ÃkÃk+q cos(akγ) cos(a(kγ + qγ)) (ω(k + q) + ω(k))

2ω(k)ω(k + q)
(

(ω(k + q) + ω(k))2 + q2
0

) ,

where we get the gradient expansion

Γ(a)
γ (q) ≈ J2

2

64λ

J2
1A

2

λ2

−5 + 4a2q2
γ + a2

∑
α 6=γ

q2
α

 .

Thus, the effective action up to Gaussian fluctuations reads

S(2)[T γ ;λ,A] = 3J1NβA
2 − 2NβλS + tr log

(
1

2Nβ
G−1

0

)
+

1

Nβ

∑
q;γ

T̄ γ(q)
(
r + Ziq0 + cq2

γ

)
T γ(q)

+
1

Nβ

∑
q;γ

(
t+ c(a)

(
3q2
γ +

∑
α

q2
α

))(
T̄ γ(q)T̄ γ(−q) + T γ(q)T γ(−q)

)
,

where we defined

t = −5J2
2

64λ

J2
1A

2

λ2
,

c(a) =
J2

2a
2

64λ

J2
1A

2

λ2
.

Deep in the spin liquid regime the anomalous terms do not contribute much, whereas the
normal terms are dominant. In particular, we can approximate the Gaussian action as

S(2)
eff [T γ ;A, λ] =

1

Nβ

∑
q;γ

T̄ γ(q)
(
r + Ziq0 + cq2

γ

)
T γ(q) +O

(
J2

1A
2

λ2

)
.

3.4.2. Fourth Order Contribution

Since the third order terms in T γ vanish by spin structure arguments, we continue our
discussion at fourth order. The key idea of the diagrammatic representation for this ex-
pression is given in Fig. 3.5. Here, various different spin combinations are possible and
give rise to the somewhat complicated algebraic form. A more detailed derivation of this
expression is given in appendix C.

Deep in the spin liquid regime, J2
1A

2/λ2 � 1, we can neglect the off-diagonal terms of the
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−q

k − p+ q

−k + p

k

k − q k − p

p q

Fig. 3.5. Diagram illustrating the key idea of the fourth order contribution. Note, that
the spin arguments were omitted for convenience, however they give rise to the non-trivial
structure in Eq. (3.14).

Schwinger boson Green’s function and get

S̃(4)
= −1

4
Tr [G0DG0DG0DG0D]

≈ − 2J4
2

4(Nβ)4

∑′

k,l,m,n

G
(n)
k G

(n)
0,−lG

(n)
0,mG

(n)
0,−ntr2

[
T̃(k − l) ˜̄T(m− l)T̃(m− n) ˜̄T(k − n)

]
= − J4

2

2N4β4

∑
q1,q2,q3
α,β,γ,δ

∑′′

k

G
(n)
0,kG

(n)
0,−k+q1

G
(n)
0,k+q3

G
(n)
0,−k+q2−q3

tr2

[
στ(α)στ(β)στ(γ)στ(δ)

]
sgn(α)sgn?(β)sgn(γ)sgn?(δ)

cos(a(kα − q1,α)) cos(a(kβ + q3,β)) cos(a(kγ − q2,γ + q3,γ)) cos(akδ)

Tα(q1)T̄ β(q1 + q3)T γ(q2)T̄ δ(q2 − q3),

where we used ∑′′

k

=
∑
k

kγ≥max(0,q1,γ ,q2,γ−q3,γ ,−q3,γ)

and defined

sgn(α) =


i α = 1

−1 α = 2

−i α = 3

, τ(α) =


3 α = 1

0 α = 2

1 α = 3,

, σ0 = 1.

Using Pauli matrix identities and neglecting the frequency and momentum dependence of
the four-point vertices, we can write the fourth order contribution as

S̃(4)
= − 4u

(Nβ)3

∑
q1,q2,q3

∑
γ,γ′

T γ(q1)T̄ γ(q1 + q3)T γ
′
(q2)T̄ γ

′
(q2 − q3)

+
2u

(Nβ)3

∑
q1,q2,q3

∑
γ,γ′

T γ(q1)T̄ γ
′
(q1 + q3)T γ(q2)T̄ γ

′
(q2 − q3)

− u

(Nβ)3

∑
q1,q2,q3

∑
γ

T γ(q1)T̄ γ(q1 + q3)T γ(q2)T̄ γ(q2 − q3), (3.14)
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where we defined

u :=
J4

2

64λ3
.

Summing up all contributions up to fourth order, we finally arrive at the effective action
for the T γ-fields deep in the spin liquid regime:

Seff [T γ ;λ,A] =
1

Nβ

∑
q;γ

T̄ γ(q)
(
r + Ziq0 + cq2

γ

)
T γ(q)

− 2u
1

N3β3

∑
k,p,q
γ,γ′

(
2T̄ γ(k − p)T̄ γ′(p)T γ(q)T γ

′
(k − q)

−T̄ γ(k − p)T̄ γ(p)T γ
′
(q)T γ

′
(k − q)

)

− u 1

N3β3

∑
k,p,q
γ

T̄ γ(k − p)T̄ γ(p)T γ(q)T γ(k − q). (3.15)

3.5. General Properties of the Effective Action

We conclude the derivation of the effective action by a short discussion of its general prop-
erties. First of all, we note that the action in Eq. (3.15) is only valid deep in the spin liquid
regime, where J1A/λ � 1. This was the key assumption of our derivation and restricts
the validity of our result. Beyond this limit higher orders in J1A/λ become increasingly

relevant. In particular, the anomalous terms, ∝ (T γ)2 ,
(
T̄ γ
)2

, become relevant and the
action gets much more complicated. Furthermore, one would probably have to take into
account an isotropic dispersion, thus changing the qualitative form of the action even more.

Deep in the spin liquid regime, we found a theory of three interacting bosonic species T γ

of the same mass. Each of them disperses anisotropically in the corresponding spatial
direction aγ . This might show some quasi-one-dimensional features of the system which
could be addressed in future studies. The bosons behave non-relativistically as their
dispersion relation is given by

ω(q) ∝ q2
γ ,

and the dynamical exponent is z = 2.

Considering for a moment the symmetric mean-field ansatz for the T γ fields used by Kos
and Punk,

T γ(k) = Nβδ(k)T,

we get

Seff,MF = Nβ
(

3r |T |2 − 15u |T |4
)
.

Believing our result that u > 0, the mean-field approximation would yield an unstable
action. In fact, we believe this to be wrong and suspect a sign error in the derivation
of the fourth order term, or a sixth order term stabilizing the ground state. Since the
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3 Effective Action of the Heisenberg-Kitaev Model

functional renormalization group analysis below will not depend on the sign of u, we do
not go into further discussion of the sign of u.

For the interaction of different bosonic species different processes are possible. We define
the new couplings

u(n) := −4u, u(a) := 2u, v := −u
to distinguish the interactions. Thus, we can write the effective action as

Seff [T γ ;λ,A] =
1

Nβ

∑
q;γ

T̄ γ(q)
(
r + Ziq0 + cq2

γ

)
T γ(q)

+
u(n)

N3β3

∑
k,p,q
γ,γ′

T̄ γ(k − p)T̄ γ′(p)T γ(q)T γ
′
(k − q)

+
u(a)

N3β3

∑
k,p,q
γ,γ′

T̄ γ(k − p)T̄ γ(p)T γ
′
(q)T γ

′
(k − q)

+
v

N3β3

∑
k,p,q
γ

T̄ γ(k − p)T̄ γ(p)T γ(q)T γ(k − q). (3.16)

The bosonic fields can interact in three different ways:

• T γ + T γ
′ → T γ + T γ

′
: In this process, the number of bosons of species γ and γ′ is

preserved separately, therefore we call this process a normal interaction characterized
by u(n).

• 2T γ → 2T γ
′
: In this process two bosons of species γ are transmuted into two bosons

of species γ′. Therefore, the particle number for both species is not preserved and
we call it an anomalous interaction characterized by u(a).

• 2T γ → 2T γ : In this case, two bosons of species γ interact without transmutation to
another species. Such an interaction is parametrized by u(n) + u(a) + v.

Therefore, we see that in the case u(a) = 0 the number of bosons is preserved for all species
independently, whereas for u(a) 6= 0 this is only true for the total number of bosons.

In the case u(a) = v = 0 the corresponding theory with an isotropic propagator was studied
among others by Uzunov using perturbative renormalization group methods [46]. Wet-
terich [47] used the functional renormalization group to study similar systems for a broad
range of parameters. They both found that the propagator does not get renormalized
at any loop order. Neglecting the gradient terms, or equivalently using a homogeneous
mean-field ansatz, for u(a) = v = 0 the action is not only invariant under U(3) rotations of
the fields T γ , but also under an O(6) symmetry, as the action only contains the absolute
values of the fields T γ . For the case v 6= 0 the model is similar to models describing cubic
symmetry breaking which were for example discussed by Aharony [48].

Note that the analogies of our theory to the aforementioned models rely on the absence of
the gradient terms. The non-relativistic, anisotropic propagator as well as the anomalous
interaction are expected to qualitatively change the picture beyond mean-field approxima-
tion. Therefore, we will briefly analyze the mean-field behavior of the effective action in
the next chapter before we perform a renormalization group analysis using the functional
renormalization group.
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4 Chapter 4

Mean-Field Analysis

A first step towards a better understanding of the phase transition indicated by the in-
stability discussed above is to study the mean-field behavior of the critical theory. To
this end, we approximate the triplet fields T γ by a spatially and temporally homogeneous
mean-field defined by

T γ(k) = NβT γδ(k). (4.1)

The PSG analysis by Kos and Punk [2] suggests a real mean-field, such that the effective
action Eq. (3.16) simplifies to

SMF[T γ ] = Nβ

r∑
γ

(
T γ
)2

+
∑
γ,γ′

(
u(n) + u(a) + δγ,γ′v

)(
T γ
)2 (

T γ
′
)2

 .

Note that for real mean-fields the action does not distinguish normal and anomalous
interactions of bosons. Therefore, we define the effective coupling

ueff := u(n) + u(a).

Furthermore, the mean-field effective action is that of the usual O(3) symmetric model
with a cubic symmetry breaking term, which was studied earlier [40,48,49].

The mean-field equations are given by

0
!

=
∂ SMF

∂T γ
= 2NβT γ

r + 2
∑
γ′

(
ueff + vδγ,γ′

)(
T γ
′
)2

 .

The mean-fields T γ could in principle take different values in the three directions. Thus,
we get the following solutions to the mean-field equations:

T 1 = T 2 = T 3 = 0, (4.2)

T 1 = ±
√
− r

2 (ueff + v)
, T 2 = T 3 = 0, (4.3)

T 1 = T 2 = ±
√
− r

2 (2ueff + v)
, T 3 = 0, (4.4)

T 1 = T 2 = T 3 = ±
√
− r

2 (3ueff + v)
. (4.5)
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4 Mean-Field Analysis

The choice of the non-vanishing component is somewhat arbitrary. By symmetry of the
mean-field action under permutations of the field indices we can argue that the four solu-
tions listed above in fact describe all possible phases of the system. The same is true for
a change T γ → −T γ .

It is clear that the first solution exists for all parameters r, u, v, however the other three
solutions exist only for certain parameter regimes. The corresponding constraints are
implied by the assumption of a real mean-field and are given by

r

ueff + v
< 0, (4.6)

r

2ueff + v
< 0, (4.7)

r

3ueff + v
< 0. (4.8)

For a solution to the mean-field equations to describe a stable phase it has to be a mini-
mum of the mean-field free energy or, equivalently, the effective action. This condition is
equivalent to the (dimensionless) Hessian matrix,

hαβ :=
1

Nβ

(
∂2S̃MF

∂Tα∂T β

)
,

being positive definite or, equivalently, having only positive eigenvalues. Here, the deriva-
tives are evaluated at the respective solution of the mean-field equations. The matrix
elements of the Hessian matrix are given by

hαβ = 2δαβ

(
r + 2ueff

∑
γ

(T γ)2 + 6v (Tα)2

)
+ 8ueffTαT β.

We will now discuss the stability of the possible solutions, Eqs. (4.2)-(4.5). A summary of
this discussion can be found in Tab. 4.1.

For the trivial solution Eq. (4.2), T γ = 0, we get

h
(1)
αβ = 2rδαβ,

which has only eigenvalue 2r. Thus, we conclude that the trivial solution T γ = 0 is stable
for r ≥ 0 and arbitrary values of ueff and v.

For the solution Eq. (4.3) with one non-vanishing component, T 1 =
√
− r

2(ueff+v)
, we get

h
(2)
αβ = 2rδαβ

(
v

ueff + v
− δα,1

(
2 +

v

ueff + v

))
,

which has eigenvalues
2rv

ueff + v
, −4r.

Therefore, we conclude that this solution is stable for

r < 0, v < 0, ueff + v > 0.
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For the solution Eq. (4.4) with two non-vanishing components the Hessian matrix has
eigenvalues

− 4rv

2ueff + v
,

2rv

2ueff + v
, −4r,

which clearly cannot all be positive at the same time. Thus, we conclude that this solution
is nowhere stable.

Finally, for solution Eq. (4.5) the Hessian matrix has eigenvalues

− 4rv

3ueff + v
, −4r,

so that we conclude that this solution is stable for

r < 0, v > 0, 3ueff + v > 0.

MF solution Stability conditions

T 1 = T 2 = T 3 = 0 r ≥ 0

T 1 =
√
− r

2(ueff+v)
, T 2 = T 3 = 0 r < 0, v < 0, ueff + v > 0

T 1 = T 2 =
√
− r

2(2ueff+v)
, T 3 = 0 nowhere stable

T 1 = T 2 = T 3 =
√
− r

2(3ueff+v)
r < 0, v > 0, 3ueff + v > 0

Tab. 4.1. Solutions to the mean-field equations and corresponding stability conditions
for the parameters for real mean-fields T γ .

Next, we use the relations u(n) = −4u, u(a) = 2u, v = −u from our microscopic derivation
and get

ueff = −2u.

Thus, we can rewrite the stability condition for the first non-trivial solution, Eq. (4.3), as

r < 0, u > 0, u < 0,

which is clearly inconsistent. Therefore, we conclude that this solution is not a valid mean-
field solution. For the third non-trivial solution, Eq. (4.5), we get the stability condition

r < 0, u < 0.

Using the parameters r and u, we obtain the following mean-field structure:

• r ≥ 0, u ∈ R: The mean-field solution is given by the trivial one,

T 1 = T 2 = T 3 = 0.

• r < 0, u < 0: The mean-field solution is given by

T 1 = T 2 = T 3 =

√
r

14u
.
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4 Mean-Field Analysis

• r < 0, u > 0: In this case, the only solution to the mean-field equations is

T 1 = T 2 = T 3 = 0.

However, this solution is unstable, as it is a maximum of the mean-field free energy
as can be seen from the Hessian having only the eigenvalue 2r < 0. Therefore, no
stable mean-field solution exists.

The results of our mean-field analysis resemble those of Kos and Punk [2]. In the regime
u < 0 we interpret the qualitative change of the mean-field solution to describe a second
order phase transition from a QSL phase with T γ = 0 to a QSL phase with T γ 6= 0. The
phase transition is driven by the parameter r or, in terms of microscopic quantities, by
the ratio of the Heisenberg coupling, JH, and the Kitaev coupling, JK. We can see this as
a sanity check that the effective action Eq. (3.16) captures the essential physics correctly.
Thus, we expect the value of u to be actually negative as already discussed at the end of
the derivation of the effective action.

In order to get a better understanding of the phase transition and, in particular, the
dependence on the potentially independent parameters u(n), u(a), and v, we perform a
renormalization group analysis in the next chapter.
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5 Chapter 5

Renormalization Group Analysis

We want to use a renormalization group (RG) approach to get a better understanding
of the quantum phase transition occurring at J2,crit. In order to get a fairly simple RG
procedure, we assume the system to be deep in the spin liquid regime and use the effective
action Eq. (3.16) derived above. Since we do not expect any symmetry to protect the
specific relation between the coupling constants for the quartic interactions, we treat them
as independent parameters, so that we want to derive RG flow equations for

Z, c, r, u(n), u(a), and v,

and determine the resulting fixed point structure.

To this end, we first consider the tree level scaling behavior of the parameters using power
counting arguments and then use the functional renormalization group (fRG) to obtain
the one-loop flow equations. Note that in this approximation, we expect the wave func-
tion renormalization factor Z and the velocity c to not get renormalized. Thus, it seems
appropriate to rescale the fields in such a way that the velocity can be set c = 1. To get
flow equations beyond tree level for c and Z one would need higher loop orders.

Using the one-loop fRG flow equations, we perform an ε-expansion in d = 2−ε dimensions
and determine the fixed points of the flow numerically. Linearizing the flow equations
around the fixed points and determining the RG eigenvalues, we study the stability prop-
erties of the fixed points.

5.1. Tree Level Scaling

We start our RG analysis by performing a power counting analysis. Since we also want to
determine the critical dimension of the theory, we generalize the dimension to arbitrary d.
Furthermore, we take the thermodynamic limit to replace momentum sums by integrals
and take the zero temperature limit,

1

N

∑
k

→
∫

ddk

(2π)d
,

1

β

∑
k0

→
∫ ∞
−∞

dk0

(2π)
.
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5 Renormalization Group Analysis

Thus, we arrive at the new form of the action,

Seff [T γ ;λ,A] =
∑
γ

∫
q
T̄ γ(q)

(
r + Ziq0 + q2

γ

)
T γ(q)

+
∑
γ,γ′

∫
k,p,q

(
u(n)T̄ γ(k − p)T̄ γ′(p)T γ(q)T γ

′
(k − q)

+u(a)T̄ γ(k − p)T̄ γ(p)T γ
′
(q)T γ

′
(k − q)

)
+ v

∑
γ

∫
k,p,q

T̄ γ(k − p)T̄ γ(p)T γ(q)T γ(k − q), (5.1)

where we used the notation ∫
k

:=

∫ ∞
−∞

dk0

(2π)

∫
ddk

(2π)d
.

For our power counting analysis, we rescale the momenta as k′ = bk and the frequencies
as k′0 = bzk0, where z = 2 is the dynamical exponent. At the same time, the fields are
rescaled as

T γ′(k′) = b−∆T T γ(k).

Requiring the kinetic term to be scale invariant, we get

∆T =
d+ z + 2

2
=
d+ 4

2
,

i.e.
T γ′(k′) = b−(d+z+2)/2T γ(k) = b−(d+4)/2T γ(k),

so that we get for the scaling behavior of the couplings at tree level

r′ = b2r,

u(n)′ = b4−d−zu(n) = b2−du(n),

u(a)′ = b4−d−zu(a) = b2−du(a),

v′ = b4−d−zv = b2−dv.

We see that the mass parameter r is always relevant as expected. The quartic couplings
are relevant in d < 2, a fact which we will investigate further in the one-loop approximation
using the functional renormalization group (fRG). From our scaling analysis, we conclude
that the critical dimension is dc = 2 which is the dimension of the physical system. Typi-
cally, the marginal parameters give rise to logarithmic corrections to the scaling behavior
at the (upper) critical dimension [40]. Nevertheless, we expect the RG flow slightly below
the critical dimension to still capture the essential physics [50]. Therefore, we will perform
an ε-expansion in d = 2− ε below.
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5.2. One-Loop Approximation - Functional Renormalization Group

The one-loop RG flow can be obtained using fRG and the truncation

ΓΛ[T γ ] = SΛ,eff [T γ ;λ,A],

where we promoted the parameters to cutoff-dependent parameters rΛ, ZΛ, . . .. Next, we
will derive flow equations for these parameters by taking functional derivatives of the Wet-
terich equation (2.6) with respect to the fields T γ . For simplicity, we return to the case
d = 2 in our derivation and generalize only the final flow equations to arbitrary dimensions.

We define the inverse propagator,

G−1
Λ,q,γ := −

(
rΛ + ZΛiq0 + q2

γ

)
and the regularized inverse propagator,

G−1
R,q,γ := G−1

Λ,q,γ −RΛ,q,γ ,

where RΛ,q,γ is some regulator function specified below. Defining the matrices

(
Γ

(2)
Λ

)
p,q;α,β

=

(
δ2ΓΛ

δT̄α(p)δT̄β(q)
δ2ΓΛ

δT̄α(p)δTβ(q)
δ2ΓΛ

δTα(p)δT̄β(q)
δ2ΓΛ

δTα(p)δTβ(q)

)
,

(RΛ)p,q;α,β = δαβδp,qRΛ,p,α

(
0 1
1 0

)
,

and M := Γ
(2)
Λ +RΛ, we can write the Wetterich equation (2.6) as

∂ΛΓΛ =
1

2
Tr
[
M−1∂ΛRΛ

]
.

Some expressions needed for our calculations related to these objects are listed in ap-
pendix D.1.

5.2.1. Flow Equations for the Parameters

We derive the fRG flow equations as functional derivatives of the Wetterich equation using
the identities

G−1
Λ,k,γ = −

∫
k′

δ2ΓΛ

δT̄ γ(k)δT γ(k′)

∣∣∣∣
T=0

,

rΛ = − lim
k→0

G−1
Λ,k,γ ,

ZΛ = i lim
k→0

∂k0G
−1
Λ,k,γ ,

u
(n)
Λ =

1

12

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

δ4ΓΛ

δT̄ γ(p1)δT̄ γ′(p2)δT γ(p3)δT γ′(p4)

∣∣∣∣
T=0

,

u
(a)
Λ =

1

24

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

δ4ΓΛ

δT̄ γ(p1)δT̄ γ(p2)δT γ′(p3)δT γ′(p4)

∣∣∣∣
T=0

,

u
(n)
Λ + u

(a)
Λ + vΛ =

1

12

∑
γ

∫
p4

lim
p1,...,p3→0

δ4ΓΛ

δT̄ γ(p1)δT̄ γ(p2)δT γ(p3)δT γ(p4)

∣∣∣∣
T=0

.
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Flow Equation for G−1
Λ,k,γ

We start by determining the flow equation of the inverse propagator:

∂ΛG
−1
Λ,k,γ = −

∫
k′

δ2

δT̄ γ(k)δT γ(k′)

∣∣∣∣
T=0

∂ΛΓΛ

=
1

2

∑
α,β

∫
k′,p,q

tr2

[(
δ2M

δT̄ γ(k)δT γ(k′)

)
p,q;α,β

(
M−1

∣∣
T=0

∂ΛRΛ M
−1
∣∣
T=0

)
q,p;β,α

]

=
1

2

∑
α

∫
k′,p

∂ΛRΛ,p,α

G2
R,p,α

tr2

[(
δ2M

δT̄ γ(k)δT γ(k′)

)
p,p;α,α

(
0 1
1 0

)]

= 2

∫
k′

(2π)(d+1)δ(k − k′)
∑
α

(
u

(n)
Λ (δαγ + 1) + 2

(
u

(a)
Λ + vΛ

)
δαγ

)∫
p

∂ΛRΛ,p,α

G−2
R,p,α

= 2
∑
α

(
u

(n)
Λ (δαγ + 1) + 2

(
u

(a)
Λ + vΛ

)
δαγ

)∫
p

∂ΛRΛ,p,α

G−2
R,p,α

,

where we used the Eqs. (D.1) and (D.4) to evaluate the trace.

Next, we use a regulator implementing a sharp cutoff in momentum space ,

RΛ,p,α = RΛ,p = Λ2Θ(Λ2 − p2) (5.2)

and its derivative

∂ΛRΛ,p,α = 2Λ
(
Θ(Λ2 − p2) + Λ2δ(Λ2 − p2)

)
. (5.3)

Thus, the frequency integral∫ ∞
−∞

dp0

2π

2Λ
(
Θ(Λ2 − p2) + Λ2δ(Λ2 − p2)

)
(rΛ + ZΛip0 + p2

α + Λ2Θ(Λ2 − p2))2

can be evaluated using the residue theorem. To this end, we note that the only pole of the
integrand lies in the upper half plane, as long as rΛ > −Λ2. As we are later on interested
in the behavior for small |rΛ/Λ

2|, this condition will be satisfied. Closing the contour in
the lower half plane, the integral vanishes.

Therefore, we conclude that

∂ΛG
−1
Λ,k,γ = 0, (5.4)

i.e. the inverse propagator does not get renormalized. This resembles the fact that for
non-relativistic, interacting bosons at T = 0 the self-energy is known to not get renor-
malized [46, 47]. Since this result holds at all orders in perturbation theory, we expect
Eq. (5.4) to stay true even beyond our one-loop approximation.

Flow Equations for rΛ and ZΛ

Using the fRG flow for the inverse propagator, it is immediately clear that the mass
parameter rΛ and the wave function renormalization factor ZΛ do not get renormalized
as well,

∂ΛrΛ = 0, (5.5)

∂ΛZΛ = 0. (5.6)
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Flow Equation for u
(n)
Λ

Next, we want to derive the flow equations for the quartic couplings, starting with u
(n)
Λ :

∂Λu
(n)
Λ =

1

12

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

δ4

δT̄ γ(p1)δT̄ γ′(p2)δT γ(p3)δT γ′(p4)

∣∣∣∣
T=0

∂ΛΓΛ

=
1

24

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

Tr

[(
δ2M

δT̄ γ(p1)δT̄ γ′(p2)
M−1

∣∣
T=0

δ2M

δT γ(p3)δT γ′(p4)

+
δ2M

δT γ(p3)δT γ′(p4)
M−1

∣∣
T=0

δ2M

δT̄ γ(p1)δT̄ γ′(p2)

+2
δ2M

δT̄ γ(p1)δT γ′(p4)
M−1

∣∣
T=0

δ2M

δT̄ γ′(p2)δT γ(p3)

)

+2
δ2M

δT̄ γ(p1)δT γ(p3)
M−1

∣∣
T=0

δ2M

δT̄ γ′(p2)δT γ′(p4)

)
(
M−1

∣∣
T=0

∂ΛRΛ M
−1
∣∣
T=0

)]
.

We evaluate the summands separately, using the Eqs. (D.1)-()D.4). For the first term we
get

1

24

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

Tr

[
δ2M

δT̄ γ(p1)δT̄ γ′(p2)
M−1

∣∣
T=0

δ2M

δT γ(p3)δT γ′(p4)

(
M−1

∣∣
T=0

∂ΛRΛ M−1
∣∣
T=0

)]

= −4u
(n)2
Λ

24

∑
γ 6=γ′

αβ

∫
k,l,p4

lim
p1,...,p3→0

∂ΛRΛ,k,α

G−2
R,k,αG

−1
R,l,β

(δαγδβγ′ + δβγδαγ′)
2

× (2π)(d+1)δ(p1 + p2 − k − l)(2π)(d+1)δ(p3 + p4 − l − k)

= −u
(n)2
Λ

3

∑
γ 6=γ′

αβ

δαγδβγ′

∫
k

∂ΛRΛ,k,α

G−2
R,k,αG

−1
R,−k,β

= −u
(n)2
Λ

3

∑
γ 6=γ′

∫
k

∂ΛRΛ,k,γ

G−2
R,k,γG

−1
R,−k,γ′︸ ︷︷ ︸

:=I
(1)

γ,γ′

,

and the second term gives the same contribution. By a similar calculation, we get for the
third term

2

24

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

Tr

[
δ2M

δT̄ γ(p1)δT γ′(p4)
M−1

∣∣
T=0

δ2M

δT̄ γ′(p2)δT γ(p3)

(
M−1

∣∣
T=0

∂ΛRΛ M−1
∣∣
T=0

)]

= −
2
(
u

(n)2
Λ + 4u

(a)2
Λ

)
3

∑
γ 6=γ′

∫
k

∂ΛRΛ,k,γ

G−2
R,k,γG

−1
R,k,γ′︸ ︷︷ ︸

:=I
(2)

γ,γ′

,
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and for the fourth term

2

24

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

Tr

[
δ2M

δT̄ γ(p1)δT γ(p3)
M−1

∣∣
T=0

δ2M

δT̄ γ′(p2)δT γ′(p4)

(
M−1

∣∣
T=0

∂ΛRΛ M−1
∣∣
T=0

)]
= −2

3

∑
γ 6=γ′

α

u
(n)
Λ

(
u

(n)
Λ (1 + 2δαγ) + 4(u

(a)
Λ + vΛ)δαγ

)
I(2)
α,α.

Summing up all contributions, we obtain

∂Λu
(n)
Λ = −u

(n)2
Λ

3

∑
γ 6=γ′

I
(1)
γ,γ′ −

2
(
u

(n)2
Λ + 4u

(a)2
Λ

)
3

∑
γ 6=γ′

I
(2)
γ,γ′

− 2u
(n)
Λ

3

∑
γ 6=γ′
α

(
u

(n)
Λ (1 + 2δαγ) + 4(u

(a)
Λ + vΛ)δαγ

)
I(2)
α,α.

Again, using the regulator specified in Eq. (5.2), we see that the integral I
(2)
γ,γ′ vanishes

when performing the frequency integral by the same argument as above. Therefore, we are

left with the first summand involving the integral I
(1)
γ,γ′ . Referring to the appendix D.2.1

for the evaluation of the integral, we know that the value of I
(1)
γ,γ′ does not depend on

the indices γ 6= γ′ but only on the fact that they are different. Therefore, we define

I
(6=)
Λ (r) := I

(1)
γ,γ′ and rewrite the flow equation for u

(n)
Λ as

∂Λu
(n)
Λ = −2I(6=)(r) u

(n)2
Λ . (5.7)

Note that I
(6=)
Λ (r) depends on the mass parameter r and the cutoff Λ. A diagrammatic

representation of the flow equations for all parameters is shown in Fig. 5.1, where only the
diagrams with a non-zero contribution are included.

Flow Equation for u
(a)
Λ

A similar calculation gives for u
(a)
Λ

∂Λu
(a)
Λ =

1

24

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

δ4

δT̄ γ(p1)δT̄ γ(p2)δT γ′(p3)δT γ′(p4)

∣∣∣∣
T=0

∂ΛΓΛ

=
1

48

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

Tr

[(
δ2M

δT̄ γ(p1)δT̄ γ(p2)
M−1

∣∣
T=0

δ2M

δT γ′(p3)δT γ′(p4)

+
δ2M

δT γ′(p3)δT γ′(p4)
M−1

∣∣
T=0

δ2M

δT̄ γ(p1)δT̄ γ(p2)

+4
δ2M

δT̄ γ(p1)δT γ′(p4)
M−1

∣∣
T=0

δ2M

δT̄ γ(p2)δT γ′(p3)

)
(
M−1

∣∣
T=0

∂ΛRΛ M
−1
∣∣
T=0

)]
.
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∂Λu
(n)
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∂Λu
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Fig. 5.1. Diagrammatic representation of the one-loop fRG flow equa-
tions (5.7), (5.8) and (5.9), where solid lines indicate triplet propagators and the vertical
line represents a regulator insertion. In our approximation all external frequencies and
momenta vanish. The combinatorical prefactors can be obtained by carefully summing
over admissible index combinations and topologically distinct diagrams. Only diagrams
giving a non-zero contribution where included.
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For the first summand we get

1

48

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

Tr

[
δ2M

δT̄ γ(p1)δT̄ γ(p2)
M−1

∣∣
T=0

δ2M

δT γ′(p3)δT γ′(p4)

(
M−1

∣∣
T=0

∂ΛRΛ M−1
∣∣
T=0

)]
= −1

3

∑
γ 6=γ′

α

u
(a)
Λ

(
2
(
u

(n)
Λ + vΛ

)
δαγ + u

(a)
Λ

)
I(1)
α,α,

and the same expression is obtained for the second summand. For the third summand we
get

4

48

∑
γ 6=γ′

∫
p4

lim
p1,...,p3→0

Tr

[
δ2M

δT̄ γ(p1)δT γ′(p4)
M−1

∣∣
T=0

δ2M

δT̄ γ(p2)δT γ′(p3)

(
M−1

∣∣
T=0

∂ΛRΛ M−1
∣∣
T=0

)]
= −8

3
u

(n)
Λ u

(a)
Λ

∑
γ 6=γ′

I
(2)
γ,γ′ .

Combining these terms, we obtain

∂Λu
(a)
Λ = −2

3

∑
γ 6=γ′
α

u
(a)
Λ

(
2
(
u

(n)
Λ + vΛ

)
δαγ + u

(a)
Λ

)
I(1)
α,α −

8

3
u

(n)
Λ u

(a)
Λ

∑
γ 6=γ′

I
(2)
γ,γ′ .

Using the regulator in Eq. (5.2), we know that the integral I
(2)
γ,γ′ vanishes as before and

referring to appendix D.2.2 for the evaluation of I
(1)
α,α we get that I

(=)
Λ (r) := I

(1)
α,α is inde-

pendent of α, so that we can write the flow equation for u
(a)
Λ as

∂Λu
(a)
Λ = −4I(=)(r) u

(a)
Λ

(
2
(
u

(n)
Λ + vΛ

)
+ 3u

(a)
Λ

)
. (5.8)

Again, I
(=)
Λ (r) is a function of r and Λ.

Flow Equation for vΛ

Finally, we have

∂Λ

(
u

(n)
Λ + u

(a)
Λ + vΛ

)
=

1

12

∑
γ

∫
p4

lim
p1,...,p3→0

δ4

δT̄ γ(p1)δT̄ γ(p2)δT γ(p3)δT γ(p4)

∣∣∣∣
T=0

∂ΛΓΛ

=
1

24

∑
γ

∫
p4

lim
p1,...,p3→0

Tr

[(
δ2M

δT γ(p3)δT γ(p4)
M−1

∣∣
T=0

δ2M

δT̄ γ(p1)δT̄ γ(p2)

+
δ2M

δT̄ γ(p1)δT̄ γ(p2)
M−1

∣∣
T=0

δ2M

δT γ(p3)δT γ(p4)

+4
δ2M

δT̄ γ(p1)δT γ(p3)
M−1

∣∣
T=0

δ2M

δT̄ γ(p2)δT γ(p4)

)
(
M−1

∣∣
T=0

∂ΛRΛ M
−1
∣∣
T=0

) ]
.

Again, we evaluate the summands separately. For the first term we get

1

24

∑
γ

∫
p4

lim
p1,...,p3→0

Tr

[
δ2M

δT γ(p3)δT γ(p4)
M−1

∣∣
T=0

δ2M

δT̄ γ(p1)δT̄ γ(p2)
M−1

∣∣
T=0

∂ΛRΛ M−1
∣∣
T=0

]
= −2

((
u

(n)
Λ + 2

(
u

(a)
Λ + vΛ

))2

+ 8u
(a)2
Λ

)
I(1)
γ,γ ,

46
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and the same result is obtained for the second term. As before, the third term vanishes
when evaluating the frequency integral. Using I(=)(r), we can rewrite the flow equation
for vΛ as

∂ΛvΛ = −4I(=)(r)

((
u

(n)
Λ + 2

(
u

(a)
Λ + vΛ

))2
+ 8u

(a)2
Λ

)
− ∂Λu

(n)
Λ − ∂Λu

(a)
Λ

= −4I(=)(r)

(
9u

(a)2
Λ + 2u

(a)
Λ

(
u

(n)
Λ + 3vΛ

)
+
(
u

(n)
Λ + 2vΛ

)2
)

+ 2I(6=)(r) u
(n)2
Λ .

(5.9)

5.2.2. Fixed Points of the fRG Flow in d = 2− ε Dimensions

In order to examine the fixed point structure of the fRG flow in d = 2 − ε dimensions,
ε > 0, we define the dimensionless parameters

r̃Λ = rΛΛ−2Z
−1/2
Λ , ũ

(n)
Λ = u

(n)
Λ Λd−2Z−1

Λ , ũ
(a)
Λ = u

(a)
Λ Λd−2Z−1

Λ , ṽΛ = vΛΛd−2Z−1
Λ ,

and replace the dimension-dependent factor from the integrals, Λ2/2→ Λd/d, so that the
the flow equations for the new parameters read

Λ∂Λr̃Λ = −2r̃Λ,

Λ∂Λũ
(n)
Λ = (d− 2) ũ

(n)
Λ +

2Λ2d−3

dZΛ
∂Λu

(n)
Λ ,

Λ∂Λũ
(a)
Λ = (d− 2) ũ

(a)
Λ +

2Λ2d−3

dZΛ
∂Λu

(a)
Λ ,

Λ∂ΛṽΛ = (d− 2) ṽΛ +
2Λ2d−3

dZΛ
∂ΛvΛ.

We introduce the logarithmic cutoff Λ = Λ0e
−s and insert Eqs. (5.5)-(5.9) so that the flow

equations for the dimensionless parameters read

∂sr̃ = 2r̃ (5.10)

∂sũ
(n) = εũ(n) +

4ZΛΛ

2− ε I
(6=)(r̃Λ2) ũ(n)2 (5.11)

∂sũ
(a) = εũ(a) +

8ZΛΛ

2− ε I
(=)(r̃Λ2) ũ(a)

(
2
(
ũ(n) + ṽ

)
+ 3ũ(a)

)
(5.12)

∂sṽ = εṽ +
8ZΛΛ

2− ε I
(=)(r̃Λ2)

(
9ũ(a)2 + 2ũ(a)

(
ũ(n) + 3ṽ

)
+
(
ũ(n) + 2ṽ

)2
)

− 4ZΛΛ

2− ε I
(6=)(r̃Λ2) ũ(n)2. (5.13)

From the fRG flow equation for r̃ it is clear that all fixed points are necessarily at

r̃? = 0.

Therefore, in order to find the fixed points of the fRG flow, we can evaluate the integrals

I
(6=/=)
Λ at r = 0 and get

I
(6=)
Λ (0) = − 1

πΛZΛ

(
1

2
√

35
+

16

15
√

15

)
=: − 1

ΛZΛ
c1,

I
(=)
Λ (0) = − 1

πΛZΛ

(
1

8
√

2
+

1

3
√

3

)
=: − 1

ΛZΛ
c2.
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Thus, we can rewrite the fixed point conditions for the parameters ũ(n), ũ(a), ṽ as

0 = ũ
(n)
?

(
ε− 4c1

2− ε ũ
(n)
?

)
,

0 = ũ
(a)
?

(
ε− 8c2

2− ε
(

2
(
ũ

(n)
? + ṽ?

)
+ 3ũ

(a)
?

))
,

0 = εṽ? +
4c1

2− ε ũ
(n)2
? − 8c2

2− ε

(
9ũ

(a)2
? + 2ũ

(a)
?

(
ũ

(n)
? + 3ṽ?

)
+
(
ũ

(n)
? + 2ṽ?

)2
)
.

The fixed point values for the parameters ũ(n), ũ(a), ṽ can be determined using Mathe-
matica. Furthermore, we linearize the fRG flow equations around the fixed points and
determine the RG eigenvalues. Expanding up to first order in ε, we find six fixed points.
Four of them are at ũ(a) = 0 and might be related to those of the O(6) model with cubic
anisotropy discussed earlier. Therefore, we label these fixed points in analogy to the known
fixed points for cubic symmetry breaking models. The fixed point structure is summarized
in Tab. 5.1, and plots indicating the parameter flow are given in Fig. 5.2. The fixed points
and the corresponding RG eigenvalues are the following:

• Gaussian fixed point:

ũ
(n)
? = 0, ũ

(a)
? = 0, ṽ? = 0.

The RG eigenvalues are all positive, 2, ε, ε, ε, and therefore the Gaussian fixed point
is unstable.

• Heisenberg-like fixed point: This fixed point seems to be related to the Heisenberg
fixed point known from the study of systems with cubic symmetry breaking:

ũ
(n)
? = 4.3642ε, ũ

(a)
? = 0, ṽ? = −4.00026ε.

We comment on the difference to the usual Heisenberg fixed point below. The
fixed point has three relevant and one irrelevant directions with RG eigenvalues
2, 6.20ε, 0.74ε,−ε.

• Cubic fixed point: This fixed point seems to be related to the cubic fixed point:

ũ
(n)
? = 4.3642ε, ũ

(a)
? = 0, ṽ? = 0.335214ε.

The fixed point has one relevant and three irrelevant directions with RG eigenvalues
2,−6.20ε,−2.36ε,−ε and therefore is critical with the relevant parameter r̃ driving
a second order phase transition.

• Decoupled O(2) fixed point: Furthermore, there is a fixed point corresponding to
three decoupled O(2) models for the complex order parameter:

ũ
(n)
? = 0ε, ũ

(a)
? = 0, ṽ? = 0.699155ε.

This fixed point has three relevant and one irrelevant directions with RG eigenvalues
2, ε, 0.5ε,−ε.

• New fixed point 1: For this fixed point the anomalous interactions are crucial:

ũ
(n)
? = 4.3642ε, ũ

(a)
? = 1.00552ε, ṽ? = −4.47418ε.

The fixed point has two relevant and two irrelevant directions with RG eigenvalues
2, 5.40ε,−1.08ε,−ε.
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• New fixed point 2: This fixed point is a consequence of the anomalous interactions
as well:

ũ
(n)
? = 4.3642ε, ũ

(a)
? = −1.50924ε, ṽ? = −0.702026ε.

The fixed point has two relevant and two irrelevant directions with RG eigenvalues
2, 3.88ε,−ε,−2.25ε.

We see that the cubic fixed point is the only critical fixed point, the Gaussian fixed point is
the only completely unstable fixed point and the other four fixed points are of the generic
type.

ũ
(n)
? ũ

(a)
? ṽ? RG eigenvalues

Gaussian fixed point 0 0 0 2, ε, ε, ε

Heisenberg-like fixed point 4.3642ε 0 −4.00026ε 2, 6.20ε, 0.74ε,−ε
Cubic fixed point 4.3642ε 0 0.335214ε 2,−6.20ε,−2.36ε,−ε
Decoupled O(2) fixed point 0 0 0.699155ε 2, ε, 0.5ε,−ε
New fixed point 1 4.3642ε 1.00552ε −4.47418ε 2, 5.40ε,−1.08ε,−ε
New fixed point 2 4.3642ε −1.50924ε −0.702026ε 2, 3.88ε,−ε,−2.25ε

Tab. 5.1. Fixed points in the ε-expansion up to order O(ε) for ε = 0.1. Note that r̃? = 0
for all fixed points.

5.3. Interpretation

To interpret our results, we may compare the RG flow and the fixed point structure to
earlier results in the literature and point out the important differences. To start with, we
consider the case u(a) = v = 0, i.e. the theory without anomalous interactions or cubic
symmetry breaking terms. As already mentioned above, Uzunov [46] and Wetterich [47]
studied such systems for the isotropically dispersing case and found that the propaga-
tor does not get renormalized. As we saw in Eq. (5.4), this property holds also for an
anisotropic dispersion. Therefore, the mass does not get renormalized and the anoma-
lous dimension is zero, η ∝ ∂ΛZΛ = 0. Using Eqs. (5.10) and (5.11), we get for the
dimensionless parameters the flow equations

∂sr̃ = 2r̃,

∂sũ
(n) = ũ(n)

(
ε+

4ZΛΛ

2− ε I
(6=)(r̃Λ2) ũ(n)

)
.

Due to the anisotropic propagator, the integral I( 6=)(r̃Λ2) is different from the expres-
sions encountered by Uzunov and Wetterich. As in the isotropic case, the flow equations
have two fixed point, the trivial Gaussian fixed point and the Heisenberg fixed point with

ũ
(n)
? 6= 0. However, as we saw above, the Heisenberg fixed point is not a fixed point of the

full RG flow.

To understand this, we turn to the case of arbitrary v while remaining at u(a) = 0. In the
case of static fields and an isotropic kinetic term such models were studied by Aharony [48]
in the context of O(N) symmetric models. Our critical theory seems to be connected to the
O(6) symmetric model, as for u(a) = 0 the action only contains combinations of absolute
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ũ
(n)

ṽ
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Fig. 5.2. Parameter flow (a) in the ũ(n)− ṽ-plane for ũ
(a)
? = 0 and (b) in the ũ(a)− ṽ-plane

for ũ
(n)
? ≈ 4.3642ε 6= 0 and ε = 0.1. The fixed points are indicated by the colored dots.
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values of the fields. The important difference to this model is the inclusion of the linear
time derivative, i.e. the dynamical exponent z = 2, which spoils the analogy to a classical
O(6) model in d+1 dimensions. Using the flow equations for the dimensionless parameters,
Eqs. (5.10), (5.11), and (5.13), we see that the flow equations for r̃ and ũ(n) do not involve
ṽ and therefore remain unchanged, and the flow equation for ṽ reads

∂sṽ = εṽ +
8ZΛΛ

2− ε I
(=)(r̃Λ2)

((
ũ(n) + 2ṽ

)2
)
− 4ZΛΛ

2− ε I
(6=)(r̃Λ2) ũ(n)2.

Note in particular, that the flow equations for ũ(n) and ṽ are substantially different from
those for the static, ‘isotropically propagating’ cubic symmetry breaking model, where
the flow of ũ(n) includes ṽ. In particular, the present RG flow is incompatible with the
Heisenberg fixed point obtained in the case v = 0. This is not surprising, as the sym-
metry of the effective action is different due to both the linear time derivative and the
anisotropic kinetic term. Nevertheless, we find the four fixed points discussed above which
to some extent resemble the behavior of the cubic symmetry breaking model. Note, how-
ever, that the inclusion of quantum fluctuations, i.e. the τ -dependence of the fields, and
the anisotropic dispersion change the RG flow substantially. Nevertheless, there is still a
fixed point which is stable in the ũ(n)− ṽ-plane and for which the mass parameter r̃ is the
only relevant perturbation. Thus, we conclude that the phase transition between the QSL
phases discussed by Kos and Punk is indeed a second order phase transition.

The fixed point structure and, in particular, the critical behavior seems to be surprisingly
insensitive to the presence of an anomalous interaction, u(a) 6= 0. Even if it affects the
quantitative results, it does not seem to change the qualitative picture drastically. It might
be interesting to study this property further in future analyses.

To conclude our discussion of the RG flow of the effective action we will briefly relate our
results to the mean-field analysis above. The existence of a second order phase transition
driven by the mass parameter r is a common result of both methods. Therefore, we can
say for sure that the QPT discovered by Kos and Punk [2] is indeed of second order.
Interestingly, the inclusion of complex fields in the RG procedure instead of real mean-
field values does not change this qualitative picture. However, the RG flow itself is clearly
affected by the complex structure. Starting from the RG flow it is possible to determine
critical exponents, however this is left open for further studies and might be analyzed
using more elaborate RG methods.
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6 Chapter 6

Summary & Outlook

In this thesis, we took an analytical approach to the Heisenberg-Kitaev model on the tri-
angular lattice. The model is known to host different quantum spin liquid ground states
and is a reasonable candidate for their experimental detection. The goal of this thesis was
to understand the quantum phase transition between two of these quantum spin liquid
states in more detail.

In contrast to earlier studies we did not use any numerical methods but relied solely on
analytical tools. We started from a Schwinger boson representation of the spins and per-
formed a Hubbard-Stratonovich transformation to overcome the mean-field approximation
used in earlier studies. We derived an effective theory for the relevant degrees of freedom
by integrating out the Schwinger bosons. The resulting action describes three interacting
bosonic fields dispersing in one particular direction each. Apart from normal interactions
preserving the number of bosons of each species separately, there are also anomalous in-
teractions where bosons of different species are transmuted into each other.

We confirmed the existence of the quantum phase transition by an instability of the Gaus-
sian theory. We analyzed the mean-field behavior of the quartic theory and found an
indication for the quantum phase transition to be of second order. Using the functional
renormalization group, we derived one-loop RG flow equations. In particular, the RG flow
has one critical fixed point, indicating a second order phase transition.

The effective action, and hence its RG flow, resembles some of the features of the O(6)
symmetric model with a cubic symmetry breaking term at mean-field level and to some
extent even beyond. However, the dynamical exponent z = 2 spoils the analogy to a
d+ 1-dimensional O(N) model. Together with the anisotropic dispersion and the anoma-
lous interactions this gives rise to some interesting behavior, like the non-renormalization
property for the inverse propagator and a shift of the usual Heisenberg fixed point due
to an altered symmetry of the action. Nevertheless, the critical theory seems to be sur-
prisingly insensitive to the anomalous interactions in terms of the RG fixed point structure.

The critical theory was derived under the assumption that the system is deep in the spin
liquid regime. Going beyond this approximation, we expect some isotropic contribution
to the normal propagator of the effective theory. In this case, the anomalous propagator
becomes relevant and therefore has to be taken into account. Together with the quasi-
one-dimensional behavior of the bosons deep in the spin liquid regime, this would be an
interesting line of research in future projects. Also the inclusion of higher order terms in
the triplet fields might be interesting with respect to the stability of possible mean-field
solutions.
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6 Summary & Outlook

Furthermore, the RG analysis of the effective theory could be taken further. In this thesis
we determined the one-loop flow equations. Taking into account higher loop orders may
prove fruitful to see whether the non-renormalization of the propagator remains valid as
expected. Furthermore, we neglected the frequency and momentum dependence of the
vertices altogether. Using modern numerical methods like the multiloop-fRG [51] it might
be interesting to take into account both the full vertex structure and higher loop orders.
Also, the calculation of critical exponents might be of interest in future studies.

From another point of view, realizations of the Heisenberg-Kitaev model on other lattices,
in particular the hexagonal or the Kagomé lattice, could be interesting for future analysis.

We have shown that the combination of an effective action and a RG analysis in the spirit
of the Landau-Ginzburg-Wilson paradigm can improve our understanding of quantum
spin liquids and their phase transitions. The analytical approach used in this thesis can
be generalized to study other quantum phase transitions in systems hosting quantum spin
liquid phases.
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A Appendix A

Singlet & Triplet Operator Identities

Let i, j denote nearest-neighboring sites. Using Schwinger boson operators, the Heisenberg
interaction can be written as

~Si · ~Sj =
1

4

∑
a=1,2,3

b†iασ
a
αβbiβb

†
jγσ

a
γδbjδ

=
1

4
b†iαbiβb

†
jγbjδ

∑
a=1,2,3

σaαβσ
a
γδ

=
1

4
b†iαbiβb

†
jγbjδ (2δαδδβγ − δαβδγδ)

=
1

2
b†iαb

†
jβbiβbjα −

1

4
b†iαbiαb

†
jβbjβ

=
1

2
b†iαb

†
jβbiβbjα −

1

4
ninj

=
1

2
b†iαb

†
jβbiβbjα − S2.

Here, we used the constraint in Eq. (3.2) in the last step. Note that this result holds for
any spin S as long as the Schwinger bosons form a faithful, two-dimensional representation
of SU(2), which is ensured by the constraint.

At the same time, we have

a†ijaij =
1

4
εαβεγδb

†
iαb
†
jβbiγbjδ

=
1

4
b†iαb

†
jβbiγbjδ (δαγδβδ − δαδδβγ)

=
1

4

(
b†iαbiαb

†
jβbjβ − b

†
iαb
†
jβbiβbjα

)
= S2 − 1

4
b†iαb

†
jβbiβbjα.

Combining these two results, we get

~Si · ~Sj = −2a†ijaij + S2.

A similar identity can be obtained for the Kitaev terms involving only one spin component,

Sγi S
γ
j = −tγ†ij t

γ
ij − a

†
ijaij + S2.

This identity can be verified by explicitly calculating the contributions for γ = 1, 2, 3
separately. Again, this identity holds true for all S.
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B Appendix B

Gauge Theory of the HK-Model on
the Triangular Lattice

Returning to the Schwinger boson representation of the Heisenberg-Kitaev model given in
Eq. (3.3), one sees that the action has a (local) U(1) gauge symmetry [10] acting on the
Schwinger bosons as

biα(τ)→ eiθibiα(τ).

Under this transformation the Hubbard-Stratonovich fields A and T γ transform as

Aij(τ)→ ei(θi+θj)Aij(τ)

T γij(τ)→ ei(θi+θj)T γij(τ).

The fact that two mean-field ansätze which are related by a gauge transformation cannot
be distinguished by any observable1 is the foundation of the so-called projective symme-
try group (PSG) which contains all transformations which leave a given mean-field ansatz
invariant. This method was developed by Wen for fermionic [1, 12] and by Wang and
Vishwanath for bosonic mean-field theories [10]. In particular, PSGs allow to analyze the
form of possible mean-field ansätze and are thus a very useful tool to get a first classifi-
cation of possible QSL ground states. However, different QSL states can have the same
PSG as it is the case, for example, for the three phases discussed by Kos and Punk [2]. A
finer classification, which we will not address any further here, uses group cohomology and
allows for a classification of a much broader class of topologically ordered state [15,52,53].

The U(1) gauge symmetry of the Heisenberg-Kitaev model can be used to restrict the
form of an effective action for the A and T γ fields significantly, as the effective action only
contains gauge-invariant terms itself. Thus, the effective action for the A and T γ fields in
real space takes the form

S̃eff [A, T γ ] =
∑
γ‖〈ij〉

(
c1(∂τ ) |Aij |2 + c2(∂τ )

∣∣∣T γij∣∣∣2)
+
∑

closed
loops

(
cATATijkl Aij T̄

γ(jk)
jk AklT̄

γ(li)
li + cAATTijkl AijĀjkT

γ(kl)
kl T̄

γ(li)
li

+cAAAAijkl AijĀjkAklĀli + cTTTTijkl T
γ(ij)
ij T̄

γ(jk)
jk T

γ(kl)
kl T̄

γ(li)
li

)
+ . . . ,

1Any observable quantity has to be gauge invariant and therefore cannot distinguish states connected
by gauge transformations.
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where we dropped the time arguments of the fields. A microscopic derivation shows that
the coefficients c1/2(∂τ ) contain temporal derivatives and that there are no terms including
three A or three T fields. Furthermore, the lattice structure dictates the form of closed
loops.

We want to justify the approximation of the singlet field A by its mean-field value while
neglecting its phase fluctuations. To this end, we show that the phase fluctuations are
gapped and therefore the low energy physics is correctly captured by a mean-field approx-
imation for A. We restrict ourselves to the regime where the T γ vanish or are negligibly
small and can rewrite the effective action as

S̃eff [A;T γ = 0] ≈
∑
γ‖〈ij〉

c1(∂τ ) |Aij |2 +
∑

closed
loops

cAAAAijkl AijĀjkAklĀli.

This approximation is admissible close to the quantum phase transition where the fields
T γ vanish below some critical coupling and take some small value above.

The phase fluctuations of the A field give rise to new U(1) gauge fields [9, 14, 54]. Con-
sider for a moment an anisotropic lattice where the coupling along bonds in direction
a3 is different from the coupling along a1 and a2. This can as well be seen as a square
lattice with nearest- and next-nearest-neighbor couplings. For this model it is known that
the phase fluctuations give rise to a two-component U(1) gauge field and an additional
Higgs field which gaps out the U(1) gauge fluctuations [54, 55]. In the isotropic case, all
directions have to be treated equally, and therefore the U(1) gauge symmetry is replaced
by U1(1)× U2(1)× U3(1). However, all the Uγ(1) gauge groups come with an additional
Higgs field and therefore all gauge fluctuations are gapped, so that we can safely neglect
the phase fluctuations in our derivations of an effective theory for the triplet fields, T γ .

Lattice gauge theories of U(1) and Z2 gauge fields coupled to a Higgs field and matter
were studied by Fradkin and Shenker [56]. Using their results it can be argued that the
spinon excitations remain unconfined [14].
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C Appendix C

Fourth Order Contribution to the
Effective Action

We define the four-point vertex function,

Γ
(4)
αβγδ(q1, q2, q3) := − J4

2

2Nβ

∑′′

k

G
(n)
0,kG

(n)
0,−k+q1

G
(n)
0,k+q3

G
(n)
0,−k+q2−q3

tr2

[
στ(α)στ(β)στ(γ)στ(δ)

]
sgn(α)sgn?(β)sgn(γ)sgn?(δ)

cos(a(kα − q1,α)) cos(a(kβ + q3,β)) cos(a(kγ − q2,γ + q3,γ)) cos(akδ),

evaluate the Matsubara summation for vanishing external frequencies and momenta, and
get

Γ
(4)
αβγδ(0, 0, 0) = − J4

2

8λ3N

∑
k,kγ≥0

tr2

[
στ(α)στ(β)στ(γ)στ(δ)

]
sgn(α)sgn?(β)sgn(γ)sgn?(δ)

cos(akα) cos(akβ) cos(akγ) cos(akδ).

Using Pauli matrix identities, we can rewrite this expression as

Γ
(4)
αβγδ(0, 0, 0)

= − J4
2

4λ3N

∑
k,kγ≥0

sgn(α)sgn?(β)sgn(γ)sgn?(δ) cos(akα) cos(akβ) cos(akγ) cos(akδ)

{δαβδγδ + δαδδβγ + δαγδβδ (−1 + 2(δα,2 + δβ,2)− 4δα,2δαβ)}

= − J4
2

4λ3N

∑
k,kγ≥0

{
δαβδγδ cos2(akα) cos2(akγ) + δαδδβγ cos2(akα) cos2(akβ)

+δαγδβδ sgn(α)2sgn?(β)2 cos2(akα) cos2(akβ) (−1 + 2(δα,2 + δβ,2)− 4δα,2δαβ)
}
.

We evaluate the momentum sum similar to the ones for the Gaussian fluctuations and get

1

N

∑
k,kγ≥0

cos2(akµ) cos2(akν) =
1

16
(2 + δµν) .
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C Fourth Order Contribution to the Effective Action

Inserting this into Γ
(4)
αβγδ(0, 0, 0), we get

Γ
(4)
αβγδ(0, 0, 0) = − J4

2

64λ3
(δαβδγδ (2 + δαγ) + δαδδβγ (2 + δαβ)

−δαγδβδ sgn(α)2sgn?(β)2 (2 + δαβ)

+2δαγδβδ sgn(α)2sgn?(β)2 (2 + δαβ) (δα,2 + δβ,2 − 2δα,2δαβ)
)

= − J4
2

64λ3
[2δαβδγδ + 2δαδδβγ + δαβδβγδγδ

−2δαγδβδ sgn(α)2sgn?(β)2

+4δαγδβδ sgn(α)2sgn?(β)2 (δα,2 + δβ,2 − 2δα,2δαβ)
]
.

Using this result, we can now write the fourth order contribution as

S̃(4) ≈ − J4
2

64λ3

1

(Nβ)3

∑
q1,q2,q3

2
∑
γ,γ′

T γ(q1)T̄ γ(q1 + q3)T γ
′
(q2)T̄ γ

′
(q2 − q3)

+2
∑
γ,γ′

T γ(q1)T̄ γ
′
(q1 + q3)T γ

′
(q2)T̄ γ(q2 − q3)

+
∑
γ

T γ(q1)T̄ γ(q1 + q3)T γ(q2)T̄ γ(q2 − q3)

−2
∑
γ,γ′

T γ(q1)T̄ γ
′
(q1 + q3)T γ(q2)T̄ γ

′
(q2 − q3)

 ,

or, more compactly,

S̃(4)
= − 4u

(Nβ)3

∑
q1,q2,q3

∑
γ,γ′

T γ(q1)T̄ γ(q1 + q3)T γ
′
(q2)T̄ γ

′
(q2 − q3)

+
2u

(Nβ)3

∑
q1,q2,q3

∑
γ,γ′

T γ(q1)T̄ γ
′
(q1 + q3)T γ(q2)T̄ γ

′
(q2 − q3)

− u

(Nβ)3

∑
q1,q2,q3

∑
γ

T γ(q1)T̄ γ(q1 + q3)T γ(q2)T̄ γ(q2 − q3),

where we defined

u :=
J4

2

64λ3
.
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DAppendix D

Technical Results for fRG Calcula-
tions

D.1. Expressions Used in fRG Calculations

The second functional derivatives of ΓΛ are given by

δ2ΓΛ

δT̄α(p)δT̄ β(q)
= 2

∫
k

{
u

(n)
Λ Tα(k)T β(p+ q − k) + δαβ

∑
γ

(u
(a)
Λ + vΛδαγ)T γ(k)T γ(p+ q − k)

}
δ2ΓΛ

δTα(p)δT β(q)
= 2

∫
k

{
u

(n)
Λ T̄α(k)T̄ β(p+ q − k) + δαβ

∑
γ

(u
(a)
Λ + vΛδαγ)T̄ γ(k)T̄ γ(p+ q − k)

}
δ2ΓΛ

δT̄α(p)δT β(q)
= −G−1

Λ,p,αδαβ(2π)d+1δ(p− q) + 2

∫
k

{
u

(n)
Λ

(
δαβ

∑
γ

T̄ γ(k)T γ(k + p− q)

+ T̄ β(k)Tα(k + p− q)
)

+2(u
(a)
Λ + vΛδαβ)T̄α(k)T β(k + p− q)

}
δ2ΓΛ

δTα(p)δT̄ β(q)
= −G−1

Λ,p,αδαβ(2π)d+1δ(p− q) + 2

∫
k

{
u

(n)
Λ

(
δαβ

∑
γ

T̄ γ(k)T γ(k − p+ q)

+ T̄α(k)T β(k − p+ q)

)

+2(u
(a)
Λ + vΛδαβ)T̄ β(k)Tα(k − p+ q)

}
.

Using M = Γ
(2)
Λ +RΛ, we get

(M |T=0)p,q;α,β = −δαβ(2π)d+1δ(p− q)G−1
R,p,α

(
0 1
1 0

)
,

where we used

G−1
R,p,α := G−1

Λ,p,α −RΛ,p,α

and

(RΛ)p,q;α,β = δαβ(2π)d+1δ(p− q)RΛ,p,α

(
0 1
1 0

)
.
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The matrix M can be inverted with inverse(
M−1

∣∣
T=0

)
p,q;α,β

= −δαβ(2π)d+1δ(p− q)GR,p,α
(

0 1
1 0

)
.

Thus, we can evaluate the matrix product(
M−1

∣∣
T=0

∂ΛRΛ M
−1
∣∣
T=0

)
p,q;α,β

= δαβ(2π)d+1δ(p− q)G2
R,p,α∂ΛRΛ,p,α

(
0 1
1 0

)
. (D.1)

Other expressions which we will need are the second functional derivatives of M :(
δ2M

δT̄ γ(k)δT̄ γ′(k′)

)
p,q;α,β

=

(
0 0
0 1

)[
u

(n)
Λ (δαγδβγ′ + δαγ′δβγ) + 2

(
u

(a)
Λ + vΛδαγ

)
δαβδγγ′

]
2(2π)d+1δ(k + k′ − p− q) (D.2)(

δ2M

δT γ(k)δT γ′(k′)

)
p,q;α,β

=

(
1 0
0 0

)[
u

(n)
Λ (δαγδβγ′ + δαγ′δβγ) + 2

(
u

(a)
Λ + vΛδαγ

)
δαβδγγ′

]
2(2π)d+1δ(k + k′ − p− q) (D.3)(

δ2M

δT̄ γ(k)δT γ′(k′)

)
p,q;α,β

=

(
0 1
0 0

)[
u

(n)
Λ (δαγ′δβγ + δαβδγγ′) + 2

(
u

(a)
Λ + vΛδαβ

)
δαγδβγ′

]
2(2π)d+1δ(k − k′ + p− q)

+

(
0 0
1 0

)[
u

(n)
Λ (δαγδβγ′ + δαβδγγ′) + 2

(
u

(a)
Λ + vΛδαβ

)
δαγ′δβγ

]
2(2π)d+1δ(k − k′ − p+ q)

(D.4)

D.2. Evaluation of Integrals

D.2.1. I
(1)
γ,γ′ , γ 6= γ′

When deriving the flow equations for the quartic couplings, we have to evaluate the integral

I
(1)
γ,γ′ =

∫
p

∂ΛRΛ,p,γ

G−2
R,p,γG

−1
R,−p,γ′

,

where γ 6= γ′. Using Θ(0) = 1/2 and performing the frequency integral via the residue
theorem, we get

I
(1)
γ,γ′ = −2Λ

∫
p

Θ(Λ2 − p2) + Λ2δ(Λ2 − p2)(
iZΛp0 + rΛ + p2

γ + Λ2Θ(Λ2 − p2)
)2 (−iZΛp0 + rΛ + p2

γ′ + Λ2Θ(Λ2 − p2)
)

= −2Λ

∫
|p|≤Λ

∫ ∞
−∞

dp0

2π

1(
iZΛp0 + rΛ + p2

γ + Λ2
)2 (−iZΛp0 + rΛ + p2

γ′ + Λ2
)

− 2Λ3

∫
p

∫ ∞
−∞

dp0

2π

δ(Λ2 − p2)(
iZΛp0 + rΛ + p2

γ + 1
2Λ2

)2 (−iZΛp0 + rΛ + p2
γ′ +

1
2Λ2

)
= −2Λ

∫
|p|≤Λ

1

ZΛ

(
p2
γ + p2

γ′ + 2 (rΛ + Λ2)
)2 − 2Λ3

∫
p

δ(Λ2 − p2)

ZΛ

(
p2
γ + p2

γ′ + 2rΛ + Λ2
)2 .
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Using ∑
α

p2
α =

3

2
p2,

we get for γ 6= γ′

p2
γ + p2

γ′ =
∑
α

p2
α − p2

β =
3

2
p2 − p2

β,

where β is the unique index distinct from γ and γ′. Thus, we get

I
(2)
γ,γ′ = −2Λ

ZΛ

∫
|p|≤Λ

dpβ dpβ,⊥
(2π)2

1(
2 (rΛ + Λ2) + 1

2p
2
β + 3

2p
2
β,⊥

)2

+

∫
dpβ dpβ,⊥

(2π)2

Λ2δ(Λ2 − p2)(
2rΛ + Λ2 + 1

2p
2
β + 3

2p
2
β,⊥

)2

 ,

where pβ,⊥ denotes the momentum perpendicular to pβ. Rescaling the momenta,

p̃β = pβ/Λ, p̃β,⊥ = pβ,⊥/Λ,

and defining r̃Λ = rΛΛ−2 we get for the first integral

Ia :=
1

Λ2(2π)2

∫
|p̃|≤1

dp̃β dp̃β,⊥
1(

2(r̃Λ + 1) + 1
2 p̃

2
β + 3

2 p̃
2
β,⊥

)2 .

We use elliptic polar coordinates

p̃β =
√

2ρ cosφ, p̃β,⊥ =

√
2

3
ρ sinφ

and rewrite the integral as

Ia =
2√

3Λ2(2π)2

∫ 2π

0
dφ

∫ ( 2
3(1+2 cos2 φ))

−1/2

0
dρ

ρ

(2 (r̃Λ + 1) + ρ2)2

=
1√

3Λ2(2π)2

∫ 2π

0
dφ

∫ ( 2
3

(1+2 cos2 φ))
−1

0
du

1

(2(r̃Λ + 1) + u)2

=
3

2
√

3Λ2(2π)2(r̃Λ + 1)

∫ 2π

0
dφ

1

(3 + 8(r̃Λ + 1) + 4(r̃Λ + 1) cos(2φ))

=

√
3

Λ24π(r̃Λ + 1)

1√
9 + 48(r̃Λ + 1)(r̃Λ + 2)

=
Λ2

4π

1

(rΛ + Λ2)
√

3Λ4 + 16(rΛ + Λ2)(rΛ + 2Λ2)
.
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For the second integral we use (circular) polar coordinates and get

Ib :=
1

Λ2(2π)2

∫
dp̃β dp̃β,⊥

δ(1− p̃2)(
2r̃Λ + 1 + 1

2 p̃
2
β + 3

2 p̃
2
β,⊥

)2

=
1

Λ2(2π)2

∫ 2π

0
dφ

∫ ∞
0

dρ
δ(1− ρ2)(

2r̃Λ + 1 + ρ2

2 + ρ2

2 sin2(φ)
)2

=
1

Λ2(2π)2

∫ 2π

0
dφ

1

2

1(
2r̃Λ + 1 + 1

2 + 1
2 sin2(φ)

)2
=

1

2Λ2(2π)2

32π (r̃Λ + 1)

(3 + 4 (2r̃Λ + 1) (2r̃Λ + 3))3/2

=
8

Λ2π

(r̃Λ + 1)

(3 + 4 (2r̃Λ + 1) (2r̃Λ + 3))3/2

=
8Λ2

π

(
rΛ + Λ2

)
(3Λ4 + 4 (2rΛ + Λ2) (2rΛ + 3Λ2))3/2

,

where we assumed r > −Λ2/2, an assumption which - similar to the one discussed in the
main text - will be satisfied in our case.

Combining the contributions , we get

I
(1)
γ,γ′ = − Λ3

πZΛ

(
1

2(rΛ + Λ2)
√

3Λ4 + 16(rΛ + Λ2)(rΛ + 2Λ2)

+
16
(
rΛ + Λ2

)
(3Λ4 + 4 (2rΛ + Λ2) (2rΛ + 3Λ2))3/2

)
.

Note in particular, that this expression does not depend on the indices γ, γ′ but only used
the fact, that they are different.

D.2.2. I
(1)
γ,γ

In this appendix we evaluate the integral

I(1)
γ,γ =

∫
p

∂ΛRΛ,p,α

G−2
R,p,γG

−1
R,−p,γ

.

Using Θ(0) = 1/2 and performing the frequency integral, we get

I(1)
γ,γ = − Λ

2ZΛ

∫
|p|≤Λ

1

(p2
α + rΛ + Λ2)2 −

2Λ3

ZΛ

∫
p

δ(Λ2 − p2)

(2p2
α + 2rΛ + Λ2)2 .

Rescaling momenta,

p̃α = pα/Λ, p̃α,⊥ = kα,⊥/Λ,
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and using polar coordinates, we get for the first summand

Ic :=
1

Λ2(2π)2

∫
p̃≤1

dp̃α dp̃α,⊥
1

(p̃2
α + r̃Λ + 1)2

=
1

Λ2(2π)2

∫ 2π

0
dφ

∫ 1

0
dρ

ρ

(r̃Λ + 1 + ρ2 cos2 φ)2

=
1

Λ2(2π)2

1

r̃Λ + 1

∫ 2π

0
dφ

1

1 + 2(r̃Λ + 1) + cos(2φ)

=
1

4πΛ2

1

(r̃Λ + 1)
√

(r̃Λ + 1)(r̃Λ + 2)

=
Λ2

4π

1

(rΛ + Λ2)
√

(rΛ + Λ2)(rΛ + 2Λ2)

and for the second summand we get

Id :=
1

Λ2(2π)2

∫
dp̃α dp̃α,⊥

δ(1− p̃2)

(2p̃2
x + 2r̃Λ + 1)2

=
1

Λ2(2π)2

∫ ∞
0

dρ

∫ 2π

0
dφ

δ(1− ρ2)

(1 + 2r̃Λ + 2ρ2 sin2 φ)2

=
1

Λ2(2π)2

∫ 2π

0
dφ

1

2

1

(1 + 2r̃Λ + 2 sin2 φ)2

=
1

2Λ2(2π)2

4π (r̃Λ + 1)

(3 + 4r̃Λ (r̃Λ + 2))3/2

=
1

2Λ2π

(r̃Λ + 1)

(3 + 4r̃Λ (r̃Λ + 2))3/2

=
Λ2

2π

(
rΛ + Λ2

)
(3Λ4 + 4rΛ (rΛ + 2Λ2))3/2

.

Here, we assumed again, that rΛ/Λ
2 > −1/2. Combining these contributions, we get

I(1)
γ,γ = − Λ3

4πZΛ

(
1

2 (rΛ + Λ2)
√

(rΛ + Λ2) (rΛ + 2Λ2)
+

4
(
rΛ + Λ2

)
(3Λ4 + 4rΛ (rΛ + 2Λ2))3/2

)
.

In particular, this does not depend on the direction γ.
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